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DEFORMATIONS OF COMPLEX STRUCTURES

Definition. A holomorphic family of compact complex man-
ifolds is a proper holomorphic submersion 7 : X — B be-
tween complexr manifolds X and B.

X = the total space
B = the base of the family

Vte B, X;:=n (t) C X is acompact complex manifold
(= the fibre above t)

Thus, (X¢)iep is a family (X¢)e g of equidimensional compact com-
plex manifolds parametrised by the points of the base B.
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(with a base point 0 € B)

We usually let m = dimg B and n = dimg Xy for t € B.



Common situation: when the base B is an open ball about the
origin in some C"* or, more generally, when a base point 0 € B has

been fixed.

We can then take the fibre above 0 € B as a reference fibre and view
the fibres X; for t € B sufficiently close to 0 as small deformations
of XQ.

If ¢ is allowed to lie anywhere in B, the family 7 : X — B can be
seen as a family of holomorphic deformations of Xj.



(I) Ehresmann’s theorem (1947) (i) Every holomorphic fam-
ily of compact complex manifolds is locally C°° trivial in the
following sense.

There exists a C°° manifold X such that every point tg € B

has an open neighbourhood U C B for which there exists a C°°
diffeomorphism

T: Xy — X XU such that prool =,

where Xp; = 7T_1(U) C X and pro : X x U — U 1s the projection
on the second factor.



(11) If the base B is contractible, the family is even globally
C° trivial in the sense that there exists a C'°° manifold X and
a C'*° diffeomorphism

T:X — X xXB suchthat prool =,
where pro : X X B — B 1s the projection on the second factor.

(111) Suppose that the base B of the family is an open ball about
the origin in some C"".

The local trivialisation T = (Tp, m) + X — Xo x B of (i),
obtained after possibly replacing B by a neighbourhood U of 0 € B,
can be chosen such that the fibres of the map 1y : X — X are
complex submanifolds of X.



Consequence

-the Dolbeault, E,., Bott-Chern and Aeppli cohomology spaces of the
fibres X, as well as their dimensions, depend on t € B:

HE (X, C), Bp(Xy), Hpd(Xy, C), HYY(Xy, C).

-the De Rham cohomology of X} is locally constant, so we can iden-
tify:

HY o(Xy, C) = HY (X, ©), ke {0,...,2n},
for all ¢ in a small enough neighbourhood of any given point ¢y € B.



(IT) The Kodaira-Spencer map
Let 1 : X — B be a holomorphic family of compact complex
manifolds. Fix an arbitrary base point 0 € B. The differential map

dr - THx — 75T VB)

is a morphism of holomorphic vector bundles over X. Since X =
7~ 1(0) C X, we have

7YX, = ker ((dTF)XO),

so we get an exact sequence of holomorphic vector bundles over X

0 — THO0Xy — TH0% % 75 (THOB) y, — 0.

Meanwhile, 7*(T'" OB)‘ x, = X0 X TO1 VB is the trivial holomorphic
vector bundle over X of fibre 7, 01 B
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This exact sequence defines an extension of the holomorphic vec-
tor bundle THYX, by the trivial holomorphic vector bundle of fibre

TO1 'UB. This extension is equivalent to the connecting morphism

1.0
p: Ty B = HY(X, w*(Tl’OB)\XO) — HY (X, Ox, (T X))

~ H (X, TH X))
that is part of the long exact sequence associated with the above short
exact sequence.

Definition 0.1. The linear map
p:Ty"'B — H"1(X, TV 0Xy)

is called the Kodaira-Spencer map at 0 of the family m: X —
B.



The main interest in the Kodaira-Spencer map stems from the fol-
lowing loosely stated principle that will be made precise in the next
two subsections.

Fact. The Kodaira-Spencer map at 0 can be seen as the differ-
ential at t =0 of the map

B>t— J, (1)
where J¢ is the complex structure of the fibre Xi.

In other words, the Kodaira-Spencer map is the classitying map for
the 1-st order deformations of (the complex structure of) X,.
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Analytic approach to the Kodaira-Spencer map

There exists a vector-valued form
Y(t) € G5 (Xo, T X)
such that ) )
Or ~ 0y — (1), te B, t~0

in the following sense.

Theorem. After possibly shrinking B about 0, for every t € B

and for every locally defined C-valued C° function f on X = X,
the following equivalence holds:

f is Jp — holomorphic <= (0y— ¥(t)) f = 0. (2)
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Theorem. (a) The TV Xy-valued Jy-(0, 1)-form aig—gt)\t:o is Op-

closed, hence it defines a cohomology class

dt [t=0] g, ’ |

(b) The following identity holds:

g (%m) B _{ag—?to}ao’

where p : Tol’OB — HY% (X, THYX,) is the Kodaira-Spencer
map at 0 of the family m: X — B.
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Therefore, the following piece of notation is justified.

Notation. Let m : X — B be a holomorphic family of com-
pact complexr manifolds. We fix a reference point 0 € B and let

0 Tol’OB — HY (X, THVX) be the Kodaira-Spencer map at 0.

For every holomorphic vector field % c (U, THYB) on some
small open neighbourhood U C B of 0, we put

0Xy (2 )
ot |t=0 =7 Otlt=0)
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The Kodaira-Nirenberg-Spencer existence theorem

We now take the opposite point of view to the previous one.

Question. Let X be a compact complex manifold and let 0 &€
HY (X, THYX)).

When does there exist a holomorphic family of compact complex
manifolds m : X — B, with B a small open disc about 0 in C,

such that
0X4

—1
™) o ot |t=0

—07

Put differently: when can X be deformed in the direction of the
oiven —07 A posteriori, —f will be the tangent vector at 0 to B.
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Obstructions to deforming a given complex structure

We need to construct vector-valued forms 4 (t) € Cg5(X, T LX)
depending holomorphically on t € B and satistying the integrability
condition:

Qo) = 5 00), b I ves

for all t € B close to 0, such that 1(0) =

The integrability condition is equivalent to
07 = 0,

where (recall)

atﬁ({)()—w(t% te B, t~0.
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We need to construct ¥(t) as a convergent power series

W(t) = i(t) + Y wult), (3)

where, for every v € N*, the vector-valued form

vt = S ot e CEY(X, THOX)
1+ U=
is a homogeneous polynomial of degree v in the variables t = (t1,...,t;m) €
B cC™.

In particular, we are looking to construct vector-valued forms
wyl...ym < C(iOl(Xa T170X>
for (vq,...,vm) € N
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The integrability condition is equivalent to the following system of
equations:

(Eq. 1) 0yq(t) =0

(Eq.v) Dbult) =5 S [0ult), dould)],  with v>2, (4
p=1

that must be satisfied for all ¢ € B sufficiently close to 0. Note that,

for every v > 1, the terms featuring in (Eq. ) are homogeneous poly-

nomials of degree v int = (t1,...,ty) € B. This is an inductively

defined system of equations in that, for every v > 2, the right-hand

side term of (Eq. v) is determined by the solutions vy of the previous

equations (Eq. A) with A < v — 1.
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Suppose, furthermore, that a vector-valued form 8 € HY 1( X, THVX)
has been given beforehand and that we are looking to deform X = X
in the direction of —0.

To make a choice, suppose that (9/0t);_g = (9/0ty)|;—q for some
ked{l,...,m}.

Then, we have the following extra condition on (t):

0Y(1)

_ 7 =0, or equivalently {¢O...1...O}_ =0,
{ Oty |t0}(9 ’

------
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Construction of v((t). Note that ¢y 1 o = 0 (with 1 in the

k-th slot) for all & € {1,...,m}, because d11(t) = 0 for all ¢ close
to 0, by (Eq.1). Since, ideally, we would like to reach every 6 &
H% (X, THYX) (ie. to deform X in all possible directions), we let

{617 co 7577%}

be a collection of m d-closed vector-valued forms 8y € C§% (X, T LX)
such that the set of their cohomology classes

{16005 (Buda

is a basis of HH(X, THYX), and we let
P1(t) =Bt + -+ Bmitm € C’éﬂ(X, Tl’OX) N ker O

for a priori arbitrary complex variables ¢{,...,¢;; € C such that
(t1,...,tm) is as close as will be necessary to 0 € C'.
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every A € {1,...,m}.

[n this way, ¥ (t) satisfies (Eq. 1) for all t = (¢1,...,ty) € C" and
Y (t) can be made to satisfy the condition

{%(I:)t—o}a -

for any pregiven choice of § € HY 1(X, THVX) after the 1, (t)’s with
v > 2 have been constructed.
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Construction of (1,(t)),>o2.

Lemma. For every v > 2, the vector-valued form on the right-
hand side of equation (Fq.v) is O-closed.

Conclusion. All the obstructions to solving the equations (Fq. V), cN~
lie in H%2(X, THVX).

In other words, the right-hand side terms of equations (Eq. /) define
cohomology classes

—1
1 vV
3 S llth vumst]} € HOHX, THOX), w22

p=1 J
These classes vanish in H%?(X, T1VX) <= ther.hs. of equations

(Eq. v),>9 are d-exact <= the equations (Eq. v) are solvable.
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The qualitative obstructions found above are the only obstructions
to deforming the complex structure of X.

In other words, if all the equations (Eq. v),>9 are solvable, their solu-
tions (¢y ), >2 can always be chosen such that the power series defining

Y (t) converges absolutely.

This is the content of the following important existence theorem
of Kodaira-Nirenberg-Spencer (1958).
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Theorem. Let X be a compact compler manifold such that
g 2(x, 7VXx) = 0.

Then, there exists a holomorphic family m : X — B C C™
of compact complex manifolds, where m = dimcH" (X, THVX)
and B is a small open ball about the origin in C"", such that:

(i) 710) = X;

(ii) the Kodaira-Spencer map at (

0 0X¢

1,0 0,1 1,0
TV'B — H> (X, TH°X N
P20 X, ) Otlt=0 Ot |t=0

1$ an isomorphism.
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In other words, if the space H)2(X, THYX) that contains all the
qualitative obstructions to locally deforming X vanishes, then X can,
indeed, be deformed in all the available directions (parametrised by

g% x, 7H0X).
Even more striking is the following

Bogomolov-Tian-Todorov Theorem. Let X be a d0-manifold
whose canonical bundle Ky 1s trivial.

Then, the Kuranishit family of X is unobstructed.
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Calabi-Yau manifolds

Definition. A compact complex manifold X is said to be a Calabi-
Yau manifold if its canonical bundle Ky 1s trivial.

Let n = dimgX. Recall that the canonical bundle of X is the
holomorphic line bundle of (n, 0)-forms on X:

Ky = A"T*X = det(AVVT*X) = — det(TH U X).

Thus, if (21,...,2,) is a system of local holomorphic coordinates on
X, the holomorphic n-form dzy A - - - Adz,, defines a local holomorphic
frame of Ky
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As with any holomorphic line bundle, the triviality is equivalent to
the existence of a non-vanishing global holomorphic section:

Ky s trivial
— Jue HYX, KX>2Hg’O<X, C) such that wu(x)#0Vexe X
< Ju € (X, C) such that Ou=0 and wu(z)#0VrelX.

When Ky is trivial, the Hodge number h " = 1, so the non-
vanishing holomorphic n-form u on X is umque up to a multzplzcatwe
constant. Such a form will be called a Calabi- Yau form. Note that

Hg’O(X , C) = C%(X, C) Nkerd since, for bidegree reasons, the
only d-exact (n, 0)-form is zero. So, every u € C OOO(X C)Nkerd

identifies with [u|5 € Hg’O(X, C) ~ HY(X, Kx).
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Lemma and Definition. Suppose that Ky 1is trivial and let
u be a Calabi-Yau form on X. Then, for every g = 0,...,n,

u defines an isomorphism (that will be called the Calabi-Yau
isomorphism ):

Tu @ CGo,(X, THYX) =5 02y (X, C)

mapping any 0 € Cé’oq(X, THOX) to Ty(0) = O_u, where the
operation denoted by -1 combines the contraction of u by the (1, 0)-

vector field component of 6 with the exterior multiplication by the
(0, q)-form component.
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Lemma and Definition. Suppose that Ky s trivial and let u be

a Calabi-Yau form on X. Then, when q = 1, the isomorphism
T, satisfies:

Tulker d) =kerd and Ty(Imd) = Im. (5)

Hence T}, induces an isomorphism in cohomology

Ty - HNX, TH7X) ) - L Xx, © (6)
defined by Tp,([0]) = [0u] for all |0] € g 1(x, ThUX).

The isomorphism T[U] will be called the Calabi-Yau isomor-
phism in cohomology.
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Definition. Suppose that Ky is trivial and let u be a Calabi-
Yau form on X. For all q1,q0 € {0,...,n}, define the following
bracket:

(X,C)x C®, (X, C) — C>

n 1,Q1+Q2(X’ C),

['7°]: n 1Q1 16]2

C1, Go) =Ty [Tu1C17 Tul@l,

where the operation | , | on the right-hand side combines the Lie
bracket of the TV VX -parts of T, 'y € C’gfql(X, THOX) and T, MG €
Cé)j)qQ(X, TH0X) with the wedge product of their (0, q1)- and re-
spectively (0, go)-form parts.
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Sketch of proof of the Bogomolov-Tian-Todorov Theo-
rem.

The main ingredient is the
Tian-Todorov Lemma. Let X be a compact complex manifold

(n = dimcX ) such that Kx s trivial. Then, for any forms
(1, € C24 (X, C) such that 0¢1 = 0 = 0, we have

€15 Gof € ImD.
More precisely, the identity
01w, Oy u] = —0(012(020u)) (7)

holds for 01,05 € C§ (X, TLOX) whenever (01au) = O(0yau) =
0.
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How this is applied

Let [n] € H" (X, THYX) be an arbitrary nonzero class. Pick any
d-closed representative wy of the class [n]afu] € H n=L1(X, C). Such
a d-closed representative exists thanks to the 90 assumption on X.

Since 713, is an isomorphism, there is a unique ®1 € C’éﬂ(X : ThHUX )
such that ®1_u = w;. Now dw; = 0, so the former equality in (5)
implies that 9P = 0. Moreover, since [®1u] = [wy], (6) implies that
(@] = [n] € HY (X, T1YX) and this is the original class we started
off with. However, ®1 need not be the A”-harmonic representative of

the class [n] in the non-Kaehler case (in contrast to the Kéhler case of
'Tia87] and [Tod89]).
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Meanwhile, by the choice of wy, we have

0(Pq1au) =0,
so the Tian-Todorov Lemma applied to (§ = (9 = ®1u yields |P1ou, &1aul €
Im 0. On the other hand, [®1.u, ®j.u] € ker d (easy to see). By the
O0-property of X applied to the (n — 1, 2)-form 1/2[®q_u, $qu),
there exists ¢ € C)2,5 (X, C) such that

~ 1
00y = 5 Dyou, Pyl

We can choose 19 of minimal L?-norm with this property (i.e. g €
Im(00)*, see the orthogonal three-space decomposition for the Aeppli
cohomology).
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Put we := 0Yp € C 1 (X, €). Since Ty, is an isomorphism, there

1S a unique 9 € 0 1(X THUX ) such that ®9_u = wo. Implicitly,
O(Pyuu) = 0.

Moreover, we get
(5@2)_|u — 5(@2_|u) —

[<I>1_|u, (I)l_IU] — [@1, (I)ﬂ_lu

DO | —
DO | —

Hence

(Eq. 1) 0Dy =

We can now continue inductively.

1
— D1, Dq].
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Suppose we have constructed @1, ..., ®n_1 € CF9 (X, T 9X) such
that |

k—1
~ 1
O(Cpu) =0 and  J(Ppu) = > [gu, Bpyou), 1<k < N-L
[=1

Since 13, is an isomorphism, the latter identity above is equivalent to

k—1
_ 1
(Bq(k=1) 0= ;[@l, O], 1<k<N-1.
Then, again we have
| N—1 )
5 [@l_lu, CI)N_Z_VLL] € ker 0.

[=1
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On the other hand, since ®y_u,...,®Py_jou € kerd, the Tian-
Todorov Lemma gives

[Pjau, Ppy_joul € Imo  forall [=1,..., N —1.

Thanks to the last two relations, the d0-property of X implies the
existence of a form ¢y € CF2 5 1(X C) such that

N—-1

_ 1
00V = 5 Zz; Dy, Oy_jaul.
We can choose ¢ of minimal L?-norm with this property (i.e. Py €
Im(99)%). Letting wy = d¢y € C72 4, there exists a unique

Oy € O (X, TLOX) such that &y ou = wpy. Implicitly
(?(CI)N_VLL) = 0.
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- N—1
We also have O(Ppu) = % > [Pyau, Pp_jou] by construction.
[=1

Since 13, is an isomorphism, this amounts to
| N—1
Bo (N-1)  dby=r S (@, dy |
[=1

We have thus shown inductively that the equation (Eq. k) is solvable
for every k € N*.

This implies the convergence of the power series
O(t) = Oyt + Dot> + -+ Dyt + ...

in all the Holder norms | |5, withk > 2and a € (0, 1), forallt € C
such that [t| < e}, because the 1,’s have been chosen of minimal L?
norms with their respective properties. []
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