Hodge Theory of Compact Complex Manifolds

CIMPA School "Complex Analysis, Geometry and Dynamics"

Urgench, Uzbekistan

Lecture No. 4

Dan Popovici Université Paul Sabatier, Toulouse, France

GEOMETRIC PROPERTIES OF COMPACT COM-PLEX MANIFOLDS UNDER **DEFORMATIONS** OF COM-PLEX STRUCTURES

(I) Smooth families of operators

We now introduce the analogues of a family of manifolds for vector bundles, sections thereof and differential operators.

Definition. Let X be a compact oriented differentiable manifold X and let $\Delta \subset \mathbb{R}^N$ be a small open subset, for some integer $N \ge 1$.

(i) We say that $(B_t)_{t\in\Delta}$ is a C^{∞} family of C^{∞} complex vector bundles $B_t \longrightarrow X$ over X (or that B_t varies C^{∞} with $t \in \Delta$) if there exists a C^{∞} complex vector bundle $\pi : \mathcal{B} \longrightarrow X \times \Delta$ such that

$$B_t = \pi^{-1}(X \times \{t\}) = \mathcal{B}_{|X \times \{t\}}, \qquad t \in \Delta.$$

(ii) Let $(B_t)_{t\in\Delta}$ be a C^{∞} family of C^{∞} complex vector bundles $B_t \longrightarrow X$ as in (i).

(a) For every $t \in \Delta$, let $\psi_t \in L(B_t) = C^{\infty}(X, B_t)$ be a smooth global section of B_t .

We say that $(\psi_t)_{t\in\Delta}$ is a C^{∞} family of sections (or that ψ_t varies C^{∞} with $t \in \Delta$) if there exists a C^{∞} section $\widetilde{\psi} \in C^{\infty}(X \times \Delta, \mathcal{B})$ of \mathcal{B} such that

$$\psi_t = \widetilde{\psi}_{|X \times \{t\}}, \qquad t \in \Delta.$$

(b) For every $t \in \Delta$, let $E_t : L(B_t) \longrightarrow L(B_t)$ be a linear operator on B_t .

We say that $(E_t)_{t\in\Delta}$ is a C^{∞} family of linear operators (or that E_t varies C^{∞} with $t \in \Delta$) if for every C^{∞} family $(\psi_t)_{t\in\Delta}$ of sections $\psi_t \in L(B_t)$, the family $(E_t\psi_t)_{t\in\Delta}$ is a C^{∞} family of sections.

We say that $(h_t)_{t \in \Delta}$ is a C^{∞} family of (fibre) metrics (or that h_t varies C^{∞} with $t \in \Delta$) if there exists a Hermitian metric h on the vector bundle \mathcal{B} such that

$$h_t = h_{|X \times \{t\}}, \qquad t \in \Delta.$$

The Kodaira-Spencer fundamental theorems (1960) on families of elliptic operators

Let:

• $(B_t, h_t)_{t \in \Delta}$ be a C^{∞} family of Hermitian C^{∞} complex vector bundles on a compact Riemannian manifold (X, g);

• $(E_t, h_t)_{t \in \Delta}$ be a C^{∞} family of self-adjoint elliptic linear differential operators $E_t : L(B_t) \longrightarrow L(B_t)$ of even order m;

• $(\lambda_h(t))_{h\in\mathbb{N}^*}$ be, for every fixed $t\in\Delta$, the eigenvalues of E_t and let $(e_h(t))_{h\in\mathbb{N}^*}$ be the corresponding eigensections $e_h(t)\in L(B_t)$ such that:

•
$$E_t e_h(t) = \lambda_h(t) e_h(t), \qquad h \in \mathbb{N}^*, \ t \in \Delta;$$

• $(e_h(t))_{h\in\mathbb{N}^{\star}}$ is an orthonormal basis of $L(B_t)$, $t\in\Delta$;

$$\cdot \lambda_1(t) \leq \cdots \leq \lambda_h(t) \leq \dots \quad and \quad \lim_{h \to +\infty} \lambda_h(t) = +\infty.$$

Then, the following statements hold.

Theorem A For every $h \in \mathbb{N}^*$, the function $\Delta \ni t \mapsto \lambda_h(t)$ is **continuous**.

Theorem B The function

 $\Delta \ni t \mapsto \dim \ker E_t$

is upper-semicontinuous.

Theorem C If dim ker E_t is independent of $t \in \Delta$, then $(F_t)_{t \in \Delta}$ is a C^{∞} family of linear operators, where $F_t : L(B_t) \longrightarrow \ker E_t$ is the orthogonal projection w.r.t. the L^2 inner product $\langle \langle , \rangle \rangle_t$, for every $t \in \Delta$. **Theorem D** If dim ker E_t is independent of $t \in \Delta$, then $(G_t)_{t \in \Delta}$ is a C^{∞} family of linear operators, where $G_t := E_t^{-1}$ is the Green operator of E_t for every $t \in \Delta$.

Before moving on to the proofs, let us point out the

Observation. Having fixed an arbitrary $h \in \mathbb{N}^*$, the function $\Delta \ni t \mapsto \lambda_h(t)$ need not be differentiable.

Example. Notice that the eigenvalues of the operator $E_t := \begin{pmatrix} 1 & t \\ 1 & 1 \end{pmatrix}$ are $\lambda_1(t) = 1 + \sqrt{t}$ and $\lambda_1(t) = 1 - \sqrt{t}$, which are not differentiable functions of t.

Preliminary steps in the proofs of Theorems A, B, C, D

Step 1. It can be shown that the vector bundles B_t are C^{∞} isomorphic to B_0 for all $t \in \Delta$ sufficiently close to 0.

Therefore, we may assume without loss of generality that all the B_t 's coincide with a fixed C^{∞} vector bundle $B \longrightarrow X$, after possibly shrinking Δ about 0.

In particular, henceforth, we place ourselves in the situation

$$E_t: L(B) \longrightarrow L(B), \qquad t \in \Delta.$$

However, the Hermitian fibre metric h_t on B depends on $t \in \Delta$ and so do $\langle , \rangle_t, \langle \langle , \rangle \rangle_t$ and $|| ||_t$, but they are mutually equivalent by uniform multiplicative constants. **Step** 2. The following technical result is key.

Theorem. Let $(E_t)_{t \in \Delta}$ be a C^{∞} family of elliptic, not necessarily self-adjoint, differential operators of even order m. Suppose that $E_t : L(B) \longrightarrow L(B)$ is bijective for all $t \in \Delta$.

If there exists a constant c > 0 independent of $t \in \Delta$ such that $||E_t\psi||_0 \ge c ||\psi||_0$ for all $\psi \in L(B)$, the inverse operator E_t^{-1} varies in a C^{∞} way with $t \in \Delta$.

The key point: the uniformity of the constant c.

A constant depending on t with this property always exists thanks to E_t being elliptic and to X being compact, as follows from the *a priori estimate*. **Key ingredient in the proof of the above theorem**: the following **a priori estimate** w.r.t. **Sobolev norms** in families of *elliptic* operators.

Theorem. Let $(E_t)_{t\in\Delta}$ be a C^{∞} family of elliptic linear differential operators $E_t : L(B) \longrightarrow L(B)$ of even order m. Then, for every $k \in \mathbb{N}$, there exists a constant $c_k > 0$ independent of $t \in \Delta$ such that the following uniform a priori estimate holds:

$$||\psi||_{k+m}^2 \le c_k \left(||E_t\psi||_k^2 + ||\psi||_0^2\right)$$
(1)
for every $\psi \in L(B)$ and every $t \in \Delta$.

Step 3. Henceforth, we shall assume that each operator E_t is **self-adjoint** (and, of course, also **elliptic**).

The main technique for the proofs of Theorems A, B, C, D consists in considering, for every $\zeta \in \mathbb{C}$, the elliptic differential operator

$$E_t(\zeta) := E_t - \zeta : L(B) \longrightarrow L(B), \qquad t \in \Delta,$$

to which the following simple but critical observation and several of the above preliminary results will be applied.

Observation. If $\zeta \notin Spec(E_t) := \{\lambda_1(t), \lambda_2(t), \dots\}$, then $E_t(\zeta) : L(B) \longrightarrow L(B)$

is bijective.

The key technical result: the hypothesis of an earlier theorem is **uniformly** satisfied by the operators $E_t(\zeta) : L(B) \longrightarrow L(B)$ when $t \in \Delta$ and $\zeta \notin \text{Spec}(E_t)$ vary very little.

Lemma. Let $t_0 \in \Delta$ and let $\zeta_0 \in \mathbb{C} \setminus Spec(E_{t_0})$. Then, there exist constants $\delta, c > 0$ such that, for all $t \in \Delta$ with $|t - t_0| < \delta$ and all $\zeta \in \mathbb{C}$ with $|\zeta - \zeta_0| < \delta$, the following inequality holds:

 $||E_t(\zeta)\psi||_0 \ge c ||\psi||_0$

for all $\psi \in L(B)$.

Step 4. The next goal is to express the **spectral projection operators** by a **Cauchy integral formula**.

Let

$$W := \left\{ (t, \, \zeta) \in \Delta \times \mathbb{C} \, \mid \, \zeta \notin \operatorname{Spec} E_t \right\} \subset \Delta \times \mathbb{C}.$$

An earlier result implies that W is **open** in $\Delta \times \mathbb{C}$ (because we have seen that ker $E_t(\zeta) = \{0\}$, which amounts to $\zeta \notin \text{Spec } E_t$).

Meanwhile, $E_t(\zeta) : L(B) \longrightarrow L(B)$ is *bijective* for all $(t, \zeta) \in W$.

Let

$$G_t(\zeta) := E_t(\zeta)^{-1} : L(B) \longrightarrow L(B), \quad (t, \, \zeta) \in W,$$

be its inverse. From earlier results we get the following crucial piece of information which is the culmination of the above technical work.

Conclusion. $G_t(\zeta)$ varies in a C^{∞} way with $(t, \zeta) \in W$.

Now, fix an arbitrary $t_0 \in \Delta$ and pick a **Jordan curve** C (i.e. a closed simple curve C in the complex plane) such that

$$C \cap \operatorname{Spec} E_{t_0} = \emptyset.$$
(2)

Such a curve exists because Spec $E_{t_0} \subset \mathbb{R}$ is discrete. As is well known, C divides the plane \mathbb{C} into two disjoint regions: the *interior* of C, denoted by int(C), and the *exterior* of C, denoted by ext(C).

Property (2) means that $\{t_0\} \times C \subset W$. Since W is open in $\Delta \times C$, there exists $\delta > 0$ such that $[t_0 - \delta, t_0 + \delta] \times C \subset W$. For any $t \in (t_0 - \delta, t_0 + \delta)$, we put:

$$\mathbb{F}_t(C) := \bigoplus_{\lambda(t) \in \operatorname{int}(C)} \mathcal{H}_{\lambda(t)}(E_t) \subset L(B),$$

where $\mathcal{H}_{\lambda(t)}(E_t)$ is the $\lambda(t)$ -eigenspace of E_t .

Note that, by *ellipticity* of E_t and *compactness* of X, the \mathbb{C} -vector space $\mathbb{F}_t(C)$ is *finite dimensional*.

Furthermore, for any $t \in (t_0 - \delta, t_0 + \delta)$, we let $F_t(C) : L(B) \longrightarrow \mathbb{F}_t(C)$

be the $L^2_{h_t}$ -orthogonal projection onto $\mathbb{F}_t(C)$.

The following simple **Cauchy integral formula** for **orthogonal spectral projectors** will play a key role in the sequel.

Lemma. The orthogonal projector $F_t(C) : L(B) \longrightarrow \mathbb{F}_t(C)$ satisfies the following formula:

$$F_t(C) \psi = -\frac{1}{2\pi i} \int_{\zeta \in C} G_t(\zeta) \psi \, d\zeta,$$

for all $\psi \in L(B)$ and all $t \in (t_0 - \delta, t_0 + \delta)$.

Proof. Let
$$\psi = \sum_{h=1}^{+\infty} a_h e_h(t) \in L(B)$$
. Since
 $E_t(\zeta) \psi = \sum_{h=1}^{+\infty} (\lambda_h(t) - \zeta) a_h e_h(t)$
and $G_t(\zeta) = E_t(\zeta)^{-1}$, we get:
 $-G_t(\zeta) \psi = \sum_{h=1}^{+\infty} \frac{a_h}{\zeta - \lambda_h(t)} e_h(t), \quad \zeta \in C.$

Therefore,

$$-\frac{1}{2\pi i} \int_{\zeta \in C} G_t(\zeta) \psi \, d\zeta = \sum_{h=1}^{+\infty} \left(\frac{1}{2\pi i} \int_{\zeta \in C} \frac{1}{\zeta - \lambda_h(t)} \, d\zeta \right) a_h e_h(t)$$
$$= \sum_{\lambda_h(t) \in \text{int} (C)} a_h e_h(t) = F_t(C) \, \psi,$$

where the following elementary fact on the winding number of a Jordan curve around a point in the complex plane has been used:

$$\frac{1}{2\pi i} \int_{\substack{\zeta \in C \\ \zeta \in C}} \frac{1}{\zeta - \lambda_h(t)} d\zeta = 1 \text{ if } \lambda_h(t) \in \operatorname{int}(C) \text{ and}$$
$$\frac{1}{2\pi i} \int_{\substack{\zeta \in C \\ \zeta \in C}} \frac{1}{\zeta - \lambda_h(t)} d\zeta = 0 \text{ if } \lambda_h(t) \in \operatorname{ext}(C).$$

Corollary. For any $t_0 \in \Delta$ and any Jordan curve $C \subset \mathbb{C}$ s.t. $C \cap Spec E_{t_0} = \emptyset$,

the orthogonal projector $F_t(C)$ varies in a C^{∞} way with $t \in (t_0 - \delta, t_0 + \delta)$ if $\delta > 0$ is small enough.

Proof. Let $(\psi_t)_{t \in (t_0 - \delta, t_0 + \delta)}$ be a C^{∞} family of sections $\psi_t \in L(B)$. Then, by the Cauchy formula, we have

$$F_t(C)\,\psi_t = -\frac{1}{2\pi i} \int_{\zeta \in C} G_t(\zeta)\,\psi_t\,d\zeta, \quad t \in (t_0 - \delta, \, t_0 + \delta).$$
(3)

Since $G_t(\zeta)$ varies in a C^{∞} way with $(t, \zeta) \in W$ (see above) and ψ_t varies in a C^{∞} way with $t \in (t_0 - \delta, t_0 + \delta)$, we conclude that $F_t(C) \psi_t$ varies in a C^{∞} way with $t \in (t_0 - \delta, t_0 + \delta)$. The following consequence is the cornerstone of much of what follows.

Corollary. For any
$$t_0 \in \Delta$$
 and any Jordan curve $C \subset \mathbb{C}$ s.t.
 $C \cap Spec E_{t_0} = \emptyset$,

the number $\dim_{\mathbb{C}} \mathbb{F}_t(C)$ of eigenvalues, counted with multiplicities, of E_t lying in int(C) is **independent** of $t \in (t_0 - \delta, t_0 + \delta)$ if $\delta > 0$ is small enough.

Proof. Let $d := \dim_{\mathbb{C}} \mathbb{F}_{t_0}(C)$ and let $\{e_1, \ldots, e_d\}$ be a basis of $\mathbb{F}_{t_0}(C)$. There are two inequalities to prove.

• The inequality $\dim_{\mathbb{C}} \mathbb{F}_t(C) \ge \dim_{\mathbb{C}} \mathbb{F}_{t_0}(C)$ for all $t \in (t_0 - \delta, t_0 + \delta)$ (if $\delta > 0$ is small enough) is immediate to prove. Indeed, since $F_t(C) : L(B) \longrightarrow \mathbb{F}_t(C)$ varies in a C^{∞} way with $t \in (t_0 - \delta, t_0 + \delta)$ (see above), $F_t(C) e_j$ varies in a C^{∞} way with $t \in (t_0 - \delta, t_0 + \delta)$, for every $j \in \{1, \ldots, d\}$. Meanwhile, the property of linear independence is stable under small continuous deformations.

Therefore, since the $e_j = F_{t_0}(C) e_j$, with $j \in \{1, \ldots, d\}$, are linearly independent and since the $F_t(C) e_j$ vary continuously (even in a C^{∞} way) with t, the $F_t(C) e_j$, with $j \in \{1, \ldots, d\}$, remain linearly independent elements of $\mathbb{F}_t(C)$ for all t sufficiently close to t_0 . Thus, $\dim_{\mathbb{C}} \mathbb{F}_t(C) \geq d$ for all t close enough to t_0 .

• The reverse inequality $\dim_{\mathbb{C}} \mathbb{F}_t(C) \leq \dim_{\mathbb{C}} \mathbb{F}_{t_0}(C)$ for all $t \in (t_0 - \delta, t_0 + \delta)$ (if $\delta > 0$ is small enough) can be proved by contradiction.

The proof uses the *Sobolev inequality* and elliptic estimates.

Proof of Theorem B. Recall that we set $\mathbb{F}_t := \ker E_t$ for all $t \in \Delta$. Fix $t_0 \in \Delta$. We have to prove that

 $\exists \delta > 0$ such that $\dim \mathbb{F}_t \leq \dim \mathbb{F}_{t_0} \quad \forall t \in (t_0 - \delta, t_0 + \delta).$

For any $\varepsilon > 0$, let $C_{\varepsilon} := C(0, \varepsilon) \subset \mathbb{C}$ be the circle of radius ε centred at the origin in the complex plane. Since Spec E_{t_0} is discrete, $\mathbb{F}_{t_0} = \mathbb{F}_{t_0}(C_{\varepsilon})$ (i.e. 0 is the only eigenvalue of E_{t_0} lying in int (C_{ε})) if ε is small enough.

The above Corollary applied to C_{ε} yields:

 $\dim \mathbb{F}_t(C_{\varepsilon}) = \dim \mathbb{F}_{t_0}(C_{\varepsilon}), \qquad t \in (t_0 - \delta, t_0 + \delta),$

if $\delta > 0$ is small enough. Since $\dim \mathbb{F}_{t_0}(C_{\varepsilon}) = \dim \ker E_{t_0}$ and since $\mathbb{F}_t = \ker E_t \subset \mathbb{F}_t(C_{\varepsilon})$ for all t, we infer that

$$\dim \mathbb{F}_t \le \dim \mathbb{F}_t(C_{\varepsilon}) = \dim \mathbb{F}_{t_0}(C_{\varepsilon}) = \dim \mathbb{F}_{t_0} \quad \forall t \in (t_0 - \delta, t_0 + \delta).$$

(II) Deformation openness results

Two points of view are possible.

Definition. (i) A given property (P) of a compact complex manifold is said to be **open** under holomorphic deformations if for every holomorphic family of compact complex manifolds $(X_t)_{t\in B}$ and for every $t_0 \in B$, the following implication holds:

 X_{t_0} has property $(P) \implies X_t$ has property (P) for all $t \in B$ sufficiently close to t_0 . (ii) A given property (P) of a compact complex manifold is said to be **closed** under holomorphic deformations if for every holomorphic family of compact complex manifolds $(X_t)_{t\in B}$ and for every $t_0 \in B$, the following implication holds:

 X_t has property (P) for all $t \in B \setminus \{t_0\} \implies X_{t_0}$ has property (P).

Theorem. Let $\pi : \mathcal{X} \longrightarrow B$ be a holomorphic family of compact complex manifolds $X_t := \pi^{-1}(t)$, with $\dim_{\mathbb{C}} X_t = n$ for all $t \in B$. Fix an arbitrary bidegree (p, q).

(i) The functions:
$$B \ni t \longmapsto h^{p,q}(t) := \dim_{\mathbb{C}} H^{p,q}_{\bar{\partial}}(X_t, \mathbb{C}),$$

 $B \ni t \longmapsto h^{p,q}_{BC}(t) := \dim_{\mathbb{C}} H^{p,q}_{BC}(X_t, \mathbb{C}),$
 $B \ni t \longmapsto h^{p,q}_A(t) := \dim_{\mathbb{C}} H^{p,q}_A(X_t, \mathbb{C}),$

are upper-semicontinuous.

(ii) If the Hodge number $h^{p, q}(t)$ is independent of $t \in B$, then the map

$$B \ni t \longmapsto H^{p, q}_{\bar{\partial}}(X_t, \mathbb{C})$$

defines a C^{∞} vector bundle on B. The analogous statement holds for $h_{BC}^{p,q}(t)$ and $h_A^{p,q}(t)$. (1) The first main consequence of the upper-semicontinuity of the Hodge numbers under deformations is the **deformation openness** of the **Frölicher degeneration property at** E_1 .

Theorem. Let $\pi : \mathcal{X} \longrightarrow B$ be a holomorphic family of compact complex manifolds $X_t := \pi^{-1}(t)$, with $t \in B$. Fix an arbitrary reference point $0 \in B$.

If the Frölicher spectral sequence of X_0 degenerates at E_1 , then, for all $t \in B$ sufficiently close to 0, we have:

(a) the Frölicher spectral sequence of X_t degenerates at E_1 ;

(b) $h^{p,q}(t) = h^{p,q}(0)$ for every bidegree (p, q).

Proof. We know that the hypothesis $E_1(X_0) = E_{\infty}(X_0)$ is equivalent to the numerical identities:

$$b_k = \sum_{p+q=k} h^{p,q}(0), \qquad k \in \{0, 1, \dots, 2n\}, \tag{4}$$

where $b_k := \dim_{\mathbb{C}} H^k_{DR}(X, \mathbb{C})$ is the k-th Betti number of the fibres.

For every $t \in B$ sufficiently close to 0, we get:

$$b_k \stackrel{(i)}{\leq} \sum_{p+q=k} h^{p,q}(t) \stackrel{(ii)}{\leq} \sum_{p+q=k} h^{p,q}(0) \stackrel{(iii)}{=} b_k, \tag{5}$$

where (i) is the dimension inequality that is valid on any manifold, (ii) is the upper-semicontinuity property of the above theorem, while (iii) features above.

Thus, inequalities (i) and (ii) must be equalities for every $t \in B$ sufficiently close to 0.

Now, (i) being an equality for every degree k is equivalent to $E_1(X_t) = E_{\infty}(X_t),$

while (ii) being an equality for every degree k is equivalent to

$$h^{p,\,q}(t) = h^{p,\,q}(0)$$

for every bidegree (p, q).

(2) The second main consequence of the upper-semicontinuity of the Hodge numbers under deformations is the **deformation openness** of the $\partial \bar{\partial}$ -property of compact complex manifolds.

Theorem. (Wu 2006, Angella-Tomassini 2013)

Let $\pi : \mathcal{X} \longrightarrow B$ be a holomorphic family of compact complex manifolds $X_t := \pi^{-1}(t)$, with $t \in B$. Fix an arbitrary reference point $0 \in B$.

If the fibre X_0 is a $\partial \overline{\partial}$ -manifold, then, for all $t \in B$ sufficiently close to 0, we have:

(a) the fibre X_t is a $\partial \bar{\partial}$ -manifold;

(b) $h_{BC}^{p,q}(t) = h_{BC}^{p,q}(0)$ and $h_A^{p,q}(t) = h_A^{p,q}(0)$ for every bidegree (p, q).

Proof. By Angella-Tomassini (2013), the $\partial \bar{\partial}$ -assumption on X_0 is equivalent to the identities:

$$\sum_{p+q=k} (h_{BC}^{p,q}(0) + h_A^{p,q}(0)) = 2b_k, \qquad k \in \{0, 1, \dots, 2n\}.$$

Meanwhile, the upper-semicontinuity properties yield:

 $h_{BC}^{p, q}(0) \ge h_{BC}^{p, q}(t)$ and $h_{A}^{p, q}(0) \ge h_{A}^{p, q}(t)$ for all bidegrees (p, q) and all $t \in B$ sufficiently close to 0.

Finally, by Angella-Tomassini (2013), we always have the inequalities:

$$\sum_{p+q=k} (h_{BC}^{p,q}(t) + h_A^{p,q}(t)) \ge 2b_k, \qquad t \in B, \quad k \in \{0, 1, \dots, 2n\}.$$

Putting together all these pieces of information, we get:

$$2b_k \stackrel{(i)}{\leq} \sum_{p+q=k} (h_{BC}^{p,\,q}(t) + h_A^{p,\,q}(t)) \stackrel{(ii)}{\leq} \sum_{p+q=k} (h_{BC}^{p,\,q}(0) + h_A^{p,\,q}(0)) = 2b_k,$$

for all $k \in \{0, 1, ..., 2n\}$ and all $t \in B$ sufficiently close to 0. Hence, both of the above inequalities must be equalities.

In particular, inequalities (i) being equalities for all $k \in \{0, 1, ..., 2n\}$ and all $t \in B$ sufficiently close to 0 amounts to X_t being a $\partial \bar{\partial}$ -manifold for all $t \in B$ sufficiently close to 0, thanks again to Angella-Tomassini (2013). This proves (a).

Meanwhile, inequalities (ii) being equalities for all bidegrees (p, q)and all $t \in B$ sufficiently close to 0 proves (b).

(3) Deformation openness of the Kähler property (Kodaira-Spencer 1960)

Let us start with a very simple but crucial observation.

Lemma. Let ω be a Hermitian metric on a compact complex manifold X. The equivalence holds:

 ω is Kähler $\iff \Delta_{BC}\omega = 0$,

where $\Delta_{BC}: C^{\infty}_{1,1}(X, \mathbb{C}) \longrightarrow C^{\infty}_{1,1}(X, \mathbb{C})$ is the Bott-Chern Laplacian induced by ω . *Proof.* We know that

$$\ker \Delta_{BC} = \ker \partial \cap \ker \overline{\partial} \cap \ker(\partial \overline{\partial})^{\star}.$$

So, one implication of the above equivalence is obvious:

if $\Delta_{BC}\omega = 0$, then $\partial \omega = 0$, which means that ω is Kähler.

Suppose now that ω is Kähler, namely $d\omega = 0$. This implies $\partial \omega = 0$ and $\overline{\partial}\omega = 0$. To prove that $(\partial\overline{\partial})^*\omega = 0$, we will use the standard formulae:

 $\star \star = (-1)^k \operatorname{Id}$ on k-forms; $\partial^{\star} = -\star \bar{\partial} \star$, $\bar{\partial}^{\star} = -\star \partial \star$ and the standard formula:

$$\star\omega = \frac{\omega^{n-1}}{(n-1)!},\tag{6}$$

where $\star = \star_{\omega}$ is the Hodge star operator induced by the Hermitain metric ω .

We get the equivalences:

$$(\partial\bar{\partial})^{\star}\omega = 0 \iff \star\partial\bar{\partial}(\star\omega) = 0 \iff \partial\bar{\partial}\frac{\omega^{n-1}}{(n-1)!} = 0,$$

where the second one uses the fact that \star is an isomorphism.

Now, the last identity holds since

$$\bar{\partial}\omega^{n-1} = (n-1)\,\omega^{n-2}\wedge\bar{\partial}\omega = 0.$$

Indeed, $\bar{\partial}\omega = 0$ by the Kähler assumption on ω .

Theorem. (Kodaira-Spencer 1960)

Let $\pi : \mathcal{X} \longrightarrow B$ be a holomorphic family of compact complex manifolds $X_t := \pi^{-1}(t)$, with $t \in B$. Fix an arbitrary reference point $0 \in B$.

(a) If the fibre X_0 is a **Kähler manifold**, then the fibre X_t is a **Kähler manifold** for all $t \in B$ sufficiently close to 0.

(b) Moreover, given any **Kähler metric** ω_0 on X_0 , there exists a small neighbourhood U of 0 in B and a C^{∞} family $(\omega_t)_{t \in U}$ of **Kähler metrics** on the respective fibres X_t whose member for t = 0 is ω_0 . *Proof.* Since (b) implies (a), we will prove (b).

Let ω_0 be a Kähler metric on X_0 . In particular, ω_0 is a smooth J_0 -type (1, 1)-form on X_0 , hence a smooth 2-form on X (the C^{∞} manifold underlying the fibres X_t for $t \in B$ close to 0.)

For every $t \in B$, let ω_t be the J_t -type (1, 1)-component of the 2-form ω_0 . Clearly, the member for t = 0 of the family of forms $(\omega_t)_{t \in B}$ is ω_0 . Moreover, the ω_t 's vary in a C^{∞} way with t because they are the J_t -type (1, 1)-components of a fixed 2-form and the J_t 's depend in a (at least) C^{∞} way on t.

Now, ω_0 is *positive definite* because it is a metric on X_0 . By continuity w.r.t. t, ω_t remains *positive definite* for all $t \in U$ if the neighbourhood U of 0 in B is small enough. Hence, ω_t is a Hermitian metric on X_t for every $t \in U$, so $(\omega_t)_{t \in U}$ is a C^{∞} family of Hermitian metrics on the respective fibres X_t , whose member for t = 0 is the original Kähler metric ω_0 .

We have to change the metrics ω_t with $t \in U \setminus \{0\}$ to make them Kähler. The above Lemma tells us that this amounts to making the ω_t 's *Bott-Chern harmonic* w.r.t. themselves (i.e. for the Bott-Chern Laplacians induced by the ω_t 's). Let us therefore consider the $L^2_{\omega_t}$ -orthogonal projectors:

$$F_t: C^{\infty}_{1,1}(X_t, \mathbb{C}) \longrightarrow \mathcal{H}^{1,1}_{\Delta_{BC}}(X_t, \mathbb{C}), \qquad t \in U,$$

onto the kernels of the Bott-Chern Laplacians $\Delta_{BC,t}$ induced by the ω_t 's in J_t -bidegree (1, 1).

The crucial piece of information that we need at this point is the non-jumping of a certain cohomology space dimension. Since X_0 is a $\partial \bar{\partial}$ -manifold (because it is even Kähler, by hypothesis), the dimension $h_{BC}^{1,1}(t)$ of $\mathcal{H}_{\Delta BC}^{1,1}(X_t, \mathbb{C})$ (= the dimension of $H_{BC}^{1,1}(X_t, \mathbb{C})$, thanks to the Hodge isomorphism) is *independent of* $t \in U$ if the neighbourhood U of 0 in B is *small enough*.

Therefore, by Theorem C, F_t varies in a C^{∞} way with $t \in U$.

Now, put

$$\widetilde{\omega}_t := \frac{1}{2} \left(F_t \omega_t + \overline{F_t \omega_t} \right), \qquad t \in U.$$

The J_t -type (1, 1)-forms $\widetilde{\omega}_t$ have the following properties:

(i) $\widetilde{\omega}_t$ is a *real* form (i.e. it equals its conjugate) for every $t \in U$; (ii) $\widetilde{\omega}_t$ varies in a C^{∞} way with $t \in U$, because F_t and ω_t do; (iii) $\widetilde{\omega}_0 = \omega_0$ because $F_0\omega_0 = \omega_0$ (recall that ω_0 is *Kähler* on X_0 and the above Lemma applies) and ω_0 is real;

(iv) $\widetilde{\omega}_t$ is *positive definite* on X_t for all $t \in U$ (shrink U about 0 if necessary), because $\widetilde{\omega}_0$ is and $\widetilde{\omega}_t$ varies (at least) continuously with $t \in U$;

(v) $\widetilde{\omega}_t \in \ker \partial_t$ for all $t \in U$, because $F_t \omega_t \in \mathcal{H}^{1,1}_{\Delta_{BC}}(X_t, \mathbb{C}) = \ker \partial_t \cap \ker \bar{\partial}_t \cap \ker (\partial_t \bar{\partial}_t)^* \subset \ker \partial_t \cap \ker \bar{\partial}_t$.

(Note that the Bott-Chern harmonic space $\mathcal{H}^{1,1}_{\Delta_{BC}}(X_t, \mathbb{C})$ in (v) is defined by the Hermitian metric ω_t , rather than $\widetilde{\omega}_t$.)

Properties (i)-(v) amount to saying that

 $(\widetilde{\omega}_t)_{t\in U}$

is a C^{∞} family of *Kähler metrics* on the respective fibres X_t , whose member for t = 0 is the originally given Kähler metric ω_0 on X_0 . \Box