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Abstract. We give a sufficient condition for the existence of the harmonic measure from

infinity of transient random walks on weighted graphs. In particular, this condition is verified
by the random conductance model on Zd, d ≥ 3, when the conductances are i.i.d. and the

bonds with positive conductance percolate. The harmonic measure from infinity also exists

for random walks on supercritical clusters of Z2. This is proved using results of Barlow (2004)
and Barlow and Hambly (2009).
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1. Introduction and results

In [23], Hunt gave a probabilistic formulation of the harmonic measure of a closed set in euclidean
space as the hitting distribution of the set by a d-dimensional Brownian motion started at infinity.
A recent account can be found in [30, section 3.4] for instance.

In this paper, we investigate infinite weighted graphs for which it is possible to define the harmonic
measure of a finite set as the hitting distribution of the set by the random walk on the graph
starting at infinity. The existence of the harmonic measure for random walks goes back to Spitzer
[35]. It also appears in Lawler in [27, chapter 2] for the simple symmetric random walk on Zd
and it is extended to a wider class of random walks in the recent book by Lawler and Limic [26,
section 6.5].

From these results, one might expect that the existence of the harmonic measure for a Markov
chain on Zd, d ≥ 2, relies on its Green function asymptotics. The goal of this paper is to show
that actually, the existence of the harmonic measure is a fairly robust result in the sense that
it exists for a random walk on a weighted graph as soon as the Green function satisfies weak
estimates. These imply a weak form of a Harnack inequality. In particular, it is verified by a
large family of fractal-like graphs and by random conductance models on Zd, d ≥ 3, given by a
sequence of i.i.d. conductances as soon as there is percolation of the positive conductances. This
is done using recent estimates of Andres, Barlow, Deuschel and Hambly [3].

In the recurrent case, although we do not give a general sufficient condition, we show the existence
of the harmonic measure for the random walk on the supercritical cluster of Z2. To do so, we
construct the Green kernel of the random walk by using the parabolic Harnack inequality of
Barlow and Hambly [8]. The Gaussian estimates of [6] and [8] as well as an argument from [15]
then provide the needed estimates.
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The results of [3] for the random conductance model are part of a long series of works which go
back to homogenization of divergence form elliptic operators with random coefficients and to the
investigation of the properties of the supercritical percolation cluster.

Some highlights of the properties of the random walk on the supercritical percolation cluster of
Zd is the proof of the Liouville property for bounded harmonic functions (see Kaimanovich [24]
and [11]) and the proof of the transience of the walk when d ≥ 3 by Grimmett, Kesten and Zhang
[22].

In [6], Barlow proved upper and lower gaussian estimates for the probability transitions of a
random walk on the supercritical percolation cluster. These are then used to prove a Harnack
inequality [6, Theorem 3]. The Liouville property for positive harmonic functions on the perco-
lation cluster follows as well as an estimate of the mean-square displacement of the walk.

Barlow’s upper gaussian estimates were also used to prove the invariance principle for the random
walk on supercritical percolation clusters by [34], [29], [12]. An extensive survey of the random
conductance model was recently completed by Biskup [13].

Here we show the existence of the harmonic measure for random walks on the supercritical
percolation cluster. In the transient case, it turns out that its existence follows from Green
function estimates which apply widely to random walks on graphs.

In the case of the two-dimensional percolation cluster, we need both the elliptic and the parabolic
Harnack inequalities of [6] and [8].

Whenever the harmonic measure from infinity exists, one can study external diffusion-limited
aggregates. Their growth is determined by the harmonic measure which can also be interpreted
as the distribution of an electric field on the surface of a grounded conductor with fixed charge
of unity. Recent simulations by physicists of the harmonic measure in Zd can be found in [1] and
of percolation and Ising clusters in [2]. Analytic predictions for the harmonic measure of two
dimensional clusters are given by Duplantier in [19] and [20]. See also the survey paper [5].

In contrast, for the internal diffusion-limited aggregates of random walks on percolation clusters,
the limiting shape is described in [33] and [18].

1.1. Reversible random walks. A weighted graph (Γ, a) is given by a countably infinite set Γ
and a symmetric function

a : Γ× Γ→ [0;∞[
which verifies a(x, y) = a(y, x) for all x, y ∈ Γ and

π(x) :=
∑
y∈Γ

a(x, y) > 0 for all x ∈ Γ.

The weight a(x, y) is also called the conductance of the edge connecting x and y as the weighted
graph can be interpreted as an electrical or thermic network.

Given a weighted graph (Γ, a), we will write x ∼ y if a(x, y) > 0. We will always assume that
(Γ,∼) is an infinite, locally finite countable graph without multiple edges. A path of length
n from x to y is a sequence x0, x1, . . . , xn in Γ such that x0 = x, xn = y and xi−1 ∼ xi for
all 1 ≤ i ≤ n. The weighted graph (Γ, a) is said to be connected if (Γ,∼) is a connected
graph, that is, for all x, y ∈ Γ there is a path of finite length from x to y. The graph distance
between two vertices x, y ∈ Γ will be denoted by D(x, y). It is the minimal length of a path
from x to y in the graph (Γ,∼). The ball centered at x ∈ Γ of radius R will be denoted by
B(x,R) := {y ∈ Γ; D(x, y) < R}.
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The random walk on the weighted graph (Γ, a) is the Markov chain on Γ with transition proba-
bilities given by

p(x, y) :=
a(x, y)
π(x)

, x, y ∈ Γ. (1.1)

We denote by Px the law of the random walk starting at the vertex x ∈ Γ. The corresponding ex-
pectation is denoted by Ex. The random walk admits reversible measures which are proportional
to the measure π(·).

For A ⊂ Γ, we have the following definitions

∂A := {y ∈ Γ; y /∈ A and there is x ∈ A with x ∼ y} and A := ∂A ∪A,

τA := inf{k ≥ 1; Xk ∈ A} and τA := inf{k ≥ 0; Xk ∈ A}

with the convention that inf ∅ =∞,

D(x,A) := inf{D(x, y); y ∈ A},

for a bounded function u on A, oscA u := supx,y∈A |u(x)− u(y)|,

and for u : A→ R, Pu(x) :=
∑
y∼x

p(x, y)u(y), x ∈ A.

A function u : A→ R is harmonic in A if Pu = u on A.

The Green function of the random walk is defined by

G(x, y) :=
∞∑
j=0

p(x, y, j), x, y ∈ Γ (1.2)

where p(x, y, j) := Px(Xj = y) are the transition probabilities of the walk. Note that G(·, y) is
harmonic in Γ \ {y}.

For irreducible Markov chains, if G(x, y) <∞ for some x, y ∈ Γ then G(x, y) <∞ for all x, y ∈ Γ.
The random walk is recurrent if G(x, y) = ∞ for some x, y ∈ Γ otherwise we say that the walk
is transient.

The minimum of a and b and the maximum of a and b are respectively denoted by a ∧ b and by
a ∨ b.

1.2. Results on the existence of the harmonic measure. Let (Xj ; j ∈ N) be a random
walk on a connected weighted graph (Γ, a).

The hitting distribution of a set A by the random walk starting at x ∈ Γ is given by

HA(x, y) := Px(XτA = y|τA < +∞), y ∈ A,

or, whenever the graph is recurrent, by

HA(x, y) := Px(XτA = y), y ∈ A.

The harmonic measure on a finite subset A of Γ is the hitting distribution from infinity, if it
exists,

HA(y) := lim
D(x,A)→∞

HA(x, y), y ∈ A. (1.3)
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Our goal is to prove the existence of the harmonic measure for all finite subsets of various weighted
graphs. The proof of the existence of the harmonic measure given in [26, section 6.5] for random
walks on Zd, relies on a Harnack inequality and on Green function estimates.

For transient graphs, we show in Theorem I that a weak form of the Green function estimates is
a sufficient condition for the existence of the harmonic measure.

As it happens for Brownian motion and for simple random walks (see for instance [30], [27]), the
harmonic measure can be expressed in terms of capacities.

Let A ⊂ B be finite subsets of Γ. The capacity of A with respect to B is defined by

CapB(A) :=
∑
x∈A

π(x)Px(τBc < τA). (1.4)

The escape probability of a set A is defined by EsA(x) := Px(τA =∞) and the capacity of a finite
subset A ⊂ Γ is defined by

Cap(A) :=
∑
x∈A

π(x)EsA(x).

Our first result is the existence of the harmonic measure for transient graphs with a Green
function which verifies the following weak estimates.

Definition 1.1. We say that a weighted graph (Γ, a) satisfies the Green function estimates
(GEγ) for some γ > 0 if there are constants 0 < Ci ≤ Cs <∞ and if for all z ∈ Γ, there exists
Rz <∞ such that for all x, y ∈ Γ with D(x, y) ≥ Rx ∧Ry we have

Ci
D(x, y)γ

≤ G(x, y) ≤ Cs
D(x, y)γ

. (GEγ)

This condition is a weak version of [36, Definition 1] where γ is called a Greenian index. It is
used by Telcs [36] to give an upper bound for the probability transitions of a Markov chain in
terms of the growth rate of the volume and of the Greenian index.

Note that a graph which verifies (GEγ) for some γ > 0 is connected and transient. We will show
that (GEγ) also implies the existence of the harmonic measure.

Theorem I. Let (Γ, a) be a weighted graph which verifies (GEγ) for some γ > 0.

Then for any finite subset A ⊂ Γ the harmonic measure on A exists. That is, for all y ∈ A, the
limit (1.3) exists.

Moreover, we have:
lim

D(x,A)→∞
HA(x, y) = lim

m→+∞
Hm
A (y),

where, for m large enough,

Hm
A (y) =

π(y)Py(τA > τ∂B(x0,m))
Capm(A)

where Capm(A) is the capacity of A with respect to B(x0,m) for some x0 ∈ Γ. The limit does
not depend on the choice of x0.

In the following corollaries, we describe some weighted graphs where the harmonic measure from
infinity exists.
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A weighted graph (Γ, a) is said to be uniformly elliptic if there is a constant c ≥ 1 such that for
all edges e,

c−1 ≤ a(e) ≤ c. (1.5)

Consider the lattice Zd, d ≥ 2, where x ∼ y if |x− y|1 = 1 where | · |1 is the `1-distance.

Corollary 1.2. Let (Zd, a), d ≥ 3, be a uniformly elliptic graph.

Then for all finite subsets A of Zd and for all y ∈ A, the limit (1.3) exists.

Moreover, we have:
lim

|x|→+∞
HA(x, y) = lim

m→+∞
Hm
A (y),

where Hm
A (y) =

π(y)Py(τA > τ∂B(0,m))
Capm(A)

.

Indeed, by [16, Proposition 4.2] the Green function of a uniformly elliptic graph (Zd, a), d ≥ 3,
verifies the estimates (GEγ) with γ = d − 2. The existence of the harmonic measure then
follows from Theorem I.

The harmonic measure also exists for a large class of fractal like graphs with some regularity
properties. Various examples are given in [9] and the references therein.

A weighted graph (Γ, a) verifies the condition (p0) if there is a constant c > 0 such that for all
vertices x ∼ y,

p(x, y) > c. (p0)

The volume of a ball B(x,R) is defined by V (x,R) :=
∑
y∈B(x,R) π(y).

A weighted graph (Γ, a) has polynomial volume growth with exponent α > 0 if there is a constant
c > 1 such that for all x ∈ Γ and for all R ≥ 1,

c−1Rα ≤ V (x,R) ≤ cRα. (Vα)

Note that the condition (Vα) implies the volume doubling condition of [21] for any α > 0.

A weighted graph (Γ, a) satisfies the resistance estimate with exponent β > 0 if there are constants
c > 1 and M > 1 such that for all x ∈ Γ and for all R ≥ 1,

c−1V (x,R)
Rβ

≤ CapB(x,MR)(B(x,R)) ≤ cV (x,R)
Rβ

. (REβ)

A weighted graph (Γ, a) satisfies H(K), the Harnack inequality with positive constant K and
shrinking parameter M > 1, if for all x ∈ Γ and R ≥ 1, and for any non-negative harmonic
function u on B(x,MR),

max
B(x,R)

u ≤ K min
B(x,R)

u.

Grigor’yan and Telcs [21, Theorem 3.1] proved that if a weighted graph verifies (p0), (Vα), (REβ)
for α > 0 and β ≥ 2 and the Harnack inequality H(K) then it verifies sub-gaussian estimates.
These imply that if α > β ≥ 2 then the walk is transient and the estimates (GEγ) hold with
γ = α− β. Hence we obtain the following corollary to theorem I.

Corollary 1.3. Let (Γ, a) be a weighted graph which verifies (p0), (Vα), (REβ) for α > β ≥ 2
and the Harnack inequality H(K). Then for all finite subsets A ⊂ Γ and y ∈ A the limit (1.3)
exists.
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The harmonic measure from infinity also exists for random walks in random environment and
in particular for the random walk on the supercritical percolation cluster. Before stating this
result, we give a brief description of the percolation model. See [25] for more details.

Denote by Ed the set of edges of the lattice Zd, d ≥ 2, where x ∼ y if |x− y|1 = 1.

Assume that (a(e); e ∈ Ed) are i.i.d. non-negative random variables on a probability space (Ω,P).
Call a bond e open if a(e) > 0 and closed if a(e) = 0. Let p = P(a(e) > 0). By percolation
theory, there exists a critical value pc = pc(Zd) ∈]0; 1[ such that for p < pc, P almost surely, all
open clusters of ω are finite and for p > pc, P almost surely, there is a unique infinite cluster
of open edges which is called the supercritical cluster. It will be denoted by C∞ = C∞(ω). The
edges of this graph are the open edges of the cluster and the endpoints of these edges are the
vertices of the graph.

For x, y ∈ C∞(ω), we will write x ∼ y if the edge with endpoints x and y is open. The transition
probabilities of the random walk on C∞(ω) are given by (1.1). The law of the paths starting at
x ∈ C∞(ω) will be denoted by Pωx . The random walk on the supercritical percolation cluster
corresponds to the case of Bernoulli random variables. In this case, we will write Pp instead of
P.

Dω(x, y) will denote the graph distance between x and y in the graph C∞(ω) and the ball cen-
tered at x ∈ C∞(ω) of radius R will be denoted by Bω(x,R) = {y ∈ C∞(ω); Dω(x, y) < R}.

The existence of the harmonic measure for Zd, d ≥ 3, with i.i.d. conductances, is given in
corollary 1.4 below. It follows from the Green function estimates of [3, Theorem 1.2 (a)]. A
weaker condition which might hold even if the conductances are not i.i.d. is given in [7, Theorem
6.1].

Corollary 1.4. Let (Zd, a), d ≥ 3, be a weighted graph where the weights (a(e); e ∈ Ed) are i.i.d.
non-negative random variables on a probability space (Ω,P) which verify

P(a(e) > 0) > pc(Zd).

Then there exist positive constants Ci, Cs, which depend on P and d, and Ω1 ⊂ Ω with P(Ω1) = 1
such that for each ω ∈ Ω1, (GEγ) holds in C∞(ω) with the constants Ci and Cs and with
γ = d− 2.

For any finite subset A of C∞ and for all y ∈ A, the limit (1.3) exists.

Moreover, we have:

lim
|x|→+∞,x∈C∞

HA(x, y) = lim
m→+∞

Hm
A (y),

where Hm
A (y) = π(y)Pωy (τA>τ∂Bω(x0,m))

Capm(A) for some x0 ∈ C∞ and for m large enough.

In [3], both the constant speed random walk and the variable speed random walk are considered.
From the expression of their generators one immediately sees that they have the same harmonic
functions as the discrete time random walk considered here. Moreover, since they are a time
change of each other, the Green function is the same. Hence, by [3, Theorem 1.2 a] the Green
function of the random walk on C∞(ω) ⊂ Zd, d ≥ 3, verifies the estimates (GEγ) with γ = d−2.
The existence of the harmonic measure then follows from Theorem I.
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The harmonic mesure from infinity also exists for some recurrent graphs. We will show its
existence for uniformly elliptic graphs (Z2, a) and for two-dimensional supercritical percolation
clusters.

Theorem II. Let (Z2, a) be a weighted graph where the weights (a(e); e ∈ E2) are i.i.d. random
variables on a probability space (Ω,Pp) which verify

p = Pp(a(e) = 1) = 1− Pp(a(e) = 0) > pc(Z2).

Then Pp almost surely, for any finite subset A of C∞(ω) and for all y ∈ A, the limit (1.3)
exists.

An expression for the value of the limit (1.3) is given in equation (4.51).

Theorem III. Let (Z2, a) be a uniformly elliptic weighted graph. Then for all finite subsets
A ⊂ Z2 and for all y ∈ A, the limit (1.3) exists.

Various forms of Harnack inequality that will be used in the constext of transient or recurrent
graphs are gathered in section 2. The proof of theorem I is given in section 3 while Theorem II
and III are proved in section 4. Section 5 contains the proof of the annulus Harnack inequality
that is used in the proof of Theorem II.

Note that on a bipartite graph with two infinite components, there are finite sets for which the
harmonic mesure from infinity does not exist. In the last section, we construct a weighted graph
which is not “finitely-partite” and where there is a finite set A for which the harmonic mesure
from infinity does not exist.

It would be interesting to investigate the links between the Poisson boundary of a graph and the
existence of the harmonic measures. In particular, the triviality of the Poisson boundary does
not imply the existence of the harmonic measure as is shown by the lamplighter group Z2 oZ/2Z.
See [32] and the references therein.

2. Harnack inequalities

The condition H(K) is the usual form of the Harnack inequality on a graph. In our context, we
will work with the weaker form of the Harnack inequality given below.

Definition 2.1. We say that a weighted graph (Γ, a) satisfies wH(K), the weak Harnack in-
equality, with the positive constant K if for all x ∈ Γ and for all R ≥ 1 there is Mx,R ≥ 2 such
that for any non-negative harmonic function u on B(x,Mx,RR),

max
B(x,R)

u ≤ K min
B(x,R)

u.

Whenever the Green function estimates (GEγ) hold for some γ > 0, the weak Harnack inequality
wH(K) is verified. It will be essential to prove Theorem I.

Proposition 2.2. Let (Γ, a) be a weighted graph which verifies (GEγ) for some γ > 0. Then

the graph is connected, transient and wH(K) holds with K = 10
Cs
Ci
.
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The proof is given in section 3. By proposition 2.2 and by corollary 1.4, the random walk on the
supercritical percolation cluster of Zd, d ≥ 3, verifies wH(K). Barlow [6, Theorem 3] showed
that the supercritical percolation cluster verifies another variant of Harnack inequality. Given
below is a Harnack inequality under the form that will be most useful to us. It is an immediate
consequence of Theorem 5.11, proposition 6.11 and of (0.5) of Barlow’s work [6].

Harnack Inequality for the percolation cluster [6]. Let d ≥ 2 and let p > pc(Zd). There
exists c1 = c1(p, d) and Ω1 ⊂ Ω with Pp(Ω1) = 1, and R0(x, ω) such that 3 ≤ R0(x, ω) < ∞ for
each ω ∈ Ω1, x ∈ C∞(ω).

If R ≥ R0(x, ω) and if D(x, z) ≤ 1
3R lnR and if u : B(z,R) → R is non-negative and harmonic

in B(z,R), then

max
B(z,R/2)

u ≤ c1 min
B(z,R/2)

u. (2.1)

Moreover, there are positive constants c2, c3 and ε which depend on p and d such that the tail of
R0(x, ω) satisfies

Pp(x ∈ C∞, R0(x, ·) ≥ n) ≤ c2 exp(−c3nε). (2.2)

In the proof of Theorem I, we will need a regularity property of harmonic functions which is a
consequence of the weak Harnack inequality.

Lemma 2.3. Let (Γ, a) be a weighted graph which verifies wH(K) with shrinking parameters
(Mx,R;x ∈ Γ, R ≥ 1) where Mx,R ≥ 2 for all x ∈ Γ and R ≥ 1.

Then for all x ∈ Γ, R ≥ 1, M > Mx,R and for any harmonic function u on B(x,MR),

osc
B(x,R)

u ≤
(K − 1
K + 1

)
osc

B(x,MR)
u. (2.3)

Proof. Let x ∈ Γ, R ≥ 1 and M > Mx0,R. Let u be a harmonic function on B(x,MR).

Set v = u−minB(x,MR) u.

Then by wH(K), since v is non-negative and harmonic in B(x,MR),

max
B(x,R)

v ≤ K min
B(x,R)

v.

Hence
max
B(x,R)

u− min
B(x,MR)

u ≤ K
(

min
B(x,R)

u− min
B(x,MR)

u). (2.4)

Set ṽ = (maxB(x,MR) u) − u and proceed similarly. By wH(K), since ṽ is non-negative and
harmonic in B(x,MR),

max
B(x,R)

ṽ ≤ K min
B(x,R)

ṽ.

Hence
max

B(x,MR)
u− min

B(x,R)
u ≤ K

(
max

B(x,MR)
u− max

B(x,R)
u). (2.5)

Adding (2.4) and (2.5), we obtain,

osc
B(x,R)

u+ osc
B(x,MR)

u ≤ K
(

osc
B(x,MR)

u− osc
B(x,R)

u).
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Since the Harnack inequality for the supercritical cluster (2.1) holds with the shrinking parameter
M = 2, we can proceed further as in [31, p.109] to obtain the following regularity result.

Proposition 2.4. Let d ≥ 2 and let p > pc(Zd). Let Ω1 and R0(x, ω) be given by the Harnack
inequality for the supercritical cluster (2.1). Then there exist positive constants ν and c such that
for each ω ∈ Ω1, x0 ∈ C∞(ω) if R ≥ R0(x0, ω) and u is a non-negative harmonic function on
Bω(x0, R) then, for all x, y ∈ Bω(x0, R/2),

|u(x)− u(y)| ≤ c
(
D(x, y)
R

)ν
max

B(x0,R)
u.

We will also need a Harnack inequality in the annulus of the two-dimensional supercritical per-
colation cluster. To obtain this inequality we will use the tail estimates (2.2) of [6], a percolation
result due to Kesten [25] and the following estimates of Antal and Pisztora [4, Theorem 1.1 and
Corollary 1.3].

For d ≥ 2 and p > pc(Zd), there is a constant µ = µ(p, d) ≥ 1 such that

lim sup
|x|1→∞

1
|x|1

ln Pp[x0, x ∈ C∞, D(x0, x) > µ|x|1] < 0 (2.6)

and, Pp almost surely, for x0 ∈ C∞ and for all x ∈ C∞ such thatD(x0, x) is sufficiently large

D(x0, x) ≤ µ|x− x0|1. (2.7)

Proposition 2.5. Let p > pc(Z2). There is a positive constant such that Pp-a.s., for all x0 ∈ C∞
and r > 0, if m is large enough,
then for any non-negative function u harmonic in B(x0, 3µm) \B(x0, r),

max
x;D(x0,x)=m

u(x) ≤ C min
x;D(x0,x)=m

u(x)

where µ is the constant that appears in (2.7).

The proof of this Harnack inequality is postponed to section 5.

3. Proofs for transient graphs

In this section, we prove proposition 2.2 and Theorem I.

To prove proposition 2.2, we use lemma 3.1 below which shows how to obtain a Harnack inequality
from a Harnack inequality for the Green function in an annulus. This idea appeared in [14] and
was used in the context of random walks on graphs by Telcs [37, p. 37]. In lemma 3.1 below, we
state it slightly differently and we provide a different proof.

Let (Γ, a) be a weighted graph. The Green function of the random walk in B ⊂ Γ is defined
by

GB(x, y) :=
∞∑
j=0

pB(x, y, j), x, y ∈ B

where pB(x, y, j) := Px(Xj = y, j < τBc) are the transition probabilities of the walk with
Dirichlet boundary conditions.

The Green function with Dirichlet boundary condition can be expressed in terms of the Green
function of the graph. We recall this property that will be useful in the proof of proposition
2.2.
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For a finite subset B of Γ,

GB(x, z) = G(x, z)−
∑
y∈∂B

H∂B(x, y)G(y, z), x, z ∈ B. (3.1)

Lemma 3.1. Let B0 ⊂ B1 ⊂ B2 be finite subsets of Γ such that Bi ⊂ Bi+1, i = 0, 1.

Let u be a non-negative function on B2 which is harmonic in B2.

Then
max
B0

u ≤ K min
B0

u (3.2)

where

K := max
x∈B0

max
y∈B0

max
z∈∂intB1

GB2(x, z)
GB2(y, z)

(3.3)

and ∂intB1 is the inner boundary of B1, that is, ∂intB1 = {z ∈ B1; there is x ∈ ∂B1, x ∼ z}.

Proof. Let ũ be the non-negative function defined on B1 ∪ ∂B2 by ũ = u on B1 and ũ = 0 on
∂B2. Let η := τB1 ∧ τ∂B2 and let

w(x) = Ex [ũ(Xη)] , x ∈ B2. (3.4)

Then w ≥ 0 on B2, w = 0 on ∂B2 and w is harmonic on B2 \ ∂intB1. Moreover, since u is
harmonic in B2, u = w on B1 and u ≥ w on ∂B2, by the maximum principle (see for instance
[28, p. 19]),

u ≥ w on B2. (3.5)

For z ∈ ∂intB1, set f = (I − P )w. Then by the maximum principle,

w(x) =
∑

z∈∂intB1

GB2(x, z)f(z), x ∈ B2. (3.6)

Note that for all z ∈ ∂intB1, f(z) = w(z)− Pw(z) ≥ u(z)− Pu(z) = 0 by (3.5).

Then (3.2) follows from (3.6) and the fact that w = u on B0.

Remark. It is possible extend lemma 3.1 to a Harnack inequality in an annulus. If u is a
non-negative function on B2 which is harmonic in B2 except at a vertex x0 ∈ B0 where Hu ≥ 0

then max
∂B0

u ≤ K min
∂B0

u where K := max
x∈B0

max
y∈B0

max
z∈∂intB1∪{x0}

GB2(x, z)
GB2(y, z)

.

Proof of proposition 2.2. Let x0 ∈ Γ and R ≥ 1 be given. Let γ and Rx, x ∈ Γ, be given by
(GEγ).

Let M1 be large enough so that

M1 > 3 +
1
R

max
x∈B(x0,R)

Rx and
(M1 − 2)−γ

(M1 + 3)−γ
< 5. (3.7)

Then let M be large enough so that

M >
1
R

max
z∈∂B(x0,M1R)

Rz and CsM
−γ <

1
2
Ci(M1 + 3)−γ . (3.8)

For these values of M and M1, to apply lemma 3.1 with

B0 = B(x0, R), B1 = B(x0,M1R) and B2 = B(x0, (M +M1)R),
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we need the following estimates.

For x, y ∈ B0, z ∈ ∂intB1 and z′ ∈ ∂B2,

GB2(x, z) ≤ G(x, z) ≤ CsD(x, z)−γ < Cs(M1 − 2)−γR−γ , (3.9)

G(y, z) ≥ CiD(y, z)−γ > Ci(M1 + 3)−γR−γ and (3.10)

G(z′, z) ≤ CsD(z′, z)−γ < CsM
−γR−γ . (3.11)

Then by (3.1), (3.8), (3.10) and (3.11),

GB2(y, z) ≥ Ci(M1 + 3)−γR−γ − CsM−γR−γ >
1
2
Ci(M1 + 3)−γR−γ . (3.12)

Then by (3.7), (3.9) and (3.12),

max
x,y∈B0

max
z∈∂intB1

G(x, z)
G(y, z)

≤ 10Cs/Ci.

That is, wH(K) holds with the constant K = 10Cs/Ci.

Lemma 3.2. Let (Γ, a) be a weighted graph which verifies (GEγ) for some γ > 0.

Let γ and Rx0 , x0 ∈ Γ, be given by (GEγ). Then for all r ≥ Rx0 and ρ > (2Cs/Ci)1/γr

Px(τB(x0,r) =∞) > Ci/(2Cs) (3.13)

for all x ∈ ∂B(x0, ρ).

Proof. Fix x0 ∈ Γ and let r ≥ Rx0 .

For R > r, let η = inf{j ≥ 0, Xj ∈ B(x0, r) ∪ ∂B(x0, R)}.

Since G(·, x0) is harmonic in Γ \ {x0}, G(Xn∧η, x0), n ∈ N, is a martingale with respect to Ex
for x ∈ B(x0, R) \B(x0, r).

By the optional sampling theorem, for x ∈ ∂B(x0, ρ) where R > ρ > r,

G(x, x0) = Px[Xη ∈ ∂B(x0, R)] Ex[G(Xη, x0)|Xη ∈ ∂B(x0, R)]
+(1− Px[Xη ∈ ∂B(x0, R)])Ex[G(Xη, x0)|Xη ∈ B(x0, r)]

or equivalently,

Px[Xη ∈ ∂B(x0, R)]
(
Ex(G(Xη, x0)|Xη ∈ B(x0, r))− Ex(G(Xη, x0)|Xη ∈ ∂B(x0, R))

)
= Ex(G(Xη, x0)|Xη ∈ B(x0, r))−G(x, x0).

By (GEγ), if R > ρ > (2Cs/Ci)1/γr then

Ex(G(Xη, x0)|Xη ∈ B(x0, r))−G(x, x0) > Cir
−γ − Csρ−γ > (Ci/2)r−γ

and

Ex(G(Xη, x0)|Xη ∈ B(x0, r))− Ex(G(Xη, x0)|Xη ∈ ∂B(x0, R)) < Csr
−γ − CiR−γ < Csr

−γ .

Hence,
Px[Xη ∈ ∂B(x0, R)] > Ci/(2Cs).

We can now state the main lemma to prove Theorem I.
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Lemma 3.3. Let (Γ, a) be a weighted graph which verifies (GEγ) for some γ > 0. Let K =
10Cs/Ci.

Fix x0 ∈ Γ. Let A be a finite subset of Γ.

Then there is an increasing sequence of balls (Bk, k ∈ N), centered at x0, with A ⊂ B0 and
Bk ↑ Γ as k →∞ and such that for all y ∈ A and z ∈ ∂Bk,

Py(XτA∧τ∂Bk = z|τA > τ∂Bk) = H∂Bk(x0, z)
[
1 +O

((K − 1
K + 1

)k)]
. (3.14)

Proof. Let Rx0 be given by (GEγ). Let rA ≥ Rx0 be such that A ⊂ B(x0, rA).

Fix ρA > (2Cs/Ci)1/γrA. Then by lemma 3.2 for all x ∈ ∂B(x0, ρA) and R > ρA,

Px(τA > τ∂B(x0,R)) > Px(τ∂B(x0,rA) =∞) > Ci/(2Cs). (3.15)

By proposition 2.2, since Γ satisfies (GEγ), it satisfies the weak Harnack inequality wH(K)
with K = 10Cs/Ci.

Therefore, we set M0 = 2 and we construct a sequence (Mk; k ∈ N) such that for all k ≥ 1, if u
is a non-negative and harmonic function in

Bk := B(x0,MkMk−1 · · ·M1M0ρA)

then
max
Bk−1

u ≤ K min
Bk−1

u. (3.16)

Then by lemma 2.3, for all k ≥ 1, if u is harmonic function in Bk then

osc
B0

u ≤
(K − 1
K + 1

)k
osc
Bk

u. (3.17)

For k ≥ 1 and z ∈ ∂Bk, consider the function

f(x) = Px(Xτ∂Bk
= z) = H∂Bk(x, z), x ∈ Γ.

Since f is harmonic in Bk−1, by (3.17),

osc
B0

f ≤
(K − 1
K + 1

)k−1

osc
Bk−1

f. (3.18)

Furthermore, since f is non-negative and harmonic in Bk, by (3.16), we have that

osc
Bk−1

f ≤ max
Bk−1

f ≤ K min
Bk−1

f ≤ Kf(x0). (3.19)

Therefore, by (3.18) and (3.19), for all x ∈ B0 and z ∈ ∂Bk,

|Px(Xτ∂Bk
= z)−H∂Bk(x0, z)| ≤ H∂Bk(x0, z)K

(K − 1
K + 1

)k−1

and in particular,

Px(Xτ∂Bk
= z) = H∂Bk(x0, z)[1 +O

((K − 1
K + 1

)k)
] (3.20)

where the constant in O(·) depends only on K.
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Note that A ⊂ B(x0, ρ) ⊂ B0. Then by (3.20), for x ∈ ∂B(x0, ρA) and k ≥ 0,

Px(Xτ∂Bk
= z|τA < τ∂Bk) =

∑
y∈A

Px(XτA = y|τA < τ∂Bk)Py(Xτ∂Bk
= z)

= H∂Bk(x0, z)
[
1 +O

((K − 1
K + 1

)k)]
. (3.21)

For x ∈ ∂B(x0, ρA) and z ∈ ∂Bk, k ≥ 0, we have that

Px(Xτ∂Bk
= z) = Px(Xτ∂Bk∧τA = z) + Px(Xτ∂Bk

= z|τA ≤ τ∂Bk)(1− Px(τA > τ∂Bk)).

Then,

Px(Xτ∂Bk∧τA = z) = Px(Xτ∂Bk
= z)− Px(Xτ∂Bk

= z|τA ≤ τ∂Bk)

+Px(Xτ∂Bk
= z|τA ≤ τ∂Bk)Px(τA > τ∂Bk)

= H∂Bk(x0, z)Px(τA > τ∂Bk)[1 +O
((K − 1
K + 1

)k)
] (3.22)

by (3.20), (3.21) and by the lower estimate (3.15).

But every path from A to ∂Bk must go through some vertex of ∂B(x0, ρA). So, for y ∈ A and
z ∈ ∂Bk,

Py(Xτ∂Bk∧τA = z) =
∑

x∈∂B(x0,ρA)

Py(Xτ∂B(x0,ρA)∧τA = x)Px(Xτ∂Bk∧τA = z)

(3.22)
= H∂Bk(x0, z)[1 +O

((K − 1
K + 1

)k)
]

×
∑

x∈∂B(x0,ρA)

Py(Xτ∂B(x0,ρA)∧τA = x)Px(τA > τ∂Bk)

= H∂Bk(x0, z)[1 +O
((K − 1
K + 1

)k)
]Py(τA > τ∂Bk).

As in Lawler [27, p. 49], using a last exit decomposition, we obtain the following representation
of the hitting distribution in a weighted graph (Γ, a).

Let A ⊂ B be finite subsets of Γ. Then for all x ∈ Bc and y ∈ A,

HA(x, y) =
∑
z∈∂B

GAc(x, z)HA∪∂B(z, y), (3.23)

HA(x, y) =
∑
z∈∂B GAc(x, z)HA∪∂B(z, y)∑
z∈∂B GAc(x, z)Pz(τA < τ∂B)

and

min
z∈∂B

HA∪∂B(z, y)
Pz(τA < τ∂B)

≤ HA(x, y) ≤ max
z∈∂B

HA∪∂B(z, y)
Pz(τA < τ∂B)

.

Then by reversibility, π(z)HA∪∂B(z, y) = π(y)HA∪∂B(y, z) and



14 DANIEL BOIVIN and CLEMENT RAU

Pz(τA < τ∂B) =
∑
ỹ∈A

HA∪∂B(z, ỹ). Hence,

min
z∈∂B

π(y)HA∪∂B(y, z)∑
ỹ∈A π(ỹ)HA∪∂B(ỹ, z)

≤ HA(x, y) ≤ max
z∈∂B

π(y)HA∪∂B(y, z)∑
ỹ∈A π(ỹ)HA∪∂B(ỹ, z)

(3.24)

We complete the proof of Theorem I with the help of (3.24).

Proof of Theorem I. Let A be a finite subset of Γ and let x0 ∈ Γ.

Let rA ≥ Rx0 be such that A ⊂ B(x0, rA).

Let (Bk; k ∈ N) be an increasing sequence of balls given by lemma 3.3.

By equation (3.14), for all y ∈ A, k ≥ 2 and z ∈ ∂Bk,

π(y)HA∪∂Bk(y, z) = H∂Bk(x0, z)[1 +O
((K − 1
K + 1

)k)
]π(y)Py(τA > τ∂Bk). (3.25)

By summing over y ∈ A the equation (3.25) gives,∑
y∈A

π(y)Py(Xτ∂Bk∧τA = z) = H∂Bk(x0, z)[1 +O
((K − 1
K + 1

)k)
]
∑
y∈A

π(y)Py(τA > τ∂Bk). (3.26)

Since (Γ, a) is connected, both sides of (3.26) are positive. So we can divide (3.25) by (3.26).
And a short calculation shows that

π(y)HA∪∂Bk(y, z)∑
ỹ∈A π(ỹ)Pỹ(Xτ∂Bk∧τA = z)

=
π(y)Py(τA > τ∂Bk)∑
ỹ∈A π(ỹ)Pỹ(τA > τ∂Bk)

[1 +O
((K − 1
K + 1

)k)
]

where the constant in O(·) still depends only on K.

By (3.24), we have that for all v /∈ Bk,

min
z∈∂Bk

π(y)HA∪∂Bk(y, z)∑
ỹ∈A π(ỹ)Pỹ(Xτ∂Bk∧τA = z)

≤ HA(v, y) ≤ max
z∈∂Bk

π(y)HA∪∂Bk(y, z)∑
ỹ∈A π(ỹ)Pỹ(Xτ∂Bk∧τA = z)

So for all v /∈ Bk we get:

HA(v, y) =
π(y)Py(τA > τ∂Bk)

CapBk(A)
[1 +O

((K − 1
K + 1

)k)
] (3.27)

As v goes to +∞ in an arbitrary way, we can let k → ∞ as well. Hence, by (3.27), we obtain
that limv→+∞HA(v, y) exists and

lim
v→+∞

HA(v, y) =
π(y)Py(τA > +∞)∑
ỹ∈A π(ỹ)Pỹ(τA > +∞)

.
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4. The two-dimensional supercritical percolation cluster

In this section, we prove the existence of the harmonic measure for the random walk on a
supercritical percolation cluster of Z2. The proof of Theorem III, for the uniformly elliptic
random walk on Z2, is similar but with many simplifications since we can use the estimates of
[16] instead of Barlow’s estimates.

The error term in the local central limit theorem for the simple random walk on Z2 is O(k−2)
(see [27, (1.10)] for instance). For the random walk on a supercritical percolation cluster of Z2,
Barlow and Hambly [8, (1.4)] proved a local central limit theorem with an error term which is
O(k−1). Because of this difficulty, we first construct the Green kernel using the parabolic Harnack
inequality [8, (3.2)]. Then we proceed as in Černý [15, section 3] to estimate the Green function in
a finite ball. Finally, using a Harnack inequality in an annulus, we obtain Green kernel estimates
which are sufficient to prove the existence of the harmonic measure although they are weaker
than the estimates which hold for the simple random walk on Z2 (see [27, Theorem 1.6.2]).

4.1. The Green kernel and its properties.

Lemma 4.1. Pp-almost surely, for all x0, x ∈ C∞(ω), the series

∞∑
k=0

[p(x0, x0, k)− p(x, x0, k)] (4.28)

converges. The limit will be denoted by g(x, x0).

Let G2n(x, y) and p2n(x, y, k) be respectively the Green function and the probability transitions
of the random walk in the ball Bω(x0, 2n) with Dirichlet boundary conditions. Then

g(x, x0) = lim
n

∞∑
k=0

[p2n(x0, x0, k)− p2n(x, x0, k)] = lim
n

[G2n(x0, x0)−G2n(x, x0)]. (4.29)

Proof. Let R0 be given by the Harnack inequality for the supercritical cluster (2.2). Then as in
the proof of [6, Proposition 6.1], we have that for x ∈ C∞ and R ≥ R0(x), B(x,R) is very good
(see [6, definition 1.7]) with NB ≤ R1/(10(d+2)) and it is exceedingly good (see [6, definition 5.4]).

Now let R ≥ R0(x) ∨ 16 and let R1 = R lnR. Then, since R1 ≥ R0, B = B(x,R1) is very good
with N2d+4

B ≤ R(2d+4)/(10(d+2))
1 ≤ R1/(2 lnR1). Then by [8, Theorem 3.1], there exists a positive

constant CH such that the parabolic Harnack inequality [8, (3.2)] holds in Q(x,R,R2). Therefore
[8, Proposition 3.2] holds with s(x0) = R0(x0) ∨ 16 and ρ(x0, x) = R0(x0) ∨ 16 ∨D(x0, x).

Fix x0 ∈ C∞ then v(n, x) = p(x, x0, n) + p(x, x0, n+ 1) is a caloric function, that is, it verifies

v(n+ 1, x) = Pv(n, x), (n, x) ∈ N× C∞.

Let k > 4D(x0, x)2. Let t0 = k + 1 and r0 =
√
t0. Then v(n, x) is caloric in ]0, r2

0] × B(x0, r0),
x ∈ B(x0, r0/2) since D(x0, x) ≤

√
k < r0/2, and t0 − ρ(x0, x)2 ≤ k ≤ t0 − 1.
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Then by the upper gaussian estimates [6, Theorem 5.7] and [8, (2.18)] and by [8, Proposition
3.2], there is ν > 0 such that

|v(k, x)− v(k, x0)| ≤ C

(
ρ(x0, x)√

t0

)ν
sup
Q+

v

≤ C

(
ρ(x0, x)√

t0

)ν 1
r2
0

≤ C
ρ(x0, x)ν

k1+ν/2
.

Moreover, for all k > 4D(x0, x)2,

|p(x, x0, k)− p(x0, x0, k)| ≤ C ρ(x0, x)ν

k1+ν/2
.

Hence (4.28) converges. Then (4.29) follows by Lebesgue dominated convergence theorem.

The harmonic measure will be expressed in terms of the function uA defined below.

Definition 4.2. Pp-a.s., for a finite subset A of C∞(ω) and for a fixed x0 ∈ A, let

uA(x, x0) := g(x, x0)− Eωx g(XτA , x0), x ∈ C∞(ω).

Note that, uA(·, x0) = 0 on A and

PωuA(x, x0) = Pωg(x, x0)−
∑
y∼x

p(x, y)Eωy g(XτA , x0)

= g(x, x0)− 1x0(x)− Eωx g(XτA , x0), x ∈ C∞(ω).

4.2. Green kernel estimates. We obtain upper and lower bounds on CapBω(x0,n)({x0}) by
the arguments of [15, section 3] with the heat kernel bounds for the discrete time random walk.
They appear in [6, Theorem 1 and remark 7] and [8, Theorem 5.1] with details given in [8, section
2]). We state them below in terms of the graph distance by taking into account (2.7).

For x, y ∈ C∞, let p̂(x, y, k) := p(x, y, k) + p(x, y, k + 1). Then, there are positive constants
η, c, c4, c5, c6, c7 and random variables R̂(x, ω) such that

Pp(x ∈ C∞, R̂(x, ω) ≥ n) ≤ c exp(−nη/c) (4.30)

and if x, y ∈ C∞ and n ≥ cD(x, y) ∨ R̂(x, ω), then

c4n
−1 exp(−c5D(x, y)2/n) ≤ p̂(x, y, k) ≤ c6n−1 exp(−c7D(x, y)2/n). (4.31)

Let Gn(x, y) and pn(x, y, k) be respectively the Green function and the probability transitions
of the random walk in the ball Bω(x0, n) with Dirichlet boundary conditions.

Proposition 4.3. Let p > pc(Z2). Let c4 and c6 be the constants that appear in (4.31). Then
Pp-a.s. for x0 ∈ C∞, for all n sufficiently large,

c4
3

lnn ≤ Gn(x0, x0) < 4c6 lnn. (4.32)

Remark. Note from (4.32), since CapBω(x0,n)({x0}) = a(x0)/Gn(x0, x0) (see [28, section 9.4]
for instance), there is a constant C > 1 such that Pp-a.s. for x0 ∈ C∞, for all n sufficiently
large,

C−1 ≤ (lnn) CapBω(x0,n)({x0}) ≤ C. (4.33)
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Proof. We follow [15, section 3] with few modifications.

For x0 ∈ C∞, let σn := inf{k > 0; Xk /∈ B(x0, n)}. Then we write the Green function as

Gn(x0, x0) = Ex0(
∑

0≤k<σn

1{Xk=x0})

=
∑

0≤k≤n2

p(x0, x0, k) +
∑
n2<k

Px0(Xk = x0, k < σn)

−
∑

0≤k≤n2

Px0(Xk = x0, σn ≤ k)

:= S1 + S2 − S3.

By the upper and lower bounds of (4.31), we obtain that for all n sufficiently large,

c4
2

lnn ≤ S1 ≤ R̂(x0, ω) + 2c6 lnn < 3c6 lnn. (4.34)

For the sum S3, by the strong Markov property and by reversibilty we have for n large enough,

S3 ≤ sup
y∈∂B(x0,n)

∑
2n≤k≤n2

p(y, x0, k)

≤ 4 sup
y∈∂Bω(x0,n)

∑
2n≤k≤n2

p(x0, y, k)

≤ 4(R̂(x0, ω) +
∑

2n≤k

c6
k
e−c7n

2/k )

≤ 4(R̂(x0, ω) + C )

It remains to bound S2. As noticed in [10, lemma 3.3], by (4.30) and by Borel-Cantelli, there
exists a constant 0 < C < +∞ such that, Pp almost surely, for all sufficiently large n,

sup
x∈B(x0,n)

R̂(x, ω) < C(lnn)1/η. (4.35)

So, by the gaussian lower bound of (4.31) and by (4.35), we deduce that,

sup
x∈B(x0,n)

∑
y∈B(x0,n)

p(x, y, n2) = sup
x∈B(x0,n)

[1−
∑

y/∈B(x0,n)

p(x, y, n2)] < ρ < 1 (4.36)

For k ≥ n2, let k = an2 + b, with 0 ≤ b < n2 and a ∈ N. By (4.35) and by the gaussian upper
bound of (4.31), we deduce that,

pn(x0, x0, k) =
∑

z1,z2,...,za−1∈B(x0,n)

pn(x0, z1, n
2)pn(z1, z2, n

2) . . . pn(za−1, x0, n
2 + b)

< ρa−1 c

n2 + b

<
c

n2
exp(−k/(cn2)).
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Using this upper bound on the transition probabilities, we have that

S2 =
∑
n2<k

Px0(Xk = x0, k < σn)

=
∑
n2<k

pn(x0, x0, k)

<
∑
n2<k

c

n2
exp(−k/(cn2)) < C.

Gathering inequalities for S1, S2 and S3, we obtain (4.32).

Lemma 4.4. There is a constant c8 ≥ 1 such that, Pp-a.s., for all x0 ∈ C∞ there is ρ = ρ(x0)
such that if D(x0, x) > ρ,

c−1
8 lnD(x0, x) ≤ g(x, x0) ≤ c8 lnD(x0, x) (4.37)

and
uA(x, x0) � lnD(x0, x) as D(x0, x)→∞. (4.38)

Proof. Let x0 ∈ C∞ and r > 0. Write τr := inf{k > 0;Xk ∈ B(x0, r)} and for m ≥ 1, write
σm := inf{k > 0;Xk /∈ B(x0,m)}.

Note that for all n > 3µm, where µ is the constant that appears in (2.6), P·(σn < τr) is
harmonic in B(x0, 3µm) \ B(x0, r). Then by the annulus Harnack inequality (proposition 2.5),
if m is sufficiently large and D(y, x0) = m, then

∑
x∈B(x0,r)

π(x)Px(σn < τr)

=
∑

x∈B(x0,r)

∑
x′;D(x0,x′)=m

π(x)Px(X(σm) = x′, σm < τr)Px′(σn < τr)

� Py(σn < τr)
∑

x∈B(x0,r)

∑
x′;D(x0,x′)=m

π(x)Px(X(σm) = x′, σm < τr)

� Py(σn < τr)Capm(B(x0, r)).

By f1(y,m, n) � f2(y,m, n) here, we mean that there is a constant c ≥ 1 which does not depend
on y,m, n nor on ω and r, and such that Pp-a.s for m is sufficiently large and D(y, x0) = m, then

0 < c−1f1(y,m, n) ≤ f2(y,m, n) ≤ cf1(y,m, n).

Then, since r is fixed, by the capacity estimates (4.33), for m = D(y, x0),

Py(σn < τr) �
Capn(B(x0, r))
Capm(B(x0, r))

� lnm
lnn

=
lnD(y, x0)

lnn
. (4.39)

It follows from (4.39) and the capacity estimates (4.33) that for m sufficiently large, D(x, x0) = m
and n > 3µm,

Gn(x0, x0)−Gn(x, x0) = Gn(x0, x0)− Px(τx0 < σn)Gn(x0, x0)
= Gn(x0, x0)Px(τx0 > σn)
� lnn lnD(x,x0)

lnn .

Then (4.37) follows by (4.29).
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We will need to work in sets defined in terms of g(·, x0). Let

B̃n := B̃(x0, n) := {x ∈ C∞; g(x, x0) < lnn} and σ̃n := inf{k ≥ 0;Xk /∈ B̃(x0, n)}. (4.40)

Note that by (4.37), for all n sufficiently large,

B(x0, n
1/c8) ⊂ B̃(x0, n) ⊂ B(x0, n

c8). (4.41)

Lemma 4.5. There is a positive constant C such that, Pp-a.s., for any non empty finite subset
A of C∞ and x0 ∈ A, if m sufficiently large and n > (3µm)c8 , then

min
y;m=D(y,x0)

Py(σ̃n < τA) ≥ C(lnm/ lnn).

Proof. The lemma is a consequence of (4.39). For a finite subset A of C∞ such that x0 ∈ A ⊂
B(x0, r), for m sufficiently large and n > (3µm)c8 ,

min
y;m=D(y,x0)

Py(σ̃n < τA) ≥ min
y;m=D(y,x0)

Py(σ̃n < τB(x0,r))

≥ min
y;m=D(y,x0)

Py(σB(x0,n1/c8 ) < τB(x0,r))

≥ C(lnm/ lnn1/c8).

The next lemma is the analogue of [26, Proposition 6.4.7]. The comparison result for D and the
| · |1-distance of Antal and Pisztora [4], see (2.7) is used in its proof.

Proposition 4.6. Pp-a.s., for a finite subset A of C∞(ω) and for x0 ∈ A and x ∈ Ac,

uA(x, x0) = lim
n

(lnn)Px(σ̃n < τA).

Proof. Let R0(z, ω) be as the Harnack inequality for the supercritical cluster (2.2). By (2.6) of
Antal and Pisztora, and by (4.41)∑

n

∑
z∈∂ eB(x0,n)

Pp(z ∈ C∞, R0(z, ·) ≥ n1/c8) ≤ C
∑
n

n2c8 exp(−c3nε/c8) <∞.

Therefore, by Borel-Cantelli, there is Ω1 ⊂ Ω with Pp(Ω1) = 1, such that for all ω ∈ Ω1 there is
n0 such that for all n ≥ n0 and for all z ∈ ∂B̃(x0, n), R0(z) < n1/c8 .

Let z ∈ ∂B̃(x0, n) where n ≥ n0. Then there is z′ ∈ B̃(x0, n) such that z′ ∼ z and

g(z′, x0) < lnn ≤ g(z, x0).

Moreover, by (4.41), D(z, x0) > n1/c8 . Then by Hölder’s continuity property given in proposition
2.4 and by (4.37),

0 ≤ g(z, x0)− lnn ≤ g(z, x0)− g(z′, x0)

≤ c

(
1

n1/c8

)ν
max

B(z,n1/c8 )
g(·, x0)

≤ c

C

(
1

n1/c8

)ν
lnn. (4.42)
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By the optional stopping theorem applied to the martingale g(Xk, x0), k ≥ 0 and for n large
enough and x ∈ B̃(x0, n) \A,

g(x, x0) = Ex [g(XτA∧eσn , x0)] ,
= Px(σ̃n < τA)Ex [g(Xeσn , x0) | σ̃n < τA]

+Px(τA < σ̃n)Ex [g(XτA , x0) | τA < σ̃n] . (4.43)

But

lim
n
Px(τA < σ̃n)Ex [g(XτA , x0) | τA < σ̃n] = lim

n
Ex [g(XτA , x0); τA < σ̃n]

= Exg(XτA , x0)

Therefore by (4.42) and (4.43), uA(x, x0) = limn(lnn)Px(σ̃n < τA).

We can now prove the analogue of lemma 3.3 for the supercritical cluster. Theorem II will follow
from this lemma and from proposition 4.6 above.

4.3. The main lemma and the proof of Theorem II.

Lemma 4.7. Let p > pc(Z2). Let Ω1 and R0(x, ω) be as in the Harnack inequality for the
percolation cluster (2.2). There is ν′ > 0 such that the following holds.

Let ω ∈ Ω1 and let A be a finite subset of C∞(ω). Fix x0 ∈ A.

Then there is N0 = N0(x0, A, ω) such that for all n > N0, for all y ∈ A and z ∈ ∂B̃(x0, n),

HA∪∂ eB(x0,n)(y, z) = Py(τA > σ̃n)H∂ eB(x0,n)(x0, z)
[
1 +O

( lnn
nν′

)]
(4.44)

where B̃n and σ̃n are as in (4.40). ν′ > 0 depends on the Hölder exponent given by proposition
2.4 and the constants given in (4.37) The constant in O(·) depends on ω and A and on the
constants that appear in (2.1), (2.2) and in proposition 2.4.

Proof. Let m be sufficiently large so that A ⊂ B(x0,m) and so that (4.42) holds for all n >
(3µm)c8 .

For R1 > max{R0(x0, ω), (3µm)/4,m}, let B1 = B(x0, R1), B2 = B(x0, 2R1), B3 = B(x0, 4R1).
Set n = (4R1)c8 and let B̃n = B̃(x0, n) and σ̃n be as in (4.40). Note that by (4.41), B3 ⊂ B̃n
and (4.42) holds.

For z ∈ ∂B̃n, consider the function

f(x) = Px(Xeσn = z), x ∈ C∞(ω).

Since f is harmonic on B2, by proposition 2.4, for all u ∈ B1,

|f(u)− f(x0)| ≤ c
(D(x0, u)

R1

)ν
max
B2

f.

In particular, for u ∈ ∂B(x0,m),

|f(u)− f(x0)| ≤ c
( m
R1

)ν
max
B2

f. (4.45)

Now by considering f harmonic on B3, by (2.1), we have that

max
B2

f ≤ c1f(x0). (4.46)
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Therefore, by (4.45) and (4.46), for all u ∈ ∂B(x0,m),

Pu(Xeσn = z) = H∂ eBn(x0, z)
[
1 +O

(( m
R1

)ν)]
. (4.47)

On the set {τA < σ̃n}, we let η = inf{j ≥ τA; Xj ∈ ∂B(x0,m)}.

Let ∂B(x0,m)[B̃n, A] := {x ∈ ∂B(x0,m); 0 < Px(σ̃n < τA) < 1}. Then using (4.47), we obtain
that for all x ∈ ∂B(x0,m)[B̃n, A],

Px(Xeσn = z|τA < σ̃n) =
∑

u∈∂B(x0,m)

Px(Xη = u|τA < σ̃n)Pu(Xeσn = z)

= H∂ eBn(x0, z)
[
1 +O

(( m
R1

)ν)]
. (4.48)

Let x ∈ ∂B(x0,m)[B̃n, A]. By (4.47), (4.48) and (4.42), we get from the relation

Px(Xeσn = z) = Px(Xeσn = z|τA > σ̃n)Px(τA > σ̃n)
+Px(Xeσn = z|τA ≤ σ̃n)(1− Px(τA > σ̃n)),

that

Px(Xeσn = z|τA > σ̃n) = H∂ eBn(x0, z)
[
1 +

1
Px(τA > σ̃n)

O
(( m

R1

)ν)
+O

(( m
R1

)ν)]
= H∂ eBn(x0, z)

[
1 +O

( lnn
lnm

( m
R1

)ν)]
= H∂ eBn(x0, z)

[
1 +O

( lnn
nν′

)]
where ν′ = ν/c8 > 0 and where the constant in the last O(·) now depends on ω and A. This can
also be written as,

Px(Xeσn∧τA = z) = H∂ eBn(x0, z)Px(τA > σ̃n)
[
1 +O

( lnn
nν′

)]
. (4.49)

Note that every path from y ∈ A to ∂B̃n must go through some vertex of ∂B(x0,m)[B̃n, A]. So,
for all y ∈ A and for all z ∈ ∂B̃n,

Py(Xeσn∧τA = z) =
∑

x∈∂B(x0,m)[ eBn,A]

Py(Xτ∂B(x0,m)∧τA = x)Px(Xeσn∧τA = z)

(4.49)
= H∂ eBn(x0, z)

[
1 +O

( lnn
nν′

)]
×

∑
x∈∂B(x0,m)[ eBn,A]

Py(Xτ∂B(x0,m)∧τA = x)Px(τA > σ̃n)

= H∂ eBn(x0, z)
[
1 +O

( lnn
nν′

)]
Py(τA > σ̃n).

Hence (4.44) holds with N0 = (4 max{R0(x0, ω), (3µm)/4,m})c8 .

Theorem II follows from lemma 4.7.
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Proof. Let y ∈ A. Let B̃n and σ̃n be as in (4.40). For x /∈ B̃n, by (3.23), by reversibility of the
Markov chain and by (4.44), for all n > N0,

π(x)HA(x, y) = π(x)Px(XτA = y)

= π(x)
∑

z∈∂ eBn
GAc(x, z)HA∪∂ eBn(z, y)

=
∑

z∈∂ eBn
GAc(z, x)π(y)HA∪∂ eBn(y, z)

=
∑

z∈∂ eBn
GAc(z, x)π(y)Py(σ̃n < τA)H∂ eBn(x0, z)

[
1 +O

(
n−ν

′
)]

= π(y)Py(σ̃n < τA)
∑

z∈∂ eBn
GAc(z, x)H∂ eBn(x0, z)

[
1 +O

(
n−ν

′
)]
. (4.50)

At this point for the supercritical cluster of Zd, d ≥ 3, it suffices to sum over y ∈ A and divide
the equations. However, since the walk is recurrent on the supercritical percolation cluster of Z2,
Py(σ̃n < τA)→ 0 as n→∞, this would lead to an indeterminate limit. But by (4.50),

HA(x, y) =
π(x)HA(x, y)

π(x)
∑
y′∈AHA(x, y′)

=
π(y)Py(σ̃n < τA)∑

y′∈A π(y′)Py′(σ̃n < τA)

[
1 +O

(
n−ν

′
)]

and by proposition 4.6,

lim
x→∞

HA(x, y) = lim
n→∞

(lnn)π(y)Py(σ̃n < τA)
(lnn)

∑
y′∈A π(y′)Py′(σ̃n < τA)

[
1 +O

(
n−ν

′
)]

=
π(y)PuA(y, x0)∑

y′∈A π(y′)PuA(y′, x0)
. (4.51)

5. Proof of proposition 2.5

In this proof, we keep the notations of [6] except for the graph distance which will still be denoted
by D(x, y).

For a cube Q of side n, let Q+ := A1 ∩ Zd and Q⊕ := A2 ∩ Z2 where A1 and A2 are the
cubes in R2 with the same center as Q and with side length 3

2n and 6
5n respectively. Note that

Q ⊂ Q⊕ ⊂ Q+.

C(x) is the connected open cluster that contains x. CQ(x), which will be called the open Q
cluster, is the set of vertices connected to x by an open path within Q. And C∨(Q) is the largest
open Q cluster (with some rule for breaking ties).

Set α2 = (11(d+ 2))−1 with d = 2.

Proof. By [6, lemma 2.24] and by Borel-Cantelli, for all x ∈ Z2, there is Nx such that for all
n > Nx, L(Q) (see [6, p. 3052]) holds for all cubes Q of side n with x ∈ Q.

Let z ∈ Z2 and let n > Nz = Nz(ω).
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Let Q be a cube of side n which contains z.

Let x0 ∈ C∨(Q+) ∩Q⊕ with Q(x0, r + k0)+ ⊂ Q+ where CHnα2 ≤ r ≤ n and k0 = k0(p, d = 2)
is the integer chosen in [6, p. 3041].

Let R be such that
Bω(x0, (3/2)R lnR) ⊂ Q⊕ and (5.52)

(CHnα2)d+2 ≤ (CHnα2)4(d+2) < R < R lnR < n with d = 2. (5.53)
Then by [6, Theorem 2.18c], Bω(x0, R lnR) is (CV , CP , CW )- very good with

NBω(x0,R lnR) ≤ CHnα2

with the constants given in [6, section 2].

Then by [6, Theorem 5.11] and (5.53), there is a positive constant C1, which depends only on the
constants CV , CP , CW , such that if D(x0, x1) ≤ 1

3R lnR and if h : B(x1, R)→ R is non-negative
and harmonic in B(x1, R), then

max
B(x1,R/2)

h ≤ C1 min
B(x1,R/2)

h. (5.54)

Note that since d = 2 and 4α2(d+2) = 4/11 < 1/2, the conditions (5.53) are verified for R = 2
√
n

when n large enough.

We now apply a standard chaining argument to a well chosen covering by balls (see for instance
[37, chapters 3 and 9]). Let x0 ∈ Z2 and consider environments such that x0 ∈ C∞(ω). The main
difficulty to carry out the chaining argument is to check that the intersection of “consecutive”
balls is not empty. The remainder of the proof is to construct an appropriate covering of {x ∈
C∞;D(x0, x) = m}, for m large enough, with a finite number balls, which does not depend on
x0, m or ω, and such that the Harnack inequality (5.54) holds in each ball. To do so, we need
an additional property of the supercritical percolation cluster. We will use the grid constructed
below in lemma 5.2.

Let δ1, δ2 and δ3 be three positive real numbers such that

2δ2 < δ1 and δ1 + 2δ2 < δ3 <
1

5µ

(
4
5
− δ2

)
. (5.55)

For instance, choose δ3 so that 0 < δ3 < 4/(50µ), then choose δ1 so that 0 < 2δ1 < δ3 and finally
choose δ2 so that δ2 < min{δ1/2, 4/(50µ)}.

Let n > Nx0 .

Furthermore, take n large enough so that there is a Kesten’s grid in Q with constant CK and R(Q)
holds (by [6, lemma 2.8]). That is in each vertical and each horizontal strip of width CK lnn
contains at least c(p)CK lnn open disjoint channels. Moreover, since R(Q) holds, C∨(Q) ⊂
C∨(Q+). In particular, x0 ∈ C∨(Q+) ∩Q⊕.

Furthermore by (2.6) and Borel-Cantelli, if m is large enough then for all x, y ∈ C∞ such that
|x|1 ≤ 3µm, |y|1 ≤ 3µm and |x− y|1 ≥ m(δ1 − 2δ2)/µ we have

|x− y|1 ≤ D(x, y) ≤ µ|x− y|1.

Set
R

2
= mδ3 =

√
n.

Furthermore, take m large enough so that (5.52) and (5.53) are verified as well as

CK lnn < mδ2/µ, 3mµ <
1
3
R lnR and r < 4mδ3.
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Instead of constructing a finite covering of {x ∈ C∞;D(x0, x) = m}, it is easier to construct a
finite covering of the region {x ∈ C∞; 4m

5µ ≤ |x− x0|1 ≤ 2m} which is a larger subset of Z2.

Let I := {(i; j) ∈ N2; 4/(5δ1) ≤ i+ j ≤ 2µ/δ1.} Let M be the cardinal of I.

Let xi,j = x0 + (imδ1/µ; jmδ1/µ) with (i; j) ∈ I. Then for each xi,j with (i; j) ∈ I, there is
x̃i,j ∈ C∞ such that |xi,j − x̃i,j |1 ≤ mδ2/µ.

We proceed similarly in the other three quadrants to obtain a set of 4M vertices which we denote
by D. Note that M does not depend on m.

The finite covering of the region 4m
5µ ≤ |x− x0|1 ≤ 2m is

{B(x̃,mδ3), x̃ ∈ D}.

Note that each ball contains the center of the four neighbouring balls except those on the bound-
ary of the region. But these are connected to at least one neighbouring ball. Indeed, if x̃, ỹ ∈ D
are neighbouring centers then by (5.55),

D(x̃, ỹ) < µ|x̃− ỹ|1 < m(δ1 + 2δ2) < mδ3.

If x̃ ∈ D then by (5.55),

D(x0, x̃) >
m

µ

(
4
5
− δ2

)
> 5mδ3,

D(x0, x̃) < µ|x0 − x̃|1 < 2mµ and µ (2m+mδ2/µ) < 3mµ.

Therefore, B(x0, r) does not belong to a ball of the covering and u is harmonic in each ball
B(x̃, 2mδ3) with x̃ ∈ D. Then the Harnack inequality holds for R = 2mδ3 since for all x̃ ∈ D,

D(x0, x̃) < 2mµ <
1
3
R lnR.

Construction of Kesten’s grid

Definition 5.1. Let Bm,n = ([0;m]× [0;n]) ∩ Z2.

A horizontal [resp. vertical] channel of Bm,n is a path in Z2 (x0, x1, x2, ..., xL) such that:

• {x1, x2, ..., xL−1} is contained in the interior of Bm,n

• x0 ∈ {0} × [0;n] [resp. x0 ∈ [0;m]× {0}]

• xL ∈ {m} × [0;n] [resp. xL ∈ [0;m]× {n}]

We say that two channels are disjoint if they have no vertex in common. Let N(m,n) be the
maximal number of disjoint open horizontal channels in Bm,n.

A Kesten’s grid in [−n;n]2 is a set of open horizontal and vertical channels of [−n;n]2 such that
the horizontal channels are disjoint among themselves and similarly for the vertical channels
and moreover, there is at least c(p)CK lnn disjoint open channels in each horizontal and in each
vertical strip of length n and width CK lnn contained in [−n;n]2.

Lemma 5.2. Pp-almost surely, for n large enough, there is a Kesten’s grid in [−n;n]2.
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Proof. By [25, Theorem 11.1], for p > pc, there is a positive constant c(p) and some universal
constants 0 < c9, c10, ξ <∞, such that

Pp
(
N(m,n) > c(p)n

)
≥ 1− c9(m+ 1) exp(−c10(p− pc)ξn).

We apply this result to the number of disjoint open channels in a horizontal strip of length n
and width CK lnn contained in [−n;n]2. If CK is large enough so that c10(p− pc)ξCK > 3 then∑

n

nc9(n+ 1) exp(−c10(p− pc)ξCK lnn) <∞. (5.56)

Conclude with Borel-Cantelli lemma.

6. An example

In this section, we construct a weighted graph which is not “finitely-partite” and where there is
a finite set A for which the harmonic mesure from infinity does not exist.

The first step is to construct a discrete time reversible Markov chain X = (Xn, n ∈ N) on N.
At each step, X jumps at one of its two nearest neighbours except when it is at some vertices
{xj ; j ≥ 1} where X stays at the same vertex with probability δj/(1 + δj).

Fix p > q > 0 such that p+q = 1. The transition probabilities of X at x /∈ {xj ; j ≥ 1} are

Px(X1 = x− 1) = p, Px(X1 = x+ 1) = q, if x 6= 0 and P0(X1 = 1) = 1.

Let η := inf{k ≥ 1;Xk = Xk−1} be the first time that X does not jump.

Claim. It is possible to choose {xj ; j ≥ 1} and {δj ; j ≥ 1} so that for all x ∈ N,

Px(τ0 < η) > 2/3. (6.1)

Proof of the claim. Let (εj ; j ≥ 1) be a decreasing sequence of positive real numbers such
that

∞∑
j=1

εj < 1/4. (6.2)

Set x0 = 0 and x1 = 1. If x2, . . . xj are already chosen then δj and xj+1 will be determined by
the following inductive construction.

First choose δj such that

δj <
εj
2
Pxj (τxj−1 < τxj ) (6.3)

and add a bond from xj to xj with a conductance such that

Pxj (X1 = xj−1) = p/(1+δj), Pxj (X1 = xj+1) = q/(1+δj) and Pxj (X1 = xj) = δj/(1+δj).

then since p > q, it is possible to choose xj+1 sufficiently large so that

Pxj (τxj+1 < τxj ) <
εj
2
Pxj (τxj−1 < τxj ). (6.4)

With these choices,

Pxj (τxj−1 < η) ≥ Pxj (τxj−1 < τxj ) + Pxj (τxj < τxj−1 ∧ τxj+1 ∧ η)Pxj (τxj−1 < η).
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Hence

Pxj (τxj−1 < η) ≥
Pxj (τxj−1 < τxj )

Pxj (τxj−1 < τxj ) + Pxj (τxj+1 < τxj ) + Pxj (η ≤ τxj )

≥ 1−
Pxj (τxj+1 < τxj ) + Pxj (η ≤ τxj )

Pxj (τxj−1 < τxj )
≥ 1− εj by (6.4) and (6.3).

For all j ≥ 1, by (6.2), Pxj (τ0 < η) >
j∏
`=1

Px`(τx`−1 < η) >
j∏
`=1

(1 − ε`) > 2/3 and since this

probability is monotone decreasing, (6.1) holds for all x ∈ N.

The example is the Markov chain (Yn;n ∈ N) on N × {0, 1} with transition probabilities given
by

P(x,i)(Y1 = (x+ 1, i)) = p, P(x,i)(Y1 = (x− 1, i)) = q, if x /∈ {xj ; j ≥ 1}, i = 0, 1

and for i = 0, 1, and j ≥ 1,

P(xj ,i)(Y1 = (xj + 1, i)) = p/(1 + δj), P(xj ,i)(Y1 = (xj − 1, i)) = q/(1 + δj)

and
P(xj ,0)(Y1 = (xj , 1)) = δj/(1 + δj) P(xj ,1)(Y1 = (xj , 0)) = δj/(1 + δj).

Let A = {(0, 0), (0, 1)}. Then the first coordinate of (Yn) conditioned on hitting A has the same
distribution as (Xn). It is a special case of Doob’s h transform with h(x) = P0(τ0 <∞) = (q/p)x

(see [17] or [28, section 17.6]). Hence, by (6.1), for all x ∈ N,

HA((x, 0), (0, 0)) > 2/3 and HA((x, 1), (0, 0)) < 1/3

and the hitting distribution of A from infinity does not exist.

This example can be slightly modified to provide an example of a recurrent reversible Markov
chain with finite sets where the harmonic measure from infinity does not exist.
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