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FEEDBACK STABILIZATION OF A BOUNDARY LAYER EQUATION,

PART 1: HOMOGENEOUS STATE EQUATIONS

JEAN-MARIE BucHOT!' AND JEAN-PIERRE RAYMOND!

Abstract. We are interested in the feedback stabilization of a fluid flow over a flat plate,
around a stationary solution, in the presence of perturbations. More precisely, we want to
stabilize the laminar-to-turbulent transition location of a fluid flow over a flat plate. For that
we study the Algebraic Riccati Equation (A.R.E.) of a control problem in which the state
equation is a doubly degenerate linear parabolic equation. Because of the degenerate character
of the state equation, the classical existence results in the literature of solutions to algebraic
Riccati equations do not apply to this class of problems. Here taking advantage of the fact that
the semigroup of the state equation is exponentially stable and that the observation operator is
a Hilbert-Schmidt operator, we are able to prove the existence and uniqueness of solution to the
A.R.E. satisfied by the kernel of the operator which associates the ’optimal adjoint state’ with
the ’optimal state’. In part 2 [8], we study problems in which the feedback law is determined by
the solution to the A.R.E. and another nonhomogeneous term satisfying an evolution equation
involving nonhomogeneous perturbations of the state equation, and a nonhomogeneous term in
the cost functional.
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1. INTRODUCTION

We are interested in the feedback stabilization of a fluid flow over a flat plate, around a stationary
solution, in the presence of perturbations. The control variable is a suction velocity through a small slot
near the leading edge of the plate.

In the stationary case, the fluid flow in the boundary layer may be described by the Prandtl equations,
or similarly by the Crocco equations [18]:

U(fonaaw—vwﬂzj;gz() in (0,L) x (0,1),

(05 ) (€0 =nw(e0) T ulen =0 for ¢<0.L) Y
87«] n—1

w(0,) = wy(n) for € (0,1).

Here (0, L) represents a part of the plate where the flow is laminar, (0, 1) is the thickness of the boundary
layer in the Crocco variables, (UZ,,0) is the velocity of the incident flow, wj is the velocity profile in
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Crocco variables at £ = 0, v, is a suction velocity throughout the plate, the positive constant v is the
viscosity of the fluid. We set Q = (0, L) x (0, 1). The transformation used to rewrite the Prandtl equations
into the Crocco equation is

1 Ou,
Us, oy

us(z,y)
Us,

£ =, n = ;o w(én) = (z,9), (1.2)

see [18], when (us,vs) is the stationary solution of the Prandtl system, and (z,y) € (0,L) x (0, 00).
Assuming that the regularity and compatibility conditions between w;, and v, stated in [18, Theorem
3.3.2]) are satisfied, the stationary equation (1.1) admits a unique solution w; in the class of functions w
satisfying

0
weCQ), Kill - <w(En) < Kall — . |;g| < Ksll— 1,

ow Pw ow
87176L (), U’WGL (), a—feL (),

(1.3)

where K7, K5, and K3 are positive constants. This class of solution will be called the class of ’asymptotic
type solutions’ because they may correspond to an asymptotic profile of some solutions to the Prandtl
equations when z tends to infinity (see [8, Section 6] where we give an explicit example of such solutions).
Another class of solutions important for applications is the class of ’Blasius type solutions’ (the term
comes from the fact that some solutions in that class can be obtained by solving the so-called Blasius
differential equation) (see [8, Section 6], [18, p. 129]).

We are interested in stabilizing a flow over a flat plate when the longitudinal incident velocity is of the
form:

Uso(t) = U2, + uso(2). (1.4)

Using the Crocco transformation (see (1.2) and [18]) when the velocity of the external flow U, is positive
and only depends on ¢, the Prandtl system — describing the velocity field in the boundary layer over the
flat plate — is transformed into a degenerate parabolic equation stated over Q = (0, L) x (0,1), called the
Crocco equation [6, System 4.7 p. 85], [18, p. 174], written down below:

U G+ 21— )
—szgj;g—&— giw:o in Q x (0,7),
w(&,n,0) = wo(&,n) in 2, (1.5)
<Vw6‘aw) (£,0,t) = (vs + Lyu) w(€,0,¢) — géo (t) for (&,t) € (0,L) x (0,T),
ti (€.7.0) = 0 T et 0.0) (0.7,
w(0,n,t) = wi(n,1t) for (n,t) € (0,1) x (0,T),

where 1., is the characteristic function of the slot v = (29, 21) C (0, L), u is a control variable and v is
the function appearing in equation (1.1).

Due to the lack of existence result for the instationary Prandtl system when Us(t) is of the form
(1.4) (or to the corresponding instationary Crocco equation — see [18] for some results corresponding to
particular profiles, and the more recent results in [24]), we have chosen to describe the velocity field in
the boundary layer by solving the Crocco equation linearized about the stationary solution ws. Since
the perturbation us,(t) and the control function u are supposed to be small with respect to U, the
linearized model is an accurate approximation of the nonlinear one. This assertion, which is not proved,
is actually confirmed by numerical experiments [6,8]. The Crocco equation (1.5) linearized about w, with
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a boundary control u is the degenerate parabolic equation:

%:Az—kf (t,&,m) € (0,00) x £,
Z(Oagvn) = 20(5777) (577’) € Q’ (1 6)
Vaz(t,0,m) = vaz(tn) (t,n) € (0,00) x (0,1), '
(bz)(t7£’ 1) =0, g;(tagvo) = (]I’Yu + g)(t,f) (t7€) € (0,00) X (0>L)a
where ,
A = —al) G+ (e S — el
(1.7)
_ ug () _ ug (t)
f(t,6,m) = use(t)d(&,m) + Us. e(€,m), g(t,§) = T wa(E, 00

The coefficients a, b, ¢, d, e depend on the stationary solution w, of the Crocco equation, and are defined
by:

2
a=Usn b=v(w)? c= —2w588—:;;5,
Oowg Owy
d=—-n—— =—ws — (1 -
77 857 € w ( )87]

Assumptions on the coefficients a, b, ¢, d and e are not the same ones if ws belongs to the class of Blasius
type solutions or if it belongs to the class of asymptotic type solutions.

In this paper we only consider the class of asymptotic type solutions because we have studied equation
(1.6) in [7] when wy belongs to this class.

In the case of Blasius type solutions the so-called laminar-to-turbulent transition location — which
is an important criterion in applications — is a nonlinear mapping depending on the state variable w
and on Uy. Its linearization about (ws,UZ) — called the linearized transition location — is of the form
Jo ¥(&,n) 2(t,&,m) d€dn + couss (t), where the function ) belongs to L?(£2) and ¢q belongs to R (they can
be determined numerically in a precise manner see [8, Section 6, Test 3]).

Here, we consider observation operators of the more general form

@@J+W@Jjédﬁmﬂ@&m%®+w@)Eﬁm% (18)

where ¢ € L?(Q2 x Q) and yg € L?(0,00; L%(2)) are given. Thus C is a Hilbert-Schmidt operator in
L?(Q). (For the linearized laminar-to-turbulent transition location the function ¢(z,y,&,n) = ¥(&,n)
only depends on (£,71) and ya(t, ) = coleo(t) only depends on t). It is obvious that the identity in L?(Q)
is not a Hilbert-Schmidt operator, however the identity operator from L?(£2) into L?(Q) equipped with
a norm weaker than the usual one can also be written in the above form (see Proposition 2.1).

Our main objective is to determine a control u, in feedback form, in order that the observation Cz(t) +
ya(t) decays to zero when ¢ tends to infinity. For that we use the optimal control theory, and we consider
the linear-quadratic control problem

(Pfgsenyaszo) inf {1(2,u) | (2, 0) € L2(0,00; 2) x L2(0,00;U), (2,u) satisfies (1.6) },

where Z = L?(Q), U = L*(0, L), and

oo

1 [~ 1
Hew) =3 [ 100+ w3t + 5 [ Il i

where C' € £(Z) is the Hilbert-Schmidt operator of kernel ¢ defined above.
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First of all we would like to explain in which aspects problem (Py g ., 4..2) 1S a classical matter of
the optimal control theory, and what are the questions that the existing results in the literature cannot
answer.

In section 2 we give a precise definition of solution to equation (1.6), and we prove that it can be
rewritten in the form

2= Az + B(1yu) + F, z(0) = 2. (1.9)
Moreover, the solution z to equation (1.9) belongs to Cy([0,00); Z) N L?(0, 00; Z), the mapping u +— z is
continuous from L2(0, o0; U) into Cy([0, 00); Z)N L2(0, 00; Z), and the semigroup ('), is exponentially
stable on Z. Thus it seems that we are in a very favorable position to characterize the optimal solution of
(P#.g,24,y4,20) by means of a feedback law, and our control problem seems to enter into a classical setting.

Even if the analysis of the nonlinear model with the feedback law is not performed, let us explain why
the results obtained for the LQ control problem (Py g ., 4,2 ) are quite new and interesting.

In section 3, we are able to prove that (Pyg s, ya.2,) admits a unique solution (z,u), and that this
solution is characterized by an optimality system of the form

Y= As 4 B+ F, 2(0) =20,
—p = A*'p+C*(Cz+1yy), p(oo) =0, (1.10)
u=—1,B"p.

We want to prove that there exists an operator II € L£(Z) satisfying II = II* > 0, and a function
r € L?(0,00; Z) such that

p(t) = Uz(t) + r(t).
The main objective of the present paper is to obtain an algebraic Riccati equation characterizing I1. The
equation satisfied by r, which involves the nonhomogeneous terms f, g, 25, and yq is studied in Part 2 [8].
To find an equation satisfied by II, we study problem (Pf g 2, yu,2,) in the case when f =0, g=0, 2z, =0
and y4 = 0. Denoting this problem by (P.,), we can easily show that

inf(P,,) = (Hzo, ZO)LQ(Q).

N =

Since A is a degenerate parabolic operator, we explain at the beginning of section 5 why the existing
results in the literature are not sufficient to obtain a Riccati equation characterizing II in the domain of
A. To overcome this difficulty we look for IT in the form of a Hilbert-Schmidt operator in L2(£2), and
we characterize the equation satisfied by its kernel w. The existence of a weak solution to the algebraic
Riccati equation satisfied by 7 is studied in section 5. In section 6 we show that

1
inf(P,,) = 5/9 Q?TZQ@Z(),
X

for all solution 7 to the algebraic Riccati equation. (zg ® zp denotes the function defined in Q x
by (z,y,&,1m) — z0(x,y)20(§,n).) Thus 7 is unique and it is the kernel of II. The analysis in the
nonhomogeneous case, that is when f, 25, g and y,4 are not necessarily zero, is performed in Part 2 [8].
Numerical results are also given in [8], showing the efficiency of the linear feedback law applied to the
nonlinear Crocco equation in the presence of perturbations.

2. ASSUMPTIONS AND PRELIMINARY RESULTS

As in [7], we make the following assuptions on the coefficients a, b, and c.

(Hy) a(n) = U5, n for n € [0,1], and b € W1°°(Q). There exist positive constants C;, i = 1 to 4, such
that
Cil1 = > <b(&,n) < Ca|l —n?,

b b (2.1)
S| <cli-nl ana|Fen|<an-ar oraenen
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(Hs) The function ¢ belongs to L*°(2), and we denote by Cy a positive constant such that
[ellze< (@) < Co. (2.2)

The nonhomogeneous terms f, g, z; and the initial condition zy and the function ¢ satisfy
(Hs) 29 € L?(2), 2, € L?(0,00; L?(0,1)) and g € L*(0,00; L*(0, L)).

(Hy) f € L?(0,00; L%()), ¢ € L*(2 x Q) and y4 € L?(0, 00; L*()).
Let us recall some notation introduced in [7]. Let H'(0, 1;d) be the closure of C°°([0,1]) in the norm :

1 9 1/2
”Z”Hl(o,l;d):(/o |22 +[1 = n)? dn) : (2.3)

To take the Dirichlet boundary condition bz(£,1,t) = 0 into account, we denote by H%l}(O, 1;d) the
closure of C2°([0,1)) in the norm || - || g1(0,1;4)- According to Triebel [20, Theorem 2.9.2]

z
on

H'(0,1;d) = H{;1(0,1;d).
Let us set
To = ([0,L) x {0}) U ({0} x (0,1)), Ty = ({L}x (0,1)) U((0,L] x {1}).

If the vectorfield (az7 —b%) belongs to (L%(2))?, and its divergence belongs to L?(2), the normal trace
7
on the boundary I' of the vectorfield (az, —bg—;) belongs to H_1/2(l"). We denote this normal trace by

T(az, —bg—;). Let us recall the definitions of some trace spaces (see [17] or [10, Chapter 7, Section 2,
Remark 1])

HY*(To) = {¢eL2(r0)|3¢eH1(Q) ¢ =0onT, andw:goonI‘o},

HYA(T)) = {(pELQ () | Iy € HY(Q), v =0 on Ty andwzaponl"l}.

We can define Tj (az, —bg—;) as an element in (Hl/ (Tp)) in the following way

<T0(az,—bg—;) >(H1/2(Fo))' 1/2(1“0) <T( az; _ba )”yow>H—1/2(r),H1/2(r)

for all p € Hl/ (T'), where 7o € L(H*(Q), H/?(T)) is the trace operator and 1 € H'(Q) is a function
such that ¥ = O on I'y and ¥ = ¢ on Ty.

Similarly, if the vectorfield (f az, fa%(bz)) belongs to (L%(2))?, and its divergence belongs to L?(£2),
the normal trace on the boundary I' of the vectorfield ( —az, —a%(bz)), denoted by T( —az, —%(bz)),
belongs to H~'/2(T'), and we can define T} ( —az, —%(bz)) by

<T1( S _%(bz)) ><H”2(F1>>',Héé"’<r1> B <T( S _%(bz)) ’ 7Ow>H*W<r>,Hl/2<r>

for all ¢ € Hééz(l“l), where ¢ € H*(f2) is a function such that 1 = 0 on I'y and ¥ = ¢ on I';.
The differential operators A and A* are defined by

Bz 82z 8p 92 (bp)
Az = —a— — — A*p =
z=-a 3§ 5772 cz, p= 85 + o2
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The unbounded operators in L?(Q) associated with the above differential operators are given by:

D(A) = {z € L3(0,L; HY(0,1;d)) | Az € L*(Q), Tp (az, —b%;) = }

Az =Az forall z € D(A),

D(A") = {pe L*(0,L; H'(0,1;)) | A"p € LA(Q), Ti( —ap, —ﬁ(bp)) =0},
an

A*p=A*p for all p e D(A*).

According to [7, Theorem 5.9], (A*, D(A*)) is the adjoint of (A, D(A)) and (A, D(A)) is the infinitesimal
generator of a strongly continuous semigroup on L?(Q). As in [7], we also need to define the operators

(A, D(Ag)) and (A%, D(AZ)) by setting D(Az) = D(A), D(A;) = D(A*),
A=A —ka¢, forall (e D(A), and A;(=A*C—ka(, forall (e D(A").

The interest of introducing the operator (A, D(Ag)) is explained right now. We can easily verify that a
function z € L2(0,T; L?(Q)) is a weak solution to

Z=Az in (0,7), 2(0)=z,
if and only if the function ¢ = e *¢z is a weak solution to
(' =A¢ in (0,7), ¢(0)=e k2. (2.4)

We are able to prove estimates for ¢ that can be translated in estimates for z. Actually, we have proved
in [7, Theorem 6.2] that, for all 29 € L?(£2), the weak solution ¢ € L?(0,T; L*(2)) to equation (2.4) obeys
the following inequality

1 1 I3 1 t 1
5[ [ knorddneg [ aEnnpan
0 0 0 JO

+/Ot/01/0§ (b’gg 2+gvl;?%<7§+(c+ka)|q2> dx dndr (2.5)

IR
<z / / 6_2kw |ZO(‘T7 77)|2 dx d77>
2 0 0

for all t € (0,T) and all £ € [0,L]. Formally estimate (2.5) could be obtained by multiplying equation
(2.4) by ¢ and by making integrations in space and time. In that case we obtain an equality in (2.5) in
place of an inequality. Due to the degenarate character of the operator A only an inequality has been
proved in [7]. If we choose k > 0 big enough, due to Lemma 2.1 below, inequality (2.5) can provide
estimates for ¢ that can be translated in estimates for z. The existence of k, for which we can establish a
coercivity condition, is established in [7, Lemma 3.1]. Due to the crucial role of this coercivity condition,
we state and we give a complete proof of this lemma below.

Lemma 2.1. There exists k > 0 such that

[ (e

for all £ € [0, L], all z in H(0,1;d).

>0 dz C
+ 8777(5’ )d7n2 + (=Co + ka) 22)dn 2 7”2”%{1(0,1;(1) + HZH%2(0,1)a (2.6)

dz
dn

Proof. Step 1. With the first inequality in (2.1) we can easily verify that

1 2
dz
ol lonn < | <|z|2+b<s,->|\d77 ) < a2l 0100y (27)
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for all £ € [0, L], and all z € H*(0,1;d), with a3 = min(C1, 1) and some ag > ay.

Step 2. We set
! dz
2 = b )| T
Br(&: 2, 2) /0 ((5 ) p

Using (2.7) and inequality (2.1), we have

ob(E, ) dz
on dn

z+ (—c+ k:a)\z|2) d

1 2
dz ob dz
; > b|—| +——2+(—Co+ka)lz|*) d
suezn > [ (o] 7| +Gegr+ (~Co+kalek)
1
o o|dz |2  Obdz 1 9 o1 9

> -] + == — - =L .
> [ (Su-al|E g (- ot ka 3)IeP) dn+ DlelBinor

From inequality (2.1), and Young’s inequality, it yields

(%dz 038/ -
0 andn

1
G / 122 di,
25 0

for all € > 0. Consequently, 8x(&; -, ) satisfies the estimate

Cy Cge)

a1
ﬂk(E,Z,Z) Z 7||Z||2H1(O,1;d) +(7 — 7

! 1 Cs 5
+/0 (—Co+ka—§(1+?))|z\ dn.

Now, we choose ¢ such that % = % - % > 0. We have

1 2
dz
[1—n?|==| dn
0 d

dz |2

C’
B(E52) 2 el + 1/|1—n\2 dn

1
Cs 5
+/0 (—C’o+ka—§(1+?))|z\ dn.

To establish the lemma, it is enough to prove that, there exists k > 0 such that

1 2
~ dz
C’/lan—
10\ |d

with 51 = Cl/(47zo) k = k/?’o, c= C/T’O and 7'0 (CS + 1) + Co + 1.
This can be shown by arguing by contradiction. We suppose that exists a sequence (zy,), € H*(0,1;d)

that satisfies
1 1
_ dz 12
/ |zp|?dy =1 and Cl/ |1—77|2‘ﬁ
0 0 dn

Due to the second condition in (2.8), the sequence (z,), (or at least a subsequence) tends to 0 almost
everywhere in [0, 1] and strongly in L?(e, 1) for all € > 0. Since the imbedding from H'(0,1) in L2(0,1) is
compact and since ((1—7)z,), is bounded in H'(0, 1), the sequence ((1 — n)zy),, tends to 0 in L2(0,1). We
know that the sequence (z,), converges to 0 in L?(1/2,1), and that the sequence ((1 — n)zy,),, converges
to 0 in L2(0,1/2). Thus, the sequence (z,), converges to 0 in L%(0, 1), which is in contradiction with the
first condition in (2.8). O

1
dy+/ l{:a|z|2 dn > ||Z||i2(0,1)7
0

1
dn—!—n/ alzn|? dn < 1. (2.8)
0

Thanks to this Lemma we can prove the following theorem.

Theorem 2.1. The operator (A, D(A)) is the infinitesimal generator of a strongly continuous semigroup
exponentially stable on L?(2).
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Proof. The complete proof of this result is given in [7, Proof of Theorem 6.1]. We only explain how the
exponential stability of the semigroup (e!);>0, can be obtained. By using Lemma 2.1 and inequality
(2.5), we can show that, for all zy € L?(Q), the function z(t) = e**zy obeys

HZHLZ(O,OO;L?(Q)) < C”Z()HLZ(Q).

The exponential stability follows from Datko’s Theorem (see e.g. [25, Theorem 3.1(i)]).
U

In the following we shall denote by w > 0 an exponent and C'(w) > 1 a constant depending on w such
that

e 2z < Clw)e ™" and  |le? || 2z2(q) < Clw)e ™" for all ¢t > 0.

As in [7], it is useful to introduce a parameter k to obtain estimates of solutions of different equations
related to the operator A.

Now we show that there is a norm in L?((2), weaker than the usual one, which is associated with a
Hilbert-Schmidt operator. More precisely, we have the following

Proposition 2.1. For1 <i< oo and 1 < j < oo, let us set

Vi, y) = \/Esm (HZE) V2sin (Jmy),

and
o0 1 )
Pa(T,y,8,m) = Z W¢i,j(x7y)wi,j(§,’r]) with o> 1.
ij=1

Then ¢ belongs to L?(Q x Q). Let C,, be the Hilbert-Schmidt operator defined by

CaZ: ‘/ngoc('agan) Z(fﬂ?) dgd??

The mapping
. 1/2

2
1
e oz = | 30 g ([ e) |

ij=1
is a norm in L?(Q) weaker than the usual one.

Proof. The family (1 ;)1<i,j<oco is a Hilbertian basis of L?(Q2), and the family (¢;; ® 1 j)1<i j<co iS &
Hilbertian basis of L?(€ x ). Thus it is easy to see that

o0

1
[ballZ2xa) = Z 201 j2a <00

ij=1

The end of proof is obvious. O

3. CONTROL SYSTEM

In this section, we want to prove that equation (1.6) can be rewritten as a control evolution equation
of the form

2= Az + B(1yu) + F, 2(0) = 2. (3.1)

In particular we want to define the operators A and B, and the function F.
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3.1. Existence and uniqueness results for the state equation

To define solutions to equation (1.6) by the transposition method, we introduce the adjoint system:
—p = A*p+1 in (0,00), p(o0) =0. (3.2)

Due to Theorem 2.1, and with results in [7], we can prove the following theorem.

Theorem 3.1. Let 1 € L*(0,00; L?(Q)). The system (3.2) admits a unique weak solution p such that

p € Cy([0,00); L*(2)) N L?(0,00; L*(0, L; H'(0, 1;d))),
Vap € Cy([0, L]; L*(0, 00; L2(0, 1))).

where Cy, ([0, L]; L2(0, 00; L%(0,1))) is the space of continuous functions from [0, L] into L?(0, 0o; L?(0, 1))
equipped with its weak topology and Cy([0,00); L*(Q)) is the space of bounded and continuous functions
from [0,00) into L?(Q). It satisfies the estimate

12l o (0,00;22(92)) + IV aP|| Lo (0,2:12(0,00:22(0,1))) + 1P L2(0,00:L2(0,L: 51 (0,1:0))) (33)

< Ol 20,0022 (92))-

We define weak solutions to equation (1.6) by the transposition method.

Definition 3.1. A function z € L? (O,oo;Lz(Q)) is a weak solution to equation (1.6) if and only if we
have

/ 2 drdédn = / fpdrdedn + / p(0,€,m)20(€. ) dd
(3.4)

- / bE.0) (g + 1) (r.€)plr. . 0) dr + [ / 0)2(r.E)p(r. 0,n) drd,
for all ¢ € L? (O, 00; LQ(Q)), where p is the solution to equation (3.2), and @ = Q x (0,00).

In [7, Theorem 6.6] it is shown that if z € L2 (0, 00; L*(£2)) is a weak solution to equation (1.6), in the
sense of semigroup theory, then it is also a solution in the sense of transposition, that is to say in the sense
of Definition 3.1. By taking in (3.4) functions 1 of the form (¢, &, ) = —6'(¢)( (&, n)—60(t) A*C(£,n), where
¢ € D(A*) and 6 € D(RT), we recover the weak formulation of the definition in the sense of semigroup
theory. The intial condition can also be recovered by choosing a particular sequence of functions 1.

Theorem 3.2. Let f be in L*(0,00;L?(Q)), g € L?(0,00;L?*(0,L)), u € L?*(0,00; L*(0,L)), 2, €
L?(0,00; L2(0,1)), and zo € L*(), then equation (1.6) admits a unique weak solution z € L*(0,00;
L?(2)). Moreover

z € L*(0,00; L*(0, L; H(0,1;d))) N Cy([0, 00); L2()),

Vaz € Cy([0,L]; L*(0,00; L*(0,1))),

and the solution obeys:

12l Lo (0,00;22(92)) + IV @2 Lo (0,1:12(0,00522(0,1))) + 1212 (0,00:12 (0,257 (0,1:0))))
(3.5)
< Cs (I llz2(@) + a0 0cr20,09) + 1911200 00:20,00) + 128l 200 005200 + 2o 22 )

Proof. Theorem 3.2 is proved in [7, Theorem 6.6]. Its proof relies on inequality (2.5), on Lemma 2.1,
and on an approximation procedure (the boundary terms u, g and z;, are approximated by a sequence of
distributed terms). O
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3.2. Dirichlet and Neumann operators

Let v belong to L?(0, L) and 2, € L?(0,1). We define the solution to the Neumann problem

ow

Aw=0inQ Vaw(0.)=0in 0.1, (w)(.)=0 ad ZX.0)=v n0.L. (36
and to the Dirichlet problem
AC =01in Q7 \/aC(Oa ) = \/&Zb in (07 1)7 (bC)(7 1) =0 and %(70) =0 in (OvL)7 (37)

by the transposition method as follows.

Definition 3.2. A function w € L?() is a weak solution to equation (3.6) if and only if we have

L
/Q wA*p dédn = — /O b(E,0)0(E)p(E,0) de for all p € D(A"). (3.8)

Similarly, a function ¢ € L*(Q) is a weak solution to equation (3.7) if and only if we have

1
[ cawacan=— [ atmatmpo.m s torallpe DA, (39)
Q 0
Using the method in [7, Proof of Theorem 6.6], we can establish the following theorem.
Theorem 3.3. Letv € L%(0, L), then equation (5.6) admits a unique weak solution w € L?(Q). Moreover
w € L*(0,L; H'(0,1;d)), Vaw € C, ([0, L]; L*(0,1)),

and
[Vawl| < (0,:22(0,1)) + 1wl 20, 2.1 0,1:0)) < CllvllL2(0.2) - (3.10)
Let z, € L*(0,1), then equation (3.7) admits a unique weak solution ¢ € L*(Q)). Moreover

¢ € L*(0,L; H'(0,1;d)), va¢ € Cy ([0, L]; L*(0, 1)),
and the solution obeys:

IVac || Lo 0,z:c2(0.1)) + €l 220, L2111 0,1:0)) < Cllzvllz2(0,1) - (3.11)
Proof. We briefly give the proof of (3.10). The second statement can be proved in the same way. The
uniqueness of solution to equation (3.6) is obvious. The only difficult point is the existence of a solution
and estimate (3.10). We proceed by approximation. We set v,(&,1) = nv(§)xn(n), where x, is the
characteristic function of the interval (0, %) Let w,, be the solution to equation

Awy, = bu,. (3.12)

It can be shown that ¢, = e *w,, satisfies an inequality similar to (2.5). More precisely, we have

;Alagn(o:,n)zdﬁfolfom (b'%%

1 xT
< / / e b,  de dn,
0 0

for all x € [0, L]. With Lemma 2.1 and classical majorizations we arrive at

2
b 9, ,
e (c+ ka)(n) de dn

(3.13)

||\/aCn||L°°(O,L;L2(O,1)) + 1Callz2(0,2;81 (0,150)) < Cllvnllz2 0,1y
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where the constant C' is independent of n. Therefore, there exists a subsequence, still indexed by n to
simplify the notation, such that

Cn —w weakly in L?(0,L; H'(0,1;d)),

3.14
Val, — yaw weakly-star in  L*(0, L; L*(Q), (3:14)

for some function w € L>(0, L; L?(0,1)) N L?(0, L; H*(0,1;d)). By passing to the limit in the variational
formulation satisfied by (,,, we can show that w is a weak solution to equation 3.6.

O
3.3. Control system

We denote by N and D the operators defined by
Nv =w, Dz, =(

where w is the solution to equation (3.6), and ¢ is the solution to equation (3.7).
Observe that N belongs to L£(L?(0,L),L*(0,L; H'(0,1;d))), and that D belongs to L£(L?(0,1),
L2(0,L; H'(0,1;d))). Moreover according to Definition 3.2, we have

N*A'p=-b(& 0)p(§,0) and  D*A"p=—a(n)p(0,n)  forall pe D(A").

Thus N*A*p is the trace of —bp on (0, L) x {0}.
Using the extrapolation method the semigroup (e'*),cp+ can be extended to (D(A*)). Denoting

the corresponding semigroup by (e*4);cr+, the generator (Vzl\, D(./zl\)) of this semigroup is an unbounded
operator in (D(A*))" with domain D(A) = Z.
First assume that g € C1(0, 00, L?(0, L)), u € C1(0, 00; L%(0, L)), and 2, € C}(0, 00; L%(0,1)), and set

w(t) = N(Lyu(t) +9(t),  ¢(t) = Dz(t).

Let z be the unique weak solution to equation (1.6), and set Z = z — w — . We can check that Z is the
weak solution to the equation

Z'=AZ-w' —C'+f,  Z(0) = 2,

that is . . .
Z(t) :etAzo-i-/ e(t_T)Af(T)dT—/ e(t_T)Aw'(T)dT—/ e=TAL (T)dr .

0 0 0
Making integration by parts, we can show that (see e.g. [3]) equation (1.6) can be rewritten in the form

Y =Az+ f+ (—A)Ng+ (~AN@yu) + (~A) Dz,  2(0) = z. (3.15)

This equation is still meaningful if g € L?(0,00; L%(0,L)), u € L?(0,00; L?(0, L)), and 2, € L*(0, oc;
L?(0,1)). We set

-~ -~ -~

F=f+(-A)Ng+ (—A)Dz and B=(-A)N, (3.16)
and we obtain equation (3.1) if, by abuse of notation, we replace A by A.

4. OPTIMAL CONTROL
Let us recall the definition of

(Prgnyao) inf {7(2,u) | (2,0) € L2(0,00; 2) x L*(0,00;U), (2,u) satisfies (4.2)},

where oo

I =5 [ 100+ w0 et g [ Tl e (1)
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with

Y — A4 B+ B, 2(0) = 2, (42)
and F is defined in (3.16). Let us recall that Z = L*(Q), U = L?(0, L), C € L(Z), and y4 € L?(0,00; Z)
are defined in the introduction. In the above setting || - ||z and || - ||y denote respectively the norm in Z

and in U, and the associated inner products will be denoted by (-,-)z and (-, -)y.

Theorem 4.1. Assume that (H1) — (Ha) are fulfilled. Then problem (Pj.g 2 .y4,20) @dmits a unique
solution (Z,u).

Proof. The proof is classical. We briefly introduce the main ingredients for the convenience of the

reader. Let us denote by z(u) the solution to equation (4.2) corresponding to u. Due to Theorem 2.1,

J(2(0),0) < co. Thus (Py g2, .y4,20) @dmits minimizing sequences, and minimizing sequences are bounded

in L%(0,00;U). Due to Theorem 3.2, if a sequence (u,), converges weakly in L%(0,00,U) to some u,

then (z(u )) converges weakly in L?(0, 00; L?(0, L; H'(0,1;d))) to z(u). Thus, by standard arguments,
if (u,)n is a minimizing sequence, converging to u for the weak topology of L? (0 oo; U), then

J(z(u),w) <liminf J(z(up), un) = I0f(Prg 20420 )-

n—oo

Thus, (z(u),u) is a solution of (Pf g 2, .y4,2). The uniqueness follows from the strict convexity of the
mapping u +— J(z(u),u). O

Theorem 4.2. If (z,u) is the solution to (P gz, ya,z0) then
u(t) = Lybplyxqoy = —1,B"p(t), (4.3)
where P is the solution to equation (3.2) with
§ = C*(C + ya).

Conversely if a pair (z,p) € (LQ(O, oo; L2(0, Ly HY(0, 1; d))))2 obeys the system

{ z =Az+ B(]lyb(,O)p(,O)) +F in (0700)7 Z(O) = <0, (44)

—p' =Ap+C*(Cz+ya) in(0,00), p(oo)=0,

then the pair (z,1,bp|yx{oy) is the optimal solution to problem (Pf.g 2. ya )

Proof. Let (Z,@) be the optimal solution to problem (Py g 2, 44.20). Set I(u) = J(2(u), u), where z(u) is
the solution to equation (4.2) corresponding to u. For every v € L?(0,00;U) and A € R*, we denote by
zx the solution to the equation (1.6) associated with @ + Av. We have

I(u+ \v) — I(a)

1 (4.5)

> = = I — 2 2
= 5/0 (C(2x — 2),C(2x + 2) +2yaq) , dT + 5/0 ((2Av,u)u + A IIU(T)HU) dr

The function w = (z) — Z)/A is the solution of equation

w' = Aw+ B(1,v) in (0,00), w(0)=0.
Due to Theorem 3.2, we have

lwll 22(0,00;22 (0,11 (0,1;))) < Cllvll£2(0,00,0)-

Thus the sequence (z))x converges to z in L2(0,00; L?(0, L; H*(0,1;d)) when A tends to zero. Dividing
I(u+ \v) — I(u) by A and passing to the limit when A tends to zero, we obtain

oo

I'(ﬂ)v:/ (Cw,CzZ+ ya), dT—|—/ (v,a)y dr.
0 0
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With formula (3.4) in which z is replaced by w and p by the solution of equation (3.2) corresponding to
Y =C*(CZzZ + yq), we have

/OOO (Cw,CzZ+ yaq), dr = _/Ooo L b(&,0)v(T)p(r, £,0) dédr.

Hence
(@) = — /0 / b(E, 0)(r, £, 0)o(r) dédr + /0 (@(r), v(7))y dr.

Since (Zz, @) is the solution to the problem (P g ., y4.2,), We have I'(u) = 0 and @ = 1,bp|, <10y = —1,B*p.
Conversely, assume that (z,p) € (L2(07 oo; L2(0, L; HY(0, 1; d)))2 is the solution of system (4.4). Let
us set
u(t, §) = 1,(£)b(E, 0)p(t, €, 0).
From previous calculations, it follows that
I'(w) = 0.
Due to the convexity of the mapping I we deduce that @ is the solution to problem (Py g 2, yu.20)- O

5. RICCATI EQUATION

In this section, we study problem (Pj g ., 4. 2,) in the case where f =0, 2z, =0, g =0 and yg = 0. We
denote it by (P.,). In the previous section, we have proved that the solution (z, u) of (P,,) is characterized

by w = —1., B*p, where (2,p) € (L2(07 oo; L2(0, L; HY(0, 1; d))))2 is the unique solution of system

' = Az — B(1,B"p), z(0) = 2o,
(5.1)
—p = A*p+C*Cz, p(o0) =0.
Let us denote by II the operator
IT : zp+— p(0). (5.2)

This operator is well defined since p belongs to Cy ([0, 00); L2(£2)) (it is sufficient to apply Theorem 3.2
to the adjoint equation).

5.1. Failure of existing results

Let us first explain why existing results in the literature do not permit to characterize II as the weak
solution to an algebraic Riccati with tests functions (in the definition of weak solutions) belonging to
D(A). Using the dynamic programming principle, as in [14] it can be shown that the family of operators
(S(t))ter+, defined by

S(t)z0 = 2(t),
where (z(t), p(t))icr+ is the solution of (5.1), is a strongly continuous semigroup exponentially stable on
Z. Let us denote by (Am, D(Am)) its infinitesimal generator (formally Aqx = A — B(1,B*II)). Let s
belong to (0,00). We denote by (2%, p*) the solution of the system

B BB ) ) = (6
» (5.3)
_ (Z =A"p*+C*Cz° in (s,0), p*(00) = 0.

It is clear that

p°(s) = II2°(s).
Moreover, from the dynamic programming principle, it follows that p®(s) = p(s). Thus we have extended
the identity (5.2) by showing that

p(t) = II2(t) for all ¢ € [0, 00).
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Therefore we have proved that the optimal solution of (P,,) obeys the feedback law
a(t) = —1,B*IIz(t).

Moreover, with (5.3) we can show that

inf(P,,) = (p(O),zo)Z = (Hzo,zo)z.

N =
N —

We can also show that IT obeys the following integral equation (see [14]):
o0 *
IT :/ e~ AtCrCetnt gt (5.4)
0

However since II is involved in the definition of the operator Ay, the above equation is not really useful
for the computation of the operator II.
Following [1], it can be shown that IT obeys the following formulation of the A.R.E.

(Az,1IC) , + (T2, A*¢) , — (1,B*1lz,1,B*1I() , + (C*Cz,¢) , =0, Vz, ¢ € D(An). (5.5)

Unfortunately the characterization of D(A) is not obvious because it depends on II which is precisely
unknown, and in general this variational formulation is not satisfied for z € D(A), and it cannot be used
to characterize the operator II (see [21-23]).

Here taking advantage of the regularizing properties of the operator C, we look for IT in the form of
a Hilbert-Schmidt operator, and we are able to study the partial differential equation satisfied by the
kernel of the operator II. We show that this partial differential equation admits a unique solution 7 in
L2 x Q) N L2 (2 x Q) (see the definition of these spaces in section 5.2). Showing in section 6 that this
unique solution 7 obeys

1
inf(P,,) = 5/9 QTK’ZQ@Z(),
X

we can conclude that II is a Hilbert-Schmidt operator and that « is the kernel of II.

Since we want to characterize the operator I € £L(L?*(Q)) by a kernel 7 € L?(2 x Q), for notational
simplicity we write © x © in the form Qx X Qz. The current point (X,E) € Qx X Qz corresponds to
X = (z,y) € Qx and E = (£,n) € Q=. With this notation II and 7 — if it exists in L?(Qx x Qz) — are
related by the identity

2(X) = /Q (X, 2)2(2)d=. (5.6)

Similarly, A% (resp. AL) corresponds to the operator A* written in X-variable (resp. in E-variable), that
is:

) 9p  9*(b(z,y)p)
Axp= a(y)% + o2 c(z,y)p
(resp. Afp = a(n)g—g + %ﬁ;ﬁ)p) —c(&,n)p). To write the equation satisfied by m, let us introduce some

new operators. Let us set O = Qx x Q=. If 2 € L?(Q2) and ¢ € L?(2), we denote by z ® ¢ the function
belonging to L?(O) defined by

z2®(¢ : (X,B) — 2(X)¢(E).
We denote by L2(0) the space of functions 7w € L?(O) satisfying:

m(X,E) =75, X) for almost all (X, =) € Qx x Q=z.

We are going to see that

D) ={o= [ et evarve o),
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is the domain of the infinitesimal generator of a strongly continuous exponentially stable semigroup on
L?(0). We also set

D(AxE) = D(Ax =) N LI(O).
In section 6, we show that the operator II defined by (5.2) may be written in the form (5.6), where 7 is
the unique solution to the algebraic Riccati equation

m e D(Axz), Axm+ Azm— / b(s,0)|?7(5,0,2)7(X,5,0)ds + ® =0, (5.7)
8!
and ® € L2(0O) is the function defined by
#(X.2) = [ 6. 2)0(.9). (5.9)

The function ¢ € L?*(O) is the one defining the observation operator C' (see (1.8)). Observe that by
Cauchy-Schwarz inequality, we have

1
The existence of at least one solution to equation (5.7) is established in Theorem 5.8. The uniqueness is

proved in Theorem 6.2.
To study equation (5.7) we first study the differential Riccati equation

220) < 19l172(0)-

= A+ ALm — / |b(s, O)|27r(t, $,0,E)m(t, X,s,0)ds +® in (0,00), (5.9)
” )
7(0,-) = m € L3(0).

Even if we prove that the solution of (5.7) is the limit when ¢ tends to infinity of the solution to equation
(5.9) when mg = 0, we need to study equation (5.9) with mg # 0 (see the proofs of Theorem 5.8 and
Lemma 5.9).

5.2. Semigroup generated by A% + A%
Lemma 5.1. For every z € L?>(Qx), and ( € L?(Qz), we have

otAx (z® etAEC) — X 5 @ oS¢ = otA= (etAXz ®¢) .
Proof. The result is a direct consequence of the definition of the tensor product. O
Lemma 5.2. For allt >0, 7 >0, v € L*(O), we have
etAX (TAZ ) = (TAL oA 4
Proof. The result can be deduced from Lemma 5.1 by using the density of L(Q) ® L?(Q2) into L*(0). O

With Lemma 5.2 we can prove the following result.

Lemma 5.3. Fort >0, let S*(t) € L(L?*(O)) be defined by
S*(t) ¢ ap — etMxetAzy

The family (S*(t))i>0 is a strongly continuous exponentially stable semigroup on L*(O).

Proof. We have S*(0) = I. Since ez e™4x = 74X ez it is easy to show that S*(t)S* (1) = S*(t + 7).
Let us show that the semigroup (S*(¢));>0 is weakly continuous on L?(0). First we write:

/(DwetAXZ®etAECLwZ®C[)EAX ((et'AXZ*2)1/)(',5))67:"45(4*/01/)2(et'AEC*C)-
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We know that

}%/(Dwz(etAE(—() =0.

Moreover, for almost all = € Q=, we have
lim et=¢ [ ("X 2 —2)Y(-,2)dX =0,

t\.0 Qx

and

g | (@ =2y E)

< Cllzllz2@x) 1Kl 2202 19l 2 (0) -
L2(Q=)

Therefore with the dominated convergence theorem we have:

lim /Q: /QX ((e"xz — 2)y(-,E)) e=¢ = 0.

t\.0

Thus the semigroup (S*(t)):>o is weakly continuous on L?(O). It is also strongly measurable on L?(0O).
Thus it is also strongly continuous on L?(Q). Let us show that it is exponentially stable. Using the
exponential stability of the semigroups (e*4x);>q and (e'%);>0, we can write

15" ()Yl 20y < OwefthetA%?/’HL?(o) < C2e "YUl 2oy -
The proof is complete. O

Let us denote by (A% =, D(A% =)) the infinitesimal generator of (S*(t));>0 in L?(O). From the expo-
nential stability of the semigroup (S*(¢))¢>o, it follows that

(—Ax=z) "0 :/0 ex =y dt and D(Axz) = {/ e etz dt | 1 € LQ((’))} .

0

We cannot give a more precise characterization of D(A}’E). However, setting
H = L*(Qx; D(AZ)) N L*(Qz; D(AY))

we can show that H C D(A% z). Indeed if ¢ € H, we can write

) etAX et AZ ) —
limy_o / #z ® ¢
o t

' etAZ Y — ' et A% otAZ ) — ptAZ
= limy\ o / #Z ® ¢+ hmt\o / v ,(/)Z ®C
@] @]

t
:hmt\o/ Pz
o

:/¢(sz®<+z®AEc):/ (A%t + AzY) 2 ® ¢,
(@] (@]

Xz —2z

etAE _ . et.A
¢=¢ + hmt\o/ PpetAi=g
t o t

for all z € D(A) and all ¢ € D(A). By a density argument we deduce that

tAY tAZ
limt\o/o %mg:/@(@wh@p)z@c,

for all z € L?(Q2) and all ¢ € L*(Q). Thus, if ¢ € H, A% + A% belongs to L?*(0) and

Azt = At + AZ). (5.10)
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It is the reason why we shall often write A%¢ + AZ¢ in place of A% 21, and e!Ax+42) in place of

el A% etz or of e"X.= even if it is an abuse of notation.
We also introduce the operators Ay  and Aj = defined by D(Aj} ) = D(AX), D(A; =) = D(AZ),

rxC=AxC—ka(y)C  and  Ap (= Az( - ka(n)¢,

where the parameter k > 0 is the one in Lemma 2.1.

Theorem 5.1. (i) The adjoint of the operator e'x e!A= € L(L?(O)) is the operator eAx etA= ¢
L(L*(0)).

The family of operators (S(t))¢>0, where S(t) = etAx et4= s the adjoint semigroup of (S*(t))¢>0-

(ii) The infinitesimal generator of (S(t))i>0 in L*(O) is (Axz,D(Axz)), the adjoint of (A% =,
D(Ax 2))-

(iii) The space L*(Qx; D(Az)) N L*(Qz; D(Ax)) is included in D(Ax =), and

Axzt = Az + Axy  ifp € L*(Qx; D(Az)) N L*(Qz; D(Ax)) .

(tv) The family of operators (S;(t))t>o0, where Sj(t) = eMrx iz s a strongly continuous exponentially
stable semigroup on L*(0). Its infinitesimal generator (A; x =, D(A;. x =)) satisfies H C D(A; x =) and

rxzt = Az A x¥ if Y e LP(Qx; D(AL)) N L (Q=; D(AY)) -
Proof. The first, the second and the fourth statements are obvious. The third one can be proved as

above, when we have shown that H C D(A% z). O

We make the same kind of abuse of notation as above: we shall often write Az + Ax1 in place of
Ax =z, Af 21h+A;; 1 in place of A}, y =1, et(Ax+42) ip place of eAX ez or of etAx.= | and e!(Akx k=)

tAL x ot ARz tAL x =

in place of e or of e

Since L2(0) is a closed subspace in L?(O), we can show that A% %, the restriction of A% = to L2(0),
is an unbounded operator in L2(0) whose domain is defined by D(A§ %) = D(A% =) N L2(0).

Theorem 5.2. The operator (A5 %, D(Ax Z)) is the infinitesimal generator of an exponentially stable
semigroup on L2(O).

We denote by L2 (O) the cone in L2(O) of functions r satisfying:
/wz@zzo for all z € L*(Q).
o

Let us notice that if f € L?(Q2) and f > 0, then f ® f belongs to L% (0). If 1y € L2(O) and w5 € L2(0),
we shall write w1 > mq if

/(7T1*7T2)Z®ZZO foralleLQ(Q).
o
We are going to prove that the optimal pair (u,Z) obeys the feedback law

alt) :]lvb(s,O)/Qw(s,O,E)E(t,E) =, (5.11)

where 7 is solution to the algebraic Riccati equation (5.7).

5.3. Lyapunov equation

To prove the existence of a solution to system (5.9), we study the following differential Lyapunov
equation:
= AT+ ALm + (¢, X,E) in (0, 00), 7(0,-) = 7o . (5.12)
Weak solutions to equation (5.12) are defined as weak solutions for evolution equations.
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Theorem 5.3. Let ¢ be in LIOC([ ,00); L2(0)) and my € L2(O). The system (5.12) admits a unique
weak solution m in L ([0,00); L2(O)) defined by

loc

t
7(t) = e AXHAD 1 | / =) (A HAZ) 2 g
0

(i) If ¢ belongs to L*(0,00; L%(O)), then
7l 210.00:02(0)) + I7ll2oe 0.00:220)) < CITollz2(0) + 1¥1]22 0,00:22(0)))
(ii) If v belongs to L>°(0,00; L2(O)), then

2(0) + 191l Lo 0.00:£2(0))) -

7]l o (0,002 (0)) < C(

(i3i) If in addition o belongs to L2 (O) and ¢ € L ([0, 00); L% (0)), then 7 in L}

loc

([0,00); L (0)).

Proof. The first statement follows from Theorem 5.2. Assertions (i) and (ii) follows from Young inequality
for convolutions, and from the exponential stability of the semigroup (ef(Ax T4z ))tZO on L2(0). To prove
the third assertion, we observe that

/ (et(A*XJFAE)ﬂ-O) z ® z = / 71—0 (et(AX"F-AE)Z ® Z) — / 7.[.0 etAZ ® et.AZ 2 0 .
O o @)

The same kind of calculation can be made for the term

t
/ (/ et AX+AZ) (1) dT) Z2Qz.
o \Jo

The proof is complete. O

Let k& > 0 be the constant in Lemma 2.1, then 7 is a weak solution of equation (5.12) if and only if the
function

#(t, X,B) = e " kr(t, X, 2) (5.13)
is the solution of equation

i = Ap 7+ Af =i+ e e Myt X,E) in (0,00),  #(0,) = e FTe Mmg. (5.14)
Lemma 5.4. If¢(t,-) = z(t,-)®((t, ), with z € L*(0,T; D(A%)), ¢ € L*(0,T; D(A%)), and mo = 20®o,

with zg € D(A*) and (o € D(A*), then the solution & of equation (5.14) belongs to WH1(0,T; L*(0)) N
L>(0,T; L*(Q=; D(Ax))) N L=(0,T; L*(Qx; D(AZ))).

Proof. We have
7(t) = etk xeF 5 @ etARze R + /t e(t=m Ak x e " 2(1)® e(t_T)A;Ee_kEC(T) dr
0
which gives
AZ,Xﬁ'(t) _ etAZTXA;Xefka:ZO ® etAZ,ze*kﬁco + /t e(t*T)A’t~XA;Xe*kxz(r) ® e(t*T)AE,Ee*’&C(T) dr

0

and

)

¢
Ar =7 (t) = elArx ek etAZvEAZ’Ee_kgCo + / e(t=T) Ak, x e"”z(T) ® e(t_T)AZvEAZ’Ee_MC(T) dr
0

Thus 7 € L>(0,T; L*(Q=; D(A%))) N L>=(0,T; L*(x; D(AL))). Due to (5.10), we have

7= Af x gt + 1 = A x T+ Ay =7+ € LY0,T; L*(0)).
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Since Aj x7t € L*(0,T;L*(0)), A;=rt € L*(0,T;L*(0)), and ¢ € L'(0,T;L*(0)), we have 7 €
W11(0,T; L?(0)) and the proof is complete. O

Theorem 5.4. The weak solution w of system (5.12) satisfies the estimate

t
(//m/)dXdEdT
0 O

2||7T(t)H%g(O) 7L 00220 :L2 0,511 (0,1:0))) < Co

+lImolzo)) s (5:15)

for allt € [0,00) (for some Cs > 0).

Observe that estimate (5.15) is more precise than estimate (i) in Theorem 5.3. It is needed in the proof
of Theorem 5.5.

Proof. Let k > 0be the parameter in Lemma 2.1. Let 7 be the solution of system (5.12). First assume that
P(t) = 2(t) @ ((t), with z € L*(0,T; D(A%)), ¢ € L?(0,T; D(AL)), and my = 29 ® (o, with 29 € D(A%)
and (o € D(AZL). Let us set 7(t, X,Z) = e *e *r(t, X, Z). It is clear that 7 is the solution of system
(5.14). We can apply Lemma 5.4, and we can rewrite equation (5.14) in the form

# =My h T, #(0) = e Fre Moy = g,

with ¥ = Aj -7 + e kre=k&y. This equation is considered as an evolution equation in L?(2x), the
variable Z being considered as a parameter. Thus applying [7, Theorem 6.2], we can write:

%/fr(t)QdXdE 7/ 2dX d= + // / y)7(r, Ly, 2)* dy d= dr
(@]
¢ x> obor
b(X) | = —— k 2)dX d=d 5.16
+/O/O(( o +ay8y7r+(c+a)()) T (5.16)
t
g/ / \IffrdXdEdrgf/e—’”e—k%ﬁdXdEdr,
0o JO 0o JO
for all £ > 0. Since Aj = is dissipative (see [7]) and & € L>(0,T; L*(Qx; D(A%))), we have

t
//AzgﬁfrdXdEdTgo.
o Jo

This explains the last inequality in (5.16). In a similar way, we can prove that 7 satisfies the inequality

/ #(t)? dXd”—f/AZdXdu // / #(r, X, L,n)* dndX dr
Qx
// = O [* 0ok

—_ =42 = 5.17
M an| + oy gn7 (e EET )dXd_‘dT (5.17)

g/ / e ke Ry 7+ dX d=dr
0o JO
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for all £ > 0. Thus, we have

/A()dXd: / 2dX d= + /// #(r, Ly, 2)* dy d= dr
//QX/ #(1, X, L,n)*dndX dr

2

afr ab O )
—— 7 = 5.18
/ / s 5y 7+ (c+ ka)(X)7 )dXd dr (5.18)
or|*  obor )
b(E) |[=— 4 =)#2) dX d=
// 5 ananﬂ+(c+ka)( )7r)d d=dr

32/ /e—’me—kfdedEdr,
0 O

for all ¢ > 0. With Lemma 2.1, we obtain

R R 01
||7T(t)||2Lg(0) - ||7TO||%§( ||7T||L2 0,6:L2(Qx;L2(0,L; H1(0,1;d))))
(5.19)

Ciy . Cha ke - -
+7||7T\|%2(o,t;L2(QE;LZ(O,L;H1(0,1;d)))) < 2/0 /06 MRy dX d2dr,

for all ¢ > 0. By a density argument, we can show that this inequality also holds if ¥(t) = z(t) ® ((¢),
with z € L%(0,T;L?*(Q)), ¢ € L*(0,T;L*(Q)), and mp = 20 @ (o, with zg € L3(Q) and (o € L*(Q).
Finally, still with a density argument we can establish inequality (5.19) for all 1» € L'(0,T; L?(O)) and
all Ty € L2(O). The theorem clearly follows from (5.19) and (5.13). O
5.4. Differential Riccati equation

Now, we define weak solutions to equation (5.9).

Definition 5.1. A function = € L*(0,T; L2(0)) N L?(0,T; L*(Qx; L*(0, L; H*(0,1;d)))) is a weak solu-
tion to equation (5.9) if it is a weak solution of system (5.12) in (0,T) with

WK&EZ—/WQWWWJ&EW@K&m@+¢W£%
Y

where ® is defined in (5.8).

Theorem 5.5. Let my be in L7(O). There exists t > 0, depending on ||®|| 120y and ||mol|r2(0y, such that

system (5.9) admits a unique weak solution 7 that belongs to the space

7

L?(0,8 L*(Qx; L(0,L; H'(0,1;d))) N C([0,]; L2(0)) .

Proof. Let M > 0 be a constant such that | ®|120) < M and |[mol|z2(0) < M?/(2C6)Y/?. Let £ be the
constant defined by

M2, 3+3v2

max (9]\440201”1)”2 )75 + Cgi 7

2v/2 -1 1
20532 M2 2 7 ) = min (2212 1)
142 2

where C7 and C, are the constants appearing in (5.21) and (5.22). Let us set
By = {7r e O([0,4; L2(0)) N L2(0, % L*(Qx; L2(0, L; HY(0,1; d)))),

7]l Lo (0,:L2(0)) + 17l L2 0,822 (@x5L2(0,L: H (0,1:)))) < 3M2} -



TITLE WILL BE SET BY THE PUBLISHER 21

Equipped with the metric corresponding to the norm:

FEys is a complete metric space. Let v be in Ejy, then

Neeo,z2(0)) + I+ 2200,522(0x;02(0,;1 0,130)))) »

P(t, X, E) = —/ b(s,0)|?v(t, 5,0, E)v(t, X, 5,0) ds + ®(X, Z)
8!
belongs to L'(0,%; L2(0)). Due to Theorem 5.3, the equation

= A%+ ALm — / b(s,0)[*v(t, X, 5,0)v(t,s,0,Z)ds + ®(X,Z) in (0,T), (5.20)
. :

7(0,) = 7o,
admits a unique weak solution , in L>(0,#; L2(O)). Due to Theorem 5.4, this solution also belongs to
L2(0,%; L*(2x; L?(0, L; H'(0,1;d)))). Let us show that the mapping ¥ : v +— m, is a contraction in

FEs. The proof is divided into 2 steps.
Step 1. Let us show that ¥ is a mapping from Ej; into Ej;. With Theorem 5.4, we can write

2|\ ()1 720y + 1701720602522 (0,15 (0,1:0))) < Co

t
/ /m, {/ b(s,0)|?v(T, X, s,0)v(r, 5,0, E) ds] dXd=dr
0o JO ¥

t
/ / (7, X, 2)® (X, E) dX d= dr
0o JO

+Csllmol|72(0y + Co

)

for all ¢ € [0,¢]. With Hélder’s inequality, and due to assumptions on @ and 7, we have Cs||mol|2, ©) <
M*/2 and

Cs

< Cst||my || e (0,:L2(0)) | 2|

t
//’NU(T,X,E)‘I)(X,E) Xd=dr L2(0)
0 JO )

d
1
2

_ 1
< Cgtl|my |l e 0,5:02(0)M? < SCEPM* + §H7Tv||%oc(o,£;Lg(0))~
With a trace theorem we have

|b(s70)\2\v(7, X, s,0)| |v(r,5,0,2)|ds

5 (5.21)
< 03\\b||§o||v(7a " E)||L2(0,L;H1/2+€'(0,1;d))”'U(Tv X, ')||L2(0,L;H1/2+€/(0,1;d)) )
for all ¢’ > 0. (The constant C,, depends on ¢’ > 0.) Thus we can write
| 6 0Plutn0. ot 5,0. ) s
Y L1(0,5L2(0))
< OISV L2 0,622 (00 s L2001 /24 0,150)))) -
With the interpolation identity
[£2(0, & L?(Qx; L*(0, Ls H'(0,1;)))), L%(0, & L (Qxs L2(0, Ly L2(0,1)))] 5y 4o
= L*7°(0, 6 L*(Qx; L*(0, L; HY/2H/(729) (0, 1;d))),  O0<e<1,
we have
[+l a—e 0,522 (2x 1 L2 (0, Ls HV /242 /529 (0,1:a)))
(5.22)

< - ||2/(4j€) |- H(275)/’(478) f
- L2(0,;L2(Qx;L2(0,L;H(0,1;d)))) L=>(0,t;L2(Qx;L2(0,L;L%(0,1))))
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Setting &’ = ¢/(8 — 2¢), from Holder’s inequality it follows that

_ _2—¢
HU”LQ(O,E;L'Z(QX;L2(07L;H1/2+5'(071;d)))) < [¢]3E=9 ”U”L4—E(O,E;L2(Qx;L2(O,L;H1/2+E/<8—2€>(O,I;d))) .

Thus, we obtain

|b(5,0)|2|’0(', '75707 )| |v('3530a )| ds
. 4/(4 ) ponE©en (4—2¢)/(4—¢)
:L2(0,L;H1(0,1;d)))) HU”Lc>o 0,5 L2(Qx;L2(0,L;L2(0,1))))

< C2||bl12,CH17| =

< 9M* C2 b2, C31H =

From the previous inequality, it yields

t
//Wv [/b(sa0)|2U(T,X7570)U(T,8,0,E)ds] dXd=dr
0 JO ¥
=G /|b(370)|2v(5’0")v(8’0")ds 170l Lo (0,522 (0)
7 LY(0,5L2(0)) (5.23)

- 2=
<9M* CﬁHbIIiC?CaIt\“*E IIWUHLoo(o,f;Lg(o»

Cs

1

1
< S81MP CL|Ib||S.Cr CE §||7TUH%°°(O,{;L§(O))'

DO

Collecting together the previous estimates we arrive at

2|\ (2) ||2L§(o) + || ||2L2(0,t;L2(QX;L2(O,L;H1(O,l;d))))

232 4 M4 8 4 4
C22M* + — + 81M CHIplL.ciczy

<
- 2

<+ ||7TUHL°<>(0tL2(O))

N |

Therefore we have

2 12?4M4 1 8 ~And 427 A2
7117 0,8:02(0)) < SCet™ M+ —— + 5 81M Gl CrCslt == |,

2
17122 0,22 @22 0, Lorrr sy < (CREM* + M* + 81LM® CHb|l3,CHCRI %),

and
7]l o< 0,:22(0)) + 17l 220, L2 (x5 220,171 (0,150))))

1+ +v2 - =\ 1/2
< J(Cg M4+M4+81M804Hb||4 CIC6|t|4fZE)
\/>
1+\[ 2 2 4 ~2 2 2
< € <
7 (O EM? + M? 4+ 9M* C2|1b]|2, C2C4E 7= )73M,

provided that ¢ obey the condition:

2. _ 2v2 -1
OMAC2C2||b|12 17 + CetM?) < 22— M2
(o0 CCHIBIE A= + CotM?) < S=—s

Thus we have proved that 7, belongs to Ejy.
Step 2. Let m; and my be two solutions to system (5.20) respectively associated with v; € Ej; and
vy € Epy. The function (71 — mg) is the solution of

my —my = A% (m — m) + AL(m —m2) +¢  in (0,7), (m —m2)(0) =0, (5.24)
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where
P, X,E) = —/|b(s70)|21)1(t,S,O,E)(vl(t,X,s,O)—vg(t,X7s70)) ds
Y

+/ |b(s,0)\2(v2(t,8,0,5) —v1(t,5,0,2))va(t, X, 5,0) ds.
v

With the same estimates as in step 1, we obtain

’ / b2(112 —v1)va ds
¥

_2-c
< 3CFC2MP[E 7= ||b]|2, ([lvr — va2ll Lo (0,6:22(0)) + llv1 — vall 20512 (0x x (0,L): 1 (0,1:d))))-

/b2v1 (v1 — vg) ds
¥

"

L1(0,5L2(0)) L1(0,tL2(0))

With Cauchy-Schwarz inequality and with Theorem 5.4, we get
2)(m1 = m2) (Ol 20y + 171 = T2l 200,422 (00 % (0,2): 7 (0, 1:0)))
< 39030}1031‘44”5”@0@% ([lor = v2ll L= (0.5:22(0)) + llv1 — Uz||L2(o,£;L2(QXx(o,L);Hl(o,1;d))))2
Hlm = mallie 0,702 (0)) -
for all ¢ € [0,7]. Thus, we have
171 = 72l 2 0,5.22(0))

2
906OIC4M4Hb”4 (||U1 — V2| Lo (0,5:02(0)) + lv1 — v2ll 20,502 (0x x (0,510, 1:0)))) >

2
171 =72l 2 0.2:L2 (0 x (0,L): 7 (0.1:0)))

2
(||v1 — vl pe(0,502(0)) + v — v2ll 20,502 (0x x (0,);H1 (0, 1:0)))) >

1
< 5903(1}*(1;*]\44Hb||
and

|1 — 2|l Lo (0,5:22(0)) + 171 — T2l L2(0,5:L2(Qx x(0.L):H1 (0,1;:d)))
_3+ 3f

2-¢
S CeCTC2MP b2, |77 ([Jor — vall L 0,6:22(0)) + 101 — v2llL2(0,6.02(2x x (0,0):1(0,150))) ) -

By definition of £, we have

3+3\/ 3+3f

V2

SN R OO M2 | STV RO CRCE M |[b|| % 7] E <

N |

therefore, it yields
171 = mallLos (0,522(0)) + 171 = T2llL2(0,6:02 (Qx x (0,2); 11 (0,1:4)))
1
< 5 (o = vallpemrzion + lor = w2l 702 (@ <0,y 0 1)) )

Thus the mapping ¥ : v — 7, is a contraction in the complete metric space Ejs, and equation (5.24)
admits a unique weak solution 7 in Ej;. O

Theorem 5.6. In addition to assumptions in Theorem 5.5 we assume that m in L3 (O). Then the
solution 7 of equation (5.9) belongs to C([0,1]; L%(O)).

To prove this theorem, we have to establish different lemmas.
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Lemma 5.5. Let 7 be in [0,1), and u € C*([r,#]; L?(0,L)). There exists a sequence (f,)n in C*(|r,1];

L2(Q)) such that
t t
bfngof/ /bugp <
Q T J

for all ¢ € L*(7,t; L*(0, L; H'(0,1;d))).

C
W”50”L2(T,E;L"’(O,L;Hl(o,l;d))) Null L2(r,5:2(v)) 5

Proof. Let 6 € C2([0,1)) be such that 0 < § and fo y)dy = 1. Let us set

fu(t,z,y) = nB(ny)u(t, z)L,(x).

For n > 2, we have

/Tt bfno— /t/b(~70)u<p /:[{ (u/ol nO(ny)(b(x,y)go(t,x,y) - b(~,0)g0(t,x,0))dy)dx dt
< / / |u|/ né(n / ‘a(gf(t,x,g)‘dg)dy)dxdt
|u|/ (n) / g)f)( ,x,C)’dC)dn)da:dt

g// |u|/ /‘8(;;0)(15,%@)‘2(1();dn)dxdt

< 1/2 lellz2(rz02 0,5 (0,1:00) 1%l L2 (772 (1) -

<

O

Lemma 5.6. Let ¢ be in C([7,1]; D(A% %)), mo € D(A% %), and m be the solution of

—m' = Axm+ A+ in(1,t), w(f)=mo,

where T € [0,1). Let u be in L*(1,t;U), 29 € L*(Q), and z be the solution to equation

2= Az+ B(1yu) in (71,1), 2(1) = 2. (5.25)
Then w and z obeys the following identity:
// "(t,X,2) + Ax =7(t, X, B)) z(t)®z(t)=/7roz(t')®z(t‘)

_ © (5.26)

i
—/ w(T) z0®z0+2/ /b(s,O)u(t,s)/ m(t,s,0,2)z(t,2) d=ds dt .
(@] T Jy Q

Proof. We ﬁrst prove the identity when u belongs to C*([r,#]; L?(0, L)). Let (f,)n be the sequence in
CY([r,]; L*(£2)) defined in Lemma 5.5, and (20, )» be a sequence in D(A) converging to zq in L*(Q). Let
us denote by zn the solution to
Z/ :Az_bfna Z(O) = 20,n -

As in Lemma 6.2 we can show that the sequence (z,), is bounded in L*°(7,t; L?(Q)) and in L?(r,;
L?(0,L; H'(0,1;d))), the sequence (yv/azy), is bounded in L°°(0, L; L?(7,%; L?(0,1))), and all the se-
quence (2,),, converges to the solution z of equation (5.25) for the weak-star topology of L (7,#; L?(12))
and the weak topology of L2(7,t; L?(0, L; H(0,1;d))). Moreover, z belongs to C([r,]; L*(f)), we can
show that, for every t € (7,%], (2,(t))n converges to z(t) for the weak topology of L?(Q). Since bf,
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belongs to C*([7,t]; L*(2)), we have z, € C([r,t]; D(A)) N C'([r,#]; L*(R)), and 7 € C([r,#]; D(A% =)) N
CL([r,1]; L2(0)), we can write

/ / "(t, X, E) + Ax =7(t, X, E)) 2n(t) @ 2 (1)

// D) ® 2t // £) Ax zn(t) ® za(t // t) ® Azzn(t)
// 1) @ zp(t // (t, X, E) 2, (t) @ 2, (t // (t, X, Z) 2 () ® 21, (t)
+/ / bfn(t,X)w(t,X,E)zn(tE)—|—/ /bfn(t,E)ﬂ(t,XE)zn(t,X)

:/Oﬂ'ozn(f)@znf) / 2’0n®2’0n+2//bfntX) (t, X,E)zn(t, 5).

Let us pass to the limit when n tends to infinity in the above identity. For every ¢ € (7,t], (2,(t))n
converges z(t) for the weak topology of L?(€). Thus

lim (zn(t)®zn(t))(ga®<):/O(z(t)@)z(t))(ga@C),

n—oo @)

for all ¢ € L?(Qx), and all ¢ € L?(Qz). Since L?(Qx) ® L*(Qz) is dense in L?(O), we obtain

lim [ (2a(t) ® 2a(2) =/ (2() @ 2(t)) ¢

for all ¢ € L?(0). In particular we have

lim (7' (t) + Ax =7 (t)) 2n(t) ® zn(t) = /O (7' (t) + Ax =7 (t)) 2(t) @ 2(t)

n—oo O

for almost all ¢ € (7,¢). Moreover

/O (7'(t) + Ax 27 (1)) 2 (t) ® Zn(t)‘ < et ez #nllie (r 2@y < Cll(E ) c20) -

With the dominated convergence theorem we can write

lim Tt (/O (7' () + Ax =m(t)) 2 (t) ® zn(t)> dt = /: (/o (7' (t) + Ax =m(t)) 2(t) @ z(t)) dt.

From Lemma 5.5 it follows that

t
/b(s,O)u(t, s)/ 7(t,,0,2)z,(t, E)d= dsdt
¥ Q

bfntX/ (t,X,E)zn(t,E)dEdth—/

1/2 llull L2202 (7)) H/ e E)zn (-, B)dE

L2(7,8L2(0,L;H' (0,1;d)))

< plulleearzonlmlleee gz ez o.na ool ¢z os)) -

Therefore identity (5.26) is established when u belongs to Cl([r,#]; L?(0,L)). When u belongs to
L?(t,t; L*(0, L)) we recover identity (5.26) by a density argument. O
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Lemma 5.7. Let m be the solution to equation

-’ = Am + ALm — / b(s,0)|?m(t,s,0,E)m(t, X,5,0)ds +® in (7,1),
v

(5.27)
W(ﬂ =T,
where T € [0,t) and o € L2(O). For all u € L?(0,00;U), 2o € L*(Q), we have
/ / X)z ( E)dXd=dt + = / /|u|2dsdt+ /woz(ﬂ@@zo
(5.28)

dsdt,

u(t, s) fbs())/ m(t,s,0,2) 2(t, Z)

where z is the solution to equation (5.25).

Proof. Let 7 be the solution to equation (5.9). Setting 7(t) = 7 (t—t), we can verify that 7 is the solution to
equation  (5.27). Let (¢¢)¢ be a sequence in C([r,f];D(A%L)), converging to
7f7 |b(s,0)|?n(t,5,0,E)m(t, X,5,0)ds + ® in L*(1,£; L2(0)), and (moe)e be a sequence in D(A% %),
converging to my in L2(O). Let m; be the solution to

p = Axme + Afme + e in (1,t), me(t) = moe. (5.29)

With Lemma 5.6 applied to my, we can write

i
/71'07@2(5)@2'(@—/ e (T) zo®zo—|—2/ /b(s,O)u(t,s)/W@(S,O,E)z(t,E)dEdsdt
o (@] T Jr Q
£
- / / ()1, X, Z) + A smalt, X, ) 2(t) © 2(t) dX d= dt
T JO

3
_—/ /W(t,XE)Z(t)®z(t)dXdEdt.
T JO

By passing to the limit when ¢ tends to infinity, we obtain:

/Wozf)@)zf) / zo®20+2// (s,0)u ts/ 7(s,0,2)z(t,2) d=ds dt

sO/ (5,0, X)z(t, dsdtf// X)z(t,2)dXdEdt.
Thus we have

t
// X) 2(t, :)dXd:dt+;/ /|u| dsdt—i—%/ﬂ'ozt_)@zt_)d)(d_‘
o
:5/ ()zo®zo+//\uts dsdt — //bsO tS/?TSO,_ t,2)d=dsdt
Q

so/ (5,0, X)z(t, X)

_1/() ® _‘_,
—207'('7'20 20 9

The proof is complete. O

dsdt

2

u(t,s)—b(s,O)/W(t,s,O,E) z(t,E)| dsdt.
Q

Let 7 be the solution of equation (5.27), and consider the evolution equation

2= Az — B(1,B*Ilz) in (1,1), 2(1) = 20, (5.30)
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where

B*1Iz(s,t) = fb(s,O)/ 7(t,5,0,2)2(t,E)d= for s € (0,L), t € (1,1).
Q
Weak solutions to equation (5.30) are defined as weak solutions to equation
Z'=Az+ B(1lyu) in (7,1), 2(1) = 29, (5.31)

when u = —B*Ilz. This is meaningful because if z € L?(7,t; L*(Q2)), then 1.,B*Ilz € L?(7,t; L*(0, L)).

Lemma 5.8. Equation (5.30) admits a unique weak solution in L>(,t; L*(Q2)). Moreover this solution
also belongs to L?(7,t; L*(0, L; H(0,1;d))).

Proof. We first show that equation (5.30) admits a unique weak solution in L*(r,#; L?(f)), for some
t > 7, by using a fixed point argument. We need an estimate of the solution z of equation (5.31) in the
case when u € L2~ (7, 1; L2(0, L)) for some &’ > 0.

Step 1. Estimate for the solution to equation (5.31). We use the technique in [7, proof of Theorem 6.6]
and an approximation process. Set f,(t,z,y) = nl 1)(y)u(t,z)L,, where 1, 1) is the characteristic

function of (0, 2). Let us denote by z, the solution to
2=Az—bfn, 2(1) =20,
and ¢, = e ¥z, be the solution to
¢ = AC— e " £, C(r) =eFoz.

From [7, Inequality 6.4], it follows that

//cngy, dgdy”// K o6 y)2 dEdy + //acna:y,>dyd9
L

dy Ay

t 1 xT
< / / / Kb . ¢, de dy b,
T 0 0

for all t € (,t) and all z € [0, L]. We have

S e+ ha)(2) de dy o (5.32)

x t px 1/n
e—’ffbfngn dgdyde‘ = ‘/ / e—kéu(g;,e)n/ b, dy dE do
T 0 0
< ||UHL3 S r L0, L))Hbg’n||L4*€(T,E;LZ(O,L;LW(O,1/2))

< Ollull | 4= 1¢all

1y, e
=< (r,5;L2(0,L)) LA—<(r,5;L2(0,L;H 2 T 52 (0,1;d))

2/(4—¢) (2—€)/(4—¢)
< CH“” ﬂ FEL? || Cn”L? 7, 8L2(0,L;H1(0,1; d))HbC”||L°°(T,E;L2(O,L;L2(O,1))

c? 2 2 o 2
< *HUHL3 £ EL20.L)) 5”CﬂHLZ(T,t_;LQ(O,L;Hl(0,1;d)) + 5||CnHLoo(T,t‘;L2(o,L;L2(o,1)) ;

for all @ > 0 and 0 < € < 1. With (5.32) and with Lemma 2.1, we obtain

1 Cq
*||Cn|\%oo(f,{;L2(sz)) + 5||\/5Cn||Loo(o,L;Lz(T,t';N(o,l))) + 7”CﬂHLZ(T,f;LQ(O,L;Hl(0,1;d)))

3C 2 3 3o

||UH2 ||Cn||L2(T,t,L2(o LiE 0,10) T 5 HCH”%00(T,E;LZ(O,L;L2(O,1)))

4—e
L3-= (1,t;L2(0, ))

3 1
+- / / e zoﬁy d€ dy .
2 Jo Jo
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Thus, choosing « suitablely, we prove that there exists a constant C' > 0 such that

1Gnll oo (r.2:220)) + IV aCallLoo (0,202 (r 1:22(0,1))) + ICnllL2(r 220,001 0,1:0)))

< C(Jlull s + 2ol 2@ ) -

L3=5 (r502(0,1))

By passing to the limit when n tends to infinity, we recover the same estimate for ¢, and next for z. Thus
we have

2/l Lo (r,7:L2()) + Va2l 0,0:L2 (. 522(0,0))) + 12l L2 (502 (0,257 (0,1:0)))
(5.33)
< O (Jlull oo (rizeo.ny + ollz)
for some ¢’ > 0, and where C7 is independent of 7 and ¢.

Step 2. Existence of solution to equation (5.30). If v belongs to L>°(r,t; L?(Q)), then from calculations
in the proof of Theorem 5.5 it follows that

| B*I1v|| 2o (rE:L2(0,L)) = C'8|t—7|2 TNl Lo (r 822 (0)) 5 (5.34)

for some constant Cs depending on ||¢]|2(q), but independent of 7 and ¢. We choose t > 0 such that
C; Cslt — 7|77 < 1/2. Let v be in L®(7,; L%(Q)) and 2z, € L>(r,{; L2(2)) be the solution to

2= Az — B(1,B*Ilv) in (1,%),  2(0) = 2.

Let us denote by ¥ the mapping v — z,. Let v; and vg be in L>(7,#; L2(2)). With (5.33) and (5.34) we
have

20, — Zv2||Loo(T,£;L2(Q)) < C7 CS\f— T2 [Jug — UzHLoc(r,t‘;Lz(Q)) .

Since C7Cs|t — 7|77 < 1/2, W is a contraction in L°°(7,#; L?(Q2)). Thus equation (5.30) admits a unique
solution z € L>®(7,#; L?(Q)). If z € L>®(r,; L?(Q)), with (5.33) and (5.34) it follows that z belongs to
L?(7,t;L?(0, L; H'(0,1;d))). We can repeat the fixed point argument on (7, 2f — 7) in the following way.
Let us set

E= {v € L(7,2f — 7); LA(Q) | vl 15y = z} :

where z is the solution of (5.30) in (7,%). Step by step, we prove that equation (5.30) admits a unique
solution in L>(7,#; L*(2)). Observe that 1.,B*rz belongs not only to L2~ (r,; L?(0, L)), but also to
L3(7,t, L?(0, L)). O

Proof of Theorem 5.6. Let m be the solution to equation (5.9). Let us show that # > 0. Let us set
#(t) = w(f —t). We verify that 7 is the solution to equation (5.27). Denote by II the operator whose
kernel is 7. Let z be the solution to equation (5.30). We can apply Lemma 5.7 to z with u(t) =
1, B*TIz(t) = 1, b(s,0) ) Jo, (X, 5,0)2(X,t) dX, and we get

1

= F()ZQ@Zo—% 7o 2(t) ® z(t)
o

A Lo

Since m € L2 (O) we have

[I]

ydXd= dt + - //|B*ﬁz| ds dt.

[rE-nmsa=[ #0000z [ n@o:020.

for all 7 € [0,%). The proof is complete. O
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Theorem 5.7. The solution w to equation (5.9) exists over the time interval (0,00) and satisfies

7]l Lo (0,002 (0)) < C (1@l 220y + lImo0ll L2(0)) -

Moreover, there exist two constants Cg and Cig, independent of T > 0, such that

||7T||2L2(0,T;L2(QX ;L2(0,L;H1(0,1;d))))
(5.35)

8—3¢ 8-3

<CyT <¢>||ig<o> + lmol22(0) + 121 22y + limol @) + CuollmolZ2(o)

for allT >0 and alle > 0. (Cy depends on € > 0.)

Proof. We argue by contradiction, we suppose that there exists a maximal solution which is not a global
one. Let [0, T),qe| be the maximal interval such that, for all € [0, T, [ equation (5.9) admits a solution
7 in L>(0,%; L2(0)) N L2(0,¢; L*(Qx; L?(0, L; H(0,1;d)))) and

limg_r,,.. (17l 0,5:02(0)) + 17l L2(0,5:L2(00x:L2 (0, L3171 (0,150))))) = O©- (5.36)
Let 7y be the solution to the Lyapunov equation (5.12) corresponding to
P(t, X, E) = (X, 5).

We can verify that m, — 7 is the solution to Lyapunov equation (5.12) corresponding to
U(.X.2) = [ [bls, 0Pt 5,0, Z)(t, X, 5,0) ds = 0.
¥
From assertion (iii) in Theorem 5.3 it follows that my(t) > m(t) for all ¢ € [0, Tynas[. We have

Il 22 s z2my) = sup{ / sup{ | w1 eleion - 1} 2dX | 2l o) = 1}
X =

= sup{/ 72 ®CdXdZ | |[Cll2z) = 1, |2l 12(02) = 1} ,
o

and
1 1
[reoq<i[1e+00Gra+; [16-006-0
O 4 (@) 4 O
1 1
<;[mGe+oeerg+] [ me-006-0
O (@)
<3 2 2
> 2||7Te|\Loo(o,oo;L§(o)) ||Z||L2(QX) + ”CHLZ(QE) :
Thus
7]l o (0,Tmans2(0)) < Climell Lo (0,00522(0)) < C (1l 22(0) + 70l L2(0)) - (5.37)
Therefore we have
(71 Lo (0, Tymae: L2 (0)) < OO (5.38)

and
limg .. 17l L2(0,5:02 (@x:22(0,L517 (0,1:)))) = O©-
Now, as in the proof of Theorem 5.5, we can write

2H7T(T)||%g(0) + HWH%2(0,T;L2(Qx;L2(0,L;H1(0,1;d))))

< Co T 7l o,1;2 0 1Rl 20 + CollmollZ2 0

o 4-2¢

+Co 1717 0.1:12(0)) [030? IS IT 5= ] 2o, 00522 o) 1| £2 {07322 20, 51 0,5 | -
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for all 0 < T < Tppae- With Young’s inequality and with (5.37), we obtain

17012 20,7: L2 (00 22 (0,112 (0, 1:0)))

< Co TI7ll7 o 07,020 |2l 22(0) + Collmoll 7200y

+[Cﬁ CICEIIbIIZ ks HWHLN(OooLQ(O))HTFHLQ(OTLQ(QX ;L2(0,L;H(0,15d))))

<CeT ||7T||Loo(oT L2( ))||‘I)HL§(O) + CG||7T0HL§(O)

4—e

(4 2—¢
+(4 gfz) [06 C2C7 [|b]|3, 1T = ||7T||Loo(o o3 L%O))} + 5170320 7020 22 (0,151 (0, 1:0))))-

Thus with (5.37) we obtain

17022 0,722 (2 s22 (0,1 (0,1:00))

3e 3
<G (18130, + Imolizior + 1215, + Il 55, ) + Cuolmol o

By passing to the limit when T' tends to Tyuq., We obtain a contradiction with (5.36). Thus we obtain
the existence of solution for all 7' > 0, and the estimates in the theorem are already proved. O

5.5. Algebraic Riccati equation

By studying the asymptotic behaviour of the solution to the differential Riccati equation (5.9), we
prove the existence of a solution to the algebraic Riccati equation (5.9). Let ¢ be in L2(0O), the solution
to equation

m€D(AgE), Axm+Azm+¢ =0, (5.39)
is explicitely defined by

o0 * *
™= / elAx etAEw dt.
0

Moreover to give a meaning to the nonlinear term in the Riccati equation (5.7), we have to look for
solutions 7 such that the trace of m on v x {0} x Q= and on Qx x v x {0} are well defined. Thus it is
natural to define solutions to equation (5.7) as follows.

Definition 5.2. A function 7 € D(A$ L) N L2(Qx; L2(0, L; HY(0,1;d))) is a weak solution to equation
(5.7) if it is solution of equation (5.39) with

P(X,E) = —/ |b(s,0)|?7(s,0,Z)7(X, 5,0)ds + ®(X,Z) .
vy

Remark 5.1. Observe that if m € D(AxZ) N L2(Qx; L2(0, L; HY(0,1;d))), then © € L*(0,L;
HY(0,1;d)); L*(Q=)). Moreover, if m € L*(Qx; L*(0,L; H*(0,1;d))) N L?(Q=; L?(0, L; H'(0,1;d))), then
the term fy b(s,0)|?7(s,0,Z)7(X, 5,0)ds belongs to L2(0). Thus Definition 5.2 is meaningful.

Lemma 5.9. Let (mo.,)n be a sequence in L2(0O) and let mo ~ belong to L2(0). We assume that, for all
n, m>n, Ton < Tom < To.0o and that, for all { € L*(Q), (fQX 70,.nC)n converges to fﬂx moC in L*(N=).

Let m, (respectively mo) be the solution to equation (5.9) corresponding to the initial condition m
(respectively mo o). Then, for all T > 0 and all zy € L?(Y), the sequence (fo Tn(T)20 ® 20)n converges

to [, m(T)z0 ® 2.

Let us notice that if (fQX 70,n()n converges to fﬂx 7o¢ in L?(Qz), then (fQE 70,n()n converges to
Joo m0¢ in L?(Qx ) because mg , and 7 belong to L2 (0).



TITLE WILL BE SET BY THE PUBLISHER 31

Proof. Let m be the solution to (5.27) with (7,%) = (0,7) and «(T) = 7, and let 7, be the solution to
(5.27) in (7,t) = (0,T) corresponding to the terminal condition m, (1) = 7. To prove the lemma it is
sufficient to establish that

lim T (0) 20 ® 29 = / 7(0) 20 ® 2p.

Let us introduce the control problem
(QF.,) inf{IoT (z,u) | (z,u) € L2(0,T; Z) x L*(0,T;U), (2,u) satisfies (5.40)},

where

1T (2,u) / / 2(1, X) 2(7,2) dXdZE dr + = / /W f/woz(T)@)z(T),

2= Az + B(1,u), 2(0) = 2o, (5.40)

and let us consider the family of control problems

and

(Qan’%) inf{lg:n(z, u) | (z,u) € L*(0,T; Z) x L*(0,T;U), (2,u) satisfies (5.40)}7

where

1 (T 1
1§, (2,u) = / / 2(1, X) 2(, )dXdEdT—&—f/ /|u|2+7/ Tomz(T) @ 2(T).
2 Jo J, 2 Jo

Let us denote by ¢(T, zg) the value function of (Qf ., ) and by (z,u) its optimal pair. Similarly, we denote
by ¢, (T, zp) the value function of (QoT,n,zO) and by (2, u,) its optimal pair. From Lemma 5.7, it follows
that (z,u) and (zy,,uy) obey the feedback formulas

u(t, s) = b(s, 0) / (t,5,0,5) 2(£,Z)d= and  un(t,s) = b(s,0) / (b 5,0,Z) 20 (1 Z) =,

and the value functions satisfy
1 1
o(T,20) == | m(0)z0®20 and ©,(T,20) == | 7 (0)20® 2.
2Jo 2Jo
We are going to show that (u,), converges to u in L*(0,T;U). First, since we have

Ig:n(znv Un) S Ig:n(za U),

we notice that the sequence (uy), is bounded in L?(0,T;U) and that, from any subsequence, we can
extract another subsequence, still indexed by n to simplify the notation, weakly converging in L2(0,7T;U)
to some @. Let us denote by Z the solution to (5.40) corresponding to @. We can easily see that (z,)n
converges to z for the weak topology in L?(0, T’; Z) and that 2, (T") converges to z(T) for the weak topology
of Z. Thus, by passing to the inferior limit when n tends to infinity, we obtain

I, no( a) < hmmfIOn (zn,upn) < hmlanOn(zn,un) < lim IOn(z u) = I (2,u),

n—oo n—oo n—oo

where ng € N is given fixed (here we have used that 7 ,,, < 7, when ng < n). Next by passing to the
limit when ng tends to infinity, we obtain

IF(z,a) = lim I] no(z, a) < I (z,u).

n—oo
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Thus If(z,a) = I¥(z,u), 4 = u, Z = z, (u,), converges to u in L2(0,T;U) and (z,), converges to z in
C([0,T); Z). Therefore

1 1
lim ¢, (T,20) = lim - [ 7,(0) 20 ® 20 = p(T, 20) = 5/ m(0) 20 ® 2o.
n—oo n—0oo o @]
The proof is complete. O

Theorem 5.8. The algebraic Riccati equation (5.7) admits at least one solution w in the sense of Defi-
nition 5.2, and it satisfies:

8—3c
71 o oman < € (19100 + 121330 + 191565, ) - (5.41)

Proof. Step 1. Let 7 be the solution to equation (5.9) corresponding to my = 0, and 7. be the solution
to equation (5.9) corresponding to 7.(0) = 7(g), € > 0. For all t > 0 and zg € L?(2), let us introduce
the control problem

(P ..) inf{Jg(z,u) | (2,u) € L2(0,t; Z) x L*(0,t;U), (2, u) satisfies (5.42)},

where
1/ 1/
Ji(z,u) = 7/ / ®(X,2)2(1, X) 2(1,E) dX d= dr + 7/ / ul?,
2 0o JO 2 0 Jy
and
2= Az + B(1,u), 2(0) = zo. (5.42)
Let us denote by ¢(t, z9) the value function of (Pf ). From Lemma 5.7 it follows that

1
olt20) = 3 / (t) 20 ® 20.
(@]

Since (t + €, z0) > ¢(t, 29), we have

/ m(t+e)z0® 2o :/ me(t) 20 ® 29 > / 7(t) 20 ® 20.
o o o
Thus the mapping ¢t — [, 7(t) 20 ® zo is nondecreasing. We denote by II(f) € L(L?(2)) the operator
defined by:
(II(t)2)(X) = /Qw(t,X, E)z(E)d=.
Since [|7]| Lo (0,00;22(0)) < 00, and

(1(0)2,€) oy = 1 (TG + 0, 2+ O) ey — TG =0 (= D) gy (5:43)

we have
jggl(ﬂ(t)z,c)m(ml < 00,

for all t > 0, 2 € L?*(Q), and all ¢ € L?*(2). Applying the Banach-Steinhaus Theorem, we deduce
that sup H (H(t)z, ~)L2 H,C(L2(Q)) < o0. Applying another time the Banach-Steinhaus Theorem, we obtain
t>0

§1>113 H (I1(t)-, ~)L2 HL(B(Q)XL?(Q)) < 00. Therefore there exists II,,:, € £(L?(2)) such that

lim (H(t)z,C)LQ(Q) = (Hmmz,g‘)m(m. (5.44)

t—o0
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min

is bounded uniformly with respect to ¢ € RT, thus we have

Since II(t) = IT*(t) > 0, it follows that I, = II%,;, > 0. Let us notice that [|(Lnim — II(£))Y2|| £(r2(0))

H(Hmin - H(t))<”L2(Q) < OH(Hmin - H(t))l/QCHLQ(Q)a

and with (5.44) we deduce

lim [|(Inip — ()¢ 12 ()

t—o0

: . (5.45)
< C}H&”(Hmm - H(t))1/2C||L2(Q) = thjgo((nmin - H(t))<7<—)L2(Q) =0.

Besides the sequence (m(n)), is bounded in L2 (O). Without loss of generality, we can suppose that
(m(n)), converges to some T, € L3 (O) weakly in L2(0). Thus we also have

lim 7r(n)z®§=/ TminZ @ C.
o

n— oo o

By uniqueness of the limit, we have

/(9 Timin2 & C = (Hmznza C) L2(Q) "

From (5.45) it follows that
lim ||(7min — m(1))¢ || 22(0) = 0.
n—oo
Therefore the assumptions of Lemma 5.9 are satisfied by the sequence (m(n)),, and the Uimit 7.

Step 2. We show that 7, is solution to the algebraic Riccati equation (5.7). Let & be the solution to
(5.9) corresponding to mp = Tmin, Let T be the solution to (5.9) corresponding to mp = 0, and 7,, the
solution to (5.9) corresponding to my = 7(n). By using the dynamic programming principle, we have

Tn(t) =7(t+n), t>0.

Due to the first step, we have

lim 7(n)z®z = lim Tn(0)z® 2z = / TminZ @ 2,

for all z € L2(€2). Due to Lemma 5.9, we can write

Therefore

/ 7(t)z ®z= lim Tn(t)z ® z = lim Tt+n)z®z= / TminZ & 2
for all ¢t > 0 and all z € LQ(Q). Thus, 7 is constant and equal to 7. This implies that m,,;, €
L*(Qx; L*(0,L; HY(0,1;d))), and that

d [ .
0 = 7 O7r(t)z®z
= (Axzw(t)z) + (7(t)z, Azz) L/(D(bﬁ(t)z)®(bfr(t)z)d$+/0'l>(X,E)z(X) 2(2)dXd=,

— (.AXz,wmmz) + (ﬂmmz,AEz) — / / (b minz) @ (bTminz) ds —|—/ P(X,2)z2(X) 2(E) dXdE.
v /O o

Consequently, mp,n is a solution to the algebraic Riccati equation (5.7).
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Let us prove estimate (5.41). With estimate (5.35) for 7 and the fact that 7 is constant with respect
to t, we have

T”’]T”%P(QX;L2(O,L;H1(O,l;d))) - ||7r||%2(O,T;L2(QX;L2(O,L;H1(O,l;d))))
3 3 8—3e 8—3e 9
2—¢ 2—¢
< T (18lE300) + Itminlo + 1B 50, + Imminl ) ) + Cllmin o

Choosing T' =1 and using || Tmin|

r2(0) < C||®]|L2(0), the proof is complete. O

6. FEEDBACK CONTROL LAW

The main objective of this section is to prove that the algebraic Riccati equation (5.7) admits a unique
solution 7 and that (Z,u), the optimal solution to (P, ), obeys the feedback formula

(s,7) = 1, (s) b(s, 0) (/Q (5,0,2)5(r, 2) dE> . se(0,I), rcR*.

To prove this result we first show that if 7 is a solution to equation (5.7), and if IT is the Hilbert-Schmidt
operator of kernel 7, then the equation

z' = Az — B(1,B*llz) in (0,T), 2(0) = 2,
admits a unique solution (Theorem 6.1). Next we show that if
7 = Az + B(1yu), 2(0) = 2o,

then we have (see Lemma 6.4):

1 oo
J(Z’U):i/(gﬁzo®zo+/() /
.

Combining these results we prove that any solution 7 to the algebraic Riccati equation (5.7) obeys

2

u(r,s) — b(s,0) /Q_ 7(s,0,2) z(1,E)| dsdr.

1
f/ T 20 @ 2o = inf(P,,).
2Jo

The uniqueness follows.
To establish such results we have to justify some integration by parts. We do it by using a regularization
argument which is developed in the two following lemmas.

Lemma 6.1. Let u belong to C1(]0,00); L*(0,L)). There exists a sequence (fn)n in CL([0,00); L2(Q))
such that

t t C
b fnp— bup| < =75 llellezo.6020.Lm1 0.1:0) 1l 20,622 (0.1)) »
0 Jo 0 Jy n

for all t >0 and all p € L*(0,00; L*(0, L; H(0,1;d))).
Proof. The proof is similar to that of Lemma 5.5, where C' is independent of ¢. g
Remark 6.1. If we identify B(1,u) with the functional defined in L?(0,00; L?(0, L; H(0,1;d))) by

<p|—>/ /b(s,O)u(t,s) o(t,s,0)dsdt,
0 ol

the sequence (b f)n can be considered as an approzimation of B(1,u) € L?(0,00; L*(0, L; (H'(0,1;d))")).
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Lemma 6.2. Let u be in CL([0,00); L?(0,L)), (fu)n be the sequence in CL([0,00); L?(Q)) defined in
Lemma 6.1, z be the solution to equation

2= Az + B(1,u), 2(0) = zg,
and z, be the solution to equation
2 =Az—bfp, 2(0) = 2 .

Then (zn)n converges to z for the weak topology of L?(0,00; L2(0,L; H*(0,1;d))) and for the weak-star
topology of L>(0,00; L2(2)).

Proof. Let k > 0 be the parameter defined in Lemma 2.1. We set ( = ¢ ¥*z and ¢,, = e *®z,. To prove
the lemma it is sufficient to show that (), converges to ¢ for the weak topology of L?(0, co; L2(0, L; H(0,1; d)))
and the weak-star topology of L>(0, 00; L?(€)). The functions ¢ and ¢, are respectively the solutions to

(= A+ B(lye ™ u),  ((0) = e 2,

and
¢ = A —e*n £, Ca(0) = e P 2.
With [7, Theorem 6.2], we can write

1 2 1 K ! 2 1 k 2
f/ 10! +7/ / aGa(L,y,7) dyd7—7/|e- 0l
2 Q 2 0 0 2 Q
t 1 L an b ”
o Jo Jo 8y

8y8

t 1 L
7/ / / e Ry £ Co da dy dr .
0 0 0

From Lemma 6.1, it follows that

B 4 e +ka)§2) de dy dr

—ka C
e™b fo Ga| < llull 20,220, 1660 | 20,6220, st 0,1:0))) (1 + n1/2) :

Combining the two previous inequalities, with Lemma 2.1, we obtain:

1 —ka
s [aor [ [ eq@pmraar - [ e + Qlalaoumomosm

1 C
< % (1 + TL1/2> HU||L2(o,t;L2(o,L)) 5Han||L2(o,t;L?(o,L;Hl(o,l;d))) ;

for all € > 0. Thus, we can choose € > 0 to obtain:
e’} 1
2 2 2
G llZo (0,00522(02)) +/0 /0 aCn(Lyy, 7)" dy dr + |[CallZ2(0,00:L2(0,; 11 (0,1;4)))

<C (HU%Q(O,OO;L?(O,L)) + /Q |€_ImZO|2) .

The sequence ((,, ), being bounded in L?(0, 00; L2(0, L; H*(0,1;d)) and in L>°(0, 0o; L?(£2)), we can easily
prove that (), converges to ¢ for the weak topology of L?(0,00; L2(0, L; H'(0,1;d)) and the weak-star
topology of L>(0, 00; L2(€2)). O
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Lemma 6.3. Let w be a solution to the Riccati equation (5.7), u € L?(0,00; L?(0,L)), 29 € L*(2), and
z be the solution to equation

2= Az + B(1,u), 2(0) = zo.
Then z satisfies the following identity:
/ / (A% + AZ)7) 2(0) ® 2(t) dX d= dt
0 o

- (6.1)
:7/ 7rzo®zodXdE+2/ /b(s,())u(t,s)/ 7(s,0,2)z(t,E) d=dsdt .
(@] 0 vy Q

Proof. We first prove the identity when u belong to C}([0,00); L2(0,L)). Let (f,). be the sequence in
C2([0,00); L?(£2)) defined in Lemma 6.1, and (20, ), be a sequence in D(A) converging to zo in L*(Q2).
Let us denote by z, the solution to

2 =Az—bf, 2(0) = 20, -

Since z,, € C([0,00); D(A)) N C1([0,00); L3(92)), we can write

T
| s ) 2t @ ()X d=s
0 TO .
:/ /wAin(t)®zn(t)dXdEdt+/ /wzn(t)®Agzn(t)dXdEdt
0 (@) 0 O
T T
:/ /m;(t)@zn(t)dxazzdu/ /mn(t)@oz;(t)dxczadt
0 O 0 O
T T
+/ /bfn(t,X)w(X,E)zn(t,E)dXdEdt—i—/ /bfn(tE)w(X,E)zn(t,X)dXdEdt
0 O 0 O

T
- / 7 2 (T) @ 2 (T) dX d= — / 7 20m(E) 20 (X) dX dE + 2 / / b fu(t, X) (X, Z)2n(t, Z) dX dE dt.
O 0 O

@)

We first pass to the limit when n tends to infinity. As in the proof of Lemma 5.6, we can show that

lim/o /O((A} + AZ)T) zn(t)®zn(t)dXdEdt:/O /O((Aﬁ(—kAE)w) 2(t) @ +(t) dX d2 dt

n—oo

Due to Lemma 6.2, (2,), is bounded in L?(0,00; L2(0, L; H*(0,1;d))), and (z,), converges to z weakly
in L2(0,00; L2(0, L; H(0,1;d))). Moreover, with Lemma 6.1, we have

T T
/ / bfn/ (X, E)zn(t, 2) dEdthf/ /bu/ 7(s,0,2)z,(t,E) d= ds dt
0 JQx = 0 Jy Q=

C

/ (- E)2n(-,Z) d=
Q=

Hu||L2(O,T;L2(O,L)) .

< nl/2
L2(0,T;L2(0,L;H' (0,1;d)))

Since || [, 7(-,E)zn (- E)|l L2(0,1322(0,; 1 (0,1:4))) is bounded, passing to the limit when n tends to infinity,
we obtain

/T/ (A% + AZ)T) 2(8) @ 2(t) dX d= dt
0 (@)

:/Omm@z(T)—/Omo@azo—z/OTAb(s,o)u<t,s)/ 7(s,0,2)2(t, Z) d= ds dt

Q
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when u belongs to C([0, 00); L2(0, L)). Since u € C([0,00); L?(0, L)), due to the exponential stability
on L?() of the semigroup (e**);>, it follows that

lim 72(T)® 2(T) = 0.

T—o0 (@]

Passing to the limit when T tends to infinity, we finally obtain

/ / (A% + AL)T) 2 ® 2dX d=
0 O

:_/Omo(a) zO(X)dXdE+2/000/Yb(s,o)u(t,s)/Qw(s,(),E)z(t,E) d= dsdt .

when u belongs to C1([0,00); L2(0,L)). Let us now consider the case where u € L?(0,00; L%(0, L)).
Since C}([0,00); L?(0, L)) is dense in L?(0,00; L?(0, L)), there exists a sequence (uy), in C1([0,00);
L?(0, L)) converging to u in L%(0,00; L?(0, L)). The solution z, of equation

, = Az, + B(1yuy,), 2n(0) = 2o,

converges to z in L%(0,00; L?(0, L; H'(0,1;d))). Thus we can write the identity (6.1) for z,, and we
establish (6.1) for z by passing to the limit when n tends to infinity. O

Lemma 6.4. Let 7 be a solution to the system (5.7), u € L*(0,00;U), 29 € L*(), and z be the solution
to equation

2 = Az + B(1yu), 2(0) = 2.
Then the cost function satisfies

1 oo
J(z7u):§/o7rzo®zo+/o /
gl

Proof. With Lemma 6.3 and equation (5.7), we can write
f/ 20 ® 20 + 2/ / b(s,0)u(t, s) / m(s,0,2)z(t,2) d=Eds dt
(@] 0 0 Q
- / / (A% + AL)T) 2(t) @ 2(t) dX d=dt

2 %)
b(s,0) / 5,0,5)2(L,Z) d= dsdt—/ /@(X,E)z(t,X)z(t,E)dXdEdt
0 O

/ / 2(t, X) 2(t,E) dXd=dt + - / /|u| ds dt
0 o
= %/ mTzo® 20+ 3 / / \u|2ds dt — / / (s,0)u (/ 7(s,0,2)z(t, =) dE) dsdt

so/ (5,0,2)z(t, E) d=

1
—5/(;WZO®ZO+§ )

The proof is complete. O

2
u(r,s) — b(s, 0)/ 7(s,0,2) z(1,E)d=| dsdr. (6.3)
Q

Thus we have

ds dt

2
dsdt.

u(t,s) — b(s,O)/QW(&O,X)z(t,E) d=

For a given solution 7 to equation (5.7), we consider the evolution equation

z' = Az — B(1,B*Ilz) in (0,00), 2(0) = 2o, (6.4)
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where
B*Iz(t,s) = fb(s,O)/ 7(s,0,2)z(t,E)d=, se€(0,L), t € (0,00).
Q

Weak solutions to equation (6.4) are defined as weak solutions to equation
Z'=Az+ B(1lyu) in (0,7), z(0) = zp. (6.5)

with u = —B*Ilz. This is meaningful because if z € L?(0,T; L*(Q)), then B*I1z € L?(0,T; L*(0, L)).

Lemma 6.5. For a given solution m to equation (5.7), equation (6.4) admits a unique weak solution in
L>(0,T; L?(S2)). Moreover this solution also belongs to L?(0,T; L?(0, L; H'(0,1;d))).

Proof. We first show, by using a fixed point argument, that equation (6.4) admits a unique weak solution
in L°°(0,%; L2(€2)), for some 0 < < T. In (3.5), it is stated that the weak solution z of equation (6.5)
obeys

2] Lo (0,7522(02)) + V@2l Lo 0,0522(0, 22 (0,1))) + 120 200,722 0,251 (0,150 )
(6.6)
< C5(HU||L2(0,T;L2(0,L)) + HZO||L2(Q)) ;

where Cj is independent of T'. If v belongs to L>°(0,T; L?(£2)), then from Theorem 5.8 it follows that

11, B* Tl 20,7220, < Cu T2 (0]l e (0,702 () » (6.7)

for some constant C1; depending on ||@||z2(q), but independent of T. We choose ¢ > 0 such that
Cs C11]H/? < 1/2. Let v be in L>®(0,%; L*(Q)) and z, € L>(0,%; L*(Q)) be the solution to

z' = Az — B(1,B*IIv) in (0,1), 2(0) = 2.
Let us denote ¥ the mapping v — 2,. Let v1 and va be in L°°(0,#; L?(£2)). With (6.6) and (6.7) we have
20, = Zug ||z 0,5:22(0)) < C5 Cr [t/ ?[lor — w2l Lo (0,5:22(02)) -
Since C5Ch1|t['/? < 1/2, U is a contraction in L°°(0,; L*(Q)). Thus equation (6.4) admits a unique
solution in L*°(0,%; L2(2)). If v € L%(0,% L%(Q)), with (6.6) and (6.7) it follows that z belongs to
L2(0,T; L*(0, L; Hl(O 1;d))). We can repeat the fixed point argument on (¢, 2¢) in the following way. Let

us set
E = {v e 10,25 L%(Q)) | vlop = 2}

where z is the solution of (6.4) in (0,%). Step by step, we prove that for all T' > 0 equation (6.4) admits
a unique solution in L>(0,T; L?(£2)) for all T' > 0. O

Theorem 6.1. For a given solution 7 to equation (5.7), equation (6.4) admits a unique weak solution

in Cy([0,00); L2(2)). Moreover this solution also belongs to L*(0,00; L%(0, L; H(0,1;d))) and

121l Loe (0,00522(02)) + V@2 Lo (0,1;22(0,00:£2(0,1))) + 1211 £2(0,00;22 (0,11 (0,1;0))) (©3)
< Csllzoll 220 -

Proof. Let u be in L?(0,00; L?(0, L)), zo € L?(2), and 2 be the solution to equation
2 = Az + B(1yu), 2(0) = zo.

As in the proof of Lemma 6.3, we can show that
T
/ / (A% + AZ)7) 2(0) ® 2(t) dX d= dt
0o Jo

:/Oﬂz(T)®z(T)—/07rz0®zo—Z/OTfyb(s,O)u(t,s)/QW(S,O,E)z(t,E)dEdet.
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Next, as in the proof of Lemma 6.4, we can establish the identity

// X)2(t,E)dX d=dt + = //|u|dsdt+/ 2(T) ® 2(T)

:5/7{'20@20"— u(t, s) —bsO)/ 7(s,0,2)z(t, =) d=

In particular, if u(t, s) = b(s,0) [, 7(s,0,Z)z(t,E) d=, we obtain

2

80/ (s,0,X)z(t, X)dX

dsdtS/ T29® 2p .
1]

This means that the solution to equation (6.4) is such that the mapping (¢,s)
1,b(s,0) [, 7(s,0,E)z(t, 2)dE belongs to L?(0,00; L*(0, L)). Estimate (6.8) follows from (6.6) for T' =
0. O

Theorem 6.2. The algebraic Riccati equation (5.7) admits a unique solution.

Proof. Let (Z,u) be the solution to problem (P,,). Let m be a solution to equation (5.7), and let z be
the solution to equation (6.4) corresponding to m. From Theorem 6.1 we deduce that —1,B*nz is an
admissible control. Due to Lemma 6.4 we have:

and
1 > ?
J(Z,ﬂ):f/wz()@zoJr/ /ﬂ(T,s)—b(s,O)/ 7(s,0,2) z(1,E)d=| dsdr.

Thus

1

J(z,u):J(E,ﬂ):f/ T 20 ® 20,

2Jo

and

() = b(s,O)/g_w(S,o,H) 5(r,5) d=.

Henceforth, there is a unique operator 7 such that

1
f/ w20 ® 29 = Inf(P,,),
2Jo

for all 29 € L%(Q). The proof is complete. O

Theorem 6.3. Let (Z,u) be the optimal solution to problem (P,,). The optimal control u obeys the
feedback formula

a(r,s) = 1. (s) b(s, 0) ( /Q (s,0,2)z(r, E) dE) se(0,L), Te(0,00), (6.9)

where T is the solution to the algebraic Riccati equation (5.7). The optimal cost is given by

1
J(z,a) = 5/07120@)2'0.

Proof. Theorem 6.3 is a direct consequence of Theorem 6.1 and Lemma 6.4. O
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We finish this section by introducing the infinitesimal generator of the semigroup associated with the
optimal solution of problem P. For every zg € L?(12), let us denote by z,, the solution to equation (6.4).
According to Theorem 6.1, the family of operators

(zo — 2, (t))

t>0

is an exponentially stable semigroup on L?(Q2). The exponential stability follows from (6.8) and from
Datko’s Theorem [25, Theorem 3.1(i), Part IV]. Let us denote it by (e/47);>0 and by (A, D(A,)) its
infinitesimal generator. Since (e'7 ), is an exponentially stable semigroup on L?(Q2), the domain D(A,)
is defined by

D(A,) = {/OOO eTAm hdr | € L2(Q)}.

Moreover,
z€ D(A;) and Azz =1,
if and only if

z= —/ ™A dr.
0

We are now going to give another characterization of D(A,).

Theorem 6.4. A function z € L?(Q) belongs to D(A) if and only if z is the solution to the variational
problem
z € L*(0,L; H(0,1;d)),

Az, calculated in the sense of distributions in €2, belongs to L?(),

Az=v¢ inQ, Ty (az, —b%) = —1,(s) b(s,0)2/ (s,0,E) 2(E) dE.
Jy Q

Proof. Let z € D(A;) be the unique solution to the equation A,z = 1, that is to say

z = f/ ™A dr.
0

Thus z is the limit in L2(£2), when t tends to infinity, of the function ((¢) defined by

(6.10)

t t
¢(t) = —/ eT A dr = —/ et=5) 4 ds.
0 0
Observe that ( is the solution to the equation

('=A¢-B(1,BTI¢) —¢,  ¢(0) =0.

Therefore  obeys the following boundary condition

T (ag(t),—bag;t)) — -1, b(s,O)Q/ 7(s,0,E) ((t, =) dE.

Q

We can pass to the limit when ¢ tends to infinity in the above identity, and we obtain the same one for z.
To prove that Az, calculated in the sense of distributions in 2, is equal to 1, we notice that, for all

» € D(Q), we have
d .o
fdt/ﬂc(t)w—/gé(t)fl ® /Q@bcp-

t%/ﬁé(t)w

Thus the mapping
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belongs to C1([0,0)), it admits a limit and together with its derivative when ¢ tends to infinity. Thus
the limit of [, ((t)A*p — [, ¥y, when t tends to infinity, is equal to zero, i.e.:

/zA*go—/z/xp:O for all € D(Q).
Q Q

This means that Az = in D' (Q).
Now we want to show that z € L?(0, L; H*(0,1;d)). Observe that

[2llr2) < CllYllz2@),
and that ¢ belongs to L2 ([0, 00); L?(0, L; H(0,1;d))). Thus we have

loc

[t [ (oo X000 o)
G | cwe= [ (acnzt —v5 250 - ZE e —ccttye) dnay

= [ we+ [els0) [ w0300 X) dX ds,
Q 0 Q
for all p € I, where
F={e e 130, L; H'(0,1;d)) 0 H'(0, L; L*(0,1)) | ¢(L,-) = 0}.

As previously we can show that, if ¢ € F, the mapping

d
tHa/ﬂC(t)@

tends to zero when t tends to infinity. Thus z is also the solution of the variational equation

Op 0z0p 0bOz / / / = e
Zr 22, dx dy — 0 0,2)z(E)d=ds =0
/Q(azax 0y T30y’ cw) wdy = | dot 7s@(& ) | 7(5.0.5)2(5) d=ds =0,

for all p € F. With the estimate of z in L?({2), and with the estimates obtained in [7] we can show that

lzllz20,0:m7 0,1:0)) < CllYllL20)-

Let us give a short explanation. Setting Z = e

the variational equation

Pz, with k > 0, we can show that Z is the solution of

/ (a Zg—i - b%a—s{J - @%(p —(c+ ka)Zap) dx dy — / e F b + / #(s,0)e " g(s) ds = 0,
Q Q

v

for all p € I, where
g(s) = / m(s,0,X)z(E) d=E.
Q
We can verify that

l9llz20.0) < CllzllL2@)-
Next using the techniques in [7], the following estimate can be shown

1Z1L2 0,1 0,150)) < Cllgllz2(0,1)

from which we can deduce the corresponding estimate for z.

Conversely, if z is a solution to the variational problem (6.10), with the results in [7, Section 5], we can
show that z is the limit in L?(£2), when ¢ tends to infinity of the function ¢ introduced above. The proof
is complete. O



42

[1]
(2]

(3]

(10]
(11]

(12]
(13]
14]
(15]
[16]
(17]
(18]
(19]

[20]
(21]

(22]

23]
[24]

[25]

TITLE WILL BE SET BY THE PUBLISHER

REFERENCES

V. Barbu, I. Lasiecka, R. Triggiani, Extended algebraic Riccati equations in the abstract hyperbolic case, Nonlinear
Analysis, 40 (2000), 105-129.

A. Bensoussan, G. Da. Prato, M. C. Delfour, S. K. Mitter, Representation and Control of Infinite Dimensional Systems,
Systems & Control: Fondations & Applications, Boston, Birkh&user, Volume 1, 1993.

A. Bensoussan, G. Da. Prato, M. C. Delfour, S. K. Mitter, Representation and Control of Infinite Dimensional Systems,
Systems & Control: Fondations & Applications, Boston, Birkh&user, Volume 2, 1993.

J.-M. Buchot, Stabilization of the laminar turbulent transition location, Proceedings MTNS 2000, El Jai Ed., (2000).
J.-M. Buchot, J.-P. Raymond, A linearized model for boundary layer equations, International Series of Numerical
Mathematics, Birkhduser, 139 (2001), 31-42.

J.-M. Buchot, Stabilisation et contrdle optimal des équations de Prandtl, PhD thesis, Ecole supérieure d’Aéronautique
et de ’Espace, Toulouse, 2002.

J.-M. Buchot, J.-P. Raymond, A linearized Crocco equation, J. Math. Fluid Mech., 8 (2006), 510-541.

J.-M. Buchot, J.-P. Raymond, Feedback stabilization of a boundary layer equation, part 2: Nonhomogeneous state
equation and numerical experiments, preprint 2009, submitted to AMRX.

T. Cebeci, J. Cousteix, Modeling and computation of boundary layer flows, Springer-Verlag, Berlin Heidelberg New
York, 2001.

R. Dautray, J.-L. Lions, Analyse mathématique et calcul numérique, Vol. 4, Masson, Paris, 1988.

A. Favini, A. Yagi, Degenerate differential equations in Banach spaces, Monograph and textbooks in Pure in Applied
Mathematics 215, Marcel Deker, New-York, 1999.

F. Flandoli, Algebric Riccati Equations arising in boundary control problems, SIAM J. Control Optim., 25 (1987),
612-636.

F. Flandoli, I. Lasiecka, and R. Triggiani, Algebraic Riccati Equations with non-smoothing observation arising in
hyperbolic and Euler-Bernoulli boundary control problems, Ann. Math. Pura Appl., 1563 (1988), 307-382.

I. Lasiecka, R. Triggiani, Control theory for partial differential equations I, Abstract parabolic systems, Cambridge
University Press, 2000.

I. Lasiecka, R. Triggiani, Control theory for partial differential equations II, Abstract hyperbolic-like systems over a
finite time horizon, Cambridge University Press, 2000.

I. Lasiecka, R. Triggiani, Optimal Control and Algebraic Riccati Equations under Singular Estimates for eAtB in the
Abscence of Analycity, Part I : The stable case, Lecture Notes in Pure in Applied Mathematics, Marcel Dekker, 225
(2002), 193-219.

J.-L. Lions, E. Magenes, Problémes aux limites non homogénes, Dunod, Paris, 1968.

O. A. Oleinik, V. N. Samokhin, Mathematical Models in Boundary Layer Theory, Applied Mathematics and Mathe-
matical Computation 15, Chapman & Hall/CRC, Boca Raton, London, New York, 1999.

A. J. Pritchard, D. Salamon, The linear quadratic control of problem for infinite dimensional systems with unbounded
input and output operators, STAM J. Control and Optim., 25 (1987), 121-144.

H. Triebel, Interpolation theory, Functions spaces, Differential operators, North Holland, 1978.

R. Triggiani, An optimal control problem with unbounded control operator and unbounded observation operator where
Algebraic Riccati Equation is satisfied as a Lyapunov equation, Appl. Math. Letters, 10 (1997), 95-102.

R. Triggiani, The Algebraic Riccati Equation with unbounded control operator: The abstract hyperbolic case revisited,
Contemporary mathematics, 209 (1997), 315-338.

G. Weiss, H. Zwart, An example in LQ optimal control, Systems & Control letters, 33 (1998), 339-349.

Z. Xin, L. Zhang, On the global existence of solutions to the Prandtl’s system, Advances in Mathematics, 181 (2004),
88-133.

J. Zabczyck, Mathematical Control Theory, Birkh&user, 1995.



