Hodge Theory of Compact Complex Manifolds

CIMPA School "Complex Analysis, Geometry and Dynamics"

Urgench, Uzbekistan
Lecture No. 4

Dan Popovici
Université Paul Sabatier,
Toulouse, France

GEOMETRIC PROPERTIES OF COMPACT COMPLEX MANIFOLDS UNDER DEFORMATIONS OF COMPLEX STRUCTURES

(I) Smooth families of operators

We now introduce the analogues of a family of manifolds for vector bundles, sections thereof and differential operators.

Definition. Let X be a compact oriented differentiable manifold X and let $\Delta \subset \mathbb{R}^{N}$ be a small open subset, for some integer $N \geq 1$.
(i) We say that $\left(B_{t}\right)_{t \in \Delta}$ is a C^{∞} family of C^{∞} complex vector bundles $B_{t} \longrightarrow X$ over X (or that B_{t} varies C^{∞} with $t \in \Delta$) if there exists a C^{∞} complex vector bundle $\pi: \mathcal{B} \longrightarrow X \times \Delta$ such that

$$
B_{t}=\pi^{-1}(X \times\{t\})=\mathcal{B}_{\mid X \times\{t\}}, \quad t \in \Delta
$$

(ii) Let $\left(B_{t}\right)_{t \in \Delta}$ be a C^{∞} family of C^{∞} complex vector bundles $B_{t} \longrightarrow X$ as in (i).
(a) For every $t \in \Delta$, let $\psi_{t} \in L\left(B_{t}\right)=C^{\infty}\left(X, B_{t}\right)$ be a smooth global section of B_{t}.
We say that $\left(\psi_{t}\right)_{t \in \Delta}$ is a C^{∞} family of sections (or that ψ_{t} varies C^{∞} with $\left.t \in \Delta\right)$ if there exists a C^{∞} section $\widetilde{\psi} \in C^{\infty}(X \times$ $\Delta, \mathcal{B})$ of \mathcal{B} such that

$$
\psi_{t}=\widetilde{\psi}_{\mid X \times\{t\}}, \quad t \in \Delta .
$$

(b) For every $t \in \Delta$, let $E_{t}: L\left(B_{t}\right) \longrightarrow L\left(B_{t}\right)$ be a linear operator on B_{t}.
We say that $\left(E_{t}\right)_{t \in \Delta}$ is a C^{∞} family of linear operators (or that E_{t} varies C^{∞} with $t \in \Delta$) if for every C^{∞} family $\left(\psi_{t}\right)_{t \in \Delta}$ of sections $\psi_{t} \in L\left(B_{t}\right)$, the family $\left(E_{t} \psi_{t}\right)_{t \in \Delta}$ is a C^{∞} family of sections.
(c) For every $t \in \Delta$, let h_{t} be a Hermitian metric on B_{t} in the sense that $h_{t}=\langle,\rangle_{t}=\left(\langle,\rangle_{t, x}\right)_{x \in X}$ is a family of positive definite inner products on the fibres $\left(B_{t}\right)_{x}$ of B_{t} that vary in a C^{∞} way with the point $x \in X$.
We say that $\left(h_{t}\right)_{t \in \Delta}$ is a C^{∞} family of (fibre) metrics (or that h_{t} varies C^{∞} with $t \in \Delta$) if there exists a Hermitian metric h on the vector bundle \mathcal{B} such that

$$
h_{t}=h_{\mid X \times\{t\}}, \quad t \in \Delta .
$$

The Kodaira-Spencer fundamental theorems (1960) on families of elliptic operators

Let:

- $\left(B_{t}, h_{t}\right)_{t \in \Delta}$ be a C^{∞} family of Hermitian C^{∞} complex vector bundles on a compact Riemannian manifold (X, g);
- $\left(E_{t}, h_{t}\right)_{t \in \Delta}$ be a C^{∞} family of self-adjoint elliptic linear differential operators $E_{t}: L\left(B_{t}\right) \longrightarrow L\left(B_{t}\right)$ of even order m;
- $\left(\lambda_{h}(t)\right)_{h \in \mathbb{N}^{\star}}$ be, for every fixed $t \in \Delta$, the eigenvalues of E_{t} and let $\left(e_{h}(t)\right)_{h \in \mathbb{N}^{\star}}$ be the corresponding eigensections $e_{h}(t) \in L\left(B_{t}\right)$ such that:

$$
\cdot E_{t} e_{h}(t)=\lambda_{h}(t) e_{h}(t), \quad h \in \mathbb{N}^{\star}, t \in \Delta ;
$$

- $\left(e_{h}(t)\right)_{h \in \mathbb{N}^{\star}}$ is an orthonormal basis of $L\left(B_{t}\right), \quad t \in \Delta$;

$$
\cdot \lambda_{1}(t) \leq \cdots \leq \lambda_{h}(t) \leq \ldots \quad \text { and } \quad \lim _{h \rightarrow+\infty} \lambda_{h}(t)=+\infty
$$

Then, the following statements hold.
Theorem A For every $h \in \mathbb{N}^{\star}$, the function $\Delta \ni t \mapsto \lambda_{h}(t)$ is continuous.

Theorem B The function

$$
\Delta \ni t \mapsto \operatorname{dim} \operatorname{ker} E_{t}
$$

is upper-semicontinuous.
Theorem C If dim ker E_{t} is independent of $t \in \Delta$, then $\left(F_{t}\right)_{t \in \Delta}$ is a C^{∞} family of linear operators, where $F_{t}: L\left(B_{t}\right) \longrightarrow \operatorname{ker} E_{t}$ is the orthogonal projection w.r.t. the L^{2} inner product $\langle\langle,\rangle\rangle_{t}$, for every $t \in \Delta$.

Theorem D If dim ker E_{t} is independent of $t \in \Delta$, then $\left(G_{t}\right)_{t \in \Delta}$ is a C^{∞} family of linear operators, where $G_{t}:=E_{t}^{-1}$ is the Green operator of E_{t} for every $t \in \Delta$.

Before moving on to the proofs, let us point out the
Observation. Having fixed an arbitrary $h \in \mathbb{N}^{\star}$, the function $\Delta \ni t \mapsto \lambda_{h}(t)$ need not be differentiable.

Example. Notice that the eigenvalues of the operator $E_{t}:=\left(\begin{array}{ll}1 & t \\ 1 & 1\end{array}\right)$ are $\lambda_{1}(t)=1+\sqrt{t}$ and $\lambda_{1}(t)=1-\sqrt{t}$, which are not differentiable functions of t.

Preliminary steps in the proofs of Theorems A, B, C, D

Step 1. It can be shown that the vector bundles B_{t} are C^{∞} isomorphic to B_{0} for all $t \in \Delta$ sufficiently close to 0 .

Therefore, we may assume without loss of generality that all the B_{t} 's coincide with a fixed C^{∞} vector bundle $B \longrightarrow X$, after possibly shrinking Δ about 0 .

In particular, henceforth, we place ourselves in the situation

$$
E_{t}: L(B) \longrightarrow L(B), \quad t \in \Delta
$$

However, the Hermitian fibre metric h_{t} on B depends on $t \in \Delta$ and so do $\langle,\rangle_{t},\langle\langle,\rangle\rangle_{t}$ and $\left\|\|_{t}\right.$, but they are mutually equivalent by uniform multiplicative constants.

Step 2. The following technical result is key.
Theorem. Let $\left(E_{t}\right)_{t \in \Delta}$ be a C^{∞} family of elliptic, not necessarily self-adjoint, differential operators of even order m. Suppose that $E_{t}: L(B) \longrightarrow L(B)$ is bijective for all $t \in \Delta$.

If there exists a constant $c>0$ independent of $t \in \Delta$ such that

$$
\left\|E_{t} \psi\right\|_{0} \geq c\|\psi\|_{0} \quad \text { for all } \psi \in L(B)
$$

the inverse operator E_{t}^{-1} varies in a C^{∞} way with $t \in \Delta$.
The key point: the uniformity of the constant c.
A constant depending on t with this property always exists thanks to E_{t} being elliptic and to X being compact, as follows from the a priori estimate.

Key ingredient in the proof of the above theorem: the following a priori estimate w.r.t. Sobolev norms in families of elliptic operators.

Theorem. Let $\left(E_{t}\right)_{t \in \Delta}$ be a C^{∞} family of elliptic linear differential operators $E_{t}: L(B) \longrightarrow L(B)$ of even order m.
Then, for every $k \in \mathbb{N}$, there exists a constant $c_{k}>0$ independent of $t \in \Delta$ such that the following uniform a priori estimate holds:

$$
\begin{equation*}
\|\psi\|_{k+m}^{2} \leq c_{k}\left(\left\|E_{t} \psi\right\|_{k}^{2}+\|\psi\|_{0}^{2}\right) \tag{1}
\end{equation*}
$$

for every $\psi \in L(B)$ and every $t \in \Delta$.

Step 3. Henceforth, we shall assume that each operator E_{t} is selfadjoint (and, of course, also elliptic).

The main technique for the proofs of Theorems A, B, C, D consists in considering, for every $\zeta \in \mathbb{C}$, the elliptic differential operator

$$
E_{t}(\zeta):=E_{t}-\zeta: L(B) \longrightarrow L(B), \quad t \in \Delta
$$

to which the following simple but critical observation and several of the above preliminary results will be applied.

Observation. If $\zeta \notin \operatorname{Spec}\left(E_{t}\right):=\left\{\lambda_{1}(t), \lambda_{2}(t), \ldots\right\}$, then

$$
E_{t}(\zeta): L(B) \longrightarrow L(B)
$$

is bijective.

The key technical result: the hypothesis of an earlier theorem is uniformly satisfied by the operators $E_{t}(\zeta): L(B) \longrightarrow L(B)$ when $t \in \Delta$ and $\zeta \notin \operatorname{Spec}\left(E_{t}\right)$ vary very little.

Lemma. Let $t_{0} \in \Delta$ and let $\zeta_{0} \in \mathbb{C} \backslash \operatorname{Spec}\left(E_{t_{0}}\right)$. Then, there exist constants $\delta, c>0$ such that, for all $t \in \Delta$ with $\left|t-t_{0}\right|<\delta$ and all $\zeta \in \mathbb{C}$ with $\left|\zeta-\zeta_{0}\right|<\delta$, the following inequality holds:

$$
\left\|E_{t}(\zeta) \psi\right\|_{0} \geq c\|\psi\|_{0}
$$

for all $\psi \in L(B)$.

Step 4. The next goal is to express the spectral projection operators by a Cauchy integral formula.

Let

$$
W:=\left\{(t, \zeta) \in \Delta \times \mathbb{C} \mid \zeta \notin \operatorname{Spec} E_{t}\right\} \subset \Delta \times \mathbb{C}
$$

An earlier result implies that W is open in $\Delta \times \mathbb{C}$ (because we have seen that ker $E_{t}(\zeta)=\{0\}$, which amounts to $\left.\zeta \notin \operatorname{Spec} E_{t}\right)$.

Meanwhile, $E_{t}(\zeta): L(B) \longrightarrow L(B)$ is bijective for all $(t, \zeta) \in W$.
Let

$$
G_{t}(\zeta):=E_{t}(\zeta)^{-1}: L(B) \longrightarrow L(B), \quad(t, \zeta) \in W
$$

be its inverse. From earlier results we get the following crucial piece of information which is the culmination of the above technical work.

Conclusion. $G_{t}(\zeta)$ varies in a C^{∞} way with $(t, \zeta) \in W$.

Now, fix an arbitrary $t_{0} \in \Delta$ and pick a Jordan curve C (i.e. a closed simple curve C in the complex plane) such that

$$
\begin{equation*}
C \cap \operatorname{Spec} E_{t_{0}}=\emptyset . \tag{2}
\end{equation*}
$$

Such a curve exists because $\operatorname{Spec} E_{t_{0}} \subset \mathbb{R}$ is discrete. As is well known, C divides the plane \mathbb{C} into two disjoint regions: the interior of C, denoted by int (C), and the exterior of C, denoted by $\operatorname{ext}(C)$.

Property (2) means that $\left\{t_{0}\right\} \times C \subset W$. Since W is open in $\Delta \times C$, there exists $\delta>0$ such that $\left[t_{0}-\delta, t_{0}+\delta\right] \times C \subset W$. For any $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$, we put:

$$
\mathbb{F}_{t}(C):=\bigoplus_{\lambda(t) \in \operatorname{int}(C)} \mathcal{H}_{\lambda(t)}\left(E_{t}\right) \subset L(B),
$$

where $\mathcal{H}_{\lambda(t)}\left(E_{t}\right)$ is the $\lambda(t)$-eigenspace of E_{t}.

Note that, by ellipticity of E_{t} and compactness of X, the \mathbb{C}-vector space $\mathbb{F}_{t}(C)$ is finite dimensional.

Furthermore, for any $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$, we let

$$
F_{t}(C): L(B) \longrightarrow \mathbb{F}_{t}(C)
$$

be the $L_{h_{t}}^{2}$-orthogonal projection onto $\mathbb{F}_{t}(C)$.

The following simple Cauchy integral formula for orthogonal spectral projectors will play a key role in the sequel.

Lemma. The orthogonal projector $F_{t}(C): L(B) \longrightarrow \mathbb{F}_{t}(C)$ satisfies the following formula:

$$
F_{t}(C) \psi=-\frac{1}{2 \pi i} \int_{\zeta \in C} G_{t}(\zeta) \psi d \zeta
$$

for all $\psi \in L(B)$ and all $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$.

Proof. Let $\psi=\sum_{h=1}^{+\infty} a_{h} e_{h}(t) \in L(B)$. Since

$$
E_{t}(\zeta) \psi=\sum_{h=1}^{+\infty}\left(\lambda_{h}(t)-\zeta\right) a_{h} e_{h}(t)
$$

and $G_{t}(\zeta)=E_{t}(\zeta)^{-1}$, we get:

$$
-G_{t}(\zeta) \psi=\sum_{h=1}^{+\infty} \frac{a_{h}}{\zeta-\lambda_{h}(t)} e_{h}(t), \quad \zeta \in C
$$

Therefore,

$$
\begin{aligned}
-\frac{1}{2 \pi i} \int_{\zeta \in C} G_{t}(\zeta) \psi d \zeta & =\sum_{h=1}^{+\infty}\left(\frac{1}{2 \pi i} \int_{\zeta \in C} \frac{1}{\zeta-\lambda_{h}(t)} d \zeta\right) a_{h} e_{h}(t) \\
& =\sum_{\lambda_{h}(t) \in \operatorname{int}(C)} a_{h} e_{h}(t)=F_{t}(C) \psi,
\end{aligned}
$$

where the following elementary fact on the winding number of a Jordan curve around a point in the complex plane has been used:

$$
\begin{aligned}
& \frac{1}{2 \pi i} \int_{\zeta \in C} \frac{1}{\zeta-\lambda_{h}(t)} d \zeta=1 \text { if } \quad \lambda_{h}(t) \in \operatorname{int}(C) \quad \text { and } \\
& \frac{1}{2 \pi i} \int_{\zeta \in C} \frac{1}{\zeta-\lambda_{h}(t)} d \zeta=0 \quad \text { if } \quad \lambda_{h}(t) \in \operatorname{ext}(C)
\end{aligned}
$$

Corollary. For any $t_{0} \in \Delta$ and any Jordan curve $C \subset \mathbb{C}$ s.t.

$$
C \cap \operatorname{Spec} E_{t_{0}}=\emptyset,
$$

the orthogonal projector $F_{t}(C)$ varies in a C^{∞} way with $t \in\left(t_{0}-\right.$ $\left.\delta, t_{0}+\delta\right)$ if $\delta>0$ is small enough.

Proof. Let $\left(\psi_{t}\right)_{t \in\left(t_{0}-\delta, t_{0}+\delta\right)}$ be a C^{∞} family of sections $\psi_{t} \in L(B)$. Then, by the Cauchy formula, we have

$$
\begin{equation*}
F_{t}(C) \psi_{t}=-\frac{1}{2 \pi i} \int_{\zeta \in C} G_{t}(\zeta) \psi_{t} d \zeta, \quad t \in\left(t_{0}-\delta, t_{0}+\delta\right) \tag{3}
\end{equation*}
$$

Since $G_{t}(\zeta)$ varies in a C^{∞} way with $(t, \zeta) \in W$ (see above) and ψ_{t} varies in a C^{∞} way with $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$, we conclude that $F_{t}(C) \psi_{t}$ varies in a C^{∞} way with $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$.

The following consequence is the cornerstone of much of what follows.
Corollary. For any $t_{0} \in \Delta$ and any Jordan curve $C \subset \mathbb{C}$ s.t.

$$
C \cap \operatorname{Spec} E_{t_{0}}=\emptyset,
$$

the number $\operatorname{dim}_{\mathbb{C}} \mathbb{F}_{t}(C)$ of eigenvalues, counted with multiplicities, of E_{t} lying in int (C) is independent of $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$ if $\delta>0$ is small enough.

Proof. Let $d:=\operatorname{dim}_{\mathbb{C}} \mathbb{F}_{t_{0}}(C)$ and let $\left\{e_{1}, \ldots, e_{d}\right\}$ be a basis of $\mathbb{F}_{t_{0}}(C)$. There are two inequalities to prove.

- The inequality $\operatorname{dim}_{\mathbb{C}} \mathbb{F}_{t}(C) \geq \operatorname{dim}_{\mathbb{C}} \mathbb{F}_{t_{0}}(C)$ for all $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$ (if $\delta>0$ is small enough) is immediate to prove.

Indeed, since $F_{t}(C): L(B) \longrightarrow \mathbb{F}_{t}(C)$ varies in a C^{∞} way with $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$ (see above), $F_{t}(C) e_{j}$ varies in a C^{∞} way with $t \in\left(t_{0}-\delta, t_{0}+\delta\right)$, for every $j \in\{1, \ldots, d\}$. Meanwhile, the property of linear independence is stable under small continuous deformations.

Therefore, since the $e_{j}=F_{t_{0}}(C) e_{j}$, with $j \in\{1, \ldots, d\}$, are linearly independent and since the $F_{t}(C) e_{j}$ vary continuously (even in a C^{∞} way) with t, the $F_{t}(C) e_{j}$, with $j \in\{1, \ldots, d\}$, remain linearly independent elements of $\mathbb{F}_{t}(C)$ for all t sufficiently close to t_{0}. Thus, $\operatorname{dim}_{\mathbb{C}} \mathbb{F}_{t}(C) \geq d$ for all t close enough to t_{0}.

- The reverse inequality $\operatorname{dim}_{\mathbb{C}} \mathbb{F}_{t}(C) \leq \operatorname{dim}_{\mathbb{C}} \mathbb{F}_{t_{0}}(C)$ for all $t \in\left(t_{0}\right.$ $\delta, t_{0}+\delta$) (if $\delta>0$ is small enough) can be proved by contradiction.

The proof uses the Sobolev inequality and elliptic estimates.

Proof of Theorem B. Recall that we set $\mathbb{F}_{t}:=\operatorname{ker} E_{t}$ for all $t \in \Delta$. Fix $t_{0} \in \Delta$. We have to prove that
$\exists \delta>0 \quad$ such that $\operatorname{dim} \mathbb{F}_{t} \leq \operatorname{dim} \mathbb{F}_{t_{0}} \quad \forall t \in\left(t_{0}-\delta, t_{0}+\delta\right)$.
For any $\varepsilon>0$, let $C_{\varepsilon}:=C(0, \varepsilon) \subset \mathbb{C}$ be the circle of radius ε centred at the origin in the complex plane. Since $\operatorname{Spec} E_{t_{0}}$ is discrete, $\mathbb{F}_{t_{0}}=\mathbb{F}_{t_{0}}\left(C_{\varepsilon}\right)$ (i.e. 0 is the only eigenvalue of $E_{t_{0}}$ lying in int $\left(C_{\varepsilon}\right)$) if ε is small enough.

The above Corollary applied to C_{ε} yields:

$$
\operatorname{dim} \mathbb{F}_{t}\left(C_{\varepsilon}\right)=\operatorname{dimF}_{t_{0}}\left(C_{\varepsilon}\right), \quad t \in\left(t_{0}-\delta, t_{0}+\delta\right)
$$

if $\delta>0$ is small enough. Since $\operatorname{dim} \mathbb{F}_{t_{0}}\left(C_{\varepsilon}\right)=\operatorname{dim} \operatorname{ker} E_{t_{0}}$ and since $\mathbb{F}_{t}=\operatorname{ker} E_{t} \subset \mathbb{F}_{t}\left(C_{\varepsilon}\right)$ for all t, we infer that $\operatorname{dim} \mathbb{F}_{t} \leq \operatorname{dim} \mathbb{F}_{t}\left(C_{\varepsilon}\right)=\operatorname{dim} \mathbb{F}_{t_{0}}\left(C_{\varepsilon}\right)=\operatorname{dim} \mathbb{F}_{t_{0}} \quad \forall t \in\left(t_{0}-\delta, t_{0}+\delta\right)$.

(II) Deformation openness results

Two points of view are possible.
Definition. (i) A given property (P) of a compact complex manifold is said to be open under holomorphic deformations if for every holomorphic family of compact complex manifolds $\left(X_{t}\right)_{t \in B}$ and for every $t_{0} \in B$, the following implication holds:
$X_{t_{0}}$ has property $(P) \Longrightarrow X_{t}$ has property (P) for all $t \in B$ sufficiently close to t_{0}.
(ii) A given property (P) of a compact complex manifold is said to be closed under holomorphic deformations if for every holomorphic family of compact complex manifolds $\left(X_{t}\right)_{t \in B}$ and for every $t_{0} \in B$, the following implication holds:
X_{t} has property (P) for all $t \in B \backslash\left\{t_{0}\right\} \Longrightarrow X_{t_{0}}$ has property (P).

Theorem. Let $\pi: \mathcal{X} \longrightarrow B$ be a holomorphic family of compact complex manifolds $X_{t}:=\pi^{-1}(t)$, with $\operatorname{dim}_{\mathbb{C}} X_{t}=n$ for all $t \in B$. Fix an arbitrary bidegree (p, q).
(i) The functions: $B \ni t \longmapsto h^{p, q}(t):=\operatorname{dim}_{\mathbb{C}} H_{\bar{\partial}}^{p, q}\left(X_{t}, \mathbb{C}\right)$,

$$
\begin{aligned}
& B \ni t \longmapsto h_{B C}^{p, q}(t):=\operatorname{dim}_{\mathbb{C}} H_{B C}^{p, q}\left(X_{t}, \mathbb{C}\right), \\
& B \ni t \longmapsto h_{A}^{p, q}(t):=\operatorname{dim}_{\mathbb{C}} H_{A}^{p, q}\left(X_{t}, \mathbb{C}\right),
\end{aligned}
$$

are upper-semicontinuous.
(ii) If the Hodge number $h^{p, q}(t)$ is independent of $t \in B$, then the map

$$
B \ni t \longmapsto H_{\bar{\partial}}^{p, q}\left(X_{t}, \mathbb{C}\right)
$$

defines a C^{∞} vector bundle on B.
The analogous statement holds for $h_{B C}^{p, q}(t)$ and $h_{A}^{p, q}(t)$.
(1) The first main consequence of the upper-semicontinuity of the Hodge numbers under deformations is the deformation openness of the Frölicher degeneration property at E_{1}.

Theorem. Let $\pi: \mathcal{X} \longrightarrow B$ be a holomorphic family of compact complex manifolds $X_{t}:=\pi^{-1}(t)$, with $t \in B$. Fix an arbitrary reference point $0 \in B$.
If the Frölicher spectral sequence of X_{0} degenerates at E_{1}, then, for all $t \in B$ sufficiently close to 0 , we have:
(a) the Frölicher spectral sequence of X_{t} degenerates at E_{1};

$$
\text { (b) } h^{p, q}(t)=h^{p, q}(0) \text { for every bidegree }(p, q) \text {. }
$$

Proof. We know that the hypothesis $E_{1}\left(X_{0}\right)=E_{\infty}\left(X_{0}\right)$ is equivalent to the numerical identities:

$$
\begin{equation*}
b_{k}=\sum_{p+q=k} h^{p, q}(0), \quad k \in\{0,1, \ldots, 2 n\}, \tag{4}
\end{equation*}
$$

where $b_{k}:=\operatorname{dim}_{\mathbb{C}} H_{D R}^{k}(X, \mathbb{C})$ is the k-th Betti number of the fibres.
For every $t \in B$ sufficiently close to 0 , we get:

$$
\begin{equation*}
b_{k} \stackrel{(i)}{\leq} \sum_{p+q=k} h^{p, q}(t) \stackrel{(i i)}{\leq} \sum_{p+q=k} h^{p, q}(0) \stackrel{(i i i)}{=} b_{k}, \tag{5}
\end{equation*}
$$

where (i) is the dimension inequality that is valid on any manifold, (ii) is the upper-semicontinuity property of the above theorem, while (iii) features above.

Thus, inequalities (i) and (ii) must be equalities for every $t \in B$ sufficiently close to 0 .

Now, (i) being an equality for every degree k is equivalent to

$$
E_{1}\left(X_{t}\right)=E_{\infty}\left(X_{t}\right)
$$

while (ii) being an equality for every degree k is equivalent to

$$
h^{p, q}(t)=h^{p, q}(0)
$$

for every bidegree (p, q).
(2) The second main consequence of the upper-semicontinuity of the Hodge numbers under deformations is the deformation openness of the $\partial \bar{\partial}$-property of compact complex manifolds.

Theorem. (Wu 2006, Angella-Tomassini 2013)
Let $\pi: \mathcal{X} \longrightarrow B$ be a holomorphic family of compact complex manifolds $X_{t}:=\pi^{-1}(t)$, with $t \in B$. Fix an arbitrary reference point $0 \in B$.
If the fibre X_{0} is a $\partial \bar{\partial}$-manifold, then, for all $t \in B$ sufficiently close to 0 , we have:
(a) the fibre X_{t} is a $\partial \bar{\partial}$-manifold;
(b) $h_{B C}^{p, q}(t)=h_{B C}^{p, q}(0)$ and $h_{A}^{p, q}(t)=h_{A}^{p, q}(0)$ for every bidegree (p, q).

Proof. By Angella-Tomassini (2013), the $\partial \bar{\partial}$-assumption on X_{0} is equivalent to the identities:

$$
\sum_{p+q=k}\left(h_{B C}^{p, q}(0)+h_{A}^{p, q}(0)\right)=2 b_{k}, \quad k \in\{0,1, \ldots, 2 n\} .
$$

Meanwhile, the upper-semicontinuity properties yield:

$$
h_{B C}^{p, q}(0) \geq h_{B C}^{p, q}(t) \quad \text { and } \quad h_{A}^{p, q}(0) \geq h_{A}^{p, q}(t)
$$

for all bidegrees (p, q) and all $t \in B$ sufficiently close to 0 .
Finally, by Angella-Tomassini (2013), we always have the inequalities:

$$
\sum_{p+q=k}\left(h_{B C}^{p, q}(t)+h_{A}^{p, q}(t)\right) \geq 2 b_{k}, \quad t \in B, \quad k \in\{0,1, \ldots, 2 n\} .
$$

Putting together all these pieces of information, we get:
$2 b_{k} \stackrel{(i)}{\leq} \sum_{p+q=k}\left(h_{B C}^{p, q}(t)+h_{A}^{p, q}(t)\right) \stackrel{(i i)}{\leq} \sum_{p+q=k}\left(h_{B C}^{p, q}(0)+h_{A}^{p, q}(0)\right)=2 b_{k}$,
for all $k \in\{0,1, \ldots, 2 n\}$ and all $t \in B$ sufficiently close to 0 . Hence, both of the above inequalities must be equalities.

In particular, inequalities (i) being equalities for all $k \in\{0,1, \ldots, 2 n\}$ and all $t \in B$ sufficiently close to 0 amounts to X_{t} being a $\partial \bar{\partial}$-manifold for all $t \in B$ sufficiently close to 0 , thanks again to Angella-Tomassini (2013). This proves (a).

Meanwhile, inequalities (ii) being equalities for all bidegrees (p, q) and all $t \in B$ sufficiently close to 0 proves (b).
(3) Deformation openness of the Kähler property (Kodaira-Spencer 1960)

Let us start with a very simple but crucial observation.
Lemma. Let ω be a Hermitian metric on a compact complex manifold X. The equivalence holds:

$$
\omega \text { is Kähler } \Longleftrightarrow \Delta_{B C} \omega=0,
$$

where $\Delta_{B C}: C_{1,1}^{\infty}(X, \mathbb{C}) \longrightarrow C_{1,1}^{\infty}(X, \mathbb{C})$ is the Bott-Chern Laplacian induced by ω.

Proof. We know that

$$
\operatorname{ker} \Delta_{B C}=\operatorname{ker} \partial \cap \operatorname{ker} \bar{\partial} \cap \operatorname{ker}(\partial \bar{\partial})^{\star} .
$$

So, one implication of the above equivalence is obvious:

$$
\text { if } \Delta_{B C} \omega=0 \text {, then } \partial \omega=0 \text {, which means that } \omega \text { is Kähler. }
$$

Suppose now that ω is Kähler, namely $d \omega=0$. This implies $\partial \omega=0$ and $\bar{\partial} \omega=0$. To prove that $(\partial \bar{\partial})^{\star} \omega=0$, we will use the standard formulae:
$\star \star=(-1)^{k}$ Id \quad on k -forms; $\quad \partial^{\star}=-\star \bar{\partial} \star, \quad \bar{\partial}^{\star}=-\star \partial \star$ and the standard formula:

$$
\begin{equation*}
\star \omega=\frac{\omega^{n-1}}{(n-1)!} \tag{6}
\end{equation*}
$$

where $\star=\star_{\omega}$ is the Hodge star operator induced by the Hermitain metric ω.

We get the equivalences:

$$
(\partial \bar{\partial})^{\star} \omega=0 \Longleftrightarrow \star \partial \bar{\partial}(\star \omega)=0 \Longleftrightarrow \partial \bar{\partial} \frac{\omega^{n-1}}{(n-1)!}=0
$$

where the second one uses the fact that \star is an isomorphism.
Now, the last identity holds since

$$
\bar{\partial} \omega^{n-1}=(n-1) \omega^{n-2} \wedge \bar{\partial} \omega=0
$$

Indeed, $\bar{\partial} \omega=0$ by the Kähler assumption on ω.

Theorem. (Kodaira-Spencer 1960)

Let $\pi: \mathcal{X} \longrightarrow B$ be a holomorphic family of compact complex manifolds $X_{t}:=\pi^{-1}(t)$, with $t \in B$. Fix an arbitrary reference point $0 \in B$.
(a) If the fibre X_{0} is a Kähler manifold, then the fibre X_{t} is a Kähler manifold for all $t \in B$ sufficiently close to 0 .
(b) Moreover, given any Kähler metric ω_{0} on X_{0}, there exists a small neighbourhood U of 0 in B and a C^{∞} family $\left(\omega_{t}\right)_{t \in U}$ of Kähler metrics on the respective fibres X_{t} whose member for $t=0$ is ω_{0}.

Proof. Since (b) implies (a), we will prove (b).
Let ω_{0} be a Kähler metric on X_{0}. In particular, ω_{0} is a smooth J_{0}-type $(1,1)$-form on X_{0}, hence a smooth 2 -form on X (the C^{∞} manifold underlying the fibres X_{t} for $t \in B$ close to 0 .)

For every $t \in B$, let ω_{t} be the J_{t}-type $(1,1)$-component of the 2 -form ω_{0}. Clearly, the member for $t=0$ of the family of forms $\left(\omega_{t}\right)_{t \in B}$ is ω_{0}. Moreover, the ω_{t} 's vary in a C^{∞} way with t because they are the J_{t}-type $(1,1)$-components of a fixed 2 -form and the J_{t} 's depend in a (at least) C^{∞} way on t.

Now, ω_{0} is positive definite because it is a metric on X_{0}. By continuity w.r.t. t, ω_{t} remains positive definite for all $t \in U$ if the neighbourhood U of 0 in B is small enough. Hence, ω_{t} is a Hermitian metric on X_{t} for every $t \in U$, so $\left(\omega_{t}\right)_{t \in U}$ is a C^{∞} family of Hermitian metrics on the respective fibres X_{t}, whose member for $t=0$ is the original Kähler metric ω_{0}.

We have to change the metrics ω_{t} with $t \in U \backslash\{0\}$ to make them Kähler. The above Lemma tells us that this amounts to making the ω_{t} 's Bott-Chern harmonic w.r.t. themselves (i.e. for the Bott-Chern Laplacians induced by the ω_{t} 's).

Let us therefore consider the $L_{\omega_{t}}^{2}$-orthogonal projectors:

$$
F_{t}: C_{1,1}^{\infty}\left(X_{t}, \mathbb{C}\right) \longrightarrow \mathcal{H}_{\Delta_{B C}}^{1,1}\left(X_{t}, \mathbb{C}\right), \quad t \in U
$$

onto the kernels of the Bott-Chern Laplacians $\Delta_{B C, t}$ induced by the ω_{t} 's in J_{t}-bidegree $(1,1)$.

The crucial piece of information that we need at this point is the non-jumping of a certain cohomology space dimension. Since X_{0} is a $\partial \bar{\partial}$-manifold (because it is even Kähler, by hypothesis), the dimension $h_{B C}^{1,1}(t)$ of $\mathcal{H}_{\Delta_{B C}}^{1,1}\left(X_{t}, \mathbb{C}\right)\left(=\right.$ the dimension of $H_{B C}^{1,1}\left(X_{t}, \mathbb{C}\right)$, thanks to the Hodge isomorphism) is independent of $t \in U$ if the neighbourhood U of 0 in B is small enough.

Therefore, by Theorem C, F_{t} varies in a C^{∞} way with $t \in U$.
Now, put

$$
\widetilde{\omega}_{t}:=\frac{1}{2}\left(F_{t} \omega_{t}+\overline{F_{t} \omega_{t}}\right), \quad t \in U .
$$

The J_{t}-type $(1,1)$-forms $\widetilde{\omega}_{t}$ have the following properties:
(i) $\widetilde{\omega}_{t}$ is a real form (i.e. it equals its conjugate) for every $t \in U$;
(ii) $\widetilde{\omega}_{t}$ varies in a C^{∞} way with $t \in U$, because F_{t} and ω_{t} do;
(iii) $\widetilde{\omega}_{0}=\omega_{0}$ because $F_{0} \omega_{0}=\omega_{0}$ (recall that ω_{0} is Kähler on X_{0} and the above Lemma applies) and ω_{0} is real;
(iv) $\widetilde{\omega}_{t}$ is positive definite on X_{t} for all $t \in U$ (shrink U about 0 if necessary), because $\widetilde{\omega}_{0}$ is and $\widetilde{\omega}_{t}$ varies (at least) continuously with $t \in U$;
(v) $\widetilde{\omega}_{t} \in \operatorname{ker} \partial_{t}$ for all $t \in U$, because $F_{t} \omega_{t} \in \mathcal{H}_{\Delta_{B C}}^{1,1}\left(X_{t}, \mathbb{C}\right)=$ $\operatorname{ker} \partial_{t} \cap \operatorname{ker} \bar{\partial}_{t} \cap \operatorname{ker}\left(\partial_{t} \bar{\partial}_{t}\right)^{\star} \subset \operatorname{ker} \partial_{t} \cap \operatorname{ker} \bar{\partial}_{t}$.
(Note that the Bott-Chern harmonic space $\mathcal{H}_{\Delta_{B C}}^{1,1}\left(X_{t}, \mathbb{C}\right)$ in (v) is defined by the Hermitian metric ω_{t}, rather than $\widetilde{\omega}_{t}$.)

Properties (i)-(v) amount to saying that

$$
\left(\widetilde{\omega}_{t}\right)_{t \in U}
$$

is a C^{∞} family of Kähler metrics on the respective fibres X_{t}, whose member for $t=0$ is the originally given Kähler metric ω_{0} on X_{0}. \square

