Higher-Degree Holomorphic Contact Structures

joint work with Hisashi Kasuya (Osaka University) and Luis Ugarte (University of Zaragoza) arXiv e-print DG 2502.01447

> Dan Popovici University of Toulouse France

The 8-th Workshop "Complex Geometry and Lie Groups" Osaka, Japan 10th – 14th March 2025

Standard notion

Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n = 2p + 1$.

A holomorphic contact structure on X: $\eta \in C^{\infty}_{1,0}(X, \mathbb{C})$ such that

$$\bar{\partial}\eta = 0$$
 and $\eta \wedge (\partial\eta)^p \neq 0$ at every point of X.

More generally, one may have $\eta \in C^{\infty}_{1,0}(X, L)$, where L is a holomorphic line bundle over X.

Intuitively, the 2p + 1 dimensions of X are split into two classes: the direction of η and the 2p directions of $(\partial \eta)^p$.

We replace this splitting by the splitting 2p + 1 = p + (p + 1).

Definition (Kasuya-P-Ugarte. 2025)

Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n = 2p+1$. (1) A holomorphic p-contact structure on X is a form

 $\Gamma \in C^{\infty}_{p,0}(X, \mathbb{C})$ such that

(a)
$$\overline{\partial}\Gamma = 0$$
 and (b) $\Gamma \wedge \partial\Gamma \neq 0$ at every point of X.

(2) We say that X is a holomorphic p-contact manifold if there exists a holomorphic p-contact structure Γ on X. The opposite notion

Definition (Kasuya-P-Ugarte. 2025)

Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n = 2p+1$.

(1) A holomorphic p-no-contact structure on X is a form

$$\Gamma \in C^{\infty}_{p,0}(X, \mathbb{C})$$
 such that

(a)
$$\bar{\partial}\Gamma = 0$$
 and (b) $\partial\Gamma = \Gamma \wedge \zeta$ for some $\zeta \in C^{\infty}_{1,0}(X, \mathbb{C})$.

(2) We say that X is a holomorphic p-no-contact manifold if there exists a holomorphic p-no-contact structure Γ on X.

Observation

If p is odd, the condition

$$\partial \Gamma = \Gamma \wedge \zeta$$

implies

$$\Gamma \wedge \partial \Gamma = (\Gamma \wedge \Gamma) \wedge \zeta = 0.$$

In this sense, a holomorphic p-no-contact structure is the opposite of a holomorphic p-contact one.

Background

Demailly (2002): given

• X is *Kähler*;

• $\Gamma \in C^{\infty}_{p,0}(X, L^{-1})$ with $L \to X$ a *pseudo-effective* holomorphic line bundle such that $\bar{\partial}\Gamma = 0$;

we have:

$$\partial \Gamma = -\partial \varphi \wedge \Gamma$$

(locally) almost everywhere, where φ is a local weight of a Hermitian fibre metric h on L such that

$$i\Theta_h(L) \ge 0$$

(the positivity assumption on L on the curvature of L)

Initial observations

• Cohomology

Suppose (X, Γ) is holomorphic p-contact. Then $E_1(X) \neq E_{\infty}(X)$

in the Frölicher spectral sequence.

In particular, X is not a $\partial \bar{\partial}$ -manifold. Hence, X is never Kähler.

Proof. Γ represents a Dolbeault cohomology class $[\Gamma]_{\overline{\partial}} \in H^{p,0}_{\overline{\partial}}(X, \mathbb{C}) = E^{p,0}_1(X).$ Its image under the differential

$$d_1: E_1^{p,0}(X) \longrightarrow E_1^{p+1,0}(X)$$

is

$$d_1([\Gamma]_{\bar{\partial}}) = [\partial \Gamma]_{\bar{\partial}} \in E_1^{p+1, 0}(X).$$

If we had $E_1(X) = E_{\infty}(X)$, we would have

$$d_1 = 0$$

(identically zero). In particular, we would get

$$[\partial\Gamma]_{\bar{\partial}} = 0 \in E_1^{p+1,\,0}(X) = H_{\bar{\partial}}^{p+1,\,0}(X,\,\mathbb{C}),$$

so there would exist

$$\zeta \in C_{p+1,-1}^{\infty}(X, \mathbb{C})$$
 such that $\partial \Gamma = \overline{\partial} \zeta$.
Then, $\zeta = 0$ (for bidegree reasons), hence also
 $\partial \Gamma = \overline{\partial} \zeta = 0$.

This is impossible under our assumption $\Gamma \wedge \partial \Gamma \neq 0$ at every point of X.

Thus, the best possible degeneration of the Frölicher spectral sequence of any holomorphic p-contact manifold X can occur at the second page.

Many holomorphic *p*-contact manifolds X are *page-1-\partial\bar{\partial}-manifolds* (P.-Stelzig-Ugarte 2020).

RECALL

This means that:

 $E_2(X) = E_{\infty}(X)$ and the De Rham cohomology of X is *pure*:

$$H_{dR}^k(X, \mathbb{C}) = \bigoplus_{p+q=k} H_{dR}^{p, q}(X, \mathbb{C}), \quad k = 0, \dots, 2n.$$

This is equivalent to X having a *canonical Hodge decomposition* in which the E_1 -spaces $E_1^{p, q}(X)$ (= the Dolbeault cohomology groups $H^{p, q}(X, \mathbb{C})$ of X) have been replaced by the E_2 -spaces $E_2^{p, q}(X)$ in the sense that the identity map induces *canonical isomorphisms*:

$$H_{dR}^k(X, \mathbb{C}) \simeq \bigoplus_{p+q=k} E_2^{p, q}(X), \qquad k = 0, 1, \dots, 2n.$$

Explicitly, X is a *page-1-\partial \overline{\partial}-manifold* iff:

 \bullet each cohomology class in every space $E_2^{p,\,q}(X)$ can be represented by a smooth $d\text{-closed}~(p,\,q)\text{-form}$

and

• for every
$$k \in \{0, \dots, 2n\}$$
, the linear map

$$\bigoplus_{p+q=k} E_2^{p,q}(X) \ni \left(\{\alpha^{p,q}\}_{E_2}\right)_{p+q=k} \longmapsto \left\{\sum_{p+q=k} \alpha^{p,q}\right\}_{dR} \in H^k_{dR}(X, \mathbb{C})$$

is *well defined* (in the sense that it is independent of the choices of *d*-closed pure-type representatives $\alpha^{p,q}$ of their respective E_2 -classes) and *bijective*.

• Dimension

If (X, Γ) is a compact holomorphic *p*-contact manifold with $dim_{\mathbb{C}}X = n = 2p + 1$, then *p* is odd.

In other words, $\dim_{\mathbb{C}} X \equiv 3 \mod 4$.

Proof. If p were even, we would get: $\frac{1}{2}\partial(\Gamma^2) = \Gamma \wedge \partial\Gamma$. This is a non-vanishing holomorphic (n, 0)-form on X since Γ is a holomorphic p-contact structure. Hence

$$dV_{\Gamma} := i^{n^2} \left(\Gamma \wedge \partial \Gamma \right) \wedge \left(\overline{\Gamma} \wedge \overline{\partial} \overline{\Gamma} \right) = \frac{i^{n^2}}{4} \partial \left(\Gamma^2 \wedge \overline{\partial} \overline{\Gamma}^2 \right)$$

would be a strictly positive ∂ -exact (n, n)-form on X.

We would then get (using Stokes to infer the equality below):

$$0 < \int_X dV_{\Gamma} = 0,$$

a contradiction.

The sheaves \mathcal{F}_{Γ} and \mathcal{G}_{Γ}

Definition

Let (X, Γ) be a compact holomorphic *p*-contact manifold with $dim_{\mathbb{C}}X = n = 2p + 1$.

(i) We let \mathcal{F}_{Γ} be the sheaf of germs of holomorphic (1, 0)-vector fields ξ such that $\xi \lrcorner \Gamma = 0$.

(ii) We let \mathcal{G}_{Γ} be the sheaf of germs of holomorphic (1, 0)-vector fields ξ such that $\xi \lrcorner \partial \Gamma = 0$.

• The \mathcal{O}_X -module \mathcal{F}_{Γ} is the kernel of the induced morphism of locally free sheaves associated with the holomorphic vector bundle morphism:

$$T^{1,0}X \longrightarrow \Lambda^{p-1,0}T^{\star}X, \quad \xi \longmapsto \xi \lrcorner \Gamma.$$

• The \mathcal{O}_X -module \mathcal{G}_{Γ} is the kernel of the induced morphism of locally free sheaves associated with the holomorphic vector bundle morphism:

$$T^{1,0}X \longrightarrow \Lambda^{p,0}T^{\star}X, \quad \xi \longmapsto \xi \lrcorner \partial \Gamma,$$

In particular, \mathcal{F}_{Γ} and \mathcal{G}_{Γ} are coherent, torsion-free analytic sheaves. They need not be locally free. • The sheaf \mathcal{F}_{Γ} is *not integrable*. This is the point of a holomorphic *p*-contact structure Γ .

• However, \mathcal{G}_{Γ} displays the opposite behaviour.

Observation

The subsheaf \mathcal{G}_{Γ} of $\mathcal{O}(T^{1,0}X)$ is integrable in the sense that

 $[\mathcal{G}_{\Gamma}, \, \mathcal{G}_{\Gamma}] \subset \mathcal{G}_{\Gamma},$

where $[\cdot, \cdot]$ is the Lie bracket of $T^{1,0}X$.

Proof. Since $d\partial \Gamma = 0 = d(d\Gamma)$ (because $\overline{\partial}\Gamma = 0$), the Cartan formula reads:

$$0 = d(\partial\Gamma)(\xi_0, \dots, \xi_{p+1}) = \sum_{j=0}^{p+1} (-1)^j \xi_j \cdot (\partial\Gamma)(\xi_0, \dots, \widehat{\xi}_j, \dots, \xi_{p+1}) + \sum_{0 \le j < k \le p+1} (-1)^{j+k} (\partial\Gamma)([\xi_j, \xi_k], \xi_0, \dots, \widehat{\xi}_j, \dots, \widehat{\xi}_k, \dots, \xi_{p+1})$$

for all (1, 0)-vector fields ξ_0, \ldots, ξ_{p+1} .

If two among ξ_0, \ldots, ξ_{p+1} , say ξ_l and ξ_s for some l < s, are (local) sections of \mathcal{G}_{Γ} , then:

- all the terms in the first sum on the r.h.s. above vanish;
- all the terms in the second sum on the r.h.s. above vanish, except

possibly the term

$$(-1)^{l+s} (\partial \Gamma)([\xi_l, \xi_s], \xi_0, \dots, \widehat{\xi_l}, \dots, \widehat{\xi_s}, \dots, \xi_{p+1}).$$

Thus, this last term must vanish as well for all (1, 0)-vector fields $\xi_0, \ldots, \hat{\xi}_l, \ldots, \hat{\xi}_s, \ldots, \xi_{p+1}$.

This means that

 $[\xi_l,\,\xi_s] \lrcorner \partial \Gamma = 0,$

which amounts to $[\xi_l, \xi_s]$ being a (local) section of \mathcal{G}_{Γ} , for all pairs ξ_l, ξ_s of (local) sections of \mathcal{G}_{Γ} .

This proves the integrability of \mathcal{G}_{Γ} .

Proposition

Let (X, Γ) be a compact holomorphic *p*-contact manifold with $dim_{\mathbb{C}}X = n = 2p + 1$.

(i) The sum $\mathcal{F}_{\Gamma} \oplus \mathcal{G}_{\Gamma} \subset \mathcal{O}(T^{1,0}X)$ is direct.

(ii) If there exists a holomorphic contact structure $\eta \in C_{1,0}^{\infty}(X, \mathbb{C})$, the sheaf of germs \mathcal{F}_{η} of holomorphic (1, 0)-vector fields ξ such that $\xi \lrcorner \eta = 0$ and the sheaf of germs \mathcal{G}_{η} of holomorphic (1, 0)vector fields ξ such that $\xi \lrcorner \partial \eta = 0$ are locally free of respective ranks n - 1 and 1, while $T^{1,0}X$ has a direct-sum splitting

$$T^{1,0}X = \mathcal{F}_{\eta} \oplus \mathcal{G}_{\eta}$$

with \mathcal{F}_{η} and \mathcal{G}_{η} viewed as holomorphic vector subbundles of $T^{1,0}X$. Furthermore, the holomorphic line bundle \mathcal{G}_{η} is **trivial** and η is a non-vanishing global holomorphic section of its dual $\mathcal{G}_{\eta}^{\star}$.

(iii) Suppose that
$$\mathcal{F}_{\Gamma}$$
 and \mathcal{G}_{Γ} are locally free and
 $T^{1,0}X = \mathcal{F}_{\Gamma} \oplus \mathcal{G}_{\Gamma}.$
For $s = 0, ..., n$ and $\varphi \in C_{0,s}^{\infty}(X, T^{1,0}X)$, let
 $\varphi = \varphi_{\Gamma} + \varphi_{\partial\Gamma}$
be the induced splitting of φ into pieces $\varphi_{\Gamma}, \varphi_{\partial\Gamma} \in C_{0,s}^{\infty}(X, T^{1,0}X)$

such that $\varphi_{\Gamma} \sqcup \Gamma = 0$ and $\varphi_{\partial \Gamma} \sqcup \partial \Gamma = 0$.

Then, for any $\theta \in C_{0,q}^{\infty}(X, T^{1,0}X)$ such that $\theta \in Im\bar{\partial} \quad and \quad \theta \lrcorner \Gamma = 0$ and for any $\varphi \in C_{0,q-1}^{\infty}(X, T^{1,0}X)$ such that $\bar{\partial}\varphi = \theta$, one has $\bar{\partial}\varphi_{\Gamma} = \theta$ and $\bar{\partial}\varphi_{\partial\Gamma} = 0$. The analogous statement is true when \mathcal{F}_{Γ} is replaced by \mathcal{G}_{Γ} . **UPSHOT**

One can define directional analogues of the $T^{1,0}X$ -valued $\bar{\partial}$ -cohomology:

$$H^{0, q}_{\Gamma}(X, T^{1, 0}X)$$
 and $H^{0, q}_{\partial\Gamma}(X, T^{1, 0}X).$

There is a **natural isomorphism**

$$H^{0,q}_{\bar{\partial}}(X, T^{1,0}X) \simeq H^{0,q}_{\Gamma}(X, T^{1,0}X) \oplus H^{0,q}_{\partial\Gamma}(X, T^{1,0}X).$$

Examples of holomorphic *p*-contact manifolds (I) Initial observations

Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n = 2p + 1$ and p odd.

(1) If n = 3 (and p = 1), a form $\Gamma \in C_{1,0}^{\infty}(X, \mathbb{C})$ is a holomorphic contact structure on X if and only if it is a holomorphic 1-contact structure.

(2) Let s be the positive integer such that p = 2s - 1. For any holomorphic contact structure $\eta \in C_{1,0}^{\infty}(X, \mathbb{C})$ on X, the form

$$\Gamma := \eta \wedge (\partial \eta)^{s-1} \in C^{\infty}_{p,0}(X, \mathbb{C})$$

is a holomorphic p-contact structure on X.

(II) Examples in dimension 3

• The **Iwasawa manifold** $X = G/\Gamma$:

 $G = (\mathbb{C}^3, \star)$ is a nilpotent complex Lie group (= Heisenberg group), where the group operation is defined by

$$(\zeta_1, \zeta_2, \zeta_3) \star (z_1, z_2, z_3) = (\zeta_1 + z_1, \zeta_2 + z_2, \zeta_3 + z_3 + \zeta_1 z_2),$$

 $\Gamma \subset G$ is the lattice of $(z_1, z_2, z_3) \in G$ with $z_1, z_2, z_3 \in \mathbb{Z}[i]$.

The cohomology of X is generated by three holomorphic (1, 0)-forms α, β, γ on X that satisfy the structure equations:

$$\partial \alpha = \partial \beta = 0$$
 and $\partial \gamma = -\alpha \wedge \beta \neq 0$ everywhere on X.

Thus, $\Gamma := \gamma$ defines a holomorphic contact structure (= a holomorphic 1-contact structure) since

 $\gamma \wedge \partial \gamma = -\alpha \wedge \beta \wedge \gamma \neq 0$ at every point of X.

• The Nakamura manifolds $X = G/\Gamma$:

 $G = (\mathbb{C}^3, \star)$ is a solvable complex Lie group, where the group operation is defined by

 $(\zeta_1, \zeta_2, \zeta_3) \star (z_1, z_2, z_3) = (\zeta_1 + z_1, \zeta_2 + e^{-\zeta_1} z_2, \zeta_3 + e^{\zeta_1} z_3),$

 $\Gamma \subset G$ is a lattice.

The cohomology of X is generated by three holomorphic (1, 0)-forms $\varphi_1, \varphi_2, \varphi_3$ on X that satisfy the structure equations:

 $\partial \varphi_1 = 0, \qquad \partial \varphi_2 = \varphi_1 \wedge \varphi_2 \qquad \text{and} \qquad \partial \varphi_3 = -\varphi_1 \wedge \varphi_3.$

Hence:

• φ_2 and φ_3 define holomorphic 1-no-contact structures;

• $\Gamma_1 := \varphi_2 + \varphi_3$ and $\Gamma_2 := \varphi_2 - \varphi_3$ define holomorphic contact structures (= holomorphic 1-contact structures).

• The manifolds $X = SL(2, \mathbb{C})/\Gamma$:

 $SL(2, \mathbb{C})$ is a semi-simple complex Lie group; $\Gamma \subset SL(2, \mathbb{C})$ is a lattice.

The cohomology of X is generated by three holomorphic (1, 0)-forms α, β, γ on X that satisfy the structure equations:

$$\partial \alpha = \beta \wedge \gamma, \qquad \partial \beta = \gamma \wedge \alpha, \qquad \partial \gamma = \alpha \wedge \beta.$$

Hence, each of the forms α , β , γ defines a **holomorphic contact** structure (= a holomorphic 1-contact structure) on X.

Proposition

Let $X = G/\Gamma$ be the quotient of a nilpotent Lie group of real dimension 6 endowed with a left invariant complex structure. If X has a holomorphic contact structure, then X is:

- either the Iwasawa manifold
- or the non-complex parallelisable nilmanifold $X = G/\Gamma$, where: $G = (\mathbb{C}^3, \star)$ is given by the non-holomorphic group operation: $(\zeta_1, \zeta_2, \zeta_3)\star(z_1, z_2, z_3) = (\zeta_1+z_1, \zeta_2+z_2+\overline{\zeta}_1 z_1, \zeta_3+z_3-\zeta_1 z_2-\overline{\zeta}_1 z_1(\zeta_1+\frac{z_1}{2}))$

the lattice $\Gamma \subset G$ consists of $(z_1, z_2, z_3) \in G$ with $z_1 \in 2\mathbb{Z}[i]$ and $z_2, z_3 \in \mathbb{Z}[i]$;

Hence:

• $X = G/\Gamma$ is a compact complex 3-fold equipped with a basis of (1, 0)-forms φ_1 , φ_2 , φ_3 on X that satisfy the structure equations: $d\varphi_1 = 0, \qquad d\varphi_2 = \varphi_1 \wedge \overline{\varphi}_1, \qquad d\varphi_3 = \varphi_1 \wedge \varphi_2.$

• φ_3 defines a holomorphic contact structure (= a holomorphic 1-contact structure) on X since $\bar{\partial}\varphi_3 = 0$ and

$$\varphi_3 \wedge \partial \varphi_3 = \varphi_1 \wedge \varphi_2 \wedge \varphi_3 \neq 0.$$

(III) Examples in arbitrary dimensions $n \equiv 3 \mod 4$ Higher-dimensional Iwasawa-type manifolds $X = G/\Gamma$ Proposition

Let n = 2p + 1 = 4l + 3 and let G be the nilpotent n-dimensional complex Lie group equipped with the complex structure defined by either of the following two classes of structure equations involving a basis of holomorphic (1, 0)-forms $\varphi_1, \ldots, \varphi_n$:

(Class I)
$$d\varphi_1 = d\varphi_2 = 0,$$

 $d\varphi_3 = \varphi_2 \land \varphi_1, \dots, d\varphi_n = \varphi_{n-1} \land \varphi_1;$
(Class II) $d\varphi_1 = \dots = d\varphi_{n-1} = 0,$
 $d\varphi_n = \varphi_1 \land \varphi_2 + \varphi_3 \land \varphi_4 + \dots + \varphi_{n-2} \land \varphi_{n-1}.$

Then:

(1) if G is in class I, given any $(4l+1) \times (4l+1)$ invertible upper triangular matrix $A = (a_{ij})_{3 \le i,j \le 4l+3}$, we define:

• the (1, 0)-forms
$$\gamma_u = \sum_{i=u}^{4l+3} a_{ui} \varphi_i$$
, for every $u \ge 3$;

• the
$$(p = 2l + 1, 0)$$
-form Γ_l given by
 $\Gamma_l = \gamma_3 \land (\gamma_4 \land \gamma_5 + \gamma_5 \land \gamma_6 + \gamma_6 \land \gamma_7) \land \dots$
 $\land (\gamma_{4l} \land \gamma_{4l+1} + \gamma_{4l+1} \land \gamma_{4l+2} + \gamma_{4l+2} \land \gamma_{4l+3}).$

For any co-compact lattice $\Lambda \subset G$, the (p = 2l + 1, 0)-form Γ_l defines a holomorphic *p*-contact structure on the compact nilmanifold $X = G/\Lambda$. Meanwhile, X does not admit any holomorphic contact structure. (2) if G is in class II, for any co-compact lattice $\Lambda \subset G$, the (p, 0)-form

$$\Gamma = \varphi_n \wedge (\partial \varphi_n)^l = \varphi_n \wedge \left(\sum_{j=0}^{2l} \varphi_{2j+1} \wedge \varphi_{2j+2}\right)^l$$

defines a holomorphic *p*-contact structure on the compact nilmanifold $X = G/\Lambda$.

This is induced by the standard contact structure φ_n on X.

(IV) Examples with holomorphic *s*-symplectic manifolds Standard notion

Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n = 2s$.

A holomorphic symplectic structure: $\omega \in C_{2,0}^{\infty}(X, \mathbb{C})$ such that

(i)
$$d\omega = 0;$$
 (ii) $\bar{\partial}\omega = 0;$ (iii) $\omega^s \neq 0$ at every point of X.

Observation

(i) implies (ii), but we stress that, besides being holomorphic, ω is required to be *d*-closed.

Definition (Kasuya-P-Ugarte. 2025)

Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = 2s$.

(1) A holomorphic s-symplectic structure on X is a smooth (s, 0)-form $\Omega \in C_{s, 0}^{\infty}(X, \mathbb{C})$ such that

(i) $\bar{\partial}\Omega = 0$; and (ii) $\Omega \wedge \Omega \neq 0$ at every point of X.

(2) We say that X is a holomorphic s-symplectic manifold if there exists a holomorphic s-symplectic structure on X.

Note that we do not require holomorphic s-symplectic structures Ω to be d-closed.

First structure theorem (Kasuya-P-Ugarte. 2025)

Let:

- G be a nilpotent complex Lie group with $\dim_{\mathbb{C}} G = n = 2s = 4l$;
- Λ be a co-compact lattice in G;

• $\{\varphi_1, \ldots, \varphi_{4l}\}$ be a \mathbb{C} -basis of the dual vector space \mathfrak{g}^* of the Lie algebra \mathfrak{g} of G;

• $Y = G/\Lambda$ is the induced quotient compact complex n-dimensional manifold.

We still denote by $\{\varphi_1, \ldots, \varphi_{4l}\}$ the induced \mathbb{C} -basis of $H^{1,0}_{\overline{\partial}}(Y, \mathbb{C})$. (1) The (s, 0)-form

$$\Omega := \varphi_1 \wedge \dots \wedge \varphi_{2l} + \varphi_{2l+1} \wedge \dots \wedge \varphi_{4l}$$

is a holomorphic s-symplectic structure on Y.

(2) Set p := 2l+1 and consider the (2p+1)-dimensional compact complex nilmanifold X defined by a basis

 $\{\pi^{\star}\varphi_{1},\ldots,\pi^{\star}\varphi_{4l},\varphi_{4l+1},\varphi_{4l+2},\varphi_{4l+3}\}$

of holomorphic (1, 0)-forms whose first 4l members are the pullbacks under the natural projection $\pi : X \longrightarrow Y$ of the forms considered under (1) and the three extra members satisfy the structure equations on X:

 $\partial \varphi_{4l+1} = \partial \varphi_{4l+2} = 0$ and $\partial \varphi_{4l+3} = \varphi_{4l+1} \wedge \varphi_{4l+2} + \pi^* \sigma$, where σ is any rational d-closed (2, 0)-form on Y.

Then, the (p, 0)-form

$$\Gamma := \pi^* \Omega \wedge \varphi_{4l+3}$$

is a holomorphic p-contact structure on X.

Observations

• When $\sigma \neq 0$, $X = Y \times I^{(3)}$ (where $I^{(3)} = Iwasawa manifold$);

• When $\sigma \neq 0$, we get further holomorphic p-contact manifolds X from holomorphic s-symplectic manifolds Y through the above construction besides the products $Y \times I^{(3)}$.

• In every complex dimension 4l with $l \ge 2$ there are holomorphic s-symplectic manifolds that are not holomorphic symplectic.

• Let X be a holomorphic p-contact manifold and Y a holomorphic s-symplectic manifold. Then, $Z = X \times Y$ is a holomorphic (p+s)-contact manifold.

Second structure theorem (Kasuya-P-Ugarte. 2025)

Let $\pi : X \longrightarrow Y$ be a surjective holomorphic submersion between compact complex manifolds with $\dim_{\mathbb{C}} X = n = 2p+1 = 4l+3$ and $\dim_{\mathbb{C}} Y = 4l = 2s$. Suppose that:

(a) X has a holomorphic p-contact structure $\Gamma \in C_{p,0}^{\infty}(X, \mathbb{C})$; (b) $T^{1,0}X = \mathcal{E} \oplus \mathcal{H}$, where \mathcal{E} and \mathcal{H} are holomorphic subbundles of $T^{1,0}X$ such that \mathcal{H} is Frobenius integrable and the leaves of the foliation it induces on X are the fibres of $\pi : X \longrightarrow Y$;

(c) there exist holomorphic vector fields $\eta_1, \eta_2, \eta_3 \in H^0(X, \mathcal{H})$ that globally trivialise \mathcal{H} such that

 $\eta_1, \eta_2 \in H^0(X, \mathcal{F}_{\Gamma}), \quad \psi_3 \wedge \Gamma = 0$

(where $\psi_1, \psi_2, \psi_3 \in H^{1,0}_{\overline{\partial}}(X, \mathbb{C})$ is the global frame of \mathcal{H}^* dual to the global frame $\{\eta_1, \eta_2, \eta_3\}$ of \mathcal{H}) and the following relations are satisfied:

 $[\eta_1, \eta_2] = -[\eta_2, \eta_1] = \eta_3 \quad and \quad [\eta_j, \eta_k] = 0$ for all $(j, k) \notin \{(1, 2), (2, 1)\}.$

Then, there exists a holomorphic s-symplectic structure $\Omega \in C^{\infty}_{p-1,0}(Y, \mathbb{C}) = C^{\infty}_{2l,0}(Y, \mathbb{C}) = C^{\infty}_{s,0}(Y, \mathbb{C}) \text{ on } Y \text{ such that}$ $\Gamma = \pi^* \Omega \wedge \psi_3 \text{ on } X.$

Essential horizontal deformations

Definition (Kasuya-P-Ugarte. 2025)

The \mathbb{C} -vector subspace

$$E_2^{0,1}(X, \mathcal{F}_{\Gamma}) := \left\{ \begin{bmatrix} \theta \end{bmatrix}_{\bar{\partial}} \in H_{\Gamma}^{0,1}(X, T^{1,0}X) \mid \bar{\partial}\theta = 0, \ \theta \lrcorner \Gamma = 0, \ \theta \lrcorner \partial\Gamma \in \mathcal{Z}_2^{p,1}(X) \right\}$$

is called the space of (infinitesimal) essential horizontal deformations of X. We say that the essential horizontal deformations of X are unobstructed if every class $[\theta_1]_{\bar{\partial}} \in E_2^{0,1}(X, \mathcal{F}_{\Gamma})$ has a representative $\psi_1 \in C_{0,1}^{\infty}(X, T^{1,0}X)$ such that all the equations

$$\bar{\partial}\psi_{\nu} = \frac{1}{2} \sum_{\mu=1}^{\nu-1} [\psi_{\mu}, \psi_{\nu-\mu}] \quad (Eq. \ (\nu)), \quad \nu \ge 2,$$

admit solutions
$$\psi_{\nu} \in C_{0,1}^{\infty}(X, T^{1,0}X)$$
 with the property
 $\psi_{\nu} \lrcorner u_{\Gamma} \in \ker \partial$

for every $\nu \geq 2$.

Notation $u_{\Gamma} := \Gamma \land \partial \Gamma \in C_{n,0}^{\infty}(X, \mathbb{C})$ is a non-vanishing form the Calabi-Yau form of the holomorphic *p*-contact manifold (X, Γ)

Theorem (Kasuya-P-Ugarte. 2025)

Let (X, Γ) be a compact holomorphic *p*-contact manifold with $\dim_{\mathbb{C}} X = n = 2p + 1$ such that \mathcal{F}_{Γ} and \mathcal{G}_{Γ} are locally free and $T^{1,0}X = \mathcal{F}_{\Gamma} \oplus \mathcal{G}_{\Gamma}$.

Suppose that (X, Γ) is a partially \mathcal{F}_{Γ} -directional page-1- $\partial\bar{\partial}$ manifold and a partially vertically $\partial\bar{\partial}$ -manifold. Further suppose that the sheaf \mathcal{F}_{Γ} is cohomologically integrable in bidegree (0, 1) and constantly maximally non-integrable in bidegree (0, 1).

Then, the essential horizontal deformations of X are unobstructed.

p-contact hyperbolicity

Theorem (Kasuya-P-Ugarte. 2025)

Let (X, Γ) be a compact holomorphic *p*-contact manifold with $\dim_{\mathbb{C}} X = n = 2p + 1$ such that \mathcal{F}_{Γ} and \mathcal{G}_{Γ} are locally free of respective ranks p + 1 and p and $T^{1,0}X = \mathcal{F}_{\Gamma} \oplus \mathcal{G}_{\Gamma}$.

Then, there exists no holomorphic map $f : \mathbb{C}^{p+1} \longrightarrow X$ such that:

(i) f is non-degenerate at some point $x_0 \in \mathbb{C}^{p+1}$; (ii) f satisfies, for some, hence every, Hermitian metric ω , the slow growth condition

$$\liminf_{r \to +\infty} \frac{A_{\omega, f}(S_r)}{\operatorname{Vol}_{\omega, f}(B_r)} = 0,$$

where the (ω, f) -area $A_{\omega, f}(S_r)$ of the Euclidean sphere $S_r \subset \mathbb{C}^{p+1}$ is defined by

$$A_{\omega,f}(S_r) := \int_{S_r} d\sigma_{\omega,f,r} > 0, \qquad r > 0,$$

while the (ω, f) -volume of the Euclidean ball $B_r \subset \mathbb{C}^{p+1}$ is defined by

$$Vol_{\omega, f}(B_r) := \int_{B_r} f^* \omega_{p+1}.$$

(*iii*) $f^{\star}\Gamma = 0$ (*i.e.* f is **horizontal**).

Main ingredient in the proof

A result from Kasuya-P. (2023) on partial hyperbolicity:

Any holomorphic map $f : \mathbb{C}^{p+1} \longrightarrow X$ with the above properties (i) and (ii) induces an Ahlfors current T on X.

This means: T is a strongly semi-positive current on X

- of bidimension (p+1, p+1) (= of bidegree (p, p));
- of mass 1 with respect to any pregiven Hermitian metric ω ;
- having the extra key property dT = 0.

It is obtained as the weak limit of a subsequence $(T_{r_{\nu}})_{\nu}$ of the family of currents

$$T_r := \frac{1}{\operatorname{Vol}_{\omega, f}(B_r)} f_{\star}[B_r], \qquad r > 0,$$

where $[B_r]$ is the current of integration on the ball $B_r \subset \mathbb{C}^{p+1}$. **Application to our setting** Stokes and dT = 0 and $\partial\Gamma \wedge \overline{\partial\Gamma} \in \text{Im}(\partial\overline{\partial})$ yield: $\int_X T \wedge i^{(p+1)^2} \partial\Gamma \wedge \overline{\partial\Gamma} = 0.$

By the positivity properties of T and $i^{(p+1)^2} \partial \Gamma \wedge \overline{\partial} \overline{\Gamma}$, we infer: $T \wedge i^{(p+1)^2} \partial \Gamma \wedge \overline{\partial} \overline{\Gamma} = 0$ on X.