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GEOMETRIC PROPERTIES OF COMPACT COM-
PLEX MANIFOLDS UNDER DEFORMATIONS OF COM-
PLEX STRUCTURES

(I) Smooth families of operators

We now introduce the analogues of a family of manifolds for vector
bundles, sections thereof and differential operators.

Definition. Let X be a compact oriented differentiable manifold
X andlet A C RY be a small open subset, for some integer N > 1.



(1) We say that (Bt)iea is a C°° family of C°° complex vec-
tor bundles By — X over X (or that By varies C*° witht € A)

if there exists a C°° complex vector bundle m : B — X X A such
that

By = 7T_1(X x {t}) = B|X><{t}7 t e A.

(11) Let (By)ien be a C° family of C°° complex vector bundles
By — X as in (i).
(a) For every t € A, let ¢y € L(Bt) = C®(X, By) be a
smooth global section of By.
We say that (Yt)ien is a C°° family of sections (or that v

varies C°° with t € A) if there exists a C™° section p € C°°(X X
A, B) of B such that

wt:ip(x{t}v t e A.
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(b) For everyt € A, let Ey : L(Bt) — L(By) be a linear
operator on Bt.
We say that (Et)ien ts a C°° family of linear operators (or
that Ey varies C°° with t € A) if for every C°° family (V¢)ien
of sections Wy € L(By), the family (Eybt)ien is a C° family of

sections.

(c) For everyt € A, let hy be a Hermitian metric on By in
the sense that hy = (, )t = ((, )t.2)rex 1S a family of positive
definite inner products on the fibres (B¢)y of By that vary in a C™
way with the point x € X.

We say that (hi)ien is a C°° family of (fibre) metrics (or
that hy varies C'° with t € A) if there exists a Hermitian metric
h on the vector bundle B such that

ht:h\Xx{t}v t e A.
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The Kodaira-Spencer fundamental theorems (1960) on
families of elliptic operators

Let:

o (By, hi)iepn be a C°° family of Hermitian C°° complex vector
bundles on a compact Riemannian manifold (X, g);

o (Et, hi)ien be a C° family of self-adjoint elliptic linear dif-
ferential operators Ey : L(By) — L(B¢) of even order m;

o (A\,(t))phen~ be, for every fixredt € A, the eigenvalues of Fy and
let (ep,(t))nen* be the corresponding eigensections ep(t) € L(By)
such that:

- Epep(t) = Ap(t) ep(t), heN', teA;
- (ep(t)) henx 1S an orthonormal basis of L(By), te& A;
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: )\1(75) < ... < )\h(t) < ... and lim )\h(t) = +00.

h——+00

Then, the following statements hold.

Theorem A For every h € N*, the function A > t — Ap(t) s
continuous.
Theorem B The function

A Dt dim ker By

1$ upper-semicontinuous.

Theorem C If dim ker E; isindependent of t € A, then (F)ien
is ¢ C'° family of linear operators, where F} : L(By) — ker Ey
is the orthogonal projection w.r.t. the L? inner product ({ , ))s,
for every t € A.



Theorem D If dim ker Ey isindependent of t € A, then (G¢)ien
is a C°° family of linear operators, where Gy = E, L is the
Green operator of Ey for every t € A.

Before moving on to the proofs, let us point out the

Observation. Having fixed an arbitrary h € N*, the function
A 3t~ )\ (t) need not be differentiable.

Example. Notice that the eigenvalues of the operator F; := (1 i)

are A\(t) = 1 ++/t and A\(t) = 1 — v/t, which are not differentiable
functions of t. []



Preliminary steps in the proofs of Theorems A, B, C, D

Step 1. It can be shown that the vector bundles By are C'°° isomor-
phic to By for all t € A sufficiently close to 0.

Therefore, we may assume without loss of generality that all the
By’s coincide with a fixed C'°° vector bundle B — X, after possibly
shrinking A about 0.

In particular, henceforth, we place ourselves in the situation
E;: L(B) — L(B), t e A.

However, the Hermitian fibre metric hy on B depends on ¢t € A and
so do (, )¢, ({, )¢t and || ||+, but they are mutually equivalent by
uniform multiplicative constants.



Step 2. The following technical result is key:.

Theorem. Let (Fyi)iep be a C°° family of elliptic, not necessar-

ily self-adjoint, differential operators of even order m. Suppose
that Ey - L(B) — L(B) s bijective for allt € A.

If there exists a constant ¢ > 0 independent of t € A such that

|Ewllo = cllllo for all ¢ € L(B),
the inverse operator L, L varies in a O way with t € A.

The key point: the uniformity of the constant c.

A constant depending on ¢ with this property always exists thanks
to Fy being elliptic and to X being compact, as follows from the a
priorTt estimate.



Key ingredient in the proof of the above theorem: the
following a priori estimate w.r.t. Sobolev norms in families of

elliptic operators.

Theorem. Let (Et)icn be a C°° family of elliptic linear differ-
ential operators Fy : L(B) — L(B) of even order m.

Then, for every k € N, there exists a constant ¢, > 0 inde-
pendent of ¢ € A such that the following uniform a priori

estimate holds:

1 < ek (1B + 1117) (1)
for every ¢ € L(B) and every t € A.
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Step 3. Henceforth, we shall assume that each operator Ey is self-
adjoint (and, of course, also elliptic).

The main technique for the proofs of Theorems A, B, C, D consists
in considering, for every ¢ € C, the elliptic differential operator

By(¢) = By — C: L(B) — L(B), te A,

to which the following simple but critical observation and several of
the above preliminary results will be applied.

Observation. If ( & Spec(FEy) == {)\(t), \a(t),...}, then
Ey(¢) : L(B) — L(B)
1s bijective.
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The key technical result: the hypothesis of an earlier theorem is
uniformly satisfied by the operators F¢(() : L(B) — L(B) when
t € A and ¢ ¢ Spec (Ey) vary very little.

Lemma. Let t) € A and let ¢y € C\ Spec(Ey,). Then, there exist
constants 6,c > 0 such that, for allt € A with |t —ty| < and all
¢ € C with | — (y| < 9, the following inequality holds:

|EQ) ¥llo = el¥lfo
for ally € L(B).
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Step 4. The next goal is to express the spectral projection op-
erators by a Cauchy integral formula.

Let
W::{(t,C)EAX(C\C%SpecEt}CAxC.

An earlier result implies that W is open in A x C (because we have
seen that ker E¢(C) = {0}, which amounts to ¢ ¢ Spec E}).
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Meanwhile, F¢(C) : L(B) — L(B) is bijective for all (¢, {) € W.

Let
G(¢) = Ey(¢)" ' : L(B) — L(B), (t,{) €W,

be its inverse. From earlier results we get the following crucial piece
of information which is the culmination of the above technical work.

Conclusion. G¢(¢) varies in a C°° way with (t, () € W.
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Now, fix an arbitrary tg € A and pick a Jordan curve C (ie. a
closed simple curve C' in the complex plane) such that

C N Spec Ey, = 0. (2)

Such a curve exists because Spec Fy, C R is discrete. As is well known,
(' divides the plane C into two disjoint regions: the interior of C', de-
noted by int(C'), and the exterior of C, denoted by ext(C').

Property (2) means that {tg} x C' C W. Since W is open in A x C,
there exists 6 > 0 such that [tg — 9, tg + 6] x C C W. For any
t € (tg— 0, tg+ 6), we put:

F(C):= &  Hyp(Er) C L(B),
A(t)eint(C)

where H ;)(E}¢) is the A(¢)-cigenspace of L.
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Note that, by ellipticity of Ey and compactness of X, the C-vector
space F¢(C) is finite dimensional.

Furthermore, for any t € (tg — 9, tg+ ), we let
Fi(C) - L(B) — Fy(C)
be the L%t—orthqqonal projection onto F¢(C).
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The following simple Cauchy integral formula for orthogonal
spectral projectors will play a key role in the sequel.

Lemma. The orthogonal projector Fy(C') . L(B) — F¢(C) satis-
fies the following formula:

RV =5 [ Gl

(el
for all vy € L(B) and all t € (tg — 9, tg+ 6).
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+00
Proof. Let ¢p = Y~ ajep(t) € L(B). Since

=1
+00

Ef(Q)v =) (Ap(t) = O) apep(t)
=1

Therefore,



i [ v =3 (g7 [ o) ue

ceC h=1 ceC

= Z aheh(?f) — Ft(C) v,

)\h(t)Eth (C)

where the following elementary fact on the winding number of a Jor-
dan curve around a point in the complex plane has been used:

o / ¢ — Ah( )dg =1if A\y(f) € int (C) and
CeC

2 /C An(t)

(el

d( =0 if Xp(t) € ext (C). ]
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Corollary. For any tg € A and any Jordan curve C' C C s.t.
C N Spec By, = 0,

the orthogonal projector Fy(C') varies in a C™ way with t € (ty —
d, to+0) if 6 > 0 is small enough.

Proof. Let ({t)e(1y—s, ty45) be a € family of sections ¢y € L(B).
Then, by the Cauchy formula, we have

FA(C) by = —— / GO d(, t€(tg—0b, t+6). (3)
ceC

Since G¢(() varies in a C'°° way with (¢, () € W (see above) and v
varies in a C'™° way with t € (tg—9, tg+6), we conclude that F3(C') 1y
varies in a C'°° way with t € (tg — 9, tg+ 9). ]
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The following consequence is the cornerstone of much of what follows.

Corollary. For any tg € A and any Jordan curve C' C C s.t.
C N Spec By, = 0,

the number dimclF¢(C') of eigenvalues, counted with multiplicities,
of Et lying in int(C) is independent of t € (tg — 9, tg + 9) if
0 > 0 2s small enough.

Proof. Let d := dim¢F;,(C) and let {eq, ..., eq} be a basis of Fy (C').

There are two inequalities to prove.

o The inequality dimcF¢(C') > dimgF (C) for all t € (t9—9, to+9)
(if 6 > 0 is small enough) is immediate to prove.
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Indeed, since F¢(C) : L(B) — F(C) varies in a C°° way with
t € (tg — 9, to +9) (see above), F(C)e; varies in a C°° way with
t € (tg—9, tg+06), forevery 7 € {1,...,d}. Meanwhile, the property
of linear independence is stable under small continuous deformations.

Therefore, since the e; = F3,(C)e;, with j € {1,...,d}, are lin-
carly independent and since the F}(C) e; vary continuously (even in a
C° way) with ¢, the F;(C')e;, with j € {1,...,d}, remain linearly
independent elements of F(C') for all ¢ sufficiently close to ty. Thus,
dimgF(C) > d for all ¢ close enough to .

e The reverse inequality dimgF;(C') < dimglFy,(C) for all ¢ € (t) —
9, to+96) (if 6 > 0 is small enough) can be proved by contradiction.

The proot uses the Sobolev inequality and elliptic estimates. []
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Proof of Theorem B. Recall that we set 4 := ker Ey for all t € A.
Fix tg € A. We have to prove that

36 >0 suchthat dimF; <dimFy, Vte (tg—9, tog+9).

For any ¢ > 0, let Cz := C(0, ¢) C C be the circle of radius ¢
centred at the origin in the complex plane. Since Spec £y, 1s discrete,
Ft, = Ft,(Cs) (i-e. 0 is the only eigenvalue of E, lying in int (Cy)) if
e is small enough.

The above Corollary applied to C: yields:
dimlF(C:) = dimFt()(Cg), t e (tg— 0, tg+90),

if 6 > 0 is small enough. Since dimlF; (Cz) = dimker £, and since
F; = ker By C F¢(C¢) for all ¢, we infer that

dimIF; < dimF¢(C:) = dimFy (Ce) = dimFy, Vt € (tg — 0, t9+ ).
[]
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(IT) Deformation openness results
Two points of view are possible.
Definition. (¢) A given property (P) of a compact complex man-

ifold is said to be open under holomorphic deformations if for

every holomorphic family of compact complex manifolds (X¢)iep
and for every tg € B, the following implication holds:

Xty has property (P) == X has property (P) for allt € B
sufficiently close to t.
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(23) A given property (P) of a compact complex manifold is said to
be closed under holomorphic deformations if for every holomor-
phic family of compact complex manifolds (X¢)icp and for every
to € B, the following implication holds:

Xt has property (P) for allt € B\ {to} == Xy, has property
(P).
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Theorem. Let m : X — B be a holomorphic family of compact
complex manifolds Xy = w—1(t), with dimcX; =n for allt € B.
Fix an arbitrary bidegree (p, q).

(i) The functions: B 5t — hP4(t) .= dim@Hg’q(Xt, C),
B 3t hpL(t) = dimcHgA(Xt, C),
B >t W Ut) = dimcHY (X4, C),

are upper-semicontinuous.

(11) If the Hodge number hP 1(t) is independent of t € B, then
the map

B>t H5Y(Xy, C)

defines a C*° vector bundle on B.
The analogous statement holds for hB’(qj(t) and hﬁ’q(t).
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(1) The first main consequence of the upper-semicontinuity of the
Hodge numbers under deformations is the deformation openness
of the Frolicher degeneration property at F.

Theorem. Let m : X — B be a holomorphic family of compact
complex manifolds Xy = 7w~ (t), with t € B. Fiz an arbitrary
reference point 0 € B.

If the Frolicher spectral sequence of X degenerates at
Eq, then, for all t € B sufficiently close to 0, we have:

(a) the Frolicher spectral sequence of X; degenerates at
Ly

(b) hP-4(t) = hP9(0) for every bidegree (p, q).
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Proof. We know that the hypothesis F1(X() = Foo(Xp) is equivalent
to the numerical identities:

> P 9(0), ke{0,1,...,2n}, (4)

pt+q=Fk
where by, := dimg H éﬂ) (X, C) is the k-th Betti number of the fibres.

For every t € B sufficiently close to 0, we get:

(4)
b < Z WP 4 < Z P4 (i11) i)y (5)
ptq=k ptq=k
where (i) is the dimension inequality that is valid on any manifold, (ii)

is the upper-semicontinuity property of the above theorem, while (iii)
features above.
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Thus, inequalities (i) and (ii) must be equalities for every t € B
sufficiently close to 0.

Now, (i) being an equality for every degree k is equivalent to
E1(Xt) = Eoo(Xy),
while (ii) being an equality for every degree k is equivalent to
hP4(t) = hP1(0)
for every bidegree (p, q). []
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(2) The second main consequence of the upper-semicontinuity of the
Hodge numbers under deformations is the deformation openness
of the do0-property of compact complex manifolds.

Theorem. (Wu 2006, Angella-Tomassini 2013)

Let m : X — B be a holomorphic family of compact complex
manifolds Xy = n~1(t), with t € B. Fiz an arbitrary reference
point 0 € B.

If the fibre X is a O0-manifold, then, for allt € B sufficiently

close to 0, we have:
(a) the fibre Xy is a O0-manifold;

( (b)) hB’g(t) = h%’g(()) and hﬁ’q(t) = hi’q(O) for every bidegree
P, 4q)-
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Proof. By Angella-Tomassini (2013), the dd-assumption on X is
equivalent to the identities:

> (AA(0) + BB 1(0)) = 2B, ke{0,1,...,2n}.
ptq=k

Meanwhile, the upper-semicontinuity properties yield:

W d(0) > RisA(¢)  and BT 9(0) > RY (1)
for all bidegrees (p, q) and all t € B sufficiently close to 0.

Finally, by Angella-Tomassini (2013), we always have the inequalities:
> (R + A () > 2by, te B, ke{0,1,...,2n}.

pHq=Fk
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Putting together all these pieces of information, we get:

(7) (41)
b, < Y (WA +REA) < Y (RBA0) + R N0)) = 2b,

p+q=Fk p+q=Fk

for all k € {0,1,...,2n} and all t € B sufficiently close to 0. Hence,
both of the above inequalities must be equalities.

[n particular, inequalities (i) being equalities forall k € {0, 1,...,2n}
and all ¢ € B sufficiently close to 0 amounts to X; being a 00-manifold
for all ¢ € B sufficiently close to 0, thanks again to Angella-Tomassini

(2013). This proves (a).

Meanwhile, inequalities (ii) being equalities for all bidegrees (p, q)
and all ¢ € B sufficiently close to 0 proves (b). ]
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(3) Deformation openness of the Kahler property
(Kodaira-Spencer 1960)

Let us start with a very simple but crucial observation.

Lemma.Let w be a Hermitian metric on a compact complex man-
ifold X . The equivalence holds:

w 15 Kahler <—= Apgcw =0,

where Apc : C79(X, C) — C7% (X, C) is the Bott-Chern Lapla-
cian induced by w.
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Proof. We know that
ker Agc = ker @ N ker O N ker(99)”.

So, one implication of the above equivalence is obvious:

if Apow = 0, then dw = 0, which means that w is Kahler.

Suppose now that w is Kahler, namely dw = 0. This implies dw = 0
and dw = 0. To prove that (00)*w = 0, we will use the standard

formulae:

wox = (—1)"Id  on k-forms; 0" = — % O, 0" = — % O%

and the standard formula:

w= ©)
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where x = %, is the Hodge star operator induced by the Hermitain
metric w.

We get the equivalences:

wn—l

(n —1)!
where the second one uses the fact that x is an isomorphism.

(00)'w =0 <= *x00(xw) =0 <= 00 =0,

Now, the last identity holds since
At =(n— 1w ? A dw = 0.
Indeed, dw = 0 by the Kahler assumption on w. []
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Theorem. (Kodaira-Spencer 1960)

Let m : X — B be a holomorphic family of compact complex
manifolds X; .= 7~ Y(t), with t € B. Fiz an arbitrary reference
point 0 € B.

(a) If the fibre X is a Kahler manifold, then the fibre X; is
a Kahler manifold for all t € B sufficiently close to 0.

(b) Moreover, given any Kahler metric wy on Xy, there exists
a small neighbourhood U of 0 in B and a C*° family (wt)icry of
Kahler metrics on the respective fibres Xy whose member for
t =0 15 wyp.
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Proof. Since (b) implies (a), we will prove (b).

Let wg be a Kahler metric on X. In particular, wpy is a smooth
Jo-type (1, 1)-form on X, hence a smooth 2-form on X (the C°°
manifold underlying the fibres X; for ¢t € B close to 0.)

For every t € B, let w; be the Ji-type (1, 1)-component of the 2-form
wp. Clearly, the member for ¢ = 0 of the family of forms (w¢)iep is
wp. Moreover, the wy’s vary in a C'°° way with ¢ because they are the
Ji-type (1, 1)-components of a fixed 2-form and the J¢'s depend in a
(at least) C'°° way on t.
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Now, wq is positive definite because it is a metric on Xqy. By con-
tinuity w.r.t. ¢, wy remains positive definite for all t € U it the
neighbourhood U of 0 in B is small enough. Hence, w; is a Hermitian
metric on Xy for every t € U, so (wy)iepy is a C°° family of Hermitian
metrics on the respective fibres X3, whose member for ¢ = 0 is the
original Kahler metric wy.

We have to change the metrics wy with ¢ € U \ {0} to make them
Kahler. The above Lemma tells us that this amounts to making the
wt's Bott-Chern harmonic w.r.t. themselves (i.e. for the Bott-Chern
Laplacians induced by the wy’s).
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Let us therefore consider the L?dt—orthogonal projectors:
Fy: CP%(Xt, €) — My | (X, ©), tel,

onto the kernels of the Bott-Chern Laplacians Ape 4 induced by the
wt's in Je-bidegree (1, 1).

The crucial piece of information that we need at this point is the
non-jumping of a certain cohomology space dimension. Since Xy is a
0d0-manifold (because it is even Kéhler, by hypothesis), the dimension

1,1 1,1 : : 1,1
hpo(t) of HA’BC(Xt, C) (= the dimension of H 5~(Xy, C), thanks to
the Hodge isomorphism) is independent of t € U if the neighbourhood
U of 0in B is small enough.
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Therefore, by Theorem C, F} varies in a C°° way witht € U.

Now, put

1 _
Wt = 5 (Fywr + Frwy), teU.
The Ji-type (1, 1)-forms wy have the following properties:

(i) wy is a real form (i.e. it equals its conjugate) for every t € U;
(ii) wy varies in a C'°° way with t € U, because F} and wy do;

(iii) wg = wq because Fywy = wq (recall that wq is Kdhler on X
and the above Lemma applies) and wy is real;

(iv) wy is positive definite on Xy for all t € U (shrink U about 0
if necessary), because w is and wy varies (at least) continuously with
t e U;
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(v) wr € kerdy for all t € U, because Fywy € %X;O(th C) =
ker O N ker O N ker(0;04)* C ker 9 N ker O;.

(Note that the Bott-Chern harmonic space HX;C(Xt, C) in (v) is
defined by the Hermitian metric wy, rather than wy.)

Properties (i)-(v) amount to saying that

(Wt )rer

is a C'°° family of Kahler metrics on the respective fibres Xy, whose
member for ¢ = 0 is the originally given Kahler metric wg on X, [
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