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Optimal control of evolution

equations
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Setting of the problem

We consider equations of the form

() y =Ay+Bu+ f,  y(0) = yo.

Assumptions

Y and U are Hilbert spaces.

The unbounded operator (A, D(A)) is the infinitesimal
generator of a strongly continuous semigroup on Y,
denoted by (e?);>o.

We want to study problems for which

B¢ L(U;Y).
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1. To study equation (F) we look for an extension
of A. We look for Y and an unbounded operator
(A, D(A)) on Y for which

Y is densely embedded in Y,

D(A) is densely embedded in D(A),
Ay = gy for all y € D(A),

B belongs to L(U;Y).

This kind of extension will be useful to study boundary
control problems for parabolic or hyperbolic equations.

2. Extend the notion of weak solutions. Prove the
existence by approximation.
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We consider control problems of the form

(P) inf{J(y,u) | w € L*(0,T;U), (y,u) obeys (E)}.

with
1 [t )
J(y,u) = 5 ). 1Cy(t) — zq(t)|7
1 ) 1 [t )
+§\Dy(T)—ZT!zT+§ u(t)|gr
0

Bounded observations. (' € £(1A/;Z), and D €
L(Y; Zr).

If we observe the state on the boundary I' x (0,7") of
the domain 2 x (0,7"), C' and D may be unbounded

operators.
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Neumann boundary control of the

heat equation
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The state equation

Let 2 be a bounded domain in RY, with a boundary
I" of class C%. Let T'> 0, set Q = Q x (0,T) and
> =T x (0,T). We consider the heat equation with a
Neumann boundary control

Oy

Y Ay — f In Q)
()
8—i:u on Y, y(x,0)=yy in .

The function f € L*Q) is a given source of
temperature, and the function u is a control variable.
We consider the control problem

(P) inf{J(y,u) | u € L*X), (y,u) obeys (HE)},
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where

1 2
—5/\9—%\
/\y )| + é/uz,

2 >

B >0 and yq € C([0,T]; L*(2)).
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The heat equation with a
nonhomogeneous

Neumann boundary condition
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Recall that

D(A) = {g c H2(Q) g—i - o} Ay = Ay,

the operator (A, D(A)) is the generator of a semigroup
of contractions on L?(Q). If u = 0 a weak solution of
(HE) is a function y € L*(0,T; LQ(Q)) such that for
all £ € D(A), the mapping t — [,y(t){ belongs to

H(0,T), ny )€ = ny0§ and

y(1)E = /Q y(H)AE + /Q F(t)e

If y is a regular solution of (HE) then

| aue= [ wwae+ [uwe  vee DA,
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Definition of a weak solution

Definition. A function y € L?(0,T; L*(Q)) is a weak
solution to equation (HE) if, for all £ € D(A),
the mappmg t — [,y(t)¢ belongs to H'(0,T),

Jay(0) €= Jqyo&, anc

()¢ = / y(t)AE + / F(t)E + / u(t)e.

Theorem. Equation (HFE) admits at most one weak
solution in L?(0,T; L*(Q)).
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Proof. Suppose that y; and yo are two weak solutions.
Set z = y1 — y2. Then for all £ € D(A), the mapping

t— [, z(t)¢ belongs to H'(0,T), [,2(0)& =0, and

% RO /Q (DAE.

From Chapter 2, we know that z = 0.
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Approximation by regular controls

Let v be in L%X) and let (u,), be a sequence in
C1([0,T); H'/2(T")), converging to u in L?(X). Denote
by Nu,(t) = wy(t) the solution to equation

0
—Aw+w=0 in €, a—r:):un(t) onT.
From elliptic regularity results we know that w,, belongs
to C1([0,T]; H*(Q)). Let z, be the solution to

0z ow,,

— — Az =f— A '
at < f at _I_ wn In Q?
0z .
—=0 onX, 2(z,0)=(yo—wn(0))(xz) in .
on

Then vy, = 2z, + w, is the solution to (HF)

corresponding to (f, ., yo).
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Estimates on vy,

Since (yo—w,(0)) € L*(Q2) and f—aé‘;”qLAwn belongs
to L?(Q). Thus 2, and w,, are regular enough so that

Y, obeys:

t
/ ()2 + 2 / / V2
Y 0 Y
t t
=2/ /fyn+2/ /uyn+/|yo\2,
0 Q2 0 I' P

for every t €]0,T]. We first get

2 2
[ C([0,T];L2(Q)) +2([Vy,| L2(0,T;L%(Q))

< 2[[ fll2llynll L2y + 2llunll Lellynll L2y + HZJOH2LZ(§2)°
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Thus with Young's inequality, we next obtain

lynllco,m;2)) + 1Ynll L2051 0))

< O (Ifll 2@y + lunllzzsy + ooy )

From the weak formulation we can next prove that, for
every ¢ € D(A),

ROk

HIfllz2@) ISl 20y + llunll L2 <] 22(r)-

< HynHLQ(Q)HCHHZ(Q)

L2(0,T)

Let (¢;);en C D(A) be a Hilbertian basis in L?(9).
Using the diagonal process, we can prove that there
exist subsequence, still indexed by n to simplify the

writing, and y € C([0,T]; L*(Q?)) N L?(0,T; H'(Q)),
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such that

Y — U in C([0,T]; L*(Q)) N L*(0,T; H'(Q)),

/n —>/ . in HY0,T), for all j.

Thus we can pass to the limit in

;Zt Yn(t)Ci = /Qyn(t)ACj—l—/Qf(t)Cj—l—/Fun(t)cj’

/Qyn(O)Cj:/Qyon,

— Typeset by Foil TEX — 17



and we obtain

d
% [vos = [ wo0sg+ [ 16+ [,

/Qy(O)CjZ/Qyon,

for all 7 € N. Since ((;)jen C D(A) is a Hilbertian
basis in L?(Q2), we prove that y is a weak solution of

Theorem.  For every u € L*Y), f € L?*Q),
yo € L?(Q), the heat equation (HE) admits a unique
solution g in L?(0,T; L*(Q)) and

1ylleo.m1:0200)) T 19l L2007 11 )
< C(If Nz + Il 2y + 9ol 2oy
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The semigroup approach

We set ¥ = (HY(Q)). The norm on (H(Q)) is
defined by

y— [(=A+ 1)yl

where ¢ = (—A + 1)~ is the solution of

—AE+E=C inQ, %:O on I
on

The associated inner product is

(v,¢) iy = (a+D7y, (~a+D7%¢) .
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To define the continuous extension of A we observe
that if y € D(A) we have

(Ay, C) )y ((—A + ) 'Ay, (=A + I)_1C> o)

/Vy (A +1)"'¢.

Thus we define the unbounded operator A on (HY(Q))
by D(A) = HY(Q), and

(Ey,g)(m(m)lz —/va-V(—A+I)—1g

for every ¢ € (H'(Q))’, or equivalently

A — _ - Vz € HY(Q).
< y’z><H1<Q>>',H1<Q> /va vz 2 € H ()
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Theorem. The operator (A, D(A)) is the infinitesimal
generator of a strongly continuous semigroup of
contractions on (H(Q))’.

Proof. The proof relies on the Hille-Yosida theorem.

Ais dissipative.
A — —A+1)7!
( yy)(Hl(Q)), /Vy V(-A+1)

/y +/ ~A+1)"'yly <0,

(A + 1)yl 20 < lyllL2@)-

Indeed
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A is m-dissipative. Let A > 0. For all f € (HY(Q)Y,
the equation R

Ny — Ay = f
admits a unique solution in D(A).

This equation is nothing else than

/Q ()\yz VY VZ) B <f’ Z>(H1(Q))’,H1(Q)

for every z € H(Q).
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We want to write equation (HFE) in the form
y' = Ay+f+Bu,  y(0) =y,

where B € L(L*(T'); (H'(€2))") must be identified.

As before, we first suppose that u €
C([0,T); H/?(T')). Write y the solution to (HE)
corresponding to (f,u,yo) in the form y = z + w,
where w(t) = Nu(t). Recall that

%—Az:f—w’—w in Q,
%
on
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We have

AN

2(8) = A (yo—w(0))+ / A=) (f(s)—w! ()t (s)) ds.

With an integration by parts we can write

N

t t
/ e M=)y () ds :/ AeM=9)y(s) ds+w(t)—ew(0).
0 0

Thus

AN

~ t ~
2(t) = eMyy + / (—A + De?w(s) ds — w(t),
0
that is

i t_ R
y(t) = ey + / e =) (— A+ I)Nu(s) ds.
0
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Thus we can write
y' = Ay + (—A+I)Nu.
We set Bu(t) = (—A + I)Nu(t).
N : L¥T) — H*?(Q)
—A41 : HYQ) — (HYQ))
Thus B € L(L*(T); (H*(R))) and the representation
of y by the above equation is still meaningful even if

u € L*(X). Accordingly y is a weak solution of the
evolution equation iff

G0.0) = (w0, A¢),

(H(Q))

—I—(Bu, ()(

H(Q)) H(Q))

Is it the same definition as above ?
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From the definition of (—A + I)~!w it follows that

(w,{)(Hl(m)/:/Qw(—A%—I)_lg"

Thus from the definition of A we get

((—E + I)Nu, g) e

= /u(—A+I)1Cds
r
We have
(BU, C)(Hl(ﬂ))’ — /FU(—A—FI)_1C for all C S (Hl(ﬂ))/
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We can check that
_ B 1, o _1
(1) iy = [ (VA + Dy =8+ D7
H=A+ DTy (-A+ 1))
Z/yPA+D1@
Q
and

(yaA\C)(Hl(Q))’ = —/QV(—AJFI)_ly - V(

= / y A=A+ 1)7'¢C.
Q

Replacing £ € D(A) in the first definition by (—A +
I)~1¢, with ¢ € L?(Q), we obtain the second definition.
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Existence of a unique optimal control

1. Set F(u) = J(y(u),u). Let (un), be a minimizing
sequence in L?(X), that is

||mn_>ooF(un) = infueLQ(Z)F(U).

Let y, the solution of (HFE) corresponding to u,,
suppose that (uy,), is bounded in L?(X), and that

Up — U weakly in L*(%).
2. Let y = y(u).
The operator
A u—s (y(u), y(u)(T))

is affine and continuous from L?(X) to L?(Q) x L*(Q).
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The sequence (y,), converges to gy for the weak
topology of L?(Q), and (y,(T)), converges to 4(T)
for the weak topology of L?().

3. Using the weakly lower semicontinuity of F', we
obtain
F(u) < liminf,, _ o F(uy,) = m.

Thus @ is a solution to (P). The uniqueness follows
from the strict convexity of F'.
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Optimality conditions
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Directional Derivative

F'(u)v = /Q (y(w) — ya)=(v)
i / (y(u)(T) — ya(T)

where z(v) is the solution of

%—Az—() in (),
%:v on X, z(z,0)
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Identification of F’(u)

We look for q such that

/Q (0(w) = 5)2(0) + [ [0 = 3)=()(D) = [ v

Q

Let p be a regular function defined on () and write an
integration by parts between z(v) and p:

o;/@@t_m)p
:/Qz( — Ap) + / /vp+/
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|dentification with

9
We set
9,
—a—f —Ap=y(u) —yq inQ,
Op

and we have
Flupo= [ v+ Bul,
5
if the above calculation are justified.
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The adjoint equation

Let g € L?(Q), pr € L?*(2). The terminal boundary
value problem

—%—Ap:g in @,
9p

on

(AE)
=0 onX, p(z,T)=pr inf),

is well posed.

Ipllco,m;r2(0)) < CUlgllrz@) + llprllr2e)-
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Integration by parts between 2z and p

Theorem. Suppose that g € L*(Q), pr € L*(2), and
v € L?(X). Then the solution z of equation

0z _ 0z .
E_AZ_O in Q, %—v onY, z(x,0)=0 in €,

and the solution p of (AE) satisfy the following formula

/Evp:/ng%—/Qz(T)pT.

Proof. We prove the IBP formula for pr € H}(Q),
g € L*(Q), v € CY(]0,T); H/2(9Q)). In that case z
and p belong to L?(0,T; H*(Q))) N H(0,T; L*(Q)),
and the IBP formula is satisfied. When pr € L?(Q)
and v € L*(X) we use a density argument.
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Theorem. (i) If (y,u) is the solution to (P) then
u = —%p s, Where p is the solution to the adjoint
equation corresponding to 1.

(il) Conversely, if a pair (g,p) € C([0,T]; L*(R2)) X
C([0,T]; L*(Q)) obeys the system

% - Ag — f In Qa

0y 1. . .

a_z — _Bp on 27 y(O) — Yo In Qa
_%_Aﬁ:g_yd in Q,

Ip _ .

F 0 onX, p(T)=y(T)—ya(T) in&,

then the pair (7, —%ﬁ‘z) is the optimal solution to
problem (P).
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Proof. (i) The necessary optimality condition is already
proved.

(ii) The sufficient optimality condition can be proved
with the sufficient optimality condition stated in
Chapter 1.
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Neumann boundary control of the

wave equation
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The state equation

The notation 2, I', T', @), X2, as well as the assumptions
on {) and I', are the ones of the previous section. We
consider

. oy
T Ay = in@, —===u onx,
WE) Y y=f Q 5,

y(x,0) =yo and y'(2,0) =y inQ,

with (yo,y1) € H' x L*(Q), f € L?*(Q), and u €
L?(%).
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We set D(A) = {y; € H3(Q) | 24 = 0} x HY{(Q),
Y = HY(Q) x L*(Q), and

o <1 o )
AZ_A(ZQ)_<A21—21>°

Theorem. The operator (A, D(A)) is the infinitesimal
generator of a strongly continuous semigroup of
contractions on Y. If f € L?(Q), yo € H'(Q), y1 €
L?(Q), and u = 0, equation (WE) admits a unique
weak solution which belongs to C([0,T]; H}(Q)) N
C([0,T7; L*(2)).

To study the wave equation with nonhomogeneous
boundary conditions, we set D(A) = H'(Q) x L*(Q),
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Y = L2(Q) x (HY(Q))’, and

-~ ~ 21 29
= A s ~
Az (ZQ) (A,Zl—Zl)’
where (A, D(A)) is the unbounded operator on
(H'(€2))" defined by
D(A) = HY(Q),

(Az ¢ /Vzl A+ D)7

Hl(Q))’
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Theorem. The operator (g, D(g)) is the infinitesimal
generator of a semigroup of contractions on Y.

Now, we consider equation (W FE) with a control
in the Neumann boundary condition. As for the heat
equation we can prove that equation (WFE) may be
written in the form

d N
d—'z:(A+L)z+F+Bu, 2(0) = 2o,

F. Bu e L2(0,T: L2(Q)) x L2(0.T: (H'Y(Q))), 2 €
L?(Q) x (H'(Q))', are defined by

po () H(2)=(2) 7=(5).
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~

z():(z()), and Bou=(—A+1)Nu.
1

Theorem. For every (f,u,y0,y1) € L*(Q) X
LX) x L?(Q) x (HYQ)), equation (WE)
admits a unique weak solution z(f,u, %o,

)
(y(fauay07y1)7 (fvuay()?yl)) In C([OvT]sz( ))
C([0,T); (HH(2))").
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The control problem
(P) inf{J(y,u) | (y,u) obeys (WE), u € L*(¥)},

the functional J is defined by

1 1
S =5 [ w45 [ ) P [ o

where the function y4 belongs to C([0,T7; L*(Q)).

Theorem. Assume that f € L?(Q), yo € H'(Q),
y1 € L?(Q), and yq € C([0,T]; L*(2)). Problem (P)
admits a unique solution (¥, u).
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Existence of a unique optimal control

1. Set F(u) = J(y(u),u). Let (un), be a minimizing
sequence in L?(X), that is

||mn_>ooF(un) = infueLQ(E)F(U).
We suppose that
Up — U weakly in L?(X).

Let y, the solution of (WFE) corresponding to u,,
suppose that (uy,), is bounded in L?(X), and that

Up — U weakly in L*(2).
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Passage to the limit in the equation. Let § = y(u).

The operator
A+ u— (y(u), y(w)(D))

is affine and continuous from L?(X) to L*(Q) x L*(Q).

We conclude that problem (P) admits a unique solution
(7, a).
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Optimality conditions for (P)
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By a classical calculation we have
P = [ (v ~a)=(0)
+ [ WD) - gl )e)1) + 5 [

where z(v) is the solution of

2 —Az=0 inQ, %:v on X,
on
z(x,0) =0and 2'(z,0)=0 in Q.
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Identification of F’(u)

We look for q such that

/Q (0(w) = 5)2(0) + [ [(0() = s)=()(D) = [ v

Let p be a regular function defined on Q and write an
integration by parts between z(v) and p:

O:/Q(z"—Az)p
/Q 0 = Ap) + [ S (@Op(D)

[ [ [0
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|dentification with

[;mm—y@n+[ymw—y@4awzéﬁu

We set

and we have
Flupo= [ v+ Bul,
>

if the above calculation are justified.
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Theorem. (i) If (y,u) is the solution to (P) then
u = —%p s, Where p is the solution to the adjoint

equation corresponding to ¥:

%,
p”—Ang—yd in (), —p:O on X,
on

p(T) =0and p'(T)=—(y —ya)(T) in
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(it) Conversely, if a pair (g,p) € C([0,T]; L*(Q2)) x
C([0,T]; L*(Q2)) obeys the system

a5 1

~/,—A~: . Y T Z
Y y=7Ff iInQ, > ﬁp on X,
7(0) =yo, ¥'(0)=wy1, inQ,
-
'~ Ap=j—ys inQ, =0 onX,
on

p(T) =0, p'(T)=—-4(T)+ya(T) inQ,

then the pair (7, —%ﬁ‘z) is the optimal solution to (P).
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Dirichlet boundary control of the

heat equation
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The state equation

Let 2 be a bounded domain in RY, with a boundary
' of class C%. Let T > 0, set Q = Q x (0,T) and
> =T x (0,T). We consider the heat equation with a
Dirichlet boundary control

dy ..
(HE) 815 Ay_f In Q)

y=u on Z) y(a?,()):yg in ).

The function f € L?*(Q) is a given source of
temperature, and the function u is a control variable.

We suppose that yg € L*(Q).
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We consider the control problem

(P) inf{J(y,u) | u e L*X), (y,u) obeys (HE)},

J(y, ——Hy( ) = Ya(T) 1510

oo

8> 0 and yq € C(]0, T]; L3(2)).

Recall that
1y(T) — ya(T) -1

— <(_A)_1(y(T) — yd(T)), y(T) _ yd(T)>

HL(Q),H-1(Q)
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The heat equation with a
nonhomogeneous

Dirichlet boundary condition
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Recall that
D(A) = HX Q)N HNQ),  Ay= Ay,

the operator (A, D(A)) is the generator of a semigroup
of contraction on L?(Q). If u = 0 a weak solution of
(HE) is a function y € L*(0,T; L2(Q)) such that for
all £ € D(A), the mapping t — [, y(t) £ belongs to

H(0,7), ny )€ = ny0§ and

(1)e = /Q y(DAE + / f(t)e

If 4 is a regular solution of (H E) then

/Ay ()€ = / t)AS — / 85, vé € D(A).
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Definition of a weak solution

Definition. A function y € L?(0,T; L*(Q)) is a weak
solution to equation (HE) if, for all £ € D(A),
the mappmg t — [,y(t)¢ belongs to H'(0,T),

Jay(0) €= Jqyo&, anc

0= [ woac+ [ fog= [ ut %

Theorem. Equation (HFE) admits at most one weak
solution in L?(0,T; L*(Q)).
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Proof of uniqueness. Suppose that y; and y, are
two weak solutions. Set z = y; — y2. Then for
all £ € D(A), the mapping t — [, 2(t){ belongs to
H(0,7), fQ 2(0) & =0, and

d
- Qz(t)g:/Qz(t)Ag.

From Chapter 2, we know that z = 0.
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Approximation by regular controls

Let v be in L%X) and let (u,), be a sequence in
C1([0,T); H3/?(T")), converging to u in L?(X). Denote
by Du,,(t) = w,(t) the solution to equation

—Aw =0 inQ, w=u,(t) onl.

From elliptic regularity results we know that w,, belongs
to C1([0,T]; H*(Q)). Let z, be the solution to

0z ow,,

T AT

z2=0 on, 2z(z,0)=(yo— wn(0))(x) in Q.

+ Aw,, in Q,

Then vy, = 2z, + w, is the solution to (HEF)
corresponding to (f, wn,, yo).
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Estimates on y,,

Since (yo—w,(0)) € L*(Q) and f— 8“’"+Awn belongs
to L?(Q), z, and w, are regular enough so that y,

obeys:

[ )8 (0) +2 / | 1ol = lol-10
—2//f yn—I—Q//un - yn}

for some t €]0, 7.
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We first get

lynll 2oz m—1@y) + 2Munll T2 70200

< HyoH?{q(Q) + 20 fll z2llynll L2(g)

0 _
T LT

Observe that

[

< Clly,, .
oy < Cllvnllzz()

Thus with Young's inequality, we next obtain

lynllco,mm-19)) + 1YnllL2(0,7: 22002

< O(Ifllz2@) + lunllzzgsy + oll2c )
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An other estimate on y,

From the variational formulation we can next prove
that, for every ( € D(A),

< ”@/nHL2(Q)HCHH2(Q)

1< /Q Un ()¢

2l z2c) + lunll L2y lI€H 2 (ry-

L2(0,T)

Let (¢;);en C D(A) be a Hilbertian basis in L?(9).
Using the diagonal process, we can prove that there
exist subsequence, still indexed by n to simplify the

writing, and y € C([0,T); H~Y(Q)) N L?(0,T; L*(Q)),
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such that

Y — U in C([0, T]; H Y(Q)) N L*(0,T; L*()),

/n —>/ . in H*(0,T), for all j.

Thus we can pass to the limit in

o [0 = [ 0086+ [ 106 [ w5,
/Qyn(O)Cj:/Qyon,
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and we obtain

o v = [v0ag+ [ 506 - [u03

/Qy(O)Cj:/QyOCja

for all 7 € N. Since ((;)jen C D(A) is a Hilbertian
basis in L?(Q2), we prove that y is a weak solution of

Theorem.  For every u € L*Y), f € L?*Q),
yo € L?(Q), the heat equation (HE) admits a unique
solution g in L?(0,T; L*(Q)) and

1yllcqomm-1@) + 1wl L2007 22(0))

< C(IFllz2@) + Il 2 + ol 2oy )
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The semigroup approach

We set Y = (H2(Q)NHL(Q))". The norm on (H2(Q)N
H}(Q)) is defined by

Y — H(—A)_ly\lmm,
where ¢ = (—A)~1( is the solution of
—AE=C in§), £=0 onl.

The associated inner product is

= ((2) 'y, (-4)7¢)

(y, C) (H2(Q)NHL(Q))/ L2(Q)
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To define the continuous extension of A we observe
that if y € D(A) we have

(Ay’ C) (H2NHL(Q))! B ((_A)_lAy’ (_A)_lc)

_ /Q y(—A)C.

Thus we define the unbounded operator A on (H2()N
H3(Q)) by D(A) = L*(), and

A = — [ y(-A)"IC.
(y’g)m?(mmHg(m)' /Qy( )<

Theorem. The operator (E, D(g)) is the infinitesimal

generator of a strongly continuous semigroup of
contractions on (H*(Q) N H}(Q))".

L?(Q)
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Proof. The proof relies on the Hille-Yosida theorem.

Ais dissipative.

(AY, Y) (2w @)y = — / (—A)"lyy <0.
0

A is m-dissipative. Let A > 0. For all f € (H2n
H3(Q)), the equation

Ny — Ay = |

admits a unique solution in D(ﬁ)
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We want to write equation (HFE) in the form
y'=Ay+ f+Bu,  y(0) =y,
where B € L(L*(T"); (H*NH}())") must be identified.

As before, we first suppose that u €
C1([0,T); H3?(T')). Write y the solution to (HE)
corresponding to (f,u,yp) in the form y = z + w,
where w(t) = Du(t). Recall that

%—Az=f—w’ in Q,

z=0 on, 2z(z,0)=(yo—w(0))(x) in .
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We have

AN

2(8) = At (yo — w(0) + / A=) (f(5) — w'(s)) ds.

With an integration by parts we can write

N

t t
/ e M=) () ds :/ AeM =)y (s) ds+w(t)—ew(0).
0 0

Thus

AN

t ~
2(t) = etyo + / (—A)e = w(s) ds — w(t),
0
that is

_ t R
y(t) = ey +/ eA=5) (—A)Du(s) ds.
0
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Thus we can write

y' = Ay + (—A)Du.

AN

We set Bu(t) = (—A)Du(t).

D : L*T) — HY?(Q)

—A ¢ LX(Q) — (H?2NHM Q)
Thus B € L(L*(1);(H? n Hi(Q))) and the
representation of y by the above equation is still

meaningful even if u € L%*(X). Accordingly y is a
weak solution of the evolution equation iff

Cw. O = W), A)g + (Bu, g

Is it the same definition as above ?
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From the definition of A and with a Green formula, we
get

(~=A)Du,¢)

(H2NHg ()’

— [ Du-8)7¢ = | Du-a)(-8)%
[l

We have

(Bu’ C)(mmﬂg(@))f - /Pu% {(_A)_ZC} ey,
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We can check that
_ —A —1 —A —1
(1) iy = |8 (8¢

- / y(—A)7%,

and

(y,ﬁé)(HzmHé(Q)),z —/Q(—A)_lyc
- [va-a

Replacing £ € D(A) in the first definition by (—A)~2(,
with ¢ € (H*NHJ(Q))’, we obtain the second defintion.
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Remark. With the semigroup approach we obtain the
existence of a solution in C([0,T];(H* N H}(Q))).
With the variational method, the approximation
by regular controls and the estimates we obtain
the existence of a solution in C([0,T]; H () N
L?(0,T; L*(Q)).

— Typeset by Foil TEX — &



Existence of a unique optimal control

1. Set F(u) = J(y(u),u). Let (un), be a minimizing
sequence in L?(X), that is

||mn_>ooF(un) = infu6L2(Z>F(U).

Let y, the solution of (HFE) corresponding to u,,
suppose that (uy,), is bounded in L?(X), and that

up, — 4 weakly in L*(%).
2. Let y = y(u). The operator

Au— (y(u),y(u)(T))

is affine and continuous from L%(X) to L*(Q) X
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H-1(Q).

The sequence (y,)n, converges to y for the weak
topology of L?(Q), and (y,(T)), converges to (T
for the weak topology of H~1(Q).

3. Using the weakly lower semicontinuity of F', we
obtain
F(u) < liminf,, o F(u,) = m.

Thus @ is a solution to (P). The uniqueness follows
from the strict convexity of F'.
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Optimality conditions
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Directional Derivative

F'(u)v = /Q (y(w) — ya)=(v)

)@~ 20) s e

where z(v) is the solution of

%—AZ:O in (),

z=v onY, z(x,0)=0 inQ.
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Identification of F’(u)

We look for q such that

H—l

| Wi —waz+ (e —u().21), = [ av

Let p be a regular function defined on Q and write an
integration by parts between z(v) and p:

/ / (2 — Az)p
0z

= /QZ(—pt — Ap) + <10(T)a Z(T)>H3,H—1 — z%p
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|dentification with
| -+ (), 20)D),, = [ v

We set

—%—Ap:y(u)—yd in @, p=0 on 2,

p(T) = (—=A) " (y(u) — ya)(T)] in Q,
and we have

F'(u)o = / (2 1 Bup

if the above calculation are justified.
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The adjoint equation

Let g € L?(Q), pr € H}(Q). The terminal boundary
value problem

op .
——— — Ap = in Q,
(AE) 5 p=yg Q
p=0 onX plx,T)=pr infl,

Is well posed.

\|PHC([0,T];H5(Q)) + ||l 200,77, H2(02))

< C(llgll 2y + llprll2(02))-
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Integration by parts between 2z and p

Theorem. Suppose that g € L*(Q), pr € L*(2), and
v € L?(X). Then the solution z of equation

%_Azzo nQ, z=v on¥, 20)=0 in®,

and the solution p of (AE) satisfy the following formula

dp
_/Ev%:/ng+<z(T),pT>H_1,H5.

Proof. We prove the IBP formula for pr € H}(Q),
g€ L?Q), veCY]0,T); H3%()). If z and p belong
to L2(0, T; H2())) N HY(0, T; L2(€)), and the IBPF
is proved. When v € L?(X) we use a density argument.
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Theorem. (i) If (y,u) is the solution to (P) then
u = %%, where p is the solution to the adjoint equation

corresponding to ¥:

—%—Apzz?—yd in Q,

p=0 on%, pT)=(—A)""(H—y)(T)] inQ,
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(it) Conversely, if a pair (g,p) € C([0,T]; L*(Q2)) x
C([0,T]; L*(Q2)) obeys the system

E_Ay:f mQa

10p o

y_E% on 2, y(O) = Yo In §),
Jp .
_E_Ap:y_yd mQa

p=0 onX, p(T)=(-A)"'GT)—yaT)] inQ,

(P).
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Dirichlet boundary control of the

wave equation
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The state equation

The notation 2, I', T', @), X2, as well as the assumptions
on {) and I', are the ones of the previous section. We
consider

y'—Ay=f inQ, y=u onX,

(WE)
y(aj,()) = Yo and y/(CU,O) = Y1 In Qa

with (y(),yl) - L2(Q) X H_l(Q), f - L2(Q), and
u e LA(X).
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We set D(A) = H?*(Q) N H}(Q) x H}(Q), Y =
H(Q) x L*(Q), and

o 21 o 29
a=a( )= (2,

Theorem. The operator (A, D(A)) is the infinitesimal
generator of a strongly continuous semigroup of
contractions on Y. If f € L?(Q), yo € Hy(Q), y1 €
L?(Q), and u = 0, equation (WE) admits a unique
weak solution which belongs to C([0,T]; H;(Q)) N
CH([0,TT; L*(9)).

To study the wave equation with nonhomogeneous
Dirichlet boundary conditions, we set D(A) = L*(Q) x
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H=1(Q), Y = HY(Q) x (H%(Q) N H}(Q)), and

< xf <~ - 5«’2
=a(5)-(a)

where (A, D(A)) is the unbounded operator on
(H*(2) N Hy(Q)) defined by

D(4) = L*(9),

A = — N
( <15 C) (HQ(Q)HH(%(Q))’ /QZl( ) C

Theorem. The operator (A, D(A)) is the infinitesimal
generator of a semigroup of contractions on Y.
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Now, we consider equation (W E) with a control in the
Dirichlet boundary condition. As for the heat equation
we can prove that equation (W E) may be written in
the form

d> -~
d—j:Az+F+Bu, 2(0) = 2o,

F, Bu € L20,T:L2(Q)) x LX0,T;(H2() N
H3(Q))), z0 € L*(Q2) x H}(Q), are defined by

B“:<Bzu>’ FZ(?‘) and Z":@?)

and
Bou = —ADu.
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Theorem. For every (f,u,yo,y1) € L*(Q) x L*(X) X
H=1(Q) x (H*(Q) N H}(Q))', equation (WE) admits
a unique weak solution z(f,u,yo,y1) = (y,y’) in
C([0,T]; H=1(2)) N C([0, TT; (H*(2) N Hg(2))").

Existence of a solution in C([0,7];L%(Q)) N
CH([0, T]; H=H(S))
e Approximation by regular controls

e Definition of solutions in the sense of transposition

e Estimates on y,, by duality
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New regularity results for the wave equation Let
6 be the solution to

9" —A0=¢g inQ, =0 on?X,
(9(0) — (9(), (9/(0) — (91 in ).

Theorem. The solution 6 satisfies the following
estimates

10Nl 0,71 122 2y + 1191l o2 o, 77:22(0)) + H8n| L2(3)

< C(H9o\|H5(Q) + 11011 22(0) + HgHLl(o,T;LQ(Q)))'
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Approximation by regular controls

Let v be in L%X) and let (u,), be a sequence in
C?(]0,T[; H3/?(T")), converging to u in L?(X). Denote
by Du,,(t) = w,(t) the solution to equation

—Aw(t) =0 inQ, w(t)=1un(t) onTl.

From elliptic regularity results we know that w,, belongs
to C2(]0,T[; H*(R?)). Let (yon)n be a sequence in
H?(Q) N H}(Q), converging to yo in L*(Q), and let
(y1.n)n be a sequence in Hj(Q2), converging to y in
H=1(Q). Let 2, be the solution to

- Az=f—-w +Aw, inQ, 2=0 on?,
2(0) =yon, 2(0)=y1, inQ.
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Then y, = 2z, + w, is the solution to (WE)
corresponding to (f, un, Yo.n, Y1.n)-

Let 6 be the solution to
0" —A0=¢g inQ, 6=0 onX,
O(T)=0, 6(T)=0 inQ,
where ¢ is a given function in LY(0,T; L*(Q))). The

functions vy, and 6 are regular enough to justify
integrations by parts. We obtain

00
[mg==[ung ~ [ w0.0©+ [ n.60).
Q )y n Q Q
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Definition of a solution in the sense of
transposition

Definition. A function y € L?(0,T;L?*(Q)) is a
solution to equation (W E) in the transposition sense
if and only if

/yg
Q

00 ,
— —/Zu% — /Qyoﬁ (0) + <9(O)’y1>H3(Q),H—1(Q)

for all g € L(0,T; L*(Q)), where 0 is the solution to

0" —AN0=¢qg inQ, 0=0 on X,
O(T)=0, ¢(T)=0 inQ.
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Theorem.  Equation (WFE) admits at most one
solution in L?(0,T; L*(Q)) in the transposition sense.

Proof. Suppose that y; and y, are two solutions.
Set z = y; — yo. Then

/zgzO
Q

for all g € L1(0,T; L*(2)). Thus z = 0.
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First estimate on y,,

We have
|ynllLoe(0,7;22(0)) = SUP{/Qyng\ l9ll 210722 (00)) = 1}

+ lyo,nll L2 167 (0)] L2(0)

<
Jttnll 2| 5,”( .
+1000) | 1 e 192,01l 1110

< (Ilullzzgsy + lvoll 2oy + Il -0y

Thus (y,)n is a Cauchy sequence in C([0,T]; L*(Q)).
Denote by y the limit of this sequence.
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By passing to the limit in the variational formulation
satisfied by v, we prove that

00 ,
/ng——/zu%—/gyo@ (O)+<9(O)’yl>ﬂg,ﬂ—1

for all ¢ € L'(0,T;L*(Q?)). Thus we have proved
the existence of a unique solution to (WE) in
C([0,T7; L*(92)).
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Second estimates on y,,

For 0 < 7 < T, let - be the solution to

0" —A6=0 in@Q, =0 onX,
O(t) =06y, O'(t)=0 inQ.

We can verify that
/
<yn(7)’ 90>H—1,H5
00,
[ 5140:0) = [ 90,8,0 = [ w0,
Thus

Hy;z”C([O,T];H_l):SUPTSUPHHOH =1 Yn(T), 00
Hy
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We have

quleC([O,T];H_l)

< C(HunHLQ(E) + 1Y0.nll 2(0) + Hyl’n”H”(Q))’
and

Hy/HC([O,T];H_l)

< (ullzzgs) + Il + Il 1oy ).
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The control problem

(P) inf{J(y,u) | (y,u) obeys (WE), u e L*(%)},

the functionals J is defined by

J(y, u)
=5 [ w5 [ ) - [

where the function yg belongs to C([0,T]; L*(Q)).

(
Theorem. Assume that f € L?(Q), yo € L*(Q),

y1 € H=1(Q), and y; € C([0,T]; L*(Q2)). Problem
(P) admits a unique solution (¥, u).
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Existence of a unique optimal control

1. Set F(u) = J(y(u),u). Let (un), be a minimizing
sequence in L?(X), that is

||mn_>ooF(un) = infueLQ(E)F(U).
We suppose that
Up — U weakly in L?(X).

Let y,, the solution of (W E) corresponding to u,,.
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Passage to the limit in the equation. Let § = y(u).

The operator
A+ u— (y(u), y(w)(D))

is affine and continuous from L?(X) to L*(Q) x L*(Q).

We conclude that problem (P) admits a unique solution
(7, a).
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Optimality conditions for (P)
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By a classical calculation we have
P = [ (v ~a)=(0)
+ [ WD) - gl )e)1) + 5 [

where z(v) is the solution of

2~ Az=0 inQ, z=wv onbX,
z(2,0) =0 and 2'(z,0) =0 in Q.

— Typeset by Foil TEX —

104



Identification of F’(u)

We look for q such that

/Q () = 5)2(0) + [ [(0() = 5)=()(D) = [ v

Q

Let p be a regular function defined on Q and write an
integration by parts between z(v) and p:

0= /Q(z" — Az)p

9
, 0z Op
_ ™ (T) — [ 22 st
/Qz< W) - [ oo+ [ G
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|dentification with

/Q () =)z + [ [0 = 92)T) = [ g

We set

p'—Ap=y(u)—ya inQ, p=0 onZ,
p(z,T)=0and p'(z,T)=—(y(u) —yq)(T) in Q.

and we have

F'(u)o = / (2 1 Bup.

if the above calculation are justified.
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Theorem. (i) If (y,u) is the solution to (P) then

U = %%, where p is the solution to the adjoint equation

corresponding to ¥:

p'—Ap=y—yq inQ, p=0 onX,
p(z,T)=0and p'(z,T) = —(§—yq)(T) in Q.
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(it) Conversely, if a pair (g,p) € C([0,T]; L*(Q2)) x
C([0,T]; L*(Q2)) obeys the system

10p
7' — Ay =f in Q,gzga—i on .,
7(0) = yo, ¥'(0) =51, inQ,
~// Ap — y Yd In Q? ﬁ =0 on 27

p(T) =0, p(T)=-y(T)+ya(T) in

90) is the optimal solution to (P).

tblr—*
QJI
S I

then the pair (7,
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