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Chapter 1

Examples of control problems

1.1 What is a control problem ?

Roughly speaking a control problem consists of:

• A controlled system, that is an input-output process,

• an observation of the output of the controlled system,

• an objective to be achieved.

In this course we are interested in controlled systems described by partial differential equations.
The input can be a function in a boundary condition, an initial condition, a coefficient in a
partial differential equation, or any parameter in the equation, and the output is the solution
of the partial differential equation. The input is called the control variable, or the control,
and the output is called the state of the system. An observation of the system is a mapping
(very often a linear operator) depending on the state.

We can seek for various objectives:

•Minimize a criterion depending on the observation of the state and on the control variable.
This is an optimal control problem. The unknown of this minimization problem is the control
variable.

• We can look for a control for which the observation belongs to some target. This
corresponds to a controllability problem.

• We can look for a control which stabilizes the state or an observation of the state of the
system. This is a stabilization problem.

1.2 Control of elliptic equations

Elliptic equations may describe an electrical potential, a stationary distribution of temper-
ature, a scattered field, or a velocity potential. We give two examples of optimal control
problems, taken from the literature, for systems governed by elliptic equations.

1.2.1 Optimal control of current in a cathodic protection system

The problem is treated in [29]. When a metal is placed in a corrosive electrolyte, it tends to
ionize and dissolve in the electrolyte. To prevent corrosion process, an other metal (less noble
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8 CHAPTER 1. EXAMPLES OF CONTROL PROBLEMS

than the previous one) can be placed in contact with the electrolyte. In this device the noble
metal plays the role of a cathode, and the other one the role of the anode. A current can be
prescribed to the anode to modify the electric field in the electrolyte. This process is known
as cathodic protection.

The system can be described by the elliptic equation

−div(σ∇φ) = 0 in Ω,

−σ∂φ
∂n

= i on Γa, −σ∂φ
∂n

= 0 on Γi, −σ∂φ
∂n

= f(φ) on Γc,
(1.2.1)

where φ is the electrical potential, Ω is the domain occupied by the electrolyte, Γa is a part
of the boundary of Ω occupied by the anode, Γc is a part of the boundary of Ω occupied by
the cathode, Γi is the rest of the boundary Γ, Γi = Γ \ (Γa ∪ Γc). The control function is the
current density i, the constant σ is the conductivity of the electrolyte, the function f is known
as the cathodic polarization function, and in general it is a nonlinear function of φ.

The cathode is protected if the electrical potential is closed to a given potential φ̄ on Γc.
Thus the cathodic protection can be achived by choosing the current i as the solution to the
minimization problem

(P1) inf{J1(φ) | (φ, i) ∈ H1(Ω)× L2(Γa), (φ, i) satisfies (1.2.1), a ≤ i ≤ b},

where a and b are some bounds on the current i, and

J1(φ) =

∫
Γc

(φ− φ̄)2.

A compromise between ’the cathodic protection’ and ’the consumed energy’ can be obtained
by looking for a solution to the problem

(P2) inf{J2(φ, i) | (φ, i) ∈ H1(Ω)× L2(Γa), (φ, i) satisfies (1.2.1), a ≤ i ≤ b},

where

J2(φ, i) =

∫
Γc

(φ− φ̄)2 + β

∫
Γa

i2,

and β is a positive constant.

1.2.2 Optimal control problem in radiation and scattering

Here the problem consists in determining the surface current of a radiating structure which
maximize the radiated far field in some given directions [22]. Let Ω ⊂ RN be the complemen-
tary subset in RN of a regular bounded domain (Ω is called an exterior domain), and let Γ its
boundary. The radiated field y satisfies the Helmholtz equation

∆y + k2y = 0, in Ω, (1.2.2)

where k ∈ C, Imk > 0, and the radiation condition

∂y

∂r
− iky = O

(
1

|x|(N+1)/2

)
, when r = |x| → ∞. (1.2.3)
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The current on the boundary Γ is chosen as the control variable, and the boundary condition
is:

y = u on Γ. (1.2.4)

The solution y to equation (1.2.2)-(1.2.4) satisfies the following asymptotic behaviour

y(x) =
eik|x|

|x|(N−1)/2
F

(
x

|x|

)
+O

(
1

|x|(N+1)/2

)
, when r = |x| → ∞,

and F is called the far field of y. The optimal control problem studied in [22] consists in
finding a control u, belonging to Uad, a closed convex subset of L∞(Γ), which maximizes the
far field in some directions. The problem can be written in the form

(P ) sup{J(Fu) | u ∈ Uad},

where Fu is the far field associated with u, and

J(F ) =

∫
S

α

(
x

|x|

)∣∣∣∣F( x

|x|

)∣∣∣∣2dr,
S is the unit sphere in RN , α is the characteristic function of some subset in S.

1.3 Control of parabolic equations

1.3.1 Identification of a source of pollution

Consider a river or a lake with polluted water, occupying a two or three dimensional domain
Ω. The control problem consists in finding the source of pollution (which is unknown). The
concentration of pollutant y(x, t) can be measured in a subset O of Ω, during the interval of
time [0, T ]. The concentration y is supposed to satisfy the equation

∂y
∂t
−∆y + V · ∇y + σy = s(t)δa in Ω×]0, T [,
∂y
∂n

= 0 on Γ×]0, T [, y(x, 0) = y0 in Ω,
(1.3.5)

where a ∈ K is the position of the source of pollution, K is a compact subset in Ω, s(t) is
the flow rate of pollution. The initial concentration y0 is supposed to be known or estimated
(it could also be an unknown of the problem). The problem consists in finding a ∈ K which
minimizes ∫ T

0

∫
O

(y − yobs)2,

where y is the solution of (1.3.5) and yobs corresponds to the measured concentration. In this
problem the rate s(t) is supposed to be known. This problem is taken from [24].

We can imagine other problems where the source of pollution is known but not accessible,
and for which the rate s(t) is unknown. In that case the problem consists in finding s satisfying

some a priori bounds s0 ≤ s(t) ≤ s1 and minimizing
∫ T

0

∫
O(y − yobs)2.
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1.3.2 Cooling process in metallurgy

In modern steel casting machine, the design of cooling process leads to rather challenging
control problems. The problem is described by a fully nonlinear heat equation of the form

ρ(T )c(T )
∂T

∂t
= div(k(T )∇T ), in Ω× (0, tf ),

where T is the temperature in the domain Ω, c(T ) the specific heat capacity, ρ(T ) the density,
and k(T ) the conductivity of the steel at the temperature T . The heat extraction is ensured
by water sprays corresponding to nonlinear boundary conditions:

k(T )
∂T

∂n
= R(T, u), on Γ× (0, tf ),

where u is the control variable, and the radiation law R is a nonlinear function (for example,
R can be the Stefan-Boltzmann radiation law). The cost functional can be of the form:

J(T, u) = β1

∫
Ω

(T (tf )− T̄ )2 + β2

∫ tf

0

|u|q

with β1 > 0, β2 > 0, tf is the terminal time of the process, T̄ is a desired profile of temperature,
the exponent q is chosen in function of the radiation law R.

In industrial applications, constraints must be added on the temperature. In that case we
shall speak of state constraints. For more details and other examples we refer to [21].

1.4 Control of hyperbolic equations

The control of acoustic noise, the stabilization of flexible structures, the identification of
acoustic sources can be formulated as control problems for hyperbolic equations. Lot of models
have been studied in the literature [16]. The one dimensional models cover the elementary
theories of elastic beam motion [28]. Let us present a stabilization problem for the Timoshenko
model. The equation of motion of the Timoshenko beam is described by the following set of
equations:

ρ
∂2u

∂t2
−K

(
∂2u

∂x2
− ∂φ

∂x

)
= 0, in (0, L),

Iρ
∂2φ

∂t2
− EI ∂

2φ

∂x2
+K

(
φ− ∂u

∂x

)
= 0, in (0, L),

where u is the deflection of the beam, φ is the angle of rotation of the beam cross-sections due
to bending. The coefficient ρ is the mass density per unit length, EI is the flexural rigidity
of the beam, Iρ is the mass moment of inertia of the beam cross section, and K is the shear
modulus. If the beam is clamped at x = 0, the corresponding boundary conditions are

u(0, t) = 0 and φ(0, t) = 0 for t ≥ 0.

If a boundary control force f1 and a boundary control moment f2 are applied at x = L, the
boundary conditions are

K(φ(L, t)− ux(L, t)) = f1(t) and − EIφx(L, t) = f2(t) for t ≥ 0.
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The stabilization problem studied in [25] consists in finding f1 and f2 so that the energy of
the beam

E(t) =
1

2

∫ L

0

(
ρu2

t (t) + Iρφ
2
t (t) +K(φ(t)− ux(t))2 + EIφ2

x(t)

)
dx.

asymptotically and uniformly decays to zero.

1.5 Objectives of these lectures

The first purpose of these lectures is to introduce the basic tools to prove the existence of
solutions to optimal control problems, to derive first order optimality conditions, and to explain
how these optimality conditions may be used in optimization algorithms to compute optimal
solutions.

A more advanced objective in optimal control theory consists in calculating feedback laws.
For problems governed by linear evolution equations and for quadratic functionals, feedback
laws can be determined by solving the so-called Riccati equations. This will be done in the
specialized course [26]. But we want to introduce right now the results necessary to study
Riccati equations. Exploring literature on Riccati equations (for control problems governed by
partial differential equations) requires some knowledge on the semigroup theory for evolution
equations. This is why we have chosen this approach throughout these lectures to study
evolution equations.

The plan of these lectures is as follows. In Chapter 2, we study optimal control problems
for linear elliptic equations. On a simple example we explain how the adjoint state allows us
to calculate the gradient of a functional. For controls in a Dirichlet boundary condition, we
also introduce the transposition method. This method is next used to study some evolution
equations with nonsmooth data.

Some basic results of the semigroup theory are recalled (without proof) in Chapter 4. For
a more detailed study we refer to the preliminary lectures by Kesavan [9], and to classical
references [8], [18], [2]. In Chapters 5 and 6, we study optimal control problems for the heat
equation and the wave equation. We systematically investigate the case of distributed controls,
Neumann boundary controls, and Dirichlet boundary controls. The extension to problems
governed by abstract evolution equations is continued in Chapters 7 and 8. These two chapters
constitute the starting point to study Riccati equations in the second part of the course [26].
Chapter 7 is devoted to bounded control operators (the case of distributed controls), while
Chapter 8 is concerned with unbounded control operators (the case of boundary controls or
pointwise controls). We show that problems studied in Chapters 5 and 6 correspond to this
framework. Other extensions and applications are given.

Many systems are governed by nonlinear equations (see sections 1.2.1 and 1.3.2). Studying
these problems requires some additional knowledge. We have only studied two problems gov-
erned by nonlinear equations. In Chapter 3, we consider control problems for elliptic equations
with nonlinear boundary conditions. In Chapter 9, we study a control problem for a semilinear
parabolic equation of Burgers’ type, in dimension 2. This model is an interesting introduction
for studying flow control problems [27]. Finally Chapter 10 is devoted to numerical algorithms.
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For a first introduction to optimal control of partial differential equations, the reader can study
the linear-quadratic control problems considered in Chapters 2, 5, and 6.

The reader who is interested by optimal control problems of nonlinear equations, and the
corresponding numerical algorithms may complete the previous lectures with Chapters 3, 9,
and 10.

Chapters 7 and 8 are particularly recommended as preliminaries to study Riccati equations
[26].



Chapter 2

Control of elliptic equations

2.1 Introduction

In this chapter we study optimal control problems for elliptic equations. We first consider
problems with controls acting in a Neumann boundary condition. We derive optimality condi-
tions for problems without control constraints. In section 2.3 we explain how these optimality
conditions may be useful to compute the optimal solution. The case of a Dirichlet boundary
control is studied in section 2.4. For a control in a Dirichlet boundary condition, we define
solutions by the transposition method. Extensions to problems with control constraints are
considered in section 2.5. The existence of optimal solutions is proved in section 2.6. In section
2.7, we extend the results of section 2.2 to problems defined by various functionals.

2.2 Neumann boundary control

Let Ω be a bounded domain in RN , with a boundary Γ of class C2. We consider the elliptic
equation

−∆z + z = f in Ω,
∂z

∂n
= u on Γ. (2.2.1)

The function f is a given source term and the function u is a control variable.
A classical control problem consists in finding a control function u ∈ L2(Γ) which minimizes

the cost functional

J1(z, u) =
1

2

∫
Ω

(z − zd)2 +
β

2

∫
Γ

u2,

where the pair (z, u) satisfies equation (2.2.1). The term β
2

∫
Γ
u2 (with β > 0) is proportional to

the consumed energy. Thus, minimizing J1 is a compromise between the energy consumption
and finding u so that the distribution z is close to the desired profile zd. In the case of equation
(2.2.1) we say that the control function is a boundary control because the control acts on Γ.

Before studying the above control problem, we first recall some results useful for equation
(2.2.1). The existence of a unique solution z ∈ H1(Ω) to equation (2.2.1) may be proved with
the Lax-Milgram theorem. More precisely we have the following theorem.

Theorem 2.2.1 ([12]) For every f ∈ L2(Ω) and every u ∈ L2(Γ), equation (2.2.1) admits a
unique weak solution z(f, u) in H1(Ω), moreover the operator

(f, u) 7→ z(f, u)

13
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is linear and continuous from L2(Ω)× L2(Γ) into H3/2(Ω).

We want to write optimality conditions for the control problem

(P1) inf{J1(z, u) | (z, u) ∈ H1(Ω)× L2(Γ), (z, u) satisfies (2.2.1)}.

We suppose that (P1) admits a unique solution (z̄, ū) (this result is established in section 2.6).
We set F1(u) = J1(z(f, u), u), where z(f, u) is the solution to equation (2.2.1). From the
optimality of (z̄, ū), it follows that

1

λ

(
F1(ū+ λu)− F1(ū)

)
≥ 0

for all λ > 0 and all u ∈ L2(Γ). By an easy calculation we obtain

F1(ū+ λu)− F1(ū) =
1

2

∫
Ω

(zλ − z̄)(zλ + z̄ − 2zd) +
β

2

∫
Γ

(2λuū+ λ2u2),

where zλ = z(f, ū+ λu). The function wλ = zλ − z̄ is the solution to equation

−∆w + w = 0 in Ω,
∂w

∂n
= λu on Γ.

Due to Theorem 2.2.1 we have

‖wλ‖H1(Ω) ≤ C|λ|‖u‖L2(Γ).

Thus the sequence (zλ)λ converges to z̄ in H1(Ω) when λ tends to zero. Set 1
λ
wλ = wu, the

function wu is the solution to equation

−∆w + w = 0 in Ω,
∂w

∂n
= u on Γ. (2.2.2)

By passing to the limit when λ tends to zero, we finally obtain:

0 ≤ limλ→0
1

λ

(
F1(ū+ λu)− F1(ū)

)
= F ′1(ū)u =

∫
Ω

(z̄ − zd)wu +

∫
Γ

βuū.

Here F ′1(ū)u denotes the derivative of F1 at ū in the direction u. It can be easily checked that
F1 is differentiable in L2(Γ). Since F ′1(ū)u ≥ 0 for every u ∈ L2(Γ), we deduce

F ′1(ū)u = 0 for all u ∈ L2(Γ). (2.2.3)

In this form the optimality condition (2.2.3) is not usable. For the computation of optimal
controls, we need the expression of F ′1(ū). Since F1 is a differentiable mapping from L2(Γ) into
R, F ′1(ū) may be identified with a function of L2(Γ). Hence, we look for a function π ∈ L2(Γ)
such that ∫

Ω

(z̄ − zd)wu =

∫
Γ

πu for all u ∈ L2(Γ).

This identity is clearly related to a Green formula. We observe that if p ∈ H1(Ω) is the
solution to the equation

−∆p+ p = z̄ − zd in Ω,
∂p

∂n
= 0 on Γ, (2.2.4)

then we have ∫
Ω

(z̄ − zd)wu =

∫
Ω

(−∆p+ p)wu =

∫
Γ

p
∂wu
∂n

=

∫
Γ

pu.

This means that F ′1(ū) = p|Γ + βū, where p is the solution to equation (2.2.4).
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Theorem 2.2.2 If (z̄, ū) is the solution to (P1) then ū = − 1
β
p|Γ, where p is the solution to

equation (2.2.4).

Conversely, if a pair (z̃, p̃) ∈ H1(Ω)×H1(Ω) obeys the system

−∆z̃ + z̃ = f in Ω,
∂z̃

∂n
= − 1

β
p̃ on Γ,

−∆p̃+ p̃ = z̃ − zd in Ω,
∂p̃

∂n
= 0 on Γ,

(2.2.5)

then the pair (z̃,− 1
β
p̃) is the optimal solution to problem (P1).

Proof. The first part of the theorem is already proved. Suppose that (z̃, p̃) ∈ H1(Ω)×H1(Ω)
obeys the system (2.2.5). Set ũ = − 1

β
p̃. For every u ∈ L2(Γ), we have

F1(ũ+ u)− F1(ũ) =
1

2

∫
Ω

(zu − z̃)(zu + z̃ − 2zd) +
β

2

∫
Γ

(2uũ+ u2)

=
1

2

∫
Ω

(zu − z̃)2 +
β

2

∫
Γ

u2 +

∫
Ω

(zu − z̃)(z̃ − zd) + β

∫
Γ

uũ,

with zu = z(f, ũ+ u). From the equation satisfied by p̃ and a Green formula it follows that∫
Ω

(zu − z̃)(z̃ − zd) =

∫
Ω

(zu − z̃)(−∆p̃+ p̃)

=

∫
Γ

(
∂zu
∂n
− ∂z̃

∂n

)
p̃ = −β

∫
Γ

uũ.

We finally obtain

F1(ũ+ u)− F1(ũ) =
1

2

∫
Ω

(zu − z̃)2 +
β

2

∫
Γ

u2 ≥ 0.

Thus (z̃,− 1
β
p̃) is the optimal solution to problem (P1).

We give another proof of the second part of Theorem 2.2.2 by using a general result stated
below.

Theorem 2.2.3 Let F be a differentiable mapping from a Banach space U into R. Suppose
that F is convex.

(i) If ū ∈ U and F ′(ū) = 0, then F (ū) ≤ F (u) for all u ∈ U .

(ii) If Uad is a closed convex subset in U , F is convex, ū ∈ Uad and if F ′(ū)(u− ū) ≥ 0 for all
u ∈ Uad, then F (ū) ≤ F (u) for all u ∈ Uad.

Proof. The theorem follows from the convexity inequality

F (u)− F (v) ≥ F ′(v)(u− v) for all u ∈ U, and all v ∈ U.

The second statement of the theorem will be used for problems with control constraints.
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Second proof of Theorem 2.2.2. Due to the previous calculations, for every û ∈ L2(Γ),
we have F ′(û) = p̂|Γ + βû, where p̂ is the solution to

−∆p̂+ p̂ = ẑ − zd in Ω,
∂p̂

∂n
= 0 on Γ,

and ẑ = z(f, û).
Thus if (z̃, p̃) ∈ H1(Ω) × H1(Ω) satisfies the system (2.2.5), we have F ′1(− 1

β
p̃|Γ) = p̃|Γ +

−β 1
β
p̃|Γ = 0. Due to Theorem 2.2.3, it follows that − 1

β
p̃|Γ is the optimal control to problem

(P1).

2.3 Computation of optimal controls

Theorem 2.2.2 gives a characterization of the optimal solution to problem (P1). One way to
compute this solution consists in solving the optimality system (2.2.5). Another way consists
in applying the conjugate gradient algorithm to the minimization problem (P1). Let us recall
what is the conjugate gradient method (CGM in brief) for quadratic functionals. We want to
calculate the solution to the optimization problem

(P1) inf{F (u) | u ∈ U},

where U is a Hilbert space, F is a quadratic functional

F (u) =
1

2
(u,Qu)U − (b, u)U ,

and Q ∈ L(U), Q = Q∗ > 0, b ∈ U . The idea of the conjugate gradient method consists in
solving a sequence of problems of the form

(Pk+1) inf{F (u) | u ∈ Ck},

where Ck = uk + vect(d0, . . . , dk). The next iterate is the solution uk+1 to problem (Pk+1).
Since at each step the dimension of the set Ck increases, the method can be complicated.
The algorithm simplifies if the different directions d0, . . . , dk are two by two orthogonal with
respect to Q. It is for example the case if we take d0 = −g0 = −F ′(u0)∗, and Ck =
uk + vect(d0, . . . , dk−1,−gk), with gk = F ′(uk)

∗. The direction dk is computed to have
vect(d0, . . . , dk−1,−gk) = vect(d0, . . . , dk), and (dk, dj)U = 0 for all 0 ≤ j ≤ k − 1. The
corresponding algorithm is given below.

Conjugate Gradient Algorithm.

Initialization. Choose u0 in U . Compute g0 = Qu0 − b. Set d0 = −g0 and n = 0.

Step 1. Compute
ρn = (gn, gn)/(dn, Qdn),

and
un+1 = un + ρndn.

Determine
gn+1 = Qun+1 − b = gn + ρnQdn.
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Step 2. If ‖gn+1‖U/‖g0‖U ≤ ε, stop the algorithm and take u = un+1, else compute

βn = (gn+1, gn+1)/(gn, gn),

and
dn+1 = −gn+1 + βndn.

Replace n by n+ 1 and go to step 1.

We want to apply this algorithm to problem (P1) of section 2.2. For that we have to identify
J1(z(f, u), u), where z(f, u) is the solution to equation (2.2.1), with a quadratic form on L2(Γ).
Since z(f, u) = wu + y(f) , where wu is the solution to equation (2.2.2) and where y(f) does
not depend on u, we can write

J1(z(f, u), u) =
1

2

∫
Ω

w2
u +

β

2

∫
Γ

u2 + (b, u)L2(Γ) + c =
1

2
(Qu, u)L2(Γ) + (b, u)L2(Γ) + c,

with Q = Λ∗Λ + βI, b = Λ∗(y(f) − zd), c = 1
2

∫
Ω

(y(f) − zd)2, and where Λ is the bounded
operator from L2(Γ) into L2(Ω) defined by

Λ : u 7−→ wu.

Thus to apply the CGM to problem (P1) we have to compute Λ∗Λ for d ∈ L2(Γ). By
definition of Λ we have Λd = wd. With a Green formula, we can easily verify that Λ∗, the
adjoint of Λ, is defined by

Λ∗ : g 7−→ p|Γ,

where p is the solution to equation

−∆p+ p = g in Ω,
∂p

∂n
= 0 on Γ.

Now it is clear that the CGM applied to problem (P1) is the following algorithm.

CGM for (P1)

Initialization. Choose u0 in L2(Γ). Compute z0 = z(f, u0) and p0, the solution to

−∆p+ p = z0 − zd in Ω,
∂p

∂n
= 0 on Γ.

Set g0 = βu0 + p0|Γ , d0 = −g0 and n = 0.

Step 1. Compute ẑn the solution to

−∆z + z = 0 in Ω,
∂z

∂n
= dn on Γ,

and p̂n the solution to

−∆p+ p = ẑn in Ω,
∂p

∂n
= 0 on Γ.

Compute

ĝn = βdn + p̂n|Γ, and ρn = −
∫

Γ

|gn|2/
∫

Γ

ĝngn.
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Set

un+1 = un + ρndn and gn+1 = gn + ρnĝn.

Step 2. If ‖gn+1‖L2(Γ)/‖g0‖L2(Γ) ≤ ε, stop the algorithm and take u = un+1, else compute

βn = ‖gn+1‖2
L2(Γ)/‖gn‖2

L2(Γ),

and

dn+1 = −gn+1 + βndn.

Replace n by n+ 1 and go to step 1.

Observe that gn+1 = gn + ρnĝn is the gradient of F1 at un+1.

2.4 Dirichlet boundary control

Now we want to control the Laplace equation by a Dirichlet boundary control, that is

−∆z = f in Ω, z = u on Γ. (2.4.6)

We say that a function z ∈ H1(Ω) is a solution to equation (2.4.6) if the equation −∆z = f is
satisfied in the sense of distributions in Ω and if the trace of z on Γ is equal to u. When
f ∈ H−1(Ω) and u ∈ H1/2(Γ) equation (2.4.6) can be solved as follows. From a trace theorem
in H1(Ω), we know that there exists a linear continuous operator from H1/2(Γ) to H1(Ω):

u 7−→ zu,

such that zu|Γ = u. Thus we look for a solution z to equation (2.4.6) of the form z = zu + y,
with y ∈ H1

0 (Ω). The equation −∆z = f is satisfied in the sense of distributions in Ω and
z = u on Γ if and only if y is the solution to equation

−∆y = f + ∆zu in Ω, y = 0 on Γ.

If we identify the distribution ∆zu with the mapping

ϕ 7−→ −
∫

Ω

∇zu∇ϕ,

we can check that −∆zu belongs to H−1(Ω). Hence the existence of y is a direct consequence
of the Lax-Milgram theorem. Therefore we have the following theorem.

Theorem 2.4.1 For every f ∈ H−1(Ω) and every u ∈ H1/2(Γ), equation (2.4.6) admits a
unique weak solution z(f, u) in H1(Ω), moreover the operator

(f, u) 7→ z(f, u)

is linear and continuous from H−1(Ω)×H1/2(Γ) into H1(Ω).
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We want to extend the notion of solution to equation (2.4.6) in the case where u belongs to
L2(Γ). To do this we introduce the so-called transposition method.

The transposition method

Suppose that u is regular. Let z be the solution to the equation

−∆z = 0 in Ω, z = u on Γ, (2.4.7)

and let y be the solution to

−∆y = φ in Ω, y = 0 on Γ,

where φ belongs to L2(Ω). With the Green formula we have∫
Ω

zφ = −
∫

Γ

u
∂y

∂n
.

Observe that the mapping

Λ : φ 7−→ −∂y
∂n

is linear and continuous from L2(Ω) to H1/2(Γ). Thus Λ is a compact operator from L2(Ω) to
L2(Γ), and its adjoint Λ∗ is a compact operator from L2(Γ) to L2(Ω). Since

−
∫

Γ

u
∂y

∂n
= 〈u,Λφ〉L2(Γ) = 〈Λ∗u, φ〉L2(Ω)

for all φ ∈ L2(Ω), the solution z to equation (2.4.7) obeys

z = Λ∗u.

Up to now, to define y, we have supposed that u is regular. However Λ∗u is well defined if
u belongs to L2(Γ). The transposition method consists in taking z = Λ∗u as the solution
to equation (2.4.7) in the case where u belongs to L2(Γ). This method is here presented in
a particular situation, but it will be used in these lectures in many other situations. The
solution to equation (2.4.6), defined by transposition is given below.

Definition 2.4.1 A function z ∈ L2(Ω) is a solution to equation (2.4.6) if, and only if,∫
Ω

zφ = 〈f, y〉H−1(Ω),H1
0 (Ω) −

∫
Γ

u
∂y

∂n

for all φ ∈ L2(Ω), where y is the solution to

−∆y = φ in Ω, y = 0 on Γ. (2.4.8)

Theorem 2.4.2 For every f ∈ L2(Ω) and every u ∈ L2(Γ), equation (2.4.6) admits a unique
weak solution z(f, u) in L2(Ω), moreover the operator

(f, u) 7→ z(f, u)

is linear and continuous from L2(Ω)× L2(Γ) into L2(Ω).
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Proof. (i) Uniqueness. If (f, u) = 0, we have
∫

Ω
zφ = 0 for all φ ∈ L2(Ω). Thus z = 0 and

the solution to equation (2.4.6) is unique.

(ii) The solution z to equation (2.4.6) in the sense of definition 2.4.1 is equal to z1 + z2, where
z1 ∈ L2(Ω) is the solution to∫

Ω

zφ =

∫
Ω

fy for all φ ∈ L2(Ω),

and z2 ∈ L2(Ω) is the solution to∫
Ω

zφ = −
∫

Γ

u
∂y

∂n
for all φ ∈ L2(Ω).

Therefore z2 = Λ∗u, and we can take z1 as the solution to

−∆z = f in Ω, z = 0 on Γ.

We study the following control problem

(P2) inf{J2(z, u) | (z, u) ∈ L2(Ω)× L2(Γ), (z, u) satisfies (2.4.6)},

with

J2(z, u) =
1

2

∫
Ω

(z − zd)2 +
β

2

∫
Γ

u2.

To write optimality conditions for (P2), we consider adjoint equations of the form

−∆p = g in Ω, p = 0 on Γ. (2.4.9)

Theorem 2.4.3 Suppose that f ∈ L2(Ω), u ∈ L2(Γ), and g ∈ L2(Ω). Then the solution z of
equation (2.4.6) and the solution p of (2.4.9) satisfy the following formula∫

Ω

f p =

∫
Ω

z g +

∫
Γ

u
∂p

∂n
. (2.4.10)

Proof. The result is nothing else than definition 2.4.1.

Theorem 2.4.4 Assume that f ∈ L2(Ω). Let (z̄, ū) be the unique solution to problem (P2).
The optimal control ū is defined by ū = 1

β
∂p
∂n

, where p is the solution to the equation

−∆p = z̄ − zd in Ω, p = 0 on Γ. (2.4.11)

Proof. We leave the reader adapt the proof of Theorem 2.2.2.

2.5 Problems with control constraints

In many applications control variables are subject to constraints. For example the control
variable must satisfy inequality constraints of the form a ≤ u ≤ b , where a and b are two given
functions. More generally, we shall consider control constraints of the form u ∈ Uad , where
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the set Uad is called the set of admissible controls. We want to write optimality conditions for
the corresponding control problems. To explain how to proceed, we consider the particular
problem

(P3) inf{J3(z, u) | (z, u) ∈ H1(Ω)× Uad, (z, u) satisfies (2.2.1)}.

where J3 = J1, and Uad, the set of admissible controls, is a closed convex subset in L2(Γ). We
shall prove, in section 2.6, that (P3) admits a unique solution. We state below a result similar
to that of Theorem 2.2.2.

Theorem 2.5.1 If (z̄, ū) is the solution to (P3) then∫
Γ

(βū+ p)(u− ū) ≥ 0 for all u ∈ Uad

where p is the solution to equation (2.2.4).

Conversely, if a triplet (z̃, ũ, p̃) ∈ H1(Ω)× Uad ×H1(Ω) obeys the system

−∆z̃ + z̃ = f in Ω,
∂z̃

∂n
= ũ on Γ,

−∆p̃+ p̃ = z̃ − zd in Ω,
∂p̃

∂n
= 0 on Γ,∫

Γ
(βũ+ p̃)(u− ũ) ≥ 0 for all u ∈ Uad,

(2.5.12)

then the pair (z̃, ũ) is the optimal solution to problem (P3).

Proof. Setting F3(u) = J3(z(f, u), u), where z(f, u) is the solution to equation (2.2.1), we
have already shown that F ′3(ū) = βū + p|Γ. Thus the first part of the theorem follows from
the optimality of ū. The second part is a direct consequence of Theorem 2.2.3 (ii).

2.6 Existence of solutions

We recall some results of functional analysis needed in the sequel.

Theorem 2.6.1 ([4, Chapter 3, Theorem 7]) Let E be a Banach space, and let C ⊂ E be a
convex subset. If C is closed in E, then C is also closed in (E, σ(E,E ′)) (that is, closed in E
endowed with its weak topology).

Corollary 2.6.1 ([4, Chapter 3, Corollary 8]) Let E be a Banach space, and let ϕ : E 7→
] −∞,∞] be a lower semicontinuous convex function. Then ϕ is also lower semicontinuous
for the weak topology σ(E,E ′). In particular ϕ is sequentially lower semicontinuous.

Theorem 2.6.2 ([4, Chapter 3, Theorem 9]) Let E and F be two Banach spaces, and let T
be a continuous linear operator from E into F . Then T is also continuous from (E, σ(E,E ′))
into (F, σ(F, F ′)).

Corollary 2.6.2 Let (un)n be a sequence converging to u for the weak topology of L2(Γ). Then
the sequence (z(f, un))n, where z(f, un) is the solution to (2.2.1) corresponding to the control
function un, converges to z(f, u) in H1(Ω).
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Proof. From Theorems 2.2.1 and 2.6.2, it follows that (z(f, un))n converges to z(f, u) for the
weak topology of H3/2(Ω). Since the imbedding from H3/2(Ω) into H1(Ω) is compact, the
proof is complete.

Theorem 2.6.3 Problem (P3) admits a unique solution.

Proof. Set m = infu∈UadJ3(z(f, u), u). Since 0 ≤ m <∞, there exists a minimizing sequence
(un)n ⊂ Uad such that limn→∞J3(z(f, un), un) = m. Without loss of generality, we can suppose
that J3(z(f, un), un) ≤ J3(z(f, 0), 0). Thus the sequence (un)n is bounded in L2(Γ). There
exists a subsequence of (un)n, still indexed by n to simplify the notation, and a function u,
such that (un)n converges to u for the weak topology of L2(Γ). Due to Theorem 2.6.1, the limit
u belongs to Uad. Due to Corollary 2.6.1, the mapping ‖·‖2

L2(Γ) is weakly lower semicontinuous

in L2(Γ). Thus, we have ∫
Γ

u2 ≤ liminfn→∞

∫
Γ

u2
n.

From Corollary 2.6.2, it follows that∫
Ω

(z(f, u)− zd)2 ≤ liminfn→∞

∫
Ω

(z(f, un)− zd)2.

Combining these results we obtain

J3(z(f, u), u) ≤ liminfn→∞J3(z(f, un), un) = m.

Therefore (z(f, u), u) is a solution to problem (P3).

Uniqueness. Suppose that (P3) admits two distinct solutions (z(f, u1), u1) and (z(f, u2), u2).
Let us set u = 1

2
u1 + 1

2
u2. Observe that z(f, u) = 1

2
z(f, u1) + 1

2
z(f, u2). Due to the strict

convexity of the functional (z, u) 7→ J3(z, u), we verify that J3(z(f, u), u) < 1
2
J3(z(f, u1), u1)+

1
2
J3(z(f, u2), u2) = m. We obtain a contradiction with the assumption that ’(z(f, u1), u1) and

(z(f, u2), u2) are two solutions of (P3)’. Thus (P3) admits a unique solution.

2.7 Other functionals

2.7.1 Observation in H1(Ω)

We consider the control problem

(P4) inf{J4(z, u) | (z, u) ∈ H1(Ω)× L2(Γ), (z, u) satisfies (2.2.1)}.

with

J4(z, u) =
1

2

∫
Ω

|∇z −∇zd|2 +
β

2

∫
Γ

u2,

where zd belongs to H1(Ω). As in section 2.6, we can prove that (P4) admits a unique solution
(z̄, ū). We set F4(u) = J4(z(f, u), u), where z(f, u) is the solution to (2.2.1). With calculations
similar to those in section 2.2, we have

F ′4(ū)u =

∫
Ω

(∇z̄ −∇zd)∇wu + β

∫
Γ

ūu,



2.7. OTHER FUNCTIONALS 23

where wu is the solution to equation (2.2.2):

−∆w + w = 0 in Ω,
∂w

∂n
= u on Γ.

Let us consider the variational equation

Find p ∈ H1(Ω), such that∫
Ω

(∇p∇φ+ pφ) =
∫

Ω
(∇z̄ −∇zd)∇φ for all φ ∈ H1(Ω).

(2.7.13)

With the Lax-Milgram theorem we can prove that equation (2.7.13) admits a unique solution
p ∈ H1(Ω). Taking φ = wu in the variational equation (2.7.13), we obtain

F ′4(ū)u =

∫
Ω

(∇z̄ −∇zd)∇wu + β

∫
Γ

ūu =

∫
Ω

(∇p∇wu + pwu) + β

∫
Γ

ūu.

With the Green formula we finally have

F ′4(ū)u =

∫
Γ

(p+ βū)u.

Interpretation of equation (2.7.13). Observe that if p is the solution of (2.7.13), then

−∆p+ p = −div(∇z̄ −∇zd)

in the sense of distributions in Ω. If z̄ and zd belongs to H2(Ω), then p ∈ H2(Ω). We can
verify that a function p is a solution of (2.7.13) in H2(Ω) if and only if

−∆p+ p = −div(∇z̄ −∇zd) in Ω, and
∂p

∂n
= (∇z̄ −∇zd) · n on Γ. (2.7.14)

In the case when z̄ and zd do not belong to H2(Ω), (∇z̄−∇zd)·n|Γ = ∂z̄
∂n
− ∂zd

∂n
is not necessarily

defined. However, we still use the formulation (2.7.14) in place of (2.7.13), even if it is abusive.
We can state the following theorem.

Theorem 2.7.1 If (z̄, ū) is the solution to (P4) then ū = − 1
β
p|Γ, where p is the solution to

equation (2.7.14).

Conversely, if a pair (z̃, p̃) ∈ H1(Ω)×H1(Ω) obeys z̃ = z(f,− 1
β
p̃|Γ) and

−∆p̃+ p̃ = −div(∇z̃ −∇zd) in Ω,
∂p

∂n
= (∇z̃ −∇zd) · n on Γ,

then the pair (z̃,− 1
β
p̃) is the optimal solution to problem (P4).

2.7.2 Pointwise observation

We consider the control problem

(P5) inf{J5(z, u) | (z, u) ∈ H1(Ω)× L2(Γ), (z, u) satisfies (2.2.1)}.
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with

J5(z, u) =
1

2
Σk
i=1(z(xi)− zd(xi))2 +

β

2

∫
Γ

u2,

where x1, . . . , xk are given points in Ω.
We know that z(xi) is not defined if z ∈ H1(Ω), except in dimension one, since in that case

we have H1(a, b) ⊂ C([a, b]) if −∞ < a < b < ∞. If z = z(f, u) is the solution to (2.2.1),
and if u ∈ L2(Γ) we know that z ∈ H3/2(Ω). Due to the imbedding Hs(Ω) ⊂ C(Ω) if s > N

2
,

problem (P5) is well posed if N = 2.
First suppose that N = 2. Set F5(u) = J5(z(f, u), u). We have

F ′5(ū)u = Σk
i=1(z̄(xi)− zd(xi))wu(xi) + β

∫
Γ

ūu = Σk
i=1〈wu, (z̄ − zd)δxi〉C(Ω)×M(Ω) + β

∫
Γ

ūu,

where z̄ = z(f, ū), and wu is the solution to equation (2.2.2). Thus we have to consider the
adjoint equation

−∆p̃+ p̃ = Σk
i=1(z̄ − zd)δxi in Ω,

∂p̃

∂n
= 0 on Γ. (2.7.15)

Since Σk
i=1(z̄ − zd)δxi 6∈ (H1(Ω))′, we cannot study equation (2.7.15) with the Lax-Milgram

theorem. To study equation (2.7.15) and optimality conditions for (P5), we need additional
regularity results that we develop in the next chapter (see section 3.5).

2.8 Exercises

Exercise 2.8.1

Let Ω be a bounded domain in RN , with a Lipschitz boundary Γ. Let Γ1 be a closed subset
in Γ, and set Γ2 = Γ \ Γ1. We consider the elliptic equation

−∆z = f in Ω,
∂z

∂n
= u on Γ1, z = 0 on Γ2. (2.8.16)

The function f ∈ L2(Ω) is a given source term and the function u ∈ L2(Γ1) is a control
variable. Denote by H1

Γ2
(Ω) the space

H1
Γ2

(Ω) = {z ∈ H1(Ω) | z|Γ2 = 0}.

1 - Prove that equation (2.8.16) admits a unique weak solution in H1
Γ2

(Ω) (give the precise
definition of a weak solution).

We want to study the control problem

(P6) inf{J6(z, u) | (z, u) ∈ H1
Γ2

(Ω)× L2(Γ1), (z, u) satisfies (2.8.16)}.

with

J6(z, u) =
1

2

∫
Ω

(z − zd)2 +
β

2

∫
Γ1

u2,

the function zd belongs to L2(Ω), and β > 0.
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2 - Let (un)n be a sequence in L2(Γ1) converging to û for the weak topology of L2(Γ1). Let
z(un) be the solution to equation (2.8.16) corresponding to un. What can we say about the
sequence (z(un))n ? Prove that problem (P6) admits a unique weak solution.

Characterize the optimal control by writing first order optimality conditions.

Exercise 2.8.2

Let Ω be a bounded domain in RN , with a Lipschitz boundary Γ. Consider the elliptic equation

−∆z + z = f + χωu in Ω,
∂z

∂n
= 0 on Γ. (2.8.17)

The function f belongs to L2(Ω), the control u ∈ L2(ω), and ω is an open subset in Ω. We
want to study the control problem

(P7) inf{J7(z, u) | (z, u) ∈ H1(Ω)× L2(ω), (z, u) satisfies (2.8.17)}.

with

J7(z, u) =
1

2

∫
Γ

(z − zd)2 +
β

2

∫
ω

u2,

the function zd belongs to H1(Ω).

1 - Prove that problem (P7) admits a unique weak solution.

2 - Characterize the optimal control by writing first order optimality conditions.
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Chapter 3

Control of semilinear elliptic equations

3.1 Introduction

In the sequel we suppose that Ω is a bounded domain in RN (N ≥ 2), with a boundary Γ of
class C2. Let A be an elliptic operator defined by

Az = −ΣN
i,j=1∂i(aij(x)∂jz(x)) + a0(x)z,

∂i and ∂j denote the partial derivatives with respect to xi and xj. We suppose that aij ∈ C1(Ω),
a0 ∈ C(Ω), and

ΣN
i,j=1aij(x)ξiξj ≥ m|ξ|2 and a0(x) ≥ m > 0,

for all ξ ∈ RN and all x ∈ Ω. In this chapter we study optimal control problems for systems
governed by elliptic equations of the form

Az = f in Ω,
∂z

∂nA
+ ψ(z) = u on Γ, (3.1.1)

where ∂z
∂nA

= ΣN
i,j=1(aij(x)∂jz(x))ni(x) denotes the conormal derivative of z with respect to

A, n = (n1, . . . , nN) is the outward unit normal to Γ. Typically we shall study the case of a
Stefan-Boltzmann boundary condition, that is

ψ(z) = |z|3z,

but what follows can be adapted to other regular nondecreasing functions.

In this chapter we study equation (3.1.1) for control functions u ∈ Ls(Γ) with s > N − 1.
In that case we obtain solutions to equation (3.1.1) in C(Ω). These results are also used in
section 3.5 to deal with problems involving pointwise observations. Equation (3.1.1) can as
well be studied for control functions u ∈ L2(Γ). But, due to the nonlinear boundary condition,
the analysis is more complicated than for controls in Ls(Γ) with s > N − 1. Here we do not
study the case of L2-controls.

27
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3.2 Linear elliptic equations

Theorem 3.2.1 For every f ∈ Lr(Ω), with r ≥ 2N
N+2

if N > 2 and r > 1 if N = 2, equation

Az = f in Ω,
∂z

∂nA
= 0 on Γ, (3.2.2)

admits a unique solution in H1(Ω), this solution belongs to W 2,r(Ω).

Proof. Since H1(Ω) ⊂ L
2N
N−2 (Ω) (with a dense imbedding) if N > 2, and H1(Ω) ⊂ Lp(Ω) for

any p < ∞ (with a dense imbedding) if N = 2, we have L
2N
N+2 (Ω) ⊂ (H1(Ω))′ if N > 2, and

Lp
′
(Ω) ⊂ (H1(Ω))′ for all p <∞ if N = 2. Thus Lr(Ω) ⊂ (H1(Ω))′. The existence of a unique

solution in H1(Ω) follows from the Lax-Migram theorem. The regularity result in W 2,r(Ω) is
proved in [30, Theorem 3.17].

For any exponent q, we denote by q′ the conjugate exponent to q. When f ∈ (W 1,q′(Ω))′,
q ≥ 2, we replace equation (3.2.2) by the variational equation

find z ∈ H1(Ω) such that a(z, φ) = 〈f, φ〉(H1(Ω))′×H1(Ω) for all φ ∈ H1(Ω), (3.2.3)

where a(z, φ) =
∫

Ω
ΣN
i,j=1aij(x)∂jz∂iφ dx.

Theorem 3.2.2 For every f ∈ (W 1,q′(Ω))′, with q ≥ 2, equation (3.2.3) admits a unique
solution in H1(Ω), this solution belongs to W 1,q(Ω), and

‖z‖W 1,q(Ω) ≤ C‖f‖(W 1,q′ (Ω))′ .

Proof. As previously we notice that the existence of a unique solution in H1(Ω) follows from
the Lax-Migram theorem. The regularity result in W 1,q(Ω) is proved in [30, Theorem 3.16].

With Theorem 3.2.2, we can study elliptic equations with nonhomogeneous boundary condi-
tions.

Lemma 3.2.1 If g ∈ Ls(Γ) with s ≥ 2(N−1)
N

, the mapping

φ 7−→
∫

Γ

gφ

belongs to (W 1,q′(Ω))′ for all s ≥ (N−1)q
N

.

Proof. If φ ∈ W 1,q′(Ω), then φ|Γ belongs to W
1− 1

q′ ,q
′
(Γ) ⊂ L

(N−1)q′
N−q′ (Γ). Thus the mapping

φ 7→
∫

Γ
gφ belongs to (W 1,q′(Ω))′ if s ≥

(
(N−1)q′

N−q′

)′
= (N−1)q

N
. The proof is complete.

Theorem 3.2.3 For every g ∈ Ls(Γ), with s ≥ 2(N−1)
N

, equation

Az = 0 in Ω,
∂z

∂nA
= g on Γ, (3.2.4)

admits a unique solution in H1(Ω), this solution belongs to W 1,q(Ω) with q = Ns
N−1

, and

‖z‖W 1,q(Ω) ≤ C‖g‖Ls(Γ).
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Proof. Obviously z ∈ H1(Ω) is a solution to equation (3.2.4) if and only if

a(z, φ) =

∫
Γ

gφ for all φ ∈ H1(Ω).

The existence and uniqueness still follow from the Lax-Milgram theorem. The regularity result
is a direct consequence of Lemma 3.2.1 and Theorem 3.2.2.

3.3 Semilinear elliptic equations

The Minty-Browder Theorem, stated below, is a powerful tool to study nonlinear elliptic
equations.

Theorem 3.3.1 ([4]) Let E be a reflexive Banach space, and A be a nonlinear continuous
mapping from E into E ′. Suppose that

〈A(z1)−A(z2), z1 − z2〉E′,E > 0 for all z1, z2 ∈ E, with z1 6= z2, (3.3.5)

and

lim‖z‖E→∞
〈A(z), z〉E′,E
‖z‖E

=∞.

Then, for all ` ∈ E ′, there exists a unique z ∈ E such that A(z) = `.

We want to apply this theorem to the nonlinear equation

Az = f in Ω,
∂z

∂nA
+ ψk(z) = g on Γ, (3.3.6)

with f ∈ Lr(Ω), g ∈ Ls(Γ), and

ψk(z) =

ψ(k) + ψ′(k)(z − k) if z > k,
ψ(z) if |z| ≤ k,
ψ(−k) + ψ′(−k)(z + k) if z < −k.

We explain below why we first replace ψ by the truncated function ψk (see remark after
Theorem 3.3.2). To apply Theorem 3.3.1, we set E = H1(Ω), and we define A by

〈A(z), φ〉(H1(Ω))′,H1(Ω) = a(z, φ) +

∫
Γ

ψk(z)φ,

and ` by

〈`, φ〉 =

∫
Ω

fφ+

∫
Γ

gφ.

Condition (3.3.5) is satisfied because a(z1 − z2, z1 − z2) ≥ m‖z1 − z2‖2
H1(Ω) and

∫
Γ
ψk(z1 −

z2)(z1 − z2) ≥ 0 (indeed, the function ψk is increasing). Moreover

〈A(z), z〉(H1(Ω))′,H1(Ω)

‖z‖H1(Ω)

≥ m‖z‖H1(Ω) →∞ as ‖z‖H1(Ω) →∞.
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Let us verify that the mapping

z 7−→
(
φ 7→

∫
Γ

ψk(z)φ
)

is continuous from H1(Ω) into (H1(Ω))′. Let (zn)n be a sequence converging to some z in
H1(Ω). Since ψk is a Lipschitz function we have

|
∫

Γ

(ψk(zn)− ψk(z))φ| ≤ C‖zn − z‖L2(Γ)‖φ‖L2(Γ) ≤ C‖zn − z‖H1(Ω)‖φ‖H1(Ω).

This proves the continuity result. Thus all the assumptions of Theorem 3.3.1 are satisfied and
we have established the following theorem.

Theorem 3.3.2 The nonlinear equation (3.3.6) admits a unique solution in H1(Ω).

Remark. We have explicitly used the Lipschitz continuity of ψk to prove that A is a contin-
uous mapping from H1(Ω) into (H1(Ω))′. Observe that the mapping

z 7−→
(
φ 7→

∫
Γ

ψ(z)φ
)

is not a mapping from H1(Ω) into (H1(Ω))′. This is the reason why we have used the truncated
function ψk. We shall see later how we can go back to the initial equation.

Theorem 3.3.3 (Comparison principle) Let f ∈ Lr(Ω), with r ≥ 2N
N+2

, g ∈ Ls(Γ), with

s ≥ 2(N−1)
N

, and b ∈ L∞(Γ) satisfying b ≥ 0. Suppose that f ≥ 0 and g ≥ 0. Then the solution
z to the equation

Az = f in Ω,
∂z

∂nA
+ bz = g on Γ,

is nonnegative.

Theorem 3.3.4 For all f ∈ Lr(Ω), with r > N
2

, and g ∈ Ls(Γ), with s > N − 1, the solution
to equation

Az = f in Ω,
∂z

∂nA
= g on Γ, (3.3.7)

belongs to C0,ν(Ω) for some 0 < ν ≤ 1, and

‖z‖C0,ν(Ω) ≤ C(‖f‖Lr(Ω) + ‖g‖Ls(Γ)).

Proof. Let z1 be the solution to

Az = f in Ω,
∂z

∂nA
= 0 on Γ,

and z2 the solution to

Az = 0 in Ω,
∂z

∂nA
= g on Γ.

With Theorem 3.2.1 and Theorem 3.2.3, we have z1 ∈ W 2,r(Ω) and z2 ∈ W 1, Ns
N−1 (Ω). Due to

Sobolev imbeddings, we have W 2,r(Ω) ⊂ W 1, Nr
N−r (Ω) if r < N , and W 2,r(Ω) ⊂ W 1,q(Ω) for all

q < ∞ if r ≥ N . Observe that Nr
N−r > N because r > N

2
. Thus we have W 2,r(Ω) ⊂ C0,ν(Ω)

for some 0 < ν ≤ 1. We also have Ns
N−1

> N , because s > N − 1, and W 1, Ns
N−1 (Ω) ⊂ C0,ν(Ω)

for ν = s−N+1
s

. Since z = z1 + z2, the proof is complete.
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Theorem 3.3.5 For all f ∈ Lr(Ω), with r > N
2

, and g ∈ Ls(Γ), with s > N − 1, the solution

to equation (3.3.6) belongs to C(Ω), and

‖z‖C(Ω) ≤ C(‖f‖Lr(Ω) + ‖g‖Ls(Γ)),

where the constant C is independent of k.

Proof. Due to Theorem 3.3.2 the solution exists and is unique in H1(Ω). We can rewrite
equation (3.3.6) in the form

Az = f in Ω,
∂z

∂nA
+ bz = g on Γ,

with b(x) =
∫ 1

0
ψ′k(θz(x))dθ. Observe that b ∈ L∞(Γ) because ψ′k is bounded. Using the

positive and the negative parts of f and g (f = f+−f− and g = g+−g−), we have z = z1−z2,
where z1 is the solution to

Az = f+ in Ω,
∂z

∂nA
+ bz = g+ on Γ,

and z2 is the solution to

Az = f− in Ω,
∂z

∂nA
+ bz = g− on Γ.

Due to the comparison principle, the functions z1 and z2 are nonnegative. Denote by ẑ1 the
solution to

Az = f+ in Ω,
∂z

∂nA
= g+ on Γ.

Thus we have 0 ≤ ẑ1 (due to the comparison principle), and w = ẑ1 − z1 obeys

Aw = 0 in Ω,
∂w

∂nA
= bz1 ≥ 0 on Γ.

Still with the comparison principle it follows that 0 ≤ z1 ≤ ẑ1, and

‖z1‖C(Ω) ≤ ‖ẑ1‖C(Ω) ≤ C(‖f‖Lr(Ω) + ‖g‖Ls(Γ)),

where the constant C is independent of k. Similarly we have 0 ≤ z2 ≤ ẑ2, and

‖z2‖C(Ω) ≤ ‖ẑ2‖C(Ω) ≤ C(‖f‖Lr(Ω) + ‖g‖Ls(Γ)),

where the constant C is independent of k. Since ‖z‖C(Ω) ≤ ‖z1‖C(Ω) + ‖z2‖C(Ω), the proof is
complete.

Theorem 3.3.6 For all f ∈ Lr(Ω), with r > N
2

, g ∈ Ls(Γ), with s > N − 1, and all b ≥ 0,
b ∈ L∞(Ω), the solution to equation

Az = f in Ω,
∂z

∂nA
+ bz = g on Γ,

belongs to C(Ω), and
‖z‖C(Ω) ≤ C(‖f‖Lr(Ω) + ‖g‖Ls(Γ)),

where the constant C is independent of b.
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Proof. The proof is completely analogous to the previous one.

We give a definition of solution to equation (3.1.1) very similar to the one for equation (3.3.6).

Definition 3.3.1 A function z ∈ H1(Ω) is a solution to equation (3.1.1) if ψ(z) ∈ L
2N
N+2 (Γ)

when N > 2, ψ(z) ∈ Lr(Γ) with r > 1 when N = 2, and

a(z, φ) +

∫
Γ

ψ(z)φ =

∫
Ω

fφ+

∫
Γ

uφ for all φ ∈ H1(Ω).

Theorem 3.3.7 For all f ∈ Lr(Ω), with r > N
2

, and u ∈ Ls(Γ), with s > N − 1, equation

(3.1.1) admits a unique solution in H1(Ω) ∩ L∞(Ω), this solution belongs to C(Ω) and

‖z‖C(Ω) + ‖z‖H1(Ω) ≤ C(‖f‖Lr(Ω) + ‖u‖Ls(Γ)).

It also belongs to C0,ν(Ω) for some 0 < ν ≤ 1, and

‖z‖C0,ν(Ω) ≤ C
(
‖f‖Lr(Ω) + ‖u‖Ls(Γ) + ψ(‖z‖C(Ω))

)
.

Proof. Let k > C(‖f‖Lr(Ω) + ‖u‖Ls(Γ)), where C is the constant in the estimate of Theorem
3.3.5. Let zk be the solution to equation (3.3.6). Due to Theorem 3.3.5 ‖zk‖C(Ω) < k. Thus
ψk(zk) = ψ(zk). This means that zk is also a solution to equation (3.1.1). To prove the
uniqueness, we argue by contradiction. Suppose that z1 and z2 are two solutions to equation
(3.1.1) in H1(Ω) ∩ L∞(Ω). Then w = z1 − z2 is the solution to

Aw = 0 in Ω,
∂w

∂nA
+ bw = 0 on Γ,

with b(x) =
∫ 1

0
ψ′(z2(x) + θ(z1(x) − z2(x)))dθ. The functions z1 and z2 being bounded, b ∈

L∞(Γ). From the comparison principle, it follows that w = 0.

The estimate in C(Ω) follows from the estimate of zk. The estimate in H1(Ω) follows from
the variational formulation. The estimate in C0,ν(Ω) can be deduced from Theorem 3.3.4 by
writing the boundary condition in the form ∂z

∂nA
= −ψ(z) + u. The proof is complete.

3.4 Control problems

From now on we suppose that the exponent N − 1 < s < ∞ is given fixed, and f ∈ Lr(Ω)
with r > N

2
is also given. In this case the nonlinear equation (3.1.1) admits a unique solution

for all u ∈ Ls(Γ). We are going to study the control problem

(P1) inf{J1(z, u) | (z, u) ∈ H1(Ω)× Uad, (z, u) satisfies (3.1.1)},

where Uad is a closed convex subset in Ls(Γ), and

J1(z, u) =
1

2

∫
Ω

(z − zd)2 + β

∫
Γ

|u|s.

We suppose that either β > 0 or Uad is bounded in Ls(Γ). The function zd belongs to L2(Ω).
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3.4.1 Existence of solutions

Theorem 3.4.1 Let (un)n be a sequence converging to u for the weak topology of Ls(Γ).
Let z(f, un) (resp. z(f, u)) be the solution to (3.1.1) corresponding to un (resp. u). Then
(z(f, un))n converges to z(f, u) for the weak topology of H1(Ω), and for the strong topology of
C(Ω).

Proof. Set zn = z(f, un). For any subsequence (znk)k, due to Theorem 3.3.7 the sequence
(znk)k is bounded in H1(Ω) and in C0,ν(Ω) for some 0 < ν ≤ 1. The imbedding from C0,ν(Ω)
into C(Ω) is compact. Thus we can extract a subsequence, still indexed by k to simplify the
notation, such that (znk)k converges to some z for the weak topology of H1(Ω), and for the
strong topology of C(Ω). By passing to the limit in the variational formulation satisfied by
znk , we see that z = z(f, u). The limit being unique, the sequence (zn)n has a unique cluster
point which proves that all the sequence (zn)n converges to z(f, u).

Theorem 3.4.2 Problem (P1) admits at least one solution.

Proof. Let (un)n be a minimizing sequence for (P1). Since β > 0 or Uad is bounded in Ls(Γ),
the sequence (un)n is bounded in Ls(Γ). Without loss of generality, we can suppose that
(un)n converges to some u for the weak topology of Ls(Γ). The function u belongs to Uad,
because Uad is a closed convex subset in Ls(Γ) (see Theorem 2.6.1). Due to Theorem 3.4.1,
the sequence (z(f, un))n converges to z(f, u) in C(Ω). Thus we have

J1(z(f, u), u) ≤ liminfn→∞J1(z(f, un), un) = inf(P1),

that is (z(f, u), u) is a solution to problem (P1).

3.4.2 Optimality conditions

Theorem 3.4.3 Let u be in Uad and let (bk)k be a sequence in L∞(Γ) converging to b in
L∞(Γ). Let wk be the solution to

Aw = 0 in Ω,
∂w

∂nA
+ bkw = u on Γ. (3.4.8)

Then the sequence (wk)k converges to w in C(Ω), where w is the solution to

Aw = 0 in Ω,
∂w

∂nA
+ bw = u on Γ.

Proof. Due to Theorem 3.3.6, ‖wk‖C(Ω) ≤ C‖u‖Ls(Γ) and C is independent of k. The function
wk − w is the solution to

Az = 0 in Ω,
∂z

∂nA
+ bz = (b− bk)wk on Γ.

Thus we have

‖wk − w‖C(Ω) ≤ C‖(b− bk)wk‖L∞(Γ) ≤ C‖b− bk‖L∞(Γ)‖u‖Ls(Γ).

The proof is complete.
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Theorem 3.4.4 Let ū and u be in Uad and let λ > 0. Set wλ = 1
λ
(z(f, ū+λ(u− ū))−z(f, ū)).

Then (wλ)λ tends to w for the weak topology of H1(Ω), where w is the solution to equation

Aw = 0 in Ω,
∂w

∂nA
+ ψ′(z(f, ū))w = u− ū on Γ. (3.4.9)

Proof. Set zλ = z(f, ū+ λ(u− ū)) and z̄ = z(f, ū). Writing the equation satisfied by zλ − z,
we can easily prove that zλ tends to z̄, as λ tends to zero. Now we write the equation satisfied
by wλ = 1

λ
(zλ − z̄):

Aw = 0 in Ω,
∂w

∂nA
+ bλw = u− ū on Γ,

with bλ =
∫ 1

0
ψ′(z̄ + θ(zλ − z̄))dθ. Since zλ tends to z̄, bλ tends to ψ′(z̄) as λ tends to zero.

Thus we can apply Theorem 3.4.3 to complete the proof.

Theorem 3.4.5 If (z̄, ū) is a solution to (P1) then∫
Γ

(βs|ū|s−2ū+ p)(u− ū) ≥ 0 for all u ∈ Uad,

where p is the solution to equation

A∗p = z̄ − zd in Ω,
∂p

∂nA∗
+ ψ′(z̄)p = 0 on Γ. (3.4.10)

(A∗ is the formal adjoint of A, that is A∗p = −ΣN
i,j=1∂j(aij∂ip)+a0p, and ∂p

∂nA∗
= ΣN

i,j=1(aij∂ipnj).)

Proof. With the notation used in the proof of Theorem 3.4.4, for all λ > 0, we have

0 ≤ J1(zλ, uλ)− J1(z̄, ū)

λ
=

∫
Ω

1

2
(zλ + z̄ − 2zd)wλ +

β

λ

∫
Γ

(|uλ|s − |u|s),

with uλ = ū+ λ(u− ū). From the convexity of the mapping u 7→ |u|s it follows that∫
Γ

(|uλ|s − |u|s) ≤
∫

Γ

s|uλ|s−2uλ λ(u− ū).

Thus we have

0 ≤
∫

Ω

1

2
(zλ + z̄ − 2zd)wλ +

∫
Γ

βs|uλ|s−2uλ (u− ū).

Passing to the limit when λ tends to zero, it yields

0 ≤
∫

Ω

(z̄ − zd)w +

∫
Γ

βs|ū|s−2ū(u− ū),

where w is the solution to equation (3.4.9). Now using a Green formula between p and w we
obtain ∫

Ω

(z̄ − zd)w =

∫
Ω

A∗pw =

∫
Γ

∂w

∂nA
p−

∫
Γ

∂p

∂nA∗
w =

∫
Γ

p(u− ū).

This completes the proof.
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3.5 Pointwise observation

In the previous chapter, we have already mentioned that pointwise observations are well defined
if the state variable is continuous. Due to Theorem 3.3.5 the solution to equation (3.1.1) is
continuous if the boundary control u belongs to Ls(Γ) with s > N−1. We are now in position
to study the control problem

(P2) inf{J2(z, u) | (z, u) ∈ C(Ω)× Uad, (z, u) satisfies (3.1.1)}.

where Uad is a closed convex subset in Ls(Γ), and

J2(z, u) =
1

2

∫ T

0

Σk
i=1(z(xi)− zd(xi))2 + β

∫
Γ

|u|s,

where x1, . . . , xk are given points in Ω, and zd ∈ C(Ω).
The adjoint equation for (P2) is of the form

A∗p = Σk
i=1(z − zd)δxi in Ω,

∂p

∂nA∗
+ bp = 0 on Γ, (3.5.11)

with b ∈ L∞(Γ), b ≥ 0. Since Σk
i=1(z − zd)δxi 6∈ (H1(Ω))′, we cannot study equation (3.5.11)

with the Lax-Milgram theorem. For simplicity in the notation let us suppose that there is
only one observation point a ∈ Ω. We study equation

A∗p = δa in Ω,
∂p

∂nA∗
+ bp = 0 on Γ, (3.5.12)

with the transposition method.

Definition 3.5.1 We say that p ∈ Lq(Ω), with q < N
N−2

, is a solution to equation (3.5.12) in
the sense of transposition if ∫

Ω

pφ = y(a),

for all φ ∈ Lq′(Ω), where y is the solution to

Ay = φ in Ω,
∂y

∂nA
+ by = 0 on Γ. (3.5.13)

Following the transposition method of Chapter 2, we set

Λ : φ 7−→ y,

and p is defined by

〈φ, p〉Lq′ (Ω),Lq(Ω) = 〈Λ(φ), δa〉C(Ω),M(Ω) = 〈φ,Λ∗(δa)〉Lq′ (Ω),Lq(Ω)

for all φ ∈ Lq′(Ω), that is p = Λ∗(δa). By proving that Λ is continuous from Lq
′
(Ω) into C(Ω),

we show that Λ∗ is continuous from M(Ω) into Lq
′
(Ω).
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Here, we prefer to construct the solution to equation (3.5.12) by an approximation process,
and next use the transposition method to obtain estimates and to prove uniqueness. This ap-
proximation process is used to obtain regularity results (see Theorem 3.5.1). We approximate
the distribution δa by the sequence of bounded functions (fε)ε with fε = 1

|B(a,ε)|χB(a,ε), where

B(a, ε) is the ball centered at a with radius ε, |B(a, ε)| the measure of the ball, and χB(a,ε) is
the characteristic function of B(a, ε). Let pε be the solution to

A∗p = fε in Ω,
∂p

∂nA∗
+ bp = 0 on Γ. (3.5.14)

Using a Green formula, we have∫
Ω

pεφ =
1

|B(a, ε)|

∫
Ω

χB(a,ε)y, (3.5.15)

where y is the solution to (3.5.13). If q′ > N
2

, from Theorem 3.3.5 it follows∣∣∣∣ ∫
Ω

pεφ

∣∣∣∣ =
1

|B(a, ε)|

∣∣∣∣ ∫
Ω

χB(a,ε)y

∣∣∣∣ ≤ ‖y‖C(Ω) ≤ C‖φ‖Lq′ (Ω),

and

‖pε‖Lp(Ω) ≤ sup‖φ‖
Lq
′
(Ω)

=1

∣∣∣∣ ∫
Ω

pεφ

∣∣∣∣ ≤ C.

Thus the sequence (pε)ε is bounded in Lq(Ω). We can extract a subsequence, still indexed by
ε to simplify the notation, such that (pε)ε converges to some p for the weak topology of Lq(Ω).
Since q′ > N

2
, y ∈ C(Ω) and

1

|B(a, ε)|

∫
Ω

χB(a,ε)y −→ y(a)

as ε tends to zero. By passing to the limit in (3.5.15), we prove that p is a solution to equation
(3.5.12) in the sense of definition 3.5.1.

Let us prove the uniqueness. Let p1 and p2 be two solutions in Lq
′
(Ω) to equation (3.5.12).

We have ∫
Ω

(p1 − p2)φ = 0

for all φ ∈ Lq(Ω). Thus p1 = p2.

Theorem 3.5.1 Equation (3.5.12) admits a unique solution in Lq(Ω) for all q < N
N−2

, and

this solution belongs to W 1,τ (Ω) for all τ < N
N−1

.

Lemma 3.5.1 Let φ ∈ D(Ω), and let y be the solution to equation

Ay = −∂iφ in Ω,
∂y

∂nA
+ by = 0 on Γ, (3.5.16)

where i ∈ {1, . . . , N}. Then, for all τ < N
N−1

, y satisfies the estimate

‖y‖C(Ω) ≤ C(τ)‖φ‖Lτ ′ (Ω).
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Proof. We have ∣∣∣∣ ∫
Ω

(−∂iφψ)

∣∣∣∣ =

∣∣∣∣ ∫
Ω

φ∂iψ

∣∣∣∣ ≤ ‖φ‖Lτ ′ (Ω)‖ψ‖W 1,τ (Ω).

Therefore, the mapping

ψ −→
∫

Ω

(−∂iφψ)

is an element in (W 1,τ (Ω))′, whose norm in (W 1,τ (Ω))′ is bounded by ‖φ‖Lτ ′ (Ω). Now, from
Theorem 3.2.2, it follows that

‖y‖C(Ω) ≤ C‖y‖W 1,τ ′ (Ω) ≤ C‖φ‖Lτ ′ (Ω),

because τ ′ > N . The proof is complete.
Proof of Theorem 3.5.1. The first part of the theorem is already proved. Let us

prove that p belongs to W 1,τ (Ω) for all τ < N
N−1

. Replacing φ by −∂iφ in (3.5.15), where
i ∈ {1, . . . , N}, we obtain∫

Ω

∂ipεφ =

∫
Ω

pε(−∂iφ) =
1

|B(a, ε)|

∫
Ω

χB(a,ε)y,

where y is the solution to equation (3.5.16). Since ‖y‖C(Ω) ≤ C‖φ‖Lτ ′ (Ω), it yields

‖∂ipε‖Lτ (Ω) ≤ sup‖φ‖
Lτ
′
(Ω)

=1

∣∣∣∣ ∫
Ω

∂ipεφ

∣∣∣∣ ≤ C.

This estimate is true for all i ∈ {1, . . . , N}, therefore the sequence (pε)ε is bounded in W 1,τ (Ω).
We already know that the sequence (pε)ε tends to p for the weak topology of Lq(Ω) for all
1 < q < N

N−2
. From the previous estimate it follows that the sequence (pε)ε tends to p for the

weak topology of W 1,τ (Ω) for all 1 < τ < N
N−1

.

The proof of existence of solutions to problem (P2) is similar to the one of Theorem (3.4.2).

Theorem 3.5.2 If (z̄, ū) is a solution to (P2) then∫
Γ

(βs|ū|s−2ū+ p)(u− ū) ≥ 0 for all u ∈ Uad,

where p is the solution to equation

A∗p = Σk
i=1(z̄(xi)− zd(xi))δxi in Ω,

∂p

∂nA∗
+ ψ′(z̄)p = 0 on Γ. (3.5.17)

Proof. Let wu be the solution to

Aw = 0 in Ω,
∂w

∂nA
+ ψ′(z̄)w = u on Γ,

and pε be the solution to

A∗p = Σk
i=1fi,ε in Ω,

∂p

∂nA∗
+ ψ′(z̄)p = 0 on Γ,
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where fi,ε = (z̄(xi)−zd(xi))
|B(xi,ε)| χB(xi,ε). We can easily verify that w and pε satisfy the Green formula

Σk
i=1

∫
Ω

fi,εwu =

∫
Γ

pεu.

The sequence (pε)ε is bounded in W 1,τ (Ω) for all τ < N/(N − 1), and when ε tends to zero,
(pε)ε tends to p for the weak topology of W 1,τ (Ω) for all 1 < τ < N/(N − 1). By passing to
the limit when ε tends to zero in the previous formula, we obtain

Σk
i=1(z̄(xi)− zd(xi))wu(xi) =

∫
Γ

pu.

On the other hand, setting J2(z(f, u), u) = F2(u), we have

F ′2(ū)u = Σk
i=1(z̄(xi)− zd(xi))wu(xi) + β

∫
Γ

s|ū|s−2ūu.

Using the previous Green formula, we deduce

F ′2(ū)u =

∫
Γ

pu+ β

∫
Γ

|ū|s−2ūu.

This completes the proof.

3.6 Exercises

Exercise 3.6.1

We study the optimal control problem of section 1.2.1. We suppose that the electrical potential
φ in a bounded domain Ω satisfies the elliptic equation

−div(σ∇φ) = 0 in Ω,

−σ∂φ
∂n

= i on Γa, −σ∂φ
∂n

= 0 on Γi, −σ∂φ
∂n

= f(φ) on Γc,
(3.6.18)

where Γa is a part of the boundary of Ω occupied by the anode, Γc is a part of the boundary
of Ω occupied by the cathode, Γi is the rest of the boundary Γ, Γi = Γ\ (Γa∪Γc). The control
function is the current density i, the constant σ is the conductivity of the electrolyte, the
function f is supposed to be of class C1, globally Lipschitz in R, and such that f(r) ≥ c1 > 0
for all r ∈ R. We study the control problem

(P3) inf{J3(φ, i) | (φ, i) ∈ H1(Ω)× L2(Γa), (φ, i) satisfies (3.6.18), a ≤ i ≤ b},

where

J3(φ, i) =

∫
Γc

(φ− φ̄)2 + β

∫
Γa

i2,

a ∈ L2(Γa) and b ∈ L2(Γa) are some bounds on the current i, and β is a positive constant.

Prove that (P3) has at least one solution. Write the first order optimality condition for the
solutions to (P3).
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Exercise 3.6.2

We use Theorem 3.5.1 to study problems with pointwise controls. Let x1, . . . , xk be given
points in Ω, and consider equation

−∆z = f + Σk
i=1uiδxi in Ω, z = 0 on Γ, (3.6.19)

and the control problem

(P4) inf{J4(z, u) | (z, u) ∈ L2(Ω)× Rk, (z, u) satisfies (3.6.19)},

where

J4(z, u) =

∫
Ω

(z − zd)2 + Σk
i=1u

2
i ,

zd ∈ L2(Ω) and f ∈ L2(Ω).

Prove that (P4) admits a unique solution. Characterize this optimal solution by first order
optimality conditions.
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Chapter 4

Evolution equations

4.1 Introduction

The purpose of this chapter is to introduce some existence and regularity results for linear
evolution equations. We consider equations of the form

z′ = Az + f, z(0) = z0. (4.1.1)

In this setting A is an unbounded operator in a reflexive Banach space Z, with domain D(A)
dense in Z. We suppose thatA is the infinitesimal generator of a strongly continuous semigroup
on Z. This semigroup will be denoted by (etA)t≥0. In section 4.2, we study the weak solutions
to equation (4.1.1) in Lp(0, T ;Z). For application to boundary control problems, we have to
extend the notion of solutions to the case where f ∈ Lp(0, T ; (D(A∗))′). In that case we study
the solutions in Lp(0, T ; (D(A∗))′) (see section 4.3). Before studying equation (4.1.1), let us
now recall the Hille-Yosida theorem, which is very useful in applications.

Theorem 4.1.1 ([18, Chapter 1, Theorem 3.1], [8, Theorem 4.4.3]) An unbounded operator A
with domain D(A) in a Banach space Z is the infinitesimal generator of a strongly continuous
semigroup of contractions if and only if the two following conditions hold:

(i) A is a closed operator and D(A) = Z,

(ii) for all λ > 0, (λI −A) is a bijective operator from D(A) onto Z, (λI −A)−1 is a bounded
operator on Z, and

‖(λI − A)−1‖L(Z) ≤
1

λ
.

Theorem 4.1.2 Let (etA)t≥0 be a strongly continuous semigroup in Z with generator A. Then
there exists M ≥ 1 and ω ∈ R such that

‖etA‖L(Z) ≤Meωt for all t ≥ 0.

For all c ∈ R, A− cI is the infinitesimal generator of a strongly continuous semigroup on Z,
denoted by (et(A−cI))t≥0, which satisfies

‖et(A−cI)‖L(Z) ≤Me(ω−c)t for all t ≥ 0.

The first part of the theorem can be found in [2, Chapter 1, Corollary 2.1], or in [18, Chapter
1, Theorem 2.2]. The second statement follows from that et(A−cI) = e−ctetA.

41
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4.2 Weak solutions in Lp(0, T ;Z)

We recall the notion of weak solution to equation

z′ = Az + f, z(0) = z0, (4.2.2)

where z0 ∈ Z and f ∈ Lp(0, T ;Z), with 1 ≤ p <∞.

The adjoint operator of A is an unbounded operator in Z ′ defined by

D(A∗) = {ζ ∈ Z ′ | |〈ζ, Az〉| ≤ c‖z‖Z for all z ∈ D(A)}

and
〈A∗ζ, z〉 = 〈ζ, Az〉 for all ζ ∈ D(A∗) and all z ∈ D(A).

We know that the domain of A∗ is dense in Z ′.

Definition 4.2.1 A function z ∈ Lp(0, T ;Z), with 1 ≤ p <∞, is a weak solution to equation
(4.2.2) if for every ζ ∈ D(A∗), 〈z( · ), ζ〉 belongs to W 1,p(0, T ) and

d

dt
〈z(t), ζ〉 = 〈z(t), A∗ζ〉+ 〈f(t), ζ〉 in ]0, T [, 〈z(0), ζ〉 = 〈z0, ζ〉.

Theorem 4.2.1 ([2, Chapter 1, Proposition 3.2]) For every z0 ∈ Z and every f ∈ Lp(0, T ;Z),
with 1 ≤ p <∞, equation (4.2.2) admits a unique solution z(f, z0) ∈ Lp(0, T ;Z), this solution
belongs to C([0, T ];Z) and is defined by

z(t) = etAz0 +

∫ t

0

e(t−s)Af(s) ds.

The mapping (f, z0) 7→ z(f, z0) is linear and continuous from Lp(0, T ;Z)×Z into C([0, T ];Z).

The following regularity result is very useful.

Theorem 4.2.2 ([2, Chapter 1, Proposition 3.3]) If f ∈ C1([0, T ];Z) and z0 ∈ D(A), then
the solution z to equation (4.2.2) belongs to C([0, T ];D(A)) ∩ C1([0, T ];Z).

The adjoint equation for control problems associated with equation (4.2.2) will be of the form

−p′ = A∗p+ g, p(T ) = pT . (4.2.3)

This equation can be studied with the following theorem.

Theorem 4.2.3 ([18, Chapter 1, Corollary 10.6]) The family of operator ((etA)∗)t≥0 is a
strongly continuous semigroup on Z ′ with generator A∗. Since etA

∗
= (etA)∗, (etA

∗
)t≥0 is called

the adjoint semigroup of (etA)t≥0.

Due to this theorem and to Theorem 4.2.1, with a change of time variable, it can be proved
that if pT ∈ Z ′ and if g ∈ Lp(0, T ;Z ′), then equation (4.2.3) admits a unique weak solution
which is defined by

p(t) = e(T−t)A∗pT +

∫ T

t

e(s−t)A∗g(s) ds.
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4.3 Weak solutions in Lp(0, T ; (D(A∗))′)

When the data of equation (4.2.2) are not regular, it is possible to extend the notion of solution
by using duality arguments. It is the main objective of this section. For simplicity we suppose
that Z is a Hilbert space (the results can be extended to the case where Z is a reflexive Banach
space).

The imbeddings
D(A) ↪→ Z and D(A∗) ↪→ Z ′

are continuous and with dense range. Thus we have

D(A) ↪→ Z ↪→ (D(A∗))′.

Since the operator (A,D(A)) is the infinitesimal generator of a strongly continuous semigroup
on Z, from Theorem 4.2.3 it follows that (A∗, D(A∗)) is the infinitesimal generator of a semi-
group on Z ′. Let us denote by (S∗(t))t≥0 this semigroup.

Recall that the operator (A∗1, D(A∗1)) defined by

D(A∗1) = D((A∗)2), A∗1z = A∗z for all z ∈ D(A∗1),

is the infinitesimal generator of a semigroup on D(A∗) and that this semigroup (S∗1(t))t≥0

obeys S∗1(t)z = S∗(t)z for all z ∈ D(A∗).
From Theorem 4.2.3 we deduce that ((S∗1)∗(t))t≥0 is the semigroup on (D(A∗))′ generated

by (A∗1)∗. We are going to show that (S∗1)∗(t) is the continuous extension of S(t) to (D(A∗))′.
More precisely we have the following

Theorem 4.3.1 The adjoint of the unbounded operator (A∗1, D(A∗1)) in D(A∗), is the un-
bounded operator ((A∗1)∗, D((A∗1)∗)) on (D(A∗))′ defined by

D((A∗1)∗) = Z, 〈(A∗1)∗z, y〉 = 〈z, A∗1y〉 for all z ∈ Z and all y ∈ D(A∗1).

Moreover, (A∗1)∗z = Az for all z ∈ D(A). The semigroup ((S∗1)∗(t))t≥0 is the semigroup on
(D(A∗))′ generated by (A∗1)∗ and

(S∗1)∗(t)z = S(t)z for all z ∈ Z and all t ≥ 0.

Proof. Let us show that D((A∗1)∗) = Z. For all z ∈ Z and all y ∈ D(A∗1), we have

|〈z, A∗1y〉(D(A∗))′,D(A∗)| = |〈z, A∗1y〉Z,Z′| ≤ ‖z‖Z‖y‖D(A∗).

Consequently
Z ⊂ D((A∗1)∗). (4.3.4)

Let us show the reverse inclusion. Let z ∈ Z with z 6= 0, and let yz ∈ Z ′ be such that

‖z‖Z = supy∈Z′
〈z, y〉Z,Z′
‖y‖Z′

=
〈z, yz〉Z,Z′
‖yz‖Z′

.

We have

‖z‖Z =
〈z, (I − A∗1)(I − A∗1)−1yz〉Z,Z′

‖yz‖Z′
=
〈z, (I − A∗1)ζz〉Z,Z′
‖ζz‖D(A∗)
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with ζz = (I − A∗1)−1yz. We can take

ζ 7−→ ‖(I − A∗1)−1ζ‖Z′

as a norm on D(A∗). For such a choice (I − A∗1)−1 is an isometry from Z ′ to (D(A∗))′. Thus

supζ∈D(A∗)

〈z, (I − A∗1)ζ〉Z,Z′
‖ζ‖D(A∗)

= supy∈Z′
〈z, y〉Z,Z′
‖y‖Z′

.

Since

‖z‖D((A∗1)∗) = supζ∈D(A∗)

〈z, (I − A∗1)ζ〉Z,Z′
‖ζ‖D(A∗)

,

one has
‖z‖D((A∗1)∗) ≤ ‖z‖Z . (4.3.5)

The equality D((A∗1)∗) = Z follows from (4.3.4) and (4.3.5).

For all z ∈ D(A), and all y ∈ D(A∗1), we have

〈(A∗1)∗z, y〉 = 〈z, A∗1y〉 = 〈z, A∗y〉 = 〈Az, y〉.

Thus, (A∗1)∗z = Az for all z ∈ D(A).

From Theorem 4.2.3 we deduce that ((S∗1)∗(t))t≥0 is the semigroup on (D(A∗))′ generated by
(A∗1)∗. To prove that (S∗1)∗(t)z = S(t)z for all z ∈ Z and all t ≥ 0, it is sufficient to observe
that

〈(S∗1)∗(t)z, y〉 = 〈z, S∗1(t)y〉 = 〈z, S∗(t)y〉 = 〈S(t)z, y〉,
for all z ∈ Z, all y ∈ D(A∗), and all t ≥ 0.

Remark. Therefore we can extend the notion of solution for the equation (4.2.2) in the case
where x0 ∈ (D(A∗))′ and f ∈ Lp(0, T ; (D(A∗))′), by considering the equation

z′(t) = (A∗1)∗z(t) + f(t) dans (0, T ), z(0) = z0. (4.3.6)

It is a usual abuse of notation to replace A∗1 by A∗ and to write equation (4.3.6) in the form
(cf [2, page 160])

z′(t) = (A∗)∗z(t) + f(t) dans (0, T ), z(0) = z0. (4.3.7)

Since (A∗1)∗ is an extension of the operator A, sometimes equations (4.3.6) or (4.3.7) are written
in the form (4.2.2) even if z0 ∈ (D(A∗))′ and f ∈ Lp(0, T ; (D(A∗))′).

Theorem 4.3.2 For every z0 ∈ (D(A∗))′ and every f ∈ Lp(0, T ; (D(A∗))′), with 1 ≤ p <∞,
equation (4.3.6) admits a unique solution z(f, z0) ∈ Lp(0, T ; (D(A∗))′), this solution belongs
to C([0, T ]; (D(A∗))′) and is defined by

z(t) = et(A
∗
1)∗z0 +

∫ t

0

e(t−s)(A∗1)∗f(s) ds.

The mapping (f, z0) 7→ z(f, z0) is linear and continuous from Lp(0, T ; (D(A∗))′) × (D(A∗))′

into C([0, T ]; (D(A∗))′).
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Proof. The theorem is a direct consequence of Theorems 4.3.1 and 4.2.1.

For simplicity in the notation, we often write etA in place of et(A
∗
1)∗ , or A in place of (A∗1)∗.

We often establish identities by using density arguments. The following regularity result will
be useful to establish properties for weak solutions to equation (4.3.4).

Theorem 4.3.3 If f belongs to H1(0, T ; (D(A∗))′) and z0 belongs to Z, then the solution
z(f, z0) to equation (4.3.4) belongs to C1([0, T ]; (D(A∗))′) ∩ C([0, T ];Z).

Proof. See [2, Chapter 3, Theorem 1.1].

4.4 Analytic semigroups

Let (A,D(A)) be the infinitesimal generator of a strongly continuous semigroup on a Hilbert
space Z. The resolvent set ρ(A) is the set of all complex numbers λ such that the operator
(λI − A) ∈ L(D(A), Z) has a bounded inverse in Z. Since Z is a Hilbert space, and A is a
closed operator (because A is the infinitesimal generator of a strongly continuous semigroup),
we have the following characterization of ρ(A):

λ ∈ ρ(A) if and only if R(λ,A) = (λI − A)−1 exists and Im(λI − A) = Z.

The resolvent set of A always contains a real half-line [a,∞) (see [2, Chapter 1, Proposition
2.2 and Corollary 2.2]).

4.4.1 Fractional powers of infinitesimal generators

We follows the lines of [5, Section 7.4]. Let (etA)t≥0 be a strongly continuous semigroup on Z
with infinitesimal generator A satisfying

‖etA‖L(Z) ≤Me−ct for all t ≥ 0, (4.4.8)

with c > 0. We can define fractional powers of (−A) by

(−A)−αz =
1

Γ(α)

∫ ∞
0

tα−1etAz dt

for some α > 0 and all z ∈ Z. The operator (−A)−α obviously belongs to L(Z). For 0 ≤ α ≤ 1,
we set

(−A)α = (−A)(−A)α−1.

The domain of (−A)α = (−A)(−A)α−1 is defined by D((−A)α) = {z ∈ Z | (−A)α−1z ∈
D(A)}.

4.4.2 Analytic semigroups

Different equivalent definitions of an analytic semigroup can be given.
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Definition 4.4.1 Let (etA)t≥0 be a strongly continuous semigroup on Z, with infinitesimal
generator A. The semigroup (etA)t≥0 is analytic if there exists a sector

Σa,π
2

+δ = {λ ∈ C | |arg(λ− a)| < π

2
+ δ}

with 0 < δ < π
2
, such that Σa,π

2
+δ ⊂ ρ(A), and

‖(λI − A)−1‖ ≤ M

|λ− a|
for all λ ∈ Σa,π

2
+δ.

It can be proved that the semigroup (etA)t≥0 satisfies the conditions of definition 4.4.1 if and
only if (etA)t≥0 can be extended to a function λ 7→ eλA, where eλA ∈ L(Z), analytic in the
sector

Σa,δ = {λ ∈ C | |arg(λ− a)| < δ},

and strongly continuous in
{λ ∈ C | |arg(λ− a)| ≤ δ}.

Such a result can be find in a slightly different form in [2, Chapter 1, Theorem 2.1]. A theorem
very useful for studying regularity of solutions to evolution equations is stated below.

Theorem 4.4.1 ([18, Chapter 2, Theorem 6.13]) Let (etA)t≥0 be a continuous semigroup with
infinitesimal generator A. Suppose that (4.4.8) is satisfied for some c > 0. Then etAZ ⊂
D((−A)α), (−A)αetA ∈ L(Z) for all t > 0, and, for all 0 ≤ α ≤ 1, there exists k > 0 and
C(α) such that

‖(−A)αetA‖L(Z) ≤ C(α)t−αe−kt for all t ≥ 0. (4.4.9)

A very simple criterion of analitycity is known in the case of real Hilbert spaces.

Theorem 4.4.2 ([2, Chapter 1, Proposition 2.11]) If A is a selfadjoint operator on a real
Hilbert space Z, and if

(Az, z) ≤ 0 for all z ∈ D(A),

then A generates an analytic semigroup of contractions on Z.



Chapter 5

Control of the heat equation

5.1 Introduction

We begin with distributed controls (section 5.2). Solutions of the heat equation are de-
fined via the semigroup theory, but we explain how we can recover regularity results in
W (0, T ;H1

0 (Ω), H−1(Ω)) (Theorem 5.2.3). Since we study optimal control problems of evolu-
tion equations for the first time, we carefully explain how we can calculate the gradient, with
respect to the control variable, of a functional depending of the state variable via the adjoint
state method. The case of Neumann boundary controls is studied in section 5.3. Estimates in
W (0, T ;H1(Ω), (H1(Ω))′) are obtained by an approximation process, using the Neumann op-
erator (see the proof of Theorem 5.3.6). Section 5.4 deals with Dirichlet boundary controls. In
that case the solutions do not belong to C([0, T ];L2(Ω)), but only to C([0, T ];H−1(Ω)). We
carefully study control problems for functionals involving observations in C([0, T ];H−1(Ω))
(see section 5.4.2).

We only study problems without control constraints. But the extension of existence results
and optimality conditions to problems with control constraints is straightforward.

5.2 Distributed control

Let Ω be a bounded domain in RN , with a boundary Γ of class C2. Let T > 0, setQ = Ω×(0, T )
and Σ = Γ× (0, T ). We consider the heat equation with a distributed control

∂z

∂t
−∆z = f + χωu in Q, z = 0 on Σ, z(x, 0) = z0 in Ω. (5.2.1)

The function f is a given source of temperature, χω is the characteristic function of ω, ω is an
open subset of Ω, and the function u is a control variable. We consider the control problem

(P1) inf{J1(z, u) | (z, u) ∈ C([0, T ];L2(Ω))× L2(0, T ;L2(ω)), (z, u) satisfies (5.2.1)},

where

J1(z, u) =
1

2

∫
Q

(z − zd)2 +
1

2

∫
Ω

(z(T )− zd(T ))2 +
β

2

∫
Q

χωu
2,

and β > 0. In this section, we assume that f ∈ L2(Q) and that zd ∈ C([0, T ];L2(Ω)).

47
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Before studying the above control problem, we first recall some results useful for the equa-
tion

∂z

∂t
−∆z = φ in Q, z = 0 on Σ, z(x, 0) = z0(x) in Ω. (5.2.2)

Theorem 5.2.1 Set Z = L2(Ω), D(A) = H2(Ω)∩H1
0 (Ω), Au = ∆u. The operator (A,D(A))

is the infinitesimal generator of a strongly continuous semigroup of contractions on L2(Ω).

Proof. The proof relies on the Hille-Yosida theorem and on regularity properties for solutions
to the Laplace equation.

(i) Prove that A is a closed operator. Let (zn)n be a sequence in D(A) converging to some z
in L2(Ω). Suppose that (∆zn)n converges to some f in L2(Ω). We necessarily have ∆z = f
in the sense of distributions in Ω. Due to Theorem 3.2.1, we have ‖zn− zm‖H2(Ω) ≤ C‖∆zn−
∆zm‖L2(Ω) . This means that (zn)n is a Cauchy sequence in H2(Ω). Hence z ∈ H2(Ω)∩H1

0 (Ω).
The first condition of Theorem 4.1.1 is satisfied.

(ii) Let λ > 0 and f ∈ L2(Ω). It is clear that (λI −A) is invertible in L2(Ω), and (λI −A)−1f
is the solution z to the equation

λz −∆z = f in Ω, z = 0 on Γ.

We know that z ∈ H2(Ω) ∩H1
0 (Ω) and

λ

∫
Ω

z2 +

∫
Ω

|∇z|2 =

∫
Ω

fz.

Thus we have

‖z‖L2(Ω) ≤
1

λ
‖f‖L2(Ω),

and the proof is complete.

Equation (5.2.2) may be rewritten in the form of an evolution equation:

z′ − Az = φ in ]0, T [, z(0) = z0. (5.2.3)

We can easily verify that D(A∗) = D(A) and A∗ = A, that is A is selfadjoint. Recall that
z ∈ L2(0, T ;L2(Ω)) is a weak solution to equation (5.2.3) if for all ζ ∈ H2(Ω) ∩ H1

0 (Ω) the
mapping t 7→ 〈z(t), ζ〉 belongs to H1(0, T ), 〈z(0), ζ〉 = 〈z0, ζ〉, and

d

dt
〈z(t), ζ〉 = 〈z(t), Aζ〉+ 〈φ, ζ〉.

Theorem 5.2.2 (i) For every φ ∈ L2(Q) and every z0 ∈ L2(Ω), equation (5.2.2) admits a
unique weak solution z(φ, z0) in L2(0, T ;L2(Ω)), moreover the operator is linear and continuous
from L2(Q)× L2(Ω) into W (0, T ;H1

0 (Ω), H−1(Ω)).

(ii) The operator is also continuous from L2(Q) × H1
0 (Ω) into L2(0, T ;H2(Ω) ∩ H1

0 (Ω)) ∩
H1(0, T ;L2(Ω)).

Comments. Recall that

W (0, T ;H1
0 (Ω), H−1(Ω)) =

{
z ∈ L2(0, T ;H1

0 (Ω)) | dz
dt
∈ L2(0, T ;H−1(Ω))

}
.
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We say that dz
dt
∈ L2(0, T ;H−1(Ω)) if

‖ d
dt
〈z(t), ζ〉‖L2(0,T ) ≤ C‖ζ‖H1

0 (Ω), for all ζ ∈ H1
0 (Ω).

Proof of Theorem 5.2.2.

(i) Due to Theorem 5.2.1 and Theorem 4.2.1, we can prove that the operator (φ, z0) 7→ z(φ, z0)
is continuous from L2(Q)× L2(Ω) into C([0, T ];L2(Ω)). To prove that the solution z belongs
to W (0, T ;H1

0 (Ω), H−1(Ω)), we can use a density argument. Suppose that φ ∈ C1([0, T ];Z)
and that z0 ∈ D(A). Then z belongs to C([0, T ];D(A)) ∩ C1([0, T ];Z) (Theorem 4.2.2). In
that case we can multiply equation (5.2.2) by z, and with integration by parts and a Green
formula, we obtain ∫

Ω

|z(T )|2 + 2

∫ T

0

∫
Ω

|∇z|2 ≤ 2

∫ T

0

∫
Ω

φz +

∫
Ω

|z0|2

≤ 2‖φ‖L2(Q)‖z‖L2(Q) + ‖z0‖2
L2(Ω).

With Poincaré’s inequality ‖z‖L2(Ω) ≤ Cp‖∇z‖L2(Ω), and Young’ inequality we deduce∫ T

0

∫
Ω

|∇z|2 ≤ Cp‖φ‖2
L2(Q) + ‖z0‖2

L2(Ω).

Therefore the operator (φ, z0) 7→ z(φ, z0) is continuous from L2(Q)×L2(Ω) into L2(0, T ;H1
0 (Ω)).

Next, by using the equation and the regularity z ∈ L2(0, T ;H1
0 (Ω)), we get

d

dt
〈z(t), ζ〉 = 〈z(t), Aζ〉+ 〈φ, ζ〉 = −

∫
Ω

∇z∇ζ +

∫
Ω

φζ.

From which it follows that

‖ d
dt
〈z(t), ζ〉‖L2(0,T ) ≤ ‖z‖L2(0,T ;H1

0 (Ω))‖ζ‖H1
0 (Ω) + ‖φ‖L2(Ω)‖ζ‖L2(Ω)

≤ max(Cp, 1)
(
‖z‖L2(0,T ;H1

0 (Ω)) + ‖φ‖L2(Ω)

)
‖ζ‖H1

0 (Ω),

for all ζ ∈ H1
0 (Ω). Thus dz

dt
belongs to L2(0, T ;H−1(Ω)). The first part of the Theorem is

proved.

(ii) The second regularity result is proved in [13], [7].

Since the solution z(f, u, z0) to equation (5.2.1) belongs to C([0, T ];L2(Ω)) (when u ∈ L2(0, T ;
L2(ω)), J1(z(f, u, z0), u) is well defined and is finite for any u ∈ L2(0, T ;L2(ω)). We first
assume that (P1) admits a unique solution (see Theorem 7.3.1, see also exercise 5.5.1). We
set F1(u) = J1(z(f, u, z0), u), and, as in the case of optimal control for elliptic equations, the
optimal solution (z(f, ū, z0), ū) to problem (P1) is characterized by the equation F ′1(ū) = 0.
To compute the gradient of F1 we have to consider adjoint equations of the form

−∂p
∂t
−∆p = g in Q, p = 0 on Σ, p(x, T ) = pT in Ω, (5.2.4)
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with g ∈ L2(Q) and pT ∈ L2(Ω). It is well known that the backward heat equation is not well
posed. Due to the condition p(x, T ) = pT equation (5.2.4) is a terminal value problem, which
must be integrated backward in time. But equation (5.2.4) is not a backward heat equation
because we have − ∂p

∂t
−∆p = g and not ∂p

∂t
−∆p = g (as in the case of the backward heat

equation). Let us explain why the equation is well posed. If p is a solution of (5.2.4) and if
we set w(t) = p(T − t), we can check, at least formally, that w is the solution of

∂w

∂t
−∆w = g(x, T − t) in Q, w = 0 on Σ, w(x, 0) = pT in Ω. (5.2.5)

Since equation (5.2.5) is well posed, equation (5.2.4) is also well posed even if (5.2.4) is
a terminal value problem. In particular equation (5.2.4) admits a unique weak solution in
L2(0, T ;L2(Ω)), and this solution belongs to W (0, T ;H1

0 (Ω), H−1(Ω)). To obtain the expres-
sion of the gradient of F1 we need a Green formula which is stated below.

Theorem 5.2.3 Suppose that φ ∈ L2(Q), g ∈ L2(Q), and pT ∈ L2(Ω). Then the solution z
of equation

∂z

∂t
−∆z = φ in Q, z = 0 on Σ, z(x, 0) = 0 in Ω,

and the solution p of (5.2.4) satisfy the following formula∫
Q

φ p =

∫
Q

z g +

∫
Ω

z(T )pT . (5.2.6)

Proof. If pT ∈ H1
0 (Ω), due to Theorem 5.2.2, z and p belong to L2(0, T ;D(A)))∩H1(0, T ;L2(Ω)).

In that case, with the Green formula we have∫
Ω

−∆z(t)p(t) dx =

∫
Ω

−∆p(t)z(t) dx

for almost every t ∈ [0, T ], and∫ T

0

∫
Ω

∂z

∂t
p = −

∫ T

0

∫
Ω

∂p

∂t
z +

∫
Ω

z(T )pT .

Thus formula (5.2.6) is established in the case when pT ∈ H1
0 (Ω) (Theorem 5.2.2 (ii)). If (pTn)n

is a sequence in H1
0 (Ω) converging to pT in L2(Ω), due to Theorem 5.2.2, (pn)n, where pn is the

solution to equation (5.2.4) corresponding to pTn, converges to p in W (0, T ;H1
0 (Ω), H−1(Ω))

when n tends to infinity. Thus, in the case when pT ∈ L2(Ω), formula (5.2.6) can be deduced
by passing to the limit in the formula satisfied by pn.

The gradient of F1. Let (z(f, ū, z0), ū) = (z̄, ū) be the solution to problem (P1). By a direct
calculation we obtain

F1(ū+ λu)− F1(ū) =
1

2

∫
Q

(zλ − z̄)(zλ + z̄ − 2zd)

+
1

2

∫
Ω

(zλ(T )− z̄(T ))(zλ(T ) + z̄(T )− 2zd(T )) +
β

2

∫ T

0

∫
ω

(2λuū+ λ2u2),
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where zλ = z(f, ū+ λu, z0). The function wλ = zλ − z̄ is the solution to the equation

∂w

∂t
−∆w = λχωu in Q, z = 0 on Σ, w(x, 0) = 0 in Ω.

Due to Theorem 5.2.2 we have

‖wλ‖W (0,T ;H1
0 (Ω),H−1(Ω)) ≤ C|λ|‖u‖L2(0,T ;L2(ω)).

Thus the sequence (zλ)λ converges to z̄ in W (0, T ;H1
0 (Ω), H−1(Ω)) when λ tends to zero. Set

wu = 1
λ
wλ, the function wu is the solution to the equation

∂w

∂t
−∆w = χωu in Q, z = 0 on Σ, w(x, 0) = 0 in Ω. (5.2.7)

Dividing F1(ū+ λu)− F1(ū) by λ, and passing to the limit when λ tends to zero, we obtain:

F ′1(ū)u =

∫
Q

(z̄ − zd)wu +

∫
Ω

(z̄(T )− zd(T ))wu(T ) +

∫ T

0

∫
ω

βuū.

To derive the expression of F ′1(ū) we introduce the adjoint equation

−∂p
∂t
−∆p = z̄ − zd in Q, p = 0 on Σ, p(x, T ) = z̄(T )− zd(T ) in Ω. (5.2.8)

With formula (5.2.6) applied to p and wu we have∫
Q

(z̄ − zd)wu +

∫
Ω

(z̄(T )− zd(T ))wu(T ) =

∫ T

0

∫
ω

χωup.

Hence F ′1(ū) = p|ω×(0,T ) + βū , where p is the solution to equation (5.2.8).

Theorem 5.2.4 (i) If (z̄, ū) is the solution to (P1) then ū = − 1
β
p|ω×(0,T ), where p is the

solution to equation (5.2.8).

(ii) Conversely, if a pair (z̃, p̃) ∈ W (0, T ;H1
0 (Ω), H−1(Ω))×W (0, T ;H1

0 (Ω), H−1(Ω)) obeys the
system

∂z

∂t
−∆z = f − 1

β
χωp in Q, p = 0 on Σ, z(x, 0) = z̄0 in Ω,

−∂p
∂t
−∆p = z̄ − zd in Q, p = 0 on Σ, p(x, 0) = z̄(T )− zd(T ) in Ω,

(5.2.9)

then the pair (z̃,− 1
β
p̃) is the optimal solution to problem (P1).

Proof. (i) The necessary optimality condition is already proved.

(ii) The sufficient optimality condition can be proved with Theorem 2.2.3.

Comments. Before ending this section let us observe that equation (5.2.1) can be written in
the form

z′ = Az + f +Bu, z(0) = z0,

where B ∈ L(L2(Γ), L2(Ω)) is defined by Bu = χωu. Control problems governed by such
evolutions equations are studied in Chapter 7.
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5.3 Neumann boundary control

In this section, we study problems in which the control variable acts through a Neumann
boundary condition

∂z

∂t
−∆z = f in Q,

∂z

∂n
= u on Σ, z(x, 0) = z0 in Ω. (5.3.10)

Theorem 5.3.1 Set Z = L2(Ω), D(A) = {z ∈ H2(Ω) | ∂z
∂n

= 0}, Az = ∆z. The operator
(A,D(A)) is the infinitesimal generator of a strongly continuous semigroup of contractions in
L2(Ω).

Proof. The proof still relies on the Hille-Yosida theorem. It is very similar to the proof of
Theorem 5.2.1 and is left to the reader.

The operator (A,D(A)) is selfadjoint in Z. Equation

∂z

∂t
−∆z = f in Q,

∂z

∂n
= 0 on Σ, z(x, 0) = z0 in Ω, (5.3.11)

may be written in the form
z′ = Az + f, z(0) = z0. (5.3.12)

A function z ∈ L2(0, T ;L2(Ω)) is a weak solution to equation (5.3.12) if for all ζ ∈ D(A) the
mapping t 7→ 〈z(t), ζ〉 belongs to H1(0, T ), 〈z(0), ζ〉 = 〈z0, ζ〉, and

d

dt

∫
Ω

z(t)ζ = 〈z, Aζ〉+ 〈f, ζ〉 =

∫
Ω

z(t)∆ζ +

∫
Ω

f(t)ζ.

Theorem 5.3.2 For every φ ∈ L2(Q) and every z0 ∈ L2(Ω), equation (5.3.11) admits a
unique weak solution z(φ, z0) in L2(0, T ;L2(Ω)), moreover the operator

(φ, z0) 7→ z(φ, z0)

is linear and continuous from L2(Q)× L2(Ω) into W (0, T ;H1(Ω), (H1(Ω))′).

Recall that

W (0, T ;H1(Ω), (H1(Ω))′) =
{
z ∈ L2(0, T ;H1(Ω)) | dz

dt
∈ L2(0, T ; (H1(Ω))′)

}
.

Proof. The existence in C([0, T ];L2(Ω)) follows from Theorem 5.3.1. The regularity in
W (0, T ;H1(Ω), (H1(Ω))′) can be proved as for Theorem 5.2.2.

Similarly we would like to say that a function z ∈ L2(0, T ;L2(Ω)) is a weak solution to equation
(5.3.10) if for all ζ ∈ D(A) the mapping t 7→ 〈z(t), ζ〉 belongs to H1(0, T ), 〈z(0), ζ〉 = 〈z0, ζ〉,
and

d

dt

∫
Ω

z(t)ζ =

∫
Ω

z(t)∆ζ +

∫
Ω

fζ +

∫
Γ

uζ.

Unfortunately the mapping ζ 7→
∫

Γ
uζ is not an element of L2(0, T ;L2(Ω)), it only belongs

to L2(0, T ; (H1(Ω))′). One way to study equation (5.3.10) consists in using (A∗1)∗ (see Chapter
4), the extension of A to (D(A∗))′ = (D(A))′ (A is selfadjoint). We can directly improve this
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result in the following way. We set Ẑ = (H1(Ω))′. We endow (H1(Ω))′ with the dual norm of
the H1-norm. We can check that the corresponding inner product in (H1(Ω))′ is defined by(

z, ζ
)

(H1(Ω))′
=

∫
Ω

z(−∆ + I)−1ζ =

∫
Ω

(−∆ + I)−1z ζ,

where (−∆ + I)−1ζ is the function w ∈ H1(Ω) obeying

−∆w + w = ζ in Ω,
∂w

∂n
= 0 on Γ.

We define the unbounded operator Â in (H1(Ω))′ by D(Â) = H1(Ω), and

〈Âz, ζ〉(H1(Ω))′,H1(Ω) = −
∫

Ω

∇z∇ζ =
(
Âz, ζ

)
(H1(Ω))′

.

Theorem 5.3.3 The operator (Â,D(Â)) is the infinitesimal generator of a strongly continu-
ous semigroup of contractions in (H1(Ω))′.

Proof. The proof still relies on the Hille-Yosida theorem. It is more complicated than the
previous ones. It is left to the reader.

We write equation (5.3.10) in the form

z′ = Âz + f + û, z(0) = z0, (5.3.13)

where û ∈ L2(0, T ; (H1(Ω))′) is defined by û 7→
∫

Γ
uζ for all ζ ∈ H1(Ω). Due to Theo-

rem 5.3.3 equation (5.3.13), or equivalently equation (5.3.10), admits a unique solution in
L2(0, T ; (H1(Ω))′) and this solution belongs to C([0, T ]; (H1(Ω))′). To establish regularity
properties of solutions to equation (5.3.10) we need to construct solutions by an approxima-
tion process.

Approximation by regular solutions.

Recall that the solution to equation

∆w − w = 0 in Ω,
∂w

∂n
= v on Γ, (5.3.14)

satisfies the estimate
‖w‖H2(Ω) ≤ C‖v‖H1/2(Γ). (5.3.15)

Let u be in L2(Σ) and let (un)n be a sequence in C1([0, T ];H1/2(Γ)), converging to u in L2(Σ).
Denote by wn(t) the solution to equation (5.3.14) corresponding to v = un(t). With estimate
(5.3.15) we can prove that wn belongs to C1([0, T ];H2(Ω)) and that

‖wn‖C1([0,T ];H2(Ω)) ≤ C‖un‖C1([0,T ];H1/2(Γ)).

Let zn be the solution to equation (5.3.10) corresponding to (f, un, z0). Then yn = zn − wn is
the solution to

∂y

∂t
−∆y = f − ∂wn

∂t
+ ∆wn in Q,

∂y

∂n
= 0 on Σ, y(x, 0) = (z0 − wn(0))(x) in Ω.
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Since (z0 − wn(0)) ∈ L2(Ω) and f − ∂wn
∂t
− ∆wn belongs to L2(Q), yn and zn belong to

W (0, T ;H1(Ω), (H1(Ω))′). Thus, for every t ∈]0, T ], we have∫
Ω

|zn(t)|2 + 2

∫ t

0

∫
Ω

|∇zn|2 = 2

∫ t

0

∫
Ω

fzn + 2

∫ t

0

∫
Γ

unzn +

∫
Ω

|z0|2.

We first get

‖y‖2
C([0,T ];L2(Ω)) + 2‖∇y‖2

L2(0,T ;L2(Ω)) ≤ 2‖f‖L2(Q)‖y‖L2(Q) + 2‖u‖L2(Σ)‖y‖L2(Σ) + ‖y0‖2
L2(Ω).

Thus with Young’s inequality, we obtain

‖y‖C([0,T ];L2(Ω)) + ‖y‖L2(0,T ;H1(Ω)) ≤ C
(
‖f‖L2(Q) + ‖u‖L2(Σ) + ‖y0‖L2(Ω)

)
.

In the same way, we can prove

‖zn − zm‖C([0,T ];L2(Ω)) + ‖zn − zm‖L2(0,T ;H1(Ω)) ≤ C‖un − um‖L2(Σ).

Hence the sequence (zn)n converges to some z in C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)). Due to
Theorem 5.3.3, we can also prove that the sequence (zn)n converges to the solution of equation
(5.3.10) in C([0, T ];L2(Ω)). By using the same arguments as for Theorem 5.2.2, we can next
prove an estimate in W (0, T ;H1(Ω), (H1(Ω))′). Therefore we have established the following
theorem.

Theorem 5.3.4 For every f ∈ L2(Q), every u ∈ L2(Σ), and every z0 ∈ L2(Ω), equation
(5.3.10) admits a unique weak solution z(f, u, z0) in L2(0, T ;L2(Ω)), moreover the operator

(f, u, z0) 7→ z(f, u, z0)

is linear and continuous from L2(Q)× L2(Σ)× L2(Ω) into W (0, T ;H1(Ω), (H1(Ω))′).

We now consider the control problem

(P2) inf{J2(z, u) | (z, u) ∈ C([0, T ];L2(Ω))× L2(0, T ;L2(Γ)), (z, u) satisfies (5.3.10)},

where

J2(z, u) =
1

2

∫
Q

(z − zd)2 +
1

2

∫
Ω

(z(T )− zd(T ))2 +
β

2

∫
Σ

u2.

We assume that f ∈ L2(Q), z0 ∈ L2(Ω), and zd ∈ C([0, T ];L2(Ω)). Problem (P2) admits a
unique solution (z̄, ū) (see exercise 5.5.2). The adjoint equation for (P2) is of the form

−∂p
∂t
−∆p = g in Q,

∂p

∂n
= 0 on Σ, p(x, T ) = pT in Ω. (5.3.16)

Theorem 5.3.5 Suppose that u ∈ L2(Σ), g ∈ L2(Q), pT ∈ L2(Ω). Then the solution z of
equation

∂z

∂t
−∆z = 0 in Q,

∂z

∂n
= u on Σ, z(0) = 0 in Ω,

and the solution p of (5.3.16) satisfy the following formula∫
Σ

up =

∫
Q

z g +

∫
Ω

z(T )pT . (5.3.17)
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Proof. We leave the reader adapt the proof of Theorem 5.2.3.

Theorem 5.3.6 If (z̄, ū) is the solution to (P2) then ū = − 1
β
p|Σ, where p is the solution to

the equation

−∂p
∂t
−∆p = z̄ − zd in Q,

∂p

∂n
= 0 on Σ, p(x, T ) = z̄(T )− zd(T ) in Ω. (5.3.18)

Conversely, if a pair (z̃, p̃) ∈ W (0, T ;H1(Ω), (H1(Ω))′) ×W (0, T ;H1(Ω), (H1(Ω))′) obeys the
system

∂z

∂t
−∆z = f in Q,

∂z

∂n
= − 1

β
p|Σ on Σ, z(x, 0) = z0 in Ω,

−∂p
∂t
−∆p = z − zd in Q,

∂p

∂n
= 0 on Σ, p(T ) = z(T )− zd(T ) in Ω,

(5.3.19)

then the pair (z̃,− 1
β
p̃|Σ) is the optimal solution to problem (P2).

Proof. We set F2(u) = J2(z(f, u, z0), u). A calculation similar to that of the previous section
leads to:

F ′2(ū)u =

∫
Q

(z̄ − zd)wu +

∫
Ω

(z̄(T )− zd(T ))wu(T ) +

∫
Σ

βuū,

where wu is the solution to the equation

∂w

∂t
−∆w = 0 in Q,

∂w

∂n
= u on Σ, w(x, 0) = 0 in Ω.

With formula (5.3.12) applied to p and wu we obtain∫
Q

(z̄ − zd)wu +

∫
Ω

(z̄(T )− zd(T ))wu(T ) =

∫
Σ

up.

Thus F ′2(ū) = p|Σ + βū. The end of the proof is similar to that of Theorem 5.2.4.

5.4 Dirichlet boundary control

Now we want to control the heat equation by a Dirichlet boundary control, that is

∂z

∂t
−∆z = f in Q, z = u on Σ, z(x, 0) = z0 in Ω. (5.4.20)

Since we want to study equation (5.4.20) in the case when u belongs to L2(Σ), we have to
define the solution to equation (5.4.20) by the transposition method. We follow the method
introduced in Chapter 2. We first study the equation

∂z

∂t
−∆z = 0 in Q, z = u on Σ, z(x, 0) = 0 in Ω. (5.4.21)

Suppose that u is regular enough to define the solution to equation (5.4.21) in a classical sense.
Let y be the solution to

−∂y
∂t
−∆y = φ in Q, y = 0 on Σ, y(x, T ) = 0 in Ω. (5.4.22)
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With a Green formula (which is justified if z and y are regular enough), we can write∫
Q

zφ = −
∫

Σ

u
∂y

∂n
= 〈u,Λφ〉L2(Σ),

where Λφ = − ∂y
∂n

. Due to Theorem 5.2.2 we know that the mapping

φ 7−→ y

is linear and continuous from L2(Q) into L2(0, T ;H2(Ω)∩H1
0 (Ω))∩H1(0, T ;L2(Ω)). Thus the

operator Λ is linear and continuous from L2(Q) into L2(0, T ;L2(Γ)), and Λ∗ is a linear and
continuous operator from L2(0, T ;L2(Γ)) into L2(Q). Since the identity

∫
Q
zφ = 〈u,Λφ〉L2(Σ) =

〈Λ∗u, φ〉L2(Q) is satisfied for every φ ∈ L2(Q), we have z = Λ∗u. For u ∈ L2(Σ), the solution
zu to equation (5.4.21) is defined by zu = Λ∗u. For equation (5.4.20) the definition of solution
is stated below.

Definition 5.4.1 A function z ∈ L2(Q) is a solution to equation (5.4.20) if, and only if,∫
Q

zφ =

∫
Q

fy +

∫
Ω

z0y(0)−
∫

Σ

u
∂y

∂n

for all φ ∈ L2(Q), where y is the solution to equation (5.4.22).

Due to the continuity property of Λ∗, we have the following theorem.

Theorem 5.4.1 For every f ∈ L2(Q), every u ∈ L2(Σ), and every z0 ∈ L2(Ω), equation
(5.4.20) admits a unique weak solution z(f, u, z0) in L2(0, T ;L2(Ω)), moreover the operator

(f, u, z0) 7→ z(f, u, z0)

is linear and continuous from L2(Q)× L2(Σ)× L2(Ω) into L2(Q).

5.4.1 Observation in L2(Q)

Thanks to Theorem 5.4.1 we can study the following control problem

(P3) inf{J3(z, u) | (z, u) ∈ L2(0, T ;L2(Ω))× L2(Σ), (z, u) satisfies (5.4.20)},

with

J3(z, u) =
1

2

∫
Q

(z − zd)2 +
β

2

∫
Σ

u2.

We here suppose that zd belongs to L2(Q). Contrary to the case of Neumann boundary
controls, we cannot include an observation of z(T ) in L2(Ω) in the definition of (P3). To write
optimality conditions for (P3), we consider adjoint equations of the form

−∂p
∂t
−∆p = g in Q, p = 0 on Σ, p(x, T ) = 0 in Ω. (5.4.23)
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Theorem 5.4.2 If u ∈ L2(Σ), then the solution z of equation (5.4.21) and the solution p of
(5.4.23) satisfy the following formula∫

Q

f p =

∫
Q

z g +

∫
Σ

u
∂p

∂n
. (5.4.24)

Proof. The result directly follows from definition 5.4.1.

Theorem 5.4.3 Assume that f ∈ L2(Q), z0 ∈ L2(Ω), and zd ∈ L2(0, T ;L2(Ω)). Let (z̄, ū) be
the unique solution to problem (P3). The optimal control ū is defined by ū = 1

β
∂p
∂n

, where p is
the solution to the equation

−∂p
∂t
−∆p = z̄ − zd in Q, p = 0 on Σ, p(x, T ) = 0 in Ω. (5.4.25)

This necessary optimality condition is also sufficient.

Proof. We set F3(u) = J3(z(f, z0, u), u). Due to Theorem 5.4.2, we have

F ′3(ū)u =

∫
Q

(z̄ − zd)wu + β

∫
Σ

ūu =

∫
Σ

(− ∂p

∂n
+ βū)u.

The end of the proof is now classical.

5.4.2 Observation in C([0, T ];H−1(Ω))

Denote by ‖ · ‖H−1(Ω) the dual norm of the H1
0 (Ω)-norm, that is the usual norm in H−1(Ω):

‖f‖H−1(Ω) = supz∈H1
0 (Ω)

〈f, z〉H−1(Ω)×H1
0 (Ω)

‖z‖H1
0 (Ω)

.

Let f be in H−1(Ω) and denote by (−∆)−1f the solution to the equation

−∆z = f in Ω, z = 0 on Γ.

Theorem 5.4.4 The mapping

f 7−→ ‖|f |‖H−1(Ω) = 〈f, (−∆)−1f〉1/2
H−1(Ω)×H1

0 (Ω)

is a norm in H−1(Ω) equivalent to the usual norm.

Proof. We know that (−∆)−1 is an isomorphism from H−1(Ω) to H1
0 (Ω). Thus f 7→

‖(−∆)−1f‖H1
0 (Ω) is a norm in H−1(Ω) equivalent to the usual norm. If f ∈ H−1(Ω), mul-

tiplying the equation −∆((−∆)−1f) = f by (−∆)−1f , with a Green formula, we have∫
Ω

|∇((−∆)−1f)|2 = 〈f, (−∆)−1f〉H−1(Ω)×H1
0 (Ω) ≤ ‖(−∆)−1f‖H1

0 (Ω)‖f‖H−1(Ω).

Since the norm f 7→ ‖(−∆)−1f‖H1
0 (Ω) is equivalent to the norm in H−1(Ω), we obtain

c1‖f‖2
H−1(Ω) ≤ 〈f, (−∆)−1f〉H−1(Ω)×H1

0 (Ω) ≤ c2‖f‖2
H−1(Ω).

The proof is complete.
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Theorem 5.4.5 (i) Let z(f, u, z0) be the solution to equation (5.4.20). The operator

(f, u, z0) 7→ z(f, u, z0),

is linear and continuous from L2(Q)× L2(Σ)× L2(Ω) into C([0, T ];H−1(Ω)).

(ii) If u ∈ L2(Σ), and if pT ∈ H1
0 (Ω), then the solution z of equation (5.4.21) and the solution

p of

−∂p
∂t
−∆p = 0 in Q, p = 0 on Σ, p(x, T ) = pT in Ω,

satisfy the following formula

〈z(T ), pT 〉H−1(Ω)×H1
0 (Ω) = −

∫
Σ

u
∂p

∂n
. (5.4.26)

Proof. (i) We only need to prove the regularity result for the solution z of equation (5.4.21).
For every ϕ ∈ H1

0 (Ω) and every τ ∈]0, T ], consider the solution y to equation

−∂y
∂t
−∆y = 0 in Q, y = 0 on Σ, y(τ) = ϕ in Ω.

Due to Theorem 5.2.2, we have

‖y‖L2(0,τ ;H2(Ω)∩H1
0 (Ω)) ≤ c‖ϕ‖H1

0 (Ω),

and the constant c is independent of τ . Let (un)n ⊂ L2(Σ) a sequence of regular functions
satisfying the compatibility condition un(x, 0) = 0, and converging to u in L2(Σ). Denote by
zn the solution to (5.4.21) corresponding to un. Since zn is regular, it satisfies the formula∫

Ω

zn(τ)ϕ = −
∫

Γ×(0,τ)

un
∂y

∂n
.

Thus we have

‖zn(τ)‖H−1(Ω) = sup‖ϕ‖
H1

0(Ω)
=1

∣∣∣ ∫
Γ×(0,τ)

un
∂y

∂n

∣∣∣ ≤ c‖un‖L2(Σ),

where the constant c is independent of τ . From this estimate it follows that

‖zn − zm‖C([0,T ];H−1(Ω)) = ‖zn − zm‖L∞(0,T ;H−1(Ω)) ≤ c‖un − um‖L2(Σ).

Therefore the sequence (zn)n converges to some z̃ in C([0, T ];H−1(Ω)). Due to Theorem
5.4.1, the sequence (zn)n converges to the solution z of equation (5.4.21). We finally have
z = z̃ ∈ C([0, T ];H−1(Ω)).

(ii) Formula (5.4.26) can be established for regular data, and next deduced in the general case
from density arguments.

Now we are in position to study the control problem

(P4) inf{J4(z, u) | (z, u) ∈ L2(0, T ;L2(Ω))× L2(Σ), (z, u) satisfies (5.4.20)},

with

J4(z, u) =
1

2
‖|z(T )− zT |‖2

H−1(Ω) +
β

2

∫
Σ

u2.

The proof of existence and uniqueness of solution to problem (P4) is standard (see exercise
5.5.3).
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Theorem 5.4.6 Assume that f ∈ L2(Q), z0 ∈ L2(Ω), and zd ∈ L2(0, T ;L2(Ω)). Let (z̄, ū) be
the unique solution to problem (P4). The optimal control u is defined by u = 1

β
∂p
∂n

, where p is
the solution to the equation

−∂p
∂t
−∆p = 0 in Q, p = 0 on Σ, p(x, T ) = (−∆)−1(z̄(T )− zT ) in Ω. (5.4.27)

Proof. We set F4(u) = J4(z(f, z0, u), u). If wu is the solution to equation 5.4.21, and p the
solution to equation 5.4.27, with the formula stated in Theorem 5.4.5(ii), we have

F4(ū)u = 〈wu(T ), (−∆)−1(z̄(T )− zT )〉H−1(Ω)×H1
0 (Ω) + β

∫
Σ

ūu.

=

∫
Σ

(
− ∂p

∂n
+ βū

)
u.

The proof is complete.

5.5 Exercises

Exercise 5.5.1

The notation are the ones of section 5.2. Let (un)n be a sequence in L2(0, T ;L2(ω)), converging
to u for the weak topology of L2(0, T ;L2(ω)). Let zn be the solution to equation (5.2.1)
corresponding to un, and zu be the solution to equation (5.2.1) corresponding to u. Prove that
(zn(T ))n converges to zu(T ) for the weak topology of L2(Ω). Prove that the control problem
(P1) admits a unique solution.

Exercise 5.5.2

Prove that the control problem (P2) of section 5.3 admits a unique solution.

Exercise 5.5.3

The notation are the ones of section 5.4. Let (un)n be a sequence in L2(Σ), converging to
u for the weak topology of L2(Σ). Let zn be the solution to equation (5.4.20) corresponding
to un, and zu be the solution to equation (5.4.20) corresponding to u. Prove that (zn(T ))n
converges to zu(T ) for the weak topology of H−1(Ω). Prove that the control problem (P4)
admits a unique solution.

Exercise 5.5.4

Let Ω be a bounded domain in RN , with a boundary Γ of class C2. Let T > 0, setQ = Ω×(0, T )
and Σ = Γ× (0, T ). We consider a convection-diffusion equation with a distributed control

∂z

∂t
−∆z + ~V · ∇z = f + χωu in Q, z = 0 on Σ, z(x, 0) = z0 in Ω. (5.5.28)
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The function f belongs to L2(Q), χω is the characteristic function of ω, ω is an open subset

of Ω, and the function u is a control variable. We suppose that ~V ∈ (L∞(Q))N . We want to
study the control problem

(P5) inf{J5(z, u) | (z, u) ∈ C([0, T ];L2(Ω))× L2(0, T ;L2(ω)), (z, u) satisfies (5.5.28)},

where

J5(z, u) =
1

2

∫
Q

(z − zd)2 +
1

2

∫
Ω

(z(T )− zd(T ))2 +
β

2

∫
Q

χωu
2,

and β > 0. We assume that zd ∈ C([0, T ];L2(Ω)).

We first study equation (5.5.28) by a fixed point method. For that we need a regularity for
the heat equation that we state below.

Regularity result. For any 1 < q <∞, there exists a constant C(q) such that the solution
z to the heat equation

∂z

∂t
−∆z = f in Q, z = 0 on Σ, z(x, 0) = 0 in Ω,

satisfies

‖z‖C([0,T ];L2(Ω)) + ‖z‖L2(0,T ;H1
0 (Ω)) ≤ C(q)‖f‖Lq(0,T ;L2(Ω)) for all f ∈ Lq(0, T ;L2(Ω)).

1 - Now we choose 1 < q < 2. Let r be defined by 1
2

+ 1
r

= 1
q
, and t̄ ∈]0, T ] such that

C(q)t̄1/r‖~V ‖(L∞(Q))N ≤ 1
2
. Let φ ∈ C([0, t̄];L2(Ω)) ∩ L2(0, t̄;H1

0 (Ω)), and denote by zφ the
solution to equation

∂z

∂t
−∆z = f + χωu− ~V · ∇φ in Q, z = 0 on Σ, z(x, 0) = z0 in Ω. (5.5.29)

Prove that the mapping
φ 7−→ zφ

is a contraction in C([0, t̄];L2(Ω)) ∩ L2(0, t̄;H1
0 (Ω)).

2 - Let ẑ be the solution in C([0, t̄];L2(Ω)) ∩ L2(0, t̄;H1
0 (Ω)) to equation

∂z

∂t
−∆z + ~V · ∇z = f + χωu in Ω× (0, t̄), z = 0 on Γ× (0, t̄), z(x, 0) = z0 in Ω.

The existence of ẑ follows from the previous question. Let φ ∈ C([0, 2t̄];L2(Ω))∩L2(0, 2t̄;H1
0 (Ω))

such that φ = ẑ on [0, t̄], and denote by zφ the solution to equation

∂z

∂t
−∆z = f + χωu− ~V · ∇φ in Q, z = 0 on Σ, z(x, 0) = z0 in Ω. (5.5.30)

Prove that the mapping
φ 7−→ zφ

is a contraction in the metric space

{φ ∈ C([0, 2t̄];L2(Ω)) ∩ L2(0, 2t̄;H1
0 (Ω)) | φ = ẑ on [0, t̄]},
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for the metric corresponding to the norm of the space C([0, 2t̄];L2(Ω)) ∩ L2(0, 2t̄;H1
0 (Ω)).

3 - Prove that equation (5.5.28) admits a unique solution in C([0, T ];L2(Ω))∩L2(0, T ;H1
0 (Ω)),

and that this solution obeys

‖z‖C([0,T ];L2(Ω)) + ‖z‖L2(0,T ;H1
0 (Ω)) ≤ C(‖f‖L2(Q) + ‖u‖L2(ω×(0,T )) + ‖z0‖L2(Ω)).

4 - Prove that the control problem (P5) admits a unique solution. Write first order optimality
conditions.

Exercise 5.5.5

Let Ω be a bounded domain in RN , with a boundary Γ of class C2. Let T > 0, setQ = Ω×(0, T )
and Σ = Γ× (0, T ). We consider the heat equation with a control in a coefficient{

∂y
∂t
−∆y + u y = f in Q, T > 0,

y = 0 on Γ×]0, T [, y(x, 0) = y0(x) in Ω,
(5.5.31)

avec f ∈ L2(Q), y0 ∈ L2(Ω) et

u ∈ Uad = {u ∈ L∞(Q) | 0 ≤ u(x, t) ≤M a.e. in Q}, M > 0.

We want to study the control problem

(P6) inf{J6(y) | u ∈ Uad, (y, u) satisfies (5.5.31)}

avec J6(y) =
∫

Ω
|y(x, T )− yd(x)|2dx, yd is a given function in L2(Ω).

1 - Prove that equation (5.5.31) admits a unique solution yu in C([0, T ];L2(Ω))∩L2(0, T ;H1
0 (Ω))

(the fixed point method of the previous exercise can be adapted to deal with equation (5.5.31)).
Prove that this solution belongs to W (0, T ;H1

0 (Ω), H−1(Ω)).

2 - Let (un)n ⊂ Uad be a sequence converging to u for the weak star topology of L∞(Q). Prove
that (yun)n converges to yu for the weak topology of W (0, T ;H1

0 (Ω), H−1(Ω)). Prove that (P6)
admits solutions.

3 - Let u and v be two functions in Uad. Set zλ = (yu+λv − yu)/λ. Prove that (zλ)λ converges,
when λ tends to zero, to the solution zu,v of the equation{

∂z
∂t
−∆z + vyu + uz = 0 in Ω×]0, T [,

z = 0 on Γ×]0, T [, z(x, 0) = 0 in Ω.
(5.5.32)

4 - Let (yu, u) be a solution to problem (P6). Write optimality conditions for (yu, u) in function
of zu,v−u (for v ∈ Uad). Next, write this optimality condition by introducing the adjoint state
associated with (yu, u).
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Chapter 6

Control of the wave equation

6.1 Introduction

We first begin by problems with a distributed control. We study the wave equation via the
semigroup theory with initial data in H1

0 (Ω)× L2(Ω) (section 6.2.1), and in L2(Ω)×H−1(Ω)
(section 6.2.2). These results are next used to derive optimality conditions in the case of
functionals involving observations of the derivative of the state (Theorem 6.3.1). The case
of Neumann boundary controls is briefly presented in section 6.4. To obtain fine regularity
results in the case of Dirichlet boundary controls, we need a trace regularity result for solutions
to the wave equation with homogeneous boundary conditions (Theorem 6.5.1). Equations
with nonhomogeneous Dirichlet boundary conditions is studied by the transposition method
(Theorem 6.6.1). We derive optimality conditions for functionals involving observations in
C([0, T ];H−1(Ω)) (Theorem 6.6.2).

The notation Ω, Γ, T , Q, Σ, as well as the assumptions on Ω and Γ, are the ones of the
previous chapter.

6.2 Existence and regularity results

6.2.1 The wave equation in H1
0(Ω)× L2(Ω)

To study equation

∂2z

∂t2
−∆z = f in Q, z = 0 on Σ, z(x, 0) = z0 and

∂z

∂t
(x, 0) = z1 in Ω, (6.2.1)

with (z0, z1) ∈ H1
0 (Ω) × L2(Ω) and f ∈ L2(Q), we transform the equation in a first order

evolution equation. Setting y = (z, dz
dt

), equation (6.2.1) may be written in the form

dy

dt
= Ay + F, y(0) = y0,

with

Ay = A

(
y1

y2

)
=

(
y2

∆y1

)
, F =

(
0
f

)
, and y0 =

(
z0

z1

)
.

Set Y = H1
0 (Ω)× L2(Ω). The domain of A in Y is D(A) = (H2(Ω) ∩H1

0 (Ω))×H1
0 (Ω).

63
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Theorem 6.2.1 The operator (A,D(A)) is the infinitesimal generator of a strongly continu-
ous semigroup of contractions on Y .

Proof. The theorem relies on the Hille-Yosida theorem.

(i) The domain D(A) is dense in Y . Prove that A is a closed operator. Let (yn)n be a sequence
converging to y = (y1, y2) in H1

0 (Ω)× L2(Ω), and such that (Ayn)n = (y2,n,∆y1,n)n converges
to (f, g) in H1

0 (Ω)×L2(Ω). We have y2 = f , and ∆y1 = g because (∆y1,n)n converges to ∆y1 in
the sense of distributions in Ω. Due to Theorem 3.2.1, we have ‖y1,n−y1,m‖H2(Ω) ≤ C‖∆y1,n−
∆y1,m‖L2(Ω) . Thus (y1,n)n is a Cauchy sequence in H2(Ω)∩H1

0 (Ω). Hence y1 ∈ H2(Ω)∩H1
0 (Ω).

The first condition of Theorem 4.1.1 is satisfied.

(ii) For λ > 0, f ∈ H1
0 (Ω), g ∈ L2(Ω), consider the equation

λ

(
y1

y2

)
− A

(
y1

y2

)
=

(
f
g

)
,

that is
λy1 − y2 = f in Ω,
λy2 −∆y1 = g in Ω.

(6.2.2)

We have
λ2y1 −∆y1 = λf + g in Ω.

This equation admits a unique solution in H2(Ω) ∩H1
0 (Ω). Thus the system (6.2.2) admits a

unique solution y ∈ D(A). From the equation λy2 −∆y1 = g , we deduce

λ

∫
Ω

y2
2 +

∫
Ω

∇y1∇y2 =

∫
Ω

gy2.

Replacing y2 by λy1 − f in the second term, we obtain

λ

∫
Ω

y2
2 + λ

∫
Ω

|∇y1|2 =

∫
Ω

gy2 +

∫
Ω

∇y1∇f

≤
(∫

Ω

y2
2 +

∫
Ω

|∇y1|2
)1/2(∫

Ω

g2 +

∫
Ω

|∇f |2
)1/2

,

and

λ

(∫
Ω

y2
2 +

∫
Ω

|∇y1|2
)1/2

≤
(∫

Ω

g2 +

∫
Ω

|∇f |2
)1/2

.

We can choose y 7→
(∫

Ω
y2

2 +
∫

Ω
|∇y1|2

)1/2

as a norm on Y and the proof is complete.

Theorem 6.2.2 For every f ∈ L2(Q), every z0 ∈ H1
0 (Ω), every z1 ∈ L2(Ω), equation (6.2.1)

admits a unique weak solution z(f, z0, z1), moreover the operator

(f, z0, z1) 7→ z(f, z0, z1)

is linear and continuous from L2(Q)×H1
0 (Ω)×L2(Ω) into C([0, T ];H1

0 (Ω))∩C1([0, T ];L2(Ω)).

Proof. The theorem is a direct consequence of Theorem 4.2.1 and Theorem 6.2.1.
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6.2.2 The wave equation in L2(Ω)×H−1(Ω)

We study equation (6.2.1) when (z0, z1) ∈ L2(Ω)×H−1(Ω) and f ∈ L2(0, T ;H−1(Ω)). In that

case we set Ŷ = L2(Ω)×H−1(Ω), D(Â) = H1
0 (Ω)× L2(Ω) and

Ây = Â

(
y1

y2

)
=

(
y2

Ãy1

)
,

where (Ãy1, ζ)H−1(Ω) = −
∫

Ω
∇y1 · ∇(−∆)−1ζ and (−∆)−1ζ is the solution w of the equation

w ∈ H1
0 (Ω), −∆w = ζ in Ω.

We have the same kind of result as above.

Theorem 6.2.3 The operator (Â,D(Â)) is the infinitesimal generator of a semigroup of con-

tractions on Ŷ .

Proof. The theorem still relies on the Hille-Yosida theorem.

(i) The domain D(Â) is dense in Ŷ . As for the proof of Theorem 6.2.1, we prove that (Â,D(Â))
is a closed operator. The first condition of Theorem 4.1.1 is satisfied.

(ii) For λ > 0, f ∈ L2(Ω), g ∈ H−1(Ω), consider the system

λy1 − y2 = f in Ω,
λy2 −∆y1 = g in Ω.

(6.2.3)

The equation

λ2y1 −∆y1 = λf + g in Ω,

admits a unique solution in H1
0 (Ω). Thus the system (6.2.3) admits a unique solution y ∈

D(A). The obtention of the estimate is more delicate than previously. We compose the two
members of the first equation by (−∆)−1, the inverse of the Laplace operator with homoge-
neous boundary conditions. We have λ(−∆)−1y1 − (−∆)−1y2 = (−∆)−1f , and we choose
(−∆)−1y2 as a test function for the second equation:

λ〈y2, (−∆)−1y2〉H−1(Ω),H1
0 (Ω) + λ〈−∆y1, (−∆)−1y1〉H−1(Ω),H1

0 (Ω)

= 〈g, (−∆)−1y2〉H−1(Ω),H1
0 (Ω) + 〈−∆y1, (−∆)−1f〉H−1(Ω),H1

0 (Ω).

Recall that the mapping

f 7−→ ‖|f |‖H−1(Ω) = 〈f, (−∆)−1f〉1/2
H−1(Ω)×H1

0 (Ω)

is a norm in H−1(Ω) equivalent to the usual norm (Theorem 5.4.4). This norm is associated
with the scalar product

(f, g) 7−→ 〈f, (−∆)−1g〉1/2
H−1(Ω)×H1

0 (Ω)
.

Thus we have

〈g, (−∆)−1y2〉H−1(Ω),H1
0 (Ω) ≤ ‖|g|‖H−1(Ω)‖|y2|‖H−1(Ω).
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We can also verify that

〈−∆y1, (−∆)−1y1〉H−1(Ω),H1
0 (Ω) =

∫
Ω

y2
1,

and

〈−∆y1, (−∆)−1f〉H−1(Ω),H1
0 (Ω) =

∫
Ω

y1f.

Collecting together these relations we obtain

λ‖|y2|‖2
H−1(Ω) + λ‖y1‖2

L2(Ω) ≤ ‖|g|‖H−1(Ω)‖|y2|‖H−1(Ω) + ‖f‖L2(Ω)‖y1‖L2(Ω).

We can choose y 7→
(
‖y1‖2

L2(Ω) + ‖|y2|‖2
H−1(Ω)

)1/2

as a norm on Y and the proof is complete.

Theorem 6.2.4 For every f ∈ L2(0, T ;H−1(Ω)), every z0 ∈ L2(Ω), every z1 ∈ H−1(Ω),
equation (6.2.1) admits a unique weak solution z(f, z0, z1), moreover the operator

(f, z0, z1) 7→ z(f, z0, z1)

is linear and continuous from L2(0, T ;H−1(Ω)) × L2(Ω) × H−1(Ω) into C([0, T ];L2(Ω)) ∩
C1([0, T ];H−1(Ω)).

Proof. The theorem is a direct consequence of Theorem 4.2.3 and Theorem 6.2.1.

In the following, we have to deal with adjoint equations of the form:

∂2p

∂t2
−∆p = g in Q, p = 0 on Σ, p(x, T ) = pT and

∂p

∂t
(x, T ) = πT in Ω, (6.2.4)

with (pT , πT ) ∈ L2(Ω)×H−1(Ω) and g ∈ L2(0, T ;H−1(Ω)).

Theorem 6.2.5 Suppose that f ∈ L2(Q), z0 ∈ H1
0 (Ω), z1 ∈ L2(Ω), g ∈ L2(0, T ;H−1(Ω)),

pT ∈ L2(Ω), every πT ∈ H−1(Ω), then the solution p to equation (6.2.2) and the solution z to
equation

∂2z

∂t2
−∆z = f in Q, z = 0 on Σ, z(0) = 0 and

∂z

∂t
(0) = 0 in Ω,

satisfy the formula:∫
Q

fp dxdt =

∫
Q

zg dxdt+

∫
Ω

zt(T )pT dx− 〈πT , z(T )〉H−1(Ω)×H1
0 (Ω). (6.2.5)

Proof. First observe that, due to Theorem 6.2.4, the solution p to equation (6.2.2) belongs
to C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)). Formula (6.2.5) can be first established for regular
functions with integrations by parts and a Green formula. It is next derived from this case by
using density arguments and a passage to the limit, which is justified due to Theorems 6.2.2
and 6.2.4.
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6.3 Distributed control

We consider the wave equation with a distributed control

∂2z

∂t2
−∆z = f +χωu in Q, z = 0 on Σ, z(x, 0) = z0 and

∂z

∂t
(x, 0) = z1 in Ω, (6.3.6)

χω is the characteristic function of ω, ω is an open subset of Ω, f belongs to L2(Q) and
u ∈ L2(0, T ;L2(ω)). Due to Theorem 6.2.2, the solution to equation (6.3.6) belongs to
C([0, T ];H1

0 (Ω)) ∩ C1([0, T ];L2(Ω)). Thus we can study the following family of problems

(Pi) inf{Ji(z, u) | (z, u) ∈ C([0, T ];H1
0 (Ω))× L2(0, T ;L2(ω)), (z, u) satisfies (6.3.6)},

with, for i = 1, . . . , 3, the functionals Ji are defined by

J1(z, u) =
1

2

∫
Q

(z − zd)2 +
1

2

∫
Ω

(z(T )− zd(T ))2 +
β

2

∫
Q

χωu
2,

J2(z, u) =
1

2

∫
Ω

(∇z(T )−∇zd(T ))2 +
β

2

∫
Q

χωu
2,

J3(z, u) =
1

2

∫
Ω

(
∂z

∂t
(T )− ∂zd

∂t
(T ))2 +

β

2

∫
Q

χωu
2,

where the function zd belongs to C([0, T ];H1
0 (Ω)) ∩ C1([0, T ];L2(Ω)).

Theorem 6.3.1 Assume that f ∈ L2(Q), z0 ∈ H1
0 (Ω), z1 ∈ L2(Ω), and zd ∈ C([0, T ];L2(Ω))∩

C1([0, T ];L2(Ω)). For i = 1, . . . , 3, problem (Pi) admits a unique solution (z̄i, ūi). Moreover
the optimal control ūi is defined by ūi = − 1

β
χωpi, where p1 is the solution to the equation

∂2p

∂t2
−∆p = z̄1−zd in Q, p = 0 on Σ, p(T ) = 0,

∂p

∂t
(T ) = (z̄1−zd)(T ) in Ω, (6.3.7)

p2 is the solution to the equation

∂2p

∂t2
−∆p = 0 in Q, p = 0 on Σ, p(T ) = 0 and

∂p

∂t
(T ) = −∆(z̄2 − zd)(T ) in Ω,

(6.3.8)
and p3 is the solution to the equation

∂2p

∂t2
−∆p = 0 in Q, p = 0 on Σ, p(T ) =

(∂z̄3

∂t
− ∂zd

∂t

)
(T ) and

∂p

∂t
(T ) = 0 in Ω.

(6.3.9)
These necessary optimality conditions are also sufficient.

Proof. Since z̄1 − zd belongs to L2(Q) and (z̄1 − zd)(T ) belongs to L2(Ω) we can apply
Theorem 6.2.2 to show that p1 belongs to C([0, T ];H1

0 (Ω))∩C1([0, T ];L2(Ω)). We can identify
−∆(z̄2 − zd)(T ) with an element of H−1(Ω), and (z̄3

′ − z′d)(T ) belongs to H−1(Ω). Thus p2

and p3 belong to C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)).
The existence of a unique solution to problem (Pi) can be proved as in the previous chapters.

Theorem 7.3.1 can also be applied to prove the existence of a unique solution to problem (P1).
For problems (P2) and (P3) the proof must be adapted (see exercise 6.7.1).
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Let us establish the optimality conditions for (P2). As usual we set F2(u) = J2(z(u), u),
where z(u) is the solution to (6.3.6). We have F ′2(ū2)u =

∫
Ω

(∇z̄2(T ) − ∇zd(T ))∇wu(T ) +
β
∫
Q
χωū2u, where wu is the solution to

∂2w

∂t2
−∆w = χωu in Q, w = 0 on Σ, w(x, 0) = 0 and

∂w

∂t
(x, 0) = 0 in Ω.

Since ∫
Ω

(∇z̄2(T )−∇zd(T ))∇wu(T ) = 〈−∆(z̄2(T )− zd(T )), wu(T )〉H−1(Ω)×H1
0 (Ω),

applying formula (6.2.3) to p2 and wu, we obtain

F ′2(ū2)u =

∫
Q

(χω(βū2 + p2)u = 0

for every u ∈ L2(0, T ;L2(ω)). Thus the optimality condition for (P2) is proved. The proof of
the other results is left to the reader.

Comments. As for the heat equation with distributed controls, equation (6.3.6) is of the
form

y′ = Ay + F +Bu, y(0) = y0,

with

Ay = A

(
y1

y2

)
=

(
y2

∆y1

)
, F =

(
0
f

)
, y0 =

(
z0

z1

)
, and Bu =

(
0
χωu

)
.

Thus problem (P1) is a particular case of control problems studied in Chapter 7.

6.4 Neumann boundary control

We first study the equation

∂2z

∂t2
−∆z = f in Q,

∂z

∂n
= 0 on Σ, z(x, 0) = z0 and

∂z

∂t
(x, 0) = z1 in Ω. (6.4.10)

We set D(A) = {y1 ∈ H2(Ω) | ∂y1

∂n
= 0} ×H1(Ω), Y = H1(Ω)× L2(Ω), and

Ay = A

(
y1

y2

)
=

(
y2

∆y1 − y1

)
, Ly =

(
0
y1

)
, F =

(
0
f

)
, and y0 =

(
z0

z1

)
.

Equation (6.4.10) may be written in the form

dy

dt
= (A+ L)y + F, y(0) = y0.

Theorem 6.4.1 The operator (A,D(A)) is the infinitesimal generator of a strongly continu-
ous semigroup of contractions on Y .

Proof. We leave the reader adapt the proof of Theorem 6.2.1.
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Theorem 6.4.2 For every f ∈ L2(Q), every z0 ∈ H1(Ω), every z1 ∈ L2(Ω), equation (6.4.10)
admits a unique weak solution z(f, z0, z1), moreover the operator

(f, z0, z1) 7→ z(f, z0, z1)

is linear and continuous from L2(Q)×H1(Ω)×L2(Ω) into C([0, T ];H1(Ω))∩C1([0, T ];L2(Ω)).

To study the wave equation with nonhomogeneous boundary conditions, we set D(Â) =

H1(Ω)× L2(Ω), Ŷ = L2(Ω)× (H1(Ω))′, and

Ây = Â

(
y1

y2

)
=

(
y2

Ãy1 − y1

)
,

where (
Ãy1, ζ

)
(H1(Ω))′

= −
∫

Ω

∇y1 · ∇(−∆ + I)−1ζ.

Theorem 6.4.3 The operator (Â,D(Â)) is the infinitesimal generator of a semigroup of con-

tractions on Ŷ .

Proof. The proof is similar to the one of Theorem 6.2.3.

Now, we consider the wave equation with a control in a Neumann boundary condition:

∂2z

∂t2
−∆z = f in Q,

∂z

∂n
= u on Σ, z(x, 0) = z0 and

∂z

∂t
(x, 0) = z1 in Ω. (6.4.11)

For any u ∈ L2(Γ), the mapping ζ 7→
∫

Γ
uζ is a continuous linear on H1(Ω). Thus it can be

identified with an element of (H1(Ω))′. Thus for u ∈ L2(Σ), the mapping ζ 7→
∫

Γ
u(·)ζ is an

element of L2(0, T ; (H1(Ω))′). Let us denote this mapping by û. We set

V =

(
0
û

)
, F =

(
0
f

)
, L

(
y1

y2

)
=

(
0
y1

)
, and y0 =

(
z0

z1

)
.

Equation (6.4.11) may be written in the form

dy

dt
= (Â+ L)y + F + V, y(0) = y0,

with F and V belong to L2(0, T ;L2(Ω))× L2(0, T ; (H1(Ω))′), y0 ∈ L2(Ω)× (H1(Ω))′.

Theorem 6.4.4 For every (f, u, z0, z1) ∈ L2(Q)×L2(Σ)×L2(Ω)×(H1(Ω))′, equation (6.4.11)
admits a unique weak solution z(f, u, z0, z1) in C([0, T ];L2(Ω))∩C1([0, T ]; (H1(Ω))′). Moreover
the mapping (f, u, z0, z1) 7→ z(f, u, z0, z1) is continuous from L2(Q)×L2(Σ)×L2(Ω)×(H1(Ω))′

into C([0, T ];L2(Ω)) ∩ C1([0, T ]; (H1(Ω))′).

Proof. The result is a direct consequence of Theorem 6.4.3.

We consider the control problem

(P4) inf{J4(z, u) | (z, u) ∈ C([0, T ];L2(Ω))× L2(0, T ;L2(Ω)), (z, u) satisfies (6.4.11)},

with

J4(z, u) =
1

2

∫
Q

(z − zd)2 +
1

2

∫
Ω

(z(T )− zd(T ))2 +
β

2

∫
Σ

u2.
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Theorem 6.4.5 Assume that f ∈ L2(0, T ;L2(Ω)), z0 ∈ L2(Ω), z1 ∈ (H1(Ω))′, and zd ∈
C([0, T ];L2(Ω)). Problem (P2) admits a unique solution (z̄, ū). Moreover the optimal control
ū is defined by ū = − 1

β
p|Σ, where p is the solution to the equation

∂2p

∂t2
−∆p = z̄ − zd in Q,

∂p

∂n
= 0 on Σ = Γ×]0, T [,

p(T ) = 0,
∂p

∂t
(T ) = z̄(T )− zd(T ) in Ω.

(6.4.12)

Proof. We leave the reader adapt the proof of Theorem 6.3.1.

6.5 Trace regularity

To study the wave equation with a control in a Dirichlet boundary condition, we have to
establish a sharp regularity result stated below.

Theorem 6.5.1 Let y be the solution to the equation

∂2y

∂t2
−∆y = f in Q, y = 0 on Σ, y(x, 0) = y0 and

∂y

∂t
(x, 0) = y1 in Ω. (6.5.13)

We have

‖∂y
∂n
‖L2(Σ) ≤ C

(
‖f‖L2(Q) + ‖y0‖H1

0 (Ω) + ‖y1‖L2(Ω)

)
. (6.5.14)

The proof can be found in [14, Theorem 2.2].

6.6 Dirichlet boundary control

We consider the wave equation with a control in a Dirichlet boundary condition

∂2z

∂t2
−∆z = f in Q, z = u on Σ, z(x, 0) = z0 and

∂z

∂t
(x, 0) = z1 in Ω. (6.6.15)

As for the heat equation with a Dirichlet boundary control, the solution to equation (6.6.15)
is defined by the transposition method.

Definition 6.6.1 A function z ∈ C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)) is called a weak solu-
tion to equation (6.6.15) if, and only if,∫

Q

fy dxdt =

∫
Q

zϕ dxdt+ 〈∂z
∂t

(T ), yT 〉H−1(Ω)×H1
0 (Ω)

−〈∂z
∂t

(0), y(0)〉H−1(Ω)×H1
0 (Ω) −

∫
Ω

z(T )νT dx+

∫
Ω

z(0)
∂y

∂t
(0) dx+

∫
Σ

∂y

∂n
u dsdt (6.6.16)

for all (ϕ, yT , νT ) ∈ L1(0, T ;L2(Ω))×H1
0 (Ω)× L2(Ω), where y is the solution to

∂2y

∂t2
−∆y = ϕ in Q, y = 0 on Σ, y(x, T ) = yT and

∂y

∂t
(x, T ) = νT in Ω. (6.6.17)
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Theorem 6.6.1 For every (f, u, z0, z1) ∈ L1(0, T ;H−1(Ω))×L2(Σ)×L2(Ω)×H−1(Ω), equa-
tion (6.6.15) admits a unique weak solution z(f, u, z0, z1) in C([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω)).
The mapping (f, u, y0, y1) 7→ z(f, u, z0, z1) is linear and continuous from L1(0, T ;H−1(Ω)) ×
L2(Σ)× L2(Ω)×H−1(Ω) into C([0, T ];L2(Ω)) ∩ C1([0, T ];H−1(Ω)).

Proof. This existence and regularity result can be proved by the transposition method with
Theorem 6.5.1.

(i) Due to Theorem 6.2.3, the mapping

(f, z0, z1) 7−→ z(f, 0, z0, z1)

is linear and continuous from L1(0, T ;H−1(Ω)) × L2(Ω) × H−1(Ω) into C([0, T ];L2(Ω)) ∩
C1([0, T ];H−1(Ω)). Thus we have only to consider the case where (f, z0, z1) = (0, 0, 0).

(ii) Denote by Λ the mapping ϕ 7→ ∂y
∂n

, where y is the solution to equation (6.6.17) cor-
responding to (yT , νT ) = (0, 0). Due to Theorem 6.5.1, Λ is a linear operator from L2(Q)
into L2(Σ). If we set z = Λ∗u, with u ∈ L2(Σ), we observe that z ∈ L2(Q), and z is a
solution to equation (6.6.15) with (f, z0, z1) = (0, 0, 0), in the sense of definition 6.6.1. This
solution is unique in L2(Q). Indeed if z1 and z2 are two solutions to equation (6.6.15) with
(f, z0, z1) = (0, 0, 0), in the sense of definition 6.6.1, we have∫

Ω

(z1 − z2)ϕ = 0 for all ϕ ∈ L2(Q).

To prove that z belongs to C([0, T ];L2(Ω))∩C1([0, T ];H−1(Ω)), we proceed by approximation.
Let (un)n be a sequence of regular functions such that zn = z(0, un, 0, 0) be regular. For
τ ∈]0, T ] and (yτ , ντ ) ∈ H1

0 (Ω)× L2(Ω), we denote by y(yτ , ντ ) the solution to the equation

∂2y

∂t2
−∆y = 0 in Q, y = 0 on Σ, y(x, τ) = yτ and

∂y

∂t
(x, τ) = ντ in Ω.

With Theorem 6.5.1, we have

‖∂y(yτ , ντ )

∂n
‖L2(Σ) ≤ C

(
‖yτ‖H1

0 (Ω) + ‖ντ‖L2(Ω)

)
, (6.6.18)

where the constant C depends on T , but is independent of τ . Since zn is the solution to
equation (6.6.15), according to definition 6.6.1, we have

〈∂zn
∂t

(τ), yτ 〉H−1(Ω)×H1
0 (Ω) =

∫
Ω

∂zn
∂t

(τ)yτ dx = −
∫

Σ

∂y(yτ , 0)

∂n
u dsdt

and ∫
Ω

zn(τ)νT dx =

∫
Σ

∂y(0, ντ )

∂n
un dsdt.

From which we deduce:

‖zn − zm‖C([0,T ];L2(Ω)) = supτ∈]0,T ]sup‖ντ‖L2(Ω)=1

∣∣∣∣ ∫
Σ

∂y(0, ντ )

∂n
(un − um) dsdt

∣∣∣∣
≤ C‖un − um‖L2(Σ)
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and

‖∂zn
∂t
− ∂zn

∂t
‖C([0,T ];H−1(Ω)) = supτ∈]0,T ]sup‖yτ‖H1

0(Ω)
=1

∣∣∣∣ ∫
Σ

∂y(yτ , 0)

∂n
(un − um) dsdt

∣∣∣∣
≤ C‖un − um‖L2(Σ).

Thus (zn)n is a Cauchy sequence in C([0, T ];L2(Ω)), and (∂zn
∂t

)n is a Cauchy sequence in
C([0, T ];H−1(Ω)). It is clear that the limit of the sequence (zn)n is z(0, u, 0, 0), and the limit

of the sequence (∂zn
∂t

)n is ∂z(0,u,0,0)
∂t

. The proof is complete.

We consider the control problem

(P5) inf{J5(z, u) | (z, u) ∈ C([0, T ];L2(Ω))× L2(0, T ;L2(Γ)), (z, u) satisfies (6.6.15)},

with

J5(z, u) =
c1

2

∫
Q

(z − zd)2 +
c2

2
‖z(T )− zd(T )‖2

L2(Ω) +
c3

2
‖|∂z
∂t

(T )− ∂zd
∂t

(T )|‖2
H−1(Ω) +

β

2

∫
Σ

u2,

where c1, c2, and c3 are nonnegative constants, and β > 0.

Theorem 6.6.2 Assume that f ∈ L2(Q), z0 ∈ L2(Ω), z1 ∈ H−1(Ω), and zd ∈ C([0, T ];L2(Ω))∩
C1([0, T ];H−1(Ω)). Problem (P5) admits a unique solution (z̄, ū). Moreover the optimal con-
trol ū is defined by ū = 1

β
∂p
∂n

, where p is the solution to the equation

∂2p

∂t2
−∆p = c1(z − zd) in Q, p = 0 on Σ = Γ×]0, T [,

p(T ) = c3(−∆)−1(
∂z

∂t
(T )− ∂zd

∂t
(T )),

∂p

∂t
(T ) = c2(z(T )− zd(T )) in Ω.

(6.6.19)

Proof. Set F5(u) = J5(z(f, z0, z1, u), u), where z(f, z0, z1, u) is the solution to equation
(6.6.15). We have

F5(ū)u =

∫
Q

c1(z̄ − zd)wu +

∫
Ω

c2(z̄(T )− zd(T ))wu(T )

+c3〈
∂wu
∂t

(T ), (−∆)−1(
∂z̄

∂t
(T )− ∂zd

∂t
(T ))〉H−1(Ω)×H1

0 (Ω) + β

∫
Σ

ūu,

where wu = z(0, 0, 0, u). The functions wu and p satisfy the Green formula∫
Q

c1(z̄ − zd)wu +

∫
Ω

c2(z̄(T )− zd(T ))wu(T )

+c3〈
∂wu
∂t

(T ), (−∆)−1(
∂z̄

∂t
(T )− ∂zd

∂t
(T ))〉H−1(Ω)×H1

0 (Ω) = −
∫

Σ

∂p

∂n
u.

Observe that (−∆)−1(∂z
∂t

(T )− ∂zd
∂t

(T )) belongs to H1
0 (Ω), and (z(T )−zd(T )) belongs to L2(Ω).

Therefore, due to Theorem 6.5.1, ∂p
∂n

belongs to L2(Σ). Since all the terms in the above formula
are well defined, this formula can be proved for regular data, and next proved by a passage to
the limit. Due to this formula, we have

F5(ū)u = −
∫

Σ

∂p

∂n
u+ β

∫
Σ

ūu,

This completes the proof.
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6.7 Exercises

Exercise 6.7.1

The notation are the ones of section 6.3. Let (un)n be a sequence in L2(ω), converging to u for
the weak topology of L2(ω). Let zn be the solution to equation (6.3.6) corresponding to un,
and zu be the solution to equation (6.3.6) corresponding to u. Prove that (zn(T ))n converges
to zu(T ) for the weak topology of H1

0 (Ω), and that (∂zn
∂t

(T ))n converges to ∂zu
∂t

(T ) for the weak
topology of L2(Ω). Prove that the control problem (P2) admits a unique solution. Prove that
problem (P3) admits a unique solution.

Exercise 6.7.2

We study a control problem for the system of the Timoshenko beam (see section 1.4). We
consider the following set of equations:

ρ∂
2u
∂t2
−K

(
∂2u
∂x2 − ∂φ

∂x

)
= 0, in (0, L),

Iρ
∂2φ
∂t2
− EI ∂2φ

∂x2 +K

(
φ− ∂u

∂x

)
= 0, in (0, L),

(6.7.20)

with the boundary conditions

u(0, t) = 0 and φ(0, t) = 0 for t ≥ 0,

K(φ(L, t)− ux(L, t)) = f1(t) and − EIφx(L, t) = f2(t) for t ≥ 0.
(6.7.21)

and the initial conditions

u(x, 0) = u0 pour ∂u
∂t

(x, 0) = u1 pour x ∈ (0, L),

φ(x, 0) = φ0 and ∂φ
∂t

(x, 0) = φ1 in (0, L).
(6.7.22)

We recall that u is the deflection of the beam, φ is the angle of rotation of the beam cross-
sections due to bending. The coefficient ρ is the mass density per unit length, EI is the flexural
rigidity of the beam, Iρ is the mass moment of inertia of the beam cross section, and K is the
shear modulus. We suppose that u0 ∈ H1

0 (0, L), u1 ∈ L2(0, L), φ0 ∈ H1
0 (0, L), φ1 ∈ L2(0, L).

The control functions f1 and f2 are taken in L2(0, T ).

To study the system (6.7.20)-(6.7.22), we use a fixed point method as in exercise 5.5.4. The
Hille-Yosida theorem could also be used to directly study the system. Denote by H1

{0}(0, L) the

space of functions ψ in H1(0, L) such that ψ(0) = 0. Let τ > 0, for ψ ∈ L2(0, τ ;H1
{0}(0, L)),

we denote by (uψ, φψ) the solution to

ρ∂
2u
∂t2
−K

(
∂2u
∂x2 − ∂ψ

∂x

)
= 0, in (0, L),

Iρ
∂2φ
∂t2
− EI ∂2φ

∂x2 +K

(
φ− ∂u

∂x

)
= 0, in (0, L),

(6.7.23)

with the boundary conditions

u(0, t) = 0 and φ(0, t) = 0 for t ≥ 0,

K(ψ(L, t)− ux(L, t)) = f1(t) and − EIφx(L, t) = f2(t) for t ≥ 0.
(6.7.24)
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and the initial conditions

u(x, 0) = u0 pour ∂u
∂t

(x, 0) = u1 pour x ∈ (0, L),

φ(x, 0) = φ0 and ∂φ
∂t

(x, 0) = φ1 in (0, L).
(6.7.25)

Prove that, if τ > 0 is small enough, then the mapping

ψ 7−→ φψ

is a contraction in L2(0, τ ;H1
{0}(0, L)).

We set

E(t) =
1

2

∫ L

0

(
ρu2

t (t) + Iρφ
2
t (t) +K(φ(t)− ux(t))2 + EIφ2

x(t)

)
dx.

Let (u, φ) be the solution to (6.7.20)-(6.7.22) defined on (0, L)× (0, τ). Prove that

E(0) = E(t) + f1(t)u(L, t) + f2(t)φ(L, t) for almost all t ∈ (0, τ).

Prove that the system (6.7.20)-(6.7.22) admits a unique solution (u, φ) belonging to
(C([0, T ];H1

{0}(0, L)) ∩ C1([0, T ];L2(0, L)))× (C([0, T ];H1
{0}(0, L)) ∩ C1([0, T ];L2(0, L))).

We consider the control problem

(P6) inf{J6(u, φ, f1, f2) | (u, φ, f1, f2) satisfies (6.7.20)− (6.7.22)},

with

J6(u, φ, f1, f2) =
1

2

∫ T

0

E(t) +
β

2

∫ T

0

(f 2
1 + f 2

2 ), with β > 0.

Prove that (P6) admits a unique solution. Write the corresponding first order optimality
conditions.



Chapter 7

Control of evolution equations

with bounded control operators

7.1 Introduction

The purpose of this chapter is to extend results obtained for the control of the wave and heat
equations to other linear evolution equations. We consider equations of the form

z′ = Az +Bu+ f, z(0) = z0. (7.1.1)

We have already seen that the controlled equations of chapters 5 and 6 may be written in this
form. Other examples will also be considered.

We make the following assumptions.

Assumption (H1)
Z and U are two Hilbert spaces.
The unbounded operator A, with domain D(A) dense in Z, is the infinitesimal generator of a
strongly continuous semigroup on Z. This semigroup will be denoted by (etA)t≥0.
The operator B belongs to L(U ;Z).

We here suppose that B is a bounded operator from U into Z. The case of unbounded control
operators will be studied in the next chapter.

Associated with equation (7.1.1), we shall study the control problem

(P ) inf{J(z, u) | (z, u) ∈ C([0, T ];Z)× L2(0, T ;U), (z, u) satisfies (7.1.1)}.
with

J(z, u) =
1

2

∫ T

0

|Cz(t)− yd(t)|2Y +
1

2
|Dz(T )− yT |2YT +

1

2

∫ T

0

|u(t)|2U . (7.1.2)

This problem is often referred as a ’Linear Quadratic Regulation’ problem (LQR problem in
short). We make the following assumption on the operators C and D.

Assumption (H2)
Y and YT are Hilbert spaces.
The operator C belongs to L(Z;Y ), and the operator D belongs to L(Z;YT ). The function
yd belongs to L2(0, T ;Y ) and yT ∈ YT .

In this chapter we identify Z ′ with Z, and U ′ with U .

75
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7.2 Adjoint equation

The adjoint equation for (P ) will be of the form

−p′ = A∗p+ g, p(T ) = pT . (7.2.3)

We state an integration by parts formula between the adjoint state p and the solution z to
the equation

z′ = Az + f, z(0) = z0. (7.2.4)

Theorem 7.2.1 For every (f, z) ∈ L2(0, T ;Z) × Z, and every (g, pT ) ∈ L2(0, T ;Z) × Z,
the solution z to equation (7.2.4) and the solution p to equation (7.2.3) satisfy the following
formula ∫ T

0

(f(t), p(t))Z dt =

∫ T

0

(z(t), g(t))Z dt+ (z(T ), pT )Z − (z0, p(0))Z . (7.2.5)

Proof. Suppose that (f, z0) and (g, pT ) belong to C1([0, T ];Z)×D(A∗). In this case we can
write ∫ T

0

(f(t), p(t))Z dt =

∫ T

0

(z′(t)− Az(t), p(t))Z dt

=

∫ T

0

−(z(t), p′(t))Z dt+ (z(T ), pT )Z − (z0, p(0))Z −
∫ T

0

(Az(t), p(t))Z dt

=

∫ T

0

(z(t), g(t))Z dt+ (z(T ), pT )Z − (z0, p(0))Z .

Thus, formula (7.2.5) can be deduced from this case by using density arguments.

7.3 Optimal control

Theorem 7.3.1 Assume that (H1) and (H2) are satisfied. Problem (P ) admits a unique
solution (z, u).

To prove this theorem we need the following lemma.

Lemma 7.3.1 Let (un)n be a sequence in L2(0, T ;U) converging to u for the weak topology of
L2(0, T ;U). Then (z(f, un, z0))n (the sequence of solutions to equation (7.1.1) corresponding to
(f, un, z0)) converges to z(f, u, z0) for the weak topology of L2(0, T ;Z), and (z(f, un, z0)(T ))n
converges to z(f, u, z0)(T ) for the weak topology of Z.

Proof. The lemma is a direct consequence of Theorems 4.2.1 and 2.6.2.

Proof of Theorem 7.3.1. Let (un)n be a minimizing sequence weakly converging to a func-
tion u in L2(0, T ;U). Set zn = z(f, un, z0) and zu = z(f, u, z0). Due to Lemma 7.3.1 and to
Theorem 2.6.2, the sequence (Czn)n converges to Czu for the weak topology of L2(0, T ;Y ),
and the sequence (Dzn(T ))n converges to Dzu(T ) for the weak topology of YT . Due to Corol-

lary 2.6.1 the mapping u 7→
∫ T

0
‖u(t)‖2

Udt, is lower semicontinuous for the weak topology of

L2(0, T ;U), the mapping y 7→
∫ T

0
‖y(t)‖2

Y dt, is lower semicontinuous for the weak topology of
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L2(0, T ;Y ), and the mapping y 7→ ‖y‖2
YT

is lower semicontinuous for the weak topology of YT .
Combining these arguments we can prove that

J(zu, u) ≤ liminfn→∞J(zn, un) = inf(P ).

Thus (zu, u) is a solution to problem (P ).

Uniqueness. The uniqueness follows from the strict convexity of the mapping u 7→
J(z(f, u, z0), u).

Theorem 7.3.2 If (z̄, ū) is the solution to (P ) then ū = −B∗p, where p is the solution to
equation

−p′ = A∗p+ C∗(Cz̄ − yd), p(T ) = D∗(Dz̄(T )− yT ). (7.3.6)

Conversely, if a pair (z̃, p̃) ∈ C([0, T ];Z)× C([0, T ];Z) obeys the system

z̃′ = Az̃ −BB∗p̃+ f, z̃(0) = z0,
−p̃′ = A∗p̃+ C∗(Cz̃ − yd), p̃(T ) = D∗(Dz̃(T )− yT ),

(7.3.7)

then the pair (z̃,−B∗p̃) is the optimal solution to problem (P ).

Proof. Let (z̄, ū) be the optimal solution to problem (P ). Set F (u) = J(z(f, u), u). For every
u ∈ L2(0, T ;U), we have

F ′(ū)u =

∫ T

0

(Cz̄(t)− yd, Cw(t))Y + (Dz̄(T )− yT , Dw(T ))YT +

∫ T

0

(ū(t), u(t))U

=

∫ T

0

(
C∗(Cz̄(t)− yd), w(t)

)
Z

+
(
D∗(Dz̄(T )− yT ), w(T )

)
Z

+

∫ T

0

(ū(t), u(t))U ,

where w is the solution to
w′ = Aw +Bu, w(0) = 0.

Applying formula (7.2.5) to p and w, we obtain

F ′(ū)u =

∫ T

0

(p(t), Bu(t))Z +

∫ T

0

(ū(t), u(t))U =

∫ T

0

(B∗p(t) + ū(t), u(t))U .

The first part of the Theorem is established. The second part follows from Theorem 2.2.3 (see
also the proof of Theorem 2.2.2).

7.4 Exercises

Exercise 7.4.1

Let L > 0 and a be a function in H1(0, L) such that 0 < c1 ≤ a(x) for all x ∈ H1(0, L).
Consider the equation

zt + azx = f + χ(`1,`2)u, in (0, L)× (0, T ),
z(0, t) = 0, in (0, T ),
z(x, 0) = z0, in (0, L),

(7.4.8)
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where f ∈ L2((0, L) × (0, T )), χ(`1,`2) is the characteristic function of (`1, `2) ⊂ (0, L), u ∈
L2((`1, `2)× (0, T )), and z0 ∈ L2(0, L).

Prove that equation (7.4.8) admits a unique solution in C([0, T ];L2(0, L)) (the Hille-Yosida
theorem can be used).

Study the control problem

(P ) inf{J(z, u) | (z, u) ∈ C([0, T ];L2(0, L))× L2(0, T ;L2(`1, `2)), (z, u) satisfies (7.4.8)}.

with

J(z, u) =
1

2

∫ L

0

(z(T )− zd(T ))2 +
1

2

∫ T

0

∫ `2

`1

u2,

where zd ∈ C([0, T ];L2(0, L)). Prove the existence of a unique solution. Write first order
optimality conditions.



Chapter 8

Control of evolution equations

with unbounded control operators

8.1 Introduction

In this chapter we consider the control problem

(P ) inf{J(z, u) | (z, u) ∈ C([0, T ];Z)× L2(0, T ;U), (z, u) satisfies (8.1.1)}.

with

J(z, u) =
1

2

∫ T

0

|Cz(t)− yd|2Y +
1

2
|Dz(T )− yT |2YT +

1

2

∫ T

0

|u(t)|2U .

and

z′ = Az +Bu+ f, z(0) = z0, (8.1.1)

in the case when B is an unbounded operator.

Assumptions.

As in the previous chapter, Z, Y , YT , and U denote Hilbert spaces. The operator A, with
domain D(A) dense in Z, is the infinitesimal generator of a strongly continuous semigroup on
Z, denoted by (etA)t≥0. The operator C belongs to L(Z;Y ), and the operator D belongs to
L(Z;YT ). The function yd belongs to L2(0, T ;Y ), yT ∈ YT and f ∈ L2(0, T ;Z).

We denote by A∗ the Z-adjoint of A, and by (D(A∗))′ the dual of D(A∗) with respect to the
Z-topology. We suppose that B ∈ L(U ; (D(A∗))′). Let us give an equivalent formulation of
this assumption. Let λ be a real in ρ(A) (the resolvent set of A). Then (λI−A) ∈ L(D(A);Z)
has a bounded inverse in Z. Moreover, (λI − (A∗)∗) , the extension of (λI −A) to (D(A∗))′,
also denoted by (λI −A) to simplify the notation, has a bounded inverse from (D(A∗))′ into
Z. Thus there exists an operator B0 ∈ L(U ;Z) such that B = (λI − A)B0 .

We study problem (P ) under two kinds of assumptions.

(HP) (The parabolic case) The family (etA)t≥0 is a strongly continuous analytic semigroup on
Z. We suppose that

‖etA‖L(Z) ≤Me−ct for all t ≥ 0, (8.1.2)

for some c > 0. (Thanks to Theorem 4.1.2 this condition is not restrictive. Indeed by replacing
A by A− λI with λ > 0 big enough, the condition (8.1.2) will be satisfied by A− λI.) There

79
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exists B1 ∈ L(U ;Z) and 0 < α < 1 such that

B = (−A)1−αB1.

(HH) (The hyperbolic case) The operator B∗etA
∗

admits a continuous extension from Z into
L2(0, T ;U), that is there exists a constant C(T ) such that∫ T

0

‖B∗etA∗ζ‖2
U ≤ C(T )‖ζ‖2

Z (8.1.3)

for every ζ ∈ D(A∗). In the sequel we denote by [B∗etA
∗
]e the extension of B∗etA

∗
to Z.

8.2 The case of analytic semigroups

We suppose that (HP) is satisfied. We have to distinguish the cases α > 1
2

and α ≤ 1
2
. We are

going to see that if α ≤ 1
2

an additional assumption on D is needed in order that the problem
(P ) be well posed.

8.2.1 The case α > 1
2

Theorem 8.2.1 In this section we suppose that (HP) is satisfied with α > 1
2
. For every

z0 ∈ Z, every f ∈ L2(0, T ;Z) and every u ∈ L2(0, T ;U), equation (8.1.1) admits a unique
weak solution z(z0, u, f) in L2(0, T ;Z), this solution belongs to C([0, T ];Z) and the mapping

(z0, u, f) 7−→ z(z0, u, f)

is continuous from Z × L2(0, T ;U)× L2(0, T ;Z) into C([0, T ];Z).

Proof. Due to Theorem 4.3.1, we have

z(t) = etAz0 +

∫ t

0

e(t−τ)A(−A)1−αB1u(τ)dτ

= etAz0 +

∫ t

0

(−A)1−αe(t−τ)AB1u(τ)dτ.

Thus z(t) satisfies the estimate

|z(t)|Z ≤ C‖z0‖Z +

∫ t

0

|t− τ |α−1|u(τ)|Udτ.

Since the mapping t 7→ tα−1 belongs to L2(0, T ) and the mapping t 7→ |u(t)| belongs to
L2(0, T ), from the above estimate it follows that t 7→ |z(t)| belongs to L∞(0, T ).

The adjoint equation for (P ) is of the form

−p′ = A∗p+ g, p(T ) = pT . (8.2.4)

Theorem 8.2.2 For every (g, pT ) ∈ L2(0, T ;Z)×Z, the solution p to equation (8.2.4) belongs
to L2(0, T ;D((−A∗)1−α)).
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Proof. We have

(−A∗)1−αp(t) = (−A∗)1−αe(T−t)A∗pT +

∫ T

t

(−A∗)1−αe(s−t)A∗g(s)ds.

Using estimates on analytic semigroups (Theorem 4.4.1), we obtain

|(−A∗)1−αp(t)|Z ≤
C

(T − t)1−α |pT |Z +

∫ T

t

C

(s− t)1−α |g(s)|Zds.

Since the mapping t 7→ C
t1−α

belongs to L2(0, T ) (because α > 1
2
), and the mapping t 7→ |g(t)|

belongs to L2(0, T ), the mapping t 7→
∫ T
t

C
(s−t)1−α |g(s)|Zds belongs to L∞(0, T ). Moreover the

mapping t 7→ C
(T−t)1−α |pT |Z belongs to L2(0, T ).

Theorem 8.2.3 For every u ∈ L2(0, T ;U), and every (g, pT ) ∈ L2(0, T ;Z)× Z, the solution
z to equation

z′ = Az +Bu, z(0) = 0,

and the solution p to equation (8.2.4) satisfy the following formula∫ T

0

(B1u(t), (−A∗)1−αp(t))Z dt =

∫ T

0

(z(t), g(t))Z dt+ (z(T ), pT )Z . (8.2.5)

Proof. This formula can be proved if p and z are regular enough to justify integration by
parts and tranposition of the operator A (for example if p and z belong to C1([0, T ]);Z) ∩
C([0, T ];D(A))). Due to Theorem 8.2.2, formula (8.2.5) can be next obtained by a passage to
the limit.

Theorem 8.2.4 Assume that (HP) is satisfied with α > 1
2
. Problem (P ) admits a unique

solution (z, u).

To prove this theorem we need the following lemma.

Lemma 8.2.1 Let (un)n be a sequence in L2(0, T ;U) converging to u for the weak topology of
L2(0, T ;U). Then (z(f, un, z0))n (the sequence of solutions to equation (8.1.1) corresponding to
(f, un, z0)) converges to z(f, u, z0) for the weak topology of L2(0, T ;Z), and (z(f, un, z0)(T ))n
converges to z(f, u, z0)(T ) for the weak topology of Z.

Proof. The lemma is a direct consequence of Theorems 8.2.1 and 2.6.2.

Proof of Theorem 8.2.4. The proof is completely analogous to that of Theorem 7.3.1.

Theorem 8.2.5 If (z̄, ū) is the solution to (P ) then ū = −B∗1(−A∗)1−αp, where p is the
solution to equation

−p′ = A∗p+ C∗(Cz − yd), p(T ) = D∗(Dz(T )− yT ). (8.2.6)

Conversely, if a pair (z̃, p̃) ∈ C([0, T ];Z)× C([0, T ];Z) obeys the system

z̃′ = Az̃ − (−A)1−αB1B
∗
1(−A∗)1−αp̃+ f, z̃(0) = z0,

−p̃′ = A∗p̃+ C∗(Cz̃ − yd), p̃(T ) = D∗(Dz̃(T )− yT ),
(8.2.7)

then the pair (z̃,−B∗1(−A∗)1−αp̃) is the optimal solution to problem (P ).
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Proof. Let (z̄, ū) be the optimal solution to problem (P ). Set F (u) = J(z(f, u), u). For every
u ∈ L2(0, T ;U), we have

F ′(ū)u =

∫ T

0

(Cz(t)− yd, Cw(t))Y + (Dz(T )− yT , Dw(T ))YT +

∫ T

0

(ū(t), u(t))U

=

∫ T

0

(C∗Cz(t)− yd, w(t))Z + (D∗Dz(T )− yT , w(T ))Z +

∫ T

0

(ū(t), u(t))U ,

where w is the solution to
w′ = Aw +Bu, w(0) = 0.

Applying formula (8.2.5) to p and w, we obtain

F ′(ū)u =

∫ T

0

((−A∗)1−αp(t), B1u(t))Z +

∫ T

0

(ū(t), u(t))U =

∫ T

0

(B∗1(−A∗)1−αp(t)+ ū(t), u(t))U ,

for all u ∈ L2(0, T ;U). The first part of the Theorem is established. The second part follows
from Theorem 2.2.3 (see also the proof of Theorem 2.2.2).

8.2.2 The case α ≤ 1
2

Theorem 8.2.6 Suppose that (HP) is satisfied with α ≤ 1
2
. For every z0 ∈ Z, every

f ∈ L2(0, T ;Z) and every u ∈ L2(0, T ;U), equation (8.1.1) admits a unique weak solution
z(z0, u, f) belonging to Lr(0, T ;Z) for every r < 2

1−2α
, and the mapping

(z0, u, f) 7−→ z(z0, u, f)

is continuous from Z × L2(0, T ;U)× L2(0, T ;Z) into Lr(0, T ;Z) for every r < 2
1−2α

.

Proof. We know that equation (8.1.1) admits a unique weak solution z(z0, u, f) in C([0, T ];
(D(A∗))′). Moreover z is defined by

z(t) = etAz0 +

∫ t

0

e(t−s)(A∗)∗Bu(s)ds

= etAz0 +

∫ t

0

e(t−s)(A∗)∗(−A)1−αB1u(s)ds.

Thus we have

|z(t)|Z ≤ |z0|Z +

∫ t

0

C

(t− s)1−α |u(s)|U ds.

Due to Young’s inequality for the convolution product, we verify that t 7→ |z(t)|Z belongs to
Lr(0, T ;Z) for every r < 2

1−2α
.

In general the solution to equation (8.1.1) does not belong to C([0, T ];Z). Thus we cannot
study problem (P ) in the case where D belongs to L(Z, YT ). We have to make an additional
assumption.

(HD) (Smoothing property of operator D)

There exists β ∈]1
2
− α, 1−α

2
[ such that

(−A∗)βD∗D(−A)β ∈ L(Z).
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Theorem 8.2.7 Suppose that (HP) is satisfied with α ≤ 1
2
. The mapping

(z0, u, f) 7−→ z(z0, u, f)

is continuous from Z × L2(0, T ;U)× L2(0, T ;Z) into C([0, T ];D((−A)−β)).

Proof. From the equality

(−A)−βz(t) = (−A)−βetAz0 +

∫ t

0

e(t−s)(A∗)∗(−A)1−α−βB1u(s)ds,

it follows that

|(−A)−βz(t)|Z ≤ |z0|Z +

∫ t

0

C

(t− s)1−α−β |u(s)|U ds.

Now the end of the proof is classical.

Since z does not belong to C([0, T ];Z), z(T ) is not defined in Z, it is only defined in
D((−A)−β)) (Theorem 8.2.7). Thus we have to give a precise meaning to |Dz(T ) − yT |2YT .
We first assume that yT is of the form yT = D(−A)βzT for some zT ∈ D((−A)β), and we
replace |Dz(T )−DzT |2YT in the definition of J by(

(−A∗)βD∗D(−A)β
(

(−A)−βz(T )− zT
)
, (−A)−βz(T )− zT

)
Z
.

Thus we deal with the control problem

(P̂ ) inf{Ĵ(z, u) | (z, u) ∈ C([0, T ];Z)× L2(0, T ;U), (z, u) satisfies (8.1.1)}.

with

Ĵ(z, u) =
1

2

∫ T

0

|Cz(t)− yd|2Y +
1

2

∫ T

0

|u(t)|2U

+
1

2
((−A∗)βD∗D(−A)β((−A)−βz(T )− zT ), (−A)−βz(T )− zT )Z .

Theorem 8.2.8 For every u ∈ L2(0, T ;U), and every (g, pT ) ∈ L2(0, T ;Z)×D((−A∗)β), the
solution z to equation

z′ = Az +Bu, z(0) = 0,

and the solution p to equation

−p′ = A∗p+ g, p(T ) = pT ,

satisfy the following formula∫ T

0

(B1u(t), (−A∗)1−αp(t))Z dt =

∫ T

0

(z(t), g(t))Z dt+ (z(T ), pT )Z . (8.2.8)

Proof. As for Theorem 8.2.3 the proof is straightforward if we prove that the function p
belongs to L2(0, T ;D((−A∗)1−α)). We have

(−A∗)1−αp(t) = (−A∗)1−α−βe(T−t)A∗(−A∗)βpT +

∫ T

t

(−A∗)1−αe(s−t)A∗g(s)ds.
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Using estimates on analytic semigroups we obtain

|(−A∗)1−αp(t)| ≤ C

(T − t)1−α−β |(−A
∗)βpT |Z +

∫ T

t

C

(s− t)1−α |g(s)|Zds.

The mapping t 7→ C
t1−α−β

belongs to L2(0, T ). Moreover the mapping t 7→ |g(t)| belongs to
L∞(0, T ) and the mapping t 7→ C

t1−α
belongs to Ls(0, T ) for all s < 1

1−α . Thus the mapping

t 7→
∫ T
t

C
(s−t)1−α |g(s)|Zds belongs to L∞(0, T ).

Theorem 8.2.9 Assume that (HD) and (HP) are satisfied with α ≤ 1
2
. Problem (P̂ ) admits

a unique solution (z, u).

To prove this theorem we need the following lemma.

Lemma 8.2.2 Let (un)n be a sequence in L2(0, T ;U) converging to u for the weak topology of
L2(0, T ;U). Then (z(f, un, z0))n (the sequence of solutions to equation (8.1.1) corresponding to
(f, un, z0)) converges to z(f, u, z0) for the weak topology of L2(0, T ;Z), and (z(f, un, z0)(T ))n
converges to z(f, u, z0)(T ) for the weak topology of D((−A)−β).

Proof. The lemma is a direct consequence of Theorems 8.2.7 and 2.6.2.

Proof of Theorem 8.2.9. We leave the reader adapt the proof of Theorem 8.2.4.

Theorem 8.2.10 If (z̄, ū) is the solution to (P̂ ) then ū = −B∗1(−A∗)1−αp, where p is the
solution to equation

−p′ = A∗p+ C∗(Cz − yd), p(T ) = D∗D(−A)β((−A)−βz(T )− zT ). (8.2.9)

Conversely, if a pair (z̃, p̃) ∈ C([0, T ];Z) × C([0, T ];Z) ∩ L2(0, T ;D((−A∗)1−α)) obeys the
system

z̃′ = Az̃ − (−A)1−αB1B
∗
1(−A∗)1−αp̃+ f, z̃(0) = z0,

−p̃′ = A∗p̃+ C∗(Cz̃ − yd), p̃(T ) = D∗D(−A)β((−A)−βz(T )− zT ),
(8.2.10)

then the pair (z̃,−B∗1(−A∗)1−αp̃) is the optimal solution to problem (P̂ ).

Proof. Let (z̄, ū) be the optimal solution to problem (P ). Set F (u) = J(z(f, u), u). For every
u ∈ L2(0, T ;U), we have

F ′(ū)u =

∫ T

0

(C∗(Cz(t)− yd), w(t))Z

+((−A∗)βD∗D(−A)β((−A)−βz(T )− zT ), (−A)−βw(T ))Z +

∫ T

0

(ū(t), u(t))U ,

where w is the solution to
w′ = Aw +Bu, w(0) = 0.

Applying formula (8.2.8) to p and w, we obtain

F ′(ū)u =

∫ T

0

((−A∗)1−αp(t), B1u(t))Z +

∫ T

0

(ū(t), u(t))U =

∫ T

0

(B∗1(−A∗)1−αp(t)+ ū(t), u(t))U ,

for all u ∈ L2(0, T ;U). The first part of the Theorem is established. The second part follows
from Theorem 2.2.3.
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8.3 The hyperbolic case

In this section we suppose that (HH) is satisfied.

To study equation (8.1.1), we consider the operator defined on L2(0, T ;U) by

Lu(t) =

∫ t

0

e(t−τ)(A∗)∗Bu(τ) dτ.

Theorem 8.3.1 The operator L is continuous from L2(0, T ;U) into C([0, T ];Z).

Proof. Set z(t) =
∫ t

0
e(t−τ)(A∗)∗Bu(τ) dτ . For all ζ ∈ D(A∗), we have

〈z(t), ζ〉(D(A∗))′,D(A∗) =

∫ t

0

(u(τ), B∗e(t−τ)A∗ζ)U dτ.

Thanks to (HH) it follows that

|〈z(t), ζ〉(D(A∗))′,D(A∗)|2 ≤ ‖u‖2
L2(0,T ;U)

∫ t

0

‖B∗e(t−τ)A∗ζ‖2
U dτ

≤ C‖u‖2
L2(0,T ;U)‖ζ‖2

Z for all ζ ∈ D(A∗).

Thus z belongs to L∞(0, T ;Z). To prove that z ∈ C([0, T ];Z), we proceed by approximation.
Let (un)n be a sequence in C1([0, T ];U) converging to u in L2(0, T ;U). Due to the assumption
on the operator B, there exists λ ∈ ρ(A) such that B = (λI−A)B0, with B0 ∈ L(U ;Z). From
Theorem 4.2.2 it follows that

∫ t
0
e(t−τ)AB0un(τ) dτ ∈ C([0, T ];D(A)) . Then

Lun(t) = (λI − A)

∫ t

0

e(t−τ)AB0un(τ) dτ ∈ C([0, T ];Z).

and (Lun)n converges to Lu in C([0, T ];Z).

The operator L∗, the adjoint of L in the sense that (Lu, f)L2(0,T ;Z) = (u, L∗f)L2(0,T ;U), is defined
by

L∗f(t) =

∫ T

t

B∗e(τ−t)A∗f(τ) dτ for f ∈ L1(0, T ;D(A∗)).

For f ∈ L1(0, T ;Z), we have to set

L∗f(t) =

∫ T

t

[B∗e(τ−t)A∗ ]ef(τ) dτ.

Thanks to Theorem 8.3.1, it can be shown that the operator L∗ is continuous from
L1(0, T ;Z) into L2(0, T ;U).

Theorem 8.3.2 Suppose that (HH) is satisfied. For every z0 ∈ Z, every f ∈ L2(0, T ;Z) and
every u ∈ L2(0, T ;U), equation (8.1.1) admits a unique weak solution z(z0, u, f) in L2(0, T ;Z),
this solution belongs to C([0, T ];Z) and the mapping

(z0, u, f) 7−→ z(z0, u, f)

is continuous from Z × L2(0, T ;U)× L2(0, T ;Z) into C([0, T ];Z).
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Proof. The result is a direct consequence of Theorem 8.3.1.

Theorem 8.3.3 For every u ∈ L2(0, T ;U), and every (g, pT ) ∈ C([0, T ];Z)×Z, the solution
w to equation

w′ = Aw +Bu, w(0) = 0,

satisfies the following formula∫ T

0

(w(t), g(t))Z dt+ (w(T ), pT )Z

=

∫ T

0

(
[B∗e(T−t)A∗ ]e pT , u(t)

)
U

dt+

∫ T

0

(∫ T

t

[B∗e(s−t)A∗ ]e g(s) ds, u(t)

)
U

dt, (8.3.11)

where [B∗etA
∗
]e denotes the extension of B∗etA

∗
to Z. If moreover pT ∈ D(A∗) and g ∈

L2(0, T ;D(A∗)), then the solution p to the adjoint equation

−p′ = A∗p+ g, p(T ) = pT ,

belongs to C([0, T ];D(A∗)) and we have∫ T

0

(w(t), g(t))Z dt+ (w(T ), pT )Z =

∫ T

0

(u(t), B∗p(t))U dt. (8.3.12)

Proof. We have ∫ T

0

(w(t), g(t))Z dt+ (w(T ), pT )Z

=
(
pT ,

∫ T

0

e(T−t)(A∗)∗Bu(t)dt
)
Z

+

∫ T

0

(
g(s),

∫ s

0

e(s−t)(A∗)∗Bu(t) dt
)
Z
ds

=

∫ T

0

(
[B∗e(T−t)A∗ ]epT , u(t)

)
U
dt+

∫ T

0

(∫ T

t

[B∗e(s−t)A∗ ]eg(s)ds, u(t)
)
U
dt.

If p belongs to C([0, T ];D(A∗)), the mappings t 7→ e(T−t)A∗pT and t 7→
∫ T
t
e(s−t)A∗g(s)ds

belong to C([0, T ];D(A∗)), [B∗e(s−t)A∗ ]e g(s) = B∗e(s−t)A∗g(s) for almost every s ∈ (t, T ), and
[B∗e(T−t)A∗ ]e pT = B∗e(T−t)A∗pT for all t ∈ [0, T ]. Therefore, (8.3.12) is proved.

Theorem 8.3.4 Assume that (HH) is satisfied. Problem (P ) admits a unique solution.

To prove this theorem we need the following lemma.

Lemma 8.3.1 Let (un)n be a sequence in L2(0, T ;U) converging to u for the weak topology of
L2(0, T ;U). Then (z(f, un, z0))n (the sequence of solutions to equation (8.1.1) corresponding to
(f, un, z0)) converges to z(f, u, z0) for the weak topology of L2(0, T ;Z), and (z(f, un, z0)(T ))n
converges to z(f, u, z0)(T ) for the weak topology of Z.

Proof. The lemma is a direct consequence of Theorems 8.3.2 and 2.6.2.

Proof of Theorem 8.3.4. See exercise 8.7.1.
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Theorem 8.3.5 If (z̄, ū) is the solution to (P ) then

ū(t) = −[B∗e(T−t)A∗ ]eD
∗(Dz(T )− yT )−

∫ T

t

[B∗e(s−t)A∗ ]eC
∗(Cz(s)− yd(s))ds.

If moreover D∗(Dz(T ) − yT ) ∈ D(A∗) and C∗(Cz − yd) ∈ L2(0, T ;D(A∗)), then ū = −B∗p,
where p is the solution to equation

−p′ = A∗p+ C∗(Cz − yd), p(T ) = D∗(Dz(T )− zT ). (8.3.13)

Conversely, if a pair (z̃, ũ) ∈ C([0, T ];Z)× L2(0, T ;Z) obeys the system

z̃′ = Az̃ +Bũ+ f, z̃(0) = z0,

ũ(t) = −[B∗e(T−t)A∗ ]eD
∗(Dz̃(T )− yT )−

∫ T

t

[B∗e(s−t)A∗ ]eC
∗(Cz̃(s)− yd(s))ds,

(8.3.14)

then the pair (z̃, ũ) is the optimal solution to problem (P ).

If a pair (z̃, p̃) ∈ C([0, T ];Z)× C([0, T ];D(A∗)) obeys the system

z̃′ = Az̃ −BB∗p̃+ f, z̃(0) = z0,

−p̃′ = A∗p̃+ C∗(Cz̃ − yd), p̃(T ) = D∗(Dz̃(T )− yT ),
(8.3.15)

then the pair (z̃,−B∗p̃) is the optimal solution to problem (P ).

Proof. Let (z̄, ū) be the optimal solution to problem (P ). Set F (u) = J(z(f, u), u). For every
u ∈ L2(0, T ;U), we have

F ′(ū)u =

∫ T

0

(Cz(t)− yd, Cw(t))Y + (Dz(T )− yT , Dw(T ))YT +

∫ T

0

(ū(t), u(t))U

=

∫ T

0

(
C∗(Cz(t)− yd), w(t)

)
Z

+
(
D∗(Dz(T )− yT ), w(T )

)
Z

+

∫ T

0

(ū(t), u(t))U ,

where w is the solution to

w′ = Aw +Bu, w(0) = 0.

We obtain the expression of ū by applying formula (8.3.11). If D∗(Dz(T )− yT ) ∈ D(A∗) and
C∗(Cz − yd) ∈ L2(0, T ;D(A∗)), the characterization of ū follows from formula (8.3.12). The
first part of the Theorem is established. The second part follows from Theorem 2.2.3 (see also
the proof of Theorem 2.2.2).

8.4 The heat equation

We are going to see that (HP) is satisfied for the heat equation with a Neumann boundary
control in the case when α > 1

2
, and with a Dirichlet boundary control in the case when α ≤ 1

2
.
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8.4.1 Neumann boundary control

We want to write equation (5.3.10) in the form (8.1.1). For this, we set Z = L2(Ω) and we
define the unbounded operator A in Z by

D(A) = {z ∈ H2(Ω) | ∂z
∂n

= 0}, Az = ∆z.

We know that A generates an analytic semigroup on Z (see [2]),

D((I − A)α) = H2α(Ω) if α ∈]0,
3

4
[,

and

D((I − A)α) = {z ∈ H2α(Ω) | ∂z
∂n

= 0} if α ∈]
3

4
, 1[.

Consider now the Neumann operator N from L2(Γ) into L2(Ω) defined by N : u 7→ w , where
w is the solution to

∆w − w = 0 in Ω,
∂w

∂n
= u on Γ.

From [12] we deduce that N ∈ L(L2(Γ);H
3
2 (Ω)). This implies that N ∈ L(L2(Γ);D((I−A)α))

for all α ∈]0, 3
4
[. We also have N ∈ L(H

1
2 (Γ);H2(Ω)).

Suppose that u ∈ C1([0, T ];H
1
2 (Γ)) and denote by z the solution to equation (5.3.10). Set

y(x, t) = z(x, t)−(Nu(t))(x). Since u ∈ C1([0, T ];H
3
2 (Γ)), Nu(·) belongs to C1([0, T ];H2(Ω)),

and we have

∂y

∂t
−∆y = f − ∂Nu

∂t
+Nu in Q,

∂y

∂n
= 0 on Σ, y(x, 0) = (z0 −Nu(0))(x) in Ω.

Thus y is defined by

y(t) = etA(z0 −Nu(0))−
∫ t

0

e(t−s)A d

dt
(Nu(s))ds+

∫ t

0

e(t−s)A(Nu(s) + f(s))ds.

With an integration by parts we check that

(y +Nu)(t) = z(t) = etAz0 +

∫ t

0

e(t−s)Af(s)ds+

∫ t

0

(I − A)e(t−s)ANu(s)ds.

This means that, when u is regular enough, equation (5.3.10) may be written in the form

z′ = Az + f + (I − A)Nu, z(0) = z0.

It is known that A is selfadjoint in L2(Ω), that is D(A) = D(A∗) and Az = A∗z for all
z ∈ D(A). Since A∗ ∈ L(D(A∗);L2(Ω)), (A∗)∗ ∈ L(L2(Ω);D(A∗)′). Observing that N ∈
L(L2(Γ);H

3
2 (Ω)) and (I−(A∗)∗) ∈ L(L2(Ω);D(A∗)′), we have (I−(A∗)∗)N ∈ L(L2(Γ);D(A∗)′).

In the case when u ∈ L2(0, T ;L2(Γ)) we consider the equation

z′ = (A∗)∗z + f + (I − (A∗)∗)Nu, z(0) = z0. (8.4.16)
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For every z0 ∈ Z, f ∈ L2(Q), and u ∈ L2(0, T ;L2(Γ)) equation (8.4.16) admits a unique
solution in H1(0, T ;D(A∗)′) which is

z(t) = et(A
∗)∗z0 +

∫ t

0

(I − (A∗)∗)e(t−s)(A∗)∗Nu(s) ds+

∫ t

0

e(t−s)Af(s) ds. (8.4.17)

When u ∈ C1([0, T ];H
1
2 (Γ)), the solutions given by Theorem 5.3.4 and by the formula (8.4.17)

coincide. Henceforth, by density arguments it follows that the solution defined by (8.4.17) and
the one of Theorem 5.3.4 also coincide when u ∈ L2(0, T ;L2(Γ)). In this case to simplify the
writing, we often write

z′ = Az + f + (I − A)Nu, z(0) = z0, (8.4.18)

in place of (8.4.16). Since N ∈ L(L2(Γ);D((I−A)α)) for all α ∈]0, 3
4
[, the operator (I−A)N =

(I − A)1−α(I − A)αN can be decomposed in the form (I − A)N = (I − A)1−αB1, where
B1 = (I −A)αN belongs to L(L2(Γ);L2(Ω)). This decomposition will be very useful to study
the Riccati equation corresponding to problem (P3) (see [26]).

8.4.2 Dirichlet boundary control

We set Z = L2(Ω) and we define the unbounded operator A in Z by

D(A) = H2(Ω) ∩H1
0 (Ω), Az = ∆z.

We know that A is the infinitesimal generator of an analytic semigroup on Z and that (see
[2])

D((−A)α) = H2α(Ω) if α ∈]0,
1

4
[

and

D((−A)α) = {z ∈ H2α(Ω) | z = 0 on Γ} if α ∈]
1

4
, 1[.

We define the Dirichlet operator G from L2(Γ) into L2(Ω) by G : u 7→ w , where w is the
solution to

∆w = 0 in Ω, w = u on Γ.

From [12] we deduce that G ∈ L(L2(Γ);H
1
2 (Ω)). This implies that G ∈ L(L2(Γ);D((−A)α))

for all α ∈]0, 1
4
[. We also have G ∈ L(H

3
2 (Γ);H2(Ω)).

Suppose that u ∈ C1([0, T ];H
3
2 (Γ)) and denote by z the solution to equation (5.4.20). Set

y(x, t) = z(x, t)− (Gu(t))(x). Since u ∈ C1([0, T ];H
3
2 (Γ)), Gu(·) belongs to C1([0, T ];H2(Ω)).

Thus we have

∂y

∂t
−∆y = f − ∂Gu

∂t
in Q, y = 0 on Σ, y(x, 0) = (z0 −Gu(0))(x) in Ω.

As for Neumann controls we can check that, when u is regular enough, equation (5.4.20) may
be written in the form

z′ = Az + f + (−A)Gu, z(0) = z0.

And in the case when u ∈ L2(0, T ;L2(Γ)) we still continue to use the above formulation even
if for a correct writing A should be replaced by its extension (A∗)∗.
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Since G ∈ L(L2(Γ);D((−A)α)) for all α ∈]0, 1
4
[, the operator (−A)G can be decomposed

in the form (−A)G = (−A)1−αB1, where B1 = (−A)αG belongs to L(L2(Γ);L2(Ω)). We shall
see that this situation (with 0 < α < 1

4
) is more complicated than the previous one where α

was allowed to take values greater than 1
2
.

8.5 The wave equation

We only treat the case of a Dirichlet boundary control. We first define the unbounded operator
Λ in H−1(Ω) by

D(Λ) = H1
0 (Ω), Λz = ∆z.

We set Z = L2(Ω)×H−1(Ω). We define the unbounded operator A in Z by

D(A) = H1
0 (Ω)× L2(Ω), A =

(
0 I
Λ 0

)
.

Using the Dirichlet operator G introduced in section 8.4.2, equation (6.6.15) may be written
in the form

d2z

dt2
= Λz − ΛGu+ f, z(0) = z0,

dz

dt
(0) = z1.

Now setting y = (z, dz
dt

), we have

dy

dt
= Ay +Bu+ F, y(0) = y0, (8.5.19)

with

Bu =

(
0

−ΛGu

)
, F =

(
0
f

)
, and y0 =

(
z0

z1

)
.

The adjoint operator of A for the Z-topology is defined by

D(A∗) = H1
0 (Ω)× L2(Ω), A∗ =

(
0 −I
−Λ 0

)
.

The operator (A,D(A)) is a strongly continuous group of contractions on Z. Set

C(t)z0 = etA
(
z0

0

)
and S(t)z1 = etA

(
0
z1

)
.

Since (etA)t≥0 is a group, we can verify that C(t) = 1
2
(etA + e−tA). Using equation (8.5.19), we

can prove that S(t)z =
∫ t

0
C(τ)z dτ and

etA =

(
C(t) S(t)

ΛS(t) C(t)

)
.

We can also check that

etA
∗

= e−tA =

(
C(t) −S(t)
−ΛS(t) C(t)

)
.

We denote by B∗ the adjoint of B, where B is an unbounded operator from L2(Γ) into Z.
Thus B∗ is the adjoint of B with respect to the L2(Γ)-topology and the Z-topology.



8.6. A FIRST ORDER HYPERBOLIC SYSTEM 91

Theorem 8.5.1 For any 0 < T < ∞ the operator defined on D(A∗) by ζ 7→ B∗etA
∗
ζ admits

a continuous extension from Z into L2(0, T ;L2(Γ)). In other words there exists a constant
C(T ), depending on T , such that∫ T

0

‖B∗etA∗ζ‖2
L2(Γ) ≤ C(T )‖ζ‖2

Z (8.5.20)

for every ζ ∈ D(A∗).

Proof. Let us first determine B∗. Recall the definition of the scalar product on Z:

((z0, z1), (y0, y1))Z =

∫
Ω

z0y0 dx+ 〈(−Λ)−1z1, y1〉H1
0 (Ω),H−1(Ω).

For every (y0, y1) ∈ D(A∗), we have

(B∗(y0, y1), u)L2(Γ) = (y1, Bu)H−1(Ω) = 〈(−Λ)−1y1,−ΛGu〉H1
0 (Ω),H−1(Ω) =

∫
Γ

∂

∂n
Λ−1y1 u,

for all u ∈ H3/2(Γ). Hence

B∗(y0, y1) =
∂

∂n
Λ−1y1.

Due to the expression of etA
∗
, we have

Λ−1etA
∗
(
ζ0

ζ1

)
= Λ−1

(
C(t)ζ0 − S(t)ζ1

−ΛS(t)ζ0 + C(t)ζ1

)
=

(
C(t)Λ−1ζ0 − S(t)Λ−1ζ1

−S(t)ζ0 + C(t)Λ−1ζ1

)
.

From the previous calculations it follows that condition (8.5.20) is equivalent to∫
Σ

∣∣∣∣ ∂∂n(− S(t)ζ0 + C(t)Λ−1ζ1

)∣∣∣∣2 ≤ C(T )(‖ζ0‖2
L2(Ω) + ‖Λ−1ζ1‖2

H−1(Ω)). (8.5.21)

Let us notice that if we set φ0 = Λ−1ζ1, φ1 = −ζ0 and φ(t) = −S(t)ζ0 + C(t)Λ−1ζ1, then φ is
the solution to

∂2φ

∂t2
−∆φ = 0 in Q, φ = 0 on Σ, φ(x, 0) = φ0 and

∂φ

∂t
(x, 0) = φ1 in Ω.

Therefore the condition (8.5.21) is equivalent to∫
Σ

∣∣∣(∂φ
∂n

)∣∣∣2 ≤ C(T )(‖φ0‖2
H1

0 (Ω) + ‖φ1‖2
L2(Ω)).

The proof follows from Theorem 6.5.1.

8.6 A first order hyperbolic system

Consider the first order hyperbolic system

∂

∂t

[
z1(x, t)
z2(x, t)

]
=

∂

∂x

[
m1z1

−m2z2

]
−
[
b11z1 + b12z2

b21z1 + b22z2

]
, in (0, `)× (0, T ) (8.6.22)
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with the initial condition

z1(x, 0) = z01(x), z2(x, 0) = z02(x) in (0, `), (8.6.23)

and the boundary conditions

z1(`, t) = u1(t), z2(0, t) = u2(t) in (0, T ). (8.6.24)

This kind of systems intervenes in heat exchangers [31]. For simplicity we suppose that the
coefficients m1 > 0, m2 > 0, b11, b12, b21, b22 are constant. We also suppose that

b11z
2
1 + b21z2z1 + b21z1z2 + b22z

2
2 ≥ 0 for all (z1, z2) ∈ R2.

Before studying control problems, let us state existence results for the system (8.6.22)-(8.6.24).

8.6.1 State equation

We set Z = L2(0, `)× L2(0, `), and we define the unbounded operator A in Z by

D(A) = {z ∈ H1(0, `)×H1(0, `) | z1(`) = 0, z2(0) = 0}

and

Az =

 m1
dz1

dx
− b11z1 − b12z2

−m2
dz2

dx
− b21z1 − b22z2

 .
We endow D(A) with the norm ‖z‖D(A) = (‖z1‖2

H1(0,`) + ‖z2‖2
H1(0,`))

1/2.

Theorem 8.6.1 For every (f, g) ∈ L2(0, `)2, the system Az = (f, g)T admits a unique solution
in D(A), and

‖z‖D(A) ≤ C(‖f‖L2(0,`) + ‖g‖L2(0,`)).

Proof. Let A0 be the operator defined by D(A0) = D(A) and A0z = (m1
dz1
dx
,−m2

dz2
dx

)T . It is
clear that A0 is an isomorphism from D(A0) into L2(0, `)2. We rewrite equation Az = (f, g)T

in the form z − A−1
0 Bz = A−1

0 (f, g)T , where

Bz =

[
b11z1 + b12z2

b21z1 + b22z2

]
.

If z ∈ D(A0), then Bz ∈ (H1(0, `))2 and A−1
0 Bz ∈ (H2(0, `))2 ∩ D(A0). Thus the operator

A−1
0 B is a compact operator in D(A0). Let us prove that I−A−1

0 B is injective. Let z ∈ D(A0)
be such that (I − A−1

0 B)z = 0. Then Az = 0. Multiplying the first equation in the system
Az = 0 by z1, the second equation by z2, integrating over (0, `), and adding the two equalities,
we obtain:

m1z1(0)2 +m2z2(`)2 +

∫ `

0

b11z
2
1 + b21z2z1 + b21z1z2 + b22z

2
2 = 0.

Thus z = 0. Now the theorem follows from the Fredholm Alternative.

Theorem 8.6.2 The operator (A,D(A)) is the infinitesimal generator of a strongly continu-
ous semigroup of contractions on Z.
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Proof. The theorem relies the Hille-Yosida theorem.

(i) The domain D(A) is dense in Z. Prove that A is a closed operator. Let (zn)n = (z1,n, z2,n)n
be a sequence converging to z = (z1, z2) in Z, and such that (Azn)n converges to (f, g) in Z.

We have m1
dz1
dx
− b11z1 − b12z2 = f , and −m2

dz2
dx
− b21z1 − b22z2 = g, because (dz1,n

dx
, dz2,n

dx
)n

converges to (dz1
dx
, dz2
dx

) in the sense of distributions in (0, `). Due to Theorem 8.6.1, we have

‖zn − zm‖D(A) ≤ C‖A(zn − zm)‖(L2(0,`))2 .

Thus (zn)n is a Cauchy sequence in D(A), and z, its limit in Z, belongs to D(A). The first
condition of Theorem 4.1.1 is satisfied.

(ii) For λ > 0, f ∈ L2(0, `), g ∈ L2(0, `), consider the equation

z ∈ D(A), λ

(
z1

z2

)
− A

(
z1

z2

)
=

(
f
g

)
,

that is

λz1 −m1
dz1

dx
+ b11z1 + b12z2 = f in (0, `), z1(`) = 0,

λz2 +m2
dz2

dx
+ b21z1 + b22z2 = g in (0, `), z2(0) = 0.

As for Theorem 8.6.1, we can prove that this equation admits a unique solution z ∈ D(A).
Multiplying the first equation by z1, the second by z2, and integrating over (0, `), we obtain

λ

∫ `

0

(z2
1 + z2

2) +

∫ `

0

(b11z
2
1 + b12z2z1 + b21z1z2 + b22z

2
2) +m1z1(0)2 +m2z2(`)2 =

∫ `

0

(fz1 + gz2)

≤
(∫ `

0

z2
1 +

∫ `

0

z2
2

)1/2(∫ `

0

f 2 +

∫ `

0

g2

)1/2

.

The proof is complete.

Theorem 8.6.3 For every z0 = (z10, z20) ∈ Z, equation

∂

∂t

[
z1(x, t)
z2(x, t)

]
=

∂

∂x

[
m1z1

−m2z2

]
−
[
b11z1 + b12z2

b21z1 + b22z2

]
, in (0, `)× (0, T )

with the initial condition

z1(x, 0) = z01(x), z2(x, 0) = z02(x) in (0, `),

and homogeneous boundary conditions

z1(`, t) = 0, z2(0, t) = 0 in (0, T ),

admits a unique weak solution in L2(0, T ;L2(0, `)), this solution belongs to C([0, T ];Z) and
satisfies

‖z‖C([0,T ];Z) ≤ ‖z0‖Z .
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The theorem is a direct consequence of Theorems 8.6.2 and 4.2.1.

The adjoint operator of (A,D(A)), with respect to the Z-topology, is defined by

D(A∗) = {(φ, ψ) ∈ H1(0, `)×H1(0, `) | φ(0) = 0, ψ(`) = 0},

and

A∗

[
φ

ψ

]
=

 −m1
dφ

dx
− b11φ− b21ψ

m2
dψ

dx
− b12φ− b22ψ

 .
To study the system (8.6.22)-(8.6.24), we define the operator B from R2 into (D(A∗))′ by

B

[
u1

u2

]
=

[
m1u1δ`
m2u2δ0

]
,

where δ` and δ0 denote the Dirac distributions at ` and 0. Since B ∈ L(R2; (D(A∗))′), we can
write the system (8.6.22)-(8.6.24) in the form

z′ = (A∗)∗z +Bu(t), z(0) = z0,

where (A∗)∗ is the extension of A to (D(A∗))′, and u(t) = (u1(t), u2(t))T . From Theorem 4.3.2,
if follows that, for every u ∈ (L2(0, T ))2, the system (8.6.22)-(8.6.24) admits a unique weak
solution z in L2(0, T ; (D(A∗))′) which satisfies:

‖z‖C([0,T ];(D(A∗))′) ≤ C(‖z0‖Z + ‖u‖(L2(0,T ))2).

Moreover, due to Theorem 4.3.3, if u ∈ (H1(0, T ))2 the solution z belongs to C([0, T ];Z) and

‖z‖C([0,T ];Z) ≤ C(‖z0‖Z + ‖u‖(H1(0,T ))2).

We would like to prove that z belongs to C([0, T ];Z) when u ∈ (L2(0, T ))2.

Theorem 8.6.4 For every u = (u1, u2) ∈ R2, and every (f, g) ∈ (L2(0, `))2, the system

m1
dz1

dx
+ b11z1 + b12z2 = f, z1(`) = u1,

−m2
dz2

dx
+ b21z1 + b22z2 = g, z2(0) = u2,

(8.6.25)

admits a unique solution z ∈ (H1(0, `))2, and

‖z‖(H1(0,`))2 ≤ C(|u1|+ |u2|+ ‖f‖L2(0,`) + ‖g‖L2(0,`)).

Proof. Let Λ be the operator defined by D(Λ) = (H1(0, `))2 and Λz = (m1
dz1
dx
,−m2

dz2
dx
, z1(`),

z2(0))T . It is clear that Λ is an isomorphism from D(Λ) into L2(0, `)2 × R2. We rewrite
equation (8.6.25) in the form z − Λ−1Dz = Λ−1(f, g, u1, u2)T , where

Dz =


b11z1 + b12z2

b21z1 + b22z2

0
0

 .
If z ∈ D(Λ), then Dz ∈ (H1(0, `))2 × R2 and Λ−1Dz ∈ (H2(0, `))2. Thus the operator Λ−1D
is a compact operator in D(Λ). The end of the proof is similar to that of Theorem 8.6.1.
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Theorem 8.6.5 For every z0 = (z10, z20) ∈ Z, and every u ∈ (L2(0, T ))2, the solution z to
system (8.6.22)-(8.6.24) belongs to C([0, T ];Z) ∩ C([0, `];L2(0, T )) and

‖z‖C([0,T ];Z) + ‖z‖C([0,`];(L2(0,T ))2) ≤ C(‖z0‖Z + ‖u‖(L2(0,T ))2).

Proof. Let (un)n be a sequence in (C1([0, T ]))2 converging to u in (L2(0, T ))2, and let (z0,n)n be
a sequence D(A) converging to z0 in Z. Let zn be the solution to (8.6.22)-(8.6.24) correspond-
ing to un and z0,n. Let wn(t) be the solution to equation Λwn(t) = (0, 0, u1,n(t), u2,n(t))T .
With Theorem 8.6.4 we can prove that wn belongs to C1([0, T ]; (H1(0, `))2). Observe that
zn = yn + wn, where yn = (y1,n, y2,n) is the solution to equation

∂

∂t

[
y1(x, t)

y2(x, t)

]
=

∂

∂x

[
m1y1

−m2y2

]
−

[
b11y1 + b12y2

b21y1 + b22y2

]
−


∂w1,n

∂t
∂w2,n

∂t

 in (0, `)× (0, T ),

with the initial condition

y1(x, 0) = z01,n(x)− w1,n(x, 0), y2(x, 0) = z02,n(x)− w2,n(x, 0) in (0, `),

and homogeneous boundary conditions

y1(`, t) = 0, y2(0, t) = 0 in (0, T ).

By Theorem 4.2.2, yn belongs to C([0, T ];D(A)) ∩C1([0, T ];Z). Thus zn belongs to C([0, T ];
(H1(0, `))2) ∩ C1([0, T ];Z). Multiplying the first equation of the system by z1,n, the second
one by z2,n, integrating over (0, `)× (0, t), and adding the two equalities, we obtain∫ `

0

(z1,n(t)2 + z2,n(t)2) + 2

∫ t

0

∫ `

0

(b11z
2
1,n + b12z1,nz2,n + b21z1,nz2,n + b22z

2
2,n)

+

∫ t

0

m1z
2
1(0, τ)dτ +

∫ t

0

m2z
2
2(`, τ)dτ =

∫ `

0

(z2
01,n + z2

02,n) +

∫ t

0

m1u
2
1,n +

∫ t

0

m2u
2
2,n.

We first deduce

‖zn‖2
C([0,T ];Z) ≤ C(‖u1,n‖2

L2(0,T ) + ‖u2,n‖2
L2(0,T ) + ‖z0,n‖2

Z).

In the same way, zn − zm obeys

‖zn − zm‖2
C([0,T ];Z) ≤ C(‖u1,n − u1,m‖2

L2(0,T ) + ‖u2,n − u2,m‖2
L2(0,T ) + ‖z0,n − z0,m‖2

Z).

Thus (zn)n is a Cauchy sequence in C([0, T ];Z) and the estimate is proved in C([0, T ];Z).
To prove the estimate in C([0, `]; (L2(0, T ))2), we multiplying the first equation of the

system by z1,n and we integrate over (x, `)× (0, T ). We multiply the second equation by z2,n

and we integrate over (0, x)× (0, T ), and adding the two equalities, we obtain

m1

∫ T

0

z1,n(x)2 +m2

∫ T

0

z2,n(x)2 +

∫ `

x

z1,n(T )2 −
∫ `

x

z2
01,n +

∫ x

0

z2,n(T )2 −
∫ x

0

z2
02,n

= m1

∫ T

0

u2
1,n +m2

∫ T

0

u2
2,n − 2

∫ T

0

∫ `

x

(b11z
2
1,n + b12z1,nz2,n)− 2

∫ T

0

∫ x

0

(b21z1,nz2,n + b22z
2
2,n).

Writing the estimate for zn − zm, we have

‖zn − zm‖2
C([0,`];(L2(0,T ))2)

≤ C(‖u1,n − u1,m‖2
L2(0,T ) + ‖u2,n − u2,m‖2

L2(0,T ) + ‖z0,n − z0,m‖2
Z + ‖zn − zm‖2

C([0,T ];Z)).

Thus (zn)n converges to z in C([0, `]; (L2(0, T ))2).
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8.6.2 Control problem

We want to study the control problem

(P1) inf{J1(z, u) | (z, u) ∈ C([0, T ];Z)× L2(0, T )2, (z, u) satisfies (8.6.22)− (8.6.24)},

where

J1(z, u) =
1

2

∫ `

0

|z(T )− zd(T )|2 +
β

2

∫ T

0

(u2
1 + u2

2),

and β > 0. We assume that zd ∈ C([0, T ];Z).

Theorem 8.6.6 Problem (P1) admits a unique solution (z̄, ū). Moreover ū is characterized
by

ū1(t) = −m1

β
φ(`, t) and ū2(t) = −m2

β
ψ(0, t) in (0, T ),

where (φ, ψ) is the solution to the system

− ∂

∂t

[
φ(x, t)
ψ(x, t)

]
=

∂

∂x

[
−m1φ
m2ψ

]
−
[
b11φ+ b21ψ
b12φ+ b22ψ

]
, in (0, `)× (0, T ) (8.6.26)

with the terminal condition

φ(T ) = z1(T )− zd,1(T ), ψ(T ) = z2(T )− zd,2(T ) in (0, `), (8.6.27)

and the boundary conditions

φ(0, t) = 0, ψ(`, t) = 0 in (0, T ). (8.6.28)

Proof. (i) The existence of a unique solution to (P1) is classical and is left to the reader.

(ii) First observe that the solution (φ, ψ) to system (8.6.26)-(8.6.28) belongs to C([0, T ];Z) ∩
C([0, `]; (L2(0, T ))2) (the proof is similar to that of Theorem 8.6.5). Thus φ(`, ·) and ψ(0, ·)
belong to L2(0, T ).

Let ζ ∈ D(A∗), the function t 7→ etA
∗
ζ is the solution to system

− ∂

∂t

[
φ(x, t)
ψ(x, t)

]
=

∂

∂x

[
−m1φ
m2ψ

]
−
[
b11φ+ b21ψ
b12φ+ b22ψ

]
, in (0, `)× (0, T ) (8.6.29)

with the terminal condition

φ(T ) = ζ1, ψ(T ) = ζ2 in (0, `), (8.6.30)

and the boundary conditions

φ(0, t) = 0, ψ(`, t) = 0 in (0, T ). (8.6.31)

We can verify that B∗etA
∗
ζ = (m1φ(`, t),m2ψ(0, t)), where (φ, ψ) is the solution to (8.6.29)-

(8.6.31). Thus assumption (HH) is satisfied by (A,B) in Z, and applying Theorem 8.3.5, we
have

ū = − 1

β
[B∗e(T−t)A∗ ]e(z̄(T )− zd(T )).
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Since the solution to system (8.6.26)-(8.6.28) belongs to C([0, `]; (L2(0, T ))2), using an approx-
imation process we can prove that

[B∗e(T−t)A∗ ]e(z̄(T )− zd(T )) = (m1φ(`, t),m2ψ(0, t)),

where (φ, ψ) is the solution to (8.6.26)-(8.6.28).

(iii) We can directly prove the optimality conditions for problem (P1) by using the method
of chapters 5 and 6. Setting F1(u) = J1(z(z0, u), u), where z(z0, u) is the solution to system
(8.6.22)-(8.6.24), we have

F ′1(ū)u =

∫ `

0

(z̄1(T )− zd1(T ))wu1(T ) +

∫ `

0

(z̄2(T )− zd2(T ))wu2(T ) + β

∫ T

0

(ū1u1 + ū2u2),

where wu = z(0, u), and z(0, u) is the solution to system (8.6.22)-(8.6.24) for z0 = 0.
We can establish an integration by parts formula between wu and the solution (φ, ψ) to

system (8.6.26)-(8.6.28) to completes the proof.

8.7 Exercises

Exercise 8.7.1

Prove the existence of a unique solution to problem (P ) of section 8.1 in the case where
assumption (HH) is satisfied.

Exercise 8.7.2

We consider a one-dimensional linear thermoelastic system

ztt − α2zxx + γ1θx = 0 in (0, L)× (0, T ),

θt + γ2zxt − kθxx = 0 in (0, L)× (0, T ),
(8.7.32)

with the boundary conditions

z(0, t) = z(L, t) = 0 in (0, T ), and θx(0, t) = u1(t), θx(L, t) = u2(t), (8.7.33)

and the initial conditions

z(x, 0) = z0(x), zt(x, 0) = z1(x), and θ(x, 0) = θ0(x) in (0, L), (8.7.34)

with α > 0, k > 0, γ1 > 0, γ2 > 0. Physically z represents the displacement of a rod and θ its
temperature. By setting y = (y1, y2, y3) = (z, zt, θ), system (8.7.32)-(8.7.34) can be written in
the form of a first order evolution equation y′ = Ay +Bu, y(0) = y0. We set

A =


0 I 0

α2 d
2

dx2
0 −γ1

d

dx

0 −γ2
d

dx
k
d2

dx2

 ,
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and

D(A) = {y | y1 ∈ H2∩H1
0 (0, L), y2 ∈ H1

0 (0, L), y3 ∈ H2(0, L) such that y3x(0) = y3x(L) = 0}.

We endow Y = H1
0 (0, L)× L2(0, L)× L2(0, L) with the scalar product

(y, w) =

∫ L

0

(
dy1

dx

dw1

dx
+ y2w2 +

γ1

γ2

y3w3).

1 - Prove that (A,D(A)) is the infinitesimal generator of a strongly continuous semigroup on
Y .

2 - We suppose that z0 ∈ H1
0 (0, L), z1 ∈ L2(0, L), θ ∈ L2(0, L), u1 ∈ L2(0, T ), u2 ∈ L2(0, T ).

Prove that system (8.7.32)-(8.7.34) admits a unique solution (z, zt, θ) in C([0, T ];H1
0 (0, L))×

C([0, T ];L2(0, L))× C([0, T ];L2(0, L)).

3 - Consider the control problem
(P2)
inf{J2(z, θ, u) | (z, zt, θ, u) ∈ C([0, T ];Y )× L2(0, T )2, (z, zt, θ, u) satisfies (8.7.32)− (8.7.34)},

where

J2(z, θ, u) =
1

2

∫ T

0

∫ L

0

(|z|2 + |θ|2) +
β

2

∫ T

0

(u2
1 + u2

2),

and β > 0. Prove that (P2) admits a unique solution. Characterize this solution by establishing
first order optimality conditions.



Chapter 9

Control of a semilinear parabolic
equation

9.1 Introduction

In this chapter we study control problems for a semilinear parabolic equation of Burgers’ type
in dimension 2. For a L2-distributed control, we prove the existence of a unique solution to the
state equation in C([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)). Following the approach of the previous
chapters we use the semigroup theory. We first prove the existence of a local solution for
initial data in L2p(Ω) for p > 2, and next the existence of a global solution by establishing
an energy estimate. The existence of a (uinque) solution for L2-initial data is obtained by
approximation. The classical method to study this kind of equation is the variational method
(also called the Faedo-Galerkin method). This approach is treated in exercise 9.7.2. This
chapter can be considered as an introduction to the optimal control of the Navier-Stokes
equations [27]. Indeed the proof of optimality conditions is very similar in both cases.

To study the state equation and the control problem, we need additional regularity results
on parabolic equations. These results are stated in Appendix (section 9.6).

9.2 Distributed control

Let Ω be a bounded domain in R2, with a regular boundary Γ. Let T > 0, set Q = Ω× (0, T )
and Σ = Γ× (0, T ). We consider the equation

∂z

∂t
−∆z + Φ(z) = f + χωu in Q, z = 0 on Σ, z(x, 0) = z0 in Ω, (9.2.1)

with f ∈ L2(Q), u ∈ L2(0, T ;L2(ω)), z0 ∈ L2(Ω). The function f is a given source term,
χω is the characteristic function of ω, ω is an open subset of Ω, and the function u is a
control variable. The nonlinear term φ is defined by φ(z) = 2z∂x1z = ∂x1(z2). Any other
combination of first order partial derivatives may be considered, for example we can as well
consider φ(z) = Σ2

i=1z∂xiz. We first want to prove the existence of a unique weak solution (in a
sense to be precised) to equation (9.2.1). Recall that, if z0 ∈ L2(Ω) and g ∈ L2(0, T ;H−1(Ω)),
equation

∂z

∂t
−∆z = g in Q, z = 0 on Σ, z(x, 0) = z0 in Ω, (9.2.2)

99
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admits a unique weak solution in W (0, T ;H1
0 (Ω), H−1(Ω)). Moreover

z(t) = etAz0 +

∫ t

0

e(t−s)Ag(s) ds.

Observe that if z belongs to C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)), then z belonds to L4(Q)

(Theorem 9.6.1), and φ(z) belongs to L2(0, T ;H−1(Ω)). Thus it is reasonable to consider
equation (9.2.1) as a special form of equation (9.2.2) with g = f + χωu− φ(z), and to define
weak solutions to equation (9.2.1) in the following manner.

Definition 9.2.1 A function z ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) is a weak solution to

equation (9.2.1) if, for every ζ ∈ H1
0 (Ω), the mapping t 7→ 〈z(t), ζ〉 belongs to H1(0, T ),

〈z(0), ζ〉 = 〈z0, ζ〉, and

d

dt
〈z(t), ζ〉 = 〈∇z(t),∇ζ〉+ 〈f, ζ〉+ 〈χωu, ζ〉 − 〈φ(z), ζ〉.

9.3 Existence of solutions for L2p-initial data, p > 2

9.3.1 Existence of a local solution

We suppose that f ∈ L2(Q), and z0 ∈ L2p(Ω) with p > 2. We want to prove that equation

∂z

∂t
−∆z +

1

2
∂x1(z2) = f in Q, z = 0 on Σ, z(x, 0) = z0 in Ω, (9.3.3)

admits a solution in C([0, t̄];L2p(Ω)) for t̄ small enough.

Let s > 2p
p−1

. Due to Theorem 9.6.3, if h ∈ Ls(0, T ;Lp(Ω)) then zh, the solution to equation

(9.2.2) corresponding to (g, z0) with z0 = 0, and g = ∂x1h, belongs to C([0, T ];L2p(Ω)), and
there exists a constant C(s) such that

‖zh‖C([0,T ];L2p(Ω)) ≤ C(s)‖h‖Ls(0,T ;Lp(Ω)).

Set R = ‖y‖C([0,T ];L2p(Ω)), where y is the solution to equation (9.2.2) corresponding to (g, z0)
with g = f . Let us fix s > 2p

p−1
and set t̄ = (4RC(s))−s. Let B(2R) be the closed ball in

C([0, t̄];L2p(Ω)), centered at the origin, with radius 2R. Endowed with the distance associated
with the norm ‖ · ‖C([0,t̄];L2p(Ω)), B(2R) is a complete metric space. For z ∈ C([0, t̄];L2p(Ω)),
denote by Ψ(z) the solution to equation (9.2.2) corresponding to (g, z0) with g = f − φ(z).
Let us show that the mapping z 7→ Ψ(z) is a contraction in B(2R). Let z ∈ B(2R), then

‖Ψ(z)‖C([0,t̄];L2p(Ω)) ≤ ‖y‖C([0,t̄];L2p(Ω)) + C(s)‖z2‖Ls(0,t̄;Lp(Ω))

≤ R + C(s)t̄1/s‖z2‖L∞(0,t̄;Lp(Ω)) ≤ R + C(s)t̄1/sR2 ≤ 2R.

Let z1 and z2 be in B(2R), then

‖Ψ(z1)−Ψ(z2)‖C([0,t̄];L2p(Ω)) ≤ C(s)‖z2
1 − z2

2‖Ls(0,t̄;Lp(Ω))

≤ C(s) t̄1/s2R‖z1 − z2‖L∞(0,t̄;L2p(Ω)) ≤
1

2
‖z1 − z2‖L∞(0,t̄;L2p(Ω)).



9.4. EXISTENCE OF A GLOBAL WEAK SOLUTION FOR L2-INITILAL DATA 101

9.3.2 Initial data in D((−A)α)

Set D(A) = H2(Ω)∩H1
0 (Ω) and Az = ∆z for z ∈ D(A). For 1

2
< α < 1, we have D((−A)α) =

H2α(Ω) ∩ H1
0 (Ω) (see [18]). Suppose that f ∈ L2(Q), and z0 ∈ D((−A)α), with 1

2
< α < 1.

As in section 9.3.1, we can prove that equation (9.3.3) admits a unique weak solution in
C([0, t̂];D((−A)α)) for t̂ small enough. Since D((−A)α) ⊂ L2p(Ω) for all p ≤ ∞, this implies
that the solution defined in C([0, t̂];D((−A)α)) is the same as the solution defined in section
9.3.1.

9.3.3 Existence of a global solution

Suppose that f ∈ L2(Q), and z0 ∈ D((−A)α), with 1
2
< α < 1. Let Tmax be such that

the solution to equation (9.3.3) exists in C([0, τ ];L2p(Ω)) for all p > 2 and all τ < Tmax. If
Tmax =∞, we have proved the existence of a global solution. Otherwise, we necessarily have

limτ→Tmax‖z‖C([0,τ ];L2p(Ω)) =∞, (9.3.4)

for some p > 2. Let us show that we have a contradiction. Multiplying the equation by
|z|2p−2z, and integrating on (0, τ)× Ω, we obtain

1

2p

∫
Ω

|z(τ)|2p +

∫ τ

0

∫
Ω

(2p− 1)|∇z|2|z|2p−2 =
1

2p

∫
Ω

|z0|2p +

∫ τ

0

∫
Ω

f |z|2p−2z. (9.3.5)

Indeed, with an integration by parts, we get∫
Ω

∂x1(z2)|z|2p−2z = −2p− 1

2

∫
Ω

|z|2p−2z∂x1(z2). (9.3.6)

Thus it yields ∫
Ω

|z|2p−2z∂x1(z2) = 0.

Moreover ∫
Ω

∇z · ∇(|z|2p−2z) =

∫
Ω

(2p− 1)|∇z|2|z|2p−2. (9.3.7)

Formula (9.3.5) is established. It is clearly in contradiction with (9.3.4). Observe that calcula-
tions in (9.3.6) and (9.3.7) are justified because z is bounded, and in that case the solution to
(9.3.3) belongs to Lq(0, T ;W 1,q(Ω)) for all q <∞ (apply Theorem 9.6.3). Therefore formulas
(9.3.6) and (9.3.7) are meaningful. The regularity in C([0, T ];L2p(Ω)) is not sufficient since
in that case ∂x1(z2)|z|2p−2z does not belong to L1. It is the reason why we have constructed
bounded solutions to justify (9.3.6) and (9.3.7).

9.4 Existence of a global weak solution for L2-initilal

data

Theorem 9.4.1 For all z0 ∈ L2(Ω), all T > 0, and all f ∈ L2(0, T ;L2(Ω)), equation (9.3.3)
admits a unique weak solution in C([0, T ];L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)) in the sense of definition
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9.2.1. This solution satisfies

1

2

∫
Ω

|z(T )|2 +

∫ T

0

∫
Ω

|∇z|2 =
1

2

∫
Ω

|z0|2 +

∫ T

0

∫
Ω

fz.

Proof. (i) Existence. Let (z0n)n be a sequence in D((−A)α), with 1
2
< α < 1, converging to z0

in L2(Ω). Denote by zn the solution to equation (9.3.3) corresponding to the initial condition
z0n. Multiplying the first equation in (9.3.3) by zn, and integrating on (0, τ)× Ω, we obtain

1

2

∫
Ω

|zn(τ)|2 +

∫ τ

0

∫
Ω

|∇zn|2 =
1

2

∫
Ω

|z0n|2 +

∫ τ

0

∫
Ω

fzn.

Thus (zn)n is bounded in L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)). Next using the equation

d

dt
〈zn(t), ζ〉 =

∫
Ω

∇zn(t)∇ζ + 〈f, ζ〉 − 〈φ(zn), ζ〉,

satisfied for all ζ ∈ D(A), we show that ((dz
dt

)n)n is bounded in L2(0, T ;H−1(Ω)). Then, there
exits a subsequence, still indexed by n to simplify the notation, such that (zn)n converges
to some z for the weak topology of W (0, T ;H1

0 (Ω), H−1(Ω)). Due to Theorem 9.6.4, we can
suppose that (zn)n converges to z in L2(Q). Since the sequence (zn)n is bounded in L4(Q),
(zn)n also converges to z in Lr(Q) for all r < 4. Thus, we can pass to the limit in the equation
satisfied by zn, and we prove that z is a solution to equation (9.3.3).

(ii) Uniqueness. Let z1 and z2 be two solutions to equation (9.3.3). Set w = z1 − z2. Then w
is the solution to

∂w

∂t
−∆w = −1

2
∂x1(wz1 + wz2) in Q, w = 0 on Σ, w(x, 0) = 0 in Ω. (9.4.8)

Multiplying equation (9.4.8) by w and integrating over Ω, we get

1

2

d

dt

∫
Ω

|w(t)|2 +

∫
Ω

|∇w|2 = −1

2

∫
Ω

∂x1(wz1 + wz2)w

= −1

4

∫
Ω

∂x1(z1 + z2)w2 ≤ 1

4
‖z1 + z2‖H1

0 (Ω)‖w‖2
L4(Ω)

≤
√

2

4
‖z1 + z2‖H1

0 (Ω)‖∇w‖L2(Ω)‖w‖L2(Ω).

With Young’s inequality, we finally obtain

d

dt

∫
Ω

|w(t)|2 ≤ C‖z1 + z2‖2
H1

0 (Ω)

∫
Ω

|w(t)|2,

and we conclude with Gronwall’s lemma.
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9.5 Optimal control problem

We consider the control problem

(P1) inf{J1(z, u) | (z, u) ∈ W (0, T ;H1
0 (Ω), H−1(Ω))× Uad, (z, u) satisfies (9.2.1)},

where Uad is a closed convex subset of L2(0, T ;L2(ω)),

J1(z, u) =
1

2

∫
Q

(z − zd)2 +
1

2

∫
Ω

(z(T )− zd(T ))2 +
β

2

∫
Q

χωu
2,

and β > 0. In this section, we assume that f ∈ L2(Q) and that zd ∈ C([0, T ];L2(Ω)).
We set Z = W (0, T ;H1

0 (Ω), H−1(Ω)) . We define the mapping G from Z×L2(0, T ;L2(ω))
into L2(0, T ;H−1(Ω))× L2(Ω) by

G(z, u) =
(∂z
∂t
−∆z + ∂x1(z2)− f − χωu, z(0)− z0

)
.

Theorem 9.5.1 The mapping G is of class C1, and for every (z, u) ∈ Z × L2(0, T ;L2(ω)),
G′z(z, u) is an isomorphism from Z into L2(0, T ;H−1(Ω))× L2(Ω).

Proof.

(i) Differentiability of F . The mapping

(z, u) 7→
(∂z
∂t
−∆z − χωu, z(0)

)
,

is linear and bounded from Z ×L2(0, T ;L2(ω)) into L2(0, T ;H−1(Ω))×L2(Ω). Thus to prove
that G is differentiable, we have only to check that

‖φ(z + h)− φ(z)− 2∂x1(zh)‖L2(0,T ;H−1(Ω))

‖h‖Z
→ 0 as ‖h‖Z → 0.

Since ‖φ(z + h) − φ(z) − 2∂x1(zh)‖L2(0,T ;H−1(Ω)) = ‖φ(h)‖L2(0,T ;H−1(Ω)) ≤ ‖h‖2
Z , the result is

obvious. We can also verify that

z 7−→ (h 7→ ∂x1(zh))

is differentiable from Z into L(Z;L2(0, T ;H−1(Ω))). This means that G is twice differentiable.
In fact G is of class C∞.

(ii)G′z(z, u) is an isomorphism from Z into L2(0, T ;H−1(Ω))×L2(Ω). Observe thatG′z(z, u)w =
(∂w
∂t
− ∆w + 2∂x1(zw), w(0)). Thus, to prove that G′z(z, u) is an isomorphism from Z into

L2(0, T ;H−1(Ω)) × L2(Ω), we have only to verify that, for any (f, z0) ∈ L2(0, T ;H−1(Ω)) ×
L2(Ω), equation

∂w

∂t
−∆w + 2∂x1(zw) = f in Q, w = 0 on Σ, w(0) = z0 in Ω,

admits a unique solution in Z. This clearly follows from Theorem 9.6.5.
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Theorem 9.5.2 Let z(u) be the solution to equation (9.2.1). The mapping

u 7−→ z(u),

is of class C1 from L2(0, T ;L2(ω)) into W (0, T ;H1
0 (Ω), H−1(Ω)), and for all ū and u in

L2(0, T ;L2(ω)), the function w = dz
du

(ū)u is the solution to equation

∂w

∂t
−∆w + 2∂x1(z(ū)w) = χωu in Q, w = 0 on Σ, w(0) = 0 in Ω. (9.5.9)

Proof. Let ū ∈ L2(0, T ;L2(ω)). We have G(z(ū), ū) = 0. From Theorem 9.5.1 and
from the implicit function theorem, it follows that there exists a neighborhood V (ū) of ū
in L2(0, T ;L2(ω)), such that the mapping u 7→ z(u) is of class C1 from V (ū) to Z, and

G′z(z(ū), ū) ◦ dz
du

(ū)u+G′u(z(ū), ū)u = 0,

for all u ∈ L2(0, T ;L2(ω)). If we set w = dz
du

(ū)u, we have

G′z(z(ū), ū)w = (
∂w

∂t
−∆w + 2∂x1(z(ū)w), w(0))

and G′u(z(ū), ū)u = −χωu. The proof is complete.

Theorem 9.5.3 If (z̄, ū) is a solution to (P1) then∫
Q

χω(βū+ p)(u− ū) ≥ 0 for all u ∈ Uad,

where p is the solution to equation

−∂p
∂t
−∆p− 2z̄∂xip = z̄ − zd in Q, p = 0 on Σ, p(x, T ) = z̄(T )− zT in Ω. (9.5.10)

Proof. Set F1(u) = J1(z(u), u), where z(u) is the solution to equation (9.5.9). From Theorem
9.5.2 it follows that F1 is of class C1 on L2(0, T ;L2(ω)), and that

F ′1(ū)u =

∫
Q

(z̄ − zd)w +

∫
Ω

(z̄(T )− zd(T ))w(T ) +

∫
Ω

χωβūu,

where w is the solution to equation (9.5.9). Since (z̄, ū) is a solution to (P1), F ′1(ū)(u− ū) ≥ 0
for all u ∈ Uad. Using a Green formula between p and w we obtain∫

Ω

(z̄(T )− zd(T ))w(T ) +

∫
Q

(z̄ − zd)w =

∫
Q

χωpu,

and

F ′1(ū)u =

∫
Q

χωpu+

∫
Ω

χωβūu.

This completes the proof.
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9.6 Appendix

Lemma 9.6.1 For N = 2, we have

‖z‖L4(Ω) ≤ 21/4‖∇z‖1/2

L2(Ω)‖z‖
1/2

L2(Ω),

for all z ∈ H1
0 (Ω).

Proof. Let us prove the result for z ∈ D(Ω). We have

|z(x)|2 ≤ 2

∫ x1

−∞
|z(ξ1, x2)||∂1z(ξ1, x2)|dξ1,

and

|z(x)|2 ≤ 2

∫ x2

−∞
|z(x1, ξ2)||∂1z(x1, ξ2)|dξ2.

Thus ∫
R2

|z(x)|4dx ≤ 4‖z‖2
L2(Ω)‖∂1z‖L2(Ω)‖∂2z‖L2(Ω) ≤ 2‖z‖2

L2(Ω)‖∇z‖2
L2(Ω).

This completes the proof.

Theorem 9.6.1 For N = 2, the imbedding from C([0, T ];L2(Ω)) ∩ L2(0, T ;H1
0 (Ω)) into

L4((0, T )× Ω) is continuous. Moreover we have

‖z‖L4(Q) ≤ 21/4‖z‖1/2

L2(0,T ;H1
0 (Ω))
‖z‖1/2

C([0,T ];L2(Ω)).

Proof. Due to Lemma 9.6.1 we have∫ T

0

∫
Ω

|z|4 ≤ 2

∫ T

0

‖z‖2
L2(Ω)‖∇z‖2

L2(Ω) ≤ 2‖z‖2
C([0,T ];L2(Ω)‖z‖2

L2(0,T ;H1
0 (Ω)).

The proof is complete.

The other results are stated in dimension N ≥ 2.

Theorem 9.6.2 Set D(Ap) = W 2,p(Ω)∩W 1,p
0 (Ω) and Apz = ∆z for z ∈ D(Ap), with 1 < p <

∞. The operator (Ap, D(Ap)) is the infinitesimal generator of a strongly continuous analytic
semigroup on Lp(Ω).

See for example [5, Theorem 7.6.1]. This theorem together with properties of fractional powers
of (−Ap) can be used to prove the theorem below.

Theorem 9.6.3 Let h ∈ D(Q), and zh be the solution to equation

∂z

∂t
−∆z = ∂xih in Q, z = 0 on Σ, z(x, 0) = 0 in Ω, (9.6.11)

where i ∈ {1, . . . , N}. Suppose that 1 < s < ∞ and 1 < p < ∞. The mapping h 7→ zh is
continuous from Ls(0, T ;Lp(Ω)) into C([0, T ];Lr(Ω)) ∩ Ls(0, T ;W 1,p(Ω)) if

N

2p
+

1

s
<

1

r
+

1

2
.
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Theorem 9.6.4 The imbedding from W (0, T ;H1
0 (Ω), H−1(Ω)) into L2(Q) is compact.

Theorem 9.6.5 Let z be in L4(Q). For all z0 ∈ L2(Ω), all f ∈ L2(Q), equation

∂w

∂t
−∆w + 2∂x1(zw) = f in Q, w = 0 on Σ, w(0) = z0 in Ω,

admits a unique solution in W (0, T ;H1
0 (Ω), H−1(Ω)). Moreover the mapping (z0, f) 7→ w is

continuous from L2(Ω)× L2(Q) into W (0, T ;H1
0 (Ω), H−1(Ω)).

Proof. This theorem can be proved by using a fixed point method as in exercise 5.5.4 (see
exercise 9.7.1).

9.7 Exercises

Exercise 9.7.1

Adapt the fixed point method of exercise 5.5.4 to prove Theorem 9.6.5.

Exercise 9.7.2 (Variational method)

We want to give another proof of Theorem 9.4.1. Assumptions and notation are the ones of
Theorem 9.4.1. Let (ψn)n be a Hilbertian basis in H1

0 (Ω), and let (φn)n be the basis obtained by
applying the Gram-Schmidt process to (ψn)n for the scalar product of L2(Ω). Thus (φn)n is a
Hilbertian basis in L2(Ω) whose elements belong to H1

0 (Ω). Denote by Hm = vect(ψ0, . . . , ψm)
the vector space generated by (ψ0, . . . , ψm). We have

∩∞m=0Hm
H1

0 = H1
0 (Ω),

and
∫

Ω
φiφj = δij. We also assume that the family (ψn)n is orthogonal in H1

0 (Ω) (which is
satisfied if we choose a family of eigenfunctions of the Laplace operator). Denote by Pm the
orthogonal projection in L2(Ω) on Hm. Observe that a function z belongs to H1(0, T ;Hm) if
and only if z is of the form z = Σm

j=0gjφj, with gj ∈ H1(0, T ).

1 - Prove that the variational equation

find z = Σm
j=0gjφj ∈ H1(0, T ;Hm) such that

d

dt
〈z(t), ζ〉 =〈∇z(t),∇ζ〉+ 〈f, ζ〉 − 〈φ(z), ζ〉 and 〈z(0), ζ〉 = 〈z0, ζ〉,

(9.7.12)

for all ζ ∈ Hm, is equivalent to a system of ordinary differential equations in RN satisfied by
g = (g0, . . . , gm)T . Prove that this system admits a unique solution gm = (gm0 , . . . , g

m
m)T , and

that the corresponding function zm = Σm
j=0g

m
j φj obeys

1

2

∫
Ω

|zm(T )|2 +

∫ T

0

∫
Ω

|∇zm|2 =
1

2

∫
Ω

|z0m|2 +

∫ T

0

∫
Ω

fmzm,

where z0m = Pm(z0) and fm(t) = Pm(f(t)). Prove that ‖〈zm(·), φj〉‖H1(0,T ) ≤ C, where C is
independent of m and j.
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2 - Using the diagonal process, show that there exists a subsequence (zmk)k, extracted from
(zm)m, and a function z ∈ L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1

0 (Ω)), such that

(zmk)k converges to z for the weak* topology of L∞(0, T ;L2(Ω)),
(zmk)k converges to z for the weak topology of L2(0, T ;H1

0 (Ω)),
(〈zmk , φj〉)k converges to z for the weak topology of H1(0, T ) for all j ∈ N.

(9.7.13)

Show that z is a weak solution to equation (9.3.3) in the sense of Definition 9.2.1. Prove
that the solution belongs to W (0, T ;H1

0 (Ω), H−1(Ω)), and is unique in C([0, T ];L2(Ω)) ∩
L2(0, T ;H1

0 (Ω)).

Exercise 9.7.3

The notation are the ones of section 9.2. To study the boundary control of Burgers’ equation,
we recall the definition of anisotropic Sobolev spaces:

H1, 1
2 (Q) = L2(0, T ;H1(Ω)) ∩H

1
2 (0, T ;L2(Ω)),

H
1
2
, 1
4 (Σ) = L2(0, T ;H

1
2 (Γ)) ∩H

1
4 (0, T ;L2(Ω)).

We admit the following result.

Regularity result ([13, page 84]) For every u ∈ H 1
2
, 1
4 (Σ), the solution to equation

∂w

∂t
−∆w = 0 in Q, w = u on Σ, w(x, 0) = 0 in Ω, (9.7.14)

belongs to W (0, T ;H1(Ω), (H1(Ω))′) and

‖w‖W (0,T ;H1(Ω),(H1(Ω))′) ≤ C‖u‖
H

1
2 ,

1
4 (Σ)

.

We want to study a control problem for the equation

∂z

∂t
−∆z + Φ(z) = f in Q, z = u on Σ, z(x, 0) = z0 in Ω, (9.7.15)

with Φ(z) = 2z∂x1z, f ∈ L2(Q), z0 ∈ L2(Ω), and u ∈ H 1
2
, 1
4 (Σ).

1 - We look for a solution z to equation (9.7.15) of the form z = wu + y, where wu is
the solution to equation (9.7.14). Write the equation satisfied by y, and prove that equation
(9.7.15) admits a unique solution in C([0, T ];L2(Ω))∩L2(0, T ;H1(Ω)). Prove that this solution
belong to W (0, T ;H1(Ω), (H1(Ω))′).

2 - Consider the control problem

(P2) inf{J2(z, u) | (z, u) ∈ W (0, T ;H1(Ω), (H1(Ω))′)× Uad, (z, u) satisfies (9.7.15)},

where Uad is a closed convex subset of H
1
2
, 1
4 (Σ),

J2(z, u) =
1

2

∫
Q

(z − zd)2 +
1

2

∫
Ω

(z(T )− zd(T ))2 +
β

2

∫
Σ

u2,
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with β > 0 and zd ∈ C([0, T ];L2(Ω)). Prove the existence of a solution to problem (P2). Write
optimality conditions.

2 - Consider the following variant of problem (P2)

(P3) inf{J3(z, u) | (z, u) ∈ W (0, T ;H1(Ω), (H1(Ω))′)× Uad, (z, u) satisfies (9.7.15)},

where Uad is a closed convex subset of H
1
2
, 1
4 (Σ),

J3(z, u) =
1

2

∫
Q

|∇z −∇zd|2 +
1

2

∫
Ω

(z(T )− zd(T ))2 +
β

2

∫
Σ

u2,

with β > 0 and zd ∈ C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)). Prove the existence of a solution to
problem (P3). Write optimality conditions.



Chapter 10

Algorithms for solving optimal control
problems

10.1 Introduction

In section 10.2.1, we first recall the Conjugate Gradient Method (CGM in brief) for quadratic
functionals. We next explain how this algorithm can be used for control problems studied in
chapter 7. For functionals which are not necessarily quadratic we introduce the Polak-Ribiere
algorithm, the Fletcher-Reeves algorithm, and Quasi-Newton methods. These algorithms can
be used for control problems governed by semilinear equations such as the ones studied in
chapter 3. For linear-quadratic problems with bound constraints on the control variable we
introduce in section 10.4 a projection method due to Bertsekas. For other problems with
control constraints we describe the Gradient Method with projection in section 10.5.1. We
end this chapter with the Sequential Quadratic Programming Method (SQP method), which
is a particular implementation of the Newton method applied to the optimality system of
control problems.

10.2 Linear-quadratic problems without constraints

10.2.1 The conjugate gradient method for quadratic functionals

In chapter 2 we have applied the Conjugate Gradient Method to control problems governed
by elliptic equations. In this section, we want to apply the CGM to control problems governed
by evolution equations. Let us recall the algorithm for quadratic functionals. Consider the
optimization problem

(P1) inf{F (u) | u ∈ U},

where U is a Hilbert space and F is a quadratic functional

F (u) =
1

2
(u,Qu)U − (b, u)U .

In this setting Q ∈ L(U), Q = Q∗ > 0, b ∈ U , and (·, ·)U denotes the scalar product in U . For
simplicity we write (·, ·) in place of (·, ·)U .

109
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Let us recall the GC algorithm:

Algorithm 1.

Initialization. Choose u0 in U . Compute g0 = Qu0 − b. Set d0 = −g0 and n = 0.

Step 1. Compute
ρn = (gn, gn)/(dn, Qdn),

and
un+1 = un + ρndn.

Determine
gn+1 = Qun+1 − b = gn + ρnQdn.

Step 2. If ‖gn+1‖U/‖g0‖U ≤ ε, stop the algorithm and take u = un+1, else compute

βn = (gn+1, gn+1)/(gn, gn),

and
dn+1 = −gn+1 + βndn.

Replace n by n+ 1 and go to step 1.

10.2.2 The conjugate gradient method for control problems

We want to apply the CGM to problems studied in chapter 7. The state equation is of the
form

z′ = Az +Bu+ f, z(0) = z0, (10.2.1)

and the control problem is defined by

(P2) inf{J(z, u) | (z, u) ∈ C([0, T ];Z)× L2(0, T ;U), (z, u) satisfies (10.2.1)}.

with

J(z, u) =
1

2

∫ T

0

|Cz(t)− yd(t)|2Y +
1

2
|Dz(T )− yT |2YT +

1

2

∫ T

0

|u(t)|2U . (10.2.2)

Assumptions are the ones of chapter 7. We have to identify problem (P2) with a problem of the
form (P1). Let zu be the solution to equation (10.2.1), and set F (u) = J(zu, u). Observe that
(zu, zu(T )) = (Λ1u,Λ2u) + ζ(f, z0), where Λ1 is a bounded linear operator from L2(0, T ;U) to
L2(0, T ;Z), and Λ2 is a bounded linear operator from L2(0, T ;U) to Z. We must determine
the quadratic form Q such that

1

2

∫ T

0

|Czu(t)− yd(t)|2Y +
1

2
|Dzu(T )− yT |2YT +

1

2

∫ T

0

|u(t)|2U =
1

2
(u,Qu)U − (b, u)U + c.

Since (zu, zu(T )) = (Λ1u,Λ2u) + ζ(f, z0), we have

Q = Λ∗1Ĉ
∗ĈΛ1 + Λ∗2D

∗DΛ2 + I,

where Ĉ ∈ L(L2(0, T ;Z);L2(0, T ;Y )) is defined by (Ĉz)(t) = Cz(t) for all z ∈ L2(0, T ;Z),

and Ĉ∗ ∈ L(L2(0, T ;Y );L2(0, T ;Z)) is the adjoint of Ĉ. In the CGM we have to compute
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Qd for some d ∈ L2(0, T ;U). Observe that (Λ1d,Λ2d) is equal to (wd, wd(T )), where wd is the
solution to

w′ = Aw +Bd, w(0) = 0. (10.2.3)

Moreover, using formula (7.2.5), we can prove that Λ∗1g = B∗p1, where p1 is the solution to
equation

−p′ = A∗p+ g, p(T ) = 0, (10.2.4)

and Λ∗2pT = B∗p2, where p2 is the solution to equation

−p′ = A∗p, p(T ) = pT . (10.2.5)

Thus Λ∗1Ĉ
∗ĈΛ1d+ Λ∗2D

∗DΛ2d is equal to B∗p, where p is the solution to

−p′ = A∗p+ C∗Cwd, p(T ) = D∗Dwd(T ), (10.2.6)

where wd is the solution to equation (10.2.3).

If we apply Algorithm 1 to problem (P2) we obtain:

Algorithm 2.

Initialization. Choose u0 in L2(0, T ;U). Denote by z0 the solution to the state equation

z′ = Az +Bu0 + f, z(0) = z0.

Denote by p0 the solution to the adjoint equation

−p′ = A∗p+ C∗(Cz0 − yd), p(T ) = D∗(Dz0(T )− yT ).

Compute g0 = B∗p0 + u0 , set d0 = −g0 and n = 0.

Step 1. To compute Qdn, we calculate wn the solution to equation

w′ = Aw +Bdn, w(0) = 0.

We compute pn the solution to equation

−p′ = A∗p+ C∗Cwn, p(T ) = D∗Dwn(T ).

We have Qdn = B∗pn + dn. Set ḡn = B∗pn + dn. Compute

ρn = −(gn, gn)/(ḡn, gn),

and
un+1 = un + ρndn.

Determine
gn+1 = gn + ρnḡn.

Step 2. If ‖gn+1‖L2(0,T ;U)/‖g0‖L2(0,T ;U) ≤ ε, stop the algorithm and take u = un+1, else compute

βn = (gn+1, gn+1)/(gn, gn),

and
dn+1 = −gn+1 + βndn.

Replace n by n+ 1 and go to step 1.
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10.3 Control problems governed by semilinear equations

Let us first recall the extension of the CGM to non-quadratic functionals. Consider the
problem

(P3) inf{F (u) | u ∈ U},

where F is a differentiable mapping.

Algorithm 3. (Polak-Ribiere)

Initialization. Choose u0 in U . Compute g0 = F ′(u0). Set d0 = −g0 and n = 0.

Step 1. Determine ρn = argminρ≥0F (un + ρdn) and un+1 = un + ρndn.

Compute gn+1 = F ′(un+1).

Step 2. If ‖gn+1‖U/‖g0‖U ≤ ε, stop the algorithm and take u = un+1, else compute

βn =
(gn+1, gn+1 − gn)

(gn, gn)
.

Set dn+1 = −gn+1 +βndn. Replace n by n+ 1. If (dn, gn) < 0 go to step 1, else set dn = −gn
and go to step 1.

Remark. In step 1, we have to calculate the solution to the one-dimensional minimization
problem

inf{F (un + ρdn) | ρ ≥ 0}.
It is called the ’step length computation’. Different algorithms can be used to replace an
exact step length computation by an approximate one, or by some heuristic rules known as
step-length criteria (see [34]).

The algorithm below is a variant of the Polak-Ribiere algorithm.

Algorithm 4. (Fletcher-Reeves)

This algorithm corresponds to the previous one in which we replace the computation of βn by

βn =
(gn+1, gn+1)

(gn, gn)
.

Quasi-Newton methods. The Quasi-Newton methods can be applied to minimize non-
quadratic functionals. The most popular one, the Broyden-Fletcher-Goldfarb-Shanno algo-
rithm is described below.

Algorithm 5. (BFGS)

Initialization. Choose u0 in U . Set H0 = I and n = 0 (I denotes the identity in U).

Step 1. Compute dn = −H−1
n F ′(un)∗.

Step 2. Compute λn ∈]0, 1] such that

F (un + λndn) = min{F (un + λdn) | λ ∈]0, 1]}.

Step 3. Set un+1 = un + λndn. If |un+1 − un|U ≤ ε, stop the algorithm, else compute

sn = un+1 − un, γn = F ′(un+1)∗ − F ′(un)∗,
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and

Hn+1 = Hn +
γnγ

∗
n

〈sn, γn〉
− Hnsn(Hnsn)∗

〈sn, Hnsn〉
.

Replace n by n+ 1 and go to step 1.

Comments. The terminology Quasi-Newton method comes from that the update rule of
Hn in step 3 is based on a secant approximation of the Hessian operator F ′′(un) . In the
initialization procedure H0 = I can be replaced by H0 = F ′′(x0) if the computation of the
Hessian operator is not too expensive or too complicated. A direct update of the matrix H−1

n

can be performed. It corresponds to a variant of the above method, where in step 3 the update
of Hn is replaced by

H−1
n+1 = H−1

n +
(sn −H−1

n γn)s∗n + sn(sn −H−1
n γn)∗

〈sn, γn〉
− 〈sn −H

−1
n γn, γn〉

〈sn, γn〉2
sns
∗
n.

For more details on quasi-Newton methods we refer to [35].

These algorithms can be applied to control problems governed by semilinear evolution equa-
tions of the form

z′ = Az + φ(z) +Bu, z(0) = z0, (10.3.7)

or by semilinear elliptic equations of the form

Az = f,
∂z

∂nA
+ φ(z) = u, (10.3.8)

where A is a uniformly elliptic operator. (Control of semilinear elliptic equations has been
studied in chapter 3.) Let us explain how algorithms 3-5 can be applied to the control problem

(P3) inf{J(z, u) | (z, u) ∈ C([0, T ];Z)× L2(0, T ;U), (z, u) satisfies (10.3.7)}.

with

J(z, u) =
1

2

∫ T

0

|Cz(t)− yd(t)|2Y +
1

2
|Dz(T )− yT |2YT +

1

2

∫ T

0

|u(t)|2U .

Assumptions on C, D, Y , YT are the ones of chapter 7. The nonlinear function φ is for example
the one of chapter 3. For algorithms 3-5, we have to compute the gradient of F (u) = J(zu, u),
where zu is the solution to equation (10.3.7).

For a given u ∈ U , F ′(u) is computed as follows. We first solve equation (10.3.7). Next we
solve the adjoint equation

−p′ = A∗p+ φ′(zu)
∗p+ C∗(Czu − yd), p(T ) = D∗(Dzu(T )− yT ).

We have
F ′(u) = B∗p+ u.

10.4 Linear-quadratic problems with control constraints

We consider the problem

(P4) inf{F (u) | u ∈ Uad},
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where Uad is a closed convex subset of U and F is a quadratic functional on U . For computa-
tional considerations, we have to approximate the control set Uad by a finite dimensional set.
Let Um

ad be such a finite dimensional approximation of Uad, and suppose that Um
ad is a closed

convex subset in Rm. Let us denote by (Pm) the corresponding finite dimensional optimization
problem

(Pm) inf{F (u) | u ∈ Um
ad}.

We only treat the case where Um
ad is defined by bound constraints, that is

Um
ad = {v ∈ Rm | uja ≤ vj ≤ ujb for all j = 1, . . . ,m}.

A projection algorithm due to Bertsekas [32] is an efficient method for solving problem with
bound constraints. The algorithm is the following.

Algorithm 6. Choose two fixed positive numbers ε and σ. We denote by un = (u1
n, · · · , umn )T

the vector representing the current iterate, and let I = {1, · · · ,m} be the index set associated
with un.

1 - Choose u0 = (u1
0, · · · , um0 )T , and set n = 0.

2 - Compute F ′(un) = (∂1F (un), . . . , ∂nF (un)).

3 - Define the sets of strongly active inequalities

Iσa = {j ∈ I | ujn = uja and ∂jF (un) > σ},
Iσb = {i ∈ I | ujn = ujb and ∂jF (un) < −σ}.

4 - Set ûjn = ujn for all j ∈ Iσa ∪ Iσb .

5 - Solve the unconstrained problem

(Paux) inf{F (u) | u ∈ Rm and uj = ûj for all j ∈ Iσa ∪ Iσb }.

Denote by vn the vector solution to (Paux).

6 - Set un+1 = P[ua,ub]vn, where P[ua,ub] denotes the projection onto [u1
a, u

1
b ]× . . . [uma , umb ].

7 - If ‖un+1 − un‖ ≥ ε, then replace n by n+ 1 and go to 2. Otherwise stop the iteration.

The auxiliary problem (Paux) may be solved by the CGM.

10.5 General problems with control constraints

10.5.1 Gradient method with projection

We consider the problem

(P5) inf{F (u) | u ∈ Uad},
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where Uad is a closed convex subset of U and F is a differentiable functional on U , which is
not necessarily quadratic.

Denote by PUad the projection on the convex set Uad. For all ũ ∈ U , PUadũ is characterized by

(ũ− PUadũ, u− PUadũ) ≤ 0 for all u ∈ Uad.

If ū is a solution to (P5), then

(F ′(ū), u− ū) ≥ 0 for all u ∈ Uad.

This optimality condition is equivalent to

(ū− ρF ′(ū)− ū, u− ū) ≤ 0 for all u ∈ Uad,

where ρ is any positive number. We can verify that this variational inequality is equivalent to

ū = PUad(ū− ρF ′(ū)), (10.5.9)

where PUad is the projection on the convex set Uad. Thus ū is a fixed point of the mapping Φρ

defined by

Φρ(u) = PUad(u− ρF ′(u)).

The gradient method with projection consists in calculating a fixed point of Φρ. The corre-
sponding algorithm is the following:

Algorithm 7.

Initialization. Choose u0 in Uad, and ρ > 0. Set n = 0.

Step 1. Set ũn = PUad(un − ρF ′(un)), vn = ũn − un.

Step 2. Compute λn ∈]0, 1] such that

F (un + λnvn) = min{F (un + λvn) | λ ∈]0, 1]}.

Step 3. Set un+1 = un + λnvn. If |un+1 − un|U ≤ ε, stop the algorithm, else replace n by
n+ 1 and go to step 1.

Convergence results have been proved for Algorithm 7 in the case when F is convex (see [21]).

10.5.2 The sequential quadratic programming method

The sequential quadratic programming method (SQP method in brief) is a particular imple-
mentation of the Newton method applied to the optimality system. Let us explain the Newton
method for the control problem

(P6) inf{J(z, u) | (z, u) ∈ C([0, T ];Z)× Uad, (z, u) satisfies (10.3.7)}.

where

J(z, u) =
1

2

∫ T

0

|Cz(t)− yd(t)|2Y +
1

2
|Dz(T )− yT |2YT +

1

2

∫ T

0

|u(t)|2U , (10.5.10)
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Uad is a closed convex subset of L2(0, T ;U), and the state equation is of the form

z′ = Az + φ(z) +Bu, z(0) = z0. (10.5.11)

Assumptions on C, D, Y , YT are the ones of chapter 7. We suupse that (A,D(A)) is the
generator of a strongly continuous semigroup on the Hilbert space Y , and (for simplicity) that
φ is Lipschitz on Y .

The optimality system for (P6) satisfied by a solution (z̄, ū) consists of the equations

−p̄′ = A∗p̄+ φ′(z̄)∗p̄+ C∗(Cz̄ − yd), p̄(T ) = D∗(Dz̄(T )− yT ),

z̄′ = Az̄ + φ(z̄) +Bū, z̄(0) = z0,∫ T
0

(B∗p̄+ ū)(u− ū) ≥ 0 for all u ∈ Uad.

(10.5.12)

The Newton method applied to the system (10.5.12) corresponds to the following algorithm:

Algorithm 8.

Initialization. Set n = 0. Choose u0 in Uad, compute ẑ0 the solution to the state equation for
u = u0, and p̂0 the solution to the adjoint equation

−p′ = A∗p+ φ′(ẑ0)∗p+ C∗(Cẑ0 − yd), p(T ) = D∗(Dẑ0(T )− yT ).

Step 1. Compute (un+1, ẑn+1, p̂n+1) ∈ Uad × C([0, T ];Z) × C([0, T ];Z) the solution to the
system

−p′ = A∗p+ φ′(ẑn)∗p+ (φ′′(ẑn)(z − ẑn))∗p̂n + C∗(Cz − yd),

p(T ) = D∗(Dz(T )− yT ),

z′ = Az + φ(ẑn) + φ′(ẑn)(z − ẑn) +Bu, z(0) = z0,∫ T
0

(B∗p+ u, v − u)U ≥ 0 for all v ∈ Uad.

(10.5.13)

Step 2. If |un+1 − un|U ≤ ε, stop the algorithm, else replace n by n+ 1 and go to step 1.

Observe that the mapping φ must necessarily be of class C2. The convergence of the Newton
method is studied in [33]. Roughly speaking, if φ′ satisfy some Lipschitz property, and if the
optimality system (10.5.12) is strongly regular in the sense of Robinson (see [33]), then there
exists a neighborhood V̄ of (z̄, ū, p̄) such that for any starting point in V̄ the Newton algorithm
is quadratically convergent.

The SQP method corresponds to the previous algorithm in which (un+1, ẑn+1) is computed by
solving the ’Linear-Quadratic’ problem

(QP n+1)

Minimize J ′(ẑn, un)(z − ẑn, u− un) +
1

2
〈p̂n, φ′′(ẑn)(z − ẑn)2〉,

subject to z′ = Az + φ(ẑn) + φ′(ẑn)(z − ẑn) +Bu, z(0) = z0,

u ∈ Uad,

and p̂n+1 is the solution to the adjoint equation for (QPn+1) associated with (un+1, ẑn+1). For
problems with bound constraints this ’Linear-Quadratic’ problem may be solved by Algorithm
6.
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If the optimal solution (z̄, ū, p̄) satisfies a sufficient second order optimality condition, and
if the optimality system (10.5.12) is strongly regular in the sense of Robinson, then the SQP
method and the Newton method are equivalent ([33]).

10.6 Algorithms for discrete problems

For numerical computations, we have to write discrete approximations to control problems.
Suppose that equation

z′ = Az +Bu+ f, z(0) = z0, (10.6.14)

is approximated by an implicit Euler scheme

z0 = z0,
for n = 1, . . . ,M, zn is the solution to
1

∆t
(zn − zn−1) = Azn +Bun + fn,

(10.6.15)

where fn = 1
∆t

∫ tn
tn−1

f(t) dt, un = 1
∆t

∫ tn
tn−1

u(t) dt, tn = n∆t, and T = M∆t. To approximate
the functional

J(z, u) =
1

2

∫ T

0

|Cz(t)− yd(t)|2Y +
1

2
|Dz(T )− yT |2YT +

1

2

∫ T

0

|u(t)|2U ,

we set

JM(z, u) =
1

2
∆t

M∑
n=1

|Czn − ynd |2Y +
1

2
|DzM − yT |2YT +

1

2
∆t

M∑
n=1

|un|2U ,

with z = (z0, . . . , zM), u = (u1, . . . , uM), ynd = 1
∆t

∫ tn
tn−1

yd(t) dt. We can define a discrete

control problem associated with (P2) as follows:

(PM) inf{JM(z, u) | (z, u) ∈ ZM+1 × UM , (z, u) satisfies (10.6.15)}.

To apply the CGM to problem (PM), we have to compute the gradient of the mapping u 7→
JM(zu, u), where zu is the solution to (10.6.15) corresponding to u. Set FM(u) = JM(zu, u).
We have

F ′M(ū)u = ∆t
M∑
n=1

(Cz̄n − ynd , Cwnu)Y + (Dz̄M − yT , DwMu )YT + ∆t
M∑
n=1

(ūn, un)U ,

where z̄ = zū and w = (w0, . . . , wM) ∈ ZM+1 is defined by

w0 = 0,
for n = 1, . . . ,M, wn is the solution to
1

∆t
(wn − wn−1) = Awn +Bun.

(10.6.16)

To find the expression of F ′M(ū), we have to introduce an adjoint equation. Let p = (p0, . . . , pM)
be in ZM+1, or in D(A∗)M+1 if we want to justify the calculations. Taking a weak formulation
of the different equations in (10.6.16), we can write

1

∆t
((wn − wn−1), pn−1)Z − (wn, A∗pn−1)Z = (Bun, pn−1)Z = (un, B∗pn−1)U .
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Now, by adding the different equalities, we find the adjoint equation by identifying

∆t
M∑
n=1

(Cz̄n − ynd , Cwnu)Y + (Dz̄M − yT , DwMu )YT

with

∆t
M∑
n=1

(un, B∗pn−1)U .

More precisely, if p = (p0, . . . , pM) is defined by

pM = D∗(Dz̄M − yT ),
for n = 1, . . . ,M, pn is the solution to
1

∆t
(−pn + pn−1) = A∗pn−1 + C∗(Cz̄n − ynd ),

(10.6.17)

then

F ′M(ū)u = ∆t
M∑
n=1

(un, B∗pn−1)U + ∆t
M∑
n=1

(ūn, un)U .

Observe that the above identification is not justified since D∗(Dz̄M − yT ) does not necessarily
belong to D(A∗). In practice, a ’space-discretization’ is also performed. This means that
equation (10.6.15) is replaced by a system of ordinary differential equations, the operator A
is replaced by an operator belonging to L(R`), where ` is the dimension of the discrete space,
and the above calculations are justified for the corresponding discrete problem.

10.7 Exercises

Exercise 10.7.1

Apply the conjugate gradient method to problem (P4) of chapter 5. In particular identify the
bounded operator Λ from L2(Σ) into L2(Ω), and its adjoint Λ∗, such that

‖|wu(T )|‖2
H−1(Ω) =

∫
Ω

|Λu|2

where wu is the solution to equation

∂w

∂t
−∆w = 0 in Q, w = u on Σ, w(0) = 0 in Ω.

Exercise 10.7.2

Apply the conjugate gradient method to problem (P5) of chapter 6.

Exercise 10.7.3

Apply the SQP method to problem (P1) of chapter 3. In particular, prove that the Linear-
Quadratic problem (QPn+1) of the SQP method is well posed.
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