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GEOMETRIC PROPERTIES OF COMPACT COM-
PLEX MANIFOLDS UNDER DEFORMATIONS OF COM-
PLEX STRUCTURES

(I) Smooth families of operators

We now introduce the analogues of a family of manifolds for vector
bundles, sections thereof and differential operators.

Definition. Let X be a compact oriented differentiable manifold
X and let ∆ ⊂ RN be a small open subset, for some integer N ≥ 1.
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(i) We say that (Bt)t∈∆ is a C∞ family of C∞ complex vec-
tor bundles Bt −→ X over X (or that Bt varies C∞ with t ∈ ∆)
if there exists a C∞ complex vector bundle π : B −→ X ×∆ such
that

Bt = π−1(X × {t}) = B|X×{t}, t ∈ ∆.

(ii) Let (Bt)t∈∆ be a C∞ family of C∞ complex vector bundles
Bt −→ X as in (i).

(a) For every t ∈ ∆, let ψt ∈ L(Bt) = C∞(X, Bt) be a
smooth global section of Bt.

We say that (ψt)t∈∆ is a C∞ family of sections (or that ψt
varies C∞ with t ∈ ∆) if there exists a C∞ section ψ̃ ∈ C∞(X×
∆, B) of B such that

ψt = ψ̃|X×{t}, t ∈ ∆.
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(b) For every t ∈ ∆, let Et : L(Bt) −→ L(Bt) be a linear
operator on Bt.

We say that (Et)t∈∆ is a C∞ family of linear operators (or
that Et varies C∞ with t ∈ ∆) if for every C∞ family (ψt)t∈∆
of sections ψt ∈ L(Bt), the family (Etψt)t∈∆ is a C∞ family of
sections.

(c) For every t ∈ ∆, let ht be a Hermitian metric on Bt in
the sense that ht = 〈 , 〉t = (〈 , 〉t, x)x∈X is a family of positive
definite inner products on the fibres (Bt)x of Bt that vary in a C∞

way with the point x ∈ X.
We say that (ht)t∈∆ is a C∞ family of (fibre) metrics (or

that ht varies C∞ with t ∈ ∆) if there exists a Hermitian metric
h on the vector bundle B such that

ht = h|X×{t}, t ∈ ∆.
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The Kodaira-Spencer fundamental theorems (1960) on
families of elliptic operators

Let:

• (Bt, ht)t∈∆ be a C∞ family of Hermitian C∞ complex vector
bundles on a compact Riemannian manifold (X, g);

• (Et, ht)t∈∆ be a C∞ family of self-adjoint elliptic linear dif-
ferential operators Et : L(Bt) −→ L(Bt) of even order m;

• (λh(t))h∈N? be, for every fixed t ∈ ∆, the eigenvalues of Et and
let (eh(t))h∈N? be the corresponding eigensections eh(t) ∈ L(Bt)
such that:

· Et eh(t) = λh(t) eh(t), h ∈ N?, t ∈ ∆;

· (eh(t))h∈N? is an orthonormal basis of L(Bt), t ∈ ∆;
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· λ1(t) ≤ · · · ≤ λh(t) ≤ . . . and lim
h→+∞

λh(t) = +∞.

Then, the following statements hold.

Theorem A For every h ∈ N?, the function ∆ 3 t 7→ λh(t) is
continuous.

Theorem B The function

∆ 3 t 7→ dim kerEt

is upper-semicontinuous.

Theorem C If dim kerEt is independent of t ∈ ∆, then (Ft)t∈∆
is a C∞ family of linear operators, where Ft : L(Bt) −→ kerEt
is the orthogonal projection w.r.t. the L2 inner product 〈〈 , 〉〉t,
for every t ∈ ∆.
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Theorem D If dim kerEt is independent of t ∈ ∆, then (Gt)t∈∆
is a C∞ family of linear operators, where Gt := E−1

t is the
Green operator of Et for every t ∈ ∆.

Before moving on to the proofs, let us point out the

Observation. Having fixed an arbitrary h ∈ N?, the function
∆ 3 t 7→ λh(t) need not be differentiable.

Example. Notice that the eigenvalues of the operator Et :=

(
1 t
1 1

)
are λ1(t) = 1 +

√
t and λ1(t) = 1 −

√
t, which are not differentiable

functions of t. �
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Preliminary steps in the proofs of Theorems A, B, C, D

Step 1. It can be shown that the vector bundles Bt are C∞ isomor-
phic to B0 for all t ∈ ∆ sufficiently close to 0.

Therefore, we may assume without loss of generality that all the
Bt’s coincide with a fixed C∞ vector bundle B −→ X , after possibly
shrinking ∆ about 0.

In particular, henceforth, we place ourselves in the situation

Et : L(B) −→ L(B), t ∈ ∆.

However, the Hermitian fibre metric ht on B depends on t ∈ ∆ and
so do 〈 , 〉t, 〈〈 , 〉〉t and || ||t, but they are mutually equivalent by
uniform multiplicative constants.
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Step 2. The following technical result is key.

Theorem. Let (Et)t∈∆ be a C∞ family of elliptic, not necessar-
ily self-adjoint, differential operators of even order m. Suppose
that Et : L(B) −→ L(B) is bijective for all t ∈ ∆.

If there exists a constant c > 0 independent of t ∈ ∆ such that

||Etψ||0 ≥ c ||ψ||0 for all ψ ∈ L(B),

the inverse operator E−1
t varies in a C∞ way with t ∈ ∆.

The key point: the uniformity of the constant c.

A constant depending on t with this property always exists thanks
to Et being elliptic and to X being compact, as follows from the a
priori estimate.
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Key ingredient in the proof of the above theorem: the
following a priori estimate w.r.t. Sobolev norms in families of
elliptic operators.

Theorem. Let (Et)t∈∆ be a C∞ family of elliptic linear differ-
ential operators Et : L(B) −→ L(B) of even order m.

Then, for every k ∈ N, there exists a constant ck > 0 inde-
pendent of t ∈ ∆ such that the following uniform a priori
estimate holds:

||ψ||2k+m ≤ ck (||Etψ||2k + ||ψ||20) (1)

for every ψ ∈ L(B) and every t ∈ ∆.
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Step 3. Henceforth, we shall assume that each operator Et is self-
adjoint (and, of course, also elliptic).

The main technique for the proofs of Theorems A, B, C, D consists
in considering, for every ζ ∈ C, the elliptic differential operator

Et(ζ) := Et − ζ : L(B) −→ L(B), t ∈ ∆,

to which the following simple but critical observation and several of
the above preliminary results will be applied.

Observation. If ζ /∈ Spec (Et) := {λ1(t), λ2(t), . . . }, then

Et(ζ) : L(B) −→ L(B)

is bijective.
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The key technical result: the hypothesis of an earlier theorem is
uniformly satisfied by the operators Et(ζ) : L(B) −→ L(B) when
t ∈ ∆ and ζ /∈ Spec (Et) vary very little.

Lemma. Let t0 ∈ ∆ and let ζ0 ∈ C\Spec (Et0). Then, there exist
constants δ, c > 0 such that, for all t ∈ ∆ with |t− t0| < δ and all
ζ ∈ C with |ζ − ζ0| < δ, the following inequality holds:

||Et(ζ)ψ||0 ≥ c ||ψ||0
for all ψ ∈ L(B).
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Step 4. The next goal is to express the spectral projection op-
erators by a Cauchy integral formula.

Let

W :=

{
(t, ζ) ∈ ∆× C | ζ /∈ SpecEt

}
⊂ ∆× C.

An earlier result implies that W is open in ∆× C (because we have
seen that kerEt(ζ) = {0}, which amounts to ζ /∈ SpecEt).
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Meanwhile, Et(ζ) : L(B) −→ L(B) is bijective for all (t, ζ) ∈ W .

Let

Gt(ζ) := Et(ζ)−1 : L(B) −→ L(B), (t, ζ) ∈ W,
be its inverse. From earlier results we get the following crucial piece
of information which is the culmination of the above technical work.

Conclusion. Gt(ζ) varies in a C∞ way with (t, ζ) ∈ W .
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Now, fix an arbitrary t0 ∈ ∆ and pick a Jordan curve C (i.e. a
closed simple curve C in the complex plane) such that

C ∩ SpecEt0 = ∅. (2)

Such a curve exists because SpecEt0 ⊂ R is discrete. As is well known,
C divides the plane C into two disjoint regions: the interior of C, de-
noted by int(C), and the exterior of C, denoted by ext(C).

Property (2) means that {t0}×C ⊂ W . Since W is open in ∆×C,
there exists δ > 0 such that [t0 − δ, t0 + δ] × C ⊂ W . For any
t ∈ (t0 − δ, t0 + δ), we put:

Ft(C) :=
⊕

λ(t)∈int(C)

Hλ(t)(Et) ⊂ L(B),

where Hλ(t)(Et) is the λ(t)-eigenspace of Et.
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Note that, by ellipticity of Et and compactness of X , the C-vector
space Ft(C) is finite dimensional.

Furthermore, for any t ∈ (t0 − δ, t0 + δ), we let

Ft(C) : L(B) −→ Ft(C)

be the L2
ht

-orthogonal projection onto Ft(C).
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The following simple Cauchy integral formula for orthogonal
spectral projectors will play a key role in the sequel.

Lemma. The orthogonal projector Ft(C) : L(B) −→ Ft(C) satis-
fies the following formula:

Ft(C)ψ = − 1

2πi

∫
ζ∈C

Gt(ζ)ψ dζ,

for all ψ ∈ L(B) and all t ∈ (t0 − δ, t0 + δ).
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Proof. Let ψ =
+∞∑
h=1

aheh(t) ∈ L(B). Since

Et(ζ)ψ =

+∞∑
h=1

(λh(t)− ζ) aheh(t)

and Gt(ζ) = Et(ζ)−1, we get:

−Gt(ζ)ψ =

+∞∑
h=1

ah
ζ − λh(t)

eh(t), ζ ∈ C.

Therefore,
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− 1

2πi

∫
ζ∈C

Gt(ζ)ψ dζ =

+∞∑
h=1

(
1

2πi

∫
ζ∈C

1

ζ − λh(t)
dζ

)
aheh(t)

=
∑

λh(t)∈int (C)

aheh(t) = Ft(C)ψ,

where the following elementary fact on the winding number of a Jor-
dan curve around a point in the complex plane has been used:

1

2πi

∫
ζ∈C

1

ζ − λh(t)
dζ = 1 if λh(t) ∈ int (C) and

1

2πi

∫
ζ∈C

1

ζ − λh(t)
dζ = 0 if λh(t) ∈ ext (C). �
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Corollary. For any t0 ∈ ∆ and any Jordan curve C ⊂ C s.t.

C ∩ SpecEt0 = ∅,
the orthogonal projector Ft(C) varies in a C∞ way with t ∈ (t0−
δ, t0 + δ) if δ > 0 is small enough.

Proof. Let (ψt)t∈(t0−δ, t0+δ) be a C∞ family of sections ψt ∈ L(B).
Then, by the Cauchy formula, we have

Ft(C)ψt = − 1

2πi

∫
ζ∈C

Gt(ζ)ψt dζ, t ∈ (t0 − δ, t0 + δ). (3)

Since Gt(ζ) varies in a C∞ way with (t, ζ) ∈ W (see above) and ψt
varies in a C∞ way with t ∈ (t0−δ, t0+δ), we conclude that Ft(C)ψt
varies in a C∞ way with t ∈ (t0 − δ, t0 + δ). �
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The following consequence is the cornerstone of much of what follows.

Corollary. For any t0 ∈ ∆ and any Jordan curve C ⊂ C s.t.

C ∩ SpecEt0 = ∅,
the number dimCFt(C) of eigenvalues, counted with multiplicities,
of Et lying in int (C) is independent of t ∈ (t0 − δ, t0 + δ) if
δ > 0 is small enough.

Proof. Let d := dimCFt0(C) and let {e1, . . . , ed} be a basis of Ft0(C).
There are two inequalities to prove.

• The inequality dimCFt(C) ≥ dimCFt0(C) for all t ∈ (t0−δ, t0+δ)
(if δ > 0 is small enough) is immediate to prove.
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Indeed, since Ft(C) : L(B) −→ Ft(C) varies in a C∞ way with
t ∈ (t0 − δ, t0 + δ) (see above), Ft(C) ej varies in a C∞ way with
t ∈ (t0− δ, t0 + δ), for every j ∈ {1, . . . , d}. Meanwhile, the property
of linear independence is stable under small continuous deformations.

Therefore, since the ej = Ft0(C) ej, with j ∈ {1, . . . , d}, are lin-
early independent and since the Ft(C) ej vary continuously (even in a
C∞ way) with t, the Ft(C) ej, with j ∈ {1, . . . , d}, remain linearly
independent elements of Ft(C) for all t sufficiently close to t0. Thus,
dimCFt(C) ≥ d for all t close enough to t0.

• The reverse inequality dimCFt(C) ≤ dimCFt0(C) for all t ∈ (t0−
δ, t0 + δ) (if δ > 0 is small enough) can be proved by contradiction.

The proof uses the Sobolev inequality and elliptic estimates. �
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Proof of Theorem B. Recall that we set Ft := kerEt for all t ∈ ∆.
Fix t0 ∈ ∆. We have to prove that

∃ δ > 0 such that dimFt ≤ dimFt0 ∀t ∈ (t0 − δ, t0 + δ).

For any ε > 0, let Cε := C(0, ε) ⊂ C be the circle of radius ε
centred at the origin in the complex plane. Since SpecEt0 is discrete,
Ft0 = Ft0(Cε) (i.e. 0 is the only eigenvalue of Et0 lying in int (Cε)) if
ε is small enough.

The above Corollary applied to Cε yields:

dimFt(Cε) = dimFt0(Cε), t ∈ (t0 − δ, t0 + δ),

if δ > 0 is small enough. Since dimFt0(Cε) = dim kerEt0 and since
Ft = kerEt ⊂ Ft(Cε) for all t, we infer that

dimFt ≤ dimFt(Cε) = dimFt0(Cε) = dimFt0 ∀t ∈ (t0− δ, t0 + δ).

�
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(II) Deformation openness results

Two points of view are possible.

Definition. (i) A given property (P ) of a compact complex man-
ifold is said to be open under holomorphic deformations if for
every holomorphic family of compact complex manifolds (Xt)t∈B
and for every t0 ∈ B, the following implication holds:

Xt0 has property (P ) =⇒ Xt has property (P ) for all t ∈ B
sufficiently close to t0.
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(ii) A given property (P ) of a compact complex manifold is said to
be closed under holomorphic deformations if for every holomor-
phic family of compact complex manifolds (Xt)t∈B and for every
t0 ∈ B, the following implication holds:

Xt has property (P ) for all t ∈ B \ {t0} =⇒ Xt0 has property
(P ).
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Theorem. Let π : X −→ B be a holomorphic family of compact
complex manifolds Xt := π−1(t), with dimCXt = n for all t ∈ B.
Fix an arbitrary bidegree (p, q).

(i) The functions: B 3 t 7−→ hp, q(t) := dimCH
p, q
∂̄

(Xt, C),

B 3 t 7−→ h
p, q
BC(t) := dimCH

p, q
BC(Xt, C),

B 3 t 7−→ h
p, q
A (t) := dimCH

p, q
A (Xt, C),

are upper-semicontinuous.

(ii) If the Hodge number hp, q(t) is independent of t ∈ B, then
the map

B 3 t 7−→ H
p, q
∂̄

(Xt, C)

defines a C∞ vector bundle on B.
The analogous statement holds for h

p, q
BC(t) and h

p, q
A (t).
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(1) The first main consequence of the upper-semicontinuity of the
Hodge numbers under deformations is the deformation openness
of the Frölicher degeneration property at E1.

Theorem. Let π : X −→ B be a holomorphic family of compact
complex manifolds Xt := π−1(t), with t ∈ B. Fix an arbitrary
reference point 0 ∈ B.

If the Frölicher spectral sequence of X0 degenerates at
E1, then, for all t ∈ B sufficiently close to 0, we have:

(a) the Frölicher spectral sequence of Xt degenerates at
E1;

(b) hp, q(t) = hp, q(0) for every bidegree (p, q).
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Proof. We know that the hypothesis E1(X0) = E∞(X0) is equivalent
to the numerical identities:

bk =
∑
p+q=k

hp, q(0), k ∈ {0, 1, . . . , 2n}, (4)

where bk := dimCH
k
DR(X, C) is the k-th Betti number of the fibres.

For every t ∈ B sufficiently close to 0, we get:

bk
(i)
≤

∑
p+q=k

hp, q(t)
(ii)
≤

∑
p+q=k

hp, q(0)
(iii)
= bk, (5)

where (i) is the dimension inequality that is valid on any manifold, (ii)
is the upper-semicontinuity property of the above theorem, while (iii)
features above.
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Thus, inequalities (i) and (ii) must be equalities for every t ∈ B
sufficiently close to 0.

Now, (i) being an equality for every degree k is equivalent to

E1(Xt) = E∞(Xt),

while (ii) being an equality for every degree k is equivalent to

hp, q(t) = hp, q(0)

for every bidegree (p, q). �
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(2) The second main consequence of the upper-semicontinuity of the
Hodge numbers under deformations is the deformation openness
of the ∂∂̄-property of compact complex manifolds.

Theorem. (Wu 2006, Angella-Tomassini 2013)

Let π : X −→ B be a holomorphic family of compact complex
manifolds Xt := π−1(t), with t ∈ B. Fix an arbitrary reference
point 0 ∈ B.

If the fibre X0 is a ∂∂̄-manifold, then, for all t ∈ B sufficiently
close to 0, we have:

(a) the fibre Xt is a ∂∂̄-manifold;

(b) h
p, q
BC(t) = h

p, q
BC(0) and h

p, q
A (t) = h

p, q
A (0) for every bidegree

(p, q).
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Proof. By Angella-Tomassini (2013), the ∂∂̄-assumption on X0 is
equivalent to the identities:∑

p+q=k

(h
p, q
BC(0) + h

p, q
A (0)) = 2bk, k ∈ {0, 1, . . . , 2n}.

Meanwhile, the upper-semicontinuity properties yield:

h
p, q
BC(0) ≥ h

p, q
BC(t) and h

p, q
A (0) ≥ h

p, q
A (t)

for all bidegrees (p, q) and all t ∈ B sufficiently close to 0.

Finally, by Angella-Tomassini (2013), we always have the inequalities:∑
p+q=k

(h
p, q
BC(t) + h

p, q
A (t)) ≥ 2bk, t ∈ B, k ∈ {0, 1, . . . , 2n}.
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Putting together all these pieces of information, we get:

2bk
(i)
≤

∑
p+q=k

(h
p, q
BC(t) + h

p, q
A (t))

(ii)
≤

∑
p+q=k

(h
p, q
BC(0) + h

p, q
A (0)) = 2bk,

for all k ∈ {0, 1, . . . , 2n} and all t ∈ B sufficiently close to 0. Hence,
both of the above inequalities must be equalities.

In particular, inequalities (i) being equalities for all k ∈ {0, 1, . . . , 2n}
and all t ∈ B sufficiently close to 0 amounts to Xt being a ∂∂̄-manifold
for all t ∈ B sufficiently close to 0, thanks again to Angella-Tomassini
(2013). This proves (a).

Meanwhile, inequalities (ii) being equalities for all bidegrees (p, q)
and all t ∈ B sufficiently close to 0 proves (b). �
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(3) Deformation openness of the Kähler property
(Kodaira-Spencer 1960)

Let us start with a very simple but crucial observation.

Lemma.Let ω be a Hermitian metric on a compact complex man-
ifold X. The equivalence holds:

ω is Kähler ⇐⇒ ∆BCω = 0,

where ∆BC : C∞1, 1(X, C) −→ C∞1, 1(X, C) is the Bott-Chern Lapla-
cian induced by ω.
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Proof. We know that

ker ∆BC = ker ∂ ∩ ker ∂̄ ∩ ker(∂∂̄)?.

So, one implication of the above equivalence is obvious:

if ∆BCω = 0, then ∂ω = 0, which means that ω is Kähler.

Suppose now that ω is Kähler, namely dω = 0. This implies ∂ω = 0
and ∂̄ω = 0. To prove that (∂∂̄)?ω = 0, we will use the standard
formulae:

?? = (−1)k Id on k-forms; ∂? = − ? ∂̄?, ∂̄? = − ? ∂?
and the standard formula:

?ω =
ωn−1

(n− 1)!
, (6)
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where ? = ?ω is the Hodge star operator induced by the Hermitain
metric ω.

We get the equivalences:

(∂∂̄)?ω = 0 ⇐⇒ ?∂∂̄(?ω) = 0 ⇐⇒ ∂∂̄
ωn−1

(n− 1)!
= 0,

where the second one uses the fact that ? is an isomorphism.

Now, the last identity holds since

∂̄ωn−1 = (n− 1)ωn−2 ∧ ∂̄ω = 0.

Indeed, ∂̄ω = 0 by the Kähler assumption on ω. �
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Theorem. (Kodaira-Spencer 1960)

Let π : X −→ B be a holomorphic family of compact complex
manifolds Xt := π−1(t), with t ∈ B. Fix an arbitrary reference
point 0 ∈ B.

(a) If the fibre X0 is a Kähler manifold, then the fibre Xt is
a Kähler manifold for all t ∈ B sufficiently close to 0.

(b) Moreover, given any Kähler metric ω0 on X0, there exists
a small neighbourhood U of 0 in B and a C∞ family (ωt)t∈U of
Kähler metrics on the respective fibres Xt whose member for
t = 0 is ω0.
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Proof. Since (b) implies (a), we will prove (b).

Let ω0 be a Kähler metric on X0. In particular, ω0 is a smooth
J0-type (1, 1)-form on X0, hence a smooth 2-form on X (the C∞

manifold underlying the fibres Xt for t ∈ B close to 0.)

For every t ∈ B, let ωt be the Jt-type (1, 1)-component of the 2-form
ω0. Clearly, the member for t = 0 of the family of forms (ωt)t∈B is
ω0. Moreover, the ωt’s vary in a C∞ way with t because they are the
Jt-type (1, 1)-components of a fixed 2-form and the Jt’s depend in a
(at least) C∞ way on t.
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Now, ω0 is positive definite because it is a metric on X0. By con-
tinuity w.r.t. t, ωt remains positive definite for all t ∈ U if the
neighbourhood U of 0 in B is small enough. Hence, ωt is a Hermitian
metric on Xt for every t ∈ U , so (ωt)t∈U is a C∞ family of Hermitian
metrics on the respective fibres Xt, whose member for t = 0 is the
original Kähler metric ω0.

We have to change the metrics ωt with t ∈ U \ {0} to make them
Kähler. The above Lemma tells us that this amounts to making the
ωt’s Bott-Chern harmonic w.r.t. themselves (i.e. for the Bott-Chern
Laplacians induced by the ωt’s).
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Let us therefore consider the L2
ωt-orthogonal projectors:

Ft : C∞1, 1(Xt, C) −→ H1, 1
∆BC

(Xt, C), t ∈ U,

onto the kernels of the Bott-Chern Laplacians ∆BC, t induced by the
ωt’s in Jt-bidegree (1, 1).

The crucial piece of information that we need at this point is the
non-jumping of a certain cohomology space dimension. Since X0 is a
∂∂̄-manifold (because it is even Kähler, by hypothesis), the dimension

h
1, 1
BC(t) ofH1, 1

∆BC
(Xt, C) (= the dimension of H

1, 1
BC(Xt, C), thanks to

the Hodge isomorphism) is independent of t ∈ U if the neighbourhood
U of 0 in B is small enough.
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Therefore, by Theorem C, Ft varies in a C∞ way with t ∈ U .

Now, put

ω̃t :=
1

2
(Ftωt + Ftωt), t ∈ U.

The Jt-type (1, 1)-forms ω̃t have the following properties:

(i) ω̃t is a real form (i.e. it equals its conjugate) for every t ∈ U ;

(ii) ω̃t varies in a C∞ way with t ∈ U , because Ft and ωt do;

(iii) ω̃0 = ω0 because F0ω0 = ω0 (recall that ω0 is Kähler on X0
and the above Lemma applies) and ω0 is real;

(iv) ω̃t is positive definite on Xt for all t ∈ U (shrink U about 0
if necessary), because ω̃0 is and ω̃t varies (at least) continuously with
t ∈ U ;
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(v) ω̃t ∈ ker ∂t for all t ∈ U , because Ftωt ∈ H1, 1
∆BC

(Xt, C) =

ker ∂t ∩ ker ∂̄t ∩ ker(∂t∂̄t)
? ⊂ ker ∂t ∩ ker ∂̄t.

(Note that the Bott-Chern harmonic space H1, 1
∆BC

(Xt, C) in (v) is

defined by the Hermitian metric ωt, rather than ω̃t.)

Properties (i)-(v) amount to saying that

(ω̃t)t∈U
is a C∞ family of Kähler metrics on the respective fibres Xt, whose
member for t = 0 is the originally given Kähler metric ω0 on X0. �

41


