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ABSTRACT. We give a sufficient condition for the existence of the harmonic measure from
infinity of transient random walks on weighted graphs. In particular, this condition is verified
by the random conductance model on Z%, d > 3, when the conductances are i.i.d. and the
bonds with positive conductance percolate. The harmonic measure from infinity also exists
for random walks on supercritical clusters of Z2. This is proved using results of Barlow (2004)
and Barlow and Hambly (2009).
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1. INTRODUCTION AND RESULTS

In [23], Hunt gave a probabilistic formulation of the harmonic measure of a closed set in euclidean
space as the hitting distribution of the set by a d-dimensional Brownian motion started at infinity.
A recent account can be found in [30, section 3.4] for instance.

In this paper, we investigate infinite weighted graphs for which it is possible to define the harmonic
measure of a finite set as the hitting distribution of the set by the random walk on the graph
starting at infinity. The existence of the harmonic measure for random walks goes back to Spitzer
[35]. Tt also appears in Lawler in [27, chapter 2] for the simple symmetric random walk on Z?
and it is extended to a wider class of random walks in the recent book by Lawler and Limic [26,
section 6.5].

From these results, one might expect that the existence of the harmonic measure for a Markov
chain on Z¢, d > 2, relies on its Green function asymptotics. The goal of this paper is to show
that actually, the existence of the harmonic measure is a fairly robust result in the sense that
it exists for a random walk on a weighted graph as soon as the Green function satisfies weak
estimates. These imply a weak form of a Harnack inequality. In particular, it is verified by a
large family of fractal-like graphs and by random conductance models on Z¢, d > 3, given by a
sequence of 1.i.d. conductances as soon as there is percolation of the positive conductances. This
is done using recent estimates of Andres, Barlow, Deuschel and Hambly [3].

In the recurrent case, although we do not give a general sufficient condition, we show the existence
of the harmonic measure for the random walk on the supercritical cluster of Z2. To do so, we
construct the Green kernel of the random walk by using the parabolic Harnack inequality of
Barlow and Hambly [8]. The Gaussian estimates of [6] and [8] as well as an argument from [15]
then provide the needed estimates.
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The results of [3] for the random conductance model are part of a long series of works which go
back to homogenization of divergence form elliptic operators with random coefficients and to the
investigation of the properties of the supercritical percolation cluster.

Some highlights of the properties of the random walk on the supercritical percolation cluster of
7% is the proof of the Liouville property for bounded harmonic functions (see Kaimanovich [24]
and [11]) and the proof of the transience of the walk when d > 3 by Grimmett, Kesten and Zhang
[22].

In [6], Barlow proved upper and lower gaussian estimates for the probability transitions of a
random walk on the supercritical percolation cluster. These are then used to prove a Harnack
inequality [6, Theorem 3]. The Liouville property for positive harmonic functions on the perco-
lation cluster follows as well as an estimate of the mean-square displacement of the walk.

Barlow’s upper gaussian estimates were also used to prove the invariance principle for the random
walk on supercritical percolation clusters by [34], [29], [12]. An extensive survey of the random
conductance model was recently completed by Biskup [13].

Here we show the existence of the harmonic measure for random walks on the supercritical
percolation cluster. In the transient case, it turns out that its existence follows from Green
function estimates which apply widely to random walks on graphs.

In the case of the two-dimensional percolation cluster, we need both the elliptic and the parabolic
Harnack inequalities of [6] and [8].

Whenever the harmonic measure from infinity exists, one can study external diffusion-limited
aggregates. Their growth is determined by the harmonic measure which can also be interpreted
as the distribution of an electric field on the surface of a grounded conductor with fixed charge
of unity. Recent simulations by physicists of the harmonic measure in Z¢ can be found in [1] and
of percolation and Ising clusters in [2]. Analytic predictions for the harmonic measure of two
dimensional clusters are given by Duplantier in [19] and [20]. See also the survey paper [5].

In contrast, for the internal diffusion-limited aggregates of random walks on percolation clusters,
the limiting shape is described in [33] and [18].

1.1. Reversible random walks. A weighted graph (T, a) is given by a countably infinite set T’
and a symmetric function

a:T xT —[0;00]
which verifies a(x,y) = a(y, z) for all z,y € T and

m(x) = Za(x,y) >0 forall zeTl.
yel

The weight a(x,y) is also called the conductance of the edge connecting x and y as the weighted
graph can be interpreted as an electrical or thermic network.

Given a weighted graph (T',a), we will write  ~ y if a(x,y) > 0. We will always assume that
(T',~) is an infinite, locally finite countable graph without multiple edges. A path of length
n from z to y is a sequence zg,T1,...,T, in I' such that zg = =, , = y and ;1 ~ z; for
all 1 < ¢ < n. The weighted graph (T',a) is said to be connected if (I',~) is a connected
graph, that is, for all x,y € T" there is a path of finite length from x to y. The graph distance
between two vertices x,y € I" will be denoted by D(z,y). It is the minimal length of a path
from x to y in the graph (I',~). The ball centered at = € I' of radius R will be denoted by
B(z,R) :={y €T; D(z,y) < R}.
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The random walk on the weighted graph (T, a) is the Markov chain on I' with transition proba-
bilities given by

p(z,y) = , z,yel. (1.1)

We denote by P, the law of the random walk starting at the vertex x € I'. The corresponding ex-
pectation is denoted by E,.. The random walk admits reversible measures which are proportional
to the measure 7(-).

For A C T, we have the following definitions
0A:={yeT; y¢ A and there is x € A with z ~ y} and A := AU 4,
T4 :=1inf{k > 1; X, € A} and 74 := inf{k > 0; X, € A}
with the convention that inf ) = oo,
D(z, 4) = nf{D(z,y); y € A},
for a bounded function u on A, osca u = sup, ¢4 |u(x) — u(y)|,

and foru: A — R, Pu(z):= Zp(;v,y)u(y), x € A

Yy~T
A function u: A — R is harmonic in A if Pu = u on A.

The Green function of the random walk is defined by
G(z,y) =Y plx,y,4), z,y€el (1.2)
§=0

where p(z,y,j) := Py(X; = y) are the transition probabilities of the walk. Note that G(-,y) is
harmonic in T'\ {y}.

For irreducible Markov chains, if G(z,y) < oo for some z,y € T" then G(z,y) < oo forall z,y € T.
The random walk is recurrent if G(x,y) = oo for some z,y € I" otherwise we say that the walk
is transient.

The minimum of ¢ and b and the maximum of a and b are respectively denoted by a A b and by
aVb.

1.2. Results on the existence of the harmonic measure. Let (X;;j € N) be a random
walk on a connected weighted graph (T', a).

The hitting distribution of a set A by the random walk starting at « € I" is given by
H(z,y) = Po(X,, =y|Ta < +0), y €A,
or, whenever the graph is recurrent, by
Ha(z,y) == P.(X;, =vy), y€A

The harmonic measure on a finite subset A of I' is the hitting distribution from infinity, if it
exists,
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Our goal is to prove the existence of the harmonic measure for all finite subsets of various weighted
graphs. The proof of the existence of the harmonic measure given in [26, section 6.5] for random
walks on Z?, relies on a Harnack inequality and on Green function estimates.

For transient graphs, we show in Theorem I that a weak form of the Green function estimates is
a sufficient condition for the existence of the harmonic measure.

As it happens for Brownian motion and for simple random walks (see for instance [30], [27]), the
harmonic measure can be expressed in terms of capacities.

Let A C B be finite subsets of I'. The capacity of A with respect to B is defined by

Capg(A) := Z () Py (Te < T4). (1.4)
€A

The escape probability of a set A is defined by Esa(z) := P,(74 = o0) and the capacity of a finite
subset A C T is defined by

Cap(A) := Z m(x)Esa(x).

z€A

Our first result is the existence of the harmonic measure for transient graphs with a Green
function which verifies the following weak estimates.

Definition 1.1. We say that a weighted graph (T, a) satisfies the Green function estimates
(GE,) for some v > 0 if there are constants 0 < C; < Cs < 0o and if for all z € T', there exists
R, < oo such that for all z,y € I' with D(z,y) > Ry A R, we have

C; Cs
W <G(z,y) < W (GE’Y)

This condition is a weak version of [36, Definition 1] where v is called a Greenian index. It is
used by Teles [36] to give an upper bound for the probability transitions of a Markov chain in
terms of the growth rate of the volume and of the Greenian index.

Note that a graph which verifies (GE,) for some v > 0 is connected and transient. We will show
that (GE,) also implies the existence of the harmonic measure.

Theorem 1. Let (I',a) be a weighted graph which verifies (GE,) for some ~y > 0.

Then for any finite subset A C T the harmonic measure on A exists. That is, for all y € A, the
limit (1.3) exists.

Moreover, we have:
lim  Ha(x,y)= lim H7%(y),

D(z,A)—o0 m—-+00
where, for m large enough,
W(y)Py (TA > TBB(l'o,m))
Cap,,(A)

where Cap,, (A) is the capacity of A with respect to B(xg,m) for some xg € I'. The limit does
not depend on the choice of xg.

H}'(y) =

In the following corollaries, we describe some weighted graphs where the harmonic measure from
infinity exists.
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A weighted graph (T, a) is said to be uniformly elliptic if there is a constant ¢ > 1 such that for
all edges e,
ct<ale)<e (1.5)

Consider the lattice Z%, d > 2, where x ~ y if |z — y|; = 1 where | - |; is the £;-distance.
Corollary 1.2. Let (Z%,a), d > 3, be a uniformly elliptic graph.
Then for all finite subsets A of Z¢ and for all y € A, the limit (1.3) exists.

Moreover, we have: o
lim Ha(z,y)= lim HP(y),
|| —+o00 m—+00
7(y) Py (T4 > ToB(0,m))

where HY (y) = Cap_(4)

Indeed, by [16, Proposition 4.2] the Green function of a uniformly elliptic graph (Z%,a), d > 3,
verifies the estimates (GE,) with v = d — 2. The existence of the harmonic measure then
follows from Theorem I.

The harmonic measure also exists for a large class of fractal like graphs with some regularity
properties. Various examples are given in [9] and the references therein.

A weighted graph (I',a) verifies the condition (po) if there is a constant ¢ > 0 such that for all
vertices  ~ v,

p(z,y) > c. (Po)
The volume of a ball B(z, R) is defined by V(z, R) := >, c g, gy T(¥)-

A weighted graph (T, a) has polynomial volume growth with exponent o > 0 if there is a constant
¢ > 1 such that for all z € T" and for all R > 1,

¢ 'R <V(x,R) < cR". (V)

Note that the condition (V,,) implies the volume doubling condition of [21] for any « > 0.
A weighted graph (T, a) satisfies the resistance estimate with exponent 3 > 0 if there are constants
c¢>1and M > 1 such that for all x € " and for all R > 1,
Cfl V(xa R)
RB

V(z, R)

< CapB(m,MR) (B(Z',R)) <c RSB

(REp)
A weighted graph (T, a) satisfies H(K), the Harnack inequality with positive constant K and
shrinking parameter M > 1, if for all z € " and R > 1, and for any non-negative harmonic
function v on B(z, M R),

max v < K min u.

B(z,R) B(z,R)
Grigor’yan and Telcs [21, Theorem 3.1] proved that if a weighted graph verifies (po), (Va), (REg)
for @« > 0 and § > 2 and the Harnack inequality H(K') then it verifies sub-gaussian estimates.
These imply that if & > § > 2 then the walk is transient and the estimates (GE,) hold with
v = a — (. Hence we obtain the following corollary to theorem I.

Corollary 1.3. Let (I',a) be a weighted graph which verifies (po), (Va), (REg) for o> > 2
and the Harnack inequality H(K). Then for all finite subsets A C T and y € A the limit (1.3)
exists.
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The harmonic measure from infinity also exists for random walks in random environment and
in particular for the random walk on the supercritical percolation cluster. Before stating this
result, we give a brief description of the percolation model. See [25] for more details.

Denote by E the set of edges of the lattice Z%, d > 2, where x ~ y if |z — y|; = 1.

Assume that (a(e); e € E9) are i.i.d. non-negative random variables on a probability space (€2, P).
Call a bond e open if a(e) > 0 and closed if a(e) = 0. Let p = P(a(e) > 0). By percolation
theory, there exists a critical value p. = p.(Z?) €]0; 1] such that for p < p., P almost surely, all
open clusters of w are finite and for p > p., P almost surely, there is a unique infinite cluster
of open edges which is called the supercritical cluster. It will be denoted by Coo = Coo(w). The
edges of this graph are the open edges of the cluster and the endpoints of these edges are the
vertices of the graph.

For x,y € Coo(w), we will write x ~ y if the edge with endpoints = and y is open. The transition
probabilities of the random walk on C (w) are given by (1.1). The law of the paths starting at
2 € Coo(w) will be denoted by P¥. The random walk on the supercritical percolation cluster
corresponds to the case of Bernoulli random variables. In this case, we will write P, instead of
P.

D, (z,y) will denote the graph distance between = and y in the graph Co(w) and the ball cen-
tered at x € Coo(w) of radius R will be denoted by B, (z, R) = {y € Coo(w); Dy(z,y) < R}.

The existence of the harmonic measure for Z?¢, d > 3, with i.i.d. conductances, is given in
corollary 1.4 below. It follows from the Green function estimates of [3, Theorem 1.2 (a)]. A
weaker condition which might hold even if the conductances are not i.i.d. is given in [7, Theorem
6.1].

Corollary 1.4. Let (Z%,a), d > 3, be a weighted graph where the weights (a(e); e € EY) are i.i.d.
non-negative random variables on a probability space (2, P) which verify

P(a(e) > 0) > p.(Z4).

Then there exist positive constants C;, Cs, which depend on P and d, and 1 C Q withP(Q;) =1
such that for each w € 1, (GE,) holds in Cx(w) with the constants C; and Cs and with
y=d-—2.

For any finite subset A of Coo and for ally € A, the limit (1.3) exists.

Moreover, we have:

lim — Ha(e,y) = Tim HJ'(y),

|z|—+00,2ECs0 m—+00

where H (y) = ”(y)P;((;:;:(aj)“<z°’m’) for some xg € Coo and for m large enough.

In [3], both the constant speed random walk and the variable speed random walk are considered.
From the expression of their generators one immediately sees that they have the same harmonic
functions as the discrete time random walk considered here. Moreover, since they are a time
change of each other, the Green function is the same. Hence, by [3, Theorem 1.2 a] the Green
function of the random walk on Coo (w) C Z%, d > 3, verifies the estimates (GE,) with v =d—2.
The existence of the harmonic measure then follows from Theorem I.
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The harmonic mesure from infinity also exists for some recurrent graphs. We will show its
existence for uniformly elliptic graphs (Z2,a) and for two-dimensional supercritical percolation
clusters.

Theorem II. Let (Z?,a) be a weighted graph where the weights (a(e);e € E?) are i.i.d. random
variables on a probability space (0, Pp) which verify

p=Py(a(e) = 1) = 1~ Py(ale) = 0) > po(Z2).

Then P, almost surely, for any finite subset A of Coo(w) and for all y € A, the limit (1.8)
exists.

An expression for the value of the limit (1.3) is given in equation (4.51).

Theorem III. Let (Z2,a) be a uniformly elliptic weighted graph. Then for all finite subsets
A CZ?% and for all y € A, the limit (1.3) ewists.

Various forms of Harnack inequality that will be used in the constext of transient or recurrent
graphs are gathered in section 2. The proof of theorem I is given in section 3 while Theorem II
and III are proved in section 4. Section 5 contains the proof of the annulus Harnack inequality
that is used in the proof of Theorem II.

Note that on a bipartite graph with two infinite components, there are finite sets for which the
harmonic mesure from infinity does not exist. In the last section, we construct a weighted graph
which is not “finitely-partite” and where there is a finite set A for which the harmonic mesure
from infinity does not exist.

It would be interesting to investigate the links between the Poisson boundary of a graph and the
existence of the harmonic measures. In particular, the triviality of the Poisson boundary does
not imply the existence of the harmonic measure as is shown by the lamplighter group Z17Z/2Z.
See [32] and the references therein.

2. HARNACK INEQUALITIES

The condition H(K) is the usual form of the Harnack inequality on a graph. In our context, we
will work with the weaker form of the Harnack inequality given below.

Definition 2.1. We say that a weighted graph (T, a) satisfies wH(K), the weak Harnack in-
equality, with the positive constant K if for all x € I' and for all R > 1 there is My p > 2 such
that for any non-negative harmonic function w on B(x, My rR),

max v < K min wu.
B(z,R) B(z,R)

Whenever the Green function estimates (GE,) hold for some v > 0, the weak Harnack inequality
wH(K) is verified. It will be essential to prove Theorem I.

Proposition 2.2. Let (I',a) be a weighted graph which verifies (GE,) for some v > 0. Then

the graph is connected, transient and wH(K) holds with K = 1065.
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The proof is given in section 3. By proposition 2.2 and by corollary 1.4, the random walk on the
supercritical percolation cluster of Z?, d > 3, verifies wH(K). Barlow [6, Theorem 3] showed
that the supercritical percolation cluster verifies another variant of Harnack inequality. Given
below is a Harnack inequality under the form that will be most useful to us. It is an immediate
consequence of Theorem 5.11, proposition 6.11 and of (0.5) of Barlow’s work [6].

Harnack Inequality for the percolation cluster [6]. Let d > 2 and let p > p.(Z%). There
exists ¢c1 = c1(p,d) and Q1 C Q with P,(Q1) =1, and Ro(x,w) such that 3 < Ry(z,w) < oo for
each w € Qy, x € Coo(w).

If R > Ro(z,w) and if D(z,z) < $RIn R and if u: B(z, R) — R is non-negative and harmonic
in B(z,R), then

max u<c¢; min wu. (2.1)

B(z,R/2) B(z,R/2)
Moreover, there are positive constants ca,c3 and € which depend on p and d such that the tail of
Ro(z,w) satisfies
Py(z € Coo, Ro(z,-) > n) < co exp(—c3n®). (2.2)

In the proof of Theorem I, we will need a regularity property of harmonic functions which is a
consequence of the weak Harnack inequality.

Lemma 2.3. Let (T',a) be a weighted graph which verifies WH(K) with shrinking parameters
(Mg piz €', R>1) where My p > 2 for allz €T and R > 1.

Then for allz € T, R > 1, M > M, r and for any harmonic function v on B(x, MR),
(K -1

< (==
AN K+ 1) B(;),S]\ZR)

. 2.3
B(z,R) u ( )

Proof. Let x €', R > 1 and M > M,, . Let u be a harmonic function on B(z, M R).
Set v =u— minB(m’MR) u.
Then by wH(K), since v is non-negative and harmonic in B(x, M R),

max v < K min v.

B(z,R) B(z,R)
Hence
max u — min ugK( min u— min_u). (2.4)
B(z,R) B(z,MR) B(z,R) B(z,MR)

Set © = (maxp(yamr)u) — v and proceed similarly. By wH(K), since ¢ is non-negative and
harmonic in B(z, M R),

max v < K min 7.

B(z,R) B(z,R)
Hence
max uw— min v < K( max wu— max u). (2.5)
B(x,MR) B(x,R) B(x,MR) B(z,R)
Adding (2.4) and (2.5), we obtain,
osc u+ osc u<K( osc u— osc u).
B(z,R) B(z,MR) B(xz,MR) B(z,R)
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Since the Harnack inequality for the supercritical cluster (2.1) holds with the shrinking parameter
M = 2, we can proceed further as in [31, p.109] to obtain the following regularity result.

Proposition 2.4. Let d > 2 and let p > p.(Z?). Let Qi and Ry(x,w) be given by the Harnack
inequality for the supercritical cluster (2.1). Then there exist positive constants v and ¢ such that
for each w € Q1, 29 € Cxo(w) if R > Ro(xo,w) and u is a non-negative harmonic function on
B, (xg, R) then, for all x,y € B, (x9, R/2),

u(@) - uly)] < ¢ (D(j;y)) s,

We will also need a Harnack inequality in the annulus of the two-dimensional supercritical per-
colation cluster. To obtain this inequality we will use the tail estimates (2.2) of [6], a percolation
result due to Kesten [25] and the following estimates of Antal and Pisztora [4, Theorem 1.1 and
Corollary 1.3].

For d > 2 and p > p.(Z%), there is a constant u = u(p,d) > 1 such that
1
lim sup h InPy[xo, 2 € Coo, D(zo, x) > plz1] <0 (2.6)
|z]1—oo [T|1
and, P, almost surely, for 2y € Co and for all z € Co, such that D(xz, x) is sufficiently large
D(zo,x) < plz — zol1- (2.7)
Proposition 2.5. Let p > p.(Z?). There is a positive constant such that Py-a.s., for all x¢ € Coo

and r > 0, if m is large enough,
then for any non-negative function u harmonic in B(xq,3um) \ B(xg, ),

max u(z) <C min  u(z)
z;D(xo,x)=m z;D(zo,x)=m

where p s the constant that appears in (2.7).

The proof of this Harnack inequality is postponed to section 5.

3. PROOFS FOR TRANSIENT GRAPHS

In this section, we prove proposition 2.2 and Theorem I.

To prove proposition 2.2, we use lemma 3.1 below which shows how to obtain a Harnack inequality
from a Harnack inequality for the Green function in an annulus. This idea appeared in [14] and
was used in the context of random walks on graphs by Teles [37, p. 37]. In lemma 3.1 below, we
state it slightly differently and we provide a different proof.

Let (T',a) be a weighted graph. The Green function of the random walk in B C T is defined
by

Gp(z,y):=> pp(*,y,j), =yeB
=0

where pp(z,y,j) := P.(X; = y,j < Tpe) are the transition probabilities of the walk with
Dirichlet boundary conditions.

The Green function with Dirichlet boundary condition can be expressed in terms of the Green
function of the graph. We recall this property that will be useful in the proof of proposition
2.2.
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For a finite subset B of T,

Gp(z,z) =G(x,z) — Z Hyp(z,y)G(y,2), x,z€ B. (3.1)
yedB

Lemma 3.1. Let By C By C By be finite subsets of I' such that B, C Bii1,1=0,1.
Let u be a non-negative function on By which is harmonic in Bs.

Then
maxu < K minu (3.2)

0 By
where

Gp,(x,z
K := max max max y
rEBy yEBo z€0int By G32 (y,Z)

and O™ By is the inner boundary of By, that is, 0™ By = {z € By; there is x € OBy, x ~ z}.

(3.3)

Proof. Let u be the non-negative function defined on By U9Bs by u = v on By and © = 0 on
0B;y. Let n:=7Tp, ATop, and let

w(x) =FE, [a(Xn)} , T € §2~ (3.4)
Then w > 0 on By, w = 0 on OBy and w is harmonic on By \ O™ B;. Moreover, since u is

harmonic in B, v = w on By and u > w on 0By, by the maximum principle (see for instance
(28, p. 19]),

u > w on Bs. (3.5)
For z € 0™ By, set f = (I — P)w. Then by the maximum principle,
w@)= Y Gp(x,2)f(z), =€Ba (3.6)
z€0nt By

Note that for all z € 9™ By, f(z) = w(z) — Pw(z) > u(z) — Pu(z) = 0 by (3.5).
Then (3.2) follows from (3.6) and the fact that w = w on By. |

Remark. It is possible extend lemma 3.1 to a Harnack inequality in an annulus. If u is a
non-negative function on By which is harmonic in By except at a vertex xg € By where Hu > 0

. G, (x,z
then max v < K minwu where K := max max max M
9Bo 0Bo 2€By y€Bo z€d™t B1U{zo} G B, (y, Z)

Proof of proposition 2.2. Let g € T and R > 1 be given. Let v and R,,x € I, be given by
(GE,).

Let M; be large enough so that

1 (M —2)~"
My >3+ — R, d ——F—<5 3.7
! + R wegl(if)(,R) a (M1 + 3)_’7 ( )
Then let M be large enough so that
1 1
M > — 2 d CsM™7 < -Ciy(M . .
> 7 zEBBI(I;%},(MlR) R, and C < 20 (M +3) (3.8)

For these values of M and M, to apply lemma 3.1 with
Bo = B(l’mR), Bl = B(SL‘(),MlR) and BQ = B(SU(), (M + Ml)R),
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we need the following estimates.

For z,y € By, z € 0™ B, and 2’ € 0Bs,

Gp,(x,2) < G(x,2) < CsD(x,2)"7 < Cy(M; —2)""R™7, (3.9)
G(y,z) > C;D(y,z)"" > C;(M1+3)""R™” and (3.10)
G(2',2) <CsD(2',2)7 < CsM™"R™7. (3.11)

Then by (3.1), (3.8), (3.10) and (3.11),
G (y,2) > Ci(My +3) TR — C, MR > %CZ-(Ml L3R, (3.12)
Then by (3.7), (3.9) and (3.12),

G(z,z)

< 10C,/C;.
nyeBy zergi%tXBl Gy,z) — /
That is, wH(K) holds with the constant K = 10C,/C;. [

Lemma 3.2. Let (I',a) be a weighted graph which verifies (GE,) for some v > 0.

Let v and Ry,, v9 € T, be given by (GE,). Then for all v > R,, and p > (2Cs/C;)Y/7r
Po(TB(wo,r) = 00) > Ci/(2C5) (3.13)

for all x € 0B (w0, p).

Proof. Fix xg € I' and let r > R,,.
For R > r, let n =inf{j > 0, X; € B(zo,7) U 0B(z0,R)}.

Since G(-, o) is harmonic in I' \ {z¢}, G(Xnan, %0), n € N, is a martingale with respect to E,
for x € B(xg, R) \ B(zo,r).

By the optional sampling theorem, for x € dB(xg, p) where R > p > r,
G(z,x9) = Py[X, € 0B(xo, R)] Ex|G(X,,20)|X, € 0B(x¢, R)]
+(1 — P,[X,, € 0B(xo, R)])Ex|G(X,y, x0)| X, € B(zo,7)]
or equivalently,
P,[X,, € 0B(wo, R)](E+(G(X,,20)| X, € B(zo,7)) — E(G(X,), 0)|X,, € 0B(z0, R)))
= E.(G(X,,20)| X, € B(zo,7)) — G(x, 20).
By (GE,), if R > p > (2C5/Ci)*/7r then
E.(G(Xy,20)| X, € B(xo,7)) — G(z,20) > Cir™ 7 — Csp™7 > (Cy/2)r™7
and
E.(G(Xy,20)| X, € B(zo, 7)) — Ex(G(Xy), 0)| Xy, € 0B(z0,R)) < Cor™7 = C;R™7 < Cor™7.

Hence,
P,[X, € 0B(z0, R)] > C;/(2Cs).

We can now state the main lemma to prove Theorem I.
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Lemma 3.3. Let (I',a) be a weighted graph which verifies (GE,) for some v > 0. Let K =
10C,/C;.

Fix xg € T'. Let A be a finite subset of T'.

Then there is an increasing sequence of balls (By, k € N), centered at x¢, with A C By and
By 17T as k — oo and such that for ally € A and z € OBy,

K —1\k
Py(Xrsnrom, =274 > ToB,) = Hop, (0, 2) [1 +0 ((K+ 1) )] : (3.14)

Proof. Let R,, be given by (GE,). Let 74 > R, be such that A C B(zo,74).
Fix pa > (2C5/C;)Y/ "7 4. Then by lemma 3.2 for all z € dB(xg, pa) and R > pa,
Pw(TA > TaB(zg,R)) > Pw(TaB(ro,rA) = OO) > Ci/(2CS). (3.15)

By proposition 2.2, since I' satisfies (GE,), it satisfies the weak Harnack inequality wH(K)
with K = 10C,/C;.

Therefore, we set My = 2 and we construct a sequence (My; k € N) such that for all k > 1, if u
is a non-negative and harmonic function in
Bk = B(.’Eo, MkMk,1 e MlMOPA)

then
max v < K min u. (3.16)

By -1 By-1

Then by lemma 2.3, for all £ > 1, if u is harmonic function in By then
K-1

k
oy < o 1
e s (7)o 317

For k > 1 and z € 0By, consider the function
f(x) = Po(Xs,,, =2) = Hop,(2,2), wel.

Since f is harmonic in By_1, by (3.17),
K — 1)’“*1

- . 1
il osc f (3.18)

By—1

0sC <(
Bof_

Furthermore, since f is non-negative and harmonic in By, by (3.16), we have that

osc f<max f <K min [ < K f(xg). (3.19)
Bj_1 Bi—1

Br_1

Therefore, by (3.18) and (3.19), for all x € By and z € 0By,

K — 1\k-1
1Po(X oy, = 2) = Hop, (20,2)| < Hop, (a0, 9K (37 )
and in particular,
K —1\*
Pa(Xrpp, =2) = Hop, (w0, 2)[1+ O(( 7 ) )] (3.20)

where the constant in O(-) depends only on K.
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Note that A C B(wg,p) C By. Then by (3.20), for € dB(x¢,pa) and k > 0,

Po(Xryp, = 2|Ta <7ToB,) = ZPI(XTA = ylra < o5, )Py(Xr,p = 2)
yeA
K —1\k
= Hop,(20,2) [1+O((K+1) )]. (3.21)

For x € 0B(zg, pa) and z € 0By, k > 0, we have that

Pw(XTaBk =z) = PI(XToskATA =z)+ Pw(XTaBk = z|Ta < 7o, )(1 — Pu(74 > ToB,)).
Then,
PI(XTaBkATA = Z) = Px(XTaBk = Z) - Pac(XmBk = Z|TA < TBBk)
+ Py (X5, = z|Ta < 7o) Pu(Ta > ToB,)
K —1\*
= HaBk (an Z)Px(TA > TaBk)[l + O((TH) )} (322)

by (3.20), (3.21) and by the lower estimate (3.15).

But every path from A to 0By must go through some vertex of dB(xg,pa). So, for y € A and
z € 0By,

Py(XTaBk/\TA = 2) = Z Py(XT(')B(mO,pA)/\TA = x)Pa:(XTaBk/\TA = z)
z€0B(z0,pA)
(3.22) K —1\F
= Honuleo, M1+ O((F) )]
X Z Py(XTBB(mO,pA)/\TA = x)Pz(TA > TBBk)
x€0B(z0,pA)

K-1

k
m) )IPy(Ta > ToB,)-

= Hop, (w0, 2)[1+0((
|
As in Lawler [27, p. 49], using a last exit decomposition, we obtain the following representation
of the hitting distribution in a weighted graph (T, a).
Let A C B be finite subsets of I'. Then for all z € B and y € A,

Ha(z,y) = Y Gac(x,2)Havon(2,y), (3.23)
2€0B

ﬁ (I ) _ Zzec’?B GAC(%Z)HAuaB(Z,y)
Y ZzeaB GA“’(CC’ Z)PZ(TA < TBB)

and

Havos(2,y)
2€0B PZ(TA < TBB)

— H
< Ha(n,y) < max AvaB(2,Y)
2€0B PZ(TA < TaB)

Then by reversibility, m(2)Havap(z,y) = 7(y)Havons(y, z) and
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P.(ta < ToB) = Z HauaB(2,79). Hence,
geA

s m(y)HavaB (Y, 2)

_ 7(y)Havan (Y, 2)
- 2 < Hs(x,y) < max
2€0B ) o 4 m(§)Havon (9, 2) v

& ) 3.24
2€0B ) o 4 m(§)Havons(9, 2) (324

We complete the proof of Theorem I with the help of (3.24).

Proof of Theorem I. Let A be a finite subset of I" and let zg € T'.
Let 74 > Ry, be such that A C B(xg,74).

Let (Bg; k € N) be an increasing sequence of balls given by lemma 3.3.
By equation (3.14), for all y € A, k > 2 and z € 9By,

K -1

m)k)]ﬂ(y)Py(TA > ToB,)- (3.25)

7(y)Havos, (Y, 2) = Hap, (w0, 2)[1 + O((

By summing over y € A the equation (3.25) gives,

_ k
3 TP oy o = 2) = Homy(am )1 + o((37) 3 TWRa > om,). (520

Since (T',a) is connected, both sides of (3.26) are positive. So we can divide (3.25) by (3.26).
And a short calculation shows that

m(y)Havon, (Y; ?)  7w(y)Py(ra > T08,) 1 O((K _ 1)k)]

deAﬂ—(g)Pg(XTaBk/\TA = Z) a deA W(g)PQ(TA > TaBk) K+1

where the constant in O(-) still depends only on K.

By (3.24), we have that for all v ¢ By,

H
in 7(y)Havas, (Y, 2)

= m(y)Havon, (y; 2)
~ < Ha(v,y) < max
2€9By, ZQEA Tr(y)PQ(XTaBk/\TA - Z)

z€0By, ZQGA ﬂ-(g)Pg(XTaBk,/\TA = z)

So for all v ¢ By, we get:

R w(y)gz(pfs (>A;aBk) [+ 0((%)’3} (3.27)

As v goes to 400 in an arbitrary way, we can let K — oo as well. Hence, by (3.27), we obtain
that lim, 100 H 4(v,y) exists and

R m(y)Py(1a > +00)
lim Ha(v,y) = 2 .
v——Fo0 (v,9) deA 7(§)Py(14 > +00)
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4. THE TWO-DIMENSIONAL SUPERCRITICAL PERCOLATION CLUSTER

In this section, we prove the existence of the harmonic measure for the random walk on a
supercritical percolation cluster of Z2. The proof of Theorem III, for the uniformly elliptic
random walk on Z2, is similar but with many simplifications since we can use the estimates of
[16] instead of Barlow’s estimates.

The error term in the local central limit theorem for the simple random walk on Z? is O(k~2)
(see [27, (1.10)] for instance). For the random walk on a supercritical percolation cluster of Z?,
Barlow and Hambly [8, (1.4)] proved a local central limit theorem with an error term which is
O(k~1). Because of this difficulty, we first construct the Green kernel using the parabolic Harnack
inequality [8, (3.2)]. Then we proceed as in Cerny [15, section 3] to estimate the Green function in
a finite ball. Finally, using a Harnack inequality in an annulus, we obtain Green kernel estimates
which are sufficient to prove the existence of the harmonic measure although they are weaker
than the estimates which hold for the simple random walk on Z? (see [27, Theorem 1.6.2]).

4.1. The Green kernel and its properties.

Lemma 4.1. P,-almost surely, for all xg,x € Coo(w), the series
Z[p(IOaank) 7p(x7‘r07k)] (428)
k=0

converges. The limit will be denoted by g(x,xq).

Let Gop(z,y) and pan(x,y, k) be respectively the Green function and the probability transitions
of the random walk in the ball B, (zo,2n) with Dirichlet boundary conditions. Then

gz, xo) = hin Z [p2n (0, 0, k) — pon (2, x0, k)] = liylgn[ng(xo, x0) — Gan(z, z0)]. (4.29)
k=0

Proof. Let Ry be given by the Harnack inequality for the supercritical cluster (2.2). Then as in
the proof of [6, Proposition 6.1], we have that for « € C», and R > Ry(z), B(z, R) is very good
(see [6, definition 1.7]) with Np < RY(10(d+2)) and it is exceedingly good (see [6, definition 5.4]).

Now let R > Ro(z) V 16 and let Ry = RIn R. Then, since Ry > Ry, B = B(x, R;) is very good

with N3 < Rg2d+4)/(10(d+2)) < R;/(2In Ry). Then by [8, Theorem 3.1], there exists a positive
constant Cgr such that the parabolic Harnack inequality [8, (3.2)] holds in Q(x, R, R?). Therefore
[8, Proposition 3.2] holds with s(z¢) = Ro(z) V 16 and p(zg,x) = Ro(xo) V 16 V D(z0, x).

Fix z¢ € C then v(n,x) = p(x,x9,n) + p(x,zg,n + 1) is a caloric function, that is, it verifies
v(n+1,7) = Pv(n,z), (n,z) € N X Csp.

Let k > 4D(wg,2)%. Let to = k+ 1 and 79 = \/t9. Then v(n,z) is caloric in ]0, 3] x B(zo,70),
x € B(xo,70/2) since D(xg,z) < Vk < r9/2, and to — p(xo,z)? <k < tg— 1.
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Then by the upper gaussian estimates [6, Theorem 5.7] and [8, (2.18)] and by [8, Proposition

3.2], there is v > 0 such that
p(xovx)>y
C ( sup v
Vito Q+

p(an'T) v 1
< Cl———=) =
N ( Vo ) 73

p(zo, )"
— C k1+u/2 :

lv(k, z) — v(k, z0)|

IN

Moreover, for all k > 4D(zq,x)?,

p(.’L’O,x)V
|p($7.’1,'07k7) _p(x0a$07k)| S C W

Hence (4.28) converges. Then (4.29) follows by Lebesgue dominated convergence theorem. W

The harmonic measure will be expressed in terms of the function w4 defined below.
Definition 4.2. P,-a.s., for a finite subset A of Coo(w) and for a fized zg € A, let
uA(xa'rO) = g(xa'ro)_E;)g(X?AaxO)v xeCoo(w)

Note that, u(-,z9) =0 on A and
PYup(z,mo) = PYg(z,x0) — Y p(x,y)Eyg(Xz,,20)

y~zx

= g(xvxo) - lﬂio(x) - E:Q(XTA7x0)7 S COO(W)

4.2. Green kernel estimates. We obtain upper and lower bounds on Capp_ (,, »)({zo}) by
the arguments of [15, section 3] with the heat kernel bounds for the discrete time random walk.
They appear in [6, Theorem 1 and remark 7] and [8, Theorem 5.1] with details given in [8, section
2]). We state them below in terms of the graph distance by taking into account (2.7).

For 2,y € Cw, let p(z,y,k) := p(x,y,k) + p(x,y,k + 1). Then, there are positive constants

)
~

7, ¢, ¢4, C5, C, ¢7 and random variables R(z,w) such that

Py(z € Coos R(z,w) > n) < cexp(—n"/c) (4.30)
and if 2,y € C and n > cD(x,y) V }A{(m,w), then
can” ' exp(—csD(x,y)*/n) < Pl y, k) < cgn™" exp(—c7D(x,y)* /n). (4.31)

Let Gp(z,y) and py(z,y, k) be respectively the Green function and the probability transitions
of the random walk in the ball B, (xo,n) with Dirichlet boundary conditions.

Proposition 4.3. Let p > p.(Z?). Let c4 and cg be the constants that appear in (4.31). Then
Py-a.s. for xg € C, for all n sufficiently large,

%4 Inn < Gp(z0,z0) < 4ce Inn. (4.32)

Remark. Note from (4.32), since Capp_ (4, ({Z0}) = a(x0)/Gn(T0,70) (see [28, section 9.4]
for instance), there is a constant C' > 1 such that P,-a.s. for zyp € Coo, for all n sufficiently
large,

C~! < (Inn) Cappg,, (4y,n)({70}) < C. (4.33)
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Proof. We follow [15, section 3] with few modifications.

For z¢ € Cwo, let oy, := inf{k > 0; Xj ¢ B(xg,n)}. Then we write the Green function as

Gn(0,70) = Eaol D> 1{xy=a0})
0<k<on,
= Y plxo,xo, k) + Y Puo(Xi =m0, k <0y)
0<k<n2 n2<k
— > Pe(Xp = 0,00 < k)
0<k<n?
= S1+ .59 — S;3.

By the upper and lower bounds of (4.31), we obtain that for all n sufficiently large,
%4 Inn < Sy < R(zo,w) + 2c6 Inn < 3cgInn. (4.34)
For the sum S3, by the strong Markov property and by reversibilty we have for n large enough,

53 S sup Z p(y,SEOa k)

YEIB(20,n) 9y < <2

< 4 sup p(I07y7k)
y€IB., (zo,n) 2n§SH2
< aBlaow)+ 3 Fe )
2n<k

~

S 4(R(I07W) + C )

It remains to bound S3. As noticed in [10, lemma 3.3], by (4.30) and by Borel-Cantelli, there
exists a constant 0 < C' < +o0 such that, P, almost surely, for all sufficiently large n,

sup  R(z,w) < C(lnn)/", (4.35)
z€B(xzo,n)

So, by the gaussian lower bound of (4.31) and by (4.35), we deduce that,

sup y play,n’)= sup [I— Y playn’)]<p<l (4.36)
v€B(on) ye B(zo,n) veB@on)  ygB(zo.n)

For k > n?, let k = an?® + b, with 0 < b < n? and a € N. By (4.35) and by the gaussian upper
bound of (4.31), we deduce that,

pn(anank) = Z pn(anZth)pn(Zlaz%nQ)-~-pn(za—1;x0an2+b)
21,22,...,2a—1E€B(zo,n)
C
< a—1
P b

< %exp(—k/(crﬂ)).
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Using this upper bound on the transition probabilities, we have that

Sy = Z Pxo(Xk = X, k< O'n)
n2<k
= Z pn(anx(%k)
n2<k
< Z %exp(—k/(erﬂ)) < C.
n2<k
Gathering inequalities for S7, Sy and S3, we obtain (4.32). [ |

Lemma 4.4. There is a constant cg > 1 such that, Pp-a.s., for all g € Coo there is p = p(xo)
such that if D(zo,x) > p,

cgl In D(zg,z) < g(x,2z0) < cgln D(xg, x) (4.37)

and
ua(x,x0) < InD(zg,z) as D(zg,z) — 0. (4.38)

Proof. Let zp € Co and r > 0. Write 7, := inf{k > 0; X}, € B(zo,r)} and for m > 1, write
Om = Inf{k > 0; X}, ¢ B(zo,m)}.

Note that for all n > 3um, where p is the constant that appears in (2.6), P.(o, < 7) is
harmonic in B(zg,3um) \ B(zo,r). Then by the annulus Harnack inequality (proposition 2.5),
if m is sufficiently large and D(y,z¢) = m, then Z w(x)Py(on < 7r)

z€B(z0,r)

= > > w(@)Pe(X(om) =2',0m < 72)Pulon < 7)

z€B(zo,r) ';D(x0,x’)=m

= Pyon<m) Y > m(@)P(X(om) =2 0m < T)

x€B(xo,r) 2';D(x0,x')=m

= Py(an <T?”)Capm(B(x0ar))'

By f1(y,m,n) < f2(y, m,n) here, we mean that there is a constant ¢ > 1 which does not depend
on y,m,n nor on w and r, and such that Pp-a.s for m is sufficiently large and D(y, z9) = m, then

0< Cilfl(yamvn) S f2(y7m7n) S Cfl(y7m7 n)

Then, since r is fixed, by the capacity estimates (4.33), for m = D(y, zo),

_ Cap, (B(zo,7)) _ Inm _ In D(y, xo) (4.39)
" Cap,,(B(zo,7)) = Inn Inn )

P,(on, < 1)

It follows from (4.39) and the capacity estimates (4.33) that for m sufficiently large, D(z, z¢) = m
and n > 3um,

Gn(zo,20) — Gn(x,20) = Gnlxo,20) — Po(Tze < 0n)Gn(z0,0)
G,

(20, 20) Py (Twy > 0n)
~  InnpnDze)
- Inn .

Then (4.37) follows by (4.29). ]
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We will need to work in sets defined in terms of g(-,zg). Let
B, := B(zo,n) := {& € Co0: 9(x,20) < Inn} and &, := inf{k > 0; X;, ¢ B(xo,n)}. (4.40)
Note that by (4.37), for all n sufficiently large,
B(zg,n'/*) C B(zo,n) C B(xg,n®). (4.41)

Lemma 4.5. There is a positive constant C' such that, P,-a.s., for any non empty finite subset
A of Coo and xg € A, if m sufficiently large and n > (3um)°, then

min  P,(c, <7a) > C(Inm/Inn).
y;m=D(y,zo)

Proof. The lemma is a consequence of (4.39). For a finite subset A of Co such that xg € A C
B(zg,r), for m sufficiently large and n > (3um)°s,

min P,(o, <T > min  P,(0, < TRz r
ysm=D(y,z0) (O a) 2 yim=D(y,%0) y(n B(zo, ))
= i b € < zo,T
N y;minDl?y,wo) u(B(wg,mt/es) < TB(wor))
> C(lnm/Innl/<).

|
The next lemma is the analogue of [26, Proposition 6.4.7]. The comparison result for D and the
| - |1-distance of Antal and Pisztora [4], see (2.7) is used in its proof.
Proposition 4.6. P,-a.s., for a finite subset A of Coo(w) and for xo € A and x € A°,

ua(z,zo) =lim (Inn)P, (7, < T4).

Proof. Let Ry(z,w) be as the Harnack inequality for the supercritical cluster (2.2). By (2.6) of
Antal and Pisztora, and by (4.41)

Y. D Puz€CuxRolz) 2n!/%) < OY 0 exp(—ezn”/ ) < co.

" 2€8B(zo,n) n

Therefore, by Borel-Cantelli, there is ; C Q with P,(€1) = 1, such that for all w € Q; there is
no such that for all n > ny and for all z € dB(zo,n), Ro(z) < n'/s.
Let z € B(zg,n) where n > ng. Then there is 2’ € B(zo,n) such that 2z’ ~ z and

g(zlvl'()) <lnn < g(z,xg).

Moreover, by (4.41), D(z, o) > n'/¢. Then by Holder’s continuity property given in proposition
2.4 and by (4.37),

0< g(z,20) —Inn < g(z,20) — g(2', 70)
LY (. 0)
¢ [ — ma T
nl/Cs B(Z’nl)/(cs)g 10

g (nll/s> Inn. (4.42)

IN
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By the optional stopping theorem applied to the martingale g(Xg,xo), k& > 0 and for n large
enough and = € B(zg,n) \ 4,

g(z, o) = Eylg(Xr,n5,,%0)],
= Pu(0n <TA)E.[9(X5,,20) | 0n < T4l
+Pp(Ta < 0n)Ey [9(Xry, 20) | TA < 0] (4.43)
But
liranPm(TA <On)Ey [9(Xry,0) | T4 <0n] = liTILnEz [9(Xr,,20);TA < Oy
= E9(Xr,,20)
Therefore by (4.42) and (4.43), ua(z,z¢) = lim, (Inn) P, (5, < 74). ]

We can now prove the analogue of lemma 3.3 for the supercritical cluster. Theorem II will follow
from this lemma and from proposition 4.6 above.

4.3. The main lemma and the proof of Theorem II.

Lemma 4.7. Let p > p.(Z?). Let Q; and Ro(z,w) be as in the Harnack inequality for the
percolation cluster (2.2). There is v/ > 0 such that the following holds.

Let w € Q1 and let A be a finite subset of Coo(w). Fix xg € A.
Then there is Ng = No(xo, A,w) such that for all n > Ny, for ally € A and z € 8§(m0,n),

~ Inn
H yo50m ) = Py(a > 50) Hyg oo (20, 2) [1 + o(ny,)] (4.44)

where En and 7, are as in (4.40). v' > 0 depends on the Hélder exponent given by proposition
2.4 and the constants given in (4.37) The constant in O(-) depends on w and A and on the
constants that appear in (2.1), (2.2) and in proposition 2.4.

Proof. Let m be sufficiently large so that A C B(xzo,m) and so that (4.42) holds for all n >
(3um)es.

For Ry > max{Ry(zg,w), (3um)/4,m}, let By = B(xo, R1), B2 = B(xo,2R;), B3 = B(x0,4R;).
Set n = (4Rq)°® and let B,, = B(xzo,n) and &, be as in (4.40). Note that by (4.41), B3 C B,
and (4.42) holds.

For z € (‘3§n, consider the function
f(z) = Pu(X5, =2), z€Cx(w).

Since f is harmonic on By, by proposition 2.4, for all u € By,

150 = fao)] < o PE) s £

In particular, for u € B(xg, m),

|f(u) = f(zo)| < C(Rﬂl)y max f. (4.45)

B>

Now by considering f harmonic on Bs, by (2.1), we have that
H}Baxf < 1 f(zo)- (4.46)
2
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Therefore, by (4.45) and (4.46), for all u € OB(xg, m),

Pu(Xs, = 2) = Hyp_(x0,2) [1 + 0((;?1))] . (4.47)

On the set {74 < 7,,}, we let n = inf{j > 74; X; € OB(z0,m)}.

Let dB(zq,m)[Bn, A] := {x € dB(zo,m);0 < Py(5, < 74) < 1}. Then using (4.47), we obtain
that for all x € 0B(zg, m)[Bp, Al,

Pu(X5, = 274 <Gn) = > Pu(Xy =ulra <Fn)Pu(Xs, = 2)
uw€dB(zg,m)
m v
= Hyp (20,2) {1 + O((RT) )} . (4.48)

Let = € dB(zo, m)[Bn, A]. By (4.47), (4.48) and (4.42), we get from the relation
P.(X5z, =2) = P.( Xz, =z|ta>0,)Py(14 > 07,)

—I—Pw(Xgn = Z|7’A < 5n)<1 — Pw(TA > 571))7

that
_ [ 1 m\Y m\¥
PuXa, =3lra >0 = Hyp (o02) [1+ 5 ==0((1) ) +o((3))]

= Hyp, (20,2) |1+ 0(111%1 (g)”)}

= Hyg (v0,2) :1 + O(lnn)}

nv'

where v/ = v/cg > 0 and where the constant in the last O(-) now depends on w and A. This can
also be written as,

Po(Xs,nrs = 2) = Hyp (€0,2)Polra > 30) {1 n o(lnn)} . (4.49)

n¥

Note that every path from y € A to OB,, must go through some vertex of 9B (x, m)[én, Al. So,
for all y € A and for all z € 9B,

Py(XEn/\‘rA = Z) = Z Py(XTaB(zoym)/\‘f‘A = x)Pw(XFTn/\TA = Z)
z€8B(z0,m)[Bn,A]

Hyg (w0, 2) {1 . O<1Hn>}

nv’'

x Z Py(XTOB(IO,m)/\TA = x)Px(TA > 571)
z€IB(w0,m)[Bn,A]

Hyp (20,2) [1—&-0(

(4.49)

Inn

)} Py(ta > 0y).

Hence (4.44) holds with Ny = (4 max{Ro(zo,w), (3um)/4,m})es. [ |

nv’

Theorem II follows from lemma 4.7.
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Proof. Let y € A. Let B, and &, be as in (4.40). For = ¢ B,, by (3.23), by reversibility of the
Markov chain and by (4.44), for all n > Ny,

7(z)Ha(z,y) () Pp(Xry = 9)
= n(z) Z GAC(x’Z)HAU[?En(Z’y)
2€0B,,

= Z Gae(z,2)m(y) H 5 55, (Y, 2)

zeaén

= > Gacls )W)y G < Ta)Hyp, (30,2) [1+0(n™)]

zEBEn

= 7(y)Py(cn < Ta) Z Gac(z,2)Hyp (w0, 2) [1 + O(n_’/)} . (4.50)
2€8B,

At this point for the supercritical cluster of Z%, d > 3, it suffices to sum over y € A and divide
the equations. However, since the walk is recurrent on the supercritical percolation cluster of Z?2,
P,(c, < T4) — 0 asn— oo, this would lead to an indeterminate limit. But by (4.50),

7T(m)I—IA (.’L‘, y)
m(2) 2o yea Halz,y)

s e s o))

Hy(z,y) =

and by proposition 4.6,

I ) = s A o [0 )

m(y) Pua(y, zo)
Yyeamy)Pua(y’,wo)

(4.51)

5. PROOF OF PROPOSITION 2.5

In this proof, we keep the notations of [6] except for the graph distance which will still be denoted
by D(z,y).

For a cube @ of side n, let QT = A; N Z?% and QP := Ay N Z? where A; and As are the
cubes in R? with the same center as Q and with side length %n and gn respectively. Note that

QRCQ®cQt.

C(z) is the connected open cluster that contains x. Cg(z), which will be called the open Q
cluster, is the set of vertices connected to = by an open path within Q. And CV(Q) is the largest
open @ cluster (with some rule for breaking ties).

Set ag = (11(d +2))~! with d = 2.

Proof. By [6, lemma 2.24] and by Borel-Cantelli, for all x € Z?2, there is IV, such that for all
n > Ny, L(Q) (see [6, p. 3052]) holds for all cubes @ of side n with © € Q.

Let z € Z? and let n > N, = N, (w).
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Let @ be a cube of side n which contains z.

Let g € CY(QT) N Q% with Q(xq,r + ko)™ C QT where Cyn®? <r < n and kg = ko(p,d = 2)
is the integer chosen in [6, p. 3041].

Let R be such that
B, (z0,(3/2)RInR) C Q% and (5.52)
(Cn®2)®+2 < (Cgn®2) ¥+ <« R< RInR <n with d=2. (5.53)
Then by [6, Theorem 2.18¢|, B, (zo, RIn R) is (Cy,Cp, Cw )- very good with
NB, (z0,RInR) < CHn™?
with the constants given in [6, section 2].
Then by [6, Theorem 5.11] and (5.53), there is a positive constant C, which depends only on the

constants Cy, Cp, Cy, such that if D(zg,21) < %RlnR and if h: B(x1, R) — R is non-negative
and harmonic in B(z1, R), then

max h<C; min h. (5.54)
B(x1,R/2) B(z1,R/2)

Note that since d = 2 and 4ap(d+2) = 4/11 < 1/2, the conditions (5.53) are verified for R = 2/n

when n large enough.

We now apply a standard chaining argument to a well chosen covering by balls (see for instance
[37, chapters 3 and 9]). Let zg € Z? and consider environments such that x¢ € Coo(w). The main
difficulty to carry out the chaining argument is to check that the intersection of “consecutive”
balls is not empty. The remainder of the proof is to construct an appropriate covering of {z €
Coo; D(zg, ) = m}, for m large enough, with a finite number balls, which does not depend on
xo, m or w, and such that the Harnack inequality (5.54) holds in each ball. To do so, we need
an additional property of the supercritical percolation cluster. We will use the grid constructed
below in lemma 5.2.

Let 61,05 and 03 be three positive real numbers such that

1 /4
209 < 01 and 01 + 202 < 03 < 5* (5 — 52> . (5.55)
1

For instance, choose d3 so that 0 < d3 < 4/(50u), then choose d; so that 0 < 2§; < 5 and finally
choose d3 so that dy < min{d;/2,4/(50u)}.

Let n > Ng,.

Furthermore, take n large enough so that there is a Kesten’s grid in ) with constant Cx and R(Q)
holds (by [6, lemma 2.8]). That is in each vertical and each horizontal strip of width Cx Inn
contains at least c¢(p)Ck Inn open disjoint channels. Moreover, since R(Q) holds, C¥(Q) C
CY(Q™). In particular, zg € CV(Q1) N Q®.

Furthermore by (2.6) and Borel-Cantelli, if m is large enough then for all x,y € Cs such that
|z]1 < 3um, |y|1 < 3pm and |z — y|1 > m(d — 252)/p we have

|z =yl < D(z,y) < plz —yh.
R
Set 3= mds = \/n.
Furthermore, take m large enough so that (5.52) and (5.53) are verified as well as

1
Cklnn <mébs/p, 3m,u<§RlnR and 7 < 4mds.
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Instead of constructing a finite covering of {x € Coo; D(x0,x) = m}, it is easier to construct a
finite covering of the region {z € Cu; %—Z’ < |r — wg|1 < 2m} which is a larger subset of Z2.
Let T := {(i;j) € N*;4/(581) <i+j <2u/d.} Let M be the cardinal of Z.

Let x; ; = xo + (imd1/p; jmdr/p) with (i;5) € Z. Then for each z; ; with (¢;5) € Z, there is
Ei,j € Co such that |mi,j — gi,j|1 < m§2/u

We proceed similarly in the other three quadrants to obtain a set of 4M vertices which we denote
by D. Note that M does not depend on m.

The finite covering of the region % <z —xpl1 <2m is
{B(x,md3), = € D}.

Note that each ball contains the center of the four neighbouring balls except those on the bound-
ary of the region. But these are connected to at least one neighbouring ball. Indeed, if z,y € D
are neighbouring centers then by (5.55),

D(Z,9) < p|T — gl1 < m(6; + 282) < mds.

If 7 € D then by (5.55),
- 4
D(.Z‘Q,J?) > % (5 — 52) > 5mds,
D(x0,T) < plzo — Z)1 < 2mp and p (2m + mda/p) < 3mpy.

Therefore, B(zg,r) does not belong to a ball of the covering and u is harmonic in each ball
B(z,2mds) with € D. Then the Harnack inequality holds for R = 2mds since for all Z € D,

~ 1
D(xg,T) < 2mp < gRlnR.

Construction of Kesten’s grid

Definition 5.1. Let B, ,, = ([0;m] x [0;n]) N Z2.

A horizontal [resp. vertical] channel of By, is a path in Z* (z¢, 1,22, ...,x1) such that:

o {z1,29,....,x_1} is contained in the interior of By, n

o 15 € {0} x [0;n] [resp. zg € [0;m] x {0}/

e z; € {m} x [0;n] [resp. x € [0;m] x {n}]

We say that two channels are disjoint if they have no vertex in common. Let N(m,n) be the
maximal number of disjoint open horizontal channels in B, ;.

A Kesten’s grid in [—n;n]? is a set of open horizontal and vertical channels of [—n;n]? such that
the horizontal channels are disjoint among themselves and similarly for the vertical channels
and moreover, there is at least ¢(p)Ck Inn disjoint open channels in each horizontal and in each
vertical strip of length n and width Cx Inn contained in [—n;n)%.

Lemma 5.2. P,-almost surely, for n large enough, there is a Kesten’s grid in [—n;n]?.
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Proof. By [25, Theorem 11.1], for p > p,, there is a positive constant ¢(p) and some universal
constants 0 < cg, 19, £ < 00, such that

P,(N(m,n) > c(p)n) > 1 —co(m + 1) exp(—c1o(p — pe)°n).

We apply this result to the number of disjoint open channels in a horizontal strip of length n
and width Cx Inn contained in [—n;n]?. If Ck is large enough so that cio(p — p.)Cx > 3 then

Z neg(n + 1) exp(—cio(p — pe)*Cr Inn) < oo, (5.56)

n

Conclude with Borel-Cantelli lemma. [ ]

6. AN EXAMPLE

In this section, we construct a weighted graph which is not “finitely-partite” and where there is
a finite set A for which the harmonic mesure from infinity does not exist.

The first step is to construct a discrete time reversible Markov chain X = (X,,,n € N) on N.
At each step, X jumps at one of its two nearest neighbours except when it is at some vertices
{z;;j > 1} where X stays at the same vertex with probability 6;/(1 + 4;).

Fix p > ¢ > 0 such that p+¢ = 1. The transition probabilities of X at = ¢ {z;;j > 1} are
P(Xy=2—-1)=p, P(Xi=x+1)=¢q, if x#0 and Py(X;=1)=1.

Let n := inf{k > 1; X3, = X)_1} be the first time that X does not jump.
Claim. It is possible to choose {z;;j > 1} and {0;;j > 1} so that for all z € N,
P.(m0 <m) > 2/3. (6.1)

Proof of the claim. Let (¢j;5 > 1) be a decreasing sequence of positive real numbers such
that

3 g < 1/4. (6.2)

Set xg = 0 and x1 = 1. If xo,...x; are already chosen then §; and z;; will be determined by
the following inductive construction.
First choose d; such that

5 < %ij (Tajy < Tay) (6.3)
and add a bond from z; to x; with a conductance such that

then since p > ¢, it is possible to choose x;; sufficiently large so that

Pry(Toyy < 70)) < 2P, (e < 7). (6.4)

With these choices,
Pa:j (ij—l < 77) > Pa:

(Tay;oy < Tay) + Poy(Te; < Tayoy ATayy A Poy (1o, <1).

J
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Hence
Py (T, < Tu;)
Pp (o, < Tuy) + Poy(Tayy < 7Toy) + Poy(n < 7a))
Py (Taypy <Tay) + Po;(n < 7))
Py (Ta;_y < Ta;)
1—¢; by (6.4) and (6.3).

ij(Tl'j—l < 77) Z

1—

V

J J

For all j > 1, by (6.2), Py, (10 < 1) > HP‘TZ(Twﬁfl <n) > H(l — &) > 2/3 and since this
=1 =1

probability is monotone decreasing, (6.1) holds for all = € N. [ |

The example is the Markov chain (Y,,;n € N) on N x {0,1} with transition probabilities given
by

P(I,l)(le('r+17l)):p7 P(m,z)(le(xflﬂ’)):qv 1f£l?¢{l'j,j21}, 12071
and for i = 0,1, and j > 1,
Py Y1 = (zj +1,4)) =p/(1 +6;),  Play,n(Y1 = (z; = 1,9)) = q¢/(1 + ;)

and
P, 0)(Y1 = (2,1)) =06;/(1+0;) P, 1y(Y1 = (x;,0)) = 8;/(1 4 6;).

Let A ={(0,0),(0,1)}. Then the first coordinate of (Y;,) conditioned on hitting A has the same
distribution as (X,,). It is a special case of Doob’s h transform with h(x) = Py(To < o0) = (q/p)”
(see [17] or [28, section 17.6]). Hence, by (6.1), for all z € N,

H ((2,0),(0,0)) >2/3 and Ha((z,1),(0,0)) <1/3
and the hitting distribution of A from infinity does not exist.

This example can be slightly modified to provide an example of a recurrent reversible Markov
chain with finite sets where the harmonic measure from infinity does not exist.
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