Hodge Theory of Compact Complex Manifolds

CIMPA School "Complex Analysis, Geometry and Dynamics"

Urgench, Uzbekistan
Lecture No. 1

Dan Popovici
Université Paul Sabatier,
Toulouse, France

Context and motivation

X a compact complex manifold, $\operatorname{dim}_{\mathbb{C}} X=n$
This means that X is a compact differentiable $\left(C^{\infty}\right)$ manifold equipped with a holomorphic atlas with values in \mathbb{C}^{n}, namely with

- an open cover $\left(U_{\alpha}\right)_{\alpha}$ and
- C^{∞} maps $\varphi_{\alpha}: U_{\alpha} \longrightarrow \mathbb{C}^{n}$ such that the transition maps

$$
\varphi_{\alpha \beta}:=\varphi_{\alpha} \circ \varphi_{\beta}^{-1}: \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \longrightarrow \varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right)
$$

are holomorphic.

Equivalently, a complex manifold is a C^{∞}-differentiable manifold X equipped with a complex structure.

This is an almost complex structure, namely an endomorphism

$$
J: T X^{\mathbb{R}} \longrightarrow T X^{\mathbb{R}}
$$

of the real tangent bundle such that

$$
J^{2}=-\mathrm{Id},
$$

which is further required to be integrable (in the sense that what is called its Nijenhuis tensor N_{J} vanishes).

Alternatively, the complex structure can be seen as a splitting

$$
d=\partial+\bar{\partial}
$$

of the Poincaré differential operator

$$
d: C_{k}^{\infty}(X, \mathbb{C}) \longrightarrow C_{k+1}^{\infty}(X, \mathbb{C})
$$

of order one acting on the \mathbb{C}-valued C^{∞} differential forms of any degree $k \in\{0, \ldots, 2 n\}$ on X into two differential operators of order one:

$$
\begin{aligned}
& \partial: C_{p, q}^{\infty}(X, \mathbb{C}) \longrightarrow C_{p+1, q}^{\infty}(X, \mathbb{C}) \\
& \bar{\partial}: C_{p, q}^{\infty}(X, \mathbb{C}) \longrightarrow C_{p, q+1}^{\infty}(X, \mathbb{C})
\end{aligned}
$$

acting on the \mathbb{C}-valued C^{∞} differential forms of any bidegree (p, q), with $p, q \in\{0, \ldots, n\}$, on X.

For any complex structure $d=\partial+\bar{\partial}$, one has

$$
\bar{\partial}^{2}=0,
$$

a property that is equivalent to the integrability condition. This further implies that

$$
\partial^{2}=0 \quad \text { and } \quad \partial \bar{\partial}+\bar{\partial} \partial=0
$$

At the local level

If $\left(z_{1}, \ldots, z_{n}\right)$ are local holomorphic coordinates on an open subset $U \subset X$, we have

$$
z_{k}=x_{k}+i y_{k}
$$

for every k and

$$
\left(x_{1}, y_{1}, \ldots, x_{n}, y_{n}\right)
$$

is a system of local C^{∞} real coordinates on U.
The 1-forms

$$
d z_{k}:=d x_{k}+i d y_{k}
$$

are said to be of bidegree (or type) $(1,0)$, while the 1 -forms

$$
d \bar{z}_{k}:=d x_{k}-i d y_{k}
$$

are said to be of bidegree (or type) $(0,1)$.

For any $p, q \in\{0, \ldots, n\}$, with $p+q=k \in\{0, \ldots, 2 n\}$, the differential forms of bidegree (or type) (p, q) are those k-forms that are generated (locally on U) by exterior products of $p d z_{j}$'s and q $d \bar{z}_{k}$'s:

$$
u=\sum_{|J|=p,|K|=q} u_{I \bar{J}} d z_{J} \wedge d \bar{z}_{K},
$$

where the coefficients $u_{I \bar{J}}$ are $C^{\infty} \mathbb{C}$-valued functions on U, while $J:=\left(1 \leq j_{1}<\cdots<j_{p} \leq n\right)$ and $K:=\left(1 \leq k_{1}<\cdots<k_{q} \leq n\right)$ are multi-indices of lengths p, resp. q. One puts:

$$
d z_{J}:=d z_{j_{1}} \wedge \cdots \wedge d z_{j_{p}}
$$

and

$$
d \bar{z}_{K}:=d \bar{z}_{k_{1}} \wedge \cdots \wedge d \bar{z}_{k_{q}}
$$

A $C^{\infty}(p, q)$-form on X is a globally and intrinsically defined object.
Its local shape (1) transforms, under a change of local holomorphic coordinates from $\left(z_{1}, \ldots, z_{n}\right)$ on some open subset $U \subset X$ to $\left(w_{1}, \ldots, w_{n}\right)$ on some open subset $V \subset X$, according to the usual rules of calculus, starting from the identities:

$$
d z_{j}=\sum_{k=1}^{n} \frac{\partial z_{j}}{\partial w_{k}} d w_{k} \quad \text { and } \quad d \bar{z}_{j}=\sum_{k=1}^{n} \frac{\partial \bar{z}_{j}}{\partial \bar{w}_{k}} d \bar{w}_{k}
$$

on $U \cap V$ for every $j \in\{1, \ldots, n\}$.

The vector fields:

$$
\frac{\partial}{\partial z_{j}}:=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}-i \frac{\partial}{\partial y_{j}}\right)
$$

on U are said to be of type (1,0), while the vector fields

$$
\frac{\partial}{\partial \bar{z}_{j}}:=\frac{1}{2}\left(\frac{\partial}{\partial x_{j}}+i \frac{\partial}{\partial y_{j}}\right)
$$

on U are said to be of type $(0,1)$.

The differential of a C^{1} function $f: U \longrightarrow \mathbb{C}$ is the 1 -form on U given by

$$
\begin{aligned}
d f & =\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}} d x_{j}+\sum_{j=1}^{n} \frac{\partial f}{\partial y_{j}} d y_{j} \\
& =\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}} d z_{j}+\sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z}_{j}} d \bar{z}_{j}=\partial f+\bar{\partial} f
\end{aligned}
$$

where we put $\partial f:=\sum_{j=1}^{n} \frac{\partial f}{\partial z_{j}} d z_{j}\left(\mathrm{a}(1,0)\right.$-form) and $\bar{\partial} f:=\sum_{j=1}^{n} \frac{\partial f}{\partial \bar{z}_{j}} d \bar{z}_{j}$ (a (0,1)-form).

Moreover, a C^{∞} function $f: U \longrightarrow \mathbb{C}$ is holomorphic if and only if

$$
\frac{\partial f}{\partial \bar{z}_{j}}=0
$$

for all $j \in\{1, \ldots, n\}$, namely if and only if $\bar{\partial} f=0$.
These are the Cauchy-Riemann equations.

For an arbitrary C^{1} form u of bidegree (or type) (p, q) on $X, \partial u$ and $\bar{\partial} u$ are a $(p+1, q)$-form, resp. a $(p, q+1)$-form, on X.

In local coordinates, they are obtained by applying ∂, resp. $\bar{\partial}$, to the coefficients of u written locally in the form (1), so we get:

$$
\partial u=\sum_{|J|=p,|K|=q} \partial u_{I \bar{J}} \wedge d z_{J} \wedge d \bar{z}_{K} \quad \text { and } \quad \bar{\partial} u=\sum_{|J|=p,|K|=q} \bar{\partial} u_{I \bar{J}} \wedge d z_{J}
$$

where we have (see above):

$$
\partial u_{I \bar{J}}=\sum_{j=1}^{n} \frac{\partial u_{I \bar{J}}}{\partial z_{j}} d z_{j} \quad \text { and } \quad \bar{\partial} u_{I \bar{J}}=\sum_{j=1}^{n} \frac{\partial u_{I \bar{J}}}{\partial \bar{z}_{j}} d \bar{z}_{j} .
$$

We stress again that (p, q)-forms and k-forms on X (in particular, the 1-form $d f=\partial f+\bar{\partial} f$ for any C^{1} function $f: X \rightarrow \mathbb{C}$) are globally and intrinsically defined objects on X.

Indeed, if $T X^{\mathbb{R}}$ denotes the real tangent bundle and $\left(T X^{\mathbb{R}}\right)^{\star}$ the real cotangent bundle of X, the complexified exterior algebra $\Lambda^{\bullet}(\mathbb{C} \otimes$ $T X)^{\star}:=\mathbb{C} \otimes_{\mathbb{R}} \Lambda^{\bullet}\left(T X^{\mathbb{R}}\right)^{\star}$ splits canonically at every point of X as

$$
\Lambda^{k}(\mathbb{C} \otimes T X)^{\star}=\sum_{p+q=k} \Lambda^{p, q} T^{\star} X, \quad 0 \leq k \leq 2 n
$$

where the space of (p, q)-forms is defined pointwise as

$$
\Lambda^{p, q} T^{\star} X:=\Lambda^{p} T^{\star} X \otimes \Lambda^{q} \overline{T^{\star} X}
$$

where $T^{\star} X$ is the holomorphic cotangent bundle of X (generated locally by the $(1,0)$-forms $\left.d z_{1}, \ldots, d z_{n}\right)$ and $\overline{T^{\star} X}$ is the anti-holomorphic cotangent bundle of X (generated locally by the (0,1)-forms $d \bar{z}_{1}, \ldots, d \bar{z}_{n}$).

In particular, every k-form α splits uniquely into pure-type forms $\alpha^{p, q}$ of respective bidegrees (p, q) :

$$
\alpha=\sum_{p+q=k} \alpha^{p, q}
$$

The forms $\alpha^{p, q}$ are called the pure-type components of α.
Thus, for every k, we get a splitting:

$$
C_{k}^{\infty}(X, \mathbb{C})=\bigoplus_{p+q=k} C_{p, q}^{\infty}(X, \mathbb{C})
$$

(1) Metric point of view

Hermitian metric on a given complex manifold X :
C^{∞}, positive definite, $(1,1)$-form ω on X
In local coordinates $\left(z_{1}, \ldots, z_{n}\right)$ on some open subset $U \subset X$, it has the shape

$$
\omega=\sum_{j, k=1}^{n} \omega_{j \bar{k}} i d z_{j} \wedge d \bar{z}_{k}
$$

where the $\omega_{j \bar{k}}$'s are \mathbb{C}-valued C^{∞} functions on U such that the matrix $\left(\omega_{j \bar{k}}\right)_{1 \leq j, k \leq n}$ is positive definite at every point of U.

This is equivalent to saying that ω defines a pointwise (positive definite) inner product

$$
\langle\cdot, \cdot\rangle_{\omega}: T^{1,0} X \times T^{1,0} X \longrightarrow \mathbb{C}
$$

on the holomorphic tangent bundle of X :

$$
\langle\cdot, \cdot\rangle_{\omega, x}: T_{x}^{1,0} X \times T_{x}^{1,0} X \longrightarrow \mathbb{C}, \quad x \in X
$$

and that the inner product $\langle\cdot, \cdot\rangle_{\omega, x}$ on $T_{x}^{1,0} X$ depends in a C^{∞} way on $x \in X$.

Explicitly, $T^{1,0} X$ is generated by $\partial / \partial z_{1}, \ldots, \partial / \partial z_{n}$ on U and

$$
\left\langle\frac{\partial}{\partial z_{j}}, \frac{\partial}{\partial z_{k}}\right\rangle_{\omega}=\omega_{j \bar{k}}, \quad 1 \leq j, k \leq n
$$

at every point $x \in X$.

The inner product $\langle\cdot, \cdot\rangle_{\omega}$ induces by duality a pointwise inner product, denoted by the same symbol, on the holomorphic cotangent bundle $\Lambda^{1,0} T^{\star} X$ (generated by $d z_{1}, \ldots, d z_{n}$ on U), given by

$$
\left\langle d z_{j}, d z_{k}\right\rangle_{\omega}=\omega^{j \bar{k}}, \quad 1 \leq j, k \leq n
$$

at every point $x \in X$, where the matrix $\left(\omega^{j \bar{k}}\right)_{1 \leq j, k \leq n}$ is the transpose of the inverse of $\left(\omega_{j \bar{k}}\right)_{1 \leq j, k \leq n}$ at every point.

By conjugation, we get an induced inner product on $\Lambda^{0,1} T^{\star} X$ and thus also on

$$
\mathbb{C} T^{\star} X=\Lambda^{1,0} T^{\star} X \oplus \Lambda^{0,1} T^{\star} X
$$

by putting

$$
\left\langle d z_{j}, d \bar{z}_{k}\right\rangle_{\omega}=0
$$

for all j, k.

More generally, ω induces a pointwise inner product on $\Lambda^{p, q} T^{\star} X$ for every bidegree (p, q). From this, we get an L^{2} inner product on the space of global $C^{\infty}(p, q)$-forms on X, defined by

$$
\langle\langle u, v\rangle\rangle_{\omega}:=\int_{X}\langle u(x), v(x)\rangle_{\omega} d V_{\omega},
$$

where $d V_{\omega}:=\omega^{n} / n$! is the volume form on X induced by ω.
The L^{2} inner product defined by a given Hermitian metric ω induces formal adjoints

$$
\begin{gathered}
d^{\star}=d_{\omega}^{\star}: C_{k}^{\infty}(X, \mathbb{C}) \longrightarrow C_{k-1}^{\infty}(X, \mathbb{C}), \\
\partial^{\star}=\partial_{\omega}^{\star}: C_{p, q}^{\infty}(X, \mathbb{C}) \longrightarrow C_{p-1, q}^{\infty}(X, \mathbb{C}), \\
\bar{\partial}^{\star}=\bar{\partial}_{\omega}^{\star}: C_{p, q}^{\infty}(X, \mathbb{C}) \longrightarrow C_{p, q-1}^{\infty}(X, \mathbb{C})
\end{gathered}
$$

of the differential operators d, ∂ and $\bar{\partial}$.

An important notion is the following
Definition. A Kähler metric on a complex manifold X is a Hermitian metric ω on X such that $d \omega=0$.

A complex manifold X is said to be a Kähler manifold if a Kähler metric exists on X.

Examples.

(1) Complex projective spaces $\mathbb{C P}^{n}=\mathbb{P}^{n}$;
(2) Projective manifolds: those compact complex manifolds X that can be embedded as closed submanifolds into some complex projective space:
there exists an integer $N \geq 1$ such that $X \hookrightarrow \mathbb{C P}^{N}$.
These are the main objects of study in complex algebraic geometry.

Kodaira's Embedding Theorem

A compact complex manifold X is projective if and only if X carries an integral Kähler class $\{\omega\} \in H^{2}(X, \mathbb{Z})$.

More generally, X is said to be Moishezon if it is bimeromorphically equivalent to a projective manifold, namely if there exists a projective manifold \widetilde{X} and a holomorphic bimeromorphic map (called a modification)

$$
\mu: \widetilde{X} \longrightarrow X
$$

Intuitively, Moishezon manifolds are those compact complex manifolds that admit "many" (in a precise sense) divisors (= formal linear combinations with integer coefficients of complex hypersurfaces of X).

A transcendental analogue of Moishezon manifolds is provided by the (Fujiki) class C manifolds.

These are the compact complex manifolds that are bimeromorphically equivalent to compact Kähler manifolds.

Specifically, a compact complex manifold X belongs to this class if and only if there exists a compact Kähler manifold \tilde{X} and a holomorphic bimeromorphic map (called a modification)

$$
\mu: \widetilde{X} \longrightarrow X
$$

We have implications:

All these implications are strict when $\operatorname{dim}_{\mathbb{C}} X \geq 3$.

Classification of compact complex manifolds from the point of view of special metrics they support

$$
\begin{aligned}
& d \omega=0 \\
& \Longrightarrow \exists \underline{\rho^{0,2}} \in C_{0,2}^{\infty}(X, \mathbb{C}) \text { s.t. } \\
& d\left(\overline{\rho^{0,2}}+\omega+\rho^{0,2}\right)=0 \\
& (\omega \text { is Kähler }) \quad(\omega \text { is Hermitian-symplectic }(\mathbf{H}-\mathbf{S})) \quad(\omega \text { is SKT) } \\
& \Downarrow \\
& d \omega^{n-1}=0 \quad \Longrightarrow \exists \frac{\Omega^{n-2, n}}{} \in C_{n-2, n}^{\infty}(X, \mathbb{C}) \text { s.t. } \\
& \text { (} \omega \text { is balanced) } \quad(\omega \text { is strongly Gauduchon (} \mathrm{sG})) \\
& \Longrightarrow \partial \bar{\partial} \omega^{n-1}=0 \\
& \text { (} \omega \text { is Gauduchon). }
\end{aligned}
$$

(2) Cohomological point of view

Let X be a compact complex manifold with $\operatorname{dim}_{\mathbb{C}} X=n \geq 2$. Thanks to the integrability property $d^{2}=0, \partial^{2}=0, \bar{\partial}^{2}=0$, each of the differential operators $d, \partial, \bar{\partial}$ induces a complex:
-the De Rham complex of X :
$\cdots \xrightarrow{d} C_{k-1}^{\infty}(X, \mathbb{C}) \xrightarrow{d} C_{k}^{\infty}(X, \mathbb{C}) \xrightarrow{d} C_{k+1}^{\infty}(X, \mathbb{C}) \xrightarrow{d} \cdots$,
giving rise to the De Rham cohomology spaces of X :
$H_{D R}^{k}(X, \mathbb{C}):=\frac{\operatorname{ker}\left(d: C_{k}^{\infty}(X, \mathbb{C}) \longrightarrow C_{k+1}^{\infty}(X, \mathbb{C})\right)}{\operatorname{Im}\left(d: C_{k-1}^{\infty}(X, \mathbb{C}) \longrightarrow C_{k}^{\infty}(X, \mathbb{C})\right)}, \quad k \in\{0, \ldots, 2 n\}$,
depending only on the differential structure of X;
-for every fixed $q \in\{0, \ldots, n\}$, the conjugate Dolbeault complex of X :
$\cdots \xrightarrow{\partial} C_{p-1, q}^{\infty}(X, \mathbb{C}) \xrightarrow{\partial} C_{p, q}^{\infty}(X, \mathbb{C}) \xrightarrow{\partial} C_{p+1, q}^{\infty}(X, \mathbb{C}) \xrightarrow{\partial} \cdots$,
giving rise to the conjugate Dolbeault cohomology spaces of X :
$H_{\partial}^{p, q}(X, \mathbb{C}):=\frac{\operatorname{ker}\left(\partial: C_{p, q}^{\infty}(X, \mathbb{C}) \longrightarrow C_{p+1, q}^{\infty}(X, \mathbb{C})\right)}{\operatorname{Im}\left(\partial: C_{p-1, q}^{\infty}(X, \mathbb{C}) \longrightarrow C_{p, q}^{\infty}(X, \mathbb{C})\right)}, p, q \in\{0, \ldots, n\}$,
depending on the complex structure of X;
-for every fixed $p \in\{0, \ldots, n\}$, the Dolbeault complex of X :
$\cdots \xrightarrow{\bar{\partial}} C_{p, q-1}^{\infty}(X, \mathbb{C}) \xrightarrow{\bar{\partial}} C_{p, q}^{\infty}(X, \mathbb{C}) \xrightarrow{\bar{\partial}} C_{p, q+1}^{\infty}(X, \mathbb{C}) \xrightarrow{\bar{\partial}} \cdots$,
giving rise to the Dolbeault cohomology spaces of X :
$H_{\bar{\partial}}^{p, q}(X, \mathbb{C}):=\frac{\operatorname{ker}\left(\bar{\partial}: C_{p, q}^{\infty}(X, \mathbb{C}) \longrightarrow C_{p, q+1}^{\infty}(X, \mathbb{C})\right)}{\operatorname{Im}\left(\bar{\partial}: C_{p, q-1}^{\infty}(X, \mathbb{C}) \longrightarrow C_{p, q}^{\infty}(X, \mathbb{C})\right)}, \quad p, q$,
depending on the complex structure of X.

The compactness of X implies the finite dimensionality (as \mathbb{C} vector spaces) of all of the above cohomology spaces whose dimensions are important geometric invariants of a compact complex manifold.

Of particular interest are:
-the Betti numbers:

$$
b_{k}=b_{k}(X):=\operatorname{dim}_{\mathbb{C}} H_{D R}^{k}(X, \mathbb{C}), \quad k \in\{0, \ldots, 2 n\}
$$

depending only on the differential structure of X (so, they are topological invariants)
-the Hodge numbers:

$$
h^{p, q}=h_{\bar{\partial}}^{p, q}(X):=\operatorname{dim}_{\mathbb{C}} H_{\bar{\partial}}^{p, q}(X, \mathbb{C}), \quad p, q \in\{0, \ldots, n\},
$$

depending on the complex structure of X.

Two other cohomologies that play a key role in non-Kähler complex geometry are
-the Bott-Chern cohomology, whose spaces are defined as

$$
H_{B C}^{\bullet}, \bullet(X, \mathbb{C}):=\frac{\operatorname{ker} \partial \cap \operatorname{ker} \bar{\partial}}{\operatorname{Im}(\partial \bar{\partial})}
$$

and
-the Aeppli cohomology, whose spaces are defined as

$$
H_{A}^{\bullet, \bullet}(X, \mathbb{C}):=\frac{\operatorname{ker}(\partial \bar{\partial})}{\operatorname{Im} \partial+\operatorname{Im} \bar{\partial}}
$$

We denote by $\{\alpha\}_{D R},[\alpha]_{\partial},[\alpha]_{\partial},[\alpha]_{B C},[\alpha]_{A}$ the De Rham, conjugate Dolbeault, Dolbeault, Bott-Chern, respectively Aeppli cohomology class of a given form α that represents such a class.

There are well-defined, canonical linear maps induced by the identity among these cohomologies:

$$
H_{B C}^{p, q}(X, \mathbb{C}) \rightarrow H_{\bar{\partial}}^{p, q}(X, \mathbb{C}) \rightarrow H_{A}^{p, q}(X, \mathbb{C}), \quad[\alpha]_{B C} \mapsto[\alpha]_{\bar{\partial}} \mapsto[\alpha]_{A},
$$

$H_{B C}^{p, q}(X, \mathbb{C}) \rightarrow H_{\partial}^{p, q}(X, \mathbb{C}) \rightarrow H_{A}^{p, q}(X, \mathbb{C}), \quad[\alpha]_{B C} \mapsto[\alpha]_{\partial} \mapsto[\alpha]_{A}$,
$H_{B C}^{p, q}(X, \mathbb{C}) \rightarrow H_{D R}^{p+q}(X, \mathbb{C}) \rightarrow H_{A}^{p, q}(X, \mathbb{C}), \quad[\alpha]_{B C} \mapsto\{\alpha\}_{D R} \mapsto\left[\alpha^{p, q}\right]$
where, for the last map, $\alpha^{p, q}$ denotes the (p, q)-type component of the $(p+q)$-form $\alpha=\sum_{r+s=p+q} \alpha^{r, s}$. By canonical we mean that these maps depend only on the complex structure of X, so, in particular, they are independent of the choice of a Hermitian metric.

However, these maps need not be either injective or surjective on an arbitrary X.
One of the remarkable properties of a class of compact complex manifolds (the so-called $\partial \bar{\partial}$-manifolds) that strictly contains the Kähler class is that all the maps on the first two rows above are isomorphisms, while the two maps on the third row are injective, respectively surjective.
In particular, on a compact Kähler manifold X, the Dolbeault, conjugate Dolbeault, Bott-Chern and Aeppli cohomologies are canonically isomorphic. For this reason, the subscript can be dropped in that case, so $H^{p, q}(X, \mathbb{C})$ stands for any (usually Dolbeault in practice) of these cohomology groups of bidegree (p, q) on a compact Kähler X.
(3) Interplay between the metric and the cohomological points of view
Another basic idea of Hodge theory: to interpret the various cohomology spaces as harmonic spaces, namely as the kernels of certain elliptic differential operators called Laplacians.

Suppose X is a compact complex manifold on which a Hermitian metric ω has been fixed. Using the L^{2} inner product induced by ω on the spaces of C^{∞} forms on X, one defines first-order differential operators $d^{\star}, \partial^{\star}, \bar{\partial}^{\star}$ as the adjoints of $d, \partial, \bar{\partial}$ which, in turn, induce Laplace-Beltrami operators:

$$
\begin{gathered}
\Delta=\Delta_{\omega}:=d d^{\star}+d^{\star} d: C_{k}^{\infty}(X, \mathbb{C}) \rightarrow C_{k}^{\infty}(X, \mathbb{C}), \\
\Delta^{\prime}=\Delta_{\omega}^{\prime}:=\partial \partial^{\star}+\partial^{\star} \partial: C_{p, q}^{\infty}(X, \mathbb{C}) \rightarrow C_{p, q}^{\infty}(X, \mathbb{C}), \\
\Delta^{\prime \prime}=\Delta_{\omega}^{\prime \prime}:=\bar{\partial} \bar{\partial}^{\star}+\bar{\partial}^{\star} \bar{\partial}: C_{p, q}^{\infty}(X, \mathbb{C}) \rightarrow C_{p, q}^{\infty}(X, \mathbb{C}), \\
\Delta_{B C}:=\partial^{\star} \partial+\bar{\partial}^{\star} \bar{\partial}+(\partial \bar{\partial})(\partial \bar{\partial})^{\star}+(\partial \bar{\partial})^{\star}(\partial \bar{\partial})+\left(\partial^{\star} \bar{\partial}\right)^{\star}\left(\partial^{\star} \bar{\partial}\right)+\left(\partial^{\star} \bar{\partial}\right)\left(\partial^{\star} \bar{\partial}\right)^{\star}, \\
\Delta_{A}:=(\partial \bar{\partial})^{\star}(\partial \bar{\partial})+\partial \partial^{\star}+\bar{\partial} \bar{\partial}^{\star}+(\partial \bar{\partial})(\partial \bar{\partial})^{\star}+\left(\partial \bar{\partial}^{\star}\right)\left(\partial \bar{\partial}^{\star}\right)^{\star}+\left(\partial \bar{\partial}^{\star}\right)^{\star}\left(\partial \bar{\partial}^{\star}\right),
\end{gathered}
$$

in every (bi-)degree.
Note that Δ, Δ^{\prime} and $\Delta^{\prime \prime}$ are of order 2 , while $\Delta_{B C}$ and Δ_{A} (called the Bott-Chern, respectively the Aeppli, Laplacian) are of order 4. Each of them is adapted to one type of cohomology on X.

They all turn out to be elliptic and this, together with the compactness of X, leads to Hodge isomorphisms:

$$
\begin{aligned}
& H_{D R}^{k}(X, \mathbb{C}) \simeq \mathcal{H}_{\Delta}^{k}(X, \mathbb{C}), \\
& H_{\partial}^{p, q}(X, \mathbb{C}) \simeq \mathcal{H}_{\Delta^{\prime}}^{p, q}(X, \mathbb{C}), \quad H_{\bar{\partial}}^{p, q}(X, \mathbb{C}) \simeq \mathcal{H}_{\Delta^{\prime \prime}}^{p, q^{\prime}}(X, \mathbb{C}), \\
& H_{B C}^{p, q}(X, \mathbb{C}) \simeq \mathcal{H}_{\Delta_{B C}}^{p, q}(X, \mathbb{C}), \quad H_{A}^{p, q}(X, \mathbb{C}) \simeq \mathcal{H}_{\Delta_{A}^{p, q}}^{p}(X, \mathbb{C}),
\end{aligned}
$$

where $\mathcal{H}_{P}^{k}(X, \mathbb{C})$ and $\mathcal{H}_{P}^{p, q}(X, \mathbb{C})$ stand for the kernels of P in degree k and bidegree (p, q), where $P \in\left\{\Delta, \Delta^{\prime}, \Delta^{\prime \prime}, \Delta_{B C}, \Delta_{A}\right\}$.

These statements follow from the following
Theorem (fundamental facts of Hodge theory) Let (X, ω) be a compact Hermitian manifold with $\operatorname{dim}_{\mathbb{C}} X=n$. Then:
(1) the differential operators Δ, Δ^{\prime} and $\Delta^{\prime \prime}$ are elliptic (i.e. their principal symbols are injective at every point);
(2) the kernels of Δ, Δ^{\prime} and $\Delta^{\prime \prime}$ are finite dimensional, while their images are closed and finite codimensional in $C_{k}^{\infty}(X, \mathbb{C})$ (for Δ), resp. in $C_{p, q}^{\infty}(X, \mathbb{C})\left(\right.$ for Δ^{\prime} and $\left.\Delta^{\prime \prime}\right)$.

Moreover, for all $k \in\{0, \ldots, 2 n\}$ and all $p, q \in\{0, \ldots, n\}$, the following orthogonal (for the L_{ω}^{2}-norm) two-space decompositions hold:

$$
\begin{gathered}
C_{k}^{\infty}(X, \mathbb{C})=\operatorname{ker} \Delta \oplus \operatorname{Im} \Delta, \quad C_{p, q}^{\infty}(X, \mathbb{C})=\operatorname{ker} \Delta^{\prime} \oplus \operatorname{Im} \Delta^{\prime} \\
C_{p, q}^{\infty}(X, \mathbb{C})=\operatorname{ker} \Delta^{\prime \prime} \oplus \operatorname{Im} \Delta^{\prime \prime}
\end{gathered}
$$

where all the kernels and images involved are taken in the respective (bi)degrees.
(3) furthermore, the following L_{ω}^{2}-orthogonal two-space decompositions hold:
$\operatorname{Im} \Delta=\operatorname{Im} d \oplus \operatorname{Im} d^{\star}, \quad \operatorname{Im} \Delta^{\prime}=\operatorname{Im} \partial \oplus \operatorname{Im} \partial^{\star}, \quad \operatorname{Im} \Delta^{\prime \prime}=\operatorname{Im} \bar{\partial} \oplus \operatorname{Im} \bar{\partial}^{\star}$. Hence, we get the following L_{ω}^{2}-orthogonal three-space decompositions:

$$
\begin{aligned}
C_{k}^{\infty}(X, \mathbb{C}) & =\operatorname{ker} \Delta \oplus \operatorname{Im} d \oplus \operatorname{Im} d^{\star} \\
C_{p, q}^{\infty}(X, \mathbb{C}) & =\operatorname{ker} \Delta^{\prime} \oplus \operatorname{Im} \partial \oplus \operatorname{Im} \partial^{\star} \\
C_{p, q}^{\infty}(X, \mathbb{C}) & =\operatorname{ker} \Delta^{\prime \prime} \oplus \operatorname{Im} \bar{\partial} \oplus \operatorname{Im} \bar{\partial}^{\star}
\end{aligned}
$$

in which we further have:

$$
\begin{array}{lll}
\operatorname{ker} d=\operatorname{ker} \Delta \oplus \operatorname{Im} d & \text { and } & \operatorname{ker} d^{\star}=\operatorname{ker} \Delta \oplus \operatorname{Im} d^{\star}, \\
\operatorname{ker} \partial=\operatorname{ker} \Delta^{\prime} \oplus \operatorname{Im} \partial & \text { and } & \operatorname{ker} \partial^{\star}=\operatorname{ker} \Delta^{\prime} \oplus \operatorname{Im} \partial^{\star},
\end{array}
$$

$$
\operatorname{ker} \bar{\partial}=\operatorname{ker} \Delta^{\prime \prime} \oplus \operatorname{Im} \bar{\partial} \quad \text { and } \quad \operatorname{ker} \bar{\partial}^{\star}=\operatorname{ker} \Delta^{\prime \prime} \oplus \operatorname{Im} \bar{\partial}^{\star}
$$

in all the degrees $k \in\{0, \ldots, 2 n\}$ and all the bidegrees (p, q) with $p, q \in\{0, \ldots, n\}$.

Let us only point out that conclusion (2) above follows from Gårding's estimate (or the a priori estimate, depending on the terminology being used) satisfied by any elliptic operator on a compact manifold (without boundary).

Conclusion (3) further follows from the integrability of the operators $d, \partial, \bar{\partial}$, namely $d^{2}=0, \partial^{2}=0$ and $\bar{\partial}^{2}=0$.

As an immediate consequence, one gets the Hodge isomorphisms that display the De Rham, Dolbeault and conjugate Dolbeault cohomology groups as isomorphic to the spaces of Δ-harmonic, $\Delta^{\prime \prime}$ harmonic and resp. Δ^{\prime}-harmonic spaces of forms of the same (bi)degrees.

Corollary. Let (X, ω) be a compact Hermitian manifold with $\operatorname{dim}_{\mathbb{C}} X=n$. Then, for all $k \in\{0, \ldots, 2 n\}$ and all $p, q \in\{0, \ldots, n\}$, the following Hodge isomorphisms hold:

$$
\begin{aligned}
H_{D R}^{k}(X, \mathbb{C}) & \simeq \mathcal{H}_{\Delta}^{k}(X, \mathbb{C}) \\
H_{\partial}^{p, q}(X, \mathbb{C}) & \simeq \mathcal{H}_{\Delta^{\prime}}^{p, q}(X, \mathbb{C}), \\
H_{\bar{\partial}}^{p, q}(X, \mathbb{C}) & \simeq \mathcal{H}_{\Delta^{\prime \prime}}^{p, q}(X, \mathbb{C}),
\end{aligned}
$$

where $\mathcal{H}_{\Delta}^{k}(X, \mathbb{C}):=\operatorname{ker}\left(\Delta: C_{k}^{\infty}(X, \mathbb{C}) \rightarrow C_{k}^{\infty}(X, \mathbb{C})\right), \mathcal{H}_{\Delta^{\prime}}^{p, q}(X, \mathbb{C}):=$ $\operatorname{ker}\left(\Delta^{\prime}: C_{p, q}^{\infty}(X, \mathbb{C}) \rightarrow C_{p, q}^{\infty}(X, \mathbb{C})\right)$ and $\mathcal{H}_{\Delta^{\prime \prime}}^{p, q}(X, \mathbb{C}):=\operatorname{ker}\left(\Delta^{\prime \prime}:\right.$ $\left.C_{p, q}^{\infty}(X, \mathbb{C}) \xrightarrow{\infty} C_{p, q}^{\infty}(X, \mathbb{C})\right)$.

