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A model for configuration spaces of points

RICARDO CAMPOS

THOMAS WILLWACHER

We construct a real combinatorial model for the configuration spaces of points of
compact smooth oriented manifolds without boundary. We use these models to
show that the real homotopy type of configuration spaces of a simply connected
such manifold only depends on the real homotopy type of the manifold.

Moreover, we show that for framed D-dimensional manifolds these models capture
a natural right homotopy action of the little D-disks operad.
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1 Introduction

Given a smooth manifold M , we study the configuration space of n non-overlapping
points on M

Confn(M) = {(m1, . . . ,mn) ∈ Mn | mi 6= mj for i 6= j}.

These spaces are classical objects in topology, whose homological and homotopical
properties have been subject to intensive study over the decades. One of the first
important results dates back to 1978 when Cohen and Taylor [CT] constructed a spectral
sequence converging to the cohomology H•(Confn(M)). A different spectral sequence
was constructed by Bendersky and Gitler [BT] and both spectral sequences have been
shown to coincide from the E2 term on by Felix and Thomas [FT]. In the particular
case of smooth compact projective complex manifolds it was shown by Totaro [Tot]
that the Cohen-Taylor spectral sequence collapses after the second page and Kriz [Kr]
showed that for those manifolds the E2 page is actually a model of Confn(M) in the
sense of rational homotopy theory.

In this paper, we aim to understand the rational homotopy type of configuration spaces.
Classical rational homotopy theory à la Sullivan [Su] states that we can understand
topological spaces via algebraic models which are differential graded commutative
K-algebras (dgca), where K is a field of characteristic zero. This roughly amounts to
capturing the non-torsion part of the homotopy groups of such spaces. Usually, the field
K is taken to be the rational numbers, but due to the transcendental methods we use, we
take the base field K = R to be the real numbers and we will therefore refer to the real
homotopy type of configuration spaces.

Our first main result is the construction of a differential graded commutative R-algebra
model ∗GraphsM for Conf•(M), in the case when M is a D-dimensional compact
smooth oriented manifold without boundary, with D ≥ 2. Our model depends on M
only through the following data:
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• The cohomology V = H•(M) as a vector space with a non-degenerate pairing of
degree D = dim(M).

• The partition function ZM of the “universal” perturbative AKSZ topological field
theory on M . This is a Maurer-Cartan element in a certain graph complex only
depending on V .

In particular, this shows that the latter perturbative invariants ZM (special cases of
which have been studied in the literature [BCM]) contain at least as much information
as the real homotopy type of Conf•(M). Furthermore, the real homotopy type of M
is encoded in the tree-level components of ZM . The higher loop order pieces of ZM

“indicate” (in a vague sense) the failure of the homotopy type of Conf•(M) to depend
only on M . Finally, the real cohomology of Conf•(M) can be computed just from the
tree level knowledge, see section 7.

Now suppose that M is furthermore framed, i.e., the frame bundle of M is trivialized.
Then the totality of spaces Conf•(M) carries additional algebraic structure, in that it
can be endowed with a homotopy right action of the little D-disks operad as follows.
First we consider the natural compactification FMM(n) of Confn(M) introduced by
Axelrod and Singer [AS], cf. also [Si]. It is naturally acted upon from the right by the
Fulton-MacPherson-Axelrod-Singer variant of the little disks operad FMD introduced
in [GJ] by “insertion” of configurations of points.

The right ED -module structure on configuration spaces has been receiving much interest
in the last decade, since it has been realized that the homotopy theory of these right
modules captures much of the homotopy theory of the underlying manifolds. For
example, by the Goodwillie-Weiss embedding calculus the derived mapping spaces
(“Ext’s”) of those right ED modules capture (under good technical conditions) the
homotopy type of the embedding spaces of the underlying manifolds [GW, BW, BW2].
Dually, the factorization homology (“Tor’s”) of ED -algebras has been widely studied
and captures interesting properties of both the manifold and the ED algebra [AF].
However, in order to use these tools in concrete situations it is important to have models
for Conf•(M) (as a right Hopf ED -module) that are computationally accessible, i.e.,
combinatorial. In this paper we provide such models.

Concretely, our second main result is that our model ∗GraphsM above combinatorially
captures this action of the little D-disks operad as well, in the sense that it is a right
Hopf operadic comodule over the Kontsevich Hopf cooperad ∗GraphsD , modeling the
topological little D-disks operad, and the combinatorially defined action models the
topological action of ED on Conf•(M).

In fact, one can consider the following “hierarchy" of invariants of a manifold M .
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(1) The real (or rational) homotopy type of M .

(2) The real (or rational) homotopy types of FMM(m) for m = 1, 2, . . .

(3) The real (or rational) homotopy type of FMM considered as right FMD -module,
for parallelized M . (For non-parallelizable M one may consider similarly the
homotopy type of the FM-module of framed configuration spaces of points
FFMM .)

The relative strength of this invariants has been unknown. In particular it is a long
standing open problem if for simply connected M the rational homotopy type of
Conf•(M) depends only on the rational homotopy type of M [FHT, Problem 8, p. 518]
(cf. also [Le] for a stronger conjecture disproved in [LoS]).

In our model the above hierarchy is nicely encoded in the loop order filtration on a
certain graph complex GCM , in which item 1 is encoded by the tree level piece of ZM

along with the cohomology of item 2, while the full ZM encodes item 3.

Our third main result states that for a simply connected smooth closed framed manifold
M , these invariants are of equal strenght. We show furthermore that without the framed
assumption item 1 is still equally strong as item 2, thus establishing [FHT, Problem 8,
p. 518] under the assumption of smoothness.

Finally, if we consider a non-parallelized manifold there is still a way to make sense of
the insertion of points at the boundary, but the price to pay is that one has to consider
configurations of framed points in M . The resulting framed configuration spaces
Conffr

•
(M) then come equipped with a natural right action of the framed little disks

operad Efr
D . In Section 9 we present BVGraphsM , a natural modification of GraphsM

that encompasses the data of the frames and we show that if we consider Σ a two
dimensional orientable manifold, BVGraphsΣ models this additional right action. In
the framed case we restrict ourselves to the 2-dimensional setting.

Outline and statement of the main result

Let us summarize the construction and state the main result here. First recall from
[K2] the Kontsevich dg cooperad ∗GraphsD . Elements of ∗GraphsD(r) consist of linear
combinations of graphs with r numbered and an arbitrary number of unidentifiable
vertices, like the following

1 2 3 4 .
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The precise definition of ∗GraphsD will be recalled in section 3 below. The graphs
contributing to ∗GraphsD may be interpreted as the non-vaccuum Feynman diagrams
of the perturbative AKSZ σ -models on RD [AKSZ].

Kontsevich constructs an explicit map ∗GraphsD → ΩPA(FMD) to the dgca of PA
forms on the compactified configuration spaces FMD . This map is compatible with the
(co-)operadic compositions, in the sense described in section 3 below.

Now fix a smooth compact manifold M of dimension D, of which we pick an
algebraic realization, so that we can talk about PA forms ΩPA(M). Then we consider
a collection of dg commutative algebras ∗GraphsM(r). Elements of ∗GraphsM(r)
are linear combinations of graphs, but with additional decorations of each vertex in
the symmetric algebra S(H̃(M)) generated by the reduced cohomology H̃(M). The
following graph is an example, where we fixed some basis {ωj} of H̃(M).

1 2 3 4

ω1 ω1

ω2 ω3

.

These graphs may be interpreted as the non-vaccuum Feynman diagrams of the
perturbative AKSZ σ -model on M . We equip the spaces ∗GraphsM(r) with a non-trivial
differential built using the partition function ZM of those field theories. This partition
function can be considered as a special Maurer-Cartan element of a certain graph
complex GCM . Algebraically, the spaces ∗GraphsM(r) assemble into a right dg Hopf
cooperadic comodule over the Hopf cooperad ∗GraphsD .

By mimicking the Kontsevich construction, we construct, for a parallelized manifold
M , a map of dg Hopf collections1

∗GraphsM → ΩPA(FMM),

compatible with the (co)operadic (co)module structure, where we consider FMM as
equipped with the right FMD -action. If M is not parallelized, we do not have an
FMD -action on FMM . Nevertheless we may consider a (quasi-isomorphic) dg Hopf
collection

∗GraphsM ⊂ ∗GraphsM

that still comes with a map of dg Hopf collections
∗GraphsM → ΩPA(FMM).

Our first main result is the following.
1A (dg) Hopf collection C for us is a sequence C(r) of dg commutative algebras, with actions

of the symmetric groups Sr . A (dg) Hopf cooperad is a cooperad in dg commutative algebras.
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Theorem 1 The map ∗GraphsM → ΩPA(FMM) is a quasi-isomorphism of dg Hopf
collections. In the parallelized case the map ∗GraphsM → ΩPA(FMM) is a quasi-
isomorphism of dg Hopf collections, compatible with the (co)operadic (co)module
structures.

This result provides us with explicit combinatorial dgca models for configuration spaces
of points, compatible with the right ED action on these configuration spaces in the
parallelizable setting. An extension to the non-parallelized case is provided in section 9,
albeit only in dimension D = 2.

We note that our model ∗GraphsM depends on M only through the partition function
ZM ∈ GCM . The tree part of this partition function encodes the real homotopy type of
M . The loop parts encode invariants of M . Now, simple degree counting arguments
may be used to severely restrict the possible graphs occuring in M . In particular, one
finds that if H1(M,R) vanishes, then for D ≥ 4 there are no contributions to ZM of
positive loop order, and one hence arrives at the following result.

Corollary 2 (Theorem 63 below) Let M be an orientable compact manifold without
boundary of dimension D ≥ 4, such that H1(M,R) = 0. Then the (naive2) real
homotopy type of Conf•(M) depends only on the (naive) real homotopy type of M .

For D = 2 the analogous statement is empty, as there is only one connected manifold
satisfying the assumption. If we replace the condition H1(M,R) = 0 by the stronger
condition of simple connectivity, the statement is also true in dimension 3, but for
the trivial reason that by the Poincaré conjecture there is only one simply connected
manifold M in dimension 3. Hence the above result also solves the real version of the
long standing question in algebraic topology of whether for simply connected M the
rational homotopy type of the configuration space of points on M is determined by the
rational homotopy type of M , cf. [FHT, Problem 8, p.518]

Remark 3 Our result also shows that the “perturbative AKSZ”-invariant ZM is at least
as strong as the invariant of M given by the totality of the real homotopy types of the
configuration spaces of M , considered as right ED -modules. The latter “invariant”
is the data entering the factorization or “manifoldic” homology [AF, MT] and the

2We call the naive real homotopy type the quasi-isomorphism type of the dg commutative
algebra of (PL or smooth) forms. Note that in the non-simply connected case this definition is
not the correct one, one should rather consider the real homotopy type of the universal cover
with the action of the fundamental group. We do not consider this better notion here, and in this
paper “real homotopy type” shall always refer to the naive real homotopy type.
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Goodwillie-Weiss calculus [GW] (over the reals). Conversely, from the fact that
the models ∗GraphsM encode the real homotopy type of configuration spaces one
may see that the expectation values of the perturbative AKSZ theories on M may
be expressed through the factorization homology of M . However, we will leave the
physical interpretation to forthcoming work and focus here on the algebraic-topological
goal of providing models for configuration spaces.

Remark 4 After the first version of this article appeared on the arXiv, Idrissi [I]
obtained results very similar to ours by showing that for simply connected closed
oriented manifolds the Lambrechts-Stanley dg model [LS] is actually a real model of
Confn(M). We sketch in Appendix A how this latter statement can also be obtained as
a consequence of our main results.

Plan of the paper

In Section 2 we introduce the spaces FMM , the compactifications of configuration spaces
of points on a smooth manifold M (D = dim M ) and its semi-algebraic realizations and
adapt results in the literature to construct the propagator.

Starting with the framed case, in Section 3 we construct the first graph complex ∗GraM

(a Hopf ∗GraD -comodule) and construct the map into ΩPA(FMM) which is not yet a
quasi-isomorphism. In Section 4 we use operadic twisting to obtain the graph complex
∗GraphsM and in Section 5 we show that ∗GraphsM is indeed a model for the real
homotopy type of FMM as a right FMD -module.

In Section 6 we construct a no-tadpole variant of the graph complex to deal with the
case where M is not parallelized and show that it models the real homotopy type of the
collection of topological spaces FMM , concluding the proof of Theorem 1.

The next goal is to study the dependence of the homotopy type of the configuration
spaces on the base manifold. In Sections 7 and 8 we study the partition function ZM

that gives rise to the differential in ∗GraphsM and we show that it is gauge equivalent
to one vanishing on graphs containing ≤ 2-valent vertices. We conclude that in good
conditions the real homotopy type of M can be recovered from the tree piece of the
graph complex, thus proving Corollary 2.

Finally, in the last section we construct a graphical model of configuration spaces of
framed points in 2-dimensions, together with the action of the framed little disks operad.
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1.1 Notations and conventions.

Throughout the text all algebraic objects (vector spaces, algebras, operads, etc) are
differential graded (or just dg) and are defined over the field R.

We use cohomological conventions, i.e. all differentials have degree +1. We use the
language of operads and follow mostly the conventions of the textbook [LoV]. One
notable exception is that we denote the k-fold operadic (de-)suspension of an operad P
by ΛkP .

1.2 Acknowledgments

We would like to thank Pascal Lambrechts for useful remarks and references and
Najib Idrissi, Nils Prigge and Victor Turchin for valuable discussions and for pointing
out some mistakes in the original version. Both authors have been supported by the
Swiss National Science Foundation, grant 200021 150012, by the NCCR SwissMAP
funded by the Swiss National Science Foundation, and the ERC starting grant 678156
(GRAPHCPX).

2 Compactified configuration spaces

2.1 Semi-algebraic Manifolds

Given a compact semi-algebraic set X one can consider its dgca of piecewise semi-
algebraic (PA) forms, ΩPA(X), which is quasi-isomorphic to Sullivan’s dgca of piecewise
polynomial forms [HLTV, KS].

Dually, one can also consider its complex of semi-algebraic chains, that we denote by
Chains(X), which is also quasi-isomorphic to the usual complex of singular chains.

By the Nash–Tognoli Theorem [Tog] (see also [BCR, section 14]), any smooth compact
manifold is diffeomorphic to a component of a non-singular algebraic subset of RN for
some N . In particular, any such manifold can be realized as a smooth semi-algebraic (i.e.,
Nash-)submanifold of Euclidean space. Throughout this paper whenever we consider a
closed smooth manifold M we will consider implicitly a chosen such realization of M
as a Nash submanifold of RN .

We refer to [BCR] for an introduction to real algebraic geometry. An overview is also
contained in the introductory sections of [HLTV].
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Even though all manifolds considered in this paper will be smooth, it is not sufficient for
our purposes to consider the de Rham complex. The main reason for this is that we would
like to consider fiber integration over non-smooth fiber bundles E → B. Nonetheless,
the relevant bundles will be SA (semi-algebraic) bundles [HLTV] and, for such bundles,
there is a pushforward map Ωmin(E) → ΩPA(B), where Ωmin(M) ⊂ ΩPA(M) is the
(non-quasi-isomorphic) subalgebra of minimal forms.

While this pushforward cannot be naturally extended to the whole space of PA forms
ΩPA(E), as described in Appendix C, we can consider a subalgebra of trivial forms
Ωtriv(E), sitting between Ωmin(E) and ΩPA(E) and quasi-isomorphic to ΩPA(E), such
that the pushforward extends naturally to a map Ωtriv(E)→ ΩPA(B).

2.2 Configuration spaces of points in RD

Let D be a positive integer. We will use the Fulton-MacPherson topological operad FMD

that was introduced by Getzler and Jones [GJ]. Its n-ary space FMD(n) is a suitable
compactification of the quotient of the configuration space Confn(RD)/(R>0 n RD),
with the Lie group R>0 n RD acting by scaling and translations. For n > 1 the spaces
FMD(n) are Dn− D− 1 dimensional manifolds with corners whose boundary strata
represent sets of points getting infinitely close.

The first few terms are

• FMD(0) = {∗},3

• FMD(1) = {∗},

• FMD(2) = SD−1 .

The operadic composition ◦i is given by inserting a configuration at the boundary
stratum at the point labeled by i. A thorough study of these operads can be found in
[LV].

The operad FMD can be related to a shifted version of the homotopy Lie operad via the
operad morphism

(1) ΛD−1L∞ → Chains(FMD),

given by sending the generator µn ∈ ΛD−1L∞(n) to the fundamental chain of FMD(n),
i.e. the semi-algebraic chain corresponding to FMD(n) as a submanifold of itself.4

3We work with the unital version of the Fulton-MacPherson operad.
4Recall that due to our cohomological conventions these spaces live in non-positive degree.

In particular, the generator µn ∈ L∞ has degree 2− n .
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2.3 Configuration spaces of points on a manifold

Let M be a closed smooth oriented manifold of dimension D. We denote by Confn(M),
the configuration space of n points in M . Concretely, Confn(M) = Mn −∆, where ∆

is the fat (or long) diagonal ∆ = {(m1, . . . ,mn) ∈ Mn | ∃i 6= j : mi = mj}.

The Fulton-MacPherson-Axelrod-Singer compactification of Confn(M) is a smooth
manifold with corners FMM(n) whose boundary strata correspond to nested groups of
points becoming “infinitely close", cf. [Si] for more details and a precise definition. Since
the inclusion Confn(M) ↪→ FMM(n) is a homotopy equivalence we work preferably
with FMM(n) as these spaces have a richer structure.

Convention 5 (Semi-algebraicity of FMM(n) ) The choice of semi-algebraic structure
on FMM(n) is done in a way compatible with the one from M as follows: Let us
consider the chosen semi-algebraic realization of the manifold M in RN for some N .

For 1 ≤ i 6= j ≤ n, let θi,j : Confn(M)→ SN−1 sending (x1, . . . , xn) to xi−xj
‖xi−xj‖RN

.

For 1 ≤ i 6= j 6= k ≤ n we define di,j,k : Confn(M)→ (0,+∞) by di,j,k((x1, . . . , xn)) =
‖xi−xj‖
‖xi−xk‖ .

Considering all possibilities of i, j and k , we have defined a natural embedding

ι : Confn(M)→ Mn × (SN−1)n(n−1) × [0,+∞]n(n−1)(n−2).

We define FMM(n) as the closure ι(Confn(M)) inheriting thus a semi-algebraic structure.

Remark 6 (SA bundles) For every m > n there are various projection maps
FMM(m)→ FMM(n) corresponding to forgetting m− n of the points. These maps are
not smooth fiber bundles, but they are SA (semi-algebraic) bundles [HLTV], which
allows us to consider pushforwards (fiber integration) of forms along these maps.

The proof of this fact is a straightforward adaptation of the proof of the same fact for
FMD done in [LV, Section 5.9]. In this case one starts instead by associating to a
configuration in FMM(n) a configuration of nested disks in M .

Convention 7 From here onward, we fix representatives of the cohomology of M , i.e.,
we fix an embedding

(2) ι : H•(M) ↪→ Ω•

triv(M)

that yields a right inverse of the projection from closed forms to cohomology.

Algebraic & Geometric Topology XX (20XX)



A model for configuration spaces of points 1011

2.3.1 The diagonal class

Since M is compact and oriented, the pairing
∫

: H•(M) ⊗ H•(M) → R, (ω, ν) 7→∫
M ω ∧ ν given by Poincaré duality is non-degenerate. We shall also consider a version

of this pairing which is antisymmetric for odd D,

〈ω, ν〉 = (−1)D deg(ν)
∫

M
ω ∧ ν .

The diagonal map ∆ : M → M × M defines an element in H•(M × M) and its
dual under Poincaré duality is called the diagonal class, which is also denoted by
∆ ∈ H•(M ×M) = H•(M)⊗ H•(M).

If we pick a homogeneous basis e1, . . . , ek of H•(M), we have ∆ =
∑

i,j gijei ⊗ ej ,
where (gij) is the matrix inverse to the Poincaré duality pairing 〈−,−〉. Alternatively,
this can also be written as ∆ =

∑
i(−1)deg(ei)ei ⊗ e∗i , where {e∗i } is the dual basis of

{ei} with respect to (−,−).

In FMM(2), if we consider the case in which the two points come infinitely close to one
another, we obtain a map ∂FMM(2) → M ∼= ∆ ⊂ M ×M which is a sphere bundle
(with SD−1 fibers). Notice that ∂FMM(2) can be identified with ST(M), the sphere
tangent bundle of M .

The following proposition can essentially be found in the literature (c.f. for instance
[BC, Section 3], [CR] and [CM, Lemma 2]), we only have to apply minor modifications
in order to work in the semi-algebraic setting.

Proposition 8 Let p1 : FMM(2) → M (respectively p2 : FMM(2) → M ) be the map
that forgets the point labeled by 2 (resp. 1) from a configuration. There is a form
φ12 ∈ ΩD−1

triv (FMM(2)) satisfying the following properties:

(i) dφ12 = p∗1 ∧ p∗2(∆) =
∑

i,j gijp∗1(ei) ∧ p∗2(ej) ∈ ΩD
triv(FMM(2)),

(ii) The fiber integral of the restriction of φ12 to ∂FMM(2) is equal to (−1)D . (We
then say that this restriction is a global angular form.) Additionally, if D = 2,
the restriction of φ12 to every fiber of the circle bundle yields a round volume
form of that circle, with respect to some metric.

(iii) The form φ12 is symmetric with respect to the Z2 action induced by swapping
points 1 and 2 for D even and antisymmetric for D odd.

(iv) For any α ∈ H•(M), ∫
2
φ12p∗2ι(α) = 0

Algebraic & Geometric Topology XX (20XX)
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where ι is as in (2) and the integral is along the fiber of p1 , i.e., one integrates
out the second coordinate.

Notice that the form φ12 ∈ ΩD−1
triv (FMM(2)) is also called the propagator in the literature.

More generally, we consider the forms φij ∈ ΩD−1
triv (FMM(n)) to be p∗ij(φ12), where

pij : FMM(n)→ FMM(2) is the projection map that remembers only the points labeled
by i and j.

Proof Let ψ ∈ ΩD−1
triv (∂FMM(2)) be a global angular form of the sphere bundle. Such

a form always exists, see for example [BT] where such construction is made in the
smooth case, but the argument can be adapted to the semi-algebraic case. It is also
shown in [BT] that for a circle bundle the global angular form can be chosen to restrict
to the standard volume form on each fiber. Moreover, the differential of such a form
is basic (it is the pullback of the Euler class of the sphere bundle). Let E be a collar
neighborhood of ∂FMM(2) inside FMM(2). (See [Shi, Lemma VI.1.6] for the existence
of a semi-algebraic (even Nash) collar.) Let us extend the form ψ to E by pulling it
back along the projection E → ∂FMM(2). We can consider a semi-algebraic cutoff
function ρ : FMM(2) → R such that ρ is constant equal to zero outside of E and is
constant equal to 1 in some open set U such that ∂FMM(2) ⊂ U ⊂ E . We can therefore
consider the well defined form ρψ ∈ ΩD−1

triv (FMM(2)).

Since d(ρψ)|∂FMM(2) = dψ is basic, the form d(ρψ) ∈ ΩD
triv(FMM(2)) induces a form in

ΩD
triv(M ×M), still denoted by d(ρψ). This form is clearly closed, but not necessarily

exact, as ρψ itself might not extend to the boundary.

Let ω ∈ H•(M ×M) ⊂ Ωtriv(M ×M). Then, we have∫
M×M

ω d(ρψ) =

∫
FMM(2)

ω d(ρψ) = (−1)D
∫
∂FMM(2)

ωρψ =

∫
∆∼=M

ω.(3)

It follows that the cohomology class of d(ρψ) is the Poincaré dual of the diagonal
∆ ∼= M ⊂ M×M . Therefore p∗1∧p∗2(∆) and d(ρψ) are cohomologous in ΩD

triv(M×M).
It follows that there exists a form β ∈ ΩD−1

triv (M×M) such that dβ = p∗1∧p∗2(∆)−d(ρψ).
We define the form φ12 ∈ ΩD−1

triv (FMM(2)) to be π∗β+ρψ , where π : FMM(2)→ M×M
is the projection. It is clear that φ12 satisfies property (i) and since the restriction of
π∗β to the boundary is a basic form and properties (ii) is preserved.

To ensure (iv) one can replace the φ12 constructed so far by

φ12 −
∫

3
φ13p∗23∆−

∫
3
φ23p∗13∆ +

∫
3,4
φ34(p∗13∆)(p∗24∆)

Algebraic & Geometric Topology XX (20XX)
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where pij is the forgetful map, forgetting all but points i and j from a configuration of
points. We refer the reader to [CM] where more details can be found. (The reference
contains a construction of the propagator in the smooth setting, but the trick to ensure
(iv) is verbatim identical in our semi-algebraic setup.)

Finally, we can (anti)symmetrise φ12 to ensure it satisfies property (iii), while preserving
the other properties.

Remark 9 For M parallelizable, we can (and will) require a stronger version of
property (ii). A parallelization is a choice of a trivialization ∂FMM(2) ' M × SD−1

and given such parallelization, in the proof of the previous Proposition we can take
ψ = π∗(ωSD−1) ∈ ΩD−1

triv (M × SD−1), the pullback of the standard volume form of SD−1

via the projection π : M × SD−1 → SD−1 . By construction of φ12 the restriction of φ12

to ∂FMM(2) has the form

(4) φ12 |∂FMM(2)= ψ + p∗η

where p : ∂FMM(2)→ M is the projection to the base and η ∈ Ωtriv(M) is some form
on the base. Note in particular that from the closedness of ψ and condition (i) above it
follows that

(5) dη = ∆M,

where ∆M ∈ ΩD
triv(M) denotes the pullback of ∆ along the diagonal map (i.e. the

wedge product of its components).

3 The Cattaneo-Felder-Mnev graph complex and operad

Let n, N and D be positive integers and let V be an N -dimensional graded vector space
with a non-degenerate pairing of degree −D; 〈 , 〉 : V ⊗ V → R[−D]. We require that
for all homogeneous x, y ∈ V of degrees k and l the pairing satisfies the (anti-)symmetry
condition 〈x, y〉 = (−1)kl+D〈y, x〉. Moreover, we assume V to be “augmented" in
the sense that we are given also a canonical decomposition V = R⊕ V . One should
keep in mind the example of the Poincaré pairing on the cohomology of a connected
N -manifold.

Let e2, e3 . . . , eN be a graded basis of V and for convenience of notation we denote
e1 = 1 ∈ R. We consider the free graded commutative algebra generated by symbols
sij of degree D − 1, where 1 ≤ i, j ≤ n, sij = (−1)Dsji , and symbols ej

1, . . . , e
j
N ,
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j = 1, . . . n of the same degrees as the elements of the basis e1, . . . , eN . We define a
differential on it by the following rules:

dej
α = 0

dsij =
∑
α,β

gαβei
αej
β

where gkl is the inverse of the matrix describing the pairing on V . (So
∑

α,β gαβei
αej
β

is the “diagonal class”.)

We define the dgca ∗GraV (n) as the quotient of this algebra by the sub-dgca generated by
elements of the form ej

1 − 1. Notice that there is a natural right action of the symmetric
group Sn on ∗GraV (n) by permuting the superscript indices (the i and j above) running
from 1 to n.

Remark 10 All definitions are independent of the choice of graded basis of V and can
be given in a basis-free way.

Remark 11 The notation ∗GraV (n) stands for “pre-dual graphs" as one may represent
elements of ∗GraV (n) as linear combinations of decorated directed graphs with n
vertices and an ordering of the edges. The decorations are elements of V that may
be attached to vertices, see Figure 1. Each such graph corresponds to monomial in
∗GraV (n), an edge between vertices i and j corresponds to one occurrence of sij and
a decoration by an element eα ∈ V at vertex j corresponds to one occurrence of ej

α .
Directions of the edges and their ordering might be ignored, keeping in mind that then a
graph is only well defined up to a ±1 pre-factor. Notice that while both tadpoles and
double edges are allowed, for (anti-)symmetry reasons one has that sii = 0 if D is odd
and that sijsij = 0 if D is even.

1
2

3

4
e2 e4

e4

= ±s41e1
4s23s33e3

2e3
4

Figure 1: An example of a graph describing an element in ∗GraV (4).
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3.1 Cooperadic comodule structure

Definition 12 Let D be a positive integer. For n ≥ 2, the space ∗GraD(n) is defined to
be the free graded commutative algebra generated by symbols sij in degree D− 1, for
i 6= j, quotiented by the relations sij = (−1)Dsji. We set ∗GraD(0) = ∗GraD(1) = R.

As before, the spaces ∗GraD(n) can be seen as the span of undecorated graphs such that
every edge has degree D− 1.

Proposition 13 The spaces ∗GraD(n) form a cooperad in dg commutative algebras.
The cooperadic structure is given by removal (contraction) of subgraphs, i.e., for
Γ ∈ ∗Gra(n), the component of ∆(Γ) in ∗GraD(k)⊗ ∗GraD(i1)⊗ · · · ⊗ ∗GraD(ik) is

(6)
∑
±Γ′ ⊗ Γ1 ⊗ · · · ⊗ Γk,

where the sum runs over all k + 1-tuples (Γ′,Γ1, . . . ,Γk) such that when each graph Γi

is inserted at the vertex i of Γ′ , there is a way of reconnecting the loose edges such that
one obtains Γ.

To obtain the appropriate signs one has to consider the full data of graphs with an ordering
of oriented edges. In this situation the orientation of the edges of Γ is preserved and one
uses the symmetry relations on Γ in such a way that for all i = 1, . . . , k , the labels of the
edges of the subgraph Γi come before the labels of the edges of the subgraph Γi+1 and
all of those come before the labels of the edges of the subgraphs Γ′ . Notice that if one
of the ij = 0, the cooperadic cocomposition is given by adding a disconnected vertex to
Γ′ [FW, Section 2.2.1]. The cooperad axioms are a straightforward verification.

Proposition 14 The dg commutative algebras ∗GraV (n) for n = 1, 2, . . . assemble to
form a cooperadic right ∗GraD comodule ∗GraV in dg commutative algebras.

Proof The cooperadic coactions are defined through formulas similar to (6) and proof
of the associativity axiom is formally the same as the proof of the previous Proposition.

To show that the differential respects the comodule structure it suffices to check this on
generators of the commutative algebra. This is clear for decorations ei

α and for tadpoles
sii . For edges connecting different vertices let us do the verification for s12 ∈ ∗GraV (2)
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for simplicity of notation. The only non-trivial commutative diagram to check if the
following:

1 2 1 2 ⊗ 1 ⊗ 1︸ ︷︷ ︸
∗GraV (2)⊗∗GraD(1)⊗∗GraD(1)

+ 1 ⊗ 1 2︸ ︷︷ ︸
∗GraV (1)⊗∗GraD(2)

+ 1 ⊗ 1 2︸ ︷︷ ︸
∗GraV (1)⊗∗GraD(2)

∑
α,β

gα,β 1 2
eα

eβ

∑
α,β

gα,β1 2
eα
eβ

⊗ 1 ⊗ 1 + 0 +
∑
α,β

gα,β1 ⊗ 1 2

eα eβ

∆

d d

∆

where the vertical arrows correspond to the differential and the horizontal ones to the
coaction.

3.2 Forms on (closed) manifolds

Let M be a closed smooth framed connected manifold of dimension D and let FMM be
the Fulton-MacPherson compactification of the spaces of configurations of points of M
as described in Section 2. It is naturally an operadic right module over the operad FMD ,
where the i-th composition of c ∈ FMD(k) in a configuration c ∈ FMM(n) corresponds
to the insertion of the configuration c at the i-th point of c. The parallelization of the
manifold ensures that this insertion can be made in a consistent way.

It follows that ΩPA(FMM) is naturally equipped with a right cooperadic coaction of
the cooperad (in dg commutative algebras) ΩPA(FMD) (mind Remark 15 below). The
coaction is obtained from the restriction of forms to boundary strata where multiple
points collide.

There is a map of (“almost”) cooperads in dg commutative algebras

(7) ∗GraD → ΩPA(FMD),

given by associating to every edge the angle form relative to the two incident vertices [K1,
LV]. More explicitly, one considers the standard volume form φ12 ∈ ΩD−1

PA (SD−1) =

ΩD−1
PA (FMD(2)), which plays the role of the propagator. The forms φij ∈ ΩD−1

PA (FMD(2))
are defined by pulling back φ12 by the appropriate projection map. Finally, the map (7)
above is obtained by extending the assignment sij 7→ φij to a map of dgcas.
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Remark 15 The functor ΩPA is not comonoidal since the canonical map ΩPA(A) ⊗
ΩPA(B) → ΩPA(A × B) goes “in the wrong direction", therefore ΩPA(FMD) is not a
cooperad. Nevertheless, by abuse of language throughout this paper we will refer to
maps such as map (7) as maps of cooperads (or cooperadic modules) if they satisfy a
compatibility relation such as commutativity of the following diagram:

∗GraD(n) ΩPA(FMD(n))

ΩPA(FMD(n− k + 1)× FMD(k))

∗GraD(n− k + 1)⊗ ∗GraD(k) ΩPA(FMD(n− k + 1))⊗ ΩPA(FMD(k)).

Since M is connected, its cohomology H•(M) has a canonical augmentation given by
the constant functions on M and since M is closed, Poincaré duality gives us a pairing
on H•(M) of degree −D. We define, for any manifold M :

∗GraM := ∗GraH•(M).

Let us denote by ι : H•(M) ↪→ Ωtriv(M) the embedding from Convention 7, that is, for
every ω ∈ H•(M), ι(ω) is a representative of the class ω . Following Cattaneo and
Mnev [CM] we can define a map of dg commutative algebras (which a priori depends
on various pieces of data)

(8) ∗GraM → Ωtriv(FMM) ⊂ ΩPA(FMM)

as follows: The map sends the generator sij for i 6= j to φij , where φij is the form
constructed in the discussion preceding the proof of Proposition 8 with the additional
assumption from Remark 9. The map sends the decoration by ω ∈ H•(M) on the j-th
vertex ωj ∈ ∗GraD to p∗j (ι(ω)), where pj : FMM → M is the map that remembers only
the point labeled by j. Finally the map sends sjj to p∗j η , where η is as in (4).

Lemma 16 The map ∗GraM → ΩPA(FMM) is a map of dg Hopf collections, compatible
with the cooperadic comodule structures along the map ∗GraD → ΩPA(FMD), in the
sense of Remark 15. In other words there is a map of 2-colored dg Hopf collections

∗GraM
∗GraD → ΩPA(FMM) ΩPA(FMD)

compatible with the (2-colored) cooperadic cocompositions.
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Proof The compatibility with the differentials is clear for every generator of ∗GraM

except possibly sjj , for which one uses (5). By definition the map consists of morphisms
of commutative algebras, therefore it is enough to check the compatibility of the
cocompositions on generators. For elements ej

α this is clear. For the other generators
we will sketch the verification for the case of s12 ∈ ∗GraM(2) for simplicity of notation.

The composition map in (FMM,FMD) is done by insertion at the boundary stratum.
Since the cocomposition map ΩPA(FMM)→ ΩPA(FMM) ◦ ΩPA(FMD) is given by the
pullback of the composition map we get, using (4)5

φ12 ∈ ΩPA(FMM(2)) 7→ φ12 ⊗ 1⊗ 1︸ ︷︷ ︸
ΩPA(FMM(2))⊗ΩPA(FMD(1))⊗ΩPA(FMD(1))

+ 1⊗ φ12 + η ⊗ 1.︸ ︷︷ ︸
ΩPA(FMM(1))⊗ΩPA(FMD(2))

.

On the other hand, the corresponding cocomposition ∗GraM → ∗GraM ◦ ∗GraD given
by de-insertion sends s12 to

1 2 ⊗ 1 ⊗ 1︸ ︷︷ ︸
∗GraM(2)⊗∗GraD(1)⊗∗GraD(1)

+ 1 ⊗ 1 2︸ ︷︷ ︸
∗GraM(1)⊗∗GraD(2)

+ 1 ⊗ 1 2︸ ︷︷ ︸
∗GraM(1)⊗∗GraD(2)

,

therefore the cocomposition is respected by the map.

4 Twisting GraM and the comodule ∗GraphsM

Let GraD and GraV be the duals of ∗GraD and ∗GraV , respectively. GraV is an operadic
right GraD module in dg cocommutative coalgebras.

Recall that there is a map of operads ΛD−1Lie→ GraD given by mapping the generator
µ ∈ ΛD−1Lie(2) to the single edge graph in GraD(2) [W1]. This extends to a map from
the canonical operadic right module

ΛD−1Lie ΛD−1Lie→ GraM GraD

sending the generator µ to s12 ∈ GraM(2). One can then apply the right module
twisting procedure described in Appendix I of [W1] to GraM GraD , thus obtaining
the bimodule TwGraM TwGraD .

5Notice that on the second summand φ12 refers to the volume form of SD−1 = FMD(2). We
are using Remark 9 to ensure that this term is indeed of that form.
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TwGraM can be described via a different kind of graphs. The space TwGraM(n) is
spanned by graphs with n vertices labeled from 1 to n, called “external" vertices and
k indistinguishable “internal" vertices. Both types of vertices can be decorated by
elements of (H•(M))∗ (with • ≥ 1, see Remark 17 below), that can be identified with
H|D|−•(M) via the canonical pairing. The degree of the internal vertices is D, the degree
of edges is 1 − D and the degree of the decorations is the correspondent degree in
(H•(M))∗ , even if there is an identification with the cohomology. The differential in
TwGraM can be split into 3 pieces d = ∆ + dex + din = ∆ + ds , where ∆ is the
differential coming from GraM , that connects decorations by making an edge, dex splits
an internal vertex out of every external vertex and reconnecting incident edges in all
possible ways and din splits similarly an internal vertex out of every internal vertex:

∆
ω

ν

a b = 〈ω, ν〉 a b , ds a = a

∗

Figure 2: Internal vertices are depicted in black. Gray vertices are either internal or external
vertices.

Remark 17 Notice that due to ∗GraM being given by a quotient by ej
1 − 1, if a certain

vertex v of Γ ∈ ∗GraM is decorated with the volume form on M , then we find as
summands of ∆(Γ) all possibilities of connecting v to every other vertex in Γ.

The operad TwGraD is spanned by similar kinds of graphs, except that there are no
decorations. We will therefore also refer to the vertices of TwGraD as internal and
external.

The degrees of graphs in TwGraD are computed similarly, but the differential of
TwGraD is different (since GraM is twisted as a Lie-module whereas GraD is twisted
as an operad under Lie). Not only there is no ∆ term, but also the splitting piece has an
extra term subtracting all possible ways of adding a univalent internal vertex.

We are interested in a suboperad of TwGraD , since TwGraD is in homologically “too
big". The following result originates in [K2, LV].

Definition/Proposition 18 ([W1]) The operad TwGraD has a suboperad that we call
GraphsD spanned by graphs Γ such that:
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• All internal vertices of Γ are at least trivalent,

• Γ has no connected components consisting only of internal vertices.

Moreover there is a cooperadic quasi-isomorphism
∗GraphsD → ΩPA(FMD),

extending the map (7).

This quasi-isomorphism is defined by integrating over all possible configurations of
points corresponding to the internal vertices, a formula similar to the one from Lemma
19.

We will from now on interpret TwGraM as a right GraphsD -module.

Let ∗TwGraM be the cooperadic right ∗GraphsD comodule that is (pre)dual to TwGraM .

The differential in ∗TwGraM decomposes as d = δcut + δcontr , where δcut is the piece
originating from ∗GraM that splits edges into “diagonal classes" and δcontr contracts
any edge adjacent to one or two internal vertices.

Lemma 19 For M a closed compact framed connected manifold as above there is a
natural map of right cooperadic comodules

ω• : ∗TwGraM → ΩPA(FMM).

extending the map f : ∗GraM → ΩPA(FMM) from equation (8).

Proof Let Γ be a graph in ∗GraM(n + k)Sk ⊂ ∗TwGraM(n) i.e. Γ has n external and
k internal vertices. Let us consider f (Γ) ∈ ΩPA(FMM(n + k)), the image of Γ under the
map (8). We define ωΓ to be the integral of f (Γ) over all configurations of the internal
vertices. Concretely, if FMM(n + k)→ FMM(n) denotes the map that forgets the last k
points, then ωΓ is given by the following fiber6 integral∫

FMM(n+k)→FMM(n)

f (Γ).

The commutativity with the right cooperadic cocompositions is formally the same why
∗TwGraD → ΩPA(FMD) is a map of cooperads (see [LV, Section 9.5]) together with
the fact that the propagator on FMM on clusters of points is given by the corresponding
propagator of FMD . It remains to check the compatibility of the differentials.

6Notice that here we make use of the fact that f (Γ) is actually in Ωtriv(FMM(n + k)).
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Notice that ∗TwGraM is a quasi-free dgca generated by internally connected graphs i.e.
graphs that remain connected if we delete all external vertices. Since the map ω• is
compatible with the products, it suffices to check the compatibility of the differentials
on internally connected graphs. Let Γ ∈ ∗TwGraM(n) be such a graph with k internal
vertices.

If we denote by F the fiber of the map FMM(n + k)→ FMM(n), we have, by Stokes
Theorem

dωΓ =

∫
F

df (Γ)±
∫
∂F

f (Γ).

If we compute dΓ = δcutΓ + δcontrΓ, we retrieve

ωδcutΓ =

∫
F

f (dcutΓ) =

∫
F

df (Γ).

The boundary of the fiber decomposes into various pieces, namely

∂F =
⋃

n<i,j≤n+k

∂i,jF ∪
⋃
a≤n

n<i≤n+k

∂a,iF ∪ ∂≥3F,

where ∂i,jF is the boundary piece where points i and j (corresponding to internal
vertices) collided, ∂a,iF is the boundary piece where point i (corresponding to an
internal vertex) collided with point a (corresponding to an external vertex) and ∂≥3F is
the boundary piece in which at least 3 points corresponding to internal vertices collided.

If in Γ points i and j are not connected by an edge, then
∫
∂i,jF

f (Γ) = 0. To see
this, note that this integral has the form

∫
∂i,jF

f (Γ) =
∫

i f (Γ)|i=j

∫
SD−1 1 = 0. Here the

integral vanishes by degree reasons since there is no top degree component of the form
on the factor SD−1 . Here we used that the tangent bundle is trivialized. However, the
same argument goes through without using this feature by using trivializations of the
tangent bundle.

If points i and j are connected by an edge, then by property (ii) of Proposition
8 we have

∫
∂i,jF

f (Γ) = ωΓ/e , where Γ/e is the graph Γ with edge e contracted.
An analogous argument for the boundary pieces ∂a,iF allows us to conclude that
ωdΓ = dωΓ ±

∫
∂≥3F f (Γ).

The vanishing of
∫
∂≥3F f (Γ) results from Kontsevich’s vanishing Lemmas. Concretely,

suppose there are 3 ≤ l ≤ k points colliding together. By integrating over the l points
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first we obtain an integral of the form
∫
FMD(l) ν , where ν is a product of φi,j . If the

dimension D is at least 3, this integral vanishes as in [K3, Lemma 2.2], using property
(iii) of Proposition 8.

To factor the integral we used the trivialization of the tangent bundle in this step. For
later use we shall however remark that this is not necessary. More precisely, let the
full subgraph on the “colliding” vertices be γ . Then by the same argument as in the
proof of [K3, Lemma 2.2], using property (iii) of Proposition 8, we may assume that all
vertices of γ have valence ≥ 3. But then the inner integral describes a form of degree
≥ 3

2 l(D− 1)− lD + D + 1 = 1
2 l(D− 3) + D + 1 > D on M , and M is of dimension D.

Hence this integral must vanish.

If D = 2, because of property (ii) of Proposition 8 we can use the Kontsevich vanishing
lemma from [K1, Section 6.6] to ensure the vanishing of the integral.

4.1 The full Graph Complex and GraphsM

The map constructed in Lemma 19 is not (in general) a quasi-isomorphism and the
fundamental obstruction is the existence of graphs containing connected components of
only internal vertices in ∗TwGraM . The desired complex ∗GraphsM will be a quotient
of ∗TwGraM through which the map ω• factors. A formal construction can be done
making use of the full graph complex that we define as follows.

Definition 20 The full graph complex of M , ∗fGCH•(M) is defined to be the complex
∗TwGraM(0) consisting of graphs with no external vertices. This vector space forms a
differential graded commutative R-algebra with product defined to be the disjoint union
of graphs. We reserve the symbol fGCH•(M) = (∗fGCH•(M))∗ for the dual complex and
the symbol GCH•(M) ⊂ fGCH•(M) for the subcomplex of connected graphs.

The vector space ∗TwGraM can be naturally regarded as a left module over the algebra
∗fGCH•(M) , where the action is given by taking the disjoint union of graphs. Furthermore,
we define the partition function

(9) ZM : ∗fGCH•(M) → R

to be the map of dg commutative algebras obtained by restriction of the map ω• from
Lemma 19.

There is a commutative diagram of dg commutative algebras and modules
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∗fGCH•(M)
∗TwGraM

R ΩPA(FMM).

ZM ω•

Definition 21 The right ∗GraphsD cooperadic comodule ∗GraphsM is defined by
∗GraphsM = R⊗ZM

∗ TwGraM.

Remark 22 We pick as representatives for a basis of ∗GraphsM the set of graphs that
contain no connected components without external vertices. With this convention it
still makes sense to talk about the total number of vertices of a graph in ∗GraphsM .

Notice that as a consequence, part of the differential of ∗GraphsM might reduce the
number of vertices by more than 1 by “cutting away" a part of the graph that contains
only internal vertices, which did not happen with ∗TwGraM .

Corollary 23 The map ∗TwGraM → ΩPA(FMM) defined in Lemma 19 induces a map
of cooperadic comodules ∗GraphsM → ΩPA(FMM), still denoted by ω• .

Remark 24 One may also endow fGCH•(M) with the (free) product being given by
union of graphs. The differential is not a derivation with respect to this product, but
it is a coderivation and it splits into a first order and a second order part, say δ1 + δ2 .
Concretely, the second order part δ2 replaces a pair of H•(M)-decorations in different
connected components by an edge, while the first order piece splits vertices and joins
decorations in the same connected component. By Koszul duality, the commutator of
the product and the operator δ2 defines a Lie bracket of degree 1 on fGCH•(M) , which
reduces to a Lie bracket on the connected piece GCH•(M) .

Now the partition function ZM ∈ fGCH•(M) is a map from the free graded commutative
algebra ∗fGCH•(M) and hence completely characterized by the restriction to the generators,
i.e., to the connected graphs, say zM ∈ GCH•(M) . The closedness of ZM then translates
to the statement that the connected part zM satisfies the Maurer-Cartan equation. See
Section 7.1 for details.

To summarize, we constructed a cooperadic right Hopf comodule ∗GraphsM . As a
vector space, ∗GraphsM(n) is spanned by graphs with n labeled external vertices and
an unspecified number of indistinguishable internal vertices that can be decorated by
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(possibly multiple) cohomology classes of degree at least 1, under the condition that
there are no connected components without external vertices.

1 2 3 4

ω1 ω1

ω2 ω3
∈ ∗GraphsM(4),

There is a graded commutative algebra structure given by superposition of external
vertices

1 2.

ω
·

1 2

.
ν

= 1 2.

ω

.
ν

.

The differential δ splits as δ = δcontr + δcut , where δcontr contracts edges adjacent to
at least one internal vertex and δcut splits any edge into two decorations given by the
diagonal class of M . Due to the constraint of not allowing connected components
without external vertices, δcut = ∆∗ + δZM splits again into two pieces, ∆∗ which
does not create forbidden graphs and δZM that when creating such forbidden connected
components transforms them into a scalar as prescribed by the partition function ZM .

δcontr a

.

ω

= a

ω

, ∆∗ a b =
∑

ei basis of H•(M) ei

e∗i

a b

δZM

.
.ω

ν
=

∑
ei basis of H•(M)

ZM(
ei

.
.ω

ν

) e∗i + . . .

The cooperadic right comodule structure is obtained by collapsing subgraphs containing
at least one external vertex into a single external vertex.
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4.2 Historic Remark

The above graph complexes can be seen as a version of the non-vacuum Feynman
diagrams appearing in the perturbative expansion of topological field theories of AKSZ
type, in the presence of zero modes. In this setting the field theories have been studied
by Cattaneo-Felder [CF] and Cattaneo-Mnev [CM], whose names we hence attach to
the above complexes of diagrams, though the above construction of ∗GraphsM does
not appear in these works directly. Furthermore, it has been pointed out to us by A.
Goncharov that similar complexes have been known by experts before the works of
the aforementioned authors. Finally, in the local case the construction is due to M.
Kontsevich [K2].

5 Cohomology of the CFM (co)operad

The following theorem relates the right GraphsD -module GraphsM with the right
FMD -module FMM .

Theorem 25 The map ω• : ∗GraphsM → ΩPA(FMM) established in Corollary 23 is a

quasi-isomorphism. Similarly, the composition map Chains(FMM)→ ΩPA(FMM)∗
ω∗

•→
GraphsM is a quasi-isomorphism of right modules.

Note that there is in general no known explicit formula for the cohomology of the
configuration spaces FMM(n) on a manifold. However, two spectral sequences con-
verging to the (co)homology are known, one by Cohen and Taylor [CT] and one by
Bendersky and Gitler [BG]. Both spectral sequences have been shown to be isomorphic
(via Poincaré duality) from the E2 term on by Felix and Thomas [FT]. The E2 term
is the cohomology of a relatively simple complex described below. It was shown by
B. Totaro [Tot] and I. Kriz [Kr] that the spectral sequence abuts at the E2 term for
smooth projective varieties. However, it does not in general abut at the E2 term, a
counterexample was given in [FT].

The strategy to prove Theorem 25 will be as follows. We will compare the double
complex BG giving rise to the Bendersky-Gitler spectral sequence (its definition will
be recalled below) to ∗GraphsM . There is a complex B̃G quasi-isomorphic to BG
that comes with a natural map f : B̃G → GraphsM . Our goal is to show that f is a
quasi-isomorphism, and for that we set up another spectral sequence. The detailed proof
is contained in section 5.6.
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5.1 The Bendersky-Gitler spectral sequence

Let us recall the definition of the Bendersky-Gitler spectral sequence. See also the
exposition in [FT].

Recall that the configuration space of n points in M is Confn(M) := Mn \∆, where
∆ = {(p1, . . . , pn) | ∃i 6= j : pi = pj}. By Poincaré - Lefschetz duality

H−d(Confn(M)) ∼= Hn dim(M)−d(Mn,∆).

The relative cohomology H•(Mn,∆) on the right is the cohomology of the complex

H•(Mn)→ H•(∆).

The left hand side is the cohomology of ΩPA(M)⊗n . The right hand side may be
computed as the cohomology of the Čech-de Rham complex corresponding to any
covering of ∆. To obtain the Bendersky-Gitler double complex one takes the cover of
the diagonal by the sets

Ui,j = {pi = pj} ⊂ ∆.

The Bendersky-Gitler complex is the total complex of the double complex obtained
using the natural quasi-isomorphism ΩPA(M)⊗n → ΩPA(Mn) , i.e.,

BG(n) := Total(ΩPA(M)⊗n → Čech-de-Rham(∆)).

By the statements above and a simple spectral sequence argument it follows that
H•(BG(n)) ∼= H(Mn,∆).

For what we will say below it is important to describe BG(n) in a more concise way.
Elements of BG(n) can be seen as linear combinations of decorated graphs on n vertices,
the decoration being one element of ΩPA(M) for each connected component of the
graph. The degree of such a graph is computed as

(degree) = #(edges) + #(total degree of decorations)− n · dim(M).

The differential is composed of two parts, one of which comes from the de Rham
differential and one of which comes from the Čech differential:

dtotal = ddR + δ.

Concretely, δ adds an edge in all possible ways, and multiplies the decorations of the
connected components the edge joins.

Remark 26 The original construction of the Bendersky-Gitler spectral sequence uses
the de Rham complex of M , but since there is only semi-algebraic data involved, namely
intersections of sets Ui,j ∼= Mn−1 , we are allowed to replace differential forms by
piecewise algebraic (PA) forms.
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5.2 A general construction

Recall that the monoidal product of symmetric sequences ◦ is given by

(S ◦ S ′)(n) =
⊕

k=k1+···+kn

S(k)⊗ S ′(k1)⊗ · · · ⊗ S ′(kn)⊗ R[Sh(k1, . . . , kn)],

where Sh(k1, . . . , kn) are the k1, . . . , kn shuffles. Let C be a cooperad, M be a
cooperadic right C -comodule with coaction ∆M : M→M◦ C , and let A be some dg
commutative algebra, which can be seen as a symmetric sequence concentrated in arity
1. Then the spaces

M(n)⊗ A⊗n = (M◦ A)(n)

assemble into another cooperadic right C -comodule.

More formally, since A is a dg commutative algebra, for every symmetric sequence S
there is a morphism

s : S ◦ A→ A ◦ S

given by the multiplication in A.

The coaction of C on M◦ A is given by the composition of the following maps:

M◦ A
∆M◦idA→ (M◦ C) ◦ A ∼=M◦ (C ◦ A) idM◦s→ M◦ (A ◦ C) ∼= (M◦ A) ◦ C.

It is a straightforward verification to check that the axioms for cooperadic comodules
hold.

5.3 The definition of B̃G

Let C be a coaugmented cooperad and M be a right C comodule. Applying the
cobar construction to the cooperad C we obtain an operad Ω(C). Applying the cobar
construction to the comodule M we obtain a right Ω(C)-module ΩΩ(C)(M), also
denoted just by Ω(M). As a symmetric sequence Ω(M) = M ◦ Ω(C) and the
differential splits as d = d1 + d2 + d3 , where d1 comes from the differential in M, d2

comes from the differential in Ω(C) and d3 is induced by the comodule structure. Of
course, if A is a dg commutative algebra, then replacing M by M◦ A we obtain a
right Ω(C)-module Ω(M◦ A). We can now define B̃G.

B̃G := ΩΛD−1L∞(s−DΛDcoComm ◦ ΩPA(M))
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where on the right hand side we consider s−DΛDcoComm as a right comodule over
ΛDcoComm and then we use the construction from the previous section that gives us
a ΛDcoComm-right comodule structure on s−DΛDcoComm ◦ Ω(M). Notice that the
operadic cobar construction is given by Ω(ΛDcoComm) = Ω((ΛD−1Lie)∨) = ΛD−1L∞ .

Up to degrees, one can picture B̃G as multiple (“commuting”) L∞ words, each labeled
by a PA-form on M . Besides the de Rham and the L∞ differential, the cobar differential
acts by merging two L∞ words while multiplying the associated forms.

5.4 Some other general remarks and the definition of sBG

Let P be a Koszul operad, P∨ the Koszul dual cooperad and P∞ = Ω(P∨) the minimal
cofibrant model for P . There are bar and cobar construction functors between the
categories of right P modules and right P∨ comodules

BP∨ : Mod − P ↔ coMod − P∨ : ΩP .

Given a right P∨ comodule M there are two ways to construct a right P∞ module:

(1) Take the right P∞ module ΩP∞(M).

(2) Take ΩP (M) and consider it as a right P∞ module via the morphism of operads
p : P∞ → P .

Lemma 27 Let P be a Koszul operad with zero differential such that P(0) = 0
and P(1) = R and let M be a right P∨ comodule. There is a canonical (surjective)
quasi-isomorphism

π : ΩP∞(M)→ ΩP (M).

Proof As symmetric sequences, ΩP∞(M) =M◦P∞ and ΩP (M) =M◦P . We
define π = idM ◦ p. It is clear that each piece of the differential commutes with π .
The remaining claim that π is a quasi-isomorphism follows from a spectral sequence
argument.

Concretely, we consider a filtration FpΩP∞(M) spanned by elements for which the
sum of the degree inM with the weight in P∞ (the amount of elements from P∨ used)
does not exceed p. On the first page of the spectral sequence given by this filtration we
recover ΩP (M) and thus the result follows.
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Now let us give the definition of sBG:

sBG = ΩΛD−1Lie(s
−DΛDcoComm ◦ ΩPA(M))

where on the right we consider ΛDcoComm = (ΛD−1Lie)∨ as a right comodule over
itself and the algebra of differential forms ΩPA(M). Then, by the Lemma above, we see
that there is a canonical quasi-isomorphism

B̃G→ sBG.

Similar to B̃G, one can picture sBG as connected components of Lie words, each
labeled by a PA-form on M . One can consider a basis of Lie(n) consisting of graphs on
n vertices, with n− 1 edges, such that there no two edges (i, r) and (j, r) with r bigger
than both i and j. Taking the degrees and differentials into account, we see that sBG(n)
is precisely what in [FT] is denoted by E(n,A), for A = ΩPA(M).

Furthermore it was shown in [FT, Proposition 2.4] that there is a canonical quasi-
isomorphism

BG→ sBG.

In particular one obtains:

Corollary 28 The following symmetric sequences are isomorphic:

H•(Conf•(M)) ∼= H(BG) ∼= H(sBG) ∼= H(B̃G).

5.5 The map B̃G→ GraphsM

The goal of this subsection is to construct the map of right ΛD−1L∞ modules Φ : B̃G→
GraphsM . Since B̃G := ΩΛD−1L∞(s−DΛDcoComm ◦ ΩPA(M)) is quasi-free as right
ΛD−1L∞ module, it suffices to define our map Φ on the module generators and verify that
this map is compatible with the differential. Note that s−DΛDcoComm(n) = R[nD]µn

is one dimensional, generated by the n-fold coproduct µn . We define the map Φ on
generators by setting, for α1, . . . , αn ∈ ΩPA(M) and Γ ∈ ∗GraphsM

(10) (Φ(µn ⊗ α1 ⊗ · · · ⊗ αn))(Γ) :=
∫
FMM(n)

(π∗1α1) · · · (π∗nαn)ωΓ.

Here πj : FMM(n)→ FMM(1) = M is the map that forgets the position of all points in
the configuration except for the j-th point. Notice that the element µn ⊗ α1 ⊗ · · · ⊗ αn

has degree −nD + |α1| + · · · + |αn| = −(dim(FMM(n)) − |π∗1α1| − · · · − |π∗nαn|),
therefore F preserves degrees.
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A general element of B̃G is a linear combination of elements obtained by acting with
elements of the operad `j ∈ ΛD−1L∞ on generators,

x := (µn ⊗ α1 ⊗ · · · ⊗ αn) ◦ (`1, . . . , `n).

For such elements x we have that Φ(x) = Φ(µn ⊗ α1 ⊗ · · · ⊗ αn) ◦ (`1, . . . , `n), using
the right action of ΛD−1L∞ on GraphsM . This latter action factors through the right
action of GraphsD on GraphsM via the maps

ΛD−1L∞
f−→ Chains(FMD) ω∗−→ GraphsD.

Denoting the cooperadic coaction on Γ ∈ ∗GraphsM by
∑

Γ′ ⊗ γ1 ⊗ · · · ⊗ γk , with
γj ∈ ∗GraphsD , this implies that

(11)

Φ(x)(Γ) = (Φ(µn ⊗ α1 ⊗ · · · ⊗ αn) ◦ (`1, . . . , `n))(Γ)

=
∑
±Φ(µn ⊗ α1 ⊗ · · · ⊗ αn)(Γ′) ·

∏
j

∫
f (`j)

ωγj

=
∑
±
∫
FMM(n)

(π∗1α1) · · · (π∗nαn)ωΓ′
∏

j

∫
f (`j)

ωγj

=

∫
Fund(FMM(n))◦(f (`1),··· ,f (`n))

(π∗i1α1) · · · (π∗inαn)ωΓ .

In the last line we are integrating over the fundamental chain of a boundary stratum of
FMM in which groups of points are infinitesimally close together. The indices i1, . . . , in
shall be those of one (arbitrary) point in each such group. Furthermore, we used the
compatibility of the map ω with the operadic FMD -action on FMM . Using the formula
above we can show the following result.

Lemma 29 The map Φ : B̃G → GraphsM defined above is compatible with the
differentials and is hence a map of right ΛD−1L∞ modules. It furthermore factorizes
through the adjoint ω∗ of the map ω : ∗GraphsM → ΩPA(FMM) of Corollary 23 as

B̃G F−→ ΩPA(FMM)∗ ω∗−→ GraphsM

with

F((µn⊗α1⊗· · ·⊗αn)◦(`1, . . . , `n))(ω) =

∫
Fund(FMM(n))◦(f (`1),··· ,f (`n))

(π∗i1α1) · · · (π∗inαn)ω .

Proof The factorization through ω∗ is clear by (11).

It remains to check that the differentials are preserved by Φ. Note that the diffential on
B̃G decomposes into three terms, d = dΩPA(M) + dΛD−1Ł∞ + dcobar , stemming from the
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internal differentials on ΩPA(M) and ΛD−1Ł∞ , and the cobar construction respectively.
Note that the second summand is zero on generators.

On the other hand we compute, applying Stokes’ Theorem:

(Φ(µn ⊗ α1 ⊗ · · · ⊗ αn))(dΓ)

=

∫
FMM(n)

(π∗1α1) · · · (π∗nαn)ωdΓ

=

∫
FMM(n)

(π∗1α1) · · · (π∗nαn)dωΓ

=
n∑

j=1

±
∫
FMM(n)

(π∗1α1) · · · (π∗j dαj) · · · (π∗nαn)ωΓ ±
∫
∂FMM(n)

(π∗1α1) · · · (π∗nαn)ωΓ.

The two terms exactly reproduce the differential on B̃G. The first term corresponds
to the part from the internal differential on ΩPA(M). The second term (the boundary
integral) produces the part of the differential from the cobar construction. More precise
it is the sum over codimension 1 boundary strata corresponding to some subset of the n
points colliding. But each such term is, using the computation (11) again, identified
with an action of a generator of ΛD−1L∞ , so that all these terms together assemble to
±dcobarΦ(µn ⊗ α1 ⊗ · · · ⊗ αn).

5.6 The map B̃G→ GraphsM is a quasi-isomorphism

In this section we will show the following proposition.

Proposition 30 The map Φ : B̃G→ GraphsM constructed above is a quasi-isomorphism.

There is a filtration on GraphsM by the number of connected components in graphs.
Concretely, let FpGraphsM be the set of elements of GraphsM which contain only graphs
with p or fewer connected components. There is a similar filtration on B̃G coming
from the arity of elements of the generating symmetric sequence s−DΛDcoComm.
Concretely, elements of FpB̃G are those elements of B̃G that can be built without using
any generators µp+1, µp+2, . . . in ΛDcoComm. The filtration is arity-wise bounded,
since the number of connected components in arity r is necessarily between 1 and r .

Lemma 31 The map Φ from above is compatible with the filtration, i.e.,

Φ(FpB̃G) ⊂ FpGraphsM.
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Proof The result is clear for generators of B̃G, since graphs with n vertices cannot
have more than n connected components. In general Φ is compatible with the filtration
since is a morphism of ΛD−1L∞ right modules and the right action of ΛD−1L∞ on
GraphsM is given by the insertion of connected graphs which cannot increase the
number of connected components.

It follows that Φ induces a morphism of the respective spectral sequences. We will
show the following lemma:

Lemma 32 The map Φ induces an isomorphism at the first pages of the associated
spectral sequences.

The statement of the Lemma is equivalent to saying that the graded version of Φ

gr Φ : gr B̃G→ grGraphsM

is a quasi-isomorphism.

One can compute the cohomology of gr B̃G explicitly.

Lemma 33 H(gr B̃G) = (s−DΛDcoComm ◦ H•(M)) ◦ ΛD−1Lie =: sBGH(M) .

Proof The differential on gr B̃G is precisely the one induced by the de Rham differential
and the differential on ΛD−1L∞ . Therefore, by the Künneth formula, H(gr B̃G) =

H(s−DΛDcoComm)◦H(ΩPA(M))◦H(ΛD−1L∞) = (s−DΛDcoComm◦H•(M))◦ΛD−1Lie.

Having fixed the embedding H•(M) ↪→ ΩPA(M) and fixing any arity-wise right inverse
(as cochain complexes) of the projection ΛD−1L∞ → ΛD−1Lie, from now on we
interpret the space sBGH(M) (with zero differential) as a subcomplex of gr B̃G.

Proposition 34 The map gr Φ restricts to an injective map sBGH(M) → grGraphsM
and the inclusion morphism Φ(sBGH(M)) ↪→ grGraphsM is a quasi-isomorphism.

The proof is by an argument similar to the one used by P. Lambrechts and I. Volic in [LV,
Lemma 8.3]. If we believe Proposition 34 for now, Lemma 32 follows as a Corollary.

Proof of Proposition 30 As a consequence of Lemma 32, the map Φ induces a quasi-
isomorphism at the level of the associated graded with respect to a(n arity-wise) bounded
filtration, and therefore is a quasi-isomorphism itself.
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5.7 Proof of Proposition 34

Proposition 35 The vector spaces sBGH(M)(n) satisfy the following recursion

(12) sBGH(M)(n) = sBGH(M)(n− 1)⊗ H•(M)⊕ sBGH(M)(n− 1)[D− 1]⊕n−1.

Proof We have

sBGH(M)(n) =
⊕

i1+···+ik=n

H•(M)⊗k[kD]⊗ΛD−1Lie(i1)⊗· · ·⊗ΛD−1Lie(ik)⊗R[Sh(i1, . . . , ik)].

Let us take an element of sBGH(M)(n) and consider two different cases. If the input
labeled by 1 corresponds to the unit 1 ∈ ΛD−1Lie(1) it is associated to an element of
H•(M) and by ignoring these we are left with a generic element of sBGH(M)(n − 1),
thus giving us the first summand of (12).

If, on the other hand, the vertex labeled by 1 corresponds to some Lie word in ΛD−1Lie(ij)
with j > 1, the only possibility is that it came from the insertion of the generator
µ2 ∈ ΛD−1Lie(2) in some other Lie word. Since there are n− 1 such choices and µ2

has degree has degree 1−D, we obtain the summand sBGH(M)(n− 1)[D− 1]⊕n−1 .

Lemma 36 The map gr Φ restricts to an isomorphism from sBGH(M)(n) onto its image
Φ(sBGH(M)(n)) ⊂ grGraphsM(n).

Proof It is enough to show the injectivity of the map gr Φ when restricted to
sBGH(M)(n).

Recall that

sBGH(M)(n) =
⊕

i1+···+ik=n

H•(M)⊗k[kD]⊗ΛD−1Lie(i1)⊗· · ·⊗ΛD−1Lie(ik)⊗Sh(i1, . . . , ik).

Let us start by considering the case in which the numbers i1, . . . , in are all equal to 1.
Let ω1 ⊗ · · · ⊗ ωn ∈ H•(M)⊗n[nD]⊗ ΛD−1Lie(1)⊗ · · · ⊗ ΛD−1Lie(1). The element
Φ(ω1 ⊗ · · · ⊗ ωn) ∈ GraphsM(n) is in principle a sum of many terms, but its projection
into the subspace of GraphsM(n) made only of graphs with no internal vertices, no more
than one decoration per vertex, and precisely n connected components is simply the
graph

± 1

ω∗1

2

ω∗2

. . . n

ω∗n
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where ω∗i is dual to ωi under the pairing on H•(M). This implies in particular that Φ is
injective when restricted to H•(M)⊗n[nD]⊗ ΛD−1Lie(1)⊗ · · · ⊗ ΛD−1Lie(1).

The same idea can be adapted for the case of arbitrary ij . The image of the elements of
sBGH(M) might be very complicated, but to conclude injectivity it is enough to see that
the components on a “disconnected enough" subspace are different and by compatibility
with the L∞ action these components are just given by insertion of graphs representing
L∞ words.

Let p ⊂ 2{1,...,n} denote a partition of the numbers 1, . . . , n. To every such p we can
associate a subspace Vp ⊂ GraphsM(n) spanned by graphs with no internal vertices and
such that the vertices labeled by a and b are on the same connected component if and
only if a and b are in the same element of the partition p.

Every partition p is determined the number of elements of the partition, which is a
number k ≤ n, the sizes of the partitions, i1, . . . , ik such that i1 + · · ·+ ik = n and an
element of Sh(i1, . . . , ik) specifying which numbers are included in each element of the
partition. This data defines a subspace Wp of sBGH(M)(n) and the map Φ induces maps
Φp : Wp → Vp , where Vp =

⊕
p′ coarser than p

Vp′ and similarly for Wp . It can shown by

induction on the size of the partition p that the maps Φp are injective for every partition
p, so in particular for p the discrete partition we obtain the injectivity of full map.

This follows from the fact that a linear map f : A⊕ B→ V is injective if its restriction
to both A and B is injective and f (A) ∩ f (B) = 0 and in our case these two conditions
can be verified just by looking at the component of Vp ⊂ Vp .

Corollary 37 The family of graded vector spaces Φ(sBGH(M)) ⊂ grGraphsM satisfies
the following recursion:

Φ(sBGH(M)(0)) = R,

Φ(sBGH(M)(n)) = Φ(sBGH(M)(n− 1))⊗ H•(M)⊕ Φ(sBGH(M)(n− 1))[D− 1]⊕n−1.

Proposition 34 will follow from showing that the inclusion Φ(sBGH(M)) ↪→ grGraphsM
is a quasi-isomorphism and for this we will use some additional filtrations.

The differential on grGraphsM splits into the following terms:

δ = δs + ∆ + ∆1

where δs is obtained by splitting vertices, ∆ (the BV part of the differential) removes
two decorations and creates an edge instead and ∆1 connects a connected component
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of (possibly decorated) internal vertices to the given graph. Let us call the emv-degree
(edges minus vertices) of a graph the number

#(edges)− #(vertices).

The differential can only increase or leave constant the emv degree. Hence we can put a
filtration on grGraphsM by emv degree. We will denote the associated graded by

gr′ grGraphsM.

The induced differential on the associated graded ignores the ∆ part of the differential.

Lemma 38 H(gr′ grGraphsM) = Φ(sBGH(M)).

Since in gr′ grGraphsM the ∆ part of the differential is zero, all pieces of the differential
increase the number of internal vertices by at least one. To show this Lemma, we will
put yet another filtration on gr′ grGraphsM by #(internal vertices) − degree. Let us
call the associated graded

gr′′ gr′ grGraphsM

Notice that in gr′′ gr′ grGraphsM we have ∆ = 0 and the only “surviving" pieces of
∆1 replace any decoration by an internal vertex with the same decoration or connect a
single internal vertex to another vertex of the graph. These pieces also appear in δs and
it can be checked that they appear with opposite signs thus canceling out.

Lemma 39 H(gr′′ gr′ grGraphsM) = Φ(sBGH(M)).

Proof Let us write V(n) = gr′′ gr′ grGraphsM(n) for brevity. We will show that
H(V(n)) ∼= Φ(sBGH(M)(n)) by induction on n. We can split

V(n) = V0 ⊕ V1 ⊕ V≥2

according to the valence of the external vertex 1 (where decorations are considered to
increase the valence of the vertices). The arrows indicate how the differential maps the
individual parts to each other. The complex V0 is isomorphic to V(n− 1) and we can
invoke the induction hypothesis. For the remainder we consider a spectral sequence
whose first differential is V≥2 → V1 . Concretely, we consider (Fk)k∈Z , a descending
filtration V(n) ⊃ · · · ⊃ Fk ⊃ Fk+1 ⊃ · · · ⊃ 0, such that Fk is spanned by graphs of
degree at least k in which the vertex 1 is not 1-valent and by graphs of degree at least
k + 1 in which the vertex 1 has valence 1. The map V≥2 → V1 is injective and its
cokernel is generated by graphs of one of the following types:
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(1) Vertex 1 has a decoration and no incoming edges.

(2) Vertex 1 has no decoration and is connected to some other external vertex.

In the first case we obtain a complex isomorphic to V(n − 1) for every choice of
decoration, with a degree shift given by the decoration. In the second case, each choice
of connecting external vertex yields a complex isomorphic to V(n− 1) with a degree
shift given by the additional edge. This gives us the following expression of the first
page of the spectral sequence:

E1(V(n)) = H(gr V(n)) = V0 ⊕ V(n− 1)⊗ H•(M)⊕ V(n− 1)[D− 1]⊕n−1

= V(n− 1)⊗ H•(M)⊕ V(n− 1)[D− 1]⊕n−1.

Under this identification, on the this page of the spectral sequence we obtain precisely
the differential of V(n− 1). Notice that V1 ⊕ V≥2 is a double complex concentrated on
a double column and therefore the spectral sequence collapses at the second page E2 .
From this observation we obtain the following recursion

H(V(n)) = H(V(n− 1))⊗ H•(M)⊕ H(V(n− 1))[D− 1]⊕n−1.

which is the same as the recursion for Φ(sBGH(M)(n)), as show in Corollary 37. To see
that the inclusion Φ(sBGH(M)(n))→ V(n) induces a quasi-isomorphism on the second
page of the spectral sequence, we start by noticing that the result holds trivially on the
1-dimensional initial terms Φ(sBGH(M)(0)) and H(V((0)) and therefore Φ(sBGH(M)(n))
and H(V((n)) have the same dimension.

The second page of the inclusion map

Φ(sBGH(M)(n−1))⊗H•(M)⊕Φ(sBGH(M)(n−1))[D−1]⊕n−1 → H(V(n−1))⊗H•(M)⊕H(V(n−1))[D−1]⊕n−1

can be written as

(
f11 f12

f21 f22

)
,

where f12 : Φ(sBGH(M)(n − 1))[D − 1]⊕n−1 → H(V(n − 1)) ⊗ H•(M) is actually the
0 map, since Φ(sBGH(M)(n − 1))[D − 1]⊕n−1 corresponds to the image of elements
in H•(M)⊗k[kD] ⊗ ΛD−1Lie(i1) ⊗ · · · ⊗ ΛD−1Lie(ik) with i1 ≥ 2 and the vertex 1
cannot be the only labeled vertex in its connected component. The maps f11 and f22 are
isomorphisms by induction and therefore the second page of the inclusion map is an
isomorphism, from where the result follows.
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Proof of Lemma 38 The E1 term of the spectral sequence is a quotient complex,
hence it abuts at that point.

Proof of Theorem 25 We have shown that the composition B̃G F→ ΩPA(FMM)∗ ω
∗
→

GraphsM is a quasi-isomorphism, but since the homology of ΩPA(FMM)∗ is also
isomorphic to the other two homologies which are finite dimensional in each arity and
degree, it follows that F and ω∗ are quasi-isomorphisms themselves.

Consequentially, the map Chains(FMM)→ ΩPA(FMM)∗ → GraphsM is a composition
of quasi-isomorphisms, therefore is a quasi-isomorphism as well.

This concludes the proof of Theorem 25.

Remark 40 For the proof of Theorem 25 we consider the functor ΩPA of semi-
algebraic forms, but it could equally be used any contravariant functor Ω landing in
dgca’s satisfying the following properties:

• Ω is quasi-isomorphic to the Sullivan functor APL of piecewise-linear de Rham
forms.

• Ω admits pushforwards of the forgetful maps FMM(n)→ FMM(n− k) satisfying
the usual properties of fiber integrals, in particular Stokes Theorem.

• Ω is “almost" comonoidal, as in Remark 15.

6 The non-parallelizable case

Let M be a closed oriented connected manifold. In this section we show that even
in absence of the parallelizability hypothesis a slight variant of the collection of
commutative algebra ∗GraphsM is still a model of FMM .

In this respect it is not natural to consider graphs with tadpoles as the compatibility of
the differential of the map from Lemma 16 depended on the vanishing of the Euler
characteristic for those graphs. More precisely, the problem is that in the map of Lemma
16 a tadpole edge is sent to a form whose coboundary is the Euler class.

We define ∗GraM ⊂ ∗GraM to be the dg Hopf sub-collection spanned by graphs without
tadpoles.

Note that this subcollection is indeed closed under the product and differential. It
furthermore retains a ΛD−1Lie∗ -comodule structure from ∗GraM , but not the full ∗GraD
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comodule structure, as the proof of Proposition 14 fails in the absence of tadpoles.
Furthermore, the map (8) naturally restricts to a map of dg Hopf collections

∗GraM → Ωtriv(FMM) ⊂ ΩPA(FMM),

that is well-defined even if M has a non-trivial Euler class. The twisting construction of
section 4 and in particular the construction of the map ω of Corollary 23 also naturally
yields a map

ω : ∗GraphsM → ΩPA(FMM)

Γ 7→ ωΓ,

where we denote by ∗GraphsM ⊂ ∗GraphsM the sub-collection spanned by graphs
without tadpoles.

To be clear, if M has non-vanishing Euler class then the map ω of Corollary 23 is not a
priori not well-defined on GraphsM because we would need to send a tadpole edge to a
form whose coboundary is the Euler class. Furthermore, the partition function (9) is
only well-defined on the tadpole-free part ∗fGCH•(M) ⊂∗ fGCH•(M) . Hence one does not
even get a well-defined (square-zero) differential on the graded collection ∗GraphsM
from the partition function, one only has this on the tadpole-free part ∗GraphsM .

In particular, we note that the differential on ∗GraphsM can indeed not produce tadpoles.
The only term in the differential that is able to produce a tadpole is the edge contraction
in the presence of a multiple edge. However, multiple edges are zero by symmetry
reasons for even D while tadpoles are not present by symmetry reasons for odd D,
hence no problem arises.

Also, if M is not parallelized, there is no consistent way of defining a right FMD action
on FMM . Nonetheless, disregarding the cooperadic coactions, the map ∗GraphsM →
ΩPA(FMM) is well defined as a map of dgcas since the proof of Lemma 19 uses
parallelizability condition only for the tadpoles and the coaction, see the remarks within
that proof on using the trivialization of the tangent bundle.

Before proceeding, let us furthermore show that the exclusion of tadpoles has no effect
on the homotopy type, provided ∗GraphsM is well-defined. (See [W1, Proposition 3.4]
for simiar results and arguments.)

Proposition 41 Suppose that M is parallelizable (or at least has vanishing Euler
class), so that the dg Hopf collection ∗GraphsM is well-defined. Then the inclusion
∗GraphsM → ∗GraphsM is a quasi-isomorphism of collections of dg commutative
algebras.
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Proof sketch We consider a spectral sequence on ∗GraphsM whose associated graded
has a differential contracting internal vertices with only an adjacent edge and a tadpole
along the non-tadpole edge

d0

.

=
.

Such a spectral sequence can be obtained by filtering first by the number of tadpoles
and then by l + degree, where l is the sum of lengths of maximal connected subgraphs
consisting of 2-valent internal vertices and one internal vertex with just a tadpole at the
end.

We can then set up a homotopy h that splits out an internal vertex with a tadpole

h =
.

We have d0h + hd0 = T id, where T is the number of tadpoles, from where it follows
that H(∗GraphsM, d0) = ∗GraphsM .

Finally, one has the following version of Theorem 25 for non-parallelizable M .

Theorem 42 Let M be a closed oriented manifold. The map ω• : ∗GraphsM →
ΩPA(FMM) is a quasi-isomorphism of symmetric sequences of dg commutative alge-

bras. Similarly, the composition map Chains(FMM) → ΩPA(FMM)∗
ω∗

•→ GraphsM :=
(∗GraphsM )∗ is a quasi-isomorphism.

Proof We follow the proof of Theorem 25. First we note that while in general one does
not have a right FMD -module structure on FMM if M is not framed, the insertion of
fundamental chains of FMD at points in FMM is independent of the framing so in fact
it gives us a well defined operadic action Chains(FMM) ◦ ΛD−1L∞ → Chains(FMM).
Similarly, as mentioned above GraphsM inherits a right ΛD−1L∞ module structure
from the one on GraM := (∗GraM )∗ . These structures suffice to define the map of right
ΛD−1L∞ modules

Φ : B̃G→ GraphsM
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as in section 5.5 by formula (10) (respectively (11)). Furthermore, Lemma 29 does not
make use of tadpoles and holds in this case as well.

Furthermore the remaining arguments of sections 5.6 and sec:prop grGraphsM proof
above leading to Theorem 25 are agnostic to the presence or absence of parallelizability
of M or tadpoles in graphs, and hence also show Theorem 42.

7 A simplification of ∗GraphsM and relations to the literature

7.1 An alternative construction of GraphsM .

Recall that in Section 4 the space ∗GraphsM was constructed by identifying connected
components without external vertices with real numbers via a “partition function”,
which is a map of commutative algebras ZM : ∗fGCH•(M) → R.

In this subsection and the next we present an alternative construction of GraphsM that
will allow us to understand better the relevance of the partition function ZM in the
homotopy type of GraphsM .

Notice that ∗fGCH•(M) is a quasi-free commutative algebra generated by its subspace
of connected graphs ∗GCH(M) . The differential d on ∗fGCH•(M) defines then a ΛL∞
coalgebra structure on ∗GCH•(M) . In fact, since the differential can increase the number
of connected components by at most one, this is in fact a strict Lie coalgebra structure.

The dual Lie algebra structure is denoted by GCH•(M) = (∗GCH•(M))∗ and is represented
by infinite sums of graphs decorated by H•(M) (or dually by H•(M), via the Poincaré
pairing). The Lie bracket [Γ,Γ′] is given by summing over all possible ways of selecting
a decoration in Γ and another decoration in Γ′ and connecting them into an edge, with
a factor given by their pairing. The differential acts by vertex splitting and joining
decorations.

It follows that maps of dg commutative algebras ∗fGCH•(M) → R are identified with
maps in the Lie algebra satisfying the Maurer-Cartan equation.

MC(GCH•(M)) = Homdgca(∗fGCH•(M),R).

We denote by zM ∈ GCH•(M) the Maurer-Cartan element corresponding to the partition
function ZM . If we consider the subrepresentation S ⊂ TwGraM given by graphs with
no connected components consisting only of internal vertices, then GraphsM is obtained
by twisting S by the Maurer-Cartan element zM , as recalled in the following section.
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In analogy we denote by GCM := GCzM
H•(M) the Lie algebra obtained by twisting with

the Maurer-Cartan element zM .

For later use let us also split the Maurer-Cartan element

zM =
D∑

i,j=1

gij ei ej

︸ ︷︷ ︸
=:z0

+z′M

into a part z0 given by graphs with exactly one vertex and 2 or 1 decorations and
a remainder z′M := zM − z0 . Note in particular that z0 is determined solely by the
non-degenerate pairing on H(M). The element z0 is itself a Maurer-Cartan element,
and below we will consider the twisted dg Lie algebra

GC′H(M) := GCz0
H(M),

and consider z′M as a Maurer-Cartan element in GC′H(M) .

7.2 Twisting of modules

While the differential of GraphsM can be very non-explicit, expressing it as twist by a
Maurer-Cartan element opens the door to simplifications of the model, as long as we
have some control over the gauge equivalence class of the Maurer-Cartan element.

Indeed, let us pause for a moment to consider the following general situation. Suppose g

is a dg Lie algebra, acting on M , where M can be just a dg vector space, or a (co)operad
or a (co)operadic (co)module, or a pair of a (co)operad and a (co)operadic (co)module.
In any case we require the g action to respect the given algebraic structure, in the sense
that the action is by (co)derivations.

Suppose now that m ∈ g is a Maurer-Cartan element, i.e., dm + 1
2 [m,m] = 0. Then

we can form the twisted Lie algebra gm with the same Lie bracket, but differential
dm = d + [m,−]. We can furthermore form the twisted (gm -)module Mm , which is the
same space as M , carrying the same action and underlying algebraic structure (operad,
operadic module etc.), but whose differential becomes

dm = d + m·

where m· shall denote the action of m and we denote the original differential on M by d .
Next suppose that m′ ∈ g is another Maurer-Cartan element. We say that m and m′ are
gauge equivalent if there is a Maurer-Cartan element m̂ ∈ g[t, dt] whose restriction to
t = 0 agrees with m, and whose restriction to t = 1 agrees with m′ . More concretely,

m̂ = mt + dtht
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where mt can be understood as a family of Maurer-Cartan elements in g, connected by
a family of infinitesimal homotopies (gauge transformations) ht . The Maurer-Cartan
equation for m̂ translates into the two equations

dmt +
1
2

[mt,mt] = 0
∂mt

∂t
+ dht + [ht,mt] = 0.

Now suppose that g is pro-nilpotent. Then we may form the exponential group Exp(g),
which is identified with the degree 0 subspace g0 ⊂ g, with group product given by the
Baker-Campbell-Hausdorff formula. We can integrate the flow of ht into the element
Ht ∈ Exp(g), which acts on x ∈ g by

Ht(x) = exp(ht) · x = α+
∑
n≥0

adn(ht)
(n + 1)!

([ht, x]− dht)

The action of Ht is compatible with the Lie bracket and has the property that, for every
x ∈ g

Ht(dx + [m, x]) = (d + [mt,−])Ht(x).

In particular, the action of H1 induces an isomorphism of dg Lie algebras

H1 : gm → gm′ .

Next suppose that also the action of g on M is pro-nilpotent. Then, by a similar
argument, the action of H1 yields an isomorphism

(13) H1· : Mm → Mm′ .

Now let us relate these general statements to the objects of relevance in this paper. First
consider g = GCD to be the graph complex, but as a graded Lie algebra, i.e., considered
with zero differential. The correct differential on the graph complex is then obtained by
twisting with the Maurer-Cartan element [W1]

m0 =

Furthermore, consider M = ∗GraphsD , again with zero differential. There is a natural
action of g on M [W1, DW]. The differential on ∗GraphsD = Mm0 is then reproduced
by twisting with m0 .

Secondly, the above picture can be extended to include the (co)operadic right modules.
First, GCD acts on GCH(M) . We take

g = GCD n GCH(M)
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where we consider again the first factor with trivial differential, and the second factor
only with the part of the differential joining two decorations to an edge. The element
m0 from above is then a Maurer-Cartan element, and twisting by this Maurer-Cartan
element reproduces the differential on the factors of g considered above. Similarly, we
may consider the Maurer-Cartan elements

m′ := m0 + z0

or
mM := m0 + zM

where z0 , zM are as above. Twisting then reproduces on the second factor either the
differential on GC′H(M) , or that on GCM .

Next consider for M the pair consisting of a cooperad and a comodule (∗GraphsD,
∗GraphsM),

where the first factor we consider with the zero differential, and in the second we
consider only the part that connects two decorations to an edge. Then twisting with the
Maurer-Cartan element mM reproduces the full differential on the factors.

Remark 43 Note that an immediate consequence of the above way of constructing
∗GraphsM is that one has a large class of (co)derivations at hand. Namely, we have an
action of gzM on MzM . In particular, it was shown in [W1] that the 0-th cohomology of
GC2 is the Grothendieck-Teichmüller algebra grt1 . Hence, overstretching the analogy
a bit, we may consider the dg Lie algebra gzM , consisting of factors GCD and GCM , as
a version of the Grothendieck-Teichmüller dg Lie algebra associated to the manifold M .
Note however that this “definition" is a little provisional: A more invariant definition
would be to define the M -Grothendieck-Teichmüller Lie algebra as the homotopy
derivations of a real model of the pair (FMD,FMM). It is yet an open question in how
far the homotopy derivations in gzM exhaust all homotopy derivations. For example,
gzM itself does not readily capture the (non-nilpotent) action of the Lie algebra o(H(M))
(of linear maps that preserve the pairing) on all objects involved.

Next, let us note that the right comodule ∗GraphsM is unaltered (up to isomorphism) if
one replaces the Maurer-Cartan element zM used in its definition by a gauge equivalent
Maurer-Cartan element. Indeed, the action of GCH(M) is nilpotent since the action of any
element in GCH(M) always kills at least on vertex. Hence given two gauge-equivalent
Maurer-Cartan elements an explicit isomorphism between the two version of ∗GraphsM
produced is given by (13).

Finally, let us note that the above construction works equally well for the tadpole free
version ∗GraphsM of ∗GraphsM . In this case, one needs to work with the tadpole-free
version of the graph complex GCM . Also, in this case one does not have a right
∗GraphsD coaction.
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7.3 Valence conditions

In this section we show that the Hopf comodule ∗GraphsM is quasi-isomorphic to
(essentially) a quotient that can be identified with graphs containing only ≥ 3-valent
internal vertices. For this, we would like that the Maurer-Cartan element (partition
function) z′M above vanished on the subspace spanned by graphs containing a ≤ 2-valent
internal vertex. While this might not be the case in general, we show that zM is gauge
equivalent to a partition function satisfying this property.

Lemma 44 The subspace GC≥3
H•(M) ⊂ GC′H•(M) spanned by graphs having no 1 or

2-valent vertex is a dg Lie subalgebra.

Proof GC≥3
H•(M) is closed under the Lie bracket since it does not decrease the valence

of vertices. It remains to check the stability under the differential.

Recall that the differential has three pieces, a first one that splits an internal vertex, a
second one that joins decorations into an edge, and a third one arising from the twist
by z0 . Joining decorations into an edge cannot decrease the valency on vertices and
therefore preserves GC≥3

H•(M) . Univalent or bivalent vertices can a priori be created
both by the second and third term in the differential. However, one easily checks that
these ≤ 2-valent contributions cancel due to signs. For example, when computing

the differential of the graph
. .

bivalent vertices are created by vertex splitting

. . .
. However, since there are two contributions corresponding to each of

the two vertices and they appear with opposite signs thus canceling out. For bivalent
vertices carrying a decoration, or for a univalent vertex, the argument is similar.

Let GC′′H•(M) be the subspace of GC′H•(M) spanned by graphs that (i) do not contain
any univalent vertices, and (ii) that contain at least one ≥ 3-valent vertex. Notice that
GC′′H•(M) is a sub-Lie algebra of GCH•(M) since the Lie bracket can not decrease any
valences. Furthermore, we have the following easy result.

Lemma 45 The Maurer-Cartan element z′M ∈ GC′H•(M) constructed above lives in the
subspace GC′′H•(M) .

Proof First note that by definition z′M contains no graphs with a single ≤ 2-valent
vertex, as those graphs have been absorbed into z0 above. Hence the only instance
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of a (connected) graph with a univalent vertex is a graph with an “antenna", i.e., an
edge connected to a univalent vertex. However, to such graphs the configuration space
integral formula associates weight 0, by property (iv) of Proposition 8 (or alternatively
by a degree argument, since there are not enough form degrees depending on the position
of the antenna vertex). Next, if the graph has no trivalent vertex, it is either a string,
with some decorations at the ends, or a loop. In case of a string, the weight is zero again
by (iv) of Proposition 8. Finally, the loops all have zero weight by degree reasons.

The following Proposition is essentially proven in [W1, Prop. 3.4]. One uses essentially
the dual argument of Theorem 49.

Proposition 46 The inclusion map GC≥3
H•(M) ↪→ GC′′H•(M) is a quasi-isomorphism of

Lie algebras. Furthermore, endowing both sides with the descending complete filtrations
by the number of non-bivalent vertices7, the map between the associated graded spaces
is already a quasi-isomorphism.

Due to this Proposition we can apply the Goldman-Millson Theorem [DR] to conclude
that any Maurer-Cartan element in GC′′H•(M) is gauge equivalent to a Maurer-Cartan
element in the subspace GC≥3

H•(M) . In particular:

Corollary 47 The Maurer-Cartan element z′M is gauge equivalent to a Maurer-Cartan
element in the subspace GC≥3

H•(M) .

Next, we apply the remark of the previous subsection to conclude that we may use
a ≥trivalent Maurer-Cartan element (say z3

M ) gauge equivalent to z′M to construct
∗GraphsM . For the sake of concreteness, let us temporarily (for this subsection) denote
the version of ∗GraphsM constructed as before by Graphs

z′M
M , and the one constructed

with z3 instead by ∗Graphsz3
M , though this notation is abusive.

Let us consider a subspace S of ∗Graphsz3
M spanned by graphs having at least one

internal 1- or 2-valent vertex. Recall that decorations count as valence and there are no
0-valent internal vertices in ∗GraphsM .

Lemma 48 The space S described above is a subcomplex of ∗Graphsz3
M .

Proof Recall that the differential has two pieces, a first one that contracts an edge
connected to an internal vertex and a second one that either cuts an edge into the diagonal

7On GC≥3
H•(M) this filtration is albeit quite trivial.
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class or deletes a subgraph of internal vertices producing a factor given by the image
of such subgraph under ZM . Due to the Maurer-Cartan element z3 containing only
≥ 3-valent diagrams, the differential cannot cut out a subgraph containing a bivalent
internal vertex. Let us consider a graph with a 2-valent internal vertex that is adjacent
to two other vertices. There, the differential acts as follows:

d a = (1− 1) +
∑
ν

± a

ν

ν∗

+
∑
ν

± a
ν

ν∗

The contributions of contracting both edges appear with opposite signs and therefore
cancel. Notice that 1-valent internal vertices are produced on the other summands when
the decoration of the internal vertex takes the value 1.

If there is a 2-valent internal vertex that is adjacent to only one other vertex and has one
decoration, the action of the differential there is:

d a

ω

=

ω
−
∑
ν

±
ν

a

ω

ν∗

=

ω

−
ω

= 0.

It is easy to see that if there is one 1-valent internal vertex the two pieces of the
differential cancel each other, thus concluding the proof.

The following proof is an adaptation of [W1, Prop. 3.4]

Theorem 49 The projection map ∗Graphsz3
M → ∗graphsM := ∗Graphsz3

M/S is a quasi-
isomorphism of dg Hopf right ∗GraphsD -comodules.

Proof It suffices to show that H(S) = 0. If we set up a filtration on S by the total
number of decorations, on the zeroth page of the spectral sequence we recover d0 as the
contracting piece and a piece that cuts out a connected component of internal vertices
with a factor given by an integral. We claim that the spectral sequence collapses already
on the first page.

Notice that d0 cannot produce 1-valent internal vertices from 2-valent internal vertices
and it follows from the proof of Lemma 48 that a 1-valent internal vertex cannot be
destroyed.
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It follows that on the zeroth page S decomposes as a sum of complexes S = S1 ⊕ S2 ,
where S1 is spanned by graphs with at least one 1-valent internal vertex and S2 is
spanned by graphs whose internal vertices are at least 2-valent.

To see that S1 is acyclic one can look at “antennas" of the graphs, i.e. maximal connected
subgraphs consisting of one 1-valent and some 2-valent internal vertices. By setting
a spectral sequence whose differential decreases only the length of antennas one can
construct a contracting homotopy that increases this length thus showing H(S1) = 0.

As for S2 the same idea can used by replacing every path on the graph consisting of
2-valent internal vertices by single edges labeled by their length, see Figure 3.

a a a =
3

Figure 3: Replacing bivalent internal vertices by a single labeled edge.

By considering a spectral sequence whose differential on the zeroth page only reduces
the numbers on the labels, being careful with the signs one can construct a contracting
homotopy which gives H(S2) = 0.

Overall, we conclude that ∗graphsM is a dgca model for FMM , by the following explicit
zigzag:

∗graphsM
∼←− ∗Graphsz3

M
∼=←− ∗Graphsz′M

M
∼−→ ΩPA(FMM).

Moreover, the above maps are morphisms of dg Hopf right comodules.

If M is not parallelizable, one can construct the space ∗graphsM as the analogous
quotient of ∗Graphsz3

M . The same proof allows us to conclude that ∗graphsM is a dgca
model for the collection of topological spaces FMM by a similar zigzag.

Remark 50 The smaller model ∗graphsM (as well as ∗graphsM ) has the advantage
that for D ≥ 3 it is connected in the sense that each dgca ∗graphsM(r) is concentrated
in non-negative cohomological degrees, and one-dimensional in degree 0. This can
be shown by a degree counting argument similar to Lemma 54, using the trivalence
condition and the existence of at least one external vertex per connected component.
Similarly, one sees that if in addition H1(M) = 0, then ∗graphsM(r) is finite dimensional
in each cohomological degree.
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Remark 51 The propagator φ12 established in Proposition 8 can be chosen such that∫
2 φ12α = 0, where the integration is conducted along the fiber of the forgetful map

p2 : FMM(2) → M , and where α is any of the chosen representative forms for the
cohomology, see Convention 7 (see [CM]). It would be desirable to show that φ12

may be chosen such that in addition
∫

3 φ13φ32 = 0, where the integration is performed
along the fiber of the forgetful map p3 : FMM(3) → FMM(2). In that case the above
discussion could be considerably simplified, since the extra condition immediately
renders the integral weights of all graphs with bivalent vertices zero. A propagator with
this desired property has been constructed in the smooth setting in [CM, Lemma 4].
We expect that the proof carries over to the semi-algebraic setting. However, there is a
technical difficulty due to our use of PA instead of smooth forms, whose resolution we
leave to future work. Roughly speaking, the technical problem is that for a PA form
β ∈ Ω(M × N) one has to define a good notion of “de Rham differential in the first
slot” dNβ .

7.4 Computing the cohomology and loop orders

Above we construct real dgca models ∗GraphsM and ∗graphsM for configuration spaces
of points on a manifold M , which depend on M only through the Maurer-Cartan element
zM ∈ GCH•(M) . Note that GCH•(M) is naturally filtered by the loop order of graphs. We
can decompose the Maurer-Cartan element

zM = z0
M + z1

M + · · ·

accordingly into pieces of various loop orders.

The differential on ∗graphsM(n) can only maintain or decrease the number of loops
(genus) of the graphs. It follows that the subspace ∗graphsfor

M (n) ⊂ ∗graphsM(n) spanned
by graphs of genus zero, i.e. forests, is a subcomplex and a dg subalgebra for n = 1.
Notice that however it is not a subalgebra if n > 1. In any case the object ∗graphsfor

M
depends on M only through the tree-level piece z0

M of our Maurer-Cartan element zM .

Lemma 52 The inclusion of ∗graphsfor
M in ∗graphsM is a quasi-isomorphism (of

symmetric sequences of complexes).

Proof The proof follows essentially from the spectral sequence argument given in
Lemma 39.

The differential in ∗graphsM cannot decrease the number of connected components
of a graph, so by considering a filtration by the number of connected components of
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the graphs we obtain the respective associated graded complexes gr ∗graphsfor and
gr ∗graphsM . Then we notice that the number #edges− #vertices cannot increase so we
take the respective filtration obtaining the associated graded complexes gr′ gr ∗graphsfor

and gr′ gr ∗graphsM (notice that this filtration is bounded below since there are no
connected components of only internal vertices). After this, the only piece of the
differential remaining is the one cutting out a (decorated) tree of internal vertices and
evaluating the partition function on it.

At last, filtering by #internal vertices − degree, we obtain in the associated graded
complexes gr′′ gr′ gr ∗graphsfor and gr′′ gr′ gr ∗graphsM a the piece of the differential
that reduces the number of internal vertices exactly by 1, i.e., the differential contracts
one edge connected to one or two internal vertices or cuts out a tree consisting only of a
single decorated internal vertex.

We claim that the induced inclusion map is a quasi-isomorphism at this level. As
in Lemma 39, by induction on n one can show that the homology of V(n) =

gr′′ gr′ gr ∗graphsM(n) satisfies

H(V(n)) = H(V(n− 1))⊗ H•(M)⊕ H(V(n− 1))[1− D]⊕n−1,

but the same proof gives the same result for the homology of gr′′ gr′ gr ∗graphsfor
M , so

the result follows.

In particular we see the following.

(1) The dgca ∗graphsfor
M (1) is a real model for M , so that the tree-level piece of zM

encodes the real homotopy type of M .

(2) Knowledge of the tree-level piece of zM suffices to compute the real cohomology
of FMM(n), as a graded vector space, for all n.

8 The real homotopy type of M and FMM

The goal of this section is to compare the information contained in the partition function
zM from above to the real homotopy type of M . By the latter, we mean the isomorphism
type of a homotopy commutative (C∞ ) algebra structure on the cohomology H(M).
The end result will be that the knowledge of the real homotopy type of M suffices to
recover zM (up to gauge equivalence) in the case that D ≥ 4 and H1(M) = 0.

Let us first see how the C∞ algebra structure on H(M) can be obtained from our
graphical models. For every closed oriented connected manifold M we fix the following
homotopy data of chain complexes

Algebraic & Geometric Topology XX (20XX)



1050 Ricardo Campos and Thomas Willwacher

H•(M) ∗graphsfor
M (1)

i

p
h

pi = id, id− ip = dh + hd.

Where the map i is defined such that i(ω) = 1
ω

, the map h is defined such that it

vanishes on graphs with a ≤ 1-valent external vertex and h 1

Γ

= 1

Γ

.

Finally, p is defined such that for every Γ ∈ ∗graphsfor
M , p(Γ) =

∑
i

ei

∫
M

e∗i ∧

f (Γ), where the {ei} form a basis of H•(M) and {e∗i } the respective dual basis and
f : ∗graphsfor

M (1)→ ΩPA(M) is the map induced by the one constructed in Section 3.

By the Homotopy Transfer Theorem [LV, Section 10.3] such homotopy data defines a
C∞ structure on H•(M) and such structure retains the real homotopy type of M .

Notice that C∞ structures on H•(M) are identified with Maurer-Cartan elements in the
Harrison complex

Harr(H•(M),H•(M)) = HomS(Liec{1}[−1]◦H•(M),H•(M)) =
∏
n∈N

Lie(n)⊗SnH•(M)⊗n⊗H•(M)[n].

Proposition 53 ([Lo], Proposition 1.6.5) The projection map Harr(H•(M),H•(M))→
Harr(H•(M),H•(M)) is a quasi-isomorphism of Lie algebras.

Lemma 54 If M is a connected manifold of dimension at least D ≥ 4 such that
H1(M) := H1(M,R) = 0, then all the degree 0 graphs in ∗GC≥3

M are trees.

Proof The proof is a simple combinatorial argument. Let Γ ∈ ∗GC≥3
M be a non-tree

graph with E edges and V vertices. We denote the sum of degrees of the decorations of
a vertex vi by deg dec(vi) and the number of incident vertices at vi by edges(vi).

From the relation
∑V

i=1 edges(vi) = 2E , it follows

deg(Γ) = (D− 1)E − DV +
V∑

i=1

deg dec(vi)

= (D− 3)(E − V) +
V∑

i=1

(deg dec(vi) + edges(vi)− 3) .
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Because of the ≥ 3-valence condition, each term deg dec(vi) + edges(vi)− 3 must be
greater than or equal te zero. In fact, since decorations have degree at least 2 if there
is at least one decoration in Γ, the sum

∑V
i=1 (deg dec(vi) + edges(vi)− 3) is strictly

positive.

Now notice that since Γ is a not a tree, we have E ≥ V and in case of equality there
must be at least one decoration. In any of those cases it follows that deg Γ > 0.

Remark 55 From the proof we also observe the following:

• If D = 3 and H1(M) = 0 the only non-tree graphs of degree 0 have no
decorations and every vertex is exactly trivalent. These graphs are also called
simple cubic graphs.

• For D ≥ 4 but H1(M) 6= 0 there are non-tree graphs of degree zero but they
take on a very simple form: Besides trees, there are only graphs of genus 1
that are trivalent and decorated only by 1-forms. Such graphs are given by a
“fundamental loop" such that every vertex has a decorated trivalent tree attached.
Here is an example:

α2

α1

α3 α4

α5

From now on, let us suppose M to be simply connected and of dimension D ≥ 4.

Definition/Proposition 56 The dgla GC≥3,tree
M is the quotient of GC≥3

M by the dg Lie
ideal spanned by graphs with at least one loop.

Proof First notice that the Lie bracket of two graphs Γ,Γ′ ∈ GC≥3
M will be a sum of

graphs with loop order given by the sum of the loop orders of Γ and Γ′ . It follows that
the subspace spanned by graphs with at least one loop is a Lie ideal.

The splitting part of the differential preserves the loop order and the part of the differential
that connects decorations increases the loop order by one and the twisted piece of the
differential does not reduce loops. It follows that the differential preserves the ideal.
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Definition/Proposition 57 The dgla GCLie
M is defined as the quotient of GC≥3,tree

M by
the ideal generated by trees with vertices ≥ 4-valent and the IHX (or Jacobi) relations
that originate from the splitting differential of a 4-valent vertex.

The quotient map GC≥3,tree
M → GCLie

M is a quasi-isomorphism.

Proof It is clear that the differential preserves the ideal.

To see that the quotient map is a quasi-isomorphism, consider first a filtration by
deg − #edges such that on the associated graded the differential cannot increase the
number of vertices by more than one. Then, take a second filtration by the number of
decorations and notice that on the associated graded we obtain (the cyclic version of)
the quasi-isomorphism Λ−D−1L∞ → Λ−D−1Lie.

The dgla GCLie
M is a cyclic variant of the Harrison complex of H•(M). Indeed, let us

consider more generally a graded vector space A = A⊕ R, with a degree −D pairing.
A C∞ structure on A is given by a Maurer-Cartan element in Hom(Liec{1}[−1] ◦ A,A)
which, via the pairing, can be identified with the space

Hom
(
A•−D ⊗

(
Liec{1}[−1] ◦ A•

)
,R
)
.

There is a map A ⊗
(
Liec{1}[−1] ◦ A

)
[−D] → ∗GCLie

A determined in the following
way: A basis of the cooperad Liec can be identified with rooted planar trivalent trees
modulo the Jacobi (co)relations. Forgetting about the position of the root and considering
it as any other leave, and replacing every leaf with a decoration by A we obtain an
element in ∗GCLie

A .

Definition 58 Let A = A⊕ R be a graded vector space with a non-degenerate pairing
of degree −D. A cyclic C∞ algebra structure on A is a Maurer-Cartan element in
GCLie

A .

If such a cyclic C∞ algebra structure z maps into a C∞ structure µ via the dual of the
map described before Definition 58, we say that z extends µ.

Remark 59 Due to the implicit usage of the degree −D pairing, such structure would
be more appropriately called a “D-cyclic C∞ -algebra”.

Proposition 60 An orientable closed manifold M determines a cyclic C∞ algebra
structure on its cohomology H•(M) extending the one arising from the Homotopy
Transfer Theorem.
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Proof The C∞ structure on H•(M) is given by a map in Hom(Liec{1}[−1] ◦
H•(M),H•(M)) which, by the Poincaré duality pairing is equivalent to an element

f ∈ Hom
(
H•(M)⊗

(
Liec{1}[−1] ◦ H•(M)

)
,R
)
.

We claim that there is a factorization of f by

H•(M)⊗
(
Liec{1}[−1] ◦ H•(M)

)
R

∗GCLie
M

f

g
Z

and the dashed arrow corresponds to a Maurer-Cartan Z ∈ GCLie
M which is gauge

equivalent to the image of Z3
M ∈ GC≥3,tree

M .

To show that f factors through g it is sufficient to show that for every µ ∈ Liec{1}[−1](n)
and ω0, . . . , ωn ∈ H•(M), we have f (ω0⊗µ⊗ω1⊗· · ·⊗ωn) = f (ωn⊗µ⊗ω0⊗· · ·⊗ωn−1),
but this follows from the explicit formula the C∞ action given by the Homotopy Transfer
Theorem. This corresponds to computing the partition function on the trivalent graph
given by the C∞ operation µ where the root is replaced by a decoration by the element
ω0 , which is clearly cyclically invariant.

As an example, suppose that µ corresponds to µ2 ◦1 µ2 ∈ Liec(3), then

µ(ω1, ω2, ω3) = p(h(i(ω1)i(ω2))i(ω3)) = p 1

ω1
ω2

ω3 =
∑

i

ei

∫
1,2
π∗1 (e∗i )π∗1 (ω3)φ1,2π

∗
2 (ω1)π∗2 (ω2).

Therefore, f (ω0, µ(ω1, ω2, ω3)) =
∫

1,2 π
∗
1 (ω0)π∗1 (ω3)φ1,2π

∗
2 (ω1)π∗2 (ω2) = Z

ω1
ω2

ω3ω0 .

Remark 61 For simply connected ≥ 4-dimensional M , the cyclic C∞ structure on
H•(M) determines the spaces ∗graphsM (n), which encode the real homotopy type of
FMM(n). Moreover, if M is parallelized, the cyclic C∞ structure determines the Hopf
comodule structure of ∗graphsM , that encodes the real homotopy type of FMM seen as
a right FMD -module.

Algebraic & Geometric Topology XX (20XX)



1054 Ricardo Campos and Thomas Willwacher

Finally, one can check that the isomorphism type of the (non-cyclic) C∞ algebra
structure on H(M) already determines the one of the cyclic C∞ algebra structure. In
other words, the cyclicity is not to be seen as extra data on, but rather a property of
the real homotopy type, reflecting Poincaré duality. More concretely, the following
result has been shown in [HL, Theorems 5.5, 5.8]. We also sketch a short proof here for
completeness.

Proposition 62 The real homotopy type of a closed orientable manifold determines
its cyclic homotopy type. More precisely, given two cyclic C∞ algebra structures on
H(M) that are C∞ isomorphic as non-cyclic C∞ structures, they are also isomorphic as
cyclic C∞ structures.

Proof sketch We are given 2 cyclic C∞ structures on H(M) and a C∞ isomorphism
between them. We may assume that the linear part of the C∞ isomorphism is the
identity, otherwise we just pull back one cyclic C∞ structure along this linear part.
Note also that the implicit underlying non-degenerate pairing on H(M) is determined
by the product up to an unimportant scale factor, so we may assume it is the same for
both our cyclic C∞ structures.

We denote by µ1, µ2 the two Maurer-Cartan elements in GCLie
H(M) encoding our cyclic

C∞ structures. The underlying (non-cyclic) C∞ structure is encoded by the images of
µ1, µ2 under the natural inclusion of dg Lie algebras into the reduced Harrison complex

root : GCLie
H(M) → Harr(H•(M),H•(M)).

Graphically, elements on the left-hand side can be interpreted as linear combinations
of non-rooted Lie trees, and elements of the right-hand sides can be seen as rooted
Lie trees as above, and the map root is defined by summing over all possible ways of
making one leaf into the root.

The C∞ morphism between our two C∞ structures (with linear term being the identity)
then yields a gauge equivalence between the MC elements root(µ1) and root(µ2)
in Harr(H•(M),H•(M)). We desire to check that this implies that µ1 and µ2 are
already gauge equivalent in GCLie

H(M) . To this end we can employ the Goldman-Millson
Theorem [DR]. To check the conditions of this Theorem we consider a filtration such
that Fp Harr(H•(M),H•(M)) is spanned by rooted Lie trees with ≥ p leafs that are
decorated by classes of nonzero degree.

On the associated graded the only piece of the differential that survives replaces the
root (say decorated by some α ∈ Hk(M)) by two leafs, with one decorated α and the
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new root decorated with 1 ∈ H0(M).

. α root
d07→ . .

1 root

α

It is an easy exercise to check that the cohomology of the p-th graded piece of the
Harrison complex is identified for p ≥ 3 precisely with non-rooted trees all of whose
leaves are decorated by elements of H̄•(M). But this is precisely the image of GCLie

H(M)
under the map root.

Hence the Goldman-Millson Theorem is applicable to the inclusion of dg Lie algebras
root : GCLie

H(M) → F2 Harr(H•(M),H•(M)). To conclude the desired result we then
just need to remark that our gauge equivalence between root(µ1) and root(µ2) in
Harr(H•(M),H•(M)) may actually be taken in F2 Harr(H•(M),H•(M)). To see this in
turn one also computes the p-th graded piece of the Harrison complex for p = 2, and
sees that there is no cohomology in the at least quadratic part. But since the underlying
C∞ morphism has trivial linear part, we may always remove the parts in the 2-graded
piece by adding an exact terms, to yield the required gauge equivalence in F2 .

The real homotopy type of a manifold determines its cyclic homotopy type by the
previous proposition. This in turn determines the (gauge equivalence class of) the
Maurer–Cartan element zM by Propositions 57, 46 and Lemma 54 which itself determines
the quasi-isomorphism type of the graph complex by the discussion in Section 7.2. We
obtain thus the following Theorem as a corollary:

Theorem 63 Let M be an orientable compact manifold without boundary of dimension
D ≥ 4, such that H1(M,R) = 0. Then the real homotopy type of FMM depends only
on the real homotopy type of M . By this statement we mean that there is a zigzag of
quasi-isomorphisms of symmetric sequences of dgcas over R

ΩPA(FMM)→ · ← X

with X being a sequence of dgcas defined using only knowledge of the quasi-isomorphism
class of ΩPA(M) as a real dgca.

Remark 64 We remark that we generally work with unbounded cochain complexes,
and a priori in the zigzag as constructed above there will occur dgcas which have
unbounded degrees. However, the concrete X we use is (cf. above) X = ∗Graphs≥3

M ,
which is concentrated in non-negative degrees. Furthermore, X is cofibrant in the
category of sequences of (unbounded) dgcas, and by homotopy lifting of the zigzag we
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may in fact construct a quasi-isomorphism of dgcas X → Ω(FMM). For the statement
above it is hence inessential whether we work over non-negatively graded cochain
complexes or cochain complexes of unbounded degrees.

Moreover, if we suppose M to be parallelized, the action of the Lie algebra GCM on
GraphsM is compatible with the right GraphsD module structure. In this case, the (real
homotopy type) of GraphsM as a right GraphsD module is determined by (the gauge
equivalence class of) the Maurer-Cartan element zM . In that case, by the same argument
we obtain a stronger version of the previous Theorem.

Theorem 65 Let M be a parallelizable compact manifold without boundary of
dimension D ≥ 4, such that H1(M,R) = 0. Then the real homotopy type of the
operadic right module FMM FMD depends only on the real homotopy type of M ,
in the sense that there is a zigzag of quasi-isomorphisms of right dg Hopf comodules
connecting ΩPA(FMM) and some X , with X depending only on the quasi-isomorphism
type of the dgca ΩPA(M).

We note again that we abuse slightly the notation since ΩPA(FMD) is not (strictly
speaking) a dg Hopf cooperad and ΩPA(FMM) is not a right comodule, see Remark 15.
The cleaner variant of stating the above Theorem is to work in a category of homotopy
cooperads and homotopy comodules, whose construction we however leave to future
work, cf. [LV, section 3].

9 The framed case in dimension D = 2

In Section 3 we considered parallelized manifolds since a trivialization of the tangent
bundle is needed to define the right operadic FMD -module structure. Informally, to
define the action one needs to know in which direction to insert, and the parallelization
provides us the direction of the insertion.

In this section we wish to focus on the 2-dimensional case where unfortunately the only
parallelizable (connected closed) manifold is the torus.

To go around the problem of not having a consistent choice of direction of insertion,
instead of working with configuration spaces of points, we consider the framed
configuration spaces. In other words, at every point of the configuration there is the
additional datum of a direction, i.e. an element of the Lie group SO(2) = S1 .

In this section Σ shall denote a connected oriented closed surface with a smooth and
semi-algebraic manifold structure. Most results will be an adaptation of the arguments
in the previous sections to the framed case.
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9.1 Definitions

In this section we introduce the compactification of the configuration space of framed
points on Σ. A more detailed introduction to the subject can be found in [MSS].

9.1.1 The operad of configurations of framed points

The construction of the operad of the framed version of FM2 is a special case of the
notion of the semi-direct product of an operad and a group, as described below.

Definition 66 Let P be a topological operad such that there is an action of a topological
group G on every space P(n) and the operadic compositions are G-equivariant. The
semi-direct product P o G is a topological operad with n-spaces

(P o G)(n) = Gn × P(n),

and composition given by

(g, p) ◦i (g′, p′) =
(
g1, . . . , gi−1, gig′1, . . . , gig′m, gi+1, . . . , gn, p ◦i (gi · p′)

)
,

where g = (g1, . . . , gn) and g′ = (g′1, . . . , g
′
m).

The group SO(2) has a well defined action on FM2 given by rotation.

Definition 67 The Framed Fulton-MacPherson topological operad FFM2 to be the
semi-direct product FM2 o SO(2).

When the operadic composition is performed, the configuration inserted rotates according
to the frame on the point of insertion as depicted in Figure 9.1.1, where at every point
we draw a small line indicating the associated element of SO(2).

1
ψ ◦1

1
2

ϕ
= 1

2 ψ + ϕ

Figure 4: Operadic composition in FFM2 .
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9.1.2 Configurations of framed points on a surface

Definition 68 The Fulton-MacPherson compactification of the configuration spaces
of points on the surface Σ, FFMΣ is a symmetric sequence in semi-algebraic smooth
manifolds which is given as the pullback of the following diagram

SO(Σ)×n

FMΣ(n) Σ×n

πn

where π : SO(Σ)→ Σ is the frame bundle over Σ (assuming some Riemannian metric).

As in the non-framed case, the space FFMΣ(n) is a manifold with corners. The
interior of this manifold is the framed configuration space of points and is denoted by
FConfn(Σ).

Proposition 69 The insertion of points at the boundary of FFMΣ according to the
direction of the frame defines a right FFM2 operadic module structure on FFMΣ .

The associativity of the operadic module structure is clear.

9.2 Graphs

In this subsection we work with the operadic module BVGraphsΣ BVGraphs2 which
is the version of GraphsΣ Graphs2 adapted to the framed case.

Informally, the difference between GraphsΣ (resp. Graphs2 ) and BVGraphsΣ (resp
BVGraphs) is that we now allow tadpoles (edges connecting a vertex to itself) at external
vertices but graphs with tadpoles at internal vertices are considered to be 0.

This can be done by considering the subalgebra ∗BVGraphsΣ ⊂∗ GraphsΣ of graphs
with no tadpoles on internal vertices or dually defining BVGraphsΣ as a quotient of
GraphsΣ . A precise definition of BVGraphs2 can be found in [Ca].

The non-twisted analog of ∗BVGraphs(n) is ∗BVGra(n), the symmetric algebra on
symbols sij = sji , 1 ≤ i, j ≤ n. One can also consider the non-twisted analog
∗BVGraΣ , but notice that this is just the same space as ∗GraΣ as tadpoles are not forbid-
den in ∗GraΣ and there are no internal vertices upon which we can impose any condition.
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Let φ ∈ Ω1
triv(FFMΣ(1)) be a global angular form of the S1 -bundle π : FFMΣ(1) =

SO(Σ)→ Σ. Such form satisfies dφ = π∗(e), where e ∈ Ω2
triv(Σ) is the Euler class of

the circle bundle.

Let 1 ≤ i ≤ n. We denote by φii ∈ Ω1
triv(FFMΣ(n)) the form π∗i (φ), where

πi : FFMΣ(n) → FFMΣ(1) is the map that remembers only the point labeled by
1

We define a map ∗BVGraΣ(n)→ Ωtriv(FFMΣ(n)) as a morphism of algebras sending sij

to φij , where if i 6= j, φij is the form constructed in section 2 and sends [ω]j ∈∗ BVGraΣ

to p∗j (ι([ω])), where pj : FFM(n)→ M is the map that remembers only the point labeled
by j.

Similarly one defines a map ∗BVGra2(n)→ Ωtriv(FFM2(n)) = Ωtriv(FM2(n)×SO(2)×n)
as a morphism of algebras sending a tadpole at the vertex i to the volume form of the
i-th SO(2).

Lemma 70 This defines a morphism of cooperadic comodules ∗BVGraΣ
∗BVGra2 →

Ωtriv(FFMΣ) Ωtriv(FFM2).

Proof Regarding the compatibility with the differentials, the only case not covered in
Lemma 16 is φii , but this follows from the fact that the Euler form can be expressed as∑

i,j gijei ∧ ej .

For the compatibility with the cooperadic comodule structure it remains to check it for
the elements sii ∈ BVGraphsΣ(n). For simplicity of notation we consider the element
s11 ∈ BVGraphsΣ(1) which is sent to φ11 ∈ Ω1

PA(FFMΣ(1)) whose coaction gives
φ11 ⊗ 1 + 1⊗ volS1 ∈ ΩPA(FFMΣ(1))⊗ ΩPA(FFM2(1)).

On the other hand, the coaction on s11 ∈ BVGraphsΣ(1) gives us s11 ⊗ 1 + 1⊗ s11 ∈
BVGraphsΣ(1)⊗ BVGraphs2(1), from where the compatibility follows.

Similarly to what was done in Section 4, one can prove the following Proposition

Proposition 71 There is a morphism of cooperadic modules ∗BVGraphsΣ
∗
BVGraphs2 →

ΩPA(FFMΣ) ΩPA(FFM2) extending the morphism from Lemma 70.

The only difference relatively to the non-framed case is that the map ∗BVGraphsΣ(n)→
ΩPA(FFMΣ(n)) evaluated at a graph Γ ∈ BVGraphsΣ with k internal vertices is given
by an integral over the fiber of FFMΣ(n, k)→ FFMΣ(n), where the space FFMΣ(n, k)
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is the (compactification of the) configuration space of n framed points and k unframed
points corresponding respectively to the external vertices and the internal vertices of Γ.

A similar procedure is done for the map ∗BVGraphs2(n)→ ΩPA(FFM2(n)).

The goal of this section is to prove the following Theorem.

Theorem 72 The map ∗BVGraphsΣ
∗
BVGraphs2 → ΩPA(FFMΣ) ΩPA(FFM2) is

a quasi-isomorphism of Hopf cooperadic comodules.

Proposition 73 The map ∗BVGraphs2 → ΩPA(FFM2) is a quasi-isomorphism.

Proof On the one hand we have

H•(FFM2(n)) = H•(FM2(n)×SO(2)×n) = H•(FM2(n))⊗H•(SO(2))⊗n = H•(FM2(n))⊗(R⊕R[−1])⊗n

by the Künneth formula. On the other hand, notice that as dg symmetric sequences
BVGraphs2 = Graphs2 ◦ (R[−1]⊕ R), therefore

H(∗BVGraphs2(n)) = H
(∗Graphs2(n)⊗ (R⊕ R[−1])⊗n) = H(∗Graphs2(n))⊗(R⊕R[−1])⊗n.

Since a tadpole at the vertex labeled by i is sent to the volume form of i-th SO(2),
which is the generator of H1(SO(2)), we have that at the cohomology level the map

H(∗BVGraphs2) = H(∗Graphs2(n))⊗(R⊕R[−1])⊗n → H•(FFM2(n)) = H•(FM2(n))⊗(R⊕R[−1])⊗n

is just the map f∗ ⊗ id, where f : ∗Graphs2 → ΩPA(FM2) is the quasi-isomorphism
from Definition/Proposition 18, from where the result follows.

9.3 Proof of Theorem 72

Let n, k ≥ 0 and let us consider an auxiliary differential graded vector space G(n, k) that
is the subcomplex of ∗BVGraphsΣ(n + k) in which the points labeled n + 1, . . . n + k
cannot have tadpoles. This should be seen as the algebraic analog of the space
FFMΣ(n, k), the compactification of the configuration space of n framed points and k
unframed points in Σ.

The map ∗BVGraphsΣ(n + k) → ΩPA(FFMΣ(n + k)) restricts naturally to a map
G(n, k)→ ΩPA(FFMΣ(n, k)). We will show that this map is a quasi-isomorphism, thus
proving Theorem 72 which corresponds to the cases with k = 0. The proof will be
done by induction on n. The case n = 0 was already proven in Theorem 42.
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9.3.1 A long exact sequence of graphs

Let us prove the following auxiliary result.

Proposition 74 There is a long exact sequence of graded vector spaces

· · · −→ Hd(G(n+1, k−1))
f−→ Hd−1(G(n, k)) ∧e−→ Hd+1(G(n, k)) i∗−→ Hd+1(G(n+1, k−1)) −→ . . . ,

where the map i∗ induced by the inclusion of G(n, k) in G(n + 1, k − 1).

Proof Let us clarify the undescribed maps. The map f removes a tadpole on the vertex
labeled by n + 1 if there exists one, otherwise it sends a graph to zero. The map ∧e
decorates the vertex n + 1 with the “Euler form".

n+1
∧e7→
∑

j

± n+1

ej e∗j

It is not clear that these maps are well defined at the cohomology level, but this will
become clear by the construction of the sequence.

Let us consider the following decomposition of G(n + 1, k − 1):

G(n + 1, k − 1) =G(n, k)[−1]⊕G(n, k)

d0 d0
d1

,

where the first summand corresponds to graphs in which the vertex labeled by n + 1 has
a tadpole and the second summand corresponds to graphs in which the vertex labeled
by n + 1 does not have a tadpole. The differential splits into two terms d0 and d1 , as in
the picture. Let us consider a two-level filtration on the number of tadpoles at the vertex
n + 1. On the zeroth page of the spectral sequence the differential is d0 , which acts as
the ordinary differential of G(n, k).

The differential on the second page is induced by d1 and is the map that was denoted by
∧e,

∧e : H•(G(n, k)[−1]) = H•−1(G(n, k))→ H•+1(G(n, k)).
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The spectral sequence converges at the second page since we considered a two-level
filtration, therefore

H•(G(n + 1, k − 1)) = ker(∧e)⊕ coker(∧e).

The map f is defined to be the composition H•(G(n + 1, k − 1)) � ker(∧e) ↪→
H•−1(G(n, k)). It is then clear that Im(f ) = ker(∧e), which gives us exactness at
Hd−1(G(n, k)).

The map i∗ is given by the composition H•(G(n, k)) � coker(∧e) ↪→ H•−1(G(n +

1, k − 1)), therefore its image coincides with the kernel of f , which shows exactness at
Hd+1(G(n + 1, k − 1)).

Since i∗ is the projection to the cokernel of ∧e, its kernel is precisely the image of ∧e,
which shows the remaining exactness.

9.3.2 The Gysin sequence

The map π : FFMΣ(n + 1, k − 1) → FFMΣ(n, k) that forgets the frame at the point
n + 1 is a circle bundle. We denote by e ∈ ΩPA(FFMΣ(n, k) the Euler form of the circle
bundle. The Gysin sequence of this circle bundle is the following long exact sequence:

(14)
Hd(FFMΣ(n + 1, k − 1))

∫
π−→ Hd−1(FFMΣ(n, k)) ∧e−→ Hd+1(FFMΣ(n, k)) π∗−→ Hd+1(FFMΣ(n + 1, k − 1)) −→ . . .

Using the maps G(a, b) → ΩPA(FFMΣ(a, b)) we obtain the following morphism of
exact sequences:

Hd(FFMΣ(n + 1, k − 1)) Hd−1(FFMΣ(n, k)) Hd+1(FFMΣ(n, k)) Hd+1(FFMΣ(n + 1, k − 1))

Hd(G(n + 1, k − 1)) Hd−1(G(n, k)) Hd+1(G(n, k)) Hd+1(G(n + 1, k − 1)).

∫
π ∧e π∗

f ∧e i∗

Since by induction G(n, k)→ ΩPA(FFMΣ(n, k)) is a quasi-isomorphism, the Five Lemma
implies that G(n + 1, k − 1)→ ΩPA(FFMΣ(n + 1, k − 1)) is a quasi-isomorphism as
well, thus concluding the proof of Theorem 72.
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A Comparison to the Lambrechts–Stanley model through
cyclic C∞ algebras

In this appendix we show how to obtain from the ∗GraphsM model a proof that the
Lambrechts–Stanley algebra is a dgca model for the FMM (Conjecture 76).

Definition 75 ([LS2]) A Poincaré duality algebra of dimension D is a non-negatively
graded connected dgca A together with a linear map

ε : AD → R

such that ε ◦ d = 0 and such that the bilinear maps

A⊗ A→ R[−D]

a⊗ b 7→ ε(a, b)

are non-degenerate.

Note that by the connectivity assumption necessarily AD = R and hence ε is unique up
to scale, if it exists. Note that a Poincaré duality algebra is a particular case of a cyclic
C∞ -algebra.

A Poincaré duality model for a manifold M is a Poincaré duality algebra weakly
equivalent (as a dgca) to Ω(M). It is shown in [LS2] that such a Poincaré duality model
always exists for simply connected compact orientable manifolds.

Lambrechts and Stanley furthermore define the following family of dgcas from a
Poincaré duality algebra A, generalizing earlier work by Kriz [Kr] and Totaro [Tot].
Consider the algebra

A⊗n[ωij; 1 ≤ i 6= j ≤ n].

For a ∈ A let p∗j (a) be the element 1⊗ · · · ⊗ a⊗ · · · ⊗ 1, with a in the j-th slot. Then
one imposes on the above algebra the following relations

(1) ωij = (−1)Dωji

(2) ω2
ij = 0

(3) ωijωik + ωjkωji + ωkiωkj = 0 for distinct i, j, k

(4) (p∗i (a)− p∗j (a))ωij = 0.
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Let us define for A a Poincaré duality algebra as above the diagonal ∆ ∈ A⊗ A to be
the inverse of the non-degenerate bilinear pairing. Let us further denote by ∆ij the
corresponding element in A⊗n , the two “non-trivial” factors of A situated in positions i
and j. Then one defines

(A⊗n[ωij; 1 ≤ i 6= j ≤ n]/ ∼, dA +∇)

where the differential dA is that induced by the differential on A and ∇ is defined as

∇ωij = ∆ij.

One readily checks that the ideal generated by the relation is closed under this differential.
Furthermore, if the Euler class of A, i.e., the image ∆ under the multiplication, vanishes,
then the F(A,−) naturally assemble into a right Pois∗D cooperadic comodule.

Lambrechts and Stanley [LS] show that for A a Poincaré duality model for M we have
that H(F(A, n)) = H(FMM(n)), and furthermore raise the following conjecture.

Conjecture 76 ([LS]) If A is a Poincaré duality model for the simply connected
compact orientable manifold M then F(A, n) is a dgca model for Conf(M, n).

A proof of (a slightly weaker form of) this statement is given in [I], using methods
similar to ours. While in this paper we work with cyclic C∞ structures on H(M), rather
than Poincaré duality models to capture the real homotopy type “with Poincaré duality”
for M , one can still deduce the conjecture of Lambrechts and Stanley from our methods,
at least in the case that the dimension of M is at least 4. (The case M = S2 also follows
from the computation in Appendix B, leaving only the case M = S3 .) Let us sketch this
reduction.

First let V be a finite dimensional differential non-negatively graded vector space with
the subspace of degree 0 elements V0 = R and a non-degenerate symmetric bilinear
pairing of degree D

V ⊗ V → R[−D].

We denote by ∆ ∈ V ⊗ V the corresponding dual degree D element (the "diagonal") as
above. Then we may define a graph complex (and dg Lie algebra) GCV akin to GCM

above, just replacing each occurrence of H∗(M) by V and with an additional piece
of the differential coming from dV . Concretely, this means that vertices in graphs of
GCV may be decorated by copies of V̄∗ . Furthermore, suppose a cyclic C∞ structure is
given on V , for the above bilinear form. We may see this structure as a Maurer-Cartan
element Z ∈ GCV , all of whose coefficient in front of non-tree graphs vanish. We
may furthermore use it to define a Graph complex ∗GraphsV analogously to ∗GraphsM
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above, replacing each occurrence of H(M) by V , and using the given Z in place of the
partition function.

Next, fix representatives of the cohomology of V by providing a map

(15) H(V) ↪→ V.

The pairing on V induces a pairing on H(V), independent of the representatives
chosen. We denote the corresponding diagonal by ∆H ∈ H(V)⊗H(V). Via the chosen
embedding we may as well consider ∆H as an element in V ⊗ V , in which case it
becomes cohomologous to ∆. We may hence choose η ∈ A⊗A (of the same symmetry
under exchange of the two A’s as ∆) such that

(16) ∆H = ∆− dVη.

We may then define a natural map of dg cooperadic comodules

(17) ∗GraH(V) → ∗GraV

by sending the decorations in H(V) to V using our map (15), and by sending an edge
between vertices i and j to the same edge, minus the element η , considered as decoration
at vertices i and j. In pictures

7→ −
η

Equation (16) implies that the map (17) is indeed compatible with the differentials.

Following the construction of GCV , this map (17) induces an L∞ -morphism of dg Lie
algebras

GCV → GCH(V),

and we can hence transfer the Maurer-Cartan element Z ∈ GCV inducing the cyclic
C∞ -structure on V to a Maurer-Cartan element ZH ∈ GCH . (The MC element ZH

is still supported on trees, and encodes the cyclic C∞ structure on H(V) induced by
homotopy transfer.) Furthermore, we obtain from (17) a map

∗GraphsH(V) → ∗GraphsV ,

that one can check to be a quasi-isomorphism by an easy spectral sequence argument.

In particular, let us take for V a Poincaré duality model for the simply connected
manifold M . Then if the dimension D of M is at least 4 the Maurer-Cartan element ZH

is gauge equivalent to the partition function ZM constructed above. This is because by
degree reasons there cannot be loop order ≥ 1 contributions to this partition function,
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and the tree part of ZM encodes the real homotopy type of M (in the form of a cyclic
C∞ structure on H(V) = H(M)), and hence must be gauge equivalent to ZH , whch
also encodes the real homotopy type by construction. Hence we can conclude that
∗GraphsV is quasi-isomorphic to ∗GraphsM and is hence a dgca model for FMM , with
the partition function concentrated on trees with one vertex. Furthermore, in this case
we have a direct map

(18) ∗GraphsV → F(V,−)

to the Lambrechts-Stanley algebra, by sending all graphs with internal vertices to zero,
and imposing the defining relations. Again, by a spectral sequence sequence argument
the map (18) can be seen to be a quasi-isomorphism. Furthermore, it is evidently
compatible with the right Pois∗D cooperadic comodule structures, in the case the Euler
class vanishes. This shows that F(V,−) is quasi-isomorphic to ∗GraphsM , i.e., to a
dgca model for FMn . Hence the conjecture 76 follows, in dimension D ≥ 4.

B Example computation: The partition function of the 2-
sphere

As an illustration, let us show that the partition function of the two-sphere is essentially
trivial. We cover S2 by two coordinate charts C via stereographic projection as usual.
The coordinate transformation relating the two charts is then

Φ : C \ {0} → C

z 7→ 1
z

We take a basis 1 ∈ H0(S2), ω ∈ H2(S2) of the cohomology, with
∫
ω = 1. Take

as a representative for ω any compactly supported top form of volume 1, which we
also denote by ω . In fact, to abuse the notation further, denote by ω ∈ Ω2(C) also the
coordinate expression in one of our charts. To achieve somewhat nicer formulas later,
let us also assume that this ω is supported away from the origin and that

(19) Φ∗ω = ω.

Let φ0 be the propagator on C, i.e.,

φ0(z,w) =
1

2π
=d log(z− w).
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Note that

(20) φ0(
1
z
,

1
w

) =
1

2π
=d log(

w− z
wz

) = φ0(z,w)− φ0(z, 0)− φ0(w, 0).

Then we will take as propagator of the sphere8

φ(z,w) = φ0(z,w)−
∫

u
φ0(z, u)ω(u)−

∫
u
φ0(w, u)ω(u).

Let us first verify that this two form extends from our coordinate chart to FM2(S2). To
this end, apply the coordinate transformation Φ and compute:

φ(
1
z
,

1
w

) = φ0(
1
z
,

1
w

)−
∫

u
φ0(

1
z
, u)ω(u)−

∫
u
φ0(

1
w
, u)ω(u).

Changing the integration variable from u to 1
u , using (19) and applying (20) three times

we obtain:

φ(
1
z
,

1
w

) = φ0(z,w)− φ0(z, 0)− φ0(w, 0)−
∫

u
(φ0(z, u)− φ0(z, 0)− φ0(u, 0))ω(u)

−
∫

u
(φ0(w, u)− φ0(w, 0)− φ0(w, 0)))ω(u)

= φ(z,w)− φ0(z, 0)− φ0(w, 0) + φ0(z, 0)
∫

u
ω(u) + φ0(w, 0)

∫
u
ω(u)

= φ(z,w).

Hence the propagator has the same form in the other coordinate chart, and in particular
it has no singularity at the coordinate origin, and hence readily extends to FM2(S2).

Furthermore one checks the following properties:

• Clearly φ(z,w) = φ(w, z).

• By Stokes’ Theorem

dφ(z,w) = ω(z) + ω(w)

as required.

• By degree reasons ∫
v
φ(z, v) = 0.

8In Proposition 8 the propagator has been denoted φ12 . Here we choose to drop the subscript
12 for brevity.
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Furthermore∫
v
φ(z, v)ω(v) =

∫
v
φ0(z, v)ω(v)−

∫
v

∫
u
φ0(z, u)ω(u)ω(v)−

∫
v

∫
u
φ0(v, u)ω(u)ω(v)

=

∫
v
φ0(z, v)ω(v)−

∫
u
φ0(z, u)ω(u)− 0

= 0.

Here the third term on the right-hand side vanishes by degree reasons. (One
integrates a 5-form over a 4-dimensional space.)

• We have∫
v
φ(z, v)φ(u,w) =

∫
v
φ0(z, v)φ0(v,w)−

∫
v

∫
u1

φ0(z, u1)ω(u1)φ0(v,w)−
∫

v

∫
u2

φ0(v,w)φ0(w, u2)ω(u2)

−
∫

v

∫
u1

φ0(v, u1)ω(u1)φ0(v,w)−
∫

v

∫
u2

φ0(v,w)φ0(v, u2)ω(u2)

+

∫
v

∫
u1

∫
u2

φ0(z, u1)ω(u1)φ0(w, u2)ω(u2) +

∫
v

∫
u1

∫
u2

φ0(v, u1)ω(u1)φ0(w, u2)ω(u2)

+

∫
v

∫
u1

∫
u2

φ0(z, u1)ω(u1)φ0(v, u2)ω(u2) +

∫
v

∫
u1

∫
u2

φ0(v, u1)ω(u1)φ0(v, u2)ω(u2).

The first term on the right-hand side vanishes by a standard vanishing Lemma
of Kontsevich. For the same reason vanish the fourth, fifth, and last terms. The
remaining terms terms vanish by degree reasons: There forms with v-dependence
are of degree ≤ 1. Hence we conclude that the whole expression is zero, and
graph weights computed using our propagator will be zero for graphs with
bivalent vertices.

• Identify the pullback of ∂FM2(S2) to our coordinate chart with C× S1 , and fix
the standard coordinate ϕ on the S1 -factor. Then restricting φ to the boundary
∂FM2(S2), (i.e., we take the limit w→ z in our coordinate chart) we obtain the
form

1
2π

dϕ+ η(z),

where

η = −2
∫

u
φ0(z, u)ω(u)

depends only on z but not on ϕ as desired.
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B.1 Vanishing of integrals

Proposition 77 Using the propagator φ and the top form ω as above, the partition
function becomes

(21) zS2 =
ω
.

In other words, the weights of all graphs with more than one vertex vanish.

Proof By the properties above, all graphs vanish if either some vertex has valence 2 or
some vertex has more than one decoration by ω or some vertex has valence one, and
there is one incident edge. The only connected graph with a vertex of valence one is the
one appearing in (21). All other graphs with potentially non-vanishing weight must
hence be of the following kind:

(1) There are ≥ 2 edges incident to any vertex, and at most one decoration ω .

(2) If there are exactly 2 edges incident on some vertex, it must come with a decoration
ω .

From an admissible graph Γ, we can build another linear combination of admissible
graphs Γ0 by formally replacing each edge by the linear combination

7→ − ω − ω

Clearly, we have that ∫
FMd(|VΓ|)

ωΓ =

∫
FMd(|VΓ0|)

ω0
Γ0

where now the weight form ω0
... is defined just like ω... above, but using the Euclidean

propagator φ0 instead of φ.

It hence suffices to show that for each admissible graph Γ with more than one vertex
we have ∫

FMd(|VΓ|)
ω0

Γ
?
= 0.

We may assume that the vertices are numbered such that the vertices decorated by ω
have indices 1, . . . , k , for some k ≥ 0. Then the above integral factorises as∫

FMd(|VΓ|)
ω0

Γ =

∫
FMd(k)

ω(x1)ω(x2) · · ·ω(xk)
∫
FMd(|VΓ|−k)

ω0
Γ︸ ︷︷ ︸

=:f (x1,...,xk)

.

Note that here f (x1, . . . , xk) is a function associated to a graph with decorations ω .
(There can be no form piece in f (. . . ), because the remainder of the integrand is
already a top form.) Hence by the Kontsevich Vanishing Lemma [K1, Lemma 6.4]
f (x1, . . . , xk) ≡ 0. Hence the desired vanishing result follows.
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C Pushforward of PA forms

Given an SA bundle p : M → N of rank l, the pushforward map of “integration along
the fiber” defined in [HLTV] is a map p∗ : Ω•

min(M) → Ω•−l
PA (N). This map is only

defined on minimal forms as the natural extension to the full algebra of PA forms is not
well defined due to the failure of the relevant semi-algebraic chain to be continuous (see
the discussion on [HLTV, Section 9]).9

For our purposes we need to consider pushforwards of the propagator φ12 ∈ ΩPA(FMM(2))
constructed in Proposition 8. Since we cannot construct the propagator in such a way
that φ12 ∈ Ωmin(FMM(2)), in this section we consider a different space of forms, Ωtriv ,
such that ΩPA ⊃ Ωtriv ⊃ Ωmin to which the pushforward map can be extended and still
satisfies the Stokes theorem.

Recall that for F a compact oriented semi-algebraic manifold and M a semi-algebraic
manifold, the constant continuous chain F̂ ∈ Cstr(M × F → M) is defined by
F̂(x) = [[{x} × F]].

Definition 78 Let M be a semi-algebraic manifold. The space Ωtriv(M) of trivial
forms is the subvector space of ΩPA(M) spanned by forms of the type

∫
µ

F̂
, where

µ ∈ Ωmin(M × F) and F̂ is a constant continuous chain.

Lemma 79 The subspace Ωtriv(M) ⊂ ΩPA(M) is a dg commutative subalgebra.

Proof Ωtriv(M) ⊂ ΩPA(M) is closed under the differential by the fiberwise Stokes’
Theorem [HLTV, Proposition 8.12] and since the fiberwise boundary of a trivial bundle
is again a trivial bundle. Furthermore, the subspace Ωtriv(M) is closed under addition
and the commutative product on ΩPA(M) because the union and product of trivial
bundles is again trivial, see the construction of these operations in [HLTV, section
5].

Let us consider a strongly continuous chain Φ ∈ Cstr
l (E

f→ B) along a semi-algebraic
map f : E → B. Let E×F be the trivial bundle over E with fiber F , a compact oriented
semi-algebraic k manifold.

9We note that in the original sketch of the construction of PA forms by Kontsevich and
Soibelman [KS], the pushforward was (claimed to be) defined for all PA forms, for a slightly
laxer definition of PA forms compared to [HLTV].
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Proposition 80 Under the previous conditions, there is a strongly continuous chain

Φ n F̂ ∈ Cstr
k+l(E × F

f◦pr2−→ B)

defined by (Φ n F̂)(b) := Φ(b)× F .

Proof If we consider the family {(Sα,Fα, gα)α∈I} that trivializes the continuous chain
Φ, it is easy to see that {(Sα,Fα×F, gα× idF)α∈I} trivializes Φn F̂ since by hypothesis
the following two squares commute.

S̄α × Fα × F E × F

S̄α × Fα E

S̄α B

gα×idF

pr2

gα

f

Corollary 81 Let p : Y → X be an oriented SA bundle and Φ ∈ Cstr
l (Y → X) the

associated strongly continuous chain. There is a well defined map p∗ : Ω•

triv(Y) →
Ω•−l

PA (X) extending the one on minimal forms, given by p∗(ω) =
∫
ω

ΦnF̂
.

Remark 82 Recall that the proof of the fiberwise Stokes theorem relies essentially
on the fact that for γ ∈ Ck(X) and Ψ ∈ Cstr

l (Y → X), we have ∂(γ n Ψ) =

∂γ n Ψ + (−1)deg γγ n ∂Ψ. With the same proof of [HLTV, Proposition 5.17] we see
that this formula is still valid if we take Ψ and γ to be Φ and F̂ as above and therefore
Stokes theorem is also valid for pushforwards of trivial forms.

We prove now the Poincaré lemma for the sheaf of complexes Ωtriv .

Proposition 83 If U is a contractible semi-algebraic set, then H(Ωtriv(U)) is one
dimensional and concentrated in degree zero.

Proof Let h : [0, 1] × U → U be a contraction of U , such that h(1, x) = x and
h(0, x) = x0 for some fixed x0 ∈ U . Suppose ω ∈ Ωtriv(U) is a closed form of degree
at least 1 . From the Stokes formula, we have

d
∫

I
h∗ω =

∫
I
h∗dω ± (ω − ωx0) = ±ω,

from where it follows that ω is exact.

Algebraic & Geometric Topology XX (20XX)



1072 Ricardo Campos and Thomas Willwacher

We can now conclude more generally that the cohomology of a semi-algebraic manifold
M agrees with the homology of Ωtriv(M).

Corollary 84 Let M be a compact semi-algebraic manifold, possibly with corners.
The inclusion Ωtriv(M)→ ΩPA(M) is a quasi-isomorphism of commutative algebras.

Proof Every compact semi-algebraic manifold admits a good cover: Indeed, every
compact semi-algebraic set has a finite semi-algebraic triangulation [BCR, Theorem
9.2.1], and can hence be indentified with a finite simplicial complex, see also the
discussion in [HLTV, Section 2]. Given a semi-algebraic triangulation, one can
construct a semi-algebraic good cover {Uα} by taking the open stars of the vertices of
a refinement of the triangulation10.

We also choose a subordinate semi-algebraic partition of unity {ρα}. For convenience
we shall also pick cutoff functions σα with support in Uα , such that σα(x) = 1 on the
support of ρα . (We may slightly enlarge the Uα to this purpose or alter the partition of
unity, see also the proof of [HLTV, Proposition 6.7].)

This allows us to run the standard Čech-de Rham argument with respect to such a good
cover to conclude by the Poincaré lemma that the homology of Ωtriv(M) coincides with
the (Čech) cohomology of M , see for instance [BT, Example 14.16].

To be concrete, we consider the Čech-de Rham complex

C :=
(∏

Ωtriv(Uα0...αp)[−p], d + δ
)

with Uα0...αp = Uα0 ∩ · · · ∩ Uαp , d induced from the differential on the factors
Ωtriv(Uα0...αp), and δ the Čech part of the differential, defined on a cochain ω = (ωα0...αp)
with ωα0...αp ∈ Uα0...αp by

(δω)α0...αp =

p∑
i=0

(−1)iωα0...α̂i...αp .

The Čech-de Rham complex C is a first quadrant double complex, and one compares
the two convergent spectral sequences associated to this complex.

The first (“column-wise”) spectral sequence has the complex (C, d) as its E0 -page.
By the Poincaré Lemma (Proposition 83) the E1 -page is then identified with the Čech
complex associated to the constant sheaf R. The E2 -page is hence the cohomology
H(M), and the spectral sequence abuts at this point by degree reasons.

10The star of a vertex v is the union of the interiors of faces that contain v .
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The other (“row-wise”) spectral sequence has first page (C, δ). We claim that the
cohomology of this page is identified with Ωtriv(M). This can in fact be shown identically
to [BT, Proposition 8.5]. Concretely, one may naturally extend (C, δ) to a complex

C̃ := (Ωtriv(M) δ−→ C),

with the map
δ : Ωtriv(M)→

∏
α

Ωtriv(Uα) ⊂ C

given by the natural restriction. One then checks that (C̃, δ) is acyclic by providing
an explicit homotopy. Concretely, for a p-cocycle ω = (ωα0...αp) ∈ C̃ one defines the
p− 1-cochain τ such that

τα0...αp−1 =
∑
α

ραωαα0...αp−1 .

Note that here we extend ραωαα0...αp−1 ∈ Ωtriv(Uαα0...αp−1) by zero to an element
(abusively also denoted by) ραωαα0...αp−1 of Ωtriv(Uα0...αp−1). To be precise, this
extension by zero may be defined as follows. Suppose

ωαα0...αp−1 =

∫
Y
β

is given by a fiber integral associated to the trivial bundle Y×Uαα0...αp−1 → Uαα0...αp−1 ,
with β ∈ Ωmin(Y × Uαα0...αp−1). Then we extend ραβ (by zero) to a minimal form on
Uα0...αp−1 , which we (abusively) also denote by ραβ . For example, if β = (f0, . . . , fk)
in the notation of [HLTV, section 5.2] we may take ραβ := (ραf0, σαf1, . . . , σαfk), with
all appearing semi-algebraic functions extended by zero, using our cutoff functions σα .
Then one sets

ραωαα0...αp−1 =

∫
Y
ραβ,

with the fiber integral now being the one associated to the trivial semi-algebraic bundle
Y × Uα0...αp−1 → Uα0...αp−1 .

Having defined the cochain τ above one then checks as in the proof [BT, Proposition
8.5] that δτ = ω , using that δω = 0. Overall, we have then shown that the second
(E1 -)page of the “row-wise” spectral sequence is identified with (Ωtriv(M), d).

We also note that this step of the proof is closely analogous to that of [HLTV, Lemma
6.7], but slightly simpler since trivial bundles can be extended trivially.

The next page of the “row-wise” spectral sequence is then H(Ωtriv(M), d), and the
spectral sequence converges at this point by degree reasons. Hence H(Ωtriv(M), d) ∼=
H•(M). It is shown in [HLTV] that H(ΩPA(M), d) ∼= H(M). To see that the inclusion
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Ωtriv(M) ⊂ ΩPA(M) induces the isomorphism on cohomology one may consider the
PA-Čech-de Rham complex CPA , defined by replacing Ωtriv by ΩPA in the definition
of C above. Using the PA-Poincaré Lemma ([HLTV, Lemma 6.3]) it is then clear
that the natural inclusion C → CPA induces an isomorphism on the E2 -page of the
“column-wise” spectral sequences on both sides, and hence is a quasi-isomorphism.

We note that in fact in the definition of Ωtriv we do not need globally trivial bundles,
local triviality suffices.

Proposition 85 Let M be a compact semi-algebraic manifold and let p : E → M
be an oriented SA bundle (see [HLTV, Definition 8.1]). Let ω ∈ Ωtriv(E). Then the
corresponding fiber integral

∫
E→M ω ∈ ΩPA(M) is an element of Ωtriv(M) ⊂ ΩPA(M).

Proof We may assume that ω ∈ Ωmin(M) by replacing E with a product of E with
some trivial bundle if needed. We pick a finite trivializing cover {Ui}, a semi-algebraic
partition of unity ρi , and cutoff functions σi as in the proof of Corollary 84.

We then rewrite ∫
E→M

ω =
∑

i

ρi

∫
E→M

ω =
∑

i

∫
E→M

ρiω.

For the last equality we abused notation and defined ρi := p∗ρi , and we implicitly used
[HLTV, Proposition 8.9]. Let the local traivialization of the bundle on Ui be denoted
by hi : Ui × F

∼=−→ p−1(Ui). As in the previous proof we extend the minimal form
ρih∗i ω ∈ Ωmin(Ui × F) to a minimal form ρih∗i ω ∈ Ωmin(M × F), which we abusively
denote by the same symbols. We then claim that

(22)
∫

E→M
ρiω =

∫
M×F→M

ρih∗i ω.

Since the right-hand side is a fiber integral over a trivial bundle the Proposition then
follows.

To check (22) we need to consider a trivializing stratification {Sα} for the strongly
continuous chain Φ corresponding to the bundle E → M . The stratification can be
taken such that the closure of each stratum is contained in one of the Uj as in the proof
of [HLTV, Proposition 8.2]. We can furthermore refine it so that each S̄α is either
contained in Ui or disjoint from the support of ρi . (For example, refine the stratification
by intersecting the strata with {x | σi(x) ≥ 0.9} and the closure of its complement.)

Now consider some stratum Sα , and the restriction of (22) to its closure. If S̄α is
disjoint from the support of ρi then trivially both sides of (22) vanish on it. Otherwise
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we may assume that S̄α ⊂ Ui . But the bundle isomorphism hi transforms one side of
(22) into the other, cf. [HLTV, Proposition 8.10].
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[CM] Alberto S. Cattaneo, Pavel Mnev. Remarks on Chern-Simons invariants. Comm. Math.
Phys. 293 (2010), no. 3, 803–836.

[CMR] Alberto S. Cattaneo, Pavel Mnev, Nicolai Reshetikhin. Perturbative quantum gauge
theories on manifolds with boundary. Comm. Math. Phys. 357 (2018), no. 2, 631{730.

Algebraic & Geometric Topology XX (20XX)



1076 Ricardo Campos and Thomas Willwacher

[CR] A. S. Cattaneo and C. A. Rossi. Higher-dimensional BF theories in the Batalin{Vilkovisky
formalism: the BV action and generalized Wilson loops. Commun. Math. Phys. 221,
591{657 (2001).

[CT] F. Cohen and L. Taylor. Computations of Gelfand-Fuks cohomology, the cohomology
of function spaces, and the cohomology of configuration spaces. Notes in Math., 657,
Springer-Verlag, 1978, 106-143.

[DR] V. A. Dolgushev and C. L. Rogers. A version of the Goldman-Millson theorem for
filtered L∞ -algebras. J. Algebra, 430 (2015), 260–302.

[DW] V. A. Dolgushev and T. Willwacher. Operadic twisting–with an application to Deligne’s
conjecture. J. Pure Appl. Algebra 219 (2015), no. 5, 1349–1428.

[FT] Yves Félix and Jean-Claude Thomas. Configuration spaces and Massey products. Int.
Math. Res. Not., 2004, no. 33, 1685{1702.

[FHT] Yves Félix, Stephen Halperin and Jean-Claude Thomas. Rational homotopy theory.
Graduate Texts in Mathematics, vol. 205, Springer-Verlag, New York, 2001.

[FW] Benoit Fresse and Thomas Willwacher. The intrinsic formality of En -operads. J. Eur.
Math. Soc. (JEMS) 22 (2020), 2047–2133.

[GJ] Ezra Getzler and J. D. S. Jones. Operads, homotopy algebra and iterated integrals for
double loop spaces, 1994. arXiv:hep-th/9403055.

[GW] Thomas Goodwillie, Michael Weiss. Embeddings from the point of view of immersion
theory. II. Geom. Topol. 3 (1999), 103–118.

[HL] Alastair Hamilton and Andrey Lazarev. Symplectic C∞ -algebras. Moscow Mathematical
Journal, Vol. 8, No. 3, 2008.

[HLTV] Robert Hardt, Pascal Lambrechts, Victor Turchin, and Ismar Volić. Real homotopy
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