Hodge Theory of Compact Complex Manifolds

CIMPA School "Complex Analysis, Geometry and Dynamics"

Urgench, Uzbekistan
Lecture No. 3

Dan Popovici
Université Paul Sabatier,
Toulouse, France

DEFORMATIONS OF COMPLEX STRUCTURES

Definition. A holomorphic family of compact complex manifolds is a proper holomorphic submersion $\pi: \mathcal{X} \longrightarrow B$ between complex manifolds \mathcal{X} and B.
$\mathcal{X}=$ the total space
$B=$ the base of the family
$\forall t \in B, X_{t}:=\pi^{-1}(t) \subset \mathcal{X}$ is a compact complex manifold

$$
(=\text { the fibre above } t)
$$

Thus, $\left(X_{t}\right)_{t \in B}$ is a family $\left(X_{t}\right)_{t \in B}$ of equidimensional compact complex manifolds parametrised by the points of the base B.

$0_{0} \quad$	${ }^{t} \quad B$ complex manifold
	$($ with a base point $0 \in B)$

We usually let $m=\operatorname{dim}_{\mathbb{C}} B$ and $n=\operatorname{dim}_{\mathbb{C}} X_{t}$ for $t \in B$.

Common situation: when the base B is an open ball about the origin in some \mathbb{C}^{m} or, more generally, when a base point $0 \in B$ has been fixed.

We can then take the fibre above $0 \in B$ as a reference fibre and view the fibres X_{t} for $t \in B$ sufficiently close to 0 as small deformations of X_{0}.

If t is allowed to lie anywhere in B, the family $\pi: \mathcal{X} \longrightarrow B$ can be seen as a family of holomorphic deformations of X_{0}.
(I) Ehresmann's theorem (1947) (i) Every holomorphic family of compact complex manifolds is locally C^{∞} trivial in the following sense.

There exists a C^{∞} manifold X such that every point $t_{0} \in B$ has an open neighbourhood $U \subset B$ for which there exists a C^{∞} diffeomorphism

[^0](ii) If the base B is contractible, the family is even globally C^{∞} trivial in the sense that there exists a C^{∞} manifold X and $a C^{\infty}$ diffeomorphism
$$
T: \mathcal{X} \longrightarrow X \times B \quad \text { such that } \quad p r_{2} \circ T=\pi
$$
where $p r_{2}: X \times B \longrightarrow B$ is the projection on the second factor.
(iii) Suppose that the base B of the family is an open ball about the origin in some \mathbb{C}^{m}.
The local trivialisation $T=\left(T_{0}, \pi\right): \mathcal{X} \longrightarrow X_{0} \times B$ of (i), obtained after possibly replacing B by a neighbourhood U of $0 \in B$, can be chosen such that the fibres of the map $T_{0}: \mathcal{X} \longrightarrow X_{0}$ are complex submanifolds of \mathcal{X}.

Consequence

-the Dolbeault, E_{r}, Bott-Chern and Aeppli cohomology spaces of the fibres X_{t}, as well as their dimensions, depend on $t \in B$:

$$
H_{\bar{\partial}}^{p, q}\left(X_{t}, \mathbb{C}\right), \quad E_{r}^{p, q}\left(X_{t}\right), \quad H_{B C}^{p, q}\left(X_{t}, \mathbb{C}\right), \quad H_{A}^{p, q}\left(X_{t}, \mathbb{C}\right) .
$$

-the De Rham cohomology of X_{t} is locally constant, so we can identify:

$$
H_{D R}^{k}\left(X_{t}, \mathbb{C}\right)=H_{D R}^{k}(X, \mathbb{C}), \quad k \in\{0, \ldots, 2 n\}
$$

for all t in a small enough neighbourhood of any given point $t_{0} \in B$.

(II) The Kodaira-Spencer map

Let $\pi: \mathcal{X} \longrightarrow B$ be a holomorphic family of compact complex manifolds. Fix an arbitrary base point $0 \in B$. The differential map

$$
d \pi: T^{1,0} \mathcal{X} \longrightarrow \pi^{\star}\left(T^{1,0} B\right)
$$

is a morphism of holomorphic vector bundles over \mathcal{X}. Since $X_{0}=$ $\pi^{-1}(0) \subset \mathcal{X}$, we have

$$
T^{1,0} X_{0}=\operatorname{ker}\left((d \pi)_{\mid X_{0}}\right)
$$

so we get an exact sequence of holomorphic vector bundles over X_{0} :

$$
0 \longrightarrow T^{1,0} X_{0} \longrightarrow T^{1,0} \mathcal{X}_{\mid X_{0}} \xrightarrow{d \pi} \pi^{\star}\left(T^{1,0} B\right)_{\mid X_{0}} \longrightarrow 0
$$

Meanwhile, $\pi^{\star}\left(T^{1,0} B\right)_{\mid X_{0}}=X_{0} \times T_{0}^{1,0} B$ is the trivial holomorphic vector bundle over X_{0} of fibre $T_{0}^{1,0} B$.

This exact sequence defines an extension of the holomorphic vector bundle $T^{1,0} X_{0}$ by the trivial holomorphic vector bundle of fibre $T_{0}^{1,0} B$. This extension is equivalent to the connecting morphism

$$
\begin{aligned}
\rho: T_{0}^{1,0} B=H^{0}\left(X_{0}, \pi^{\star}\left(T^{1,0} B\right)_{\mid X_{0}}\right) \longrightarrow H^{1}(& \left.X_{0}, \mathcal{O}_{X_{0}}\left(T^{1,0} X_{0}\right)\right) \\
& \simeq H^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)
\end{aligned}
$$

that is part of the long exact sequence associated with the above short exact sequence.
Definition 0.1. The linear map

$$
\rho: T_{0}^{1,0} B \longrightarrow H^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)
$$

is called the Kodaira-Spencer map at 0 of the family $\pi: \mathcal{X} \longrightarrow$ B.

The main interest in the Kodaira-Spencer map stems from the following loosely stated principle that will be made precise in the next two subsections.
Fact. The Kodaira-Spencer map at 0 can be seen as the differential at $t=0$ of the map

$$
\begin{equation*}
B \ni t \mapsto J_{t}, \tag{1}
\end{equation*}
$$

where J_{t} is the complex structure of the fibre X_{t}.
In other words, the Kodaira-Spencer map is the classifying map for the 1-st order deformations of (the complex structure of) X_{0}.

Analytic approach to the Kodaira-Spencer map

There exists a vector-valued form

$$
\psi(t) \in C_{0,1}^{\infty}\left(X_{0}, T^{1,0} X_{0}\right)
$$

such that

$$
\bar{\partial}_{t} \simeq \bar{\partial}_{0}-\psi(t), \quad t \in B, t \sim 0
$$

in the following sense.
Theorem. After possibly shrinking B about 0 , for every $t \in B$ and for every locally defined \mathbb{C}-valued C^{∞} function f on $X:=X_{0}$, the following equivalence holds:

$$
\begin{equation*}
f \text { is } J_{t}-\text { holomorphic } \Longleftrightarrow\left(\bar{\partial}_{0}-\psi(t)\right) f \equiv 0 \tag{2}
\end{equation*}
$$

Theorem. (a) The $T^{1,0} X_{0}$-valued J_{0}-(0,1)-form $\left.\frac{\partial \psi(t)}{\partial t} \right\rvert\, t=0$ is $\bar{\partial}_{0^{-}}$ closed, hence it defines a cohomology class

$$
\left\{\left.\frac{\partial \psi(t)}{\partial t} \right\rvert\, t=0\right\}_{\bar{\partial}_{0}} \in H^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)
$$

(b) The following identity holds:

$$
\rho\left(\left.\frac{\partial}{\partial t} \right\rvert\, t=0\right)=-\left\{\left.\frac{\partial \psi(t)}{\partial t} \right\rvert\, t=0\right\}_{\bar{\partial}_{0}}
$$

where $\rho: T_{0}^{1,0} B \longrightarrow H^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$ is the Kodaira-Spencer map at 0 of the family $\pi: \mathcal{X} \longrightarrow B$.

Therefore, the following piece of notation is justified.
Notation. Let $\pi: \mathcal{X} \longrightarrow B$ be a holomorphic family of compact complex manifolds. We fix a reference point $0 \in B$ and let $\rho: T_{0}^{1,0} B \longrightarrow H^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$ be the Kodaira-Spencer map at 0.

For every holomorphic vector field $\frac{\partial}{\partial t} \in \Gamma\left(U, T^{1,0} B\right)$ on some small open neighbourhood $U \subset B$ of 0 , we put

$$
{\left.\frac{\partial X_{t}}{\partial t} \right\rvert\, t=0}:=\rho\left(\left.\frac{\partial}{\partial t} \right\rvert\, t=0\right) .
$$

The Kodaira-Nirenberg-Spencer existence theorem

We now take the opposite point of view to the previous one.
Question. Let X be a compact complex manifold and let $\theta \in$ $H^{0,1}\left(X, T^{1,0} X\right)$.

When does there exist a holomorphic family of compact complex manifolds $\pi: \mathcal{X} \longrightarrow B$, with B a small open disc about 0 in \mathbb{C}, such that

$$
\pi^{-1}(0)=X \quad \text { and } \quad{\left.\frac{\partial X_{t}}{\partial t} \right\rvert\, t=0}=-\theta ?
$$

Put differently: when can X be deformed in the direction of the given $-\theta$? A posteriori, $-\theta$ will be the tangent vector at 0 to B.

Obstructions to deforming a given complex structure

We need to construct vector-valued forms $\psi(t) \in C_{0,1}^{\infty}\left(X, T^{1,0} X\right)$ depending holomorphically on $t \in B$ and satisfying the integrability condition:

$$
\bar{\partial}_{0} \psi(t)=\frac{1}{2}[\psi(t), \psi(t)], \quad t \in B
$$

for all $t \in B$ close to 0 , such that $\psi(0)=0$.
The integrability condition is equivalent to

$$
\bar{\partial}_{t}^{2}=0
$$

where (recall)

$$
\bar{\partial}_{t} \simeq \bar{\partial}_{0}-\psi(t), \quad t \in B, t \sim 0
$$

We need to construct $\psi(t)$ as a convergent power series

$$
\begin{equation*}
\psi(t)=\psi_{1}(t)+\sum_{\nu=2}^{+\infty} \psi_{\nu}(t) \tag{3}
\end{equation*}
$$

where, for every $\nu \in \mathbb{N}^{\star}$, the vector-valued form

$$
\psi_{\nu}(t)=\sum_{\nu_{1}+\cdots+\nu_{m}=\nu} \psi_{\nu_{1} \ldots \nu_{m}} t_{1}^{\nu_{1}} \ldots t_{m}^{\nu_{m}} \in C_{0,1}^{\infty}\left(X, T^{1,0} X\right)
$$

is a homogeneous polynomial of degree ν in the variables $t=\left(t_{1}, \ldots, t_{m}\right) \in$ $B \subset \mathbb{C}^{m}$.
In particular, we are looking to construct vector-valued forms

$$
\psi_{\nu_{1} \ldots \nu_{m}} \in C_{0,1}^{\infty}\left(X, T^{1,0} X\right)
$$

for $\left(\nu_{1}, \ldots, \nu_{m}\right) \in \mathbb{N}^{m}$.

The integrability condition is equivalent to the following system of equations:

$$
\begin{array}{ll}
\text { (Eq. 1) } & \bar{\partial} \psi_{1}(t)=0 \\
\text { (Eq. } \nu) & \bar{\partial} \psi_{\nu}(t)=\frac{1}{2} \sum_{\mu=1}^{\nu-1}\left[\psi_{\mu}(t), \psi_{\nu-\mu}(t)\right], \quad \text { with } \quad \nu \geq 2, \tag{4}
\end{array}
$$

that must be satisfied for all $t \in B$ sufficiently close to 0 . Note that, for every $\nu \geq 1$, the terms featuring in (Eq. ν) are homogeneous polynomials of degree ν in $t=\left(t_{1}, \ldots, t_{m}\right) \in B$. This is an inductively defined system of equations in that, for every $\nu \geq 2$, the right-hand side term of (Eq. ν) is determined by the solutions ψ_{λ} of the previous equations (Eq. λ) with $\lambda \leq \nu-1$.

Suppose, furthermore, that a vector-valued form $\theta \in H^{0,1}\left(X, T^{1,0} X\right)$ has been given beforehand and that we are looking to deform $X=X_{0}$ in the direction of $-\theta$.

To make a choice, suppose that $(\partial / \partial t)_{\mid t=0}=\left(\partial / \partial t_{k}\right)_{\mid t=0}$ for some $k \in\{1, \ldots, m\}$.

Then, we have the following extra condition on $\psi(t)$:

$$
\left\{\frac{\partial \psi(t)}{\partial t_{k}}{ }_{\mid t=0}\right\}_{\bar{\partial}}=\theta, \quad \text { or equivalently } \quad\left\{\psi_{0 \ldots 1 \ldots 0}\right\}_{\bar{\partial}}=\theta
$$

with 1 in the k-th slot in $\psi_{0 \ldots 1 \ldots 0}$.

Construction of $\psi_{1}(t)$. Note that $\bar{\partial} \psi_{0 \ldots 1 \ldots 0}=0$ (with 1 in the k-th slot) for all $k \in\{1, \ldots, m\}$, because $\bar{\partial} \psi_{1}(t)=0$ for all t close to 0 , by (Eq.1). Since, ideally, we would like to reach every $\theta \in$ $H^{0,1}\left(X, T^{1,0} X\right)$ (i.e. to deform X in all possible directions), we let

$$
\left\{\beta_{1}, \ldots, \beta_{m}\right\}
$$

be a collection of $m \bar{\partial}$-closed vector-valued forms $\beta_{\lambda} \in C_{0,1}^{\infty}\left(X, T^{1,0} X\right)$ such that the set of their cohomology classes

$$
\left\{\left\{\beta_{1}\right\}_{\bar{\partial}}, \ldots,\left\{\beta_{m}\right\}_{\bar{\partial}}\right\}
$$

is a basis of $H^{0,1}\left(X, T^{1,0} X\right)$, and we let

$$
\psi_{1}(t)=\beta_{1} t_{1}+\cdots+\beta_{m} t_{m} \in C_{0,1}^{\infty}\left(X, T^{1,0} X\right) \cap \operatorname{ker} \bar{\partial}
$$

for a priori arbitrary complex variables $t_{1}, \ldots, t_{m} \in \mathbb{C}$ such that $\left(t_{1}, \ldots, t_{m}\right)$ is as close as will be necessary to $0 \in \mathbb{C}^{m}$.

In other words, we choose $\psi_{0 \ldots 1 \ldots 0}=\beta_{\lambda}$ (with 1 in the λ-th slot) for every $\lambda \in\{1, \ldots, m\}$.

In this way, $\psi_{1}(t)$ satisfies (Eq. 1) for all $t=\left(t_{1}, \ldots, t_{m}\right) \in \mathbb{C}^{m}$ and $\psi(t)$ can be made to satisfy the condition

$$
\left\{\frac{\partial \psi(t)}{\partial t_{k} \mid t=0}\right\}_{\bar{\partial}}=\theta
$$

for any pregiven choice of $\theta \in H^{0,1}\left(X, T^{1,0} X\right)$ after the $\psi_{\nu}(t)$'s with $\nu \geq 2$ have been constructed.

Construction of $\left(\psi_{\nu}(t)\right)_{\nu \geq 2}$ 。

Lemma. For every $\nu \geq 2$, the vector-valued form on the righthand side of equation ($E q . \nu$) is $\bar{\partial}$-closed.

Conclusion. All the obstructions to solving the equations $(\text { Eq. } \nu)_{\nu \in \mathbb{N}^{\star}}$ lie in $H^{0,2}\left(X, T^{1,0} X\right)$.

In other words, the right-hand side terms of equations (Eq. ν) define cohomology classes

$$
\left\{\frac{1}{2} \sum_{\mu=1}^{\nu-1}\left[\psi_{\mu}(t), \psi_{\nu-\mu}(t)\right]\right\}_{\bar{\partial}} \in H^{0,2}\left(X, T^{1,0} X\right), \quad \nu \geq 2
$$

These classes vanish in $H^{0,2}\left(X, T^{1,0} X\right) \Longleftrightarrow$ the r.h.s. of equations (Eq. $\nu)_{\nu \geq 2}$ are $\bar{\partial}$-exact \Longleftrightarrow the equations (Eq. ν) are solvable.

The qualitative obstructions found above are the only obstructions to deforming the complex structure of X.

In other words, if all the equations (Eq. $\nu)_{\nu \geq 2}$ are solvable, their solutions $\left(\psi_{\nu}\right)_{\nu \geq 2}$ can always be chosen such that the power series defining $\psi(t)$ converges absolutely.

This is the content of the following important existence theorem of Kodaira-Nirenberg-Spencer (1958).

Theorem. Let X be a compact complex manifold such that

$$
H^{0,2}\left(X, T^{1,0} X\right)=0
$$

Then, there exists a holomorphic family $\pi: \mathcal{X} \longrightarrow B \subset \mathbb{C}^{m}$ of compact complex manifolds, where $m:=\operatorname{dim}_{\mathbb{C}} H^{0,1}\left(X, T^{1,0} X\right)$ and B is a small open ball about the origin in \mathbb{C}^{m}, such that:
(i) $\pi^{-1}(0)=X$;
(ii) the Kodaira-Spencer map at 0

$$
\left.\rho: T_{0}^{1,0} B \longrightarrow H^{0,1}\left(X, T^{1,0} X\right), \left.\quad \frac{\partial}{\partial t} \right\rvert\, t=0\right) \left.~ \mapsto \frac{\partial X_{t}}{\partial t} \right\rvert\, t=0,
$$

is an isomorphism.

In other words, if the space $H^{0,2}\left(X, T^{1,0} X\right)$ that contains all the qualitative obstructions to locally deforming X vanishes, then X can, indeed, be deformed in all the available directions (parametrised by $\left.H^{0,1}\left(X, T^{1,0} X\right)\right)$.

Even more striking is the following
Bogomolov-Tian-Todorov Theorem. Let X be a $\partial \bar{\partial}$-manifold whose canonical bundle K_{X} is trivial.
Then, the Kuranishi family of X is unobstructed.

Calabi-Yau manifolds

Definition. A compact complex manifold X is said to be a CalabiYau manifold if its canonical bundle K_{X} is trivial.

Let $n=\operatorname{dim}_{\mathbb{C}} X$. Recall that the canonical bundle of X is the holomorphic line bundle of $(n, 0)$-forms on X :

$$
K_{X}:=\Lambda^{n, 0} T^{\star} X=\operatorname{det}\left(\Lambda^{1,0} T^{\star} X\right)=-\operatorname{det}\left(T^{1,0} X\right)
$$

Thus, if $\left(z_{1}, \ldots, z_{n}\right)$ is a system of local holomorphic coordinates on X, the holomorphic n-form $d z_{1} \wedge \cdots \wedge d z_{n}$ defines a local holomorphic frame of K_{X}.

As with any holomorphic line bundle, the triviality is equivalent to the existence of a non-vanishing global holomorphic section:
K_{X} is trivial
$\Longleftrightarrow \exists u \in H^{0}\left(X, K_{X}\right) \simeq H_{\bar{\partial}}^{n, 0}(X, \mathbb{C})$ such that $u(x) \neq 0 \forall x \in X$
$\Longleftrightarrow \exists u \in C_{n, 0}^{\infty}(X, \mathbb{C})$ such that $\bar{\partial} u=0$ and $u(x) \neq 0 \forall x \in X$.
When K_{X} is trivial, the Hodge number $h_{\bar{\partial}}^{n, 0}=1$, so the nonvanishing holomorphic n-form u on X is unique up to a multiplicative constant. Such a form will be called a Calabi-Yau form. Note that $H_{\bar{\partial}}^{n, 0}(X, \mathbb{C})=C_{n, 0}^{\infty}(X, \mathbb{C}) \cap$ ker $\bar{\partial}$ since, for bidegree reasons, the only $\bar{\partial}$-exact $(n, 0)$-form is zero. So, every $u \in C_{n, 0}^{\infty}(X, \mathbb{C}) \cap \operatorname{ker} \bar{\partial}$ identifies with $[u]_{\bar{\partial}} \in H_{\bar{\partial}}^{n, 0}(X, \mathbb{C}) \simeq H^{0}\left(X, K_{X}\right)$.

Lemma and Definition. Suppose that K_{X} is trivial and let u be a Calabi-Yau form on X. Then, for every $q=0, \ldots, n$, u defines an isomorphism (that will be called the Calabi-Yau isomorphism):

$$
T_{u}: C_{0, q}^{\infty}\left(X, T^{1,0} X\right) \xrightarrow{\cdot\lrcorner u} C_{n-1, q}^{\infty}(X, \mathbb{C})
$$

mapping any $\theta \in C_{0, q}^{\infty}\left(X, T^{1,0} X\right)$ to $\left.T_{u}(\theta):=\theta\right\lrcorner u$, where the operation denoted by $\cdot\lrcorner$ combines the contraction of u by the $(1,0)$ vector field component of θ with the exterior multiplication by the $(0, q)$-form component.

Lemma and Definition. Suppose that K_{X} is trivial and let u be a Calabi-Yau form on X. Then, when $q=1$, the isomorphism T_{u} satisfies:

$$
\begin{equation*}
T_{u}(\operatorname{ker} \bar{\partial})=\operatorname{ker} \bar{\partial} \quad \text { and } \quad T_{u}(\operatorname{Im} \bar{\partial})=\operatorname{Im} \bar{\partial} . \tag{5}
\end{equation*}
$$

Hence T_{u} induces an isomorphism in cohomology

$$
\begin{equation*}
T_{[u]}: H^{0,1}\left(X, T^{1,0} X\right) \xrightarrow{\cdot\lrcorner[u]} H^{n-1,1}(X, \mathbb{C}) \tag{6}
\end{equation*}
$$

defined by $\left.T_{[u]}([\theta])=[\theta\lrcorner u\right]$ for all $[\theta] \in H^{0,1}\left(X, T^{1,0} X\right)$.
The isomorphism $T_{[u]}$ will be called the Calabi-Yau isomorphism in cohomology.

Definition. Suppose that K_{X} is trivial and let u be a CalabiYau form on X. For all $q_{1}, q_{2} \in\{0, \ldots, n\}$, define the following bracket:

$$
\begin{gathered}
{[\cdot, \cdot]: C_{n-1, q_{1}}^{\infty}(X, \mathbb{C}) \times C_{n-1, q_{2}}^{\infty}(X, \mathbb{C}) \longrightarrow C_{n-1, q_{1}+q_{2}}^{\infty}(X, \mathbb{C}),} \\
{\left[\zeta_{1}, \zeta_{2}\right]:=T_{u}\left[T_{u}^{-1} \zeta_{1}, T_{u}^{-1} \zeta_{2}\right]}
\end{gathered}
$$

where the operation [,] on the right-hand side combines the Lie bracket of the $T^{1,0} X$-parts of $T_{u}^{-1} \zeta_{1} \in C_{0, q_{1}}^{\infty}\left(X, T^{1,0} X\right)$ and $T_{u}^{-1} \zeta_{2} \in$ $C_{0, q_{2}}^{\infty}\left(X, T^{1,0} X\right)$ with the wedge product of their $\left(0, q_{1}\right)$ - and respectively $\left(0, q_{2}\right)$-form parts.

Sketch of proof of the Bogomolov-Tian-Todorov Theo-

 rem.The main ingredient is the
Tian-Todorov Lemma. Let X be a compact complex manifold ($n=\operatorname{dim}_{\mathbb{C}} X$) such that K_{X} is trivial. Then, for any forms $\zeta_{1}, \zeta_{2} \in C_{n-1,1}^{\infty}(X, \mathbb{C})$ such that $\partial \zeta_{1}=\partial \zeta_{2}=0$, we have

$$
\left[\zeta_{1}, \zeta_{2}\right] \in \operatorname{Im} \partial
$$

More precisely, the identity

$$
\begin{equation*}
\left.\left.\left.\left.\left[\theta_{1}\right\lrcorner u, \theta_{2}\right\lrcorner u\right]=-\partial\left(\theta_{1}\right\lrcorner\left(\theta_{2}\right\lrcorner u\right)\right) \tag{7}
\end{equation*}
$$

holds for $\theta_{1}, \theta_{2} \in C_{0,1}^{\infty}\left(X, T^{1,0} X\right)$ whenever $\left.\left.\partial\left(\theta_{1}\right\lrcorner u\right)=\partial\left(\theta_{2}\right\lrcorner u\right)=$ 0 .

How this is applied

Let $[\eta] \in H^{0,1}\left(X, T^{1,0} X\right)$ be an arbitrary nonzero class. Pick any d-closed representative w_{1} of the class $\left.[\eta]\right\lrcorner[u] \in H^{n-1,1}(X, \mathbb{C})$. Such a d-closed representative exists thanks to the $\partial \bar{\partial}$ assumption on X.

Since T_{u} is an isomorphism, there is a unique $\Phi_{1} \in C_{0,1}^{\infty}\left(X, T^{1,0} X\right)$ such that $\left.\Phi_{1}\right\lrcorner u=w_{1}$. Now $\bar{\partial} w_{1}=0$, so the former equality in (5) implies that $\bar{\partial} \Phi_{1}=0$. Moreover, since $\left.\left[\Phi_{1}\right\lrcorner u\right]=\left[w_{1}\right]$, (6) implies that $\left[\Phi_{1}\right]=[\eta] \in H^{0,1}\left(X, T^{1,0} X\right)$ and this is the original class we started off with. However, Φ_{1} need not be the $\Delta^{\prime \prime}$-harmonic representative of the class $[\eta]$ in the non-Kaehler case (in contrast to the Kähler case of [Tia87] and [Tod89]).

Meanwhile, by the choice of w_{1}, we have

$$
\left.\partial\left(\Phi_{1}\right\lrcorner u\right)=0,
$$

so the Tian-Todorov Lemma applied to $\left.\zeta_{1}=\zeta_{2}=\Phi_{1}\right\lrcorner u$ yields $\left.\left.\left[\Phi_{1}\right\lrcorner u, \Phi_{1}\right\lrcorner u\right] \in$ $\operatorname{Im} \partial$. On the other hand, $\left.\left.\left[\Phi_{1}\right\lrcorner u, \Phi_{1}\right\lrcorner u\right] \in \operatorname{ker} \bar{\partial}$ (easy to see). By the $\partial \bar{\partial}$-property of X applied to the $(n-1,2)$-form $\left.\left.1 / 2\left[\Phi_{1}\right\lrcorner u, \Phi_{1}\right\lrcorner u\right]$, there exists $\psi_{2} \in C_{n-2,1}^{\infty}(X, \mathbb{C})$ such that

$$
\left.\left.\bar{\partial} \partial \psi_{2}=\frac{1}{2}\left[\Phi_{1}\right\lrcorner u, \Phi_{1}\right\lrcorner u\right] .
$$

We can choose ψ_{2} of minimal L^{2}-norm with this property (i.e. $\psi_{2} \in$ $\operatorname{Im}(\partial \bar{\partial})^{\star}$, see the orthogonal three-space decomposition for the Aeppli cohomology).

Put $w_{2}:=\partial \psi_{2} \in C_{n-1,1}^{\infty}(X, \mathbb{C})$. Since T_{u} is an isomorphism, there is a unique $\Phi_{2} \in C_{0,1}^{\infty}\left(X, T^{1,0} X\right)$ such that $\left.\Phi_{2}\right\lrcorner u=w_{2}$. Implicitly, $\left.\partial\left(\Phi_{2}\right\lrcorner u\right)=0$.

Moreover, we get

$$
\left.\left.\left.\left.\left.\left(\bar{\partial} \Phi_{2}\right)\right\lrcorner u=\bar{\partial}\left(\Phi_{2}\right\lrcorner u\right)=\frac{1}{2}\left[\Phi_{1}\right\lrcorner u, \Phi_{1}\right\lrcorner u\right]=\frac{1}{2}\left[\Phi_{1}, \Phi_{1}\right]\right\lrcorner u .
$$

Hence

$$
\left(\text { Eq. 1) } \quad \bar{\partial} \Phi_{2}=\frac{1}{2}\left[\Phi_{1}, \Phi_{1}\right]\right.
$$

We can now continue inductively.

Suppose we have constructed $\Phi_{1}, \ldots, \Phi_{N-1} \in C_{0,1}^{\infty}\left(X, T^{1,0} X\right)$ such that
$\left.\partial\left(\Phi_{k}\right\lrcorner u\right)=0 \quad$ and $\left.\left.\left.\quad \bar{\partial}\left(\Phi_{k}\right\lrcorner u\right)=\frac{1}{2} \sum_{l=1}^{k-1}\left[\Phi_{l}\right\lrcorner u, \Phi_{k-l}\right\lrcorner u\right], \quad 1 \leq k \leq N-1$.
Since T_{u} is an isomorphism, the latter identity above is equivalent to

$$
\text { (Eq. }(k-1)) \quad \bar{\partial} \Phi_{k}=\frac{1}{2} \sum_{l=1}^{k-1}\left[\Phi_{l}, \Phi_{k-l}\right], \quad 1 \leq k \leq N-1 .
$$

Then, again we have

$$
\left.\left.\frac{1}{2} \sum_{l=1}^{N-1}\left[\Phi_{l}\right\lrcorner u, \Phi_{N-l}\right\lrcorner u\right] \in \operatorname{ker} \bar{\partial} .
$$

On the other hand, since $\left.\left.\Phi_{1}\right\lrcorner u, \ldots, \Phi_{N-1}\right\lrcorner u \in \operatorname{ker} \partial$, the TianTodorov Lemma gives

$$
\left.\left.\left[\Phi_{l}\right\lrcorner u, \Phi_{N-l}\right\lrcorner u\right] \in \operatorname{Im} \partial \quad \text { for all } \quad l=1, \ldots, N-1 .
$$

Thanks to the last two relations, the $\partial \bar{\partial}$-property of X implies the existence of a form $\psi_{N} \in C_{n-2,1}^{\infty}(X, \mathbb{C})$ such that

$$
\left.\left.\bar{\partial} \partial \psi_{N}=\frac{1}{2} \sum_{l=1}^{N-1}\left[\Phi_{l}\right\lrcorner u, \Phi_{N-l}\right\lrcorner u\right] .
$$

We can choose ψ_{N} of minimal L^{2}-norm with this property (i.e. $\psi_{N} \in$ $\left.\operatorname{Im}(\partial \bar{\partial})^{\star}\right)$. Letting $w_{N}:=\partial \psi_{N} \in C_{n-1,1}^{\infty}$, there exists a unique $\Phi_{N} \in C_{0,1}^{\infty}\left(X, T^{1,0} X\right)$ such that $\left.\Phi_{N}\right\lrcorner u=w_{N}$. Implicitly

$$
\left.\partial\left(\Phi_{N}\right\lrcorner u\right)=0 .
$$

We also have $\left.\left.\left.\bar{\partial}\left(\Phi_{N}\right\lrcorner u\right)=\frac{1}{2} \sum_{l=1}^{N-1}\left[\Phi_{l}\right\lrcorner u, \Phi_{N-l}\right\lrcorner u\right]$ by construction. Since T_{u} is an isomorphism, this amounts to

$$
(\mathrm{Eq} \cdot(N-1)) \quad \bar{\partial} \Phi_{N}=\frac{1}{2} \sum_{l=1}^{N-1}\left[\Phi_{l}, \Phi_{N-l}\right] .
$$

We have thus shown inductively that the equation (Eq. k) is solvable for every $k \in \mathbb{N}^{\star}$.

This implies the convergence of the power series

$$
\Phi(t):=\Phi_{1} t+\Phi_{2} t^{2}+\cdots+\Phi_{N} t^{N}+\ldots
$$

in all the Hölder norms $\left|\left.\right|_{k+\alpha}\right.$, with $k \geq 2$ and $\alpha \in(0,1)$, for all $t \in \mathbb{C}$ such that $|t|<\varepsilon_{k}$, because the ψ_{ν} 's have been chosen of minimal L^{2} norms with their respective properties.

[^0]: $$
 T: \mathcal{X}_{U} \longrightarrow X \times U \quad \text { such that } \quad p r_{2} \circ T=\pi
 $$

 $$
 \text { where } \mathcal{X}_{U}=\pi^{-1}(U) \subset \mathcal{X} \text { and } p r_{2}: X \times U \longrightarrow U \text { is the projection }
 $$ on the second factor.

