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Optimal control of evolution
equations
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Setting of the problem

We consider equations of the form

(E) y =Ay+Bu+f,  y(0)=yo.

Assumptions

Y and U are Hilbert spaces.
The unbounded operator (A, D(A)) is the infinitesimal
generator of a strongly continuous semigroup on Y.

This semigroup will be denoted by (e!*);>.
The operator B belongs to L(U;Y).
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The control problem

(P) inf{J(y,u) | u € L*(0,T;U), (y,u) obeys (E)},

J(y,u)
1 g 2 1 2
=5 | 1000 = )l + 51Dy(T) ~ 2l

1 [t )
+5 u(t)|7-
0

Assumption

Z and Z7 are Hilbert spaces.

The operator C' belongs to L(Y'; Z), and the operator
D belongs to L(Y; Zr). The function z; belongs to
L*(0,T;Z) and zr € Z7.
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Optimal control

of the heat equation
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The state equation

Let 2 be a bounded domain in RY, with a boundary
' of class C%. Let T > 0, set Q = Q x (0,T) and
> =T x (0,T). We consider the heat equation with a
distributed control
(HE) %—Ayzﬁrxwu in Q,

y=0 onX, y(z,0)=1yy in .
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The control problem
inf{J(y,u) | v € L*w x (0,T))),
(y,u) obeys (HE)},

1 2
5/ |y—yd\
/\y T)|” + é/ u?,
2 w X (0,7T)

B >0 and yq € C([0,T]; L*(2)).

(P)

where

Estimate for the state variable

H?/HC([O,T];L2(Q))

< Clllvoll2e) + [1fllz2@) + llullL2(wx (0,1)))-
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Existence of a unique optimal control
1. Set F(u) = J(y(u),u). Let (un), be a minimizing
sequence in L?(w x (0,T)), that is

||mn_>ooF(un) = infu€L2(wX(0,T))F(u)‘

Let y, the solution of (HFE) corresponding to wu,,
suppose that (), is bounded in L?(w x (0,T)), and
that

Up — U weakly in L*(w x (0,T)).
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2. Let y = y(u).
The operator
A:ou— y(u)
is affine and continuous from L?(w x (0,T)) to L*(Q),
and
Ar + u— y(u)(T)
is affine and continuous from L?(w x (0,T)) to L?(Q).

The sequence (y,), converges to gy for the weak
topology of L?(Q), and (y,(T)), converges to %(T)
for the weak topology of L?(Q).
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3. Using the weakly lower semicontinuity of

H ”L2(Q) H HLZ(Q) || HLZ(wX(O T)) we Obtain

/ u? < Iiminfn_mo/ u,,%,
wXx (0,7T) w X (0,7T)

/ ’y _ yd|2 S ||m|nfn—>oo/ ‘yn — yd|27
Q Q
and

[ 15T) = 5a(D? < limin o [ fynlT) = TP
Combining these results, we have
F(u) < liminf, o F(u,) =m.

Thus u is a solution to (P).
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Uniqueness. Recall that the mappings
u—y(u) and u— y(u)(T)

are affine. Thus
1 5 1 5
U3 ly(u) — ya|” + 5 y(u)(T) — ya(T)]
Q Q

Is convex. The mapping

5/ 5
U — — qu
2.Jq

is stricly convex. Thus the uniqueness follows from the
strict convexity of F'.

— Typeset by Foil TEX — 13



Optimality conditions
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Derivative of the state variable

Equation satisfied by 2y = y(u + Av) — y(u)

%—Az: AXU In @,

z=0 on, 2z(z,00=0 in.

From the estimate for (H F) it follows that

Izxllco,mi20)) < ClAI 22w 0,1))-

[ hus
C([0,T);L*(2))
s

y(u + Av) y(u).
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By a classical calculation we have
P = [ () ~a)=(0)
+ [ @@~ 8 [,

x (0,7
where z(v) is the solution of

%—Az:xwv in Q,

z=0 onX, z(z,0) =0 inf.
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Identification of F’(u)

We look for q such that

/Q (=920 + | (W) -s=I(TD) = | o

Q

Let p be a regular function defined on () and write an
integration by parts between z(v) and p:

/ vp:/(zt—Az)p
wXx (0,T) Q
0z

:/Qz(—pt—Ap)—l—/Z(T)p(T)_ - on?

Q
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|dentification with

and we have
Flp=[  (p+sup
wXx (0,7)

if the above calculation are justified.
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The adjoint equation

Let g € L?(Q), pr € L?*(2). The terminal boundary
value problem

op .
T Ap=g inO,
(AE) 5 ~Ap=g inQ

p=0 onX plx,T)=pr infl,

Is well posed.

HPHC([O,T];LZ(Q)) < C(HQHLZ(Q) + HPTHL2(Q))-
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Proof. A weak solution in L?(0,T; L*(Q0)) to (AE)
is a function p € L?(0,T;L?*(Q)) such that, for all
z € H*N H3(Q), the mapping

t — (p(t), 2)

belongs to H(0,T') and obeys

~Cp(t). 2) = (u(0), A%2) + {g(0). 2),

p(T), 2) = (pr, 2)-
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The function p is a weak solution to (AF) if and only
if the function ¢ defined by

Q(Q?, t) — p(l’, T — t)
Is the solution to the equation

%_qug inQ)

g=0 onX, q(xz,0)=ppr in(),

where g(z,t) = g(x, T — t).
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Integration by parts between 2z and p

Theorem. Suppose that ¢ € L*(Q), g € L*(Q), and
pr € L?(Q). Then the solution z of equation

%,
Z _Az=¢ inQ, 2=0 on¥, z(z,00=0 in,

ot
and the solution p of (AE) satisfy the following formula

/stp:/ng+/QZ(T)pT.
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Proof. If pr € H3(Q), due to a Theorem of Chapter 2,
z and p belong to L*(0,T; D(A))) N HY0,T; L*(Q)).

In that case, with the Green formula we have

/Q —Az(t)p(t) dz = /Q —Ap(t)z(t) dr

for almost every t € [0,7T1], and

[ L= e frm
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Thus the IBP formula is established in the case
when pr € H3(Q). If (prn)n is a sequence in
H}(Q) converging to pr in L%*(Q), due to the
'C([0,T]; L*(?))-estimate’, (pn)n - where p, is the
solution to (AE) corresponding to pr, - converges
to p (the solution of (AE) associated with pr) in
C([0,T]; L*(2)) when n tends to infinity. Thus, in
the case when pr € L?(Q), the IBP formula can be
deduced by passing to the limit in the formula satisfied

by pn.
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Theorem. (i) If (y,u) is the solution to (P) then
U = —%pbx(o,:ﬁ), where p is the solution to the adjoint
equation corresponding to ¥:

—%—Apzﬂ—yd in Q,

p=0 onX p(z,0)=y(T)—ys(T) inQ.
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(it) Conversely, if a pair (g,p) € C([0,T]; L*(Q2)) x
C([0,T]; L*(Q2)) obeys the system

0y 1 .

— — Ay = f — =xuD :

5 y=r P in Q
y=0 onX, gy(z,0)=1p in
Op

_E_Aﬁ:g_yd in Q,
p=0 onX, pT)=g(T)—ys(T) inQQ,

then the pair (7, —%ﬁ) s the optimal solution to problem
(P).

Proof. (i) The necessary optimality condition is already
proved.

(i) The sufficient optimality condition can be proved
with a theorem stated in Chapter 1.
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The state equation

The assumptions on (2, I', w, T', (), X are the ones of
the previous section. We consider

(WE)
y' —Ay=f+xou inQ, y=0onY,

y(z,0) =yo and y'(2,0) =y inQ,

with (y(),yl) - H&(Q) X LQ(Q), f - LQ(Q), and u €
L2(w x (0,T)).

The operator
(f + Xt Y0, y1) — y(f + Xwt, Yo, Y1)

is linear and continuous from L?(Q) x Hj
into C([0, TT; Hy(2)) N C*([0, TT; L*(2)).
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The family of control problems
(P;)  inf{Ji(y,u) | (y,u) obeys (WE), u € L?},
with, for 2 = 1,...,3, the functionals J; are defined by

']1 y7

p
\y yal” + \y ) +5 u?,
2
w X (0,T)
U2

Iy >—2/|Vy< )~ VD) + § o
1 2
B =g [ o —wm[ +5 [

where the function yg € C([0,T];H(Q)) N
CH([0,T]; L*(92))-
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Theorem. Assume that f € L?(Q), yo € Hy(Q), y1 €
L2(Q), and yg € C([0, T]; HY(©)) N C1 (0, T); L),
Fori:=1,...,3, problem (P;) admits a unique solution
(G35 ;).
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Existence of a unique optimal control

1. Set F(u) = J(y(u),u). Let (un), be a minimizing
sequence in L?(w x (0,T)), that is

||mn_>ooF(un) = infu€L2(wX(0,T))F(u)‘
We suppose that
Up — U weakly in L*(w x (0,T)).

Let y, the solution of (WE) corresponding to u,,
suppose that (uy), is bounded in L?(w x (0,T)), and
that

Up — U weakly in L*(w x (0,T)).
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Passage to the limit in the equation.

Let y = y(u). The operator
A s u— (y(u),y(w)(T),y(u)'(T))

is affine and continuous from L?(wx (0,T)) to L*(Q) x
HY(Q) x L2().

We may conclude that, for : = 1,...,3, problem (F;)
admits a unique solution (¥;, 4;).
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Optimality conditions for ()
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']1 y7

:
/ -+ [ TP+ [
w X (0,T)

By a classical calculation we have
F'(u)v = u) — yq)z(v
= [ ()~ a)=(0
+ [ W) ~pT))@) 48 [,

X (0,T)

where z(v) is the solution of

2 —Az=x,v inQ, z=0 onX,
z(z,0) =0and 2'(z,0) =0 in Q.
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Identification of F’(u)
We look for q such that

/Q (()—p0)=0)+ [ [(y)—pa)20))(T) = / o

Q

Let p be a regular function defined on (Q and write an
integration by parts between z(v) and p:

/ﬁ vp:/(f—A@p
w X (0,T) Q

:Ldﬂ_Am+/z@m@>

Q

- [ - [ G
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|dentification with

[;mm—y@z+lymw—yadav:[;&ﬂqu

We set

p'—Ap=y(u)—ya inQ, p=0 onZ,
p(x,T)=0and p'(z,T) = (y(u) —yq)(T) in Q.

and we have
Flap=[  (p+sup
wXx (0,7

if the above calculation are justified.
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Theorem. (i) If (y,u) is the solution to (P;) then

U = —%pbx(o,:ﬁ), where p is the solution to:

p'—Ap=y—ys inQ, p=0 onX,
p(z,T) =0, p'(z,T)=y(T)—ya(T) in&,

(if) Conversely, if (7,p) € (C([0,T]; L*(2)))?* obeys:

1

g//_Ag:f_EXwﬁ In Q7 g:O on 27

4(z,0) =yo, ¢'(x,0)=y1, inQ,
p'—Ap=9g—yq inQ, p=0 onX,
p(T)=0, p(T)=y(T)—ya(T) inQ,

then the pair (7, —%]5) is the optimal solution to (P;).
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Optimality conditions for ()
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Recall that

1 o
B =5 [ 9uE) —vwmr g [
wx (0,

Theorem. (i) If (y,u) is the solution to (Ps) then
u = —%pbx(o,T), where p is the solution to the adjoint

equation

p" —Ap=0 inQ, p=0 onX,
p(T) =0 and p/(T) = ~A@(T) — yalT)) in

(p,p") € C([0,T]; L*(2)) x C([0,T]; H~'(2)).
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(it) Conversely, if a pair (g,p) € C([0,T]; L*(Q2)) x
C([0,T]; L*(Q2)) obeys the system

1
g//_Ag:f_BXWﬁ In Qa g:O on Za

9(x,0) =yo, ¥(x,0)=y1, in,
p'—=Ap=0 inQ, p=0 onX,

HT) =0, p(T)=—AGT) —yalT)) inQ

then the pair (7, —%]5) is the optimal solution to (F).
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Remark 1. We set
Fy(u) = Ja(y(u),u).

We have

Fi(uyw = / (Vy(T)~Vyu(T))-V=(T)+5 / wo.

X (0,T)
where z i1s the solution to

2 —Az=x,v InQ, z=0 onX,
z(x,0) =0, 2'(z,0)=0, inQ.
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Moreover

/Q (Vu(T) = Vya(T) ) - V=(T)
_ <Z(T), (—=A)(y(T) — yd(T>)>

HY(Q),H-1(Q)

This is why we have

p(z,T) = -AG(T) — ya(T))

in the adjoint equation.
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Remark 2. If § € C([0,T]; H}(R2)), then Ag(T)
belongs to H~!(Q2). Thus the adjoint equation is
stated with p/(T) in H~*(Q). We are going to prove
that the wave equation is well posed with an initial
condition in L?(Q) x H~1(Q).

Let us recall a result from chapter 2. Set Y =
H;(Q) x L*(Q2) and endow Y with the inner product

(u,v)Y:/QVul-Vvl—l—/vaz,

where u = (uj,us) and v = (v1,v2). Set D(A) =
(H*(Q) N H(Q)) x H}(Q) and

_ Yy \ Y2 [ %0
Ay_A<yz>_(Ayl>’ n y0_<zl>°
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In chapter 2 we have proved that (A,D(A)) and
(—A, D(A)) are m-dissipative in Y.

Now we set Y = L2(Q) x H™1(€2). We equip Y
with the inner product

(u,v) = / Ui - V1 + <(—A)_1u2,v2> ;
Y ) H(%(Q)aH_l(Q>

where u = (u1,us) and v = (v1,v2). Set D(g) =
H(Q) x L*(Q) and

We can prove that (A,D(A)) and (—A,D(A)) are
m-dissipative in Y.
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Optimality conditions for ( ;)
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The functional is

J3(y,u) = %/Q

Theorem. (i) If (y,u) is the solution to (Ps3) then

u = —%pbx(o,T), where p is the solution to the adjoint

2 B
@O @) 4y [
w X (0,T)

p" —Ap=0 inQ, p=0 onX,
p(T) = (5 — )(T) and P(T)=0 in
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(if) Conversely, if a pair (7,p) € C([0,T]; L*(R2)) X
C([0,T]; L*(Q2)) obeys the system

1
g//_Ag:f_BXwﬁ In Q7 :&:O on 27

9(x,0) =yo, ¥ (x,0)=y1, inf,
p'—Ap=0 inQ, p=0 onX,

p(T) =7 —yy)(T), p(T)=0 inQ,

then the pair (7, —%]5) is the optimal solution to (Ps).
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The state equation

(SE) y =Ay+Bu+f,  y(0)=yo.

Assumptions

Y and U are Hilbert spaces.
The unbounded operator (A, D(A)) is the infinitesimal
generator of a strongly continuous semigroup on Z.

This semigroup will be denoted by (e!);>.
The operator B belongs to L(U;Y).

The control problem
(P)
inf{J(y,u) | u € L2(O,T; U), (y,u) obeys (SE)},
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with

T =35 [ 1000 = )l

1

1 T
Loy - a4 / ()3
2 2/,

Assumption

Z and Z7 are Hilbert spaces.

The operator C' belongs to L(Y; Z), and the operator
D belongs to L(Y;Zr). The function z; belongs to
LQ(O,T; Z) and zp € Zp.
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Existence of a unique optimal control

If the assumptions on B, C, D are satisfied. Problem
(P) admits a unique solution (y, u).

The proof is based on the existence of a minimizing
sequence (u,),, bounded in L?(0,T;U), and on the
fact that the operator

A u— (C’y(u) — 24, Dy(u)(T) — ZT)

is affine and continuous from L?(0,T;U) to
L2(0,T: Z) x Zr.
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Optimality conditions

The adjoint equation for (P) will be of the form
(AE)  —p'=A"p+g,  p(T)=pr.

From chapter 2, we know that (A* D(A*)) is
the infinitesimal generator of a strongly continuous
semigroup on Y’. Thus (AE) is well posed if pr € Y’
and if g € L1(0,T;Y"). For simplicity we identify Y
and Y.

Integration by parts formula

We state an integration by parts formula between the
adjoint state p and the solution z to the equation

(LE) 2 =Az+ z(0) = 0.
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Theorem. For every f € L?(0,T;Y), and every
(g,pr) € L?(0,T;Y) x Y, the solution z to equation

(LE) and the solution p to equation (AE) satisfy the
following formula

[ (r0.00),

— /OT (z(t),g(t))ydt + (z(T),pT)Y - (Z07p(0))y
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Proof. Suppose that f and g belong to C1(][0,T];Y)
and that pr belongs to D(A*). In this case we can
write

T

[ (r00) = [ (20 - ax0,p0))
— /OT — (z(t),p’(t))y dt + (z(T),pT)Y
—(zo,p(O))Y - /OT (AZ(t),p(t)>Y dt

— /OT (z(t),g(t))ydt + (Z(T),pT)Y - (207p(0))y

Thus, the IBP formula can be deduced from this case
by using density arguments.
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Optimality conditions

Theorem. |If (y,u) is the solution to (P) then u =
—B*p, where p is the solution to equation

—p' = A'p+C*(Cy—2a),  p(T)=D*(DY(T)—=2r).

Conversely, if a pair (,p) € C([0,T];Y)xC([0,T];Y)
obeys the system

y=Ay—BBp+f,  9(0)=yo,
—p' = A"p+ C*(CY — za),
p(T) = D*(Dy(T) — 2r),

then the pair (y,—B*p) is the optimal solution to
problem (P).
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Proof. Let (y,u) be the optimal solution to
problem (P). Set F(u) = J(y(u),u). For every
uw € L#(0,T;U), we have

Z

F'(a)u = /O ) (Cg(t) 2 Cz(t))

+(Dg(T) — 27, Dz(T))ZT + /OT (a(t), u(t))U

where z i1s the solution to

2 = Az + Bu, z(0) = 0.
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Applying the IBP formula to p and z, we obtain
T T
Flaju= [ (. Bu®)y + [ (@0.u)o
0 0

_ /O (B*p(t) + a(t), u(t))v.

The first part of the Theorem is established. The second
part follows from the sufficient optimality condition
stated in Chapter 1.
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Exercise

Let L > 0 and a be a function in H*(0, L) such that
0 < c; < a(x) for all z € HY(0,L). Consider the
equation

(TE)
Yt + QY — f -+ X(fl,ﬁg)ua In (07 L) X (O?T)a
y(0,t) = 0, in (0,7),
y(lC,O) — Yo, In (07L>7

where f € L*(0,L) x (0,7)), Xe,.05) is the
characteristic function of (¢1,¢2) C (0,L), u €
L?((¢1,45) x (0,T)), and yo € L*(0, L).

Prove that (TE) admits a unique solution in
C([0,T]; L*(0, L)) (use the Hille-Yosida theorem).
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Study the control problem

inf{J(y,u) | uw e L2(0,T; L2(¢4, ¢5)),

(P) .
(y,u) satisfies (T'E)}.

with

s =3 [ wm - wmrg [ e o,

where y4 € C([0,T1]; L*(0, L)). Prove the existence of a
unique solution. Write first order optimality conditions.
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Optimal control of a first order

hyperbolic system
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The state equation

Consider the first order hyperbolic system

)

0 | z1(z,t) | 0 | maizi | | annz1 +aieze + biug
815 ZQ(CE, t) 833 —MMozo a2121 -+ aA929%29 -+ b2u2

in (0,¢) x (0,T), with the initial condition
21(x,0) = zp1(x), z9(x,0) = zp2(x) in (0,¢),
and the boundary conditions

z1(4,t) = 0, 29(0,t) =0 in (0,7).

We refer to this system as the system (H F). This kind
of systems intervenes in heat exchangers [9].
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We suppose that the constant coefficients m; > 0,
mo > 0, and that a11, a2, a21, ass, by, bo are regular.

State equation

We set Y = L?(0,/) x L?*(0,¢), and we define the
unbounded operator A in Y by

D(A) ={z e HY0,0)xH'(0,0) | z:(¢) =0, 22(0) = 0}

and

Az = dx
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We define the operator L € L(Y') by
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—aj11<c1 — 1222

—Aa2121 — 42222
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Theorem. The operator (A, D(A)) is the infinitesimal

generator of a strongly continuous semigroup of
contractions on Y.

Proof. The theorem relies the Hille-Yosida theorem.
(i) The operator A is dissipative in Y

d d
(Az, z) /mlﬁzl /mgﬁ@

= —5 A0~ (]
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(i) For A > 0, f € L*(0,4), g € L?(0,£), consider the
equation

2 € D(A), A(Z)—A@;):(D

that is
M= B = in (0.0), z(0) =0
Z]_ m]_ dx — I ’ ’ Z]. - ,
dZQ

)\22 -+ mQ% — g In (O,g), 22(0) = 0.

This equation admits a unique solution z € D(A).
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Theorem.  The operator (A + L,D(A)) is the
infinitesimal generator of a strongly continuous
semigroup on Y.

Theorem. For all zg = (219,220) € Y, u1 € L?((0,£) x
(0,T)), us € L*((0,4) x (0,T)), the system (HE)
admits a unique weak solution in L?%(0,T; L(0,4)),
this solution belongs to C'(|0,T];Y) and satisfies

HZHC([O,T];Y)

< C(HZoHY + llurll 20,0y x (0,7)) + HU2HL2((O,€)><(O,T)))'
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The adjoint operator of (A, D(A)), with respect to the
Y -topology, is defined by

D(A%) = {(¢,) € HY(0,0) x H(0,0)
6(0) =0, ¥(f) =0},

and
L ) d i
(A ’ ) ¢ _mld_i — CL11¢ — &21¢
* _|_ * —
d
_w_ ] mzﬁ—au(b—azzw )

To study the system (HFE), we define the operator
B € L((L*(0,¢))?) by

sl =lom ]
U9 bQ”U,Q
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The (HE) is of the form
= (A+ L)z + Bu, 2(0) = zp.

The control problem

We want to study the control problem

inf{J(z,u) | (z,u) obeys (HF),
u € (L2((0,€) x (0,7)))%},

/|z (T2 + 5/ / W2+ ud),

and 3 > 0. We assume that z; € C([0,T];

(P)

where
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Theorem. Problem (P) admits a unique solution
(Z,u). Moreover u is characterized by

up(x,t) = —%¢(a¢,t) and  wus(x,t) = —%¢(x,t),

in (0,7), where (¢,1) is the solution to the adjoint
system

9 [ ¢(x,1) ] _ 9 [ —m1¢] B [a11¢+a21¢]
ot | Y(z,1) ma1) a12¢ + az2t

o0x
in (0,¢) x (0,T), with the terminal condition
NT) =2UT) = 2a1(T),  (T) = 2(T) — za,2(T)
in (0,¢), and the boundary conditions
5(0,6) =0, Y,t)=0 in (0,7T).
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Proof. (i) The existence of a unique solution to (P) is
classical and is left as exercice.

(ii)) The state equation is of the form
2= (A+ L)z + Bu, 2(0) = zo,

and the cost functional

1 5 (r
J(z,u) = =||2(T)—za(T) |3 0.0 lu()]|7, 2 0.0))2"
9 0075 | (L2(0,))

Thus the optimal control u is characterized by

a(t) = —%B*p@),

where p is the solution to

—p'=(A+L)p, pT)=2T)— zT).

— Typeset by Foil TEX — 70



Set

(1)

We can verify that (¢, 1)) is the solution to the adjoint
equation corresponding to Z.

We can prove that

B*(¢(t),¥(t)) = (big(x, 1), bavp(x,1)).
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(iii) We can directly prove the optimality conditions for
problem (P) by using the same method as for the heat
and the wave equations. Setting F'(u) = J(2(z9,u),u),
where z(zg,u) is the solution to (HE), we have

/
F(@)u /O (21(T) — 21 (T))wns (T)
) T
+ [ alT) = T walT) 46 [ (v + azua),

where w, = 2(0,u), and z(0,u) is the solution to (HE)
for zg = 0.

We can establish an integration by parts formula
between w,, and the solution (¢, ) to (AE) to complete
the proof.
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