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(I) Introduction

Classification of compact complex manifolds

X compact complex manifold, n = dimCX

Complex structure : d = ∂ + ∂̄

Idea

the transcendental methods, introduced for the study of possibly
non-algebraic manifolds, are also relevant in the study of projective
manifolds.
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Context

(a) Complex algebraic geometry

• X is said to be projective
def⇐⇒ ∃N ∈ N? s.t. X ↪→ CPN

(embedding as a closed submanifold)

• More generally, X is said to be Moishezon if there exists

σ : X̃ → X

holomorphic and bimeromorphic map with X̃ projective.
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(b) Complex analytic and differential geometry

Let ω > 0 C∞ positive definite (1, 1)-form on X .

(Hermitian metric, always exists)

Locally : ω =
∑
j, k

ωjk̄ idzj ∧ dz̄k,

where the ωjk̄’s are C∞ functions;

• ω is said to be Kähler if dω = 0 (need not exist)

• X is a Kähler manifold if ∃ a Kähler metric ω.

• A compact Kähler manifold need not have any complex submanifolds
other than the points (e.g. neither curves, nor hypersurfaces.)
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In this transcendental context, the objects of study are often an-
alytic generalisations of algebraic objects. Examples :

(i) closed positive currents (e.g. of bidegree (1, 1)) :

T =
∑
j, k

Tjk̄ idzj ∧ dz̄k,

where the Tjk̄’s are complex measures ;

(local shape)

Closed positive currents generalise subvarieties.
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Example : if Y ⊂ X is a subvariety, dimCY = p, one defines

C∞p (X, C) 3 γ
[Y ]
7−→

∫
Y
γ|Y ∈ C

the current of integration on Y .

(ii) special Hermitian metrics (not necessarily Kähler) and
their cohomology classes.
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Transcendental analogue of Moishezon manifolds

X is said to be of class C if there exists a holomorphic and
bimeromorphic map

σ : X̃ → X

with X̃ compact Kähler.

Demailly-Paun (2001) : X is of class C ⇐⇒ ∃T Kähler
current on X (i.e. dT = 0 and T > 0).
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Implications (all strict)

X Kähler

=⇒ =⇒

X projective X class C

=⇒
=⇒

X Moishezon
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(1) Metric point of view

If n = dimCX ≥ 3, few manifolds X are Kähler.

Further examples of special metrics:

(i) ω is said to be Gauduchon if ∂∂̄ωn−1 = 0 (always exists) ;

(ii) ω is said to be strongly Gauduchon if ∂ωn−1 is ∂̄-exact
(P. 2009) (need not exist) ;

(iii) ω is said to be balanced if dωn−1 = 0
(Gauduchon 1977) (need not exist).
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(2) Cohomological point of view

- De Rham cohomology group:

Hk
DR(X,C) :=

ker d

Im d
(depends only on the differential structure)

- Dolbeault cohomology group:

H
p, q
∂̄

(X,C) :=
ker ∂̄

Im ∂̄
(depends on the complex structure)
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- Bott-Chern cohomology group:

H
p, q
BC(X,C) :=

ker ∂ ∩ ker ∂̄

Im (∂∂̄)
(depends on the complex structure)

- Aeppli cohomology group:

H
p, q
A (X,C) :=

ker(∂∂̄)

Im ∂ + Im ∂̄
(depends on the complex structure)
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Tools: examples of PDE’s

(1) The Cauchy-Riemann equation

∂̄u = v,

where v is a given C∞ (p, q)-form on a compact Hermitian manifold
(X, ω). We look for C∞ (p, q − 1)-form solutions u.

The solution of minimal L2
ω-norm is

u = ∆
′′−1∂̄?v,

where ∆
′′−1 is the Green operator of the ∂̄-Laplacian

∆′′ = ∂̄∂̄? + ∂̄?∂̄ : C∞p, q−1(X, C) −→ C∞p, q−1(X, C).
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(2) The Monge-Ampère equation

(ω + i∂∂̄ϕ)n = dV,

where (X, ω) : compact Hermitian manifold, n = dimCX ;

dV > 0 : C∞ (n, n)-form (volume form) such that∫
X

ωn =

∫
X

dV.

We are looking for C∞ solutions

ϕ : X −→ R
such that ω + i∂∂̄ϕ > 0.
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(a) If ω is Kähler, the Monge-Ampère equation was solved by Yau
(1978).

Result: we get a Kähler metric ωϕ := ω+ i∂∂̄ϕ with prescribed vol-

ume form and lying in a given cohomology class {ω}DR ∈ H2
DR(X, R).

(b) If ω is arbitrary Hermitian, the Monge-Ampère equation was
solved by Cherrier (1987), Guan-Li (2006) and Tosatti-Weinkove (2010).

My work with Dinew: we use this Hermitian Monge-Ampère
equation to try proving the existence of critical points for a functional
that we have introduced.
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(3) A new Monge-Ampère-type equation (P. 2015)

[(
ωn−1+i∂∂̄ϕ∧ωn−2+

i

2
(∂ϕ∧∂̄ωn−2−∂̄ϕ∧∂ωn−2)

) 1
n−1
]n

= ef ωn,

where ω is a Gauduchon metric given beforehand on X .

We are looking for C∞ solutions

ϕ : X −→ R
such that ωn−1 + i∂∂̄ϕ∧ωn−2 + i

2 (∂ϕ∧ ∂̄ωn−2− ∂̄ϕ∧∂ωn−2) > 0.

Result (P. 2015, Tosatti-Weinkove 2015, Tosatti-Szekelyhidi-
Weinkove 2017) : we get a Gauduchon metric with prescribed
volume form and lying in a given Aeppli cohomology class.
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(3) Metric + cohomological point of view

X balanced

=⇒ =⇒

X class C X sG

=⇒
=⇒

X ∂∂̄

=⇒

E1(X) = E∞(X)
(Frölicher spectral sequence)
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Hodge Theory for the Frölicher spectral sequence

(1) The first page (Dolbeault cohomology) : classical case

H
p, q
∂̄

(X, C) ' ker(∆′′ : C∞p, q(X, C) −→ C∞p, q(X, C))

(Hodge isomorphism)

where

∆′′ = ∂̄∂̄? + ∂̄?∂̄

is the ∂̄-Laplacian (elliptic differential operator of order 2).
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(2) The second page (P. 2016) : ∃ Hodge isomorphism

E
p, q
2 (X) ' ker(∆̃ : C∞p, q(X, C) −→ C∞p, q(X, C))

where

∆̃ = ∂p′′∂? + ∂?p′′∂ + ∆′′

is a pseudodifferential operator (P. 2016) and

C∞p, q(X, C) = ker ∆′′ ⊕ Im ∂̄ ⊕ Im ∂̄?
p′′−→ ker ∆′′

is the orthogonal projection.
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(II) Work with Dinew

Hermitian-symplectic geometry

X a compact complex manifold, dimCX = n

Goal: study the geometry of X in terms of the metrics it supports.

Let ω > 0 a C∞ positive definite (1, 1)-form on X .

(a Hermitian metric, always exists)
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A few classes of special Hermitian metrics

(Except for the Gauduchon metrics, they need not exist on a given
X .)

dω = 0 =⇒ ∃ ρ0, 2 ∈ C∞0, 2(X, C) s.t. =⇒ ∂∂̄ω = 0

d(ρ0, 2 + ω + ρ0, 2) = 0
(ω is Kähler) (ω is Hermitian-symplectic) (ω is SKT)

=⇒

(Streets-Tian ’10) (P )

dωn−1 = 0 =⇒ ∃ Ωn−2, n ∈ C∞n−2, n(X, C) s.t. =⇒ ∂∂̄ωn−1 = 0

d(Ωn−2, n + ωn−1 + Ωn−2, n) = 0
(ω is balanced) (ω est strongly Gauduchon (sG)) (ω is
(Gauduchon ’77) (P. ’09) Gauduchon).
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Hermitian-symplectic (H-S) metrics and manifolds

• Intrinsic characterisation

Theorem 0.1 (Sullivan 1976) Let X be a compact complex man-
ifold with dimCX = n.

X is Hermitian-symplectic ⇐⇒ X supports no non-zero cur-
rent T of bidegree (n− 1, n− 1) such that T ≥ 0 and T is d-exact.

• Li-Zhang ’09, Streets-Tian ’10, Dinew-P. ’20: when dimCX = 2,

X is Hermitian-symplectic ⇐⇒ X is Kähler.
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• Higher-dimensional H-S manifolds

They are poorly understood.

Question 0.2 (Streets-Tian ’10) Do there exist non-Kähler Hermitian-
symplectic complex manifolds X with dimCX ≥ 3?

· The general case of this question is still open.

· It has been answered negatively for a handful of special classes of
manifolds, including:

-all nilmanifolds endowed with an invariant complex structure (Enrietti-
Fino-Vezzoni ’12);

-all twistor spaces (Verbitsky ’14).
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· If the answer is affirmative, this would be a Kählerianity criterion
for manifolds.

Cf. the Demaily-Paun (’04) Kählerianity criterion for cohomology
classes on a given compact Kähler manifold.

· This problem lies at the interface between symplectic and complex
Hermitian geometries.

· The Streets-Tian question is complementary to Donaldson’s earlier

Question 0.3 (Donaldson ’06) If J is an almost-complex struc-
ture on a compact 4-manifold which is tamed by a symplectic form,
is there a symplectic form compatible with J?

This is Donaldson’s tamed-to-compatible conjecture.
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Preliminaries: relations between special metrics

(1) H-S and sG manifolds

Proposition 0.4 (Yau-Zhao-Zheng ’19; Dinew-P. ’20) Every com-
pact complex manifold X that admits a Hermitian-symplectic
metric also admits a strongly Gauduchon (sG) metric.
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(2) Balanced SKT metrics

Proposition 0.5 (Ivanov- Papadopoulos ’13, P. ’15) If a Hermi-
tian metric ω on a compact complex manifold X is both SKT and
balanced, then ω is Kähler.

Proof. The SKT assumption on ω translates to:

∂∂̄ω = 0⇐⇒ ∂ω ∈ ker ∂̄ ⇐⇒ ?(∂ω) ∈ ker ∂?,

where we use the standard formula ∂? = − ? ∂̄? involving the Hodge-
star operator induced by ω.

The balanced assumption on ω translates to:

dωn−1 = 0⇐⇒ ∂ωn−1 = 0⇐⇒ ωn−2 ∧ ∂ω = 0⇐⇒ ∂ω is primitive.

Moreover, since ∂ω is primitive when ω is balanced, we get:

?(∂ω) = i
ωn−3

(n− 3)!
∧ ∂ω =

i

(n− 2)!
∂ωn−2 ∈ Im ∂.
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Hence, if ω is both SKT and balanced, we get:

?(∂ω) ∈ ker ∂? ∩ Im ∂ = {0},
where the last identity follows from ker ∂? ⊥ Im ∂. Hence

∂ω = 0,

meaning that ω is Kähler. �

26



Our approach and results

Question (strengthening of Streets-Tian)

Does there exist a Kähler metric in the Aeppli cohomology class
of every Hermitian-symplectic metric?

Recall

ω is H-S =⇒ ω is SKT (i.e. ∂∂̄ω = 0).

Hence, ω defines an Aeppli cohomology class:

{ω}A ∈ H
1, 1
A (X, C) :=

ker (∂∂̄)

Im ∂ + Im ∂̄
.
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The Hermitian-symplectic condition can be expressed as follows.

Lemma 0.6 Let ω be a Hermitian metric on a compact complex
manifold X.

(I) The following statements are equivalent.

(a) ω is Hermitian-symplectic.

(b) There exists a form ρ2, 0 ∈ C∞2, 0(X, C) satisfying the equa-
tions:

(i) ∂ρ2, 0 = 0 and (ii) ∂̄ρ2, 0 + ∂ω = 0.
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(I) A new energy functional

Lemma and Definition 0.7 For every Hermitian-symplectic met-

ric ω on X, there exists a unique smooth (2, 0)-form ρ
2, 0
ω on X

such that:

(i) ∂ρ
2, 0
ω = 0 and (ii) ∂̄ρ

2, 0
ω = −∂ω

and
(iii) ρ

2, 0
ω ∈ Im ∂?ω + Im ∂̄?ω.

Property (iii) ensures that ρ
2, 0
ω has minimal L2

ω-norm among all
the (2, 0)-forms satisfying properties (i) and (ii).

We call ρ
2, 0
ω the (2, 0)-torsion form and its conjugate ρ

0, 2
ω the

(0, 2)-torsion form of the Hermitian-symplectic metric ω.
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One has the explicit Neumann-type formula:

ρ
2, 0
ω = −∆−1

BC [∂̄?∂ω + ∂̄?∂∂?∂ω], (1)

where ∆−1
BC is the Green operator of the Bott-Chern Laplacian

∆BC induced by ω, while ∂? = ∂?ω and ∂̄? = ∂̄?ω are the formal
adjoints of ∂, resp. ∂̄, w.r.t. the L2 inner product defined by ω.
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For every Hermitian-symplectic Aeppli class {ω}A, we denote by

S{ω} :=

{
ω + ∂ū + ∂̄u | u ∈ C∞1, 0(X, C) such that ω + ∂ū + ∂̄u > 0

}
⊂ {ω}A ∩ C∞1, 1(X, R)

the set of all (necessarily H-S) metrics in {ω}A.

It is an open convex subset of the real affine space

{ω}A ∩ C∞1, 1(X, R) = {ω + ∂ū + ∂̄u | u ∈ C∞1, 0(X, C)}.
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Definition 0.8 Let X be a compact complex Hermitian-symplectic
manifold with dimCX = n. For the Aeppli cohomology class {ω0}A
of any Hermitian-symplectic metric ω0, we define the following
energy functional:

F : S{ω0}→ [0, +∞), F (ω) =

∫
X

|ρ2, 0
ω |2ω dVω = ||ρ2, 0

ω ||2ω,

where ρ
2, 0
ω is the (2, 0)-torsion form of the H-S metric ω ∈ S{ω0},

while | |ω is the pointwise norm and || ||ω is the L2 norm induced
by ω.
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The introduction of this functional is justified by

Lemma 0.9 Fix a Hermitian-symplectic Aeppli class {ω0}A. For
any H-S metric ω ∈ S{ω0}, the following equivalence holds:

ω is Kähler ⇐⇒ F (ω) = 0.

Proof. If ω is Kähler, ∂ω = 0 and the minimal L2-norm solution

of the equation ∂̄ρ = 0 vanishes. Thus ρ
2, 0
ω = 0, hence F (ω) = 0.

Conversely, if F (ω) = 0, then ρ
2, 0
ω vanishes identically on X,

hence ∂ω = −∂̄ρ2, 0
ω = 0, so ω is Kähler. �
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Computation of the critical points of F

Theorem 0.10 The differential at ω of F is given by the formula:

(dωF )(γ) = −2 Re 〈〈u, ∂̄?ω〉〉ω + 2 Re

∫
X

u ∧ ρ2, 0
ω ∧ ρ2, 0

ω ∧ ∂̄
(

ωn−3

(n− 3)!

)
,

for every (1, 1)-form γ = ∂ū + ∂̄u.

In particular, when n = 3, this formula reduces to:

(dωF )(γ) = −2 Re 〈〈u, ∂̄?ω〉〉ω.
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Corollary 0.11 Suppose n = 3. Then a Hermitian-symplectic
metric ω on a compact complex manifold X of dimension 3 is a
critical point of the energy functional F if and only if ω is
Kähler.

Proof. “⇐=” If ω is Kähler, ∂ω = 0. Hence, ρ
2, 0
ω = 0, so F (ω) = 0

and ω is a minimum for F .
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“=⇒” A metric ω is a critical point of F if and only if

(dωF )(γ) = 0

for every γ = ∂ū + ∂̄u. By the above discussion, this amounts to
Re 〈〈u, ∂̄?ω〉〉ω = 0 for every (1, 0)-form u.

Thus, if ω is a critical point of F , by taking u = ∂̄?ω we get

∂̄?ω = 0.

This is equivalent to ω being balanced. However, ω is already SKT
since it is Hermitian-symplectic, so ω must be Kähler. �
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Corollary 0.12 Let X be a compact complex manifold of dimen-
sion n = 3 admitting Hermitian-symplectic metrics.

Then, for any Aeppli-cohomologous Hermitian-symplectic met-
rics ω and ωη:

ωη = ω + ∂η̄ + ∂̄η > 0, with η ∈ C∞1, 0(X, C),

the respective (2, 0)-torsion forms ρ
2, 0
ω and ρ

2, 0
η := ρ

2, 0
ωη satisfy the

identity:

||ρ2, 0
η ||2ωη +

∫
X

ω3
η

3!
= ||ρ2, 0

ω ||2ω +

∫
X

ω3

3!

and are related by

ρ
2, 0
η = ρ

2, 0
ω + ∂η.
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Proof of the first statement. In an arbitrary dimension n, we
compute the differential of the map

S{ω0} 3 ω 7→
∫
X

ωn

n!
:= Volω(X)

when the metric ω varies in its Aeppli cohomology class {ω0}A.
For any real, Aeppli null-cohomologous (1, 1)-form γ = ∂ū + ∂̄u
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(with u ∈ C∞1, 0(X, C)), we have

d

dt|t=0

∫
X

(ω + tγ)n

n!
=

1

(n− 1)!

∫
X

ωn−1 ∧ γ = 2 Re

∫
X

∂̄u ∧ ωn−1

(n− 1)!

= 2 Re

∫
X

u ∧ ∂̄ ? ω = 2 Re

∫
X

u ∧ ?
(
− ?∂̄ ? ω

)
= 2 Re

∫
X

u ∧ ?∂?ω = 2 Re

∫
X

u ∧ ?∂̄?ω

= 2 Re 〈〈u, ∂̄?ω〉〉.

The last quantity is −(dωF )(γ) when n = 3. �
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(II) Generalised volume of Hermitian-symplectic Aeppli
classes

The main takeaway from the last corollary is that the sum

F (ω) + Volω(X)

(where Volω(X) :=
∫
X ω3/3!) remains constant when ω ranges

over the (necessarily Hermitian-symplectic) metrics in the Aeppli
cohomology class of a fixed Hermitian-symplectic metric ω0.

Definition 0.13 Let X be a 3-dimensional compact Hermitian-
symplectic manifold. For any H-S metric ω on X, the constant

A = A{ω}A := F (ω) + Volω(X) > 0

depending only on {ω}A is called the generalised volume of the
H-S Aeppli class {ω}A.
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Digression

Definition 0.14 If ω is an H-S metric on a compact complex

manifold X with dimCX = 3 and ρ
2, 0
ω is the (2, 0)-torsion form

of ω, we define the following volume form on X:

dṼω := (1 + |ρ2, 0
ω |2ω) dVω.

Its volume depends only on the H-S Aeppli class:∫
X

dṼω1 =

∫
X

dṼω2 = A, for all metrics ω1, ω2 ∈ {ω}A,

where A = A{ω}A > 0 is the generalised volume of the H-S Aeppli

class {ω}A.
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Therefore, it seems natural to consider the Monge-Ampère equa-
tion:

(ω + i∂∂̄ϕ)3

3!
= b dṼω,

subject to the condition ω + i∂∂̄ϕ > 0, where b > 0 is a given
constant.

By Tosatti-Weinkove ’10, ∃!b > 0 such that this equation is solv-
able. Moreover, for that b, the solution ω + i∂∂̄ϕ > 0 is unique.

Note that

b =
Volω+i∂∂̄ϕ(X)

A{ω}A
∈ (0, 1]

since A{ω}A = F (ω+ i∂∂̄ϕ)+Volω+i∂∂̄ϕ(X) ≥ Volω+i∂∂̄ϕ(X). We
hope that this can shed some light on the mysterious constant b.
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(III) Obstruction to the existence of a Kähler metric in
a given Hermitian-symplectic Aeppli class

Theorem and Definition 0.15 (a) The (0, 2)-torsion form ρ
0, 2
ω

of any H-S metric ω is E2-closed: it defines an E2-cohomology
class

{ρ0, 2
ω }E2

∈ E0, 2
2 (X)

on the second page of the Frölicher spectral sequence of X.

(b) When dimCX = 3, {ρ0, 2
ω }E2

depends only on the Aeppli class
{ω}A.

(a consequence of F (ω)+Volω(X) = Const when the H-S metric
ω varies in a given Aeppli class)

{ρ0, 2
ω }E2

def
= the E2-torsion class of the H-S Aeppli class {ω}A.
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(c) When dimCX = 3, the vanishing of the E2-torsion class:

{ρ0, 2
ω }E2

= 0 ∈ E0, 2
2 (X)

is a necessary condition for the Aeppli class {ω}A to contain a
Kähler metric.

Natural question. Do there exist compact 3-dimensional Hermitian-
symplectic manifolds on which all or some E2-torsion classes are
non-vanishing?
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