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Context and motivation

X a compact complex manifold, dimCX = n

This means thatX is a compact differentiable (C∞) manifold equipped
with a holomorphic atlas with values in Cn, namely with

• an open cover (Uα)α

and

• C∞ maps ϕα : Uα −→ Cn such that the transition maps

ϕαβ := ϕα ◦ ϕ−1
β : ϕβ(Uα ∩ Uβ) −→ ϕα(Uα ∩ Uβ)

are holomorphic.
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Equivalently, a complex manifold is a C∞-differentiable manifold X
equipped with a complex structure.

This is an almost complex structure, namely an endomorphism

J : TXR −→ TXR

of the real tangent bundle such that

J2 = −Id,

which is further required to be integrable (in the sense that what is
called its Nijenhuis tensor NJ vanishes).
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Alternatively, the complex structure can be seen as a splitting

d = ∂ + ∂̄

of the Poincaré differential operator

d : C∞k (X, C) −→ C∞k+1(X, C)

of order one acting on the C-valued C∞ differential forms of any degree
k ∈ {0, . . . , 2n} on X into two differential operators of order one:

∂ : C∞p, q(X, C) −→ C∞p+1, q(X, C)

∂̄ : C∞p, q(X, C) −→ C∞p, q+1(X, C)

acting on the C-valued C∞ differential forms of any bidegree (p, q),
with p, q ∈ {0, . . . , n}, on X .
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For any complex structure d = ∂ + ∂̄, one has

∂̄2 = 0,

a property that is equivalent to the integrability condition.
This further implies that

∂2 = 0 and ∂∂̄ + ∂̄∂ = 0.
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At the local level

If (z1, . . . , zn) are local holomorphic coordinates on an open subset
U ⊂ X , we have

zk = xk + i yk
for every k and

(x1, y1, . . . , xn, yn)

is a system of local C∞ real coordinates on U .

The 1-forms
dzk := dxk + idyk

are said to be of bidegree (or type) (1, 0), while the 1-forms

dz̄k := dxk − idyk
are said to be of bidegree (or type) (0, 1).
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For any p, q ∈ {0, . . . , n}, with p + q = k ∈ {0, . . . , 2n}, the
differential forms of bidegree (or type) (p, q) are those k-forms that
are generated (locally on U) by exterior products of p dzj’s and q
dz̄k’s:

u =
∑

|J |=p, |K|=q
uIJ̄ dzJ ∧ dz̄K,

where the coefficients uIJ̄ are C∞ C-valued functions on U , while
J := (1 ≤ j1 < · · · < jp ≤ n) and K := (1 ≤ k1 < · · · < kq ≤ n)
are multi-indices of lengths p, resp. q. One puts:

dzJ := dzj1 ∧ · · · ∧ dzjp
and

dz̄K := dz̄k1
∧ · · · ∧ dz̄kq.
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A C∞ (p, q)-form on X is a globally and intrinsically defined object.

Its local shape (1) transforms, under a change of local holomor-
phic coordinates from (z1, . . . , zn) on some open subset U ⊂ X to
(w1, . . . , wn) on some open subset V ⊂ X , according to the usual
rules of calculus, starting from the identities:

dzj =

n∑
k=1

∂zj
∂wk

dwk and dz̄j =

n∑
k=1

∂z̄j
∂wk

dwk

on U ∩ V for every j ∈ {1, . . . , n}.

8



The vector fields:

∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
on U are said to be of type (1, 0), while the vector fields

∂

∂z̄j
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
on U are said to be of type (0, 1).
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The differential of a C1 function f : U −→ C is the 1-form on U
given by

df =

n∑
j=1

∂f

∂xj
dxj +

n∑
j=1

∂f

∂yj
dyj

=

n∑
j=1

∂f

∂zj
dzj +

n∑
j=1

∂f

∂z̄j
dz̄j = ∂f + ∂̄f,

where we put ∂f :=
∑n
j=1

∂f
∂zj

dzj (a (1, 0)-form) and ∂̄f :=
∑n
j=1

∂f
∂z̄j

dz̄j

(a (0, 1)-form).

10



Moreover, a C∞ function f : U −→ C is holomorphic if and only if

∂f

∂z̄j
= 0

for all j ∈ {1, . . . , n}, namely if and only if ∂̄f = 0.

These are the Cauchy-Riemann equations.
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For an arbitrary C1 form u of bidegree (or type) (p, q) on X , ∂u
and ∂̄u are a (p + 1, q)-form, resp. a (p, q + 1)-form, on X .

In local coordinates, they are obtained by applying ∂, resp. ∂̄, to the
coefficients of u written locally in the form (1), so we get:

∂u =
∑

|J |=p, |K|=q
∂uIJ̄ ∧ dzJ ∧ dz̄K and ∂̄u =

∑
|J |=p, |K|=q

∂̄uIJ̄ ∧ dzJ ∧ dz̄K,(1)

where we have (see above):

∂uIJ̄ =

n∑
j=1

∂uIJ̄
∂zj

dzj and ∂̄uIJ̄ =

n∑
j=1

∂uIJ̄
∂z̄j

dz̄j.
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We stress again that (p, q)-forms and k-forms on X (in particular,
the 1-form df = ∂f+ ∂̄f for any C1 function f : X → C) are globally
and intrinsically defined objects on X .

Indeed, if TXR denotes the real tangent bundle and (TXR)? the
real cotangent bundle of X , the complexified exterior algebra Λ•(C⊗
TX)? := C⊗R Λ•(TXR)? splits canonically at every point of X as

Λk(C⊗ TX)? =
∑
p+q=k

Λp, qT ?X, 0 ≤ k ≤ 2n,

where the space of (p, q)-forms is defined pointwise as

Λp, qT ?X := ΛpT ?X ⊗ ΛqT ?X,

where T ?X is the holomorphic cotangent bundle of X (generated lo-
cally by the (1, 0)-forms dz1, . . . , dzn) and T ?X is the anti-holomorphic
cotangent bundle ofX (generated locally by the (0, 1)-forms dz̄1, . . . , dz̄n).
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In particular, every k-form α splits uniquely into pure-type forms
αp, q of respective bidegrees (p, q):

α =
∑
p+q=k

αp, q.

The forms αp, q are called the pure-type components of α.

Thus, for every k, we get a splitting:

C∞k (X, C) =
⊕
p+q=k

C∞p, q(X, C).

14



(1) Metric point of view
Hermitian metric on a given complex manifold X :

C∞, positive definite, (1, 1)-form ω on X

In local coordinates (z1, . . . , zn) on some open subset U ⊂ X , it has
the shape

ω =

n∑
j, k=1

ωjk̄ idzj ∧ dz̄k,

where the ωjk̄’s are C-valued C∞ functions on U such that the matrix

(ωjk̄)1≤j, k≤n is positive definite at every point of U .
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This is equivalent to saying that ω defines a pointwise (positive def-
inite) inner product

〈· , ·〉ω : T 1, 0X × T 1, 0X −→ C
on the holomorphic tangent bundle of X :

〈· , ·〉ω, x : T
1, 0
x X × T 1, 0

x X −→ C, x ∈ X,

and that the inner product 〈· , ·〉ω, x on T
1, 0
x X depends in a C∞ way

on x ∈ X .

Explicitly, T 1, 0X is generated by ∂/∂z1, . . . , ∂/∂zn on U and〈
∂

∂zj
,
∂

∂zk

〉
ω

= ωjk̄, 1 ≤ j, k ≤ n,

at every point x ∈ X .
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The inner product 〈· , ·〉ω induces by duality a pointwise inner prod-
uct, denoted by the same symbol, on the holomorphic cotangent bundle
Λ1, 0T ?X (generated by dz1, . . . , dzn on U), given by

〈dzj , dzk〉ω = ωjk̄, 1 ≤ j, k ≤ n,

at every point x ∈ X , where the matrix (ωjk̄)1≤j, k≤n is the transpose
of the inverse of (ωjk̄)1≤j, k≤n at every point.

By conjugation, we get an induced inner product on Λ0, 1T ?X and
thus also on

CT ?X = Λ1, 0T ?X ⊕ Λ0, 1T ?X

by putting
〈dzj , dz̄k〉ω = 0

for all j, k.
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More generally, ω induces a pointwise inner product on Λp, qT ?X for
every bidegree (p, q). From this, we get an L2 inner product on the
space of global C∞ (p, q)-forms on X , defined by

〈〈u, v〉〉ω :=

∫
X

〈u(x) , v(x)〉ω dVω,

where dVω := ωn/n! is the volume form on X induced by ω.
The L2 inner product defined by a given Hermitian metric ω induces

formal adjoints

d? = d?ω : C∞k (X, C) −→ C∞k−1(X, C),

∂? = ∂?ω : C∞p, q(X, C) −→ C∞p−1, q(X, C),

∂̄? = ∂̄?ω : C∞p, q(X, C) −→ C∞p, q−1(X, C)

of the differential operators d, ∂ and ∂̄.
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An important notion is the following

Definition.A Kähler metric on a complex manifold X is a Her-
mitian metric ω on X such that dω = 0.

A complex manifold X is said to be a Kähler manifold if a
Kähler metric exists on X.
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Examples.

(1) Complex projective spaces CPn = Pn;
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(2) Projective manifolds: those compact complex manifolds X that
can be embedded as closed submanifolds into some complex projective
space:

there exists an integer N ≥ 1 such that X ↪→ CPN .

These are the main objects of study in complex algebraic geometry.

Kodaira’s Embedding Theorem

A compact complex manifold X is projective if and only if X
carries an integral Kähler class {ω} ∈ H2(X, Z).
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More generally, X is said to be Moishezon if it is bimeromor-
phically equivalent to a projective manifold, namely if there exists a
projective manifold X̃ and a holomorphic bimeromorphic map (called
a modification)

µ : X̃ −→ X.

Intuitively, Moishezon manifolds are those compact complex mani-
folds that admit “many” (in a precise sense) divisors (= formal linear
combinations with integer coefficients of complex hypersurfaces of X).
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A transcendental analogue of Moishezon manifolds is provided by the
(Fujiki) class C manifolds.

These are the compact complex manifolds that are bimeromorphi-
cally equivalent to compact Kähler manifolds.

Specifically, a compact complex manifold X belongs to this class if
and only if there exists a compact Kähler manifold X̃ and a holomor-
phic bimeromorphic map (called a modification)

µ : X̃ −→ X.

23



We have implications:

X Kähler

=⇒ =⇒

X projective X class C.

=⇒
=⇒

X Moishezon

All these implications are strict when dimCX ≥ 3.
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Classification of compact complex manifolds from the point
of view of special metrics they support

dω = 0 =⇒ ∃ ρ0, 2 ∈ C∞0, 2(X, C) s.t. =⇒ ∂∂̄ω = 0

d(ρ0, 2 + ω + ρ0, 2) = 0
(ω is Kähler) (ω is Hermitian-symplectic (H-S)) (ω is SKT)

=⇒

(P )

dωn−1 = 0 =⇒ ∃ Ωn−2, n ∈ C∞n−2, n(X, C) s.t. =⇒ ∂∂̄ωn−1 = 0

d(Ωn−2, n + ωn−1 + Ωn−2, n) = 0
(ω is balanced) (ω is strongly Gauduchon (sG)) (ω is Gauduchon).
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(2) Cohomological point of view
Let X be a compact complex manifold with dimCX = n ≥ 2.

Thanks to the integrability property d2 = 0, ∂2 = 0, ∂̄2 = 0, each of
the differential operators d, ∂, ∂̄ induces a complex:

-the De Rham complex of X :

· · · d−→ C∞k−1(X, C)
d−→ C∞k (X, C)

d−→ C∞k+1(X, C)
d−→ · · · ,

giving rise to the De Rham cohomology spaces of X :

Hk
DR(X,C) :=

ker (d : C∞k (X, C) −→ C∞k+1(X, C))

Im (d : C∞k−1(X, C) −→ C∞k (X, C))
, k ∈ {0, . . . , 2n},

depending only on the differential structure of X ;
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-for every fixed q ∈ {0, . . . , n}, the conjugate Dolbeault com-
plex of X :

· · · ∂−→ C∞p−1, q(X, C)
∂−→ C∞p, q(X, C)

∂−→ C∞p+1, q(X, C)
∂−→ · · · ,

giving rise to the conjugate Dolbeault cohomology spaces of X :

H
p, q
∂ (X,C) :=

ker (∂ : C∞p, q(X, C) −→ C∞p+1, q(X, C))

Im (∂ : C∞p−1, q(X, C) −→ C∞p, q(X, C))
, p, q ∈ {0, . . . , n},

depending on the complex structure of X ;
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-for every fixed p ∈ {0, . . . , n}, the Dolbeault complex of X :

· · · ∂̄−→ C∞p, q−1(X, C)
∂̄−→ C∞p, q(X, C)

∂̄−→ C∞p, q+1(X, C)
∂̄−→ · · · ,

giving rise to the Dolbeault cohomology spaces of X :

H
p, q
∂̄

(X,C) :=
ker (∂̄ : C∞p, q(X, C) −→ C∞p, q+1(X, C))

Im (∂̄ : C∞p, q−1(X, C) −→ C∞p, q(X, C))
, p, q,

depending on the complex structure of X .
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The compactness of X implies the finite dimensionality (as C-
vector spaces) of all of the above cohomology spaces whose dimensions
are important geometric invariants of a compact complex manifold.

Of particular interest are:

-the Betti numbers:

bk = bk(X) := dimCH
k
DR(X,C), k ∈ {0, . . . , 2n},

depending only on the differential structure of X (so, they are topo-
logical invariants)

-the Hodge numbers:

hp, q = h
p, q
∂̄

(X) := dimCH
p, q
∂̄

(X,C), p, q ∈ {0, . . . , n},
depending on the complex structure of X .
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Two other cohomologies that play a key role in non-Kähler complex
geometry are

-the Bott-Chern cohomology, whose spaces are defined as

H
•, •
BC(X,C) :=

ker ∂ ∩ ker ∂̄

Im (∂∂̄)
,

and

-the Aeppli cohomology, whose spaces are defined as

H
•, •
A (X,C) :=

ker (∂∂̄)

Im ∂ + Im ∂̄
.

We denote by {α}DR, [α]∂, [α]∂̄, [α]BC , [α]A the De Rham, conju-
gate Dolbeault, Dolbeault, Bott-Chern, respectively Aeppli cohomol-
ogy class of a given form α that represents such a class.
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There are well-defined, canonical linear maps induced by the iden-
tity among these cohomologies:

H
p, q
BC(X, C)→ H

p, q
∂̄

(X, C)→ H
p, q
A (X, C), [α]BC 7→ [α]∂̄ 7→ [α]A,

H
p, q
BC(X, C)→ H

p, q
∂ (X, C)→ H

p, q
A (X, C), [α]BC 7→ [α]∂ 7→ [α]A,

H
p, q
BC(X, C)→ H

p+q
DR (X, C)→ H

p, q
A (X, C), [α]BC 7→ {α}DR 7→ [αp, q]A,

where, for the last map, αp, q denotes the (p, q)-type component of the
(p + q)-form α =

∑
r+s=p+q α

r, s. By canonical we mean that these
maps depend only on the complex structure of X , so, in particular,
they are independent of the choice of a Hermitian metric.
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However, these maps need not be either injective or surjective on an
arbitrary X .

One of the remarkable properties of a class of compact complex man-
ifolds (the so-called ∂∂̄-manifolds) that strictly contains the Kähler
class is that all the maps on the first two rows above are isomorphisms,
while the two maps on the third row are injective, respectively sur-
jective.

In particular, on a compact Kähler manifoldX , the Dolbeault, conju-
gate Dolbeault, Bott-Chern and Aeppli cohomologies are canonically
isomorphic. For this reason, the subscript can be dropped in that
case, so Hp, q(X, C) stands for any (usually Dolbeault in practice) of
these cohomology groups of bidegree (p, q) on a compact Kähler X .
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(3) Interplay between the metric and the cohomological
points of view

Another basic idea of Hodge theory: to interpret the various coho-
mology spaces as harmonic spaces, namely as the kernels of certain
elliptic differential operators called Laplacians.

Suppose X is a compact complex manifold on which a Hermitian
metric ω has been fixed. Using the L2 inner product induced by ω
on the spaces of C∞ forms on X , one defines first-order differential
operators d?, ∂?, ∂̄? as the adjoints of d, ∂, ∂̄ which, in turn, induce
Laplace-Beltrami operators:
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∆ = ∆ω := dd? + d?d : C∞k (X, C)→ C∞k (X, C),

∆′ = ∆′ω := ∂∂? + ∂?∂ : C∞p, q(X, C)→ C∞p, q(X, C),

∆′′ = ∆′′ω := ∂̄∂̄? + ∂̄?∂̄ : C∞p, q(X, C)→ C∞p, q(X, C),

∆BC := ∂?∂+∂̄?∂̄+(∂∂̄)(∂∂̄)?+(∂∂̄)?(∂∂̄)+(∂?∂̄)?(∂?∂̄)+(∂?∂̄)(∂?∂̄)?,

∆A := (∂∂̄)?(∂∂̄)+∂∂?+∂̄∂̄?+(∂∂̄)(∂∂̄)?+(∂∂̄?)(∂∂̄?)?+(∂∂̄?)?(∂∂̄?),

in every (bi-)degree.

Note that ∆, ∆′ and ∆′′ are of order 2, while ∆BC and ∆A (called
the Bott-Chern, respectively the Aeppli, Laplacian) are of order 4.
Each of them is adapted to one type of cohomology on X .
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They all turn out to be elliptic and this, together with the compact-
ness of X , leads to Hodge isomorphisms:

Hk
DR(X, C) ' Hk∆(X, C),

H
p, q
∂ (X, C) ' Hp, q

∆′ (X, C), H
p, q
∂̄

(X, C) ' Hp, q
∆′′ (X, C),

H
p, q
BC(X, C) ' Hp, q∆BC

(X, C), H
p, q
A (X, C) ' Hp, q∆A

(X, C),

whereHkP (X, C) andHp, qP (X, C) stand for the kernels of P in degree

k and bidegree (p, q), where P ∈ {∆,∆′,∆′′,∆BC,∆A}.

35



These statements follow from the following

Theorem (fundamental facts of Hodge theory) Let (X, ω)
be a compact Hermitian manifold with dimCX = n. Then:

(1) the differential operators ∆, ∆′ and ∆′′ are elliptic (i.e.
their principal symbols are injective at every point);

(2) the kernels of ∆, ∆′ and ∆′′ are finite dimensional, while
their images are closed and finite codimensional in C∞k (X, C)
(for ∆), resp. in C∞p, q(X, C) (for ∆′ and ∆′′).
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Moreover, for all k ∈ {0, . . . , 2n} and all p, q ∈ {0, . . . , n}, the
following orthogonal (for the L2

ω-norm) two-space decompo-
sitions hold:

C∞k (X, C) = ker ∆⊕ Im ∆, C∞p, q(X, C) = ker ∆′ ⊕ Im ∆′,

C∞p, q(X, C) = ker ∆′′ ⊕ Im ∆′′,

where all the kernels and images involved are taken in the respec-
tive (bi)degrees.
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(3) furthermore, the following L2
ω-orthogonal two-space de-

compositions hold:

Im ∆ = Im d⊕Im d?, Im ∆′ = Im ∂⊕Im ∂?, Im ∆′′ = Im ∂̄⊕Im ∂̄?.

Hence, we get the following L2
ω-orthogonal three-space de-

compositions:

C∞k (X, C) = ker ∆⊕ Im d⊕ Im d?,

C∞p, q(X, C) = ker ∆′ ⊕ Im ∂ ⊕ Im ∂?,

C∞p, q(X, C) = ker ∆′′ ⊕ Im ∂̄ ⊕ Im ∂̄?,
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in which we further have:

ker d = ker ∆⊕ Im d and ker d? = ker ∆⊕ Im d?,

ker ∂ = ker ∆′ ⊕ Im ∂ and ker ∂? = ker ∆′ ⊕ Im ∂?,

ker ∂̄ = ker ∆′′ ⊕ Im ∂̄ and ker ∂̄? = ker ∆′′ ⊕ Im ∂̄?

in all the degrees k ∈ {0, . . . , 2n} and all the bidegrees (p, q) with
p, q ∈ {0, . . . , n}.
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Let us only point out that conclusion (2) above follows from G̊arding’s
estimate (or the a priori estimate, depending on the terminology
being used) satisfied by any elliptic operator on a compact manifold
(without boundary).

Conclusion (3) further follows from the integrability of the operators
d, ∂, ∂̄, namely d2 = 0, ∂2 = 0 and ∂̄2 = 0.

As an immediate consequence, one gets the Hodge isomorphisms
that display the De Rham, Dolbeault and conjugate Dolbeault coho-
mology groups as isomorphic to the spaces of ∆-harmonic, ∆′′-
harmonic and resp. ∆′-harmonic spaces of forms of the same
(bi)degrees.
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Corollary. Let (X, ω) be a compact Hermitian manifold with
dimCX = n. Then, for all k ∈ {0, . . . , 2n} and all p, q ∈ {0, . . . , n},
the following Hodge isomorphisms hold:

Hk
DR(X, C) ' Hk∆(X, C),

H
p, q
∂ (X, C) ' Hp, q

∆′ (X, C),

H
p, q
∂̄

(X, C) ' Hp, q
∆′′ (X, C),

whereHk∆(X, C) := ker(∆ : C∞k (X, C)→ C∞k (X, C)), Hp, q
∆′ (X, C) :=

ker(∆′ : C∞p, q(X, C) → C∞p, q(X, C)) and Hp, q
∆′′ (X, C) := ker(∆′′ :

C∞p, q(X, C)→ C∞p, q(X, C)).
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