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Outline of the talk

@ Introduction about harmonic measure

e Results

© Sketch of the proof of Theorem, transient case
e Overview of the proof in the recurrent case

e Open questions
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Introduction

Weighted graphs

@ Let (I, a) a weighted graph. I is a countably infinite set and
ais a symmetric function :

a:Mxr—|0; o0l
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Introduction

Weighted graphs

@ Let (I, a) a weighted graph. I is a countably infinite set and
ais a symmetric function :

a:Mxr—|0; o0l

We let

m(x):=>) a(x,y)>0 forall xeT.
yer

@ We will write x ~ y if a(x, y) > 0.
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Introduction

Weighted graphs

@ Let (I, a) a weighted graph. I is a countably infinite set and
ais a symmetric function :

a:Mxr—|0; o0l

We let

m(x):=>) a(x,y)>0 forall xeT.
yer

@ We will write x ~ y if a(x, y) > 0.

@ We will always assume that (', ~) is an infinite connected
graph, locally finite countable graph without multiple edges.
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Random walks

@ The random walk (Xj), on the weighted graph (T, a) is the
Markov chain on I with transition probabilities given by

a(x,y)

p(x,y) = )

, X, yer.
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Introduction

Random walks

@ The random walk (Xj), on the weighted graph (T, a) is the
Markov chain on I with transition probabilities given by

a(x,y)

p(x,y) = )

, X, yerl.
@ We denote by Py the law of the random walk starting at the

vertex x € I'. The corresponding expectation is denoted by
EX.
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Introduction

Random walks

@ The random walk (Xj), on the weighted graph (T, a) is the
Markov chain on I with transition probabilities given by

a(x,y)

p(x,y) = )

, X, yerl.

@ We denote by Py the law of the random walk starting at the
vertex x € I'. The corresponding expectation is denoted by
EX-

@ The random walk admits reversible measures which are
proportional to the measure (-).
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Notations

Let B

A:=0AUA,
with

0A:={yerl; y ¢ Aandthereis x € Awith x ~ y}.
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Introduction

Notations

Let

A:=0AUA,
with

0A:={yerl; y ¢ Aandthereis x € Awith x ~ y}.

@ For u: A — R the Laplacian is defined by

Lu(x) =) _p(x,y) [uly) - u(x)]l, xeA

y~Xx
@ A function u: A — R is harmonicin Aif for all x € A,

(Lu)(x) =0.
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Introduction

Notations

@ The Green function of the random walk is defined by
G(x,y) = Zp(x,y,j), x,yerl
j=0

where p(x, y,j) := Px(X; = y) are the transition
probabilities of the walk.
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Introduction

Notations

@ The Green function of the random walk is defined by
G(x,y) = Zp(x,y,j), x,yerl
j=0

where p(x, y,j) := Px(X; = y) are the transition
probabilities of the walk.

@ The Green function of the random walk in B C T is defined
by

GB(va) ::ZPB(Xayaj)7 Xayeg
j=0

where pg(x, y,j) .= Px(X; = y; Vi <j Xj € B).
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hitting distribution

o LetAcT,welet 74:=inf{k>1; Xk € A}

niel Boivin , Rau Clément Existence of the h: ic measure for randi



Weighted graphs

Random walks

hitting distribution

Harmonic measure

Examples where Harmonic measure does not exist
Example where Harmonic measure exists

Introduction

hitting distribution

o LetAcT,welet 74:=inf{k >1; Xk € A}

niel Boivin , Rau Clément Existence of the h: ic measure for randi



Weighted graphs

Random walks

hitting distribution

Harmonic measure

Examples where Harmonic measure does not exist
Example where Harmonic measure exists

Introduction

hitting distribution

o LetAcT,welet 74:=inf{k >1; Xk € A}

niel Boivin , Rau Clément Existence of the h: ic measure for randi



Weighted graphs

Random walks

hitting distribution

Harmonic measure

Examples where Harmonic measure does not exist
Example where Harmonic measure exists

Introduction

hitting distribution

o LetAcT,welet 74:=inf{k >1; Xk € A}

@ The hitting distribution of a set A starting from x € T is
given by :

HA(X7y) = PX(X’TA = y)
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Ha(x,y) @ Z9xA —  [0;1]
(X,y) = HA(X7y) ::PX(X’TA:y)
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hitting distribution

Ha(x,y) @ Z9xA —  [0;1]
(X,y) = HA(X7y) ::PX(X’TA:y)

@ Forfixed y € A, Ha(.,y) is a harmonic function on A°.
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Introduction

hitting distribution

Ha(x,y) @ Z9xA —  [0;1]
(X,y) = HA(X7y) ::PX(X’TA:y)

@ Forfixed y € A, Ha(.,y) is a harmonic function on A°.

@ Forfixed x € I', Ha(x,.) is a positive measure on A with
total mass Px(74 < +0).

(supp(Ha(x,.) C 0A)
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Introduction

hitting distribution

Ha(x,y) @ Z9xA —  [0;1]
(X,y) = HA(X7y) ::PX(X’TA:y)

@ Forfixed y € A, Hy(.,y) is a harmonic function on AC.

@ Forfixed x € I', Ha(x,.) is a positive measure on A with
total mass Px(74 < +0).
(supp(Ha(x,.) C 0A)

@ If Px(Ta < +00) > 0, we may define a probability measure
on A by conditioning that the random walk hits A,

Ha(x,y) := Px(Xr, = Y|ta < +00).
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Harmonic measure

@ The harmonic measure on a finite subset A of I is the
hitting distribution from infinity, if it exists,

H = i H A.
A(y) A AX,y), ye€
where D denote the graph distance between two vertices
x,y € I. ltis the minimal length of a path from x to y in the
graph (I, ~).
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Introduction

Harmonic measure

@ The harmonic measure on a finite subset A of I is the
hitting distribution from infinity, if it exists,

H = i H A.
A(y) A AX,y), ye€
where D denote the graph distance between two vertices
x,y € I. ltis the minimal length of a path from x to y in the
graph (I, ~).
@ Independance of the direction and the way how x goes
through oc.
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Introduction

Harmonic measure

@ The harmonic measure on a finite subset A of I is the
hitting distribution from infinity, if it exists,

H = i H A.
A(y) A AX,y), ye€
where D denote the graph distance between two vertices
x,y € I. ltis the minimal length of a path from x to y in the
graph (I, ~).
@ Independance of the direction and the way how x goes
through oc.

= QOur goal is to prove the existence of the harmonic measure
for all finite subsets of various weighted graphs.
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Motivations to study Harmonic measure

The harmonic measure on a finite subset A of I is the hitting
distribution from infinity, if it exists,

H = i H A
Aly) D(X,LGLOO alx,y), ye
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Motivations to study Harmonic measure

The harmonic measure on a finite subset A of I is the hitting
distribution from infinity, if it exists,

H = i H A
Aly) D(x,'AT%o alx,y), ye

= Physical interpretation : distribution/spread of charge on an
object .
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Infinite tree

Consider for example, Ha(ln, @) and Ha(rn, a).
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@ Other example : Cayley graph of the Lamplighter group
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@ Other example : Cayley graph of the Lamplighter group
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The harmonic measure exists in Z¢ for the simple random walk.
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Introduction

The harmonic measure exists in Z¢ for the simple random walk.

Theorem (G. Lawler)

Let A a finite subset of 7.9, for all y in A, we have :

li H —H exists.
D(O)Xr;l%o a(x,y) = Ha(y)

Moreover,

. Py(7a > 7oB(0,n))
Ha(y) = lim y 7
aly) L Zy’eA Py (7a > 7oB(0,n))
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Introduction

Lawler and Limic have proved that harmonic measure exists in
79 for a wider class of random walks,
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Lawler and Limic have proved that harmonic measure exists in
79 for a wider class of random walks, like :
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Introduction

Lawler and Limic have proved that harmonic measure exists in
79 for a wider class of random walks, like :

P(Xnt1 — Xn = €i) = P(Xpt1 — Xn = —€y)
and
P(Xny1 = Xn) =1 -2 11 gP(Xnp1 — Xn = &)
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Tools of the proof of Lawler

2 majors ingredients :
@ (Elliptic) Harnack inequality

Definition

We say that a weighted graph (T, a) satisfies H(K,M), the
Harnack inequality with shrinking parameter M > 1, if there is a
constant K < oo such that for all x € T and R > 0, and for any
non-negative harmonic function u on B(x, MR),

max u < K min u.
B(x,R) B(x,R)
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Tools of the proof of Lawler

2 majors ingredients :
@ (Elliptic) Harnack inequality
e for d > 3, precise estimates of G,
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Tools of the proof of Lawler

2 majors ingredients :
@ (Elliptic) Harnack inequality
e for d > 3, precise estimates of G,
for d = 2, precise estimates of g, where

g(x) == lim [Gp(0,n)(0) — G(o,n)(X)];

and so of Gp(g,n)-
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Results .
Transient case

Recurrent case

Transient case

The main result for transient graphs is the existence of the
harmonic measure for random walks with a Green function
which verify the following estimate.

Definition
We say that a weighted graph (I, a) satisfies the Green function
estimate GE., for v > 0 if there are constants 0 < C;j < Cs < 00

and iffor all z € T, there exists R, < oo such that for all x,y € T
with D(x, y) > Rx A R, we have :

Ci
Dix,yy = G Y < By
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Results .
Transient case

Recurrent case

Our main result is the following :
Theorem

Let (', a) be a weighted graph which verifies GE., for some

~ > 0. Then for any finite subset A C T the harmonic measure
on A exists.(That is, for all y € A, the limit exists.)

Moreover, we have :

lim  Ha(x,y) = lim HI(y),

D(x,A)—o0 m——+oo

where, for m large enough,

T(Y)Py(Ta > TaB(xp,m))
Cap,(A)

HZ(y) =

The limit does not depend on the choice of xg.
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Results .
Transient case

Recurrent case

@ The capacity of Awith respectto B,forAc BCT,is
defined by

Capg(A) := > _ 7(X)Px(Tae < 7a).

XEA
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Results .
Transient case

Recurrent case

@ The capacity of Awith respectto B,forAc BCT,is

defined by
Capg(A) := > _ 7(X)Px(Tae < 7a).
XeA
Recall that
Ta = inf{k>1; Xy € A},
TA = inf{k >0; Xk e A}

@ Cap,,(A) is the capacity of A with respect to B(xq, m) for
some xg € T.
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Results .
Transient case

Recurrent case

One main step in the proof of Theorem I, is to work with some
Harnack inequality. We will use the following weak Harnack
inequality :
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Results

Transient case

Recurrent case

One main step in the proof of Theorem |, is to work with some
Harnack inequality. We will use the following weak Harnack
inequality :

Definition

We say that a weighted graph (T, a) satisfies WH(K), the weak
Harnack inequality, if there is a constant1 < K < oo such that

for all x € T and for all R > 0 there is My g > 2 such that for all

M > M, r and for any non-negative harmonic function u on
B(x, MR),

max u < K min u.
B(x,R) B(x,R)
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Results .
Transient case

Recurrent case

One main step in the proof of Theorem I, is to work with some
Harnack inequality. We will use the following weak Harnack
inequality :

Definition

We say that a weighted graph (T, a) satisfies WH(K), the weak
Harnack inequality, if there is a constant1 < K < oo such that
for all x € T and for all R > 0 there is My g > 2 such that for all
M > M, r and for any non-negative harmonic function u on
B(x,MR),

max u < K min u.
B(x,R) B(x,R)

We will prove that the Green function estimates GE., imply the
weak Harnack inequality.
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Results

Transient case
Recurrent case

Proposition

Let (T, a) be a weighted graph which verifies (GE,) for some
~v > 0. Then the graph is connected, transient and wH(K) holds
with K = 27,
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Results

Transient case
Recurrent case

Some applications

Corollary

Let (79, a), d > 3, be a uniformly elliptic graph.

Then for all finite subsets A of Z.¢ and for all y € A, the limit
exists.

Moreover, we have :

lim Ha(x,y)= lim H(y),

[X| =400 m—+o00

where H7(y) = TP yC(:;;(;‘%B(O”")).
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Results

Transient case
Recurrent case

Some applications

Corollary

Let (79, a), d > 3, be a uniformly elliptic graph.

Then for all finite subsets A of Z.¢ and for all y € A, the limit
exists.

Moreover, we have :

lim Ha(x,y)= lim H(y),

[X| =400 m—+o00

where H7(y) = TP yC(:;;(;‘%B(O”")).

It follows from Delmotte’s estimates.
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Results

Transient case
Recurrent case

Existence of the harmonic measure for Z9, d > 3, with
I.i.d. conductances

Corollary

Let (79, a), d > 3, be a weighted graph where the weights
(a(e); e €9) are i.i.d. non-negative random variables on a
probability space (2, P) which verify

P(a(e) > 0) > ps(Z9).

For any finite subset A of Co, and for all y € A, harmonic
measure exists. Moreover, we have :

lim Ha(x,y) = lim H7(y).

|X|—+00,XEC m—+00
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Results .
Transient case

Recurrent case

Where HT(y) = ﬂ(y)PV(szaE)’“(x"’m)) for some Xy € Coo and for
m large enough.
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Results .
Transient case

Recurrent case

Where HT(y) = ﬂ(y)PV(szaE)’“(x"’m)) for some Xy € Coo and for
m large enough.

It follows from the Green function estimates of Andres, Barlow,
Deuschel, Hambly.
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Results
Transient case

Recurrent case

Recurrent Case

Percolation cluster.
Theorem

Let (72, a) be a weighted graph where the weights (a(e); e €?)

are i.i.d. random variables on a probability space (2, Pp) which
verify

p=Pp(a(e) = 1) =1 —PFp(a(e) = 0) > pe(Z?).

Then P, almost surely, for any finite subset A of Co.() and for all
y € A, the harmonic measure exists.
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Results

Transient case
Recurrent case

Recurrent Case

72 elliptic.

If (Z2, a) is a uniformly elliptic weighted graph then for all finite
subsets A C Z? and for all y € A, the limit exists.
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Results
Transient case

Recurrent case

Q Sketch of the proof of Theorem, transient case

1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of
a box

4th Step : Estimate of Py(X:,, = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(Xr, g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

1st Step : bound of Hj

@ Let A C B be finite subsets of I'. Recall that
Ha(x,y) = Px(X7, = ).

T T X
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of PL,(X‘.’ g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

1st Step : bound of Hj

@ Let A C B be finite subsets of I'. Recall that
Ha(x,y) = Px(X7, = ).

k4

For all x € B°and y € A, we have :

Ha(x,y) = Y Gae(x, 2)Havos(2. ¥).
zeoB
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Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

1st Step : bound of Hj

@ Let A C B be finite subsets of I'. Recall that
Ha(x,y) = Px(X7, = ).

k4

@ Forall x € B°and y € A, we have :

Ha(x,y) = Y Gae(x, 2)Havos(2. ¥).
zeoB
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of PL,(X‘.’ g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

1st Step : bound of Hj

For all x € B¢ and y € A, we have :
°

HA(Xay) = Z GAC(X7Z)HAU85(Z7y)'
zedB
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1st Step : bound of Hy
2nd Step : Replace set A by a box
Sketch of the proof of Theorem, transient case 3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(X-55 = 2)
5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

1st Step : bound of Hj

For all x € B¢ and y € A, we have :
°

HA(Xay) = Z GAC(X7Z)HAU85(Z7 y)
zedB
@ Then, by summing over y we get :

> zcon Gac(X, Z)Havas(2, Y)
Ha(x
Ax.y) = > zcom Gac(X, Z2)Pz(7a < ToB)

Existence of the harmonic measure for random walks on graphs ¢
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1st Step : bound of Hy
2nd Step : Replace set A by a box
Sketch of the proof of Theorem, transient case 3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(X-55 = 2)
5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

1st Step : bound of Hj

For all x € B¢ and y € A, we have :
°

HA(Xay) = Z GAC(X7Z)HAU85(Z7 y)
zedB
@ Then, by summing over y we get :

> zcon Gac(X, Z)Havas(2, Y)
Ha(x
Ax.y) = > zcom Gac(X, Z2)Pz(7a < ToB)

@ So,

Haoos(2,y) _ Ha < max Hauos(Z,Y)

min X’y) zcoB P (TA < TaB)

zedB Py(1a < T9B) ~

Existence of the harmonic measure for random walks on graphs ¢
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Sketch of the proof of Theorem, transient case

1st Step : bound of Hj

1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of PL,(X‘.’ g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

By reversibility and since P,(7a < 798) = >_yca Havos(2, ¥),
Forall x € B°and y € A, we obtain :
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1st Step : bound of Hy
2nd Step : Replace set A by a box
Sketch of the proof of Theorem, transient case 3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(X-55 = 2)
5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

1st Step : bound of Hj

By reversibility and since P,(7a < 798) = >_yca Havos(2, ¥),
Forall x € B°and y € A, we obtain :

7(Y)Hauo(Y, 2) = ~(¥)Havos(y, 2)
z€oB ZyeA (y)HAU(?B(y, ) < HA(X’y) < max

2e0B Y _yeam(¥)Havos(Y, 2)

Existence of the harmonic measure for random walks on graphs ¢

Daniel Boivin , Rau Cléi



1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
Sketch of the proof of Theorem, transient case 4th Step - Estimate of Py (Xrpg = 2)

5th Step : Gathering the eshmate

Modification of step 4, with a weak assumption

1st Step : bound of Hj

By reversibility and since P,(7a < 798) = >_yca Havos(2, ¥),
Forall x € B°and y € A, we obtain :

7(Y)Hauos(Y, 2) o 7(Y)Hauos(Y, 2)

min < Ha(x,y) < max =
s S can (D Faos(7-2) = AN S B S ) Haos(7, )
= Study of
7(y)Hauos(Y, 2)
> yeam(V)Havos(¥. 2)
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(X-55 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

1st Step : bound of Hj

By reversibility and since P,(7a < 798) = >_yca Havos(2, ¥),
Forall x € B°and y € A, we obtain :

7(Y)Hauos(Y, 2) o 7(Y)Hauos(Y, 2)

min < Ha(x,y) < max =
s S can (D Faos(7-2) = AN S B S ) Haos(7, )
= Study of
7(y)Hauos(Y, 2)
> yeam(V)Havos(¥. 2)

= Study of Haugs(y,z) fory € A, z € 9B and B "big"...

Daniel Boivin , Rau Clément Existence of the harmonic measure for random walks on graphs ¢



Sketch of the proof of Theorem, transient case

1st Step : bound of Hj

1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py, (X- g = 2)

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

Compare Hass(Y, Zz) and Hauss(y,z) fory,y € Aand z € OB
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Sketch of the proof of Theorem, transient case

1st Step : bound of Hj

1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py, (X- g = 2)

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

Compare Hass(Y, Zz) and Hauss(y,z) fory,y € Aand z € OB
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py, (X- g = 2)

Sketch of the proof of Theorem, transient case

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

1st Step : bound of Hj

Compare Hass(Y, Zz) and Hauss(y,z) fory,y € Aand z € OB

= Harnack inequality...
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Sketch of the proof of Theorem, transient case

1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py, (X- g = 2)

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

2nd Step : Replace set A by a box

Let xo € I and rq > 0 such that A C B(xg, ra)-

niel Boivin , Rau Clémen
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1st Step : bound of Hy
2nd Step : Replace set A by a box
3rd Step : Replace exit time of an annulus by exit time of a box

Sketch of the proof of Theorem, transient case 4th Step - Estimate of Py (Xry 5 =2)

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

2nd Step : Replace set A by a box

Let xp € ' and ry > 0 such that A C B(xg, ra).

Py(Xrognra = 2) = Z P (XTaB (x0:ra) NTA = U)Pu(Xrppnra = 2)
UEaB(Xo,fA)




1st Step : bound of Hy
2nd Step : Replace set A by a box
3rd Step : Replace exit time of an annulus by exit time of a box

Sketch of the proof of Theorem, transient case 4th Step : Estimate of Py(Xrpp = 2)

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

2nd Step : Replace set A by a box

Let xop € ' and ray > 0 such that A C B(xg, ra).

= Study of Py(Xr,znr, = 2) for u € 0B(xo, ra).
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(Xr, g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

2nd Step : Replace set A by a box

Sketch of the proof of Theorem, transient case

Existence of the harmonic measure for rand:



Sketch of the proof of Theorem, transient case

1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of PL,(X‘.’ g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

2nd Step : Replace set A by a box

Pb : if some u are not connected to 9B in B — A,
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Sketch of the proof of Theorem, transient case

1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of PL,(X‘.’ g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

2nd Step : Replace set A by a box

Pb : if some u are not connected to 9B in B — A, no chance to
compare Py(X:,znr, = Z) for all u.

iel Boivin , Rau Clément



1st Step : bound of Hy
2nd Step : Replace set A by a box
3rd Step : Replace exit time of an annulus by exit time of a box

Sketch of the proof of Theorem, transient case 4th Step : Estimate of Py(Xrpp = 2)

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

2nd Step : Replace set A by a box

A condition like “,//,7
(x) Puy(ta>198) >C>0, %/ N

(with ¢ independant of B...)

enables us to remove this case.

iel Boivin , Rau Clément



1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
Sketch of the proof of Theorem, transient case 4th Step : Estimate of Py(X,.,, . = 2)

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

2nd Step : Replace set A by a box

A condition like

: u’///7 \,
(x) Puy(ta>198) >C>0, Y\\ffc/

(with ¢ independant of B...)

enables us to remove this case. And so, we have to study

forall u € 0B(xo,ra) Pu(Xrpgars = 2).

Daniel Boivin , Rau Clément Existence of the harmonic measure for random walks on graphs ¢



1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(X-55 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

3rd Step : Replace exit time of an annulus by exit time
of a box

iel Boivin , Rau Clément



Sketch of the proof of Theorem, transient case

1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(X-55 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

3rd Step : Replace exit time of an annulus by exit time
of a box

The condition

(x) Puy(ta>m98) >C >0,

also implies, that we can study

Pu(Xrps = 2),

Daniel Boivin , Rau Cléi

for u € 9B(xp, ra).

Existence of the harmonic measure for random walks on graphs ¢



1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of P”(XTBB = )

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

4th Step : Estimate of P,(

Assume graph [ satisfies B
classical Harnack inequality (» F
H(K,M). p
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of P”(XTBB = )

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

4th Step : Estimate of P,(

Assume graph [ satisfies B
classical Harnack inequality (» F
H(K,M). p
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of PU(XT@B = )

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Sketch of the proof of Theorem, transient case

Recall parameters meaning in Harnack inequality

Definition

We say that a weighted graph (T, a) satisfies H(K,M), if all
x € Iand R > 0, and for any non-negative harmonic function u
on B(x, MR),

max u < K min u.
B(x,R) B(x,R)

Daniel Boivin , Rau Clément Existence of the harmonic measure for random walks on graphs ¢



1st Step : bound of Hy
2nd Step : Replace set A by a box

rd : Repla X fan a I it i fat
Sketch of the proof of Theorem, transient case 3rd Step : Replace exit time of an annulus by exit time of a box

4th Step : Estimate of P“(XTas =2)
5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

4th Step : Estimate of P,(

Assume graph [ satisfies
classical Harnack inequality
H(K,M).
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1st Step : bound of Hy
2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py (X

Sketch of the proof of Theorem, transient case
o8 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Assume graph [ satisfies
classical Harnack inequality
H(K,M). Let

@ By = B(xo, ra)

niel Boivin , Rau Clément Existence of the h: ic measure for randi



1st Step : bound of Hy
2nd Step : Replace set A by a box
3rd Step : Replace exit time of an annulus by exit time of a box

Sketch of the proof of Theorem, transient case 4th Step : Estimate of Py (X, —2)

ToB

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Assume graph [ satisfies
classical Harnack inequality
H(K,M). Let

@ By = B(xo, ra)

@ By = B(Xo,MI’A)

iel Boivin , Rau Clément { nic measure for rand



1st Step : bound of Hy
2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py (X

Sketch of the proof of Theorem, transient case
o8 = 2)

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Assume graph [ satisfies
classical Harnack inequality
H(K,M). Let
® By = B(xo, ra)
@ By = B(X07 MrA)
@ B any box such that
BiCB

Daniel Boivin , Rau Cléi Existence of the harmonic measure for random walks on graphs ¢



1st Step : bound of Hy
2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py (X

Sketch of the proof of Theorem, transient case
o8 = 2)

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Assume graph [ satisfies
classical Harnack inequality
H(K,M). Let
® By = B(xo, ra)
@ By = B(X07 MrA)
@ B any box such that
BiCB
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1st Step : bound of Hy
2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
Sketch of the proof of Theorem, transient case 4th Step : Estimate of Py(X.

o8 = 2)
5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Assume graph [ satisfies
classical Harnack inequality
H(K,M).
Let

@ By = B(xo, a)

@ By = B(xp, Mry)

@ B any box such that

B, CB

=

Let fg(u) = Py(X:,; = z) defined on By.

Daniel Boivin , Rau Clément Existence of the harmonic measure for random walks on graphs ¢



1st Step : bound of Hy
2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
Sketch of the proof of Theorem, transient case 4th Step : Estimate of Py(X.

o8 = 2)
5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Assume graph [ satisfies
classical Harnack inequality
H(K,M).
Let

@ By = B(xo, a)

@ By = B(xp, Mry)

@ B any box such that

B CB

Let fg(u) = Py(X:,; = z) defined on By.

@ fis positive on B4

Daniel Boivin , Rau Clément Existence of the harmonic measure for random walks on graphs ¢



1st Step : bound of Hy
2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py (X

Sketch of the proof of Theorem, transient case
o8 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

oB

Assume graph [ satisfies
classical Harnack inequality
H(K,M).
Let

@ By = B(xo, a)

@ By = B(xp, Mry)

@ B any box such that

B, CB

=

Let fg(u) = Py(X:,; = z) defined on By.
@ fis positive on By
@ fis harmonic on B;
so we can compare : fg(u) and fg(u’') for u, U’ € By

Daniel Boivin , Rau Clément Existence of the harmonic measure for random walks on graphs ¢



1st Step : bound of Hy
2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py (X

Sketch of the proof of Theorem, transient case
o8 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

oB

Assume graph [ satisfies
classical Harnack inequality
H(K,M).
Let

@ By = B(xo, a)

@ By = B(xp, Mry)

@ B any box such that

B, CB

=

Let fg(u) = Py(X:,; = z) defined on By.
@ fis positive on By
@ fis harmonic on B;
so we can compare : fg(u) and fg(u’') for u, U’ € By

Daniel Boivin , Rau Clément Existence of the harmonic measure for random walks on graphs ¢



1st Step : bound of Hy
2nd Step : Replace set A by a box
3rd Step : Replace exit time of an annulus by exit time of a box

4th Step : Estimate of P”(XTBB = )
5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Assume graph T satisfies
classical Harnack inequality
H(K,M). Let

® By = B(xo, ra)

@ By = B(xp, Mrya)

@ B any box such that

By CB
Let fig(u) = Pu(X:,; = z) defined on B;.

Sketch of the proof of Theorem, transient case
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of P”(XTBB = )

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

oB

Sketch of the proof of Theorem, transient case

Assume graph T satisfies
classical Harnack inequality
H(K,M). Let

® By = B(xo, ra)

@ By = B(xo, Mra)

@ B any box such that

B¢ B

Let fig(u) = Pu(X:,; = z) defined on B;.
Harnack inequality also gives us that :

—1
oscg, (),

< -
oscg,(fg) < K11

where osce(f) = maxg f — ming f.
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1st Step : bound of Hy
2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py (X

Sketch of the proof of Theorem, transient case
o8 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)
Let Kk > 1 and let
(*] Bk = B(Xo, MkI’A)
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1st Step : bound of Hy
2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py (X

Sketch of the proof of Theorem, transient case
o8 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

4th Step : Estimate of P,(X,,, = 2)
Let k > 1 and let
@ By = B(xp, M¥ryp)
@ Bsuchthat By C B

niel Boivin , Rau Clément Existence of the h: ic measure for randi



1st Step : bound of Hy
2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py (X

Sketch of the proof of Theorem, transient case
o8 = 2)

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Let Kk > 1 and let
(*] Bk = B(Xo, MkI’A)
@ Bsuchthat Bx C B
® f5(u) = Py(Xrys = 2)
defined on By,which is

positive and harmonic on
B.
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Sketch of the proof of Theorem, transient case

1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of P”(XTBB = )

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

4th Step : Estimate of P,(

Let Kk > 1 and let
(*] Bk = B(Xo, MkI’A)
@ Bsuchthat Bx C B
@ fg(u) = Pu(Xr,5 = 2)
defined on By,which is
positive and harmonic on
By.

X,

:z)

oB

Daniel Boivin , Rau Cléi
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1st Step : bound of Hy
2nd Step : Replace set A by a box
3rd Step : Replace exit time of an annulus by exit time of a box

4th Step : Estimate of P“(XTas =2)
5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Let Kk > 1 and let
(*] Bk = B(Xo, MkI’A)
@ Bsuchthat Bx C B
® f5(u) = Py(Xrys = 2)
defined on By,which is

positive and harmonic on

By.
Similarly,

Sketch of the proof of Theorem, transient case

K+ 1

oscg, ,(fg) <
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1st Step : bound of Hy
2nd Step : Replace set A by a box
3rd Step : Replace exit time of an annulus by exit time of a box

4th Step : Estimate of P“(XTas =2)
5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Let Kk > 1 and let
(*] Bk = B(Xo, MkI’A)
@ Bsuchthat Bx C B
@ fg(u) = Pu(Xr,5 = 2)
defined on By,which is
positive and harmonic on

Sketch of the proof of Theorem, transient case

By
Similarly,
oscp,_,(fg) < KJ_r1 oscg, (fa)-
And so, o
0scg,(fs) < (ﬁ)k oscg, (fs),

Daniel Boivin , Rau Clément Existence of the harmonic measure for random walks on graphs ¢



1st Step : bound of Hy
2nd Step : Replace set A by a box

Sketch of the proof of Theorem, transient case 3rd Step Rep\ace exit time of an annulus by exit time of a box
4th Step : Estimate of P”(XTBB = )

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Finaly, for B big enough and for u € B(xp, ra), we get :

fa(v) ~ fo()| < (I 1)koscs, (1)
< (£+1)k mBax(fB)
< (D K s()

Existence of the harmonic measure for random walks on graphs ¢
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1st Step : bound of Hy
2nd Step : Replace set A by a box
3rd Step : Replace exit time of an annulus by exit time of a box

Sketch of the proof of Theorem, transient case 4th Step : Estimate of Py (X, —2)

ToB

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

Finaly, for B big enough and for u € B(xp, ra), we get :

fa(v) ~ fo()| < (I 1)koscs, (1)
< (£+1)k mBax(fB)
< (e K o)

5o K—1
fa(u) = fa(%0)[1 + O (7))
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of P”(XTBB = )

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

4th Step : Estimate of P,(
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
Sketch of the proof of Theorem, transient case 4th Step : Estimate of Py(X.

o8 = 2)
5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

4th Step : Estimate of Py(X.,, = 2)

f5(0) = fal0)[1 + O (1))

Taking for example B = By 1, this can be read :

PuXeys,, = 2) = Hog, (00,201 + O (1))

where the constant in O(-) depends only on K.
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of PL,(X‘.’ g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

5th Step : Final estimate

With condition like
(x) Puy(ta>198) >C>0,

(with ¢ independant of B),
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
Sketch of the proof of Theorem, transient case 4th Step : Estimate of Py(Xr = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

5th Step : Final estimate

With condition like
(x) Puy(ta>198) >C>0,

(with ¢ independant of B), we deduce (step 3) that :
for all u € B(xo, ra),

K —1\k
Pu(Xeag, . rea = 2) = HoBy,, (%0, 2)Px(ra > 7o, )[1+o((m) ).
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(Xr55 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

5th Step : Final estimate

With condition like
(x) Puy(ta>198) >C>0,

(with ¢ independant of B), we deduce (step 3) that :
for all u € B(xo, ra),

K —1\k
PU(XTaBk+1 ATp = Z) = HaBk+1 (XO’ Z)PX(TA > T‘()Bk“)[‘l—i_o((i) )]

And then by step 2, we finaly get, for all y € A,

K—1\k
PY(XTaBk+1/\TA:Z):H35k+1(X07 )[ +O((K+1> )}PY(TA>TaBk+1)
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(Xr, g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

5th Step : Final estimate

This can be read, for all y € A,

K — 17k
HAUBBk+1 (yv Z) = HaBk+1 (XO’ Z)[1 + O((m) )]PY(TA > TaBkH)'
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
Sketch of the proof of Theorem, transient case 4th Step - Estimate of Py (Xrpg = 2)

5th Step : Gathering the estlmate

Modification of step 4, with a weak assumption

5th Step : Final estimate

This can be read, for all y € A,

K —1\k
HAUBBk+1 (yv Z) = HaBk+1 (XO’ Z)[1 + O((m) )]PY(TA > TOBy 1 )
And then,
7(y)Havos, ., (V. Z) 7(y)Py(ta > 708,.,)

S 5eam NPy Krog, na = 2) e (7)Py(Ta > To8,.,)

X[1+O((K+1>k)]
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(Xr55 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

5th Step : Final estimate

But, remember that,

7(Y)Hauos(Y, 2) < Ha(x,y) < max 7(¥)Hauos(Y, 2)

ze0B ZyeA W(y)HAUBB(y7 Z)

min =
2e0B Y yeam(V)Havos (Y, 2)
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
Sketch of the proof of Theorem, transient case 4th Step - Estimate of Py (Xrpg = 2)

5th Step : Gathering the estlmate

Modification of step 4, with a weak assumption

5th Step : Final estimate

So, from

7(Y)HavoB,., (V> 2) m(Y)Py(Ta > ToB,,,)
2 yeam(V)Py(Xepg,  nra = 2) ZyeA m(¥)Py(Ta > ToB,.,)

<114 0((jep) L

we obtain that lim,_, .. Ha(Vv, y) exists and

m(¥)Py(1a > +00)

lim Ha(v,y) =

V=400 > yeam(¥)Py(ta > +o0)
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(Xr, g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

How is use Harnack inequality ?
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Sketch of the proof of Theorem, transient case

1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py, (X- g = 2)

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

How is use Harnack inequality ?

® By = B(xo, M¥ry)

@ Bsuchthat By C B

o fa(u) = Py(Xrpy = 2)
defined on B,
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Sketch of the proof of Theorem, transient case

1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py, (X- g = 2)

5th Step : Gathering the estimate
Modification of step 4, with a weak assumption

How is use Harnack inequality ?

® By = B(xo, M¥ry)

@ Bsuchthat By C B

o fg(u) = Pu(Xrys = 2)
defined on By,which is

positive and harmonic on
B.
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of PL,(X‘.’ g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

How is use Harnack inequality ?

Sketch of the proof of Theorem, transient case

® By = B(xo, M¥ry)

@ Bsuchthat By C B

o fg(u) = Pu(Xrys = 2)
defined on By,which is
positive and harmonic on

B.
So, by Harnack inequality

K+ 1

oscg, ,(fg) < oscg, (a).
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of PL,(X‘.’ g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

How is use Harnack inequality ?

Sketch of the proof of Theorem, transient case

® By = B(xo, M¥ry)

@ Bsuchthat By C B

o fg(u) = Pu(Xrys = 2)
defined on By,which is
positive and harmonic on

B.
So, by Harnack inequality

K+ 1

oscg, ,(fg) < oscg, (a).
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(X-55 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

Weak Harnack inequality

Definition

We say that a weighted graph (', a) satisfies wH(K), the weak
Harnack inequality, if there is a constant1 < K < oo such that
for all x € T and for all R > 0 there is My g > 2 such that for all
M > My g and for any non-negative harmonic function u on
B(x, MR),

max u < K min u.
B(x,R) B(x,R)
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(X-55 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

Weak Harnack inequality

Definition

We say that a weighted graph (', a) satisfies wH(K), the weak
Harnack inequality, if there is a constant1 < K < oo such that
for all x € T and for all R > 0 there is My g > 2 such that for all

M > My g and for any non-negative harmonic function u on
B(x, MR),

max u < K min u.
B(x,R) B(x,R)

Assuming Weak Harnack inequality, we replace B(xo, M<r,) by
B(Xo, MMy _1...My rA) such that

M,‘ = M(XO, M,'_1 Mi_2...M1 rA).
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Sketch of the proof of Theorem, transient case

Condition (*)

1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of PL,(X‘.’ g = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Estimate (GE,) gives us WH(K)
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1st Step : bound of Hy

2nd Step : Replace set A by a box

3rd Step : Replace exit time of an annulus by exit time of a box
4th Step : Estimate of Py(X-55 = 2)

5th Step : Gathering the estimate

Modification of step 4, with a weak assumption

Sketch of the proof of Theorem, transient case

Condition (*)

Estimate (GE,) gives us wH(K) and the wanted condition

(*) PU(TA > 7‘35) >c>0.

Lemma
Let (T, a) be a weighted graph which verifies (GE.).

Setf = (2Cs) Then forall x, € T, M > 6, R > Ry, and
x € 0B(xo, GR) we have : for all A C B(xp, R),

C.
Px(Ta > ToB(x,MR)) > 27(,:5 (1)
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Overview of the proof in the recurrent case

e Overview of the proof in the recurrent case

Daniel Boivin , Rau Cléi Existence of the harmonic measure for random walks on graphs ¢



Overview of the proof in the recurrent case

Supercritical cluster percolation in dimension 2

@ Replace Gby g
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Overview of the proof in the recurrent case

Supercritical cluster percolation in dimension 2

@ Replace Gby g
@ Estimate of g.
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Overview of the proof in the recurrent case

Supercritical cluster percolation in dimension 2

@ Replace Gby g
@ Estimate of g. Tools :
e Harnack inequality (Parabolic and Elliptic in a annulus)
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Overview of the proof in the recurrent case

Supercritical cluster percolation in dimension 2

@ Replace Gby g
@ Estimate of g. Tools :

e Harnack inequality (Parabolic and Elliptic in a annulus)
e Capacity of a box of supercritical percolation of Z2. (Kesten
Grid)
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Overview of the proof in the recurrent case

Supercritical cluster percolation in dimension 2

@ Replace Gby g
@ Estimate of g. Tools :
e Harnack inequality (Parabolic and Elliptic in a annulus)
e Capacity of a box of supercritical percolation of Z2. (Kesten
Grid) we proved that there is a constant C > 1 such that
Pp-a.s. for xo € Co, for all n sufficiently large,

c'< In(n) Capg,,(x,.n({x0}) < C.
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Overview of the proof in the recurrent case

Supercritical cluster percolation in dimension 2

@ Replace Gby g

@ Estimate of g. Tools :
e Harnack inequality (Parabolic and Elliptic in a annulus)
e Capacity of a box of supercritical percolation of Z2. (Kesten
Grid) we proved that there is a constant C > 1 such that
Pp-a.s. for xo € Co, for all n sufficiently large,

c'< In(n) Capg,,(x,.n({x0}) < C.

o Antal and Pisztora estimate of the chemical distance.
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Overview of the proof in the recurrent case

Supercritical cluster percolation in dimension 2

@ Replace Gby g
@ Estimate of g. Tools :
e Harnack inequality (Parabolic and Elliptic in a annulus)
e Capacity of a box of supercritical percolation of Z2. (Kesten
Grid) we proved that there is a constant C > 1 such that
Pp-a.s. for xo € Co, for all n sufficiently large,

c'< In(n) Capg,,(x,.n({x0}) < C.

o Antal and Pisztora estimate of the chemical distance.
@ A last trick in a bound of Hj.
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Overview of the proof in the recurrent case

Supercritical cluster percolation in dimension 2

A last trick in a bound of Hy.
Let o :=inf{k > 0; Xk ¢ B(xp, m)}.
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Overview of the proof in the recurrent case

Supercritical cluster percolation in dimension 2

A last trick in a bound of Hy.
Let o :=inf{k > 0; Xk ¢ B(xp, m)}.
m(X)Ha(X, y)
7T(X) Zy’eA HA(Xa y/)
7(Y)Py(on < 7a) —
5 ea )Py (o <7 |11 O]
B (Inn)m(y)Py(cn < 7a) —
T ) S eam(V)Py (Gn < 7a) t+o(m)]

HA(va) =
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Overview of the proof in the recurrent case

Supercritical cluster percolation in dimension 2

A last trick in a bound of Hy.
Let o :=inf{k > 0; Xk ¢ B(xp, m)}.
T(X)Ha(X,y)
7T(X) Zy’eA HA(Xa y/)
7(Y)Py(on < 7a) —
5 ea )Py (o <7 |11 O]
B (Inn)m(y)Py(cn < 7a) —
T ) S eam(V)Py (Gn < 7a) 1+0(n)]
Fact : for x € A,

HA(va) =

Iirr7n (Inn)Px(cn < Ta) exists
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Open questions

e Open questions
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Open questions

Open questions.

@ Question 1 : Links between Martin/Poisson boundary and
the existence of the harmonic measure ? (Existence of
harmonic measure Triviality of the boundary )

Daniel Boivin , Rau Clément Existence of the harmonic measure for random walks on graphs ¢



Open questions

Open questions.

@ Question 1 : Links between Martin/Poisson boundary and
the existence of the harmonic measure ? (Existence of
harmonic measure Triviality of the boundary )

@ Question 2 : Is there a connection between existence of
harmonic measure and invariance principle (in random
environments) ?
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Open questions

niel Boivin , Rau Clémen Existence of the harmonic measure for random walks
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