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1. Introduction

Given a manifold M , the space of multidifferential operators of M , Dpoly(M) is a 
smooth version of the Hochschild complex of the functions on M . Both Dpoly(M) and 
the space Tpoly(M) of multivector fields of M are (shifted) differential graded Lie al-
gebras. These two objects are related by the Hochschild–Kostant–Rosenberg Theorem 
that provides us with a quasi-isomorphism Tpoly(M) → Dpoly(M). However, this map 
not compatible with the Lie structure.

Searching for a canonical formal quantization of Poisson manifolds, in [15] M. Kont-
sevich establishes the existence of a homotopy Lie quasi-isomorphism Tpoly(M) →
Dpoly(M) extending the Hochschild–Kostant–Rosenberg map. This map, nowadays 
called Kontsevich’s Formality morphism, has a very explicit description involving in-
tegrals over configuration spaces of points when M = R

d.
Taking the wedge product into consideration Tpoly is a Gerstenhaber algebra, and even 

if Dpoly is not a Gerstenhaber algebra, its homology is in a standard way. It is natural 
to ask whether one can put a homotopy Gerstenhaber algebra structure on Dpoly that 
induces the usual Gerstenhaber algebra in the cohomology (Deligne’s conjecture) and 
find a Formality morphism satisfying the Gerstenhaber structure up to homotopy. This 
question has been answered affirmatively by D. Tamarkin [21,13].

In [24], T. Willwacher uses a different model for the Gerstenhaber operad, the Braces 
operad, that acts naturally on Dpoly given the nature of the formulas. Willwacher proves 
in [24] a homotopy Braces version of the Formality morphism.

In this paper we intend to take the final step on this chain of results by showing a 
BV version of the Formality Theorem(s). As described in Section 2, we can endow both 
Tpoly(Rd) and the cohomology of Dpoly(Rd) with a degree −1 operator, extending the 
previous Gerstenhaber structures to BV algebra structures.

The cyclic structure of Dpoly(Rd) leads to the construction of CBr, the Cyclic Braces 
operad which is a refinement of the Braces operad. We show that the operad CBr is 
quasi-isomorphic to BV, the operad governing BV algebras, and the action of CBr on 
Dpoly(Rd) descends to the canonical BV algebra structure on H(Dpoly(Rd)). In section 5
we show that the BV action on Tpoly(Rd) can be lifted to an action of CBr∞, a resolution 
of CBr and we show the first main Theorem.

Theorem 1. There exists a CBr∞ quasi-isomorphism Tpoly(Rd) → Dpoly(Rd).

The components of this morphism are defined through integrals similarly to Kontse-
vich’s case.

The formality of the Cyclic Braces operad implies that in the previous Theorem CBr∞
can be replaced any other cofibrant resolution of BV, namely its minimal model or the 
Koszul resolution of BV.

The approach to the proof of this result uses a framework similar to [24]. Many 
intermediate results needed can actually be seen as framed generalizations of [24] and 



R. Campos / Advances in Mathematics 306 (2017) 807–851 809
some of the proofs from sections 5 and 6 can be partially adapted. When that is the case 
we point out the explicit result that we are adapting/generalizing.

If we require orientability of the manifold M , the spaces Tpoly(M) and H(Dpoly(M))
still have natural BV structures. Using formal geometry techniques, together with the 
formalism of twisting of bimodules, in Section 6 we show a global version Theorem 1.

Theorem 2. Let M be an oriented manifold. There exists a CBr∞ quasi-isomorphism 
Tpoly(M) → Dpoly(M) extending Kontsevich’s Formality morphism.

We remark that the fact that CBr is quasi-isomorphic to BV is, although not usually 
stated in this way, also known as the “cyclic Deligne conjecture” [14] and section 5.3
presents an alternative proof of this known result.

Some applications of theorem to string topology are also expected. In the study of 
the homology of free loop space LM = Map(S1, M) string topologists are interested on 
the BV structure on the Hochschild cohomology of the differential forms Ω(M). Since 
Ω(M) can be interpreted as C∞(ΠTM), where ΠTM is the odd tangent bundle, this 
result might be used to understand this Hochschild complex by reducing to the study of 
the corresponding multivector fields [6,2].
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for related discussions and the anonymous referee for pointing out multiple mistakes in 
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1.2. Notation and conventions

In this paper we work over the field R of real numbers, even though the “algebraic” 
results hold in any field of characteristic zero.

All algebraic objects are differential graded, or dg for short, unless otherwise stated 
so.

If P is a 2-colored operad, we denote the space of operations with m inputs in color 1, 
n inputs in color 2 and output in color i by Pi(m, n) and we might denote P by 

(
P1,P2).
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2. Preliminaries

2.1. BV algebras

Let us recall the definition of a BV algebra and also fix degree conventions.

Definition 1. A Batalin–Vilkovisky algebra or BV algebra is a quadruplet (A, ·, [ , ], Δ), 
such that:

• (A, ·) is a (differential graded) commutative associative algebra,
• (A, [ , ]) is a 1-shifted Lie algebra (i.e., the bracket has degree −1),
• (A, ·, [ , ]) is a Gerstenhaber algebra, i.e., for all a ∈ A of degree |a|, the operator 

[a, −] is a derivation of degree |a| − 1.
• Δ: A → A is a unary linear operator of degree −1 such that Δ is a derivation of the 

bracket,
• The bracket is the failure of Δ being a derivation for the product, i.e.,

[−,−] = Δ ◦ (− · −) − (Δ(−) · −) − (− · Δ(−)).

We denote by BV, the operad governing BV algebras.

2.2. Hochschild cochain complex

In this section we recall the basics of Hochschild cohomology. For a more detailed 
introduction, along with the missing proofs, see [18].

Let A be a non-graded associative algebra.
For f : A⊗m → A and g : A⊗n → A, we define f ◦i g : A⊗m+n−1 → A, for i = 1, . . . , m, 

to be the insertion of g at the i-th slot of f ,

f ◦i g(a1, . . . , am+n−1) = f(a1, . . . , ai−1, g(ai, . . . , ai+n−1), . . . , am+n−1).

Lemma 3. Let f : A⊗m → A and g : A⊗n → A. The operation f ◦g : A⊗m+n−1 → A given 
by

f ◦ g =
m∑
i=1

(−1)(i−1)(n−1)f ◦i g,

defines a pre-Lie product (of degree −1).

This defines a −1 shifted graded Lie algebra structure on 
∏

n≥0 Hom(A⊗n, A). Let 
μ : A⊗2 → A be the multiplication of the algebra.
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Since A is an associative algebra, we have

[μ, μ](a1, a2, a3) = 2μ(a1, μ(a2, a3)) − 2μ(μ(a1, a2), a3) = 0,

i.e., μ is a Maurer–Cartan element of the Lie algebra 
∏

n≥0 Hom(A⊗n, A).

Definition 2. The Hochschild cochain complex of A, (C•(A), d) is defined by

Cn(A) = Hom(A⊗n, A); d = [μ, ·].

Explicitly, for f ∈ Cn(A) and ai ∈ A, the differential is given by df(a1, . . . , an+1) =

= a1f(a2, . . . , an+1) +
n−1∑
i=1

(−1)i−1f(a1, . . . , aiai+1, . . . , an) + (−1)nf(a1, . . . , an)an+1.

Definition 3. The Hochschild cohomology of an associative algebra A is the cohomology 
of the complex C•(A) and is denoted by HH•(A).

Definition 4. Let f ∈ Cm(A) and g ∈ Cn(A). The cup product on Hochshild cochains 
f ∪ g ∈ Cm+n(A) is defined by

f ∪ g(a1 . . . , am+n) = f(a1, . . . , am) · g(am+1, . . . , an+m).

The cup product is trivially associative but, in general, non-commutative and it does 
not satisfy the desired compatibility with the Lie bracket. However, as M. Gerstenhaber 
showed (cf. [7]), this is rectified at the cohomological level.

Proposition 4. The cup product and the Lie bracket above defined, induce a Gerstenhaber 
algebra structure on HH•(A).

2.3. Multidifferential operators

Let M be an oriented manifold. One of the central objects of this paper is the space 
of multidifferential operators of M , which are a smooth analog of the Hochschild cochain 
complex.

Definition 5. Let A = C∞(M), the algebra of smooth functions of M . The space of 
multidifferential operators Dpoly

•(M) is a subcomplex of C•(A), given by

Dpoly
n(M) =

{
D : C∞(M)⊗n → C∞(M)

∣∣∣D locally=
∑

f
∂

∂xI1

⊗ · · · ⊗ ∂

∂xIn

}
,
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where the Ij are finite sequences of indices between 1 and dim(M) and ∂
∂xIj

is the 

multi-index notation representing the composition of partial derivatives.
The space Dpoly(M) of normalized cochains, or just Dpoly if there is no ambiguity, 

the subspace of Dpoly(M) consisting of multidifferential operators vanishing on constant 
functions.

We will now describe an action of the group Cn+1 = 〈σn|σn+1
n = e〉 on Dn

poly.
Since every multidifferential operator is uniquely determined by evaluation on the 

compactly supported functions C∞
c (M), then, Dn

poly, for n ≥ 1 can be seen as a 
subspace of Hom(C∞

c (M)⊗n, C∞
c (M)). One can equally see Dpoly as a subspace of 

Hom(C∞
c (M)⊗n+1, R) in the following way:

Let us denote by vol the given volume form M . We identify D ∈ Dn
poly ⊂

Hom(C∞
c (M)⊗n, C∞

c (M)), with

⎡
⎣f1 ⊗ · · · ⊗ fn+1 �→

∫
M

f1D(f2, . . . , fn+1) vol

⎤
⎦ ∈ Hom(C∞

c (M)⊗n+1,R).

The reverse identification can be obtained by integrating by parts in order to remove 
differential operators from f1.

From now on we drop the M as the domain of integration and the vol to make the 
notation lighter.

There is an action of Cn+1 on Dn
poly ⊂ Hom(C∞

c (M)⊗n+1, R) is given by the cyclic 
permutation of the inputs.

∫
f1D(f2, . . . , fn+1) =

∫
f2D

σ(f3 . . . , fn+1, f1).

Definition 6. The Connes’ B operator on Dpoly, is the map B : D•
poly → D•−1

poly defined 
for all D ∈ Dn

poly by

B(D)(f1, . . . , fn−1) =
n−1∑
k=0

(−1)kDσk

(1, f1, . . . , fn−1), ∀fi ∈ C∞(M).

Proposition 5. The B operator induces a well defined map in the cohomology of Dpoly. 
Together with the Lie bracket and cup product defined in the previous section induces a 
BV -algebra structure on H•(Dpoly).

The proposition can be proved “by hand” (cf. [18] where this is done in the non-
differential setting), but it will also follow from the result that the operad CBr, whose 
homology is the BV operad, acts on Dpoly.
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2.4. Multivector fields

Definition 7. Let M be an oriented manifold. The graded vector space Tpoly(M) or just 
Tpoly of multivector fields on M is

T •
poly = Γ(M,

∧•
TM ),

where TM is the tangent bundle of M .

Tpoly has a natural Gerstenhaber algebra structure by taking as product the wedge 
product of multivector fields and as bracket, the Schouten–Nijenhuis bracket, i.e., the 
unique R-linear bracket satisfying

[X,Y ∧ Z] = [X,Y ] ∧ Z + (−1)(|X|−1)(|Y |−1)Y ∧ [X,Z], ∀X,Y, Z ∈ T •
poly

that restricts to the usual Lie bracket of vector fields.
We can define a map f : T •

poly(M) → Ωn−•
dR (M) that sends a multivector field to its 

contraction with the volume form of M .
This map is easily checked to be an isomorphism of vector spaces. We define the 

divergence operator div to be the pullback of the de Rham differential via f , i.e. div =
f−1 ◦ ddR ◦ f .

A series of straightforward calculations proves the following:

Proposition 6. The space T •
poly(M), with the wedge product, the Schouten–Nijenhuis 

bracket and the divergence operator forms a BV -algebra.

3. Cyclic Swiss Cheese type operads

3.1. Cyclic operads

The standard notion of an operad is used in order to describe operations on a certain 
vector space with a given number of inputs and one output. A symmetric operad is used 
when one wants to take into consideration the symmetries on the inputs. The notion of a 
cyclic operad [10,19], introduced by Getzler and Kapranov, arises when one considers the 
output as an additional input that can be cyclically permuted along with the remaining 
inputs. This can arise naturally in many situations, for example, when one is given a 
finite dimensional vector space V equipped with a non-degenerate symmetric bilinear 
form, the space Hom(V ⊗n, V ) can be identified with Hom(V ⊗n+1, R).

Definition 8. A non-symmetric cyclic operad on a symmetric monoidal category 
(C, ⊗, I, s) is the data of a non-symmetric operad P and a right action of Cn+1 =
〈σn|σn+1

n = e〉, the symmetric group of order n + 1 on P(n) satisfying the following 
axioms:
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a) The cyclic action on the unit in P(1) is trivial.
b) For every m, n ≥ 1, the diagram

commutes.
c) For every m, n ≥ 1 and 2 ≤ i ≤ m, the following diagram commutes:

.

3.2. Operad of Cyclic Swiss Cheese type

Definition 9. Let P be a 2-colored operad that is non-symmetric in color 2. We say that 
P is of Swiss Cheese type if P1(m, n) = 0 if n > 0.

Furthermore, P is said to be of Cyclic Swiss Cheese type if the following additional 
conditions hold:

• The cyclic group of order n + 1, Cn+1 acts on the right on P2(m, n) satisfying the 
same axioms as the axioms of a non-symmetric cyclic operad,

• The cyclic action is P1 equivariant,
• There is a distinguished element 1P ∈ P2(0, 0).

For simplicity of notation we denote P1(m, 0) by P1(m). Using the distinguished 
element 1P we define the “forgetful” map Forget∞ : P2(m, n) → P2(m, n − 1) by 
Forget∞(p) = pσn(idP1 , . . . , idP1 ; idP2 , . . . , idP2 , 1P).

A morphism P → Q of Cyclic Swiss Cheese type operads is a colored operad morphism 
that is equivariant with respect to the cyclic action and sends 1P to 1Q.

3.3. Examples

3.3.1. Multidifferential operators as an operad
Let M be an oriented manifold. The operad of multidifferential operators D̃poly(M), 

or just D̃poly, is a differential graded operad concentrated in degree zero with zero dif-
ferential given by
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D̃n
poly := D̃poly(n) =

{
D : C∞(M)⊗n → C∞(M)

∣∣∣D loc.=
∑

f
∂

∂xI1

⊗ · · · ⊗ ∂

∂xIn

}
, 1

where the multidifferential operators are required to vanish on constant functions.
The operadic structure is the one induced by the endomorphisms operad of C∞(M), 

i.e., given by composition of operators. As any other operad, D̃poly can be seen as a 
2-colored operad simply by declaring that there are no operations with inputs or outputs 
in color 1. To endow D̃poly with a Cyclic Swiss Cheese Operad type structure we use the 
cyclic action defined in Section 2.3 and the distinguished element 1 ∈ D̃0

poly = C∞(M)
is defined to be the constant function 1.

For every D ∈ D̃n
poly ⊂ Hom(C∞

c (Rd)⊗n, C∞
c (Rd)) we have

Forget∞(D) =
∫

D(·) vol ∈ Hom(C∞
c (Rd)⊗n,R).

3.3.2. Configurations of framed points
In this section we consider a framed analog of the original Swiss Cheese operad, 

or rather the homotopy equivalent compactified version, both originally introduced by 
Voronov [22]. The Fulton–MacPherson topological operad FM2, introduced by Getzler 
and Jones [9] is constructed in such a way that the n-ary space FM2(n) is a compacti-
fication of the configuration space of points labeled 1, . . . , n in R2, modulo scaling and 
translation. The spaces FM2(n) are manifolds with corners with each boundary stratum 
representing a set of points that got infinitely close.

The first few terms are

• FM2(0) = ∅,
• FM2(1) = {∗},
• FM2(2) = S1.

The operadic composition ◦i is given by inserting a configuration at the boundary stra-
tum at the point labeled by i. For details on this construction see also [3, Part IV] or 
[15].

Definition 10. Let P be a topological operad such that there is an action of topological 
group G on every space P(n) and the operadic compositions are G-equivariant. The 
semi-direct product G � P is a topological operad with n-spaces

(G� P)(n) = Gn × P(n),

and composition given by

1 This is almost the object introduced in Section 2.3. The tilde is a reminder that there is no grading or 
differential.
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Fig. 1. Composition of an element of FFM2 with an element in FH.

(g, p) ◦i (g′, p′) = (g1, . . . , gi−1, gig
′
1, . . . , gig

′
m, gi+1, . . . , gn, p ◦i (gi · p′)) ,

where g = (g1, . . . , gn) and g′ = (g′1, . . . , g′m).

The topological group S1 acts on FM2 by rotations. We define the Framed Fulton–
MacPherson topological operad FFM2 to be the semi-direct product S1 � FM2. Equiv-
alently, FFM2(n) is the compactification of the configuration space of points modulo 
scaling and translation such that at every point we assign a frame, i.e., an element 
of S1. When the operadic composition is performed, the configuration inserted rotates 
according to the frame on the point of insertion.

We denote by Hm,n, the space of configurations of m points in the upper half plane 
labeled by 1, . . . , m and n points at the boundary, labeled by 1, . . . , n, modulo scaling 
and horizontal translations, with a similar compactification. Similarly, FHm,n shall be 
the compactification of the space of configurations of m framed points in the upper half 
plane and n non-framed points at the boundary. These spaces are considered unital in 
the sense that FH0,0 is topologically a point, instead of the empty space.

Together they form a Swiss Cheese type topological operad P, with P1 = FFM2 and 
P2 = FH with composition of color 2 being insertion of the corespondent configuration 
in the boundary stratum and composition of color 1 on the vertex labeled by i being 
the insertion at the boundary stratum at the point i after applying the corresponding 
rotation given by the frame of i. We shall consider that a framing pointing upwards 
represents the identity of S1, see Fig. 1.

In fact they can be endowed with a Cyclic Swiss Cheese type operad structure.
The open upper half plane is isomorphic to the Poicaré disk via a conformal (angle 

preserving) map. This isomorphism sends the boundary of the plane to the boundary of 
the disk except one point, that we label by ∞. We define the cyclic action of Cn+1 in 
FFM2(m, n) by cyclic permutation of the point labeled by infinity with the other points 
at the boundary.
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The element 1 is defined to be the unique point in FH0,0. Insertion of this element 
represents forgetting a certain point at the boundary.

The forgetful map is defined by forgetting the point at infinity and labeling the first 
point as the new ∞ point and the previous n becomes the new n− 1.

3.3.3. Two kinds of graphs
A directed graph Γ is the data of a finite set of vertices, V (Γ), a set of edges E(Γ) and 

two maps from E(Γ) to V (Γ) (a source and target map). Notice that tadpoles (edges 
connecting a vertex to itself) and multiple edges are allowed. However, in all types of 
graphs we will use in this paper, graphs with multiple edges will vanish for symmetry 
reasons.

Let BVKGra′(m, n) be the graded vector space spanned by directed graphs with m
vertices of type I labeled with the numbers {1, . . . , m}, n labeled with the numbers 
{1, . . . , n} of type II and edges labeled with the numbers {1, . . . , #edges}, such that 
there are no edges starting on a vertex of type II. The degree of a graph is −#edges, 
i.e., every edge has degree −1. For every non-negative integer d, there is an action of Sd
on BVKGra′−d(n) by permutation of the labels of the edges.

We define the space BVKGra of BV Kontsevich Graphs by

BVKGra(m,n) :=
⊕
d

BVKGra′−d(m,n) ⊗Sd
sgnd,

where sgnd is the sign representation.
We define the space of BV Graphs, BVGra(n) := BVKGra(n, 0). There is a natural 

Sn action by permutation of the labels and we define a symmetric operad structure in 
BVGra by setting the composition Γ1 ◦i Γ2 to be the insertion of Γ2 in the i-th vertex of 
Γ1 and sum over all possible ways of connecting the edges incident to i to Γ2.

We can form a Swiss Cheese type operad by setting BVGra to be the operations in 
color 1 and BVKGra to be the operations in color 2, considering the symmetric action per-
muting the labels of type I vertices and ignoring the symmetric action of type II vertices. 
The partial compositions are given as in BVGra, i.e., by insertion on the corresponding 
vertex and connecting in all possible ways.

The type II vertices in BVKGra will be later seen as boundary vertices when we relate 
BVKGra with FH, and since we wish to distinguish between BVGra(·) and BVKGra(·, 0), 
we draw the latter with a line passing by the type II vertices.
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The space BVKGra(m, n) forms a graded commutative algebra with product of two 
graphs defined by superposing the vertices and taking the union of the edges. This algebra 
is generated by one edge graphs

Γi
j := , with 1 ≤ i ≤ m and 1 ≤ j ≤ n and

Γi,j := , with 1 ≤ i, j ≤ m. For simplicity, the dependance of m and 
n is dropped from the notation.

We define the cyclic action of Cn+1 on one-edge graphs of BVKGra(m, n) by 
σ(Γi

j) = Γi
j−1 if j �= 1 and σ(Γi

1) = − 
∑n

k=1 Γi
k −

∑m
k=1 Γi,k. The action of σ on 

Γi,j ∈ BVKGra(m, n) is defined by σ(Γi,j) = Γi,j , for 1 ≤ i, j ≤ m.
Since σ2(Γi

1) = Γi
m, we have that σn+1 acts as the identity in every one-edge graph, 

therefore the action of Cn+1 is well defined.
We extend this action to BVKGra(m, n) by declaring that the action distributes over 

a product of graphs (i.e., making the cyclic action a morphism of unital algebras).
The element 1 ∈ BVKGra(0, 0) is the empty graph, the unique graph with no vertices. 

The insertion Γ ◦j 1 is zero if there is any edge incident to the vertex labeled by j or, if 
there are no such edges, it forgets the vertex labeled by j.

4. The Cyclic Braces operad

In [16], Kontsevich and Soibelman introduced an operad that they call minimal operad 
that acts naturally on the Hochschild cochain complex of A∞ algebras. They show that 
this operad is quasi-isomorphic to Ger, the operad governing Gerstenhaber algebras (see 
also [20]). In this paper we call this operad Br, standing for Braces. In this section we 
introduce the Cyclic Braces operad, which is a refinement of the Braces operad that 
is meant to take into account the a unit and a cyclic action. A similar operad was 
constructed by Ward in [23].
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4.1. The Cyclic Planar Trees operad

Let CPT′(n) be the graded vector space spanned by rooted planar trees with vertices 
labeled with the numbers in {1, . . . , n} with the additional feature that every vertex can 
have additional edges connecting to a symbol 1 (formally this is an augmentation of the 
vertex set) and every vertex has a marked edge, that can be one of the additional edges.2
The non-root edges (including the ones connecting to 1) are labeled by the numbers 
{1, . . . , #edges}. The degree of a rooted planar tree is −#edges. For every non-negative 
integer d, there is an action of Sd on CPT′

−d(n) by permuting the labels of the edges.
We define the operad CPT of Cyclic Planar Trees by

CPT(n) :=
⊕
d

CPT′′
−d(n) ⊗Sd

sgnd,

where sgnd is the sign representation and CPT′′ is the quotient of CPT′ by trees in which 
there is a vertex is connected to an element 1 whose mark is not pointing towards 1.

The operadic composition T1 ◦j T2 is given by inserting the tree T2 in the vertex 
labeled j of the tree T1, orienting the root of T2 with the marking at the vertex j of T1, 
forgetting both the root and the mark at the vertex j and reconnecting all incident edges 
in all planar possible ways.

Since it unambiguous, for simplicity of the drawing we draw only a mark between two 
edges when some vertex is connected to 1.

Example 1. Examples of insertion:

The operad is generated by T i
n, i = 1, . . . , n and T i,i+1

n , i = 1, . . . , n, see Fig. 2.

2 In fact, we want at most one edge connecting to 1 per vertex and for vertices having an edge connecting 
to 1 we want to force the marked edge to be that one, but imposing this condition directly would not be 
stable by the composition that we define below. This is resolved by considering a quotient of CPT′, rather 
than a subspace.
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Fig. 2. T 1
n, T i

n and T i,i+1
n , from left to right.

Remark 7. Notice that since the edges appear unlabeled, the trees above are only well 
defined up to sign. To make the sign well defined one has to choose some convention of 
labeling the edges when those appear unlabeled. For example one might choose to label 
the root edge by 1 and travel around the graph to the left until getting back to the root 
labeling all edges consecutively. When performing an operadic compositions the labeling 
will have to be taken back to the conventioned labeling via a permutation which might 
cause the appearance of negative signs.

4.2. Algebras over CPT

The operad CPT acts naturally on spaces with cyclic structure.

Proposition 8. Let P be an operad of Cyclic Swiss Cheese type. Its total space, ∏
n P2(·, n)[−n] forms a CPT − P1-bimodule.

Proof. To describe the left action of CPT we use the following multi-insertion notation:
For p1, p2, . . . , pn ∈ P2, p1 in arity N , we say that I is a planar insertion of p2, . . . , pn

in p1 if I is an N -tuple containing each p2, . . . , pn exactly once, in that order and the 
other entries are filled with idP2 . For i = 1, . . . , n, we define i(I) as the position of pi in I. 
By p1(I), we mean the operadic composition given by I (ignoring insertions in color 1).

The action of T 1
n ∈ CPT is given by braces operations, i.e., T 1

n(p1, p2, . . . , pn) =
p1{p2, . . . , pn}. The action of T i

n ∈ CPT, for i = 1, . . . , n is given by a composition of 
the braces operation and a permutation of CN+1 “turning the mark in the direction 
of the root”. Explicitly, if σ is the generator of the cyclic group, T i

n(p1, p2, . . . , pn) =∑
I

pσ
−i(I)

1 (I), where the sum runs over all possible planar insertions I of p2, . . . , pn

in p1.

The action of T i,i+1
n is given by T i,i+1

n (p1, p2, . . . , pn) =
∑
I

(i+1)(I)∑
k=i(I)

Forget∞(pσ
−k

1 )(I), 

where the first sum runs over all possible planar insertions I of p2, . . . , pn in p1. This 
corresponds to the insertion of the element 1P in the marked space and the permutation 
sending the mark back to the direction of the root. �
Lemma 9. A morphism of Cyclic Swiss Cheese type operads induces a morphism of 
bimodules.
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Proof. Since a morphism of Cyclic Swiss Cheese type operads is in particular a morphism 
of colored operads, the induced map on the total space is a morphism of right bimodules. 
Since the definition of the action of CPT uses only the cyclic action and Forget∞ and by 
hypothesis a morphism of Cyclic Swiss Cheese type operads commutes with these maps, 
the induced map on the total spaces is a left module morphism. �
4.3. The operad CBr

We now finish the construction of the Cyclic Braces operad via operadic twisting. 
There is a map F : Lie{1} → CPT sending the Lie bracket to

Using F we consider the (dg) operad given by the operadic twisting of CPT, TwCPT
(see the Appendix for details).

The space TwCPT(n) =
(∏

k

CPT(n + k) ⊗K[−2]⊗k

)
Sk

is made out of trees, similar 

to the ones in CPT but with vertices of two different kinds. There are n external vertices, 
labeled from 1 to n and k internal unlabeled vertices, that we draw as a full black vertex. 
The degree of each edge or marked space is −1, the degree of an external vertex is 0 and 
the degree of an internal vertex is 2.

This operad is generated by elements as in Fig. 2 together with T ′i
n and T ′i,i+1

n , 
i = 0, . . . , n:

The differential has two pieces, the first is computed by taking the operadic Lie bracket 

with = T ′1
1 +T 1

2 ◦1T
′1
0 , which amounts to split an internal vertex at every external 

vertex, but subtracting some combinations with one 1-valent or 2-valent internal vertex. 
The second piece just splits an internal vertex out of every internal vertex.

Lemma 10. The subspace (TwCPT)′ ⊂ TwCPT spanned by trees whose internal vertices 
are at least 3-valent is a suboperad of TwCPT.



822 R. Campos / Advances in Mathematics 306 (2017) 807–851
Proof. The composition of trees in (TwCPT)′ cannot create internal vertices with valence 
1 or 2.

The differential, however can create both kinds of vertices, so we must check that 
these contributions are canceled.

1-valent internal vertices can be created at every internal vertex by splitting it and 
reconnecting all edges incident edges to one of the internal vertices. Similarly, 1-valent 
internal vertices can be created at an external vertex when inserting T ′1

1 +T 1
2 ◦1T

′1
0 at that 

vertex and then reconnect to the external vertex. These contributions are all canceled by 
the remaining term of the differential consisting in inserting the tree in T ′1

1 + T 1
2 ◦1 T

′1
0 .

To see that 2-valent internal vertices contributions are canceled, it is enough to notice 
that every time such a vertex is created, it will be canceled by a similar contribution on 
the other adjacent vertex. �
Definition 11. We define the Cyclic Braces operad as CBr := (TwCPT)′/J , where J is 
the operadic ideal generated by T ′i

n − T ′i−1
n , T ′i,i+1

n , i = 0, . . . , n and

. (1)

Remark 11. The T ′i
n − T ′i−1

n in J mean that in CBr the marks at internal vertices are 
irrelevant. We will therefore not draw them in pictures and we will denote the image of 
T ′i
n in CBr just by T ′

n.

Convention 12. Since J is not homogeneous with respect to the number of (internal) 
vertices, the number of (internal and therefore the total number of) vertices of a cyclic 
braces tree is a priori ill defined. We shall consider that whenever we have subsection of 

a tree like this that there is only one edge and no vertices.

4.4. The homology of the Cyclic Braces operad

In this subsection we show that the homology of CBr is the BV operad. For this, we 
make use of the operad Br whose homology, as mentioned in the beginning of this section, 
is the operad Ger.

Definition 12. The operad Br is defined as the suboperad of CBr generated by T 1
n and 

T ′
n, or equivalently, the suboperad spanned by trees whose marks at every vertex are 

pointing towards the root.

In Br we “forget” that there are marks at vertices, therefore when referring to this 
operad we use the notation Tn instead of T 1

n and we do not draw the marks in the 
pictures.
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Two trees in CBr are said to have the same shape if when one forgets about the marks 
at vertices and connections to 1, they are the same. For example, T i

n and T i,i+1
n have 

the same shape.
Let us consider the map f = ⊕nfn : Br(n) ⊗ (K ⊕ K[1])⊗n → CBr(n) sending T ⊗ ε, 

where T is braces tree and ε = ε1 ⊗· · ·⊗ εn ∈ (K ⊕K[1])⊗n, to the a sum of cyclic braces 
trees of the same shape, according to the following rules:

If the εi = (1, 0), the vertex labeled by i is sent to the same vertex with the marking 
pointing in the direction of the root.

If the εi = (0, 1), the vertex labeled by i is sent to a sum over all possible ways of 
inserting an edge connecting to 1.

Lemma 13. f is a quasi-isomorphism of chain complexes.

Proof. Since marked spaces have degree −1, f preserves the degree. Since the differential 
acts by derivations, it is enough to check that f commutes with the differentials on every 
vertex i and this is clearly the case if εi = (1, 0).

Let us consider the case of Tn = ∈ Br with ε1 = (0, 1).

dTn =
∑

ways of
connecting

, (2)

where the sum runs over all planar possible ways of connecting the incident edges such 
that the internal vertex is at least trivalent.

We have f(Tn) =
∑n

i=1 T
i,i+1
n , following the notation in Fig. 2. If we compute df(Tn), 

the part of the differential given by the insertion of on every T i,i+1
n is canceled over 

all the sum.

Therefore df(Tn) =
∑
i

∑
ways of

connecting

. To see that df(Tn) = f(dTn), we 

note that there are two possibilities. Every summand of df(Tn) has either the internal 
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vertex connected to the root vertex or the vertex labeled by 1 connected to the root 
vertex. If the root is connected to the internal vertex, we find that same summand on 
the image by f of the second type of trees on equation (2), and similarly if the root is 
connected to the vertex 1.

Conversely, all trees that we get when we compute f(dTn) appear only once (due 
to the planar ordering of edges and marks around a vertex) and can be obtained as a 
summand in df(Tn).

To show that f is a quasi-isomorphism, we filter CBr and Br by the number of internal 
vertices (see Remark 11). The map f is compatible with these filtrations and on the zeroth 
page of the corresponding spectral sequence in CBr one obtains the only piece of the 
differential that does not increase the number of internal vertices. Explicitly d0(T i,i+1

n ) =
T i+1
n − T i

n and d0(T j
n) = 0. On the correspondent spectral sequence in Br one obtains 

the zero differential.
The differential d0 respects the shape of the tree. Therefore the complex (CBr, d0)

splits as

CBr(n) =
⊕

Shape S

VS ,

where the sum runs over all possible shapes S of trees with n external vertices and VS

is the subcomplex spanned by all trees with the shape S.
The differential acts on the tree by acting on every vertex by means of the Leibniz 

rule, therefore if V i
S represents the space of the i-th vertices of the trees with the given 

shape, then each VS splits as a complex as VS =
⊗n

i=1 V
i
S (up to some degree shift).

But (V i
S , d0) is isomorphic to the simplicial complex of the k-gon, where k is the 

valence of the vertex i (again, up to some degree shift).

Therefore H(CBr, d0) =
⊕

Shape S

(
n⊗

i=1
H(V i

S)
)

[kS ] =
⊕

Shape S

(
n⊗

i=1
(K⊕K[1])

)
[kS ], 

where kS is a degree shift dependent only on the shape of the tree.
Then, at the level of the homology of the zeroth pages of the spectral sequences we 

get and induced map Br(n) ⊗ (K ⊕K[1])⊗n →
⊕

Shape S

(K ⊕K[1])⊗n[kS ].

Since clearly every possible shape of Cyclic Braces trees has a unique representa-
tive that is a Braces tree, this induced map is an isomorphism. Therefore f induces a 
quasi-isomorphism on the zeroth page of the spectral sequence, which implies that f is 
a quasi-isomorphism between the original complexes. �
Corollary 14. The homology of CBr is BV, the operad governing BV algebras.

Proof. As a consequence of Lemma 13 we have H(CBr(n)) = H(Br(n) ⊗(K ⊕K[1])⊗n) =
H(Br(n)) ⊗ (K ⊕K[1])⊗n = Ger(n) ⊗ (K ⊕K[1])⊗n. This establishes an isomorphism of 
graded vector spaces (but not necessarily of operads) BV(n) → H(CBr(n)).
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This isomorphism maps the commutative product · to , the Lie bracket [ , ] to 

and the BV operator Δ to .
To see that this is an indeed an isomorphism of operads it suffices to check that the 

relations of the BV operad are satisfied in H(CBr), i.e., these elements of CBr satisfy the 
relations from Definition 1 up to exact terms.

The relation Δ ◦ · = [ , ] + · ◦1 Δ + · ◦2 Δ is satisfied in H(CBr) since

The other relations can be easily checked so it follows that as an operad H(CBr) is 
canonically isomorphic to BV. �
Remark 15. Notice that the operad CBr is similar to Ward’s operad T S∞ [23]. In fact 
there is an isomorphism of operads CBr → T S∞ given by contracting connected internal 
vertices into a single internal vertex and labeling it by the correspondent A∞ operation. 
Since in [23] it is shown H(T S∞) = BV, this provides an alternative proof of the previous 
Corollary.

5. Operadic bimodule maps

Given an operad P and a resolution P∞⟳ Pbimod
∞ ⟲ P∞ of the canonical bimodule 

P⟳ P⟲ P, an infinity morphism of P∞ algebras A and B, can be expressed as the 
following bimodule map:

,

where by EndA we mean the operadic endomorphisms EndA(n) = Hom(A⊗n, A) and 
the bimodule structure on Hom(A⊗•, B) is the natural one using composition of maps. 
In this section we prove Theorem 1 by expressing it in terms of a morphism of bimodules.

5.1. Chains(FHm,n) → BVKGra

The topological operad of Cyclic Swiss Cheese type (FFM2,FHm,n) introduced in 3.3.2
is in fact an operad on the category of semi-algebraic manifolds [12,17]. We consider the 
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Fig. 3. The hyperbolic angle φi,j .

functor Chains of semi-algebraic chains. This functor is monoidal so it induces a functor 
from semi-algebraic Cyclic Swiss Cheese type operads to dg Cyclic Swiss Cheese type 
operads.

In this section we define a morphism of Cyclic Swiss Cheese type operads

(Chains(FFM2), Chains(FHm,n)) → (BVGra,BVKGra) . (3)

We start by defining a map f2 : BVKGra∗ → Ω(FHm,n), where Ω is the functor sending 
a semi-algebraic manifold to its algebra of semi-algebraic forms.

Notice that FHm,n is a quotient of the configuration space of m points in the upper half 
plane and n points at the boundary by a group of conformal maps. The identification of 
H with the Poincaré Disk necessary for the definition of the cyclic action and the forgetful 
map is also conformal. Therefore, given a point p in the upper half plane and a point q
either in the upper half plane or at the boundary the angle between the hyperbolic line 
passing by the point at ∞ and p and the hyperbolic line passing by the points p and q
is well defined (up to a multiple of 2π).

We define dφi
j ∈ Ω1(FHm,n), for 1 ≤ i ≤ m and 1 ≤ j ≤ n as the 1-form given by the 

angle made by the hyperbolic line defined by the point at ∞ and the point labeled by i
and the hyperbolic line defined by the point labeled by i and the point labeled by j.

Similarly, 1 ≤ i �= j ≤ m, we define dφi,j ∈ Ω1(FHm,n) as the 1-form given by the 
angle defined by the line passing by ∞ and i and the line passing by i and j.

Finally, we define dφi,i ∈ Ω1(FHm,n) as the 1-form corresponding to the angle between 
the line passing by ∞ and i and the frame at i (see Fig. 3).

There is a canonical basis of BVKGra(m, n) given by the graphs and, by abuse of 
notation, we denote by the same graphs the dual basis of BVKGra∗(m, n).

Following the notation in 3.3.3, we define f2(Γi
j) :=

dφi
j

2π for 1 ≤ i ≤ m, 1 ≤ j ≤ n and 

f2(Γi,j) := dφi,j

2π for i �= j between 1 and m.
BVKGra∗(m, n) admits a similar algebra structure by defining the product of two 

graphs as the superposition of edges. We extend the map f2 to BVKGra∗ by requiring it 
to be a morphism of unital algebras.

A Cn+1 action on BVKGra∗(m, n) can be defined via the pullback of the cyclic action 
on BVKGra(m, n). Notice that this is not the standard definition of an action of a group 
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on the dual space (one normally uses the pullback via the inverse of the map), but since 
Cn+1 is abelian no problems arise from this.

Ω(FHm,n) inherits a Cn+1 cyclic action from the cyclic action in FHm,n (also by 
pullback).

Lemma 16. The map f2 : BVKGra∗(m, n) → Ω(FHm,n) is Cn+1 equivariant.

Proof. Notice actually that the algebra structure on BVKGra(m, n) is in fact the exterior 
algebra 

∧
V , where V is the (finite dimensional) vector space concentrated in degree −1

spanned by all graphs with exactly one edge.
We had defined the cyclic action on V , extended this action to 

∧
V by requiring the 

action to commute with the product and defined an action on (
∧
V )∗ = BVKGra(m, n). 

Alternatively, the cyclic action on V induces a cyclic action on V ∗ which induces a cyclic 
action on 

∧
V ∗. Under the identification 

∧
V ∗ = (

∧
V )∗ these two actions are the same. 

This is an immediate consequence of the fact that if e1, . . . , en are part of a basis of V
and e∗1, . . . , e

∗
n are the corresponding parts of the dual basis, then e1 ∧ · · · ∧ en is dual to 

e∗1 ∧ · · · ∧ e∗n.
This allows us to conclude that the cyclic action on BVKGra∗(m, n) commutes with 

the product of graphs.
It is therefore enough to show that f2 is equivariant with respect to one-edge graphs.
The cyclic action of Cn+1 = 〈σ〉 on one-edge graphs in BVKGra∗(m, n) is given by (

Γi,j
)σ = Γi,j − Γi

1 and 
(
Γi
j

)σ = Γi
j+1 − Γi

1 with the convention that Γi
n+1 = 0.

Since the cyclic action on FHm,n is by rotation of the n points at the boundary with 
the point ∞, we have 

(
dφi

j

)σ = d(φi
j · σ) = d(φi

j+1 − φi
1) and similarly 

(
dφi,j

)σ =(
dφi,j − dφi

1
)
, therefore f2 commutes with the action. �

Analogously, a map f1 : BVGra∗(n) → Ω(FFM2)(n) can be defined on one-edge graphs 
by considering the angle with the vertical and extending as a morphism of algebras.

Remark 17. It is easy to check on generators that these maps produce a map of colored 
cooperads

(f1, f2) : (BVGra∗,BVKGra∗) → (Ω(FFM2),Ω(FHm,n)) .

Let us sketch the verification for the case of Γ1,2 ∈ BVKGra∗(2, 0).
The composition map in (FFM2,FH) is done by insertion at the boundary stratum 

with an appropriate rotation given by the framing. Since the cocomposition map is 
given by the pullback of the composition map, the part of the cocomposition given 
by Ω(FH) → Ω(FH) ⊗

⊗
Ω(FFM2) sends dφ1,2 ∈ FH(2, 0) to dφ1,1 ⊗ 1 + 1 ⊗ dφ1,2 ∈

Ω(FH(1, 0)) ⊗ Ω(FFM2(2)) (recall Fig. 1).

The corresponding cocomposition in BVKGra∗ sends Γ1,2 to 
(
Γ1,1⊗

)
+
(

1⊗
)
∈

BVKGra∗(1, 0) ⊗BVGra∗(2), therefore the diagrams commute. The general case for Γi,j ∈
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BVKGra∗(m, n) is similar and all the remaining cases are as simple or even simpler to 
check.

Remark 18. The functor Ω is not comonoidal since the canonical map Ω(A) ⊗ Ω(B) →
Ω(A × B) goes “in the wrong direction”, therefore Ω(FFM2) is not a cooperad but still 
satisfies cooperad-like relations (see [17]). Nevertheless, by abuse of language throughout 
this paper we will these spaces as cooperads and refer to maps such as BVGra∗ →
Ω(FFM2) as maps of (colored) cooperads if they satisfy a compatibility relation such as 
commutativity of the following diagram:

.

We define a map g1 : Chains(FFM2) → Ω∗(FFM2) that maps every elementary semi-
algebraic chain c ∈ Chains(FFM2) to the linear form ω �→

∫
c
ω. Similarly we define 

g2 : Chains(FH) → Ω∗(FH) sending a chain to integration over that chain.
Clearly BVKGra(m, n) is finite dimensional for a fixed degree, therefore the double 

dual of BVKGra(m, n) can be identified with the original space.
Finally, the map of Cyclic Swiss Cheese type operads (3) that we were searching is 

defined as the composition

(Chains(FFM2), Chains(FH)) (g1,g2)−−−−→ (Ω∗(FFM2),Ω∗(FH)) (f∗
1 ,f

∗
2 )−−−−−→ (BVGra,BVKGra) .

This is a colored operad map as a consequence of Remark 17, it commutes with the 
cyclic action as a consequence of Lemma 16 and by hand one checks that 1Chains(FH) is 
sent to 1BVKGra.

Explicitly, given a chain c ∈ Chains(FFM2), we have f∗
1 ◦g1(c) =

∑
Γ

Γ 
∫
c

f1(Γ), where 

Γ runs through all the graphs in BVGra. This sum is finite because the integral is zero 
every time the degree of Γ differs from the degree of the chain c.

Recall section 4.1 where we saw that given a Cyclic Swiss Cheese type operad P one 
can endow the total space 

∏
n P2(·, n)[n] with a CPT−P1-bimodule structure. Moreover, 

morphism of Cyclic Swiss Cheese type operads induce morphisms of bimodules. Therefore 
we obtain a bimodule map
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We choose a Maurer–Cartan element μ ∈ (
∏

n Chains(FH0,n)[−n])2 to be μ =∏
n≥2 cn, where cn is the fundamental chain of the space FH0,n.
It is easy to see that the image of cn is zero for n > 2 and for n = 2 is the single graph 

in BVKGra(0, 2)[−2] with no edges.
By twisting both 

∏
n Chains(FH•,n)[−n] and 

∏
n BVKGra(·, n)[−n] with respect 

to μ and its image, we get a map of TwCPT-modules 
∏

n Chainsμ(FH•,n)[−n] →∏
n BVKGraμ(·, n)[−n] where the superscript μ indicates that there is a changed dif-

ferential induced by the Maurer–Cartan elements. Since the ideal generated by (1) acts 
as zero, we can restrict our action to the subquotient CBr, of TwCPT, thus obtaining a 
morphism of left CBr-modules.

Since the right action of Chains(FFM2) on Chains(FH) is on the non-boundary 
points, and analogously, the action of BVGra on BVKGra is on the type II vertices, it is 
clear that the morphism commutes with the right action. We obtain then the following 
bimodule map:

(4)

The projection map pm,n : FHm,n → FHm,0 that forgets the points at the boundary 
induces a strongly continuous chain [12] p−1

m,n : FHm,0 → Chains(FHm,n). Intuitively the 
image of a configuration of points in FHm,0 is the same configuration of points but with 
n points at the real line that are freely allowed to move. If we consider the complex 
Chains(FH•,0) =

⊕
m≥1 Chains(FHm,0), this induces a degree preserving map

p−1 : Chains(FH•,0) →
∏
n≥0

Chainsμ(FH•,n)[−n].

The next Lemma essentially follows [24, Appendix A.2].

Lemma 19. p−1 is a morphism of right Chains(FFM2)-modules and its image is a CBr−
Chains(FFM2)-subbimodule.

Proof. The morphism clearly commutes with the right action. Let us check that p−1

commutes with the differentials.
Let c ∈ Chains(FHm,0).
The boundary term ∂p−1

m,n(c) has two kind of components. When at least two points at 
the upper half plane get infinitely close, giving us the term p−1

m,n(∂c), and when points at 
the real line get infinitely close, giving us ±pf∂m,n(c), where the f∂ superscript represents 
that we are considering the boundary at every fiber.
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Then, we have p−1(∂c) =
∏

n≥0 p
−1
m,n(∂c) =

∏
n≥0 ∂p

−1
m,n(c) ± pf∂m,n(c). The first sum-

mand corresponds to the normal differential in Chains(FHm,n) and the second summand 
is precisely the extra piece of the differential induced by the twisting.

It remains to check the stability under the left CBr action. It is enough to check the 
stability under the action of the generators T i

n, T
i,i+1
n , T ′

n and T ′i,i+1
n .

Let c1, . . . , cn ∈ Chains(FH•,0) of arbitrary degree. It is not hard to see that

p−1 ◦ p
(
T 1
n(p−1(c1), . . . , p−1(cn))

)
= T 1

n(p−1(c1), . . . , p−1(cn)).

This follows essentially from the fact that on the right hand side the projection in 
Chainsμ(FH•,k)[−k] is the sum over all the possibilities of distributing ki points on 
the boundary stratum of ci, for i = 2, . . . , n and k1 boundary points not infinitely close 
to any of these chains, with k1 + ... + kn = k, whereas the left hand is taking all of these 
possibilities into account at once.

For the remaining T i
n, the stability follows from the remark that if a chain is in the 

image of p−1, then any cyclic permutation of it is still in the image of p−1. Since forgetting 
one of the boundary points of a chain in the image of p−1 leaves it in the image of p−1, 
we get stability under the action of T j,j+1

n .
The other generators follow from similar arguments. �
p−1 is right inverse to the projection map, therefore it is an embedding of right 

Chains(FFM2)-modules. We can therefore transport back the left CBr action on its 
image, making p−1 a morphism of CBr − Chains(FFM2)-bimodules.

By composition with the map (4), we obtain the following bimodule map:

(5)

5.2. A representation on the colored vector space Dpoly ⊕ Tpoly

In this section we drop the Rd from the notation Tpoly, D̃poly and Dpoly, for simplicity. 
In Section 6 we globalize the results obtained here.

Let x1, . . . , xn be coordinates in Rn and let ξ1, . . . , ξn be the corresponding basis 
of vector fields. Following [15] we define an action of BVGra on the graded algebra of 
multivector fields Tpoly in Rd by setting

Γ(X1, . . . , Xk) =

⎛
⎝ ∏

(i,j)∈Γ

d∑
l=1

∂

∂x
(j)
l

∧ ∂

∂ξ
(i)
l

⎞
⎠ (X1 ∧ · · · ∧Xk),

where Γ ∈ BVGra(k), X1, . . . , Xk are multivector fields, the product runs over all edges 
of Γ in the order given by the numbering of edges and the superscripts (i) and (j) mean 
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that the partial derivative is being taken on the i-th and j-th component of X1, . . . , Xk. 
This is equivalent to an operad morphism BVGra → EndTpoly.

Seeing Γ as an element of BVGra(m + n) and, using the action of BVGra in Tpoly, 
together with the fact that C∞ functions are degree zero multivector fields we define a 
map g : BVKGra(m, n) → Hom(T⊗m

poly ⊗ C∞
c (Rd)⊗n, C∞

c (Rd)) by

g(Γ)(X1, . . . , Xm)(f1, . . . , fn) = Γ(X1, . . . , Xm, f1, . . . , fn).3 (6)

These two maps form a colored operad morphism from (BVGra,BVKGra) to the Swiss 
Cheese type operad 

(
EndTpoly,Hom(T⊗m

poly ⊗ C∞
c (Rd)⊗n, C∞

c (Rd))
)
, a suboperad of the 

colored operad End
(
Tpoly ⊕ C∞

c (Rd)
)
.

The Tensor–Hom adjunction allows us to rewrite Hom(T⊗m
poly⊗C∞

c (Rd)⊗n, C∞
c (Rd)) as 

Hom
(
T⊗m

poly,Hom
(
C∞

c (Rd)⊗n, C∞
c (Rd)

))
and the bilinear form 

∫
: C∞

c (Rd) ⊗C∞
c (Rd) →

R induces a map

Hom
(
T⊗m

poly,Hom
(
C∞

c (Rd)⊗n, C∞
c (Rd)

))
→ Hom

(
T⊗m

poly,Hom
(
C∞

c (Rd)⊗n+1,R
))

.

(7)

There is a natural Cn+1 action on Hom
(
T⊗m

poly,Hom
(
C∞

c (Rd)⊗n+1,R
))

given by the 

action on C∞
c (Rd)⊗n+1 and also a distinguished element 1 map given by the insertion 

of the constant function ≡ 1 on the first input of Hom
(
C∞

c (Rd)⊗n+1,R
)
.

Lemma 20. With the above described map and cyclic action, the composition of the maps 
(6) and (7) induces a morphism of Cyclic Swiss Cheese type operads

(BVGra,BVKGra) →
(
EndTpoly,Hom

(
T⊗•

poly,Hom(C∞
c (Rd)⊗•+1,R)

))
.

Proof. It is clear that the map is a morphism of colored operads and it sends one dis-
tinguished element to the other. It is enough to check the compatibility with the cyclic 
action.

Notice that the image of a graph under the morphism

BVKGra(m,n) → Hom
(
T⊗m

poly,Hom(C∞
c (Rd)⊗n+1,R)

)
actually lands inside of Hom

(
T⊗m

poly, D̃poly(n)
)

and this space is an algebra with product 
given by the product of functions.

It is clear by the definition of this morphism that it commutes with products, therefore 
to check the compatibility with the cyclic action it is enough to check it on graphs with 
just one edge.

3 We set all ξi = 0.
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Let Γi
j ∈ BVKGra(m, n). Recall that the action of the generator σ of Cn+1 on Γi

j

is σ(Γi
j) = Γi

j−1 if j �= 1 and σ(Γi
1) = − 

∑n
k=1 Γi

k −
∑m

k=1 Γi,k. The action of σ on 
Γi,j ∈ BVKGra(m, n) is σ(Γi,j) = Γi,j , for 1 ≤ i, j ≤ m.

Let X1, . . . , Xm ∈ Tpoly and let f0, . . . , fn ∈ C∞(Rd).
Notice that g(Γi

1)(X1, . . . , Xm) can only be non-zero if all the Xj , for j �= i are in 
Tpoly

0 = C∞(Rd) and Xi ∈ Tpoly
1 = Γ(Rd, TRd).

The operator 
(
g(Γi

1)(X1, . . . , Xm)
)σ is defined by

∫
f0g(Γi

1)(X1, . . . , Xm)(f1, . . . , fn) =
∫

f1
(
g(Γi

1)(X1, . . . , Xm)
)σ (f2 . . . , fn, f0),

i.e., by “taking the derivatives from f1”.
Let us write Xi =

∑d
k=1 ψk

∂
∂xk

. Expanding the first integral we have

∫
f0g(Γi

1)(X1, . . . , Xm)(f1, . . . , fn) =

d∑
k=1

∫
∂f1

∂xk
ψkX1 . . . X̂i . . . Xmf2 . . . fnf0 =

−
d∑

k=1

∫
f1

∂ψk

∂xk
X1 . . . X̂i . . . Xmf0f2 . . . fn + f1ψk

∂X1

∂xk
X2 . . . X̂i . . . Xmf2 . . . fnf0+

+ · · · + f1ψkX1 . . . X̂i, . . . Xmf2 . . . fn
∂f0

∂xk
.

Therefore

(
g(Γi

1)(X1, . . . , Xm)
)σ (a1, . . . , an) =

− Γi,i(X1, . . . , Xm, a1, . . . , an) −
m∑

k=1,k �=i

Γi,k(X1, . . . , Xm, a1, . . . , an)

−
n∑

k=1

Γi
k(X1, . . . , Xm, a1, . . . , an) =

g(−
m∑

k=1

Γi,k −
n∑

k=1

Γi
k)(X1, . . . , Xm)(a1, . . . , an) =

g(Γi
1 · σ)(X1, . . . , Xm)(a1, . . . , an).

The verification for the case Γi,j is trivial and the case Γi
j with j �= 1 is also immediate 

because there is only permutation of variables involved. �
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We obtain then a bimodule map

. (8)

The image of the Maurer–Cartan element ∈ BVKGra(0, 2)[−2] is the ele-
ment induced by the multiplication map μ : C∞

c (Rd)⊗2 → C∞
c (Rd).

By twisting with respect to these Maurer–Cartan elements we obtain a map of 

TwCPT from 
∏
n

BVKGraμ(·, n)[−n] to Homμ

(
T⊗•

poly,
∏
n

Hom(C∞
c (Rd)⊗n+1,R)[−n]

)
. 

Notice that in this last space, the differential coming from the twisting is the same 
as the one induced by the Hochschild differential and the degrees also agree with the 
Hochschild complex. In fact, the image of the map (8) lands in Hom

(
T⊗•

poly, Dpoly

)
.

Since ∈ TwCPT acts trivially on both spaces, this induces an action of its 
subquotient CBr, therefore we obtain the following maps of bimodules:

. (9)

Also, the CBr action on Hom(T⊗•
poly, Dpoly) comes from the action of CBr on Dpoly (as 

seen in 3.3.1), which translates into an operadic morphism CBr → EndDpoly. Thus, by 
composition with the map (5) we obtain

5.3. A zig-zag of quasi-torsors

Let us recall the definition of an operadic quasi-torsor from [1]:

Definition 13. Let P and Q be two differential graded operads and let M be a P − Q
operadic differential graded bimodule, i.e., there are compatible actions

P⟳M⟲Q.

We say that M is a P–Q quasi-torsor if there is an element 1 ∈ M0(1) such that the 
canonical maps
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l : P → M r : Q → M

p �→ p ◦ (1, . . . ,1) q �→ 1 ◦ q
(10)

are quasi-isomorphisms.

Lemma 21. Chains(FH•,0) is a CBr − Chains(FFM2) quasi-torsor.

Proof. Let us consider the element 1 ∈ Chains0(FH1,0) corresponding to a single point 
on the upper half plane with frame is pointing upwards.

Let i : FFM2 → FH•,0 be the map that sends a configuration in c ∈ FFM2 to the 
configuration in FH•,0 given by one boundary stratum on the upper half plane with c
on it. It is clear that i is a homotopy equivalence (with homotopy inverse being the map 
that “forgets” the boundary of the upper half plane). The map r : Chains(FFM2) →
Chains(FH•,0), as defined in equation (10) is the image of i via the functor Chains. 
Since i is a homotopy equivalence, r is a quasi-isomorphism.

It was shown in [8] that H(FFM2) = BV.

The map l sends ∈ CBr−1(1) to the fundamental chain of the circle. It sends 

to the zero chain consisting of two horizontally aligned points in the upper half 

plane with frames pointing upwards. And it sends to the 1-chain corresponding 
to two points rotating around each other.

Since the homologies of CBr and of FH•,0 are both BV and l sends (representatives 
of) generators to (representatives of) generators, l is a quasi-isomorphism. �

The main Theorem of [1] states that if the P −Q-bimodule M is an operadic quasi-
torsor, then there is a zig-zag of quasi-isomorphisms connecting P⟳M ⟲ Q to the 
canonical bimodule P⟳ P⟲ P.

It follows then from Lemma 21 that there is a zig-zag of bimodules

.

Let CBrbimod
∞ be a cofibrant resolution of the canonical bimodule CBr. CBrbimod

∞ is a 
CBr∞ − CBr∞-bimodule, where CBr∞ is a cofibrant resolution of the operad CBr.
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Finally, the zig-zag can be lifted up to homotopy to a bimodule map

,

giving us the desired quasi-isomorphism and thus proving Theorem 1.
It also follows from Lemma 21 and [1] that CBr is quasi-isomorphic to Chains(FFM2). 

Due to the formality of FFM2 [11], it follows that we can replace CBr∞ in Theorem 1 by 
any cofibrant replacement of the operad BV.

6. Globalization

Let M be a d-dimensional oriented manifold. In this section we globalize the BV∞
quasi-isomorphism Tpoly(Rd) → Dpoly(Rd) from Theorem 1 to a quasi-isomorphism 
Tpoly(M) → Dpoly(M), thus proving Theorem 2. To do this we use standard formal 
geometry techniques.

6.1. The idea

We refer the reader to the paper [4], from which we borrow the notation.
Theorem 1 is valid if we replace Rd by Rd

formal, its formal completion at the origin, 
i.e., the space whose ring of functions is given by formal power series on the coordinates 
x1, . . . , xd.

We consider Tpoly (resp. Dpoly), the vector bundle on M of fiberwise formal multivector 
fields (resp. multidifferential operators) tangent to the fibers. We can then construct the 
vector bundles Ω(Tpoly, M) of forms valued in Tpoly and Ω(Dpoly, M) of forms valued in 
Dpoly with appropriate differentials.

The fibers of the bundles Tpoly and Dpoly are isomorphic to Tpoly(Rd
formal) and 

Dpoly(Rd
formal), respectively. Therefore, the formal version of the formality map can be 

used to find a vector bundle CBr∞ quasi-isomorphism

Uf : Ω(Tpoly,M) → Ω(Dpoly,M).4 (11)

These two vector bundles can be related with Tpoly(M) and Dpoly(M). In fact, with 
an appropriate change of differential that comes from a choice of a flat connection, 
Ω(Tpoly, M) becomes a resolution of Tpoly(M) and Ω(Dpoly, M) becomes a resolution of 
Dpoly(M). This change of differential can be seen locally as a twist via a Maurer–Cartan 
element B in Ω1(T 1

poly, U) = Ω1(D1
poly, U). However, the linear part of B (in the fiber 

coordinates) is not globally well defined.

4 Using the fact that the formality morphism is invariant by linear transformation of coordinates.
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In general, if one wants to twist an algebra A over an operad P (with an implicit 
map Lie1 → P), one obtains that the twisted algebra Aμ is not an algebra over P but 
over TwP. However, if P is natively twistable, i.e., there exists an operad morphism 
P → TwP such that P → TwP → P is the identity, then P still acts on A. The twist 
of an operad is always natively twistable [24, Lemma 94]. We would therefore like to 
replace the third or fourth row of diagram (12) with a row that arises from a twist.

This would be simple (we could just twist one of them), if not for the fact that the 
linear part of B is not well defined. Indeed, this causes action of TwBVGra on the twisted 
Ω(Tpoly)B to be ill-defined if the linear part of the Maurer–Cartan element has to be 
used and this occurs whenever there exist internal vertices with exactly one outgoing 
edge and at most one incoming edge (since more incoming edges would kill the linear 
part). To circumvent this problem, instead of replacing BVGra by TwBVGra we consider 
a related object BVGraphs. And similar with BVKGra leads us to define BVKGraphs.

To show that the relevant maps factor through these objects we need Kontsevich’s 
vanishing lemmas [15] that hold for his formality morphism. The way we constructed 
the BV∞ formality morphism from Theorem 1 depends on some choice of lifts and might 
not be in general true that the vanishing lemmas hold, but they certainly hold if we 
choose the BV∞ formality morphism in such a way that it extends Kontsevich’s original 
formality morphism.

6.2. An extension of Kontsevich’s L∞ morphism

In this section we show that the CBr∞ formality morphism from Theorem 1 can be 
obtained in such a way that it extends Kontsevich’s original L∞ morphism [15].

We have the following chain of maps:

, (12)

where hoLie1 = Ω(Lie{1}∨), the first downwards maps are induced by the inclusion 
Lie → CBr and the other maps follow from the proof of Theorem 1. Showing that our 
morphism extends Kontsevich’s formality morphism amounts to showing that the full 
composition of the maps in (12) gives Kontsevich’s map. This is clear for the left column. 
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For the other two columns the argument is similar so we will only prove it for the right 
column given that the notation is simpler. Let us call μn the generator of Lie{1}∨(n).

We recall that in [15] the construction of Un, the L∞ components of the formality 
morphism are constructed by sending μn to the fundamental chain of Hn,0. We wish then 
to show the commutativity of the following diagram, where the uppers horizontal maps 
represent Kontsevich’s approach and Gra is the suboperad of BVGra in which tadpoles 
are not admitted.

.

(13)

As semi-algebraic manifolds, FFM2(n) = FM2(n) × (S1)×n, therefore there exists an 
inclusion map i : FM2 → FFM2 that is the identity on the FM2 component and constant 
equal to the vertical direction in the S1 components.

Naming the relevant maps, diagram (13) becomes

.

(14)

It is clear that the right triangle diagram and the adjacent square diagram are com-
mutative. To conclude the commutativity of the exterior diagram it is enough to show 
that the left square is commutative but this need not be the case. Fortunately this can be 
rectified if one is careful when constructing the map g as a lift over quasi-isomorphisms. 
We sketch here the argument that is nothing but an adapted version or the argument of 
Lemmas 12 and 13 in [1].

The fact that Lie{1} can be seen embedded in CBr via the map F in section 4.3 implies 
that the generators μn of hoLie1 can be seen as part of the generators of CBr∞ (via the 
map iL) and the map f sends μn to the fundamental chain of FM2(n).

To construct g one starts with a filtration 0 = F0 ⊂ F1 ⊂ · · · ⊂ CBr∞ such that when 
differentiating the generators we fall in the previous degree of the filtration and then we 
construct the map recursively using the following diagram:

where all maps are quasi-isomorphisms, E is the operad through which the zig-zag con-
necting CBr and Chains(FFM2) goes and F is the operad resulting from the “surjective 
trick”, i.e., an operad that surjects both onto E and Chains(FFM2) such that the de-
picted triangle commutes up to homotopy. At every stage we wish to map μn to a 
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pre-image of the fundamental chain of FM2 (seen inside of FFM2) and essentially one has 
to check that dg′(μn) = g′(dμn), but this follows from the fact that the boundary of the 
fundamental chain of FM2(n) is computed the same way as the cocomposition of μn in 
Lie{1}∨.

6.3. The bimodule BVKGraphs

In this section we construct the appropriate twisted and “corrected” versions of BVGra
(resp. BVKGra)), BVGraphs (resp. BVKGraphs). The construction of the full bimodule 
BVKGraphs is a generalization of [24, Section 8] where Willwacher works with graphs 
without tadpoles.

Notice that due to the chain of morphisms (12) there is a morphism of bimodules

.

Using the formalism of twisting of bimodules described in the Appendix we can per-
form the bimodule twisting with respect to this morphism, thus obtaining the operadic 
bimodule TwCBr⟳ Tw

∏
n

BVKGraμ(·, n)[−n] ⟲ TwBVGra.

The elements in TwBVGra(n) can be seen as linear combinations of directed graphs 
with at least n vertices, where from these, n of them are labeled by numbers from 
1 to n and the remaining ones are indistinguishable. The labeled vertices are called 
external vertices and the unlabeled ones are called internal vertices. In a similar way, 
the elements of Tw

∏
n

BVKGraμ(m, n)[−n] consist of the same kind of graphs, but where 

now the type I vertices come in two flavors, the indistinguishable internal vertices and 
the m labeled external vertices.

Proposition/Definition 22. The operad BVGraphs is defined to be the quotient
BVGraphs⟳/I where:

– BVGraphs⟳ ⊂ TwBVGra is the suboperad spanned by graphs having no 0- or 1-valent 
internal vertices and having no 2-valent internal vertices with exactly one incoming and 
one outcoming edges,

– I is the suboperad of BVGraphs⟳ spanned by graphs containing at least one tadpole 
on an internal vertex.

Proof. Since the operadic insertion is done at external vertices it is clear that conditions 
defining BVGraphs⟳ are preserved by operadic composition, but we need to check that 
S is preserved under the action of the differential.

The differential d in TwBVGra has the form d = d1 + d2, where d1 is defined by 
d1Γ = ( + ) ◦ Γ −

∑
i ±Γ ◦i ( + ), and d2 acts by replacing every internal 

vertex by .
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This means that the differential acts by splitting internal vertices out of every vertex.
The d2 component of the differential produces 1-valent internal vertices when all in-

cident edges are reconnected to only one of the internal vertices. Similarly, the second 
summand in d1 produces a 1-valent internal vertex whenever all incident edges are recon-
nected to the external vertex. All of these factors are canceled out by the first summand 
of the definition of d1.

The creation of internal vertices with exactly one incoming and one outcoming edges 
happens only when after taking the differential in one vertex, there is exactly one other 
vertex that connects to the split internal vertex. However this term will be canceled out 
when the differential is taken on this other vertex.

It remains to see that I is a suboperad. Since the composition is done at external 
vertices, this cannot destroy tadpoles at internal vertices. The only way the action of 
the differential could destroy a tadpole at an internal vertex would be by acting with d2
on that tadpole and reconnecting the two new internal vertices. But this would create a 
multiple edge and graphs with multiple edges vanish. �

Given an operad P with a morphism from hoLie1 → P, there is a canonical projection 
TwP → P, as described in the Appendix. We prove now a Lemma that will be useful 
to show that the operad morphism Chains(FFM2) → BVGra factors through BVGraphs. 
The proof of this Lemma is essentially in [24, Appendix D.3].

Lemma 23. Chains(FFM2) is natively twistable.

Proof. We need to construct an operad map ι : Chains(FFM2) → Tw Chains(FFM2)
that is a right inverse to the canonical projection.

Let FFMk
2(n +k) be the subspace of FFM2(n +k) whose last k points have their frame 

constantly pointing upwards.
The bundle maps πn,k : FFMk

2(n + k) → FFM2(n) defined by “forgetting” the last k
points define a map at the level of chains

π−1
k,n : Chains(FFM2(n)) → Chains(FFMk

2(n + k)) ⊂ Chains(FFM2(n + k)).

Notice that this map lands in the Sk invariant subspace Chains(FFM2(n + k))Sk .
Let c ∈ Chains(FFM2)(n). To define ι(c) it is enough to define its projection in 

Chains(FFM2)(n + k)Sk . We define this projection to be π−1
k,n.

To see that this is an operad map, we need to check that ι(c ◦i c′) = ι(c) ◦i ι(c′). This 
equality follows from the observation that fixed a boundary stratum of a configuration 
of points, having k points varying freely is the same as i points inside that boundary 
stratum and k − i outside, for i = 0, . . . , k. �

The operad morphism Chains(FFM2) → BVGra and the functoriality of Tw and the 
canonical projections TwP → P give us the following commutative square
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Fig. 4. An internal vertex connected to two (internal or external) vertices.

As a corollary of the previous Lemma, the operad morphism Chains(FFM2) → BVGra
factors as Chains(FFM2) → TwBVGra → BVGra. Explicitly, the first map is given by

c ∈ Chains(FFM2)(n) �→
∑
Γ

Γ
∫

π−1
Γ (c)

f1(Γ), (15)

where f1(Γ) is the form associated to the graph Γ, as defined in Section 5.1 and for Γ a 
graph with n external and m internal vertices, π−1

Γ (c) is the chain in Chains(FFM2)(n +
m) in which the m points corresponding to the internal vertices vary freely in Rd while 
their frame is constantly pointing upwards.

Proposition 24. The operad morphism given by the composition Chains(FFM2) →
TwBVGra → End(Tpoly) factors through BVGraphs.

Proof. We first check that the morphism (15) lands inside BVGraphs⟳ and for this one 
must check that the coefficient of the graphs that are “forbidden” in BVGraphs⟳ is zero. 
This is clear if the graph contains a 1-valent internal vertex, since the computation of 
the coefficient involves an integral of a 1-form (corresponding to the incident edge) over 
a 2 dimensional space.

Suppose the graph Γ contains an internal vertex with exactly one incoming and one 
outcoming edges. Let us call this vertex i and let us also call a and b the vertices to 
which these two edges connect (see Fig. 4).

By Fubini’s Theorem for fibrations, the integral 
∫
π−1
Γ (c) f1(Γ) can be rewritten as

∫ ⎛⎜⎝ ∫
Xza,zb

dφaidφib

⎞
⎟⎠ . . . ,

where Xza,zb is the space of configurations in which the points labeled by a and b are in 
positions za and zb, and the point labeled by i moves freely. It suffices therefore to show 
that the integral
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∫
Xza,zb

dφaidφib (16)

vanishes. To check this, notice that by (the fibration integral version of) Stokes Theorem, 
we have

d

∫
Yza,zb

dφaidφijdφjb

︸ ︷︷ ︸
0

=
∫

Yza,zb

d(dφaidφijdφjb)︸ ︷︷ ︸
0

±
∫

∂Yza,zb

dφaidφijdφjb,

where Yza,zb is the configuration space of four points (i, j, a and b) where a and b are 
fixed at za and zb and the points labeled by i and j are free. The integral on the left 
hand side vanishes by degree reasons. The boundary terms on the right hand side vanish 
except on the following cases:

• The boundary stratum in which a and i are infinitely close,
• The boundary stratum in which i and j are infinitely close,
• The boundary stratum in which j and b are infinitely close.

In each of these cases, the result is an integral of the form of integral (16) (possibly with 
different signs), therefore it is zero.

To see that the map actually factors through the quotient BVGraphs, one must prove 
that if a graph Γ contains an internal vertex with a tadpole, then it is sent zero. This is 
clear since as Tpoly is not twisted yet the action of graphs with internal vertices is zero. 
But even after twisting by the Maurer–Cartan element B the map still factors through 
BVGraphs as divB = 0. �

As a consequence of Lemma 29, the canonical projections TwCBr → CBr and 
TwBVGraphs⟳ → BVGraphs⟳ admit right inverses. This defines a CBr−BVGraphs⟳ bi-
module structure on Tw

∏
n

BVKGraμ(·, n)[−n]. Elements of this bimodule are (sequences 

of) graphs with type I and type II vertices as before, but now there are two kinds of 
type I vertices. Using the same designations as in CBr we refer to the labeled type I 
vertices as external vertices and the indistinguishable type I vertices as internal vertices.

Proposition/Definition 25. The CBr − BVGraphs⟳ bimodule Tw
∏
n

BVKGraμ(·, n)[−n]

has a subquotient that we call BVKGraphs constructed in the following way:
We first consider the quotient Q of Tw

∏
n

BVKGraμ(·, n)[−n] by the ideal J consisting 

of graphs with tadpoles on type I internal vertices and then the subspace of Q spanned 
by the graphs with the following properties:
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(1) There is at least one type I external vertex,
(2) There are no 0-valent type I internal vertices
(3) There are no 1-valent type I internal vertices with an outgoing edge,
(4) There are no 2-valent type I internal vertices with one incoming and one outgoing 

edge.

Moreover, this induces a well defined CBr − BVGraphs bimodule on BVKGraphs.

Proof. The ideal J is stable by the differential as in Proposition/Definition 22, since 
the additional piece of the differential does not interact with type I vertices. The right 
BVGraphs⟳ action is on external vertices so it cannot destroy tadpoles on internal ver-
tices. The left action does not affect edges between type I vertices so J is also stable by 
the left action. It follows that Q has a well defined CBr−BVGraphs⟳ bimodule structure 
and it is clear that the right BVGraphs⟳ action descends to a right BVGraphs action.

We must check that BVKGraphs is preserved by the differential, the left CBr and right 
BVGraphs actions. This is clear for the right BVGraphs action.

To check that BVKGraphs is closed under the action on CBr we start by considering 
the action of the generator T 1

n. Let Γ1, . . . , Γn be graphs in BVKGraphs. The element 
T 1
n(Γ1, . . . , Γn) is determined by inserting Γ2, . . . , Γn at the type II vertices of Γ1, there-

fore every type I vertex in T 1
n(Γ1, . . . , Γn) can be identified as coming from one of the Γi. 

Since there are only incoming edges at type II vertices, the action of T 1
n can increase or 

maintain the number of incoming edges at a type I vertex but it can only maintain the 
number of outgoing edges at every type I vertex, thus proving that properties (2), (3)
and (4) are preserved. Property (1) is clearly preserved.

The action of T j
n is given by insertions of the Γi in the type II vertices on cyclic 

permutations of Γ1, using the cyclic action of BVKGra described in section 3.3.3. Since 
the cyclic action preserves properties (1)–(4), BVKGraphs is closed under the action 
of T j

n.
The insertion of the empty graph 1 ∈ BVKGra(0, 0) on some type II vertex of another 

graph has two possible outcomes. Either there is an incoming edge and the insertion 
of 1 at that vertex is 0 or there were no incoming edges and the insertion of 1 forgets 
the vertex. In both cases properties (1)–(4) are preserved, therefore BVKGraphs is closed 
under the action of T j,j+1

n .
To show that BVKGraphs is closed under the action of T ′j

n , it is enough to check that 
summands of the Maurer–Cartan element by which 

∏
BVKGraμ(·, n)[−n] was twisted 

(image of the generators of hoLie1
bimod) satisfy the following two properties:

(a) The only graph containing a 1-valent type I internal vertex is the 2 vertex graph 

, with coefficient 1.
(b) There are no graphs with vertices like the ones in property (4).
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To verify these properties we recall that the map hoLie1
bimod →

∏
BVKGraμ(·, n)[−n]

involves at some step the integration of differential forms over FH•,0. Then, property (a) 
follows from degree reasons and property (b) has a proof similar to Proposition 24.

It remains to check that the differential preserves BVKGraphs.
The differential is composed of the following pieces:

• The original splitting of type II vertices,
• Insertion of + at type I external vertices,
• Insertion of at type I internal vertices,
• Bracket with the image of the generators of hoLie1

bimod.

The first piece of the differential clearly preserves BVKGraphs. Properties (1) and (2)
are trivially preserved by all pieces of the differential. It remains to check properties (3)
and (4). The remaining pieces of the differential can produce vertices like (3) and (4), 
so we must verify that these graphs cancel. There are 3 possibilities to obtain a vertex 
of the kind (3) with the differential:

Using the second piece of the differential on a graph Γ ∈ BVKGraphs, at every external 
vertex we get a forbidden 1-valent vertex connecting to it, corresponding to inserting 
and reconnecting all the originally incident edges to the external vertex. Similarly, for 
every internal vertex of Γ, the second piece of the differential produces one 1-valent 
internal vertex with one outgoing edge connecting to it.

Due to property (a), the only “problematic” graphs that may arise from the fourth 

piece of the differential are coming from bracket with . The bracket with this 

element gives ±
∑

i Γ◦i where on the first summand we connect the internal 
vertex to every possible (type I or II) vertex of Γ and on the second summand the ◦i

represents an insertion at the vertices of Γ of type II. In , the edges connecting to type 
I vertices in Γ are all canceled out with the second and third pieces of the differential as 
described above. The edges connecting to type II vertices are canceled by the terms in ∑

i Γ◦i in which all the incident edges to i are reconnected to the type II vertex 
after the insertion.

To check that the differential preserves property (4), one can see that everytime an 
internal vertex having property (4) is created due to type I internal or external vertex 
splitting, this is term is canceled by a splitting on the other adjacent vertex to the 
2-valent vertex that was created. This also holds for splitting of vertices adjacent to 
type II vertices, but in that case the cancellation is done with a term coming from∑

i Γ◦i . Due to property (b), no more forbidden graphs are produced by the fourth 
piece of the differential. �
Lemma 26. Chains(H•,0) is natively twistable.



844 R. Campos / Advances in Mathematics 306 (2017) 807–851
The construction of the map Chains(H•,0) → Tw Chains(H•,0) is identical to 
Lemma 23 and the compatibility with the left and right actions is immediate.

As a consequence, the bimodule morphism Chains(H•,0) → BVKGra factors through 
Tw
∏
n

BVKGraμ(·, n)[−n]. The explicit formula is given by

c ∈ Chains(H)(n) �→
∑
Γ

Γ
∫

π−1
Γ (c)

f2(Γ), (17)

where f2(Γ) is the form associated to the graph Γ, as defined in Section 5.1 and if Γ is a 
graph with n external and m internal type I vertices and k type II vertices, π−1

Γ (c) is the 
chain in Chains(Hn+m,k) in which the m points corresponding to the internal vertices 
vary freely in the upper half plane while their frame is constantly pointing upwards.

Proposition 27. The bimodule morphism Chains(H•,0) → BVKGra factors through 
BVKGraphs.

The proof is essentially the same as the one of Proposition 24.

6.4. The twist

As a consequence of the previous section we have the following map of bimodules 
representing the last layer of the formality morphism:

.

As described in section 6.1, the fibers of the vector bundles Tpoly and Dpoly are iso-
morphic to Tpoly(Rd

formal) and Dpoly(Rd
formal), therefore this induces the following map 

of bimodules:

.

Since the CBr∞ formality morphism from Theorem 1 is an extension of Kontsevich’s 
L∞ formality morphism (see section 6.2), its L∞ part satisfies properties P1)–P5) from 
section 7 in [15]. In particular, property P4) implies that for n ≥ 2, Un(B, . . . , B) = 0
and thus B′ =

∑∞
n=1

1
n!Un(B, . . . , B) = U1(B) = B, under the identification Ω1(T 1

poly) =
Ω1(D1

poly).
On the other hand, the bimodule BVKGraphs is obtained from a twist therefore it is 

natively twistable.
Therefore, following the Appendix, we obtain a map of bimodules:
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,

where the superscript B indicates that we are considering the twisted differential. For this 
twist it is important that BVKGraphs forbids 1-valent internal vertices with an outgoing 
edge and 2-valent internal vertices with one incoming and one outgoing edges, since the 
linear part of B is not globally well-defined.

Composing with this map with bimodule maps CBrbimod
∞ → Chains(H•,0) →

BVKGraphs, we obtain the desired global CBr∞ quasi-isomorphism.

Appendix A. Twisting

In this Appendix we give an overview on the theory of operadic twisting following [5]
that we need for this paper and we define a notion of twisting of operadic bimodules, 
which is not more than an adaptation of the same theory. We advise the reader to read 
the third section of [5] if they are not familiar with twisting of operads.

We make the standard assumptions used in the context of twisting with respect to 
Maurer–Cartan elements. Namely, all algebras g (over hoLie1 or another operad) are 
equipped with complete decreasing filtrations g = F0g ⊃ F1g ⊃ . . . , such that the 
operations are compatible with the filtration and g = lim←−−

i

g/Fig. These assumptions are 

made so that infinite sums (going deeper in the filtration) are allowed.
Let g is a hoLie1 algebra, an element μ ∈ F1g of degree 2 is said to be Maurer–Cartan

element of g if it satisfies the Maurer–Cartan equation:

dμ +
∞∑

n=2

1
n! ln(μ, . . . , μ) = 0,

where ln are the generating operations in hoLie1.
Given such a Maurer–Cartan element, one can construct the twisted hoLie1 algebra gμ, 

that is as a graded vector space just g, but with a changed (called twisted) differential, 
denoted by dμ, that is defined by dμ(x) = dx +

∑∞
n=1

1
n! ln+1(μ, . . . , μ, x), and new 

brackets given by lμn(x1, . . . , xk) =
∑∞

n=1
1
n! ln+k(μ, . . . , μ, x1, . . . , xk).

A.1. Twisting of operads

Let P be an operad and let us assume the existence of an operad morphism 
F : hoLie1 → P. If g is a P-algebra, it inherits a hoLie1-algebra structure thanks to F . 
Therefore it makes sense to talk about Maurer–Cartan elements of g. If μ be a Maurer–
Cartan element of g, the twisted algebra gμ is no longer necessarily a P algebra. It is, 
however, an algebra over the operad TwP, whose construction depends on the map F .
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As an S-module, we have

TwP(p) =
∏
r≥0

(P(r + p) ⊗K[−2r])Sr ,

where Sr here is the subgroup of Sr+p fixing the last p entries. The r non-symmetric 
inputs should be thought as representing the insertion of r Maurer–Cartan elements. The 
composition is defined using the original composition in P, but summing over shuffles to 
ensure that it lands in the invariants over the action of Sr1+r2 .

To describe the differential we need an auxiliary dg Lie algebra:

LP := Conv(Lie{1}∨,P) =
∏
n≥1

P(n)Sn [2 − 2n].

The Lie algebra LP acts on TwP, by composition on the non-symmetric inputs. TwP(1)
acts on TwP by inner derivations.

There is an obvious degree zero map κ : LP → T wP(1).
The map F induces a Maurer–Cartan element F̃ , and the final differential is dTw =

dP + dF̃ + dκ(F̃ ), where the first piece is induced by the original differential in P, the 
second one comes from the LP action and the third one comes from the TwP(1) action.

The fact that this is a differential is essentially a consequence of the following Propo-
sition:

Proposition 28. [5, Prop. 3.3] The map

LP → LP � TwP(1)

v �→ v + κ(v)

is a morphism of Lie algebras.

The action of TwP on gμ is given by inserting Maurer–Cartan elements in the non-
symmetric slots. Explicitly, let p ∈ TwP(n) and let x1, . . . , xng

μ.

p(x1, . . . , xn) :=
∞∑
r=0

1
r!pr(μ, . . . , μ, x1, . . . , xn),

where pr is the projection of p in the factor (P(r + n) ⊗K[−2r])Sr .
There is a natural operad projection map TwP → P, sending 

∏
r≥1(P(r + n) ⊗

K[−2r])Sr to zero. At the algebra level this tells us that not only twisted gμ but the 
original g are naturally TwP algebras.

On the other direction, an operad P is said to be natively twistable if there exists an 
operad morphism P → TwP such that P → TwP → P is the identity. In this case, the 
twist of a P-algebra is still a P-algebra.
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Lemma 29. [24, Lemma 16] Let P be an operad (with an implicit map hoLie1 → P). 
TwP is natively twistable.

Notice that Tw TwP(n) =
∏

r1,r2≥0

(
(P((n + r1) + r2) ⊗K[−2r1] ⊗K[−2r2])Sr1

)Sr2 =∏
r1,r2≥0

(P(n + r1 + r2) ⊗K[−2(r1 + r2)])Sr1×Sr2 =
∏
r≥0

∏
r1+r2=r

(P(n + r) ⊗K[−2r])Sr1×Sr2 .

For p ∈ TwP(n), the map TwP → Tw TwP is defined by the inclusion of pr ∈
(P(n + r) ⊗K[−2r])Sr in the factors of Tw TwP(n) in which r1 + r2 = r and zero if 
r1 + r2 �= r.

A.2. Twisting of bimodules

Let g and h be hoLie1 algebras. Given an infinity morphism from g to h, we define a 
Maurer–Cartan element of this morphism to be a pair (μ, μ′), where μ is a Maurer–
Cartan element of g and μ′ is a Maurer–Cartan element of h such that the hoLie1

morphism sends μ to μ′.5
Let P and Q be (dg) operads and M be a P −Q operadic bimodule, that we assume 

to come with an implicit bimodule morphism F : hoLie1
bimod → M.

Let g be a P algebra and let h be a Q algebra. Due to the map F , a morphism of 
bimodules

(18)

determines a hoLie1 infinity morphism from g to h. We wish to construct a TwP −TwQ
bimodule M such that for every (μ, μ′), Maurer–Cartan element of this morphism, there 
is a natural map of bimodules

We start by giving the description of TwM as an S-module.

5 Evidently for a fixed hoLie1 infinity morphism, μ determines a unique μ′.
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Definition 14. The TwP − TwQ bimodule TwM is the space

TwM(n) =
∏
r≥0

(M(r + n) ⊗K[−2r])Sr ,

with differential dTw, where Sr here is the subgroup of Sr+n fixing the last n entries.

We need now to clarify the left and right actions, as well as the differential.
Let m ∈ TwM(n) =

∏
r≥0 (M(p + r) ⊗K[−2r])Sr . We denote by mr it’s projection 

in (M(p + r) ⊗K[−2r])Sr and for p ∈ TwP , q ∈ TwQ we use a similar notation pr, qr.
The right TwQ action on M is defined in the following way: Let m ∈ TwM(n) and 

q ∈ TwQ(l).

(m ◦i q)r :=
r∑

p=0

∑
σ∈Shp,r−p

γi,σ(mp, qr−p),

where Shp,r−p ⊂ Sr are the (p, r−p) shuffles γi,σ is the composition given by the following 
tree

We write dTw = dM+dR+dL, where dM is the differential induced by the differential 
in M.

The Lie Algebra LQ acts on (TwM, dM) by operadic derivations. The proof of this 
is the same as [5, Proposition 3.2].

The Lie Algebra TwQ(1) acts on the right on TwM by

m · q =
n∑

i=1
m ◦i q,

where m ∈ TwM(n) and q ∈ TwQ.
Multiplying by a minus sign, the previous right action becomes a left action, thus 

inducing a dg Lie algebra action LQ � TwQ(1) ⟳ (TwM, dM).
The map FQ : hoLie1 → Q gives us a Maurer–Cartan element in LQ. Due to Lemma 28

we can twist (TwM, dM) with respect to this Maurer–Cartan element, giving us the 
module (TwM, dM + dR).

There is an obvious left P action on (TwM, dM), using the original P action on M. 
It is easy to see that P also acts on (TwM, dM + dR).
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Indeed, the equation of compatibility with the differential

(dM + dR)(p ◦i m) = dPp ◦i m + (−1)|p|p ◦i (dM + dR)m

is equivalent to dR(p ◦i m) = (−1)|p|p ◦i dRm, and the associativity axiom involving the 
left and right actions of an operadic bimodule, together with the fact that dR uses right 
compositions ensures that this equality holds for all p ∈ TwP and m ∈ TwM.

The map F : hoLie1
bimod → M gives us a Maurer–Cartan element in 

∏
r HomSr (K[2r],

M(r)) =
∏

r(M(r) ⊗ K[−2r])Sr = TwM(0). Twisting with respect to this Maurer–
Cartan element we obtain a left action of TwP on (TwM, (dM + dR) + dL).

Using a similar argument of compatibility with the differential, we see that TwQ acts 
on the right on (TwM, dM + dR + dL) = (TwM, dTw). The associativity of the left 
TwP and right TwQ actions is clear and so we finished the construction of the bimodule 
TwM.

A.2.1. The action on Hom(gμ⊗•, hμ
′)

As described in the beginning of the section, we wish now to construct a map of 
bimodules

(19)

The two outer maps are the maps induced by the usual twisting of operads. For the 
main map, informally we do the usual procedure of inserting the Maurer–Cartan element 
on the non-symmetric slots. Formally, if m ∈ TwM(n),

m(x1, . . . , xn) =
∞∑
r=0

1
r!mr(μ, . . . , μ, x1, . . . , xn), xi ∈ g,

where we identify an element of M (resp. TwM) with its image in Hom(g, h) (resp. 
Hom(gμ, hμ′)).

The only thing that remains to be checked is the commutativity of the left and right 
squares, as well as the compatibility with the differential of the central vertical map. Let 
as call lPr the image of the r-ary generator of hoLie1 in P, and we define similarly lQr
and lMr .

Due to the original bimodule morphism (18), the right square is trivially commutative 
and the commutativity of the left square is a simple consequence (18) together with the 

hypothesis 
∑
r

1
r! l

M
r (μ, . . . , μ) = μ′. Also, thanks to this equation, when we evaluate 

dLm in Hom(gμ, hμ′), mu′ will replace the Maurer–Cartan element of TwM.
We wish to show that for m ∈ TwM(n) and x1, . . . , xn ∈ gμ,
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dμ
′
(m(x1, . . . , xn)) = (dMm + dLm + dRm)(x1, . . . , xn)

+
n∑

i=1
(−1)|m|+|x1|+···+|xi−1|m(x1, . . . , d

μxi, . . . , xn).

Keep in mind in the following computations that mr has r non-symmetric inputs and 
n symmetric inputs, whereas lP/Q

r will be of arity r but will have r − 1 non-symmetric 
inputs. Expanding the right hand side we get

∑
r≥0

1
r!dMmr(μ, . . . , μ, x1, . . . , xn)

+
∑

k≥2,r≥0

1
(k − 1)!r! l

P
k (μ′, . . . , μ′,mr(μ, . . . , μ, x1, . . . , xn)) +

−
∑

r≥0,k≥2

r

r!k!mr(lQk (μ, . . . , μ), . . . , μ, x1, . . . , xn) +

−
∑

r≥0,k≥2

(−1)|x1|+···+|xi−1|

r!(k − 1)! mr(μ, . . . , μ, x1, . . . , l
Q
k (μ, . . . , μ, xi), . . . , xn) +

−
n∑

i=1

∑
r≥0

(−1)|x1|+···+|xi−1|

r! mr(μ, . . . , μ, x1, . . . , dxi, . . . , xn) +

n∑
i=1

∑
r≥0,k≥2

(−1)|x1|+···+|xi−1|

r!(k − 1)! mr(μ, . . . , μ, x1, . . . , l
Q
k (μ, . . . , μ, xi), . . . , xn).

Using the Maurer–Cartan equation, the third summand simplifies to

∑
r≥0

r

r!mr(dμ, μ, . . . , μ, x1, . . . , xn),

therefore, the first, third and fifth summands add up to d(m(x1, . . . , xn)), while the 
fourth and sixth summands cancel out, leaving us precisely with dμ

′(m(x1, . . . , xn)).
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