Hodge Theory of Compact Complex Manifolds

CIMPA School "Complex Analysis, Geometry and Dynamics"

Urgench, Uzbekistan
Lecture No. 2

Dan Popovici
Université Paul Sabatier,
Toulouse, France

Context and motivation

X a compact complex manifold, $\operatorname{dim}_{\mathbb{C}} X=n$
Definition. X is a $\partial \bar{\partial}$-manifold if
$\forall p, q, \forall u \in C_{p, q}^{\infty}(X, \mathbb{C})$ s.t. $d u=0$, we have equivalences:

$$
u \in \operatorname{Im} d \Longleftrightarrow u \in \operatorname{Im} \partial \Longleftrightarrow u \in \operatorname{Im} \bar{\partial} \Longleftrightarrow u \in \operatorname{Im}(\partial \bar{\partial}) .
$$

The idea goes back to Deligne-Griffiths-Morgan-Sullivan 1975.

Standard fact. ([DGMS75]) X is a $\partial \bar{\partial}$-manifold \Longleftrightarrow
$\forall k \in\{0,1, \ldots, 2 n\}$, the identity induces an isomorphism

$$
H_{D R}^{k}(X, \mathbb{C}) \simeq \bigoplus_{p+q=k} H_{\bar{\partial}}^{p, q}(X, \mathbb{C}) \quad \text { (Hodge decomposition) }
$$

in the following sense:

- $\forall(p, q)$ s.t. $p+q=k$, every class $\left[\alpha^{p, q}\right]_{\bar{\partial}} \in H_{\bar{\partial}}^{p, q}(X, \mathbb{C})$ can be represented by a d-closed (p, q)-form $\alpha^{p, q}$;
- the linear map
$\bigoplus_{p+q=k} H_{\bar{\partial}}^{p, q}(X, \mathbb{C}) \ni \sum_{p+q=k}\left[\alpha^{p, q}\right]_{\bar{\partial}} \longmapsto\left\{\sum_{p+q=k} \alpha^{p, q}\right\}_{D R} \in H_{D R}^{k}(X, \mathbb{C})$
is independent of the choices of d-closed representatives $\alpha^{p, q}$ of the classes $\left[\alpha^{p, q}\right]_{\bar{\partial}}$ (i.e. well-defined) and bijective.
(i.e. X is cohomologically Kähler)

The Frölicher spectral sequence

Let X be a compact complex manifold, $\operatorname{dim}_{\mathbb{C}} X=n$.
Page 0: the Dolbeault complex, i.e.

$$
\ldots \xrightarrow{d_{0}} E_{0}^{p, q-1} \xrightarrow{d_{0}} E_{0}^{p, q} \xrightarrow{d_{0}} E_{0}^{p, q+1} \xrightarrow{d_{0}} \ldots
$$

with $E_{0}^{p, q}:=C_{p, q}^{\infty}(X, \mathbb{C})($ smooth (p, q)-forms on $X)$ and $d_{0}:=\bar{\partial}$. Put

$$
E_{1}^{p, q}:=\operatorname{ker} d_{0}^{p, q} / \operatorname{Im} d_{0}^{p, q-1}=H_{\bar{\partial}}^{p, q}(X, \mathbb{C})
$$

Page 1: the cohomology spaces of page 0, i.e.

$$
\ldots \xrightarrow{d_{1}} E_{1}^{p-1, q} \xrightarrow{d_{1}} E_{1}^{p, q} \xrightarrow{d_{1}} E_{1}^{p+1, q} \xrightarrow{d_{1}} \ldots,
$$

with differential defined as $d_{1}\left([\alpha]_{\bar{\partial}}\right):=[\partial \alpha]_{\bar{\partial}}$.

Page r :

$$
\ldots \xrightarrow{d_{r}} E_{r}^{p-r, q+r-1} \xrightarrow{d_{r}} E_{r}^{p, q} \xrightarrow{d_{r}} E_{r}^{p+r, q-r+1} \xrightarrow{d_{r}} \ldots
$$

So, d_{r} is of bidegree $(r,-r+1)$ for every $r \in \mathbb{N}^{\star}$. Put

$$
E_{r+1}^{p, q}:=\operatorname{ker} d_{r}^{p, q} / \operatorname{Im} d_{r}^{p-r, q+r-1}
$$

Fact (Frölicher 1955): This spectral sequence converges to the De Rham cohomology of X, i.e. there are (non-canonical) isomorphisms:

$$
H_{D R}^{k}(X, \mathbb{C}) \simeq \bigoplus_{p+q=k} E_{\infty}^{p, q}, \quad k=0, \ldots, 2 n
$$

where $E_{\infty}^{p, q}=\cdots=E_{r+2}^{p, q}=E_{r+1}^{p, q}=E_{r}^{p, q}$ for all p, q and where $r \geq 1$ is the smallest positive integer such that the spectral sequence degenerates at E_{r}. (We write $E_{r}(X)=E_{\infty}(X)$.)

Thus, the degeneration at E_{r} is a purely numerical property:

$$
E_{r}(X)=E_{\infty}(X) \Longleftrightarrow b_{k}=\sum_{p+q=k} \operatorname{dim}_{\mathbb{C}} E_{r}^{p, q} \quad \forall k=0, \ldots, 2 n
$$

In particular,
$\sum_{p+q=k} h^{p, q} \geq \cdots \geq \sum_{p+q=k} \operatorname{dim}_{\mathbb{C}} E_{l}^{p, q} \geq \sum_{p+q=k} \operatorname{dim}_{\mathbb{C}} E_{l+1}^{p, q} \geq \cdots \geq b_{k}$.

Hence, the following implications hold:

$$
E_{1}(X)=E_{\infty}(X) \Longrightarrow E_{2}(X)=E_{\infty}(X) \Longrightarrow \cdots \Longrightarrow E_{r}(X)=E_{\infty}(X)
$$

Relations to other properties

- If X is a $\partial \bar{\partial}$-manifold, then $E_{1}(X)=E_{\infty}(X)$.
- The converse is false.
e.g. If $\operatorname{dim}_{\mathbb{C}} X=2$ (i.e. a complex surface), then
- $E_{1}(X)=E_{\infty}(X)$
- X is a $\partial \bar{\partial}$-manifold $\Longleftrightarrow X$ is Kähler.
- The property $E_{1}(X)=E_{\infty}(X)$ does not imply either the Hodge symmetry or the canonical Hodge decomposition. It only implies the much weaker numerical Hodge decomposition.

Standard facts.

- The following implications hold:
X is compact Kähler $\Longrightarrow X$ is class $\mathcal{C} \Longrightarrow X$ is a $\partial \bar{\partial}$-manifold
$\Longrightarrow E_{1}(X)=E_{\infty}(X)$ (in the Frölicher spectral sequence - FSS)
If $n \geq 3$, all the implications are strict.
- If X is a $\partial \bar{\partial}$-manifold, X has the Hodge symmetry property:
for all p, q,
(i) every class $\left[\alpha^{p, q}\right]_{\bar{\partial}} \in H_{\bar{\partial}}^{p, q}(X, \mathbb{C})$ can be represented by a d closed (p, q)-form $\alpha^{p, q}$;
(ii) the linear map

$$
\left.H_{\bar{\partial}}^{p, q}(X, \mathbb{C}) \ni\left[\alpha^{p, q}\right]_{\bar{\partial}} \longmapsto \overline{\alpha^{p, q}}\right]_{\bar{\partial}} \in \overline{H_{\bar{\partial}}^{q, p}(X, \mathbb{C})}
$$

is independent of the choices of d-closed representatives $\alpha^{p, q}$ of the classes $\left[\alpha^{p, q}\right]_{\bar{\partial}}$ (i.e. well-defined) and bijective.
(A) First type of operations on compact manifolds

Modifications : $\sigma: \widetilde{X} \rightarrow X$ holomorphic, bimeromorphic
Examples : (i) X is called Moishezon if $\exists \sigma: \widetilde{X} \rightarrow X$ modification with \widetilde{X} projective ;

Recall: \tilde{X} projective $\stackrel{\text { def }}{\Longleftrightarrow} \exists N \in \mathbb{N}^{\star}$ s.t. $\widetilde{X} \hookrightarrow \mathbb{C P}^{N}$
(embedding as a closed submanifold)
(ii) X is called class \mathcal{C} if $\exists \sigma: \widetilde{X} \rightarrow X$ modification with \widetilde{X} compact Kähler.

Implications (all are strict)

X Kähler

X projective

Demailly-Paun (2001) : X is class $\mathcal{C} \Longleftrightarrow \exists T$ Kähler current on X (i.e. $d T=0$ and $T>0$).
Moishezon (1967) : if X is Moishezon and non-projective, then X is not Kähler.

Examples.

(1) The twistor space X of any K3 surface has $E_{1}(X)=E_{\infty}(X)$ but is not a $\partial \bar{\partial}$-manifold.
(no Hodge symmetry - P. 2011)
(2) Let $X=G / H$, also denoted $I^{(3)}$, be the Iwasawa manifold, where

$$
G:=\left\{M=\left(\begin{array}{ccc}
1 & z_{1} & z_{3} \\
0 & 1 & z_{2} \\
0 & 0 & 1
\end{array}\right) ; z_{1}, z_{2}, z_{3} \in \mathbb{C}\right\} \subset G L_{3}(\mathbb{C})
$$

and $H \subset G$ is its discrete subgroup $\Gamma \subset G$ of matrices with entries $z_{1}, z_{2}, z_{3} \in \mathbb{Z}[i]$.
$I^{(3)}$ is a compact complex manifold, $\operatorname{dim}_{\mathbb{C}} I^{(3)}=3$.

There exist $C^{\infty}(1,0)$-forms α, β, γ on X, induced resp. by $d z_{1}$, $d z_{2}, d z_{3}-z_{1} d z_{2}$ (look at $M \mapsto M^{-1} d M$) satisfying:

$$
\bar{\partial} \alpha=\bar{\partial} \beta=\bar{\partial} \gamma=0
$$

but

$$
\partial \alpha=\partial \beta=0 \quad \text { and } \quad \partial \gamma=-\alpha \wedge \beta \neq 0
$$

Therefore, $E_{1}(X) \neq E_{\infty}(X)$. In particular, X is not a $\partial \bar{\partial}$-manifold.

- However, $E_{2}(X)=E_{\infty}(X)$. This leads to a Hodge theory for X if the $E_{1}^{p, q}(X)$'s are replaced by the $E_{2}^{p, q}(X)$'s.
(exploited in P. 2018: "Non-Kähler Mirror Symmetry of the Iwasawa Manifold")

Implications (all are strict)

$$
\begin{aligned}
& \mathbf{E}_{1}(\mathbf{X})=\mathbf{E}_{\infty}(\mathbf{X}) \\
& \text { (Frölicher spectral sequence) }
\end{aligned}
$$

Bott-Chern and Aeppli cohomologies

- The Bott-Chern cohomology

$$
H_{B C}^{p, q}(X, \mathbb{C})=\frac{\operatorname{ker} \partial \cap \operatorname{ker} \bar{\partial}}{\operatorname{Im} \partial \bar{\partial}}
$$

The Aeppli cohomology

$$
H_{A}^{p, q}(X, \mathbb{C})=\frac{\operatorname{ker} \partial \bar{\partial}}{\operatorname{Im} \partial+\operatorname{Im} \bar{\partial}}
$$

Bott-Chern and Aeppli Laplacians

- Bott-Chern case (Kodaira-Spencer 1960)

The 4-th order Bott-Chern Laplacian

$$
\Delta_{B C}: C_{p, q}^{\infty}(X, \mathbb{C}) \rightarrow C_{p, q}^{\infty}(X, \mathbb{C})
$$

is defined as
$\Delta_{B C}:=\partial^{\star} \partial+\bar{\partial}^{\star} \bar{\partial}+(\partial \bar{\partial})(\partial \bar{\partial})^{\star}+(\partial \bar{\partial})^{\star}(\partial \bar{\partial})+\left(\partial^{\star} \bar{\partial}\right)^{\star}\left(\partial^{\star} \bar{\partial}\right)+\left(\partial^{\star} \bar{\partial}\right)\left(\partial^{\star} \bar{\partial}\right)^{\star}$.

- Aeppli case (Schweitzer 2017)

The 4-th order Aeppli Laplacian

$$
\Delta_{A}: C_{p, q}^{\infty}(X, \mathbb{C}) \rightarrow C_{p, q}^{\infty}(X, \mathbb{C})
$$

is defined as

$$
\Delta_{A}:=(\partial \bar{\partial})^{\star}(\partial \bar{\partial})+\partial \partial^{\star}+\bar{\partial} \bar{\partial}^{\star}+(\partial \bar{\partial})(\partial \bar{\partial})^{\star}+\left(\partial \bar{\partial}^{\star}\right)\left(\partial \bar{\partial}^{\star}\right)^{\star}+\left(\partial \bar{\partial}^{\star}\right)^{\star}\left(\partial \bar{\partial}^{\star}\right) .
$$

- Ellipticity

The key property of these differential operators is
Theorem. $\quad \Delta_{B C}$ and Δ_{A} are elliptic.
Idea of proof.

- We may assume, without loss of generality, that we are in an open subset of \mathbb{C}^{n} and that the metric ω is the standard one:

$$
\omega=\sum_{j=1}^{n} i d z_{j} \wedge d \bar{z}_{j} .
$$

Indeed, the ellipticity of $\Delta_{B C}$ depends solely on its principal part, which remains unchanged if a different metric is chosen. Metric changes affect only the lower order terms.

- We use the following expressions of ∂^{\star} and $\bar{\partial}^{\star}$ in local coordinates w.r.t. the standard metric:

$$
\begin{array}{llll}
\partial=\sum_{j=1}^{n} d z_{j} \wedge \frac{\partial}{\partial z_{j}}, & \text { hence } & \left.\partial^{\star}=-\sum_{l=1}^{n} \frac{\partial}{\partial \bar{z}_{l}}\left(\frac{\partial}{\partial z_{l}}\right\lrcorner \cdot\right) \\
\bar{\partial}=\sum_{k=1}^{n} d \bar{z}_{k} \wedge \frac{\partial}{\partial \bar{z}_{k}}, & \text { hence } & \left.\bar{\partial}^{\star}=-\sum_{r=1}^{n} \frac{\partial}{\partial z_{r}}\left(\frac{\partial}{\partial \bar{z}_{r}}\right\lrcorner \cdot\right),
\end{array}
$$

where $\xi\lrcorner \cdot$ is the contraction (a zero-th order operator) of differential forms by the vector field ξ.

These formulae follow from the following easy-to-check formulae:

$$
\left.\left(\frac{\partial}{\partial z_{j}}\right)^{\star}=-\frac{\partial}{\partial \bar{z}_{j}} \quad \text { and } \quad\left(\frac{\partial}{\partial z_{j}}\right\lrcorner \cdot\right)^{\star}=d z_{j} \wedge
$$

and their conjugates.

- Computations lead to the following formula for the principal symbol of the Bott-Chern Laplacian:

$$
\sigma_{\Delta_{B C}}(x ;(\xi, \eta)) u(x)=\left[\frac{1}{4} \sum_{j=1}^{n}\left(\xi_{j}^{2}+\eta_{j}^{2}\right)\right]^{2} u(x),
$$

for all forms u and all points $(x ;(\xi, \eta)) \in{ }^{\mathbb{R}} T X$ in the real tangent bundle of X, where we put

$$
(\xi, \eta)=\sum_{j=1}^{n} \xi_{j}(x) \frac{\partial}{\partial x_{j}}+\sum_{j=1}^{n} \eta_{j}(x) \frac{\partial}{\partial y_{j}} \in^{\mathbb{R}} T_{x} X
$$

In particular, $\sigma_{\Delta_{B C}}(x ;(\xi, \eta))$ is injective for all $x \in X$ and all $(\xi, \eta) \neq 0$. Consequently, $\Delta_{B C}$ is elliptic.

- Consequences of ellipticity
(a) Hodge isomorphisms

Bott-Chern case

Corollary Let (X, ω) be a compact Hermitian manifold with $\operatorname{dim}_{\mathbb{C}} X=n$. Fix arbitrary $p, q \in\{0, \ldots, n\}$.
(1) The following L_{ω}^{2}-orthogonal three-space decomposition holds:

$$
C_{p, q}^{\infty}(X, \mathbb{C})=\operatorname{ker} \Delta_{B C} \oplus \operatorname{Im} \partial \bar{\partial} \oplus\left(\operatorname{Im} \partial^{\star}+\operatorname{Im} \bar{\partial}^{\star}\right)
$$

(2) Moreover

$$
\operatorname{ker} \partial \cap \operatorname{ker} \bar{\partial}=\operatorname{ker} \Delta_{B C} \oplus \operatorname{Im} \partial \bar{\partial},
$$ yielding the Hodge isomorphism

$$
H_{B C}^{p, q}(X, \mathbb{C}) \simeq \mathcal{H}_{\Delta_{B C}}^{p, q}(X, \mathbb{C})
$$

where

$$
\mathcal{H}_{\Delta_{B C}}^{p, q}(X, \mathbb{C})=\operatorname{ker}\left(\Delta_{B C}: C_{p, q}^{\infty}(X, \mathbb{C}) \rightarrow C_{p, q}^{\infty}(X, \mathbb{C})\right)
$$

is the Bott-Chern harmonic space.
In particular, $\operatorname{dim} H_{B C}^{p, q}(X, \mathbb{C})<+\infty$.
(3) We also have:

$$
\begin{aligned}
& \operatorname{Im} \Delta_{B C}=\operatorname{Im} \partial \bar{\partial} \oplus\left(\operatorname{Im} \partial^{\star}+\operatorname{Im} \bar{\partial}^{\star}\right) \\
& \operatorname{ker}(\partial \bar{\partial})^{\star}=\operatorname{ker} \Delta_{B C} \oplus\left(\operatorname{Im} \partial^{\star}+\operatorname{Im} \bar{\partial}^{\star}\right) .
\end{aligned}
$$

Hence

$$
\operatorname{ker} \Delta_{B C}=\operatorname{ker} \partial \cap \operatorname{ker} \bar{\partial} \cap \operatorname{ker}(\partial \bar{\partial})^{\star} .
$$

Aeppli case

Corollary Let (X, ω) be a compact Hermitian manifold with $\operatorname{dim}_{\mathbb{C}} X=n$. Fix arbitrary $p, q \in\{0, \ldots, n\}$.
(1) The following L_{ω}^{2}-orthogonal three-space decomposition holds:

$$
C_{p, q}^{\infty}(X, \mathbb{C})=\operatorname{ker} \Delta_{A} \oplus(\operatorname{Im} \partial+\operatorname{Im} \bar{\partial}) \oplus \operatorname{Im}(\partial \bar{\partial})^{\star}
$$

(2) Moreover

$$
\operatorname{ker}(\partial \bar{\partial})=\operatorname{ker} \Delta_{A} \oplus(\operatorname{Im} \partial+\operatorname{Im} \bar{\partial})
$$

yielding the Hodge isomorphism

$$
H_{A}^{p, q}(X, \mathbb{C}) \simeq \mathcal{H}_{\Delta_{A}}^{p, q}(X, \mathbb{C})
$$

where

$$
\mathcal{H}_{\Delta_{A}^{p, q}}^{p,}(X, \mathbb{C})=\operatorname{ker}\left(\Delta_{A}: C_{p, q}^{\infty}(X, \mathbb{C}) \rightarrow C_{p, q}^{\infty}(X, \mathbb{C})\right)
$$

is the Aeppli harmonic space.
In particular, $\operatorname{dim} H_{A}^{p, q}(X, \mathbb{C})<+\infty$.
(3) We also have

$$
\begin{aligned}
\operatorname{Im} \Delta_{A} & =(\operatorname{Im} \partial+\operatorname{Im} \bar{\partial}) \oplus \operatorname{Im}(\partial \bar{\partial})^{\star} \\
\operatorname{ker} \partial^{\star} \cap \operatorname{ker} \bar{\partial}^{\star} & =\operatorname{ker} \Delta_{A} \oplus \operatorname{Im}(\partial \bar{\partial})^{\star} .
\end{aligned}
$$

Hence

$$
\operatorname{ker} \Delta_{A}=\operatorname{ker}(\partial \bar{\partial}) \cap \operatorname{ker} \partial^{\star} \cap \operatorname{ker} \bar{\partial}^{\star} .
$$

(b) Bott-Chern/Aeppli duality

There is a canonical non-degenerate duality between the Bott-Chern and the Aeppli cohomologies of complementary bidegrees.

Theorem Let X be a compact complex manifold with $\operatorname{dim}_{\mathbb{C}} X=$ n. Then, for all $p, q \in\{0, \ldots, n\}$, the bilinear pairing
$H_{B C}^{p, q}(X, \mathbb{C}) \times H_{A}^{n-p, n-q}(X, \mathbb{C}) \rightarrow \mathbb{C}, \quad\left([\alpha]_{B C},[\beta]_{A}\right) \mapsto \int_{X} \alpha \wedge \beta$,
is well-defined and non-degenerate.
Thus, $H_{B C}^{p, q}(X, \mathbb{C})$ is the dual of $H_{A}^{n-p, n-q}(X, \mathbb{C})$.

Sketch of proof.

- Observation Under the Hodge star isomorphism

$$
\left.\star=\star_{\omega}: C_{p, q}^{\infty}(X, \mathbb{C}) \rightarrow C_{n-q, n-p}^{\infty}(X, \mathbb{C}), \quad u \wedge \star \bar{v}=\langle u, v\rangle_{\omega} d V_{\omega(}, 1\right)
$$

the Bott-Chern and Aeppli three-space decompositions are related by the following isomorphisms:

$$
\begin{aligned}
\star: \mathcal{H}_{\Delta_{B C}^{p, q}}^{p}(X, \mathbb{C}) & \longrightarrow \mathcal{H}_{\Delta_{A}}^{n-q, n-p}(X, \mathbb{C}) \\
\star: \operatorname{Im}(\partial \bar{\partial}) & \longrightarrow \operatorname{Im}(\partial \bar{\partial})^{\star} \\
\star:\left(\operatorname{Im} \partial^{\star}+\operatorname{Im} \bar{\partial}^{\star}\right) & \longrightarrow(\operatorname{Im} \partial+\operatorname{Im} \bar{\partial}) .
\end{aligned}
$$

Sketch of proof of Observation.
The inclusions " \subset " follow easily from the following formulae (easy verification):

$$
\begin{gathered}
\star \star=(-1)^{k} \text { Id } \quad \text { on } k \text {-forms; } \\
\partial^{\star}=-\star \bar{\partial} \star \quad \bar{\partial}^{\star}=-\star \partial \star, \quad d^{\star}=-\star d \star .
\end{gathered}
$$

Then, we get the following equivalences for every form u :

$$
\begin{aligned}
u \in \mathcal{H}_{\Delta_{B C}}^{p, q}(X, \mathbb{C}) & \Longleftrightarrow \partial u=0, \bar{\partial} u=0,(\partial \bar{\partial})^{\star} u=0 \\
& \Longleftrightarrow \bar{\partial}^{\star}(\star u)=0, \partial^{\star}(\star u)=0, \partial \bar{\partial}(\star u)=0 \\
& \Longleftrightarrow \star u \in \mathcal{H}_{\Delta_{A}}^{n-q, n-p}(X, \mathbb{C}) .
\end{aligned}
$$

End of proof of the Bott-Chern/Aeppli duality.

- Well-definedness

If α is changed to another representative $\alpha+\partial \bar{\partial} u$ of the same BottChern cohomology class, then

$$
\int_{X}(\alpha+\partial \bar{\partial} u) \wedge \beta=\int_{X} \alpha \wedge \beta \pm \int_{X} u \wedge \partial \bar{\partial} \beta=\int_{X} \alpha \wedge \beta
$$

since $\partial \bar{\partial} \beta=0$ (because β represents an Aeppli class).

On the other hand, if β is changed to another representative $\beta+$ $\partial \xi+\bar{\partial} \zeta$ of the same Aeppli cohomology class, then
$\int_{X} \alpha \wedge(\beta+\partial \xi+\bar{\partial} \zeta)=\int_{X} \alpha \wedge \beta \pm \int_{X} \partial \alpha \wedge \xi \pm \int_{X} \bar{\partial} \alpha \wedge \zeta=\int_{X} \alpha \wedge \beta$ since $\partial \alpha=0$ and $\bar{\partial} \alpha=0$ (because α represents a Bott-Chern class).

Conclusion: the bilinear map in the statement is independent of the choices of representatives of the cohomology classes involved.

- Non-degeneracy

Fix an arbitrary Hermitian metric ω on X.
Let $[\alpha]_{B C} \in H_{B C}^{p, q}(X, \mathbb{C})$ be a non-zero class. Thanks to the Hodge isomorphism for the Bott-Chern cohomology, this class contains a unique (and necessarily non-zero) Bott-Chern harmonic representative. Let us call it $\alpha \in \mathcal{H}_{\Delta_{B C}}^{p, q}(X, \mathbb{C}) \backslash\{0\}$.
We must have $\star \alpha \in \mathcal{H}_{\Delta_{A}}^{n-q, n-p}(X, \mathbb{C})$. Then, we also have

$$
\star \bar{\alpha} \in \mathcal{H}_{\Delta_{A}}^{n-p, n-q}(X, \mathbb{C})
$$

(immediate verification).
Thus, $\star \bar{\alpha}$ defines a class in $H_{A}^{n-p, n-q}(X, \mathbb{C})$ and, under the pairing in the statement, we get

$$
(\alpha, \star \bar{\alpha}) \mapsto \int_{X} \alpha \wedge \star \bar{\alpha}=\int_{X}|\alpha|_{\omega}^{2} d V_{\omega}=\|\alpha\|_{\omega}^{2} \neq 0
$$

Similarly, let $[\beta]_{A} \in H_{A}^{n-p, n-q}(X, \mathbb{C})$ be a non-zero class and let β be its Aeppli harmonic representative. Then, $\beta \neq 0$ and $\star \bar{\beta}$ is Bott-Chern harmonic of bidegree (p, q). Since

$$
(\star \bar{\beta}, \beta) \mapsto \int_{X} \star \bar{\beta} \wedge \beta=\int_{X}|\beta|_{\omega}^{2} d V_{\omega}=\|\beta\|_{\omega}^{2} \neq 0
$$

we are done.

