Hodge Theory of Compact Complex Manifolds

CIMPA School "Complex Analysis, Geometry and Dynamics"

Urgench, Uzbekistan

Lecture No. 3

Dan Popovici Université Paul Sabatier, Toulouse, France

DEFORMATIONS OF COMPLEX STRUCTURES

Definition. A holomorphic family of compact complex manifolds is a proper holomorphic submersion $\pi : \mathcal{X} \longrightarrow B$ between complex manifolds \mathcal{X} and B.

 $\mathcal{X} =$ the *total space*

B =the *base* of the family

$$\forall t \in B, X_t := \pi^{-1}(t) \subset \mathcal{X} \text{ is a compact complex manifold} (= the fibre above t)$$

Thus, $(X_t)_{t\in B}$ is a family $(X_t)_{t\in B}$ of equidimensional compact complex manifolds parametrised by the points of the base B.

We usually let $m = \dim_{\mathbb{C}} B$ and $n = \dim_{\mathbb{C}} X_t$ for $t \in B$.

Common situation: when the base B is an open ball about the origin in some \mathbb{C}^m or, more generally, when a base point $0 \in B$ has been fixed.

We can then take the fibre above $0 \in B$ as a reference fibre and view the fibres X_t for $t \in B$ sufficiently close to 0 as *small deformations* of X_0 .

If t is allowed to lie anywhere in B, the family $\pi : \mathcal{X} \longrightarrow B$ can be seen as a family of *holomorphic deformations* of X_0 . (I) Ehresmann's theorem (1947) (i) Every holomorphic family of compact complex manifolds is locally C^{∞} trivial in the following sense.

There exists a C^{∞} manifold X such that every point $t_0 \in B$ has an open neighbourhood $U \subset B$ for which there exists a C^{∞} **diffeomorphism**

 $T: \mathcal{X}_U \longrightarrow X \times U \quad such that \quad pr_2 \circ T = \pi,$

where $\mathcal{X}_U = \pi^{-1}(U) \subset \mathcal{X}$ and $pr_2 : X \times U \longrightarrow U$ is the projection on the second factor. (ii) If the base B is contractible, the family is even globally C^{∞} trivial in the sense that there exists a C^{∞} manifold X and a C^{∞} diffeomorphism

 $T: \mathcal{X} \longrightarrow X \times B$ such that $pr_2 \circ T = \pi$,

where $pr_2: X \times B \longrightarrow B$ is the projection on the second factor.

(iii) Suppose that the base B of the family is an open ball about the origin in some \mathbb{C}^m .

The local trivialisation $T = (T_0, \pi) : \mathcal{X} \longrightarrow X_0 \times B$ of (i), obtained after possibly replacing B by a neighbourhood U of $0 \in B$, can be chosen such that the fibres of the map $T_0 : \mathcal{X} \longrightarrow X_0$ are **complex submanifolds** of \mathcal{X} .

Consequence

-the Dolbeault, E_r , Bott-Chern and Aeppli cohomology spaces of the fibres X_t , as well as their dimensions, depend on $t \in B$:

$$H^{p,q}_{\bar{\partial}}(X_t, \mathbb{C}), \quad E^{p,q}_r(X_t), \quad H^{p,q}_{BC}(X_t, \mathbb{C}), \quad H^{p,q}_A(X_t, \mathbb{C}).$$

-the De Rham cohomology of X_t is *locally constant*, so we can identify:

$$H_{DR}^k(X_t, \mathbb{C}) = H_{DR}^k(X, \mathbb{C}), \qquad k \in \{0, \dots, 2n\},$$

for all t in a small enough neighbourhood of any given point $t_0 \in B$.

(II) The Kodaira-Spencer map

Let $\pi : \mathcal{X} \longrightarrow B$ be a *holomorphic family* of compact complex manifolds. Fix an arbitrary base point $0 \in B$. The differential map

$$d\pi: T^{1,0}\mathcal{X} \longrightarrow \pi^{\star}(T^{1,0}B)$$

is a morphism of holomorphic vector bundles over \mathcal{X} . Since $X_0 = \pi^{-1}(0) \subset \mathcal{X}$, we have

$$T^{1,0}X_0 = \ker\left((d\pi)_{|X_0}\right),$$

so we get an *exact sequence* of *holomorphic vector bundles* over X_0 :

$$0 \longrightarrow T^{1,0}X_0 \longrightarrow T^{1,0}\mathcal{X}_{|X_0} \xrightarrow{d\pi} \pi^*(T^{1,0}B)_{|X_0} \longrightarrow 0.$$

Meanwhile, $\pi^{\star}(T^{1,0}B)|_{X_0} = X_0 \times T_0^{1,0}B$ is the *trivial* holomorphic vector bundle over X_0 of fibre $T_0^{1,0}B$.

This exact sequence defines an extension of the holomorphic vector bundle $T^{1,0}X_0$ by the trivial holomorphic vector bundle of fibre $T_0^{1,0}B$. This extension is equivalent to the *connecting morphism*

$$\rho: T_0^{1,\,0}B = H^0(X_0,\,\pi^*(T^{1,\,0}B)_{|X_0}) \longrightarrow H^1(X_0,\,\mathcal{O}_{X_0}(T^{1,\,0}X_0))$$

$$\simeq H^{0,\,1}(X_0,\,T^{1,\,0}X_0)$$

that is part of the long exact sequence associated with the above short exact sequence.

Definition 0.1. The linear map

$$\rho: T_0^{1,0}B \longrightarrow H^{0,1}(X_0, T^{1,0}X_0)$$

is called the **Kodaira-Spencer map at** 0 of the family $\pi : \mathcal{X} \longrightarrow B$.

The main interest in the Kodaira-Spencer map stems from the following loosely stated principle that will be made precise in the next two subsections.

Fact. The Kodaira-Spencer map at 0 can be seen as the differential at t = 0 of the map

$$B \ni t \mapsto J_t, \tag{1}$$

where J_t is the complex structure of the fibre X_t .

In other words, the Kodaira-Spencer map is the classifying map for the 1-st order deformations of (the complex structure of) X_0 .

Analytic approach to the Kodaira-Spencer map

There exists a vector-valued form

$$\psi(t) \in C_{0,1}^{\infty}(X_0, T^{1,0}X_0)$$

such that

$$\bar{\partial}_t \simeq \bar{\partial}_0 - \psi(t), \qquad t \in B, \ t \sim 0$$

in the following sense.

Theorem. After possibly shrinking B about 0, for every $t \in B$ and for every locally defined \mathbb{C} -valued C^{∞} function f on $X := X_0$, the following equivalence holds:

$$f \text{ is } J_t - holomorphic \iff (\bar{\partial}_0 - \psi(t)) f \equiv 0.$$
 (2)

Theorem. (a) The $T^{1,0}X_0$ -valued J_0 -(0, 1)-form $\frac{\partial \psi(t)}{\partial t}|_{t=0}$ is $\overline{\partial}_0$ -closed, hence it defines a cohomology class

$$\left\{\frac{\partial\psi(t)}{\partial t}\Big|_{t=0}\right\}_{\bar{\partial}_0} \in H^{0,1}(X_0, T^{1,0}X_0).$$

(b) The following identity holds:

$$\rho\left(\frac{\partial}{\partial t}_{|t=0}\right) = -\left\{\frac{\partial\psi(t)}{\partial t}_{|t=0}\right\}_{\bar{\partial}_0},$$

where $\rho : T_0^{1,0}B \longrightarrow H^{0,1}(X_0, T^{1,0}X_0)$ is the Kodaira-Spencer map at 0 of the family $\pi : \mathcal{X} \longrightarrow B$. Therefore, the following piece of notation is justified.

Notation. Let $\pi : \mathcal{X} \longrightarrow B$ be a holomorphic family of compact complex manifolds. We fix a reference point $0 \in B$ and let $\rho: T_0^{1,0}B \longrightarrow H^{0,1}(X_0, T^{1,0}X_0)$ be the Kodaira-Spencer map at 0.

For every holomorphic vector field $\frac{\partial}{\partial t} \in \Gamma(U, T^{1,0}B)$ on some small open neighbourhood $U \subset B$ of 0, we put

$$\frac{\partial X_t}{\partial t}_{|t=0} := \rho\left(\frac{\partial}{\partial t}_{|t=0}\right).$$

The Kodaira-Nirenberg-Spencer existence theorem

We now take the opposite point of view to the previous one.

Question. Let X be a compact complex manifold and let $\theta \in H^{0,1}(X, T^{1,0}X)$.

When does there exist a holomorphic family of compact complex manifolds $\pi : \mathcal{X} \longrightarrow B$, with B a small open disc about 0 in \mathbb{C} , such that

$$\pi^{-1}(0) = X$$
 and $\frac{\partial X_t}{\partial t}\Big|_{t=0} = -\theta?$

Put differently: when can X be deformed in the *direction* of the given $-\theta$? A posteriori, $-\theta$ will be the tangent vector at 0 to B.

Obstructions to deforming a given complex structure

We need to construct vector-valued forms $\psi(t) \in C_{0,1}^{\infty}(X, T^{1,0}X)$ depending *holomorphically* on $t \in B$ and satisfying the *integrability condition*:

$$\bar{\partial}_0 \psi(t) = \frac{1}{2} \left[\psi(t), \ \psi(t) \right], \quad t \in B,$$

for all $t \in B$ close to 0, such that $\psi(0) = 0$.

The *integrability condition* is equivalent to

$$\bar{\partial}_t^2 = 0,$$

where (recall)

$$\bar{\partial}_t \simeq \bar{\partial}_0 - \psi(t), \qquad t \in B, \ t \sim 0.$$

We need to construct $\psi(t)$ as a *convergent* power series

$$\psi(t) = \psi_1(t) + \sum_{\nu=2}^{+\infty} \psi_{\nu}(t), \qquad (3)$$

where, for every $\nu \in \mathbb{N}^{\star}$, the vector-valued form

$$\psi_{\nu}(t) = \sum_{\nu_1 + \dots + \nu_m = \nu} \psi_{\nu_1 \dots \nu_m} t_1^{\nu_1} \dots t_m^{\nu_m} \in C_{0,1}^{\infty}(X, T^{1,0}X)$$

is a *homogeneous polynomial* of degree ν in the variables $t = (t_1, \ldots, t_m) \in B \subset \mathbb{C}^m$.

In particular, we are looking to construct vector-valued forms

$$\psi_{\nu_1...\nu_m} \in C^{\infty}_{0,\,1}(X,\,T^{1,\,0}X)$$

for $(\nu_1, \ldots, \nu_m) \in \mathbb{N}^m$.

The *integrability condition* is equivalent to the following system of equations:

(Eq. 1)
$$\bar{\partial}\psi_1(t) = 0$$

(Eq. ν) $\bar{\partial}\psi_\nu(t) = \frac{1}{2} \sum_{\mu=1}^{\nu-1} [\psi_\mu(t), \psi_{\nu-\mu}(t)], \text{ with } \nu \ge 2, (4)$

that must be satisfied for all $t \in B$ sufficiently close to 0. Note that, for every $\nu \geq 1$, the terms featuring in (Eq. ν) are homogeneous polynomials of degree ν in $t = (t_1, \ldots, t_m) \in B$. This is an inductively defined system of equations in that, for every $\nu \geq 2$, the right-hand side term of (Eq. ν) is determined by the solutions ψ_{λ} of the previous equations (Eq. λ) with $\lambda \leq \nu - 1$. Suppose, furthermore, that a vector-valued form $\theta \in H^{0,1}(X, T^{1,0}X)$ has been given beforehand and that we are looking to deform $X = X_0$ in the *direction of* $-\theta$.

To make a choice, suppose that $(\partial/\partial t)_{|t=0} = (\partial/\partial t_k)_{|t=0}$ for some $k \in \{1, \ldots, m\}$.

Then, we have the following extra condition on $\psi(t)$:

$$\left\{\frac{\partial\psi(t)}{\partial t_k}\Big|_{t=0}\right\}_{\bar{\partial}} = \theta, \quad \text{or equivalently} \quad \{\psi_{0...1...0}\}_{\bar{\partial}} = \theta,$$

with 1 in the k-th slot in $\psi_{0...1...0}$.

Construction of $\psi_1(t)$. Note that $\overline{\partial}\psi_{0...1...0} = 0$ (with 1 in the *k*-th slot) for all $k \in \{1, \ldots, m\}$, because $\overline{\partial}\psi_1(t) = 0$ for all *t* close to 0, by (Eq. 1). Since, ideally, we would like to reach every $\theta \in$ $H^{0,1}(X, T^{1,0}X)$ (i.e. to deform X in all possible directions), we let

$$\{\beta_1,\ldots,\beta_m\}$$

be a collection of $m \bar{\partial}$ -closed vector-valued forms $\beta_{\lambda} \in C_{0,1}^{\infty}(X, T^{1,0}X)$ such that the set of their cohomology classes

$$\left\{\{\beta_1\}_{\bar{\partial}},\ldots,\{\beta_m\}_{\bar{\partial}}\right\}$$

is a *basis* of $H^{0,1}(X, T^{1,0}X)$, and we let

$$\psi_1(t) = \beta_1 t_1 + \dots + \beta_m t_m \in C_{0,1}^{\infty}(X, T^{1,0}X) \cap \ker \bar{\partial}$$

for a priori arbitrary complex variables $t_1, \ldots, t_m \in \mathbb{C}$ such that (t_1, \ldots, t_m) is as close as will be necessary to $0 \in \mathbb{C}^m$.

In other words, we choose $\psi_{0...1...0} = \beta_{\lambda}$ (with 1 in the λ -th slot) for every $\lambda \in \{1, \ldots, m\}$.

In this way, $\psi_1(t)$ satisfies (Eq. 1) for all $t = (t_1, \ldots, t_m) \in \mathbb{C}^m$ and $\psi(t)$ can be made to satisfy the condition

$$\left\{\frac{\partial\psi(t)}{\partial t_k}\Big|_{t=0}\right\}_{\bar{\partial}} = \theta$$

for any pregiven choice of $\theta \in H^{0,1}(X, T^{1,0}X)$ after the $\psi_{\nu}(t)$'s with $\nu \geq 2$ have been constructed.

Construction of $(\psi_{\nu}(t))_{\nu \geq 2}$.

Lemma. For every $\nu \geq 2$, the vector-valued form on the righthand side of equation $(Eq. \nu)$ is $\overline{\partial}$ -closed.

Conclusion. All the obstructions to solving the equations $(Eq. \nu)_{\nu \in \mathbb{N}^*}$ lie in $H^{0,2}(X, T^{1,0}X)$.

In other words, the right-hand side terms of equations (Eq. ν) define cohomology classes

$$\left\{\frac{1}{2}\sum_{\mu=1}^{\nu-1} [\psi_{\mu}(t), \, \psi_{\nu-\mu}(t)]\right\}_{\bar{\partial}} \in H^{0,2}(X, \, T^{1,0}X), \quad \nu \ge 2.$$

These classes vanish in $H^{0,2}(X, T^{1,0}X) \iff$ the r.h.s. of equations $(\text{Eq. }\nu)_{\nu\geq 2}$ are $\bar{\partial}$ -exact \iff the equations $(\text{Eq. }\nu)$ are solvable.

The *qualitative obstructions* found above are the only obstructions to deforming the complex structure of X.

In other words, if all the equations $(\text{Eq. }\nu)_{\nu\geq 2}$ are solvable, their solutions $(\psi_{\nu})_{\nu\geq 2}$ can always be chosen such that the power series defining $\psi(t)$ converges absolutely.

This is the content of the following important **existence theorem** of Kodaira-Nirenberg-Spencer (1958).

Theorem. Let X be a compact complex manifold such that $H^{0,2}(X, T^{1,0}X) = 0.$

Then, there exists a holomorphic family $\pi : \mathcal{X} \longrightarrow B \subset \mathbb{C}^m$ of compact complex manifolds, where $m := \dim_{\mathbb{C}} H^{0,1}(X, T^{1,0}X)$ and B is a small open ball about the origin in \mathbb{C}^m , such that:

(i)
$$\pi^{-1}(0) = X;$$

(ii) the Kodaira-Spencer map at 0
 $\rho: T_0^{1,0}B \longrightarrow H^{0,1}(X, T^{1,0}X), \quad \frac{\partial}{\partial t}_{|t=0} \mapsto \frac{\partial X_t}{\partial t}_{|t=0},$

is an isomorphism.

In other words, if the space $H^{0,2}(X, T^{1,0}X)$ that contains all the qualitative obstructions to locally deforming X vanishes, then X can, indeed, be deformed in all the available directions (parametrised by $H^{0,1}(X, T^{1,0}X)$).

Even more striking is the following

Bogomolov-Tian-Todorov Theorem. Let X be a $\partial \bar{\partial}$ -manifold whose canonical bundle K_X is trivial. Then, the Kuranishi family of X is unobstructed.

Calabi-Yau manifolds

Definition. A compact complex manifold X is said to be a **Calabi-Yau manifold** if its canonical bundle K_X is **trivial**.

Let $n = \dim_{\mathbb{C}} X$. Recall that the *canonical bundle* of X is the holomorphic line bundle of (n, 0)-forms on X:

$$K_X := \Lambda^{n, 0} T^* X = \det(\Lambda^{1, 0} T^* X) = -\det(T^{1, 0} X).$$

Thus, if (z_1, \ldots, z_n) is a system of local holomorphic coordinates on X, the holomorphic *n*-form $dz_1 \wedge \cdots \wedge dz_n$ defines a local holomorphic frame of K_X .

As with any holomorphic line bundle, the triviality is equivalent to the existence of a non-vanishing global holomorphic section:

K_X is trivial

 $\iff \exists u \in H^0(X, K_X) \simeq H^{n,0}_{\bar{\partial}}(X, \mathbb{C}) \quad \text{such that} \quad u(x) \neq 0 \ \forall x \in X$ $\iff \exists u \in C^\infty_{n,0}(X, \mathbb{C}) \quad \text{such that} \quad \bar{\partial}u = 0 \quad \text{and} \quad u(x) \neq 0 \ \forall x \in X.$

When K_X is trivial, the Hodge number $h_{\bar{\partial}}^{n,0} = 1$, so the nonvanishing holomorphic *n*-form *u* on *X* is unique up to a multiplicative constant. Such a form will be called a Calabi-Yau form. Note that $H_{\bar{\partial}}^{n,0}(X, \mathbb{C}) = C_{n,0}^{\infty}(X, \mathbb{C}) \cap \ker \bar{\partial}$ since, for bidegree reasons, the only $\bar{\partial}$ -exact (n, 0)-form is zero. So, every $u \in C_{n,0}^{\infty}(X, \mathbb{C}) \cap \ker \bar{\partial}$ identifies with $[u]_{\bar{\partial}} \in H_{\bar{\partial}}^{n,0}(X, \mathbb{C}) \simeq H^0(X, K_X)$. **Lemma and Definition.** Suppose that K_X is **trivial** and let u be a **Calabi-Yau form** on X. Then, for every q = 0, ..., n, u defines an isomorphism (that will be called the **Calabi-Yau isomorphism**):

$$T_u : C_{0,q}^{\infty}(X, T^{1,0}X) \xrightarrow{\cdot \sqcup u} C_{n-1,q}^{\infty}(X, \mathbb{C})$$

mapping any $\theta \in C_{0,q}^{\infty}(X, T^{1,0}X)$ to $T_u(\theta) := \theta \sqcup u$, where the operation denoted by $\cdot \lrcorner$ combines the contraction of u by the (1, 0)-vector field component of θ with the exterior multiplication by the (0, q)-form component.

Lemma and Definition. Suppose that K_X is **trivial** and let u be a **Calabi-Yau form** on X. Then, when q = 1, the isomorphism T_u satisfies:

$$T_u(\ker\bar{\partial}) = \ker\bar{\partial} \quad and \quad T_u(\operatorname{Im}\bar{\partial}) = \operatorname{Im}\bar{\partial}.$$
 (5)

Hence T_u induces an isomorphism in cohomology

$$T_{[u]} : H^{0,1}(X, T^{1,0}X) \xrightarrow{\cdot \sqcup [u]} H^{n-1,1}(X, \mathbb{C})$$

$$(6)$$

defined by $T_{[u]}([\theta]) = [\theta \lrcorner u]$ for all $[\theta] \in H^{0,1}(X, T^{1,0}X).$

The isomorphism $T_{[u]}$ will be called the Calabi-Yau isomorphism in cohomology.

Definition. Suppose that K_X is **trivial** and let u be a **Calabi-Yau form** on X. For all $q_1, q_2 \in \{0, ..., n\}$, define the following bracket:

$$[\cdot, \cdot] : C_{n-1,q_1}^{\infty}(X, \mathbb{C}) \times C_{n-1,q_2}^{\infty}(X, \mathbb{C}) \longrightarrow C_{n-1,q_1+q_2}^{\infty}(X, \mathbb{C}),$$
$$[\zeta_1, \zeta_2] := T_u \bigg[T_u^{-1} \zeta_1, T_u^{-1} \zeta_2 \bigg],$$

where the operation [,] on the right-hand side combines the Lie bracket of the $T^{1,0}X$ -parts of $T_u^{-1}\zeta_1 \in C_{0,q_1}^{\infty}(X, T^{1,0}X)$ and $T_u^{-1}\zeta_2 \in C_{0,q_2}^{\infty}(X, T^{1,0}X)$ with the wedge product of their $(0, q_1)$ - and respectively $(0, q_2)$ -form parts.

Sketch of proof of the Bogomolov-Tian-Todorov Theorem.

The main ingredient is the

Tian-Todorov Lemma. Let X be a compact complex manifold $(n = \dim_{\mathbb{C}} X)$ such that K_X is **trivial**. Then, for any forms $\zeta_1, \zeta_2 \in C_{n-1,1}^{\infty}(X, \mathbb{C})$ such that $\partial \zeta_1 = \partial \zeta_2 = 0$, we have

 $[\zeta_1, \zeta_2] \in Im \partial.$

More precisely, the identity

$$[\theta_1 \lrcorner u, \, \theta_2 \lrcorner u] = -\partial(\theta_1 \lrcorner (\theta_2 \lrcorner u)) \tag{7}$$

holds for $\theta_1, \theta_2 \in C_{0,1}^{\infty}(X, T^{1,0}X)$ whenever $\partial(\theta_1 \lrcorner u) = \partial(\theta_2 \lrcorner u) = 0$.

How this is applied

Let $[\eta] \in H^{0,1}(X, T^{1,0}X)$ be an arbitrary nonzero class. Pick any *d*-closed representative w_1 of the class $[\eta] \lrcorner [u] \in H^{n-1,1}(X, \mathbb{C})$. Such a *d*-closed representative exists thanks to the $\partial \bar{\partial}$ assumption on X.

Since T_u is an isomorphism, there is a unique $\Phi_1 \in C_{0,1}^{\infty}(X, T^{1,0}X)$ such that $\Phi_1 \sqcup u = w_1$. Now $\overline{\partial}w_1 = 0$, so the former equality in (5) implies that $\overline{\partial}\Phi_1 = 0$. Moreover, since $[\Phi_1 \sqcup u] = [w_1]$, (6) implies that $[\Phi_1] = [\eta] \in H^{0,1}(X, T^{1,0}X)$ and this is the original class we started off with. However, Φ_1 need not be the Δ'' -harmonic representative of the class $[\eta]$ in the non-Kaehler case (in contrast to the Kähler case of [Tia87] and [Tod89]). Meanwhile, by the choice of w_1 , we have

 $\partial(\Phi_1 \lrcorner u) = 0,$

so the Tian-Todorov Lemma applied to $\zeta_1 = \zeta_2 = \Phi_1 \lrcorner u$ yields $[\Phi_1 \lrcorner u, \Phi_1 \lrcorner u] \in$ Im ∂ . On the other hand, $[\Phi_1 \lrcorner u, \Phi_1 \lrcorner u] \in \ker \overline{\partial}$ (easy to see). By the $\partial \overline{\partial}$ -property of X applied to the (n - 1, 2)-form $1/2 [\Phi_1 \lrcorner u, \Phi_1 \lrcorner u]$, there exists $\psi_2 \in C_{n-2,1}^{\infty}(X, \mathbb{C})$ such that

$$\bar{\partial}\partial\psi_2 = \frac{1}{2} \left[\Phi_1 \lrcorner u, \ \Phi_1 \lrcorner u \right].$$

We can choose ψ_2 of minimal L^2 -norm with this property (i.e. $\psi_2 \in \text{Im}(\partial \bar{\partial})^*$, see the orthogonal three-space decomposition for the Aeppli cohomology).

Put $w_2 := \partial \psi_2 \in C_{n-1,1}^{\infty}(X, \mathbb{C})$. Since T_u is an isomorphism, there is a unique $\Phi_2 \in C_{0,1}^{\infty}(X, T^{1,0}X)$ such that $\Phi_2 \sqcup u = w_2$. Implicitly, $\partial(\Phi_2 \sqcup u) = 0$.

Moreover, we get

$$(\bar{\partial}\Phi_2) \lrcorner u = \bar{\partial}(\Phi_2 \lrcorner u) = \frac{1}{2} \left[\Phi_1 \lrcorner u, \ \Phi_1 \lrcorner u \right] = \frac{1}{2} \left[\Phi_1, \ \Phi_1 \right] \lrcorner u.$$

Hence

(Eq. 1)
$$\bar{\partial}\Phi_2 = \frac{1}{2} [\Phi_1, \Phi_1].$$

We can now continue inductively.

Suppose we have constructed $\Phi_1, \ldots, \Phi_{N-1} \in C_{0,1}^{\infty}(X, T^{1,0}X)$ such that

$$\partial(\Phi_k \lrcorner u) = 0 \quad \text{and} \quad \bar{\partial}(\Phi_k \lrcorner u) = \frac{1}{2} \sum_{l=1}^{k-1} [\Phi_l \lrcorner u, \Phi_{k-l} \lrcorner u], \quad 1 \le k \le N-1.$$

Since T_u is an isomorphism, the latter identity above is equivalent to

(Eq.
$$(k-1)$$
) $\bar{\partial}\Phi_k = \frac{1}{2} \sum_{l=1}^{k-1} [\Phi_l, \Phi_{k-l}], \quad 1 \le k \le N-1.$

Then, again we have

$$\frac{1}{2} \sum_{l=1}^{N-1} [\Phi_l \lrcorner u, \Phi_{N-l} \lrcorner u] \in \ker \bar{\partial}.$$

On the other hand, since $\Phi_1 \sqcup u, \ldots, \Phi_{N-1} \sqcup u \in \ker \partial$, the Tian-Todorov Lemma gives

$$[\Phi_l \lrcorner u, \Phi_{N-l} \lrcorner u] \in \operatorname{Im} \partial \quad \text{ for all } \quad l = 1, \dots, N-1.$$

Thanks to the last two relations, the $\partial \bar{\partial}$ -property of X implies the existence of a form $\psi_N \in C^{\infty}_{n-2,1}(X, \mathbb{C})$ such that

$$\bar{\partial}\partial\psi_N = \frac{1}{2} \sum_{l=1}^{N-1} [\Phi_l \lrcorner u, \Phi_{N-l} \lrcorner u].$$

We can choose ψ_N of minimal L^2 -norm with this property (i.e. $\psi_N \in \operatorname{Im}(\partial \bar{\partial})^*$). Letting $w_N := \partial \psi_N \in C_{n-1,1}^{\infty}$, there exists a unique $\Phi_N \in C_{0,1}^{\infty}(X, T^{1,0}X)$ such that $\Phi_N \lrcorner u = w_N$. Implicitly

$$\partial(\Phi_N \lrcorner u) = 0.$$

We also have $\bar{\partial}(\Phi_N \sqcup u) = \frac{1}{2} \sum_{l=1}^{N-1} [\Phi_l \sqcup u, \Phi_{N-l} \sqcup u]$ by construction. Since T_u is an isomorphism, this amounts to

(Eq. (N - 1))
$$\bar{\partial}\Phi_N = \frac{1}{2} \sum_{l=1}^{N-1} [\Phi_l, \Phi_{N-l}].$$

We have thus shown inductively that the equation (Eq. k) is solvable for every $k \in \mathbb{N}^*$.

This implies the convergence of the power series

$$\Phi(t) := \Phi_1 t + \Phi_2 t^2 + \dots + \Phi_N t^N + \dots$$

in all the Hölder norms $| |_{k+\alpha}$, with $k \ge 2$ and $\alpha \in (0, 1)$, for all $t \in \mathbb{C}$ such that $|t| < \varepsilon_k$, because the ψ_{ν} 's have been chosen of minimal L^2 norms with their respective properties.