A Generalised Volume Invariant for Aeppli Cohomology Classes of Hermitian-Symplectic Metrics

> Dan Popovici joint work with Sławomir Dinew (Krakow)

> > Université Paul Sabatier, Toulouse, France

Almost Complex Geometry Oberwolfach 5th October 2020

Context and motivation

X a compact complex manifold, $\dim_{\mathbb{C}} X = n$

Goal: study the geometry of X in terms of the metric structures it supports.

Let $\omega > 0$ be a C^{∞} positive definite (1, 1)-form on X. (Hermitian metric, always exists)

Some classes of special Hermitian metrics

(Except for Gauduchon metrics, they need not exist on a given X.)

$$\begin{aligned} d\omega &= 0 &\implies \exists \ \rho^{0,2} \in C_{0,2}^{\infty}(X, \mathbb{C}) \text{ s.t.} &\implies \partial \bar{\partial}\omega = 0 \\ d(\overline{\rho^{0,2}} + \omega + \rho^{0,2}) &= 0 \\ (\omega \text{ is Kähler}) & (\omega \text{ is Hermitian-symplectic}) \\ (Streets-Tian '10) \\ \downarrow \\ d\omega^{n-1} &= 0 &\implies \exists \ \Omega^{n-2,n} \in C_{n-2,n}^{\infty}(X, \mathbb{C}) \text{ s.t.} \implies \partial \bar{\partial}\omega^{n-1} = 0 \\ d(\overline{\Omega^{n-2,n}} + \omega^{n-1} + \Omega^{n-2,n}) &= 0 \\ (\omega \text{ is balanced}) & (\omega \text{ is strongly Gauduchon (sG)}) \\ (Gauduchon '77) & (P. '09) & Gauduchon (sG) \end{aligned}$$

Hermitian-symplectic (H-S) metrics and manifolds

• Intrinsic characterisation

Theorem 0.1 (Sullivan 1976) Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n$.

X is Hermitian-symplectic \iff X carries no non-zero current T of bidegree (n-1, n-1) such that $T \ge 0$ and T is d-exact.

• Li-Zhang '09, Streets-Tian '10, Dinew-P. '20: when $\dim_{\mathbb{C}} X = 2$,

X is Hermitian-symplectic \iff X is Kähler.

• Higher-dimensional Hermitian-symplectic manifolds

They are poorly understood.

Question 0.2 (Streets-Tian '10) Do there exist non-Kähler Hermitiansymplectic complex manifolds X with $\dim_{\mathbb{C}} X \ge 3$?

 $\cdot\,$ The general case of this question is still open.

 \cdot It has been answered negatively for a handful of special classes of manifolds, including:

-all nilmanifolds endowed with an invariant complex structure (Enrietti-Fino-Vezzoni '12);

-all twistor spaces (Verbitsky '14).

 \cdot If the answer is affirmative, this would be a Kählerianity criterion for manifolds.

Cf. the Demaily-Paun ('04) Kählerianity criterion for cohomology classes on a given compact Kähler manifold.

• This problem lies at the interface between symplectic and complex Hermitian geometries.

 $\cdot\,$ The Streets-Tian question is complementary to Donaldson's earlier

Question 0.3 (Donaldson '06) If J is an almost-complex structure on a compact 4-manifold which is tamed by a symplectic form, is there a symplectic form compatible with J?

This is *Donaldson's tamed-to-compatible conjecture*.

Preliminaries: relations between special metrics

$(1)~\mbox{H-S}$ and \mbox{sG} manifolds

Proposition 0.4 (Yau-Zhao-Zheng '19; Dinew-P. '20) Every compact complex manifold X that admits a **Hermitian-symplectic** metric also admits a **strongly Gauduchon (sG)** metric.

Proof. Suppose that an H-S structure exists on X. Thus, there is a real C^{∞} d-closed 2-form

$$\widetilde{\omega} = \rho^{2,0} + \omega + \rho^{0,2}$$

such that its (1, 1)-component $\omega > 0$. Then, $d\widetilde{\omega}^{n-1} = 0$ and

$$\widetilde{\omega}^{n-1} = \left[\omega + (\rho^{2,0} + \rho^{0,2}) \right]^{n-1} \\ = \sum_{k=0}^{n-1} \sum_{l=0}^{k} \binom{n-1}{k} \binom{k}{l} (\rho^{2,0})^{l} \wedge (\rho^{0,2})^{k-l} \wedge \omega^{n-k-1}$$

The (n-1, n-1)-component of $\tilde{\omega}^{n-1}$ is the sum of the terms for which l = k - l, i.e.

$$\Omega^{n-1,n-1} = \omega^{n-1} + \sum_{l=1}^{\left[\frac{n-1}{2}\right]} \binom{n-1}{2l} \binom{2l}{l} (\rho^{2,0})^l \wedge (\rho^{0,2})^l \wedge \omega^{n-2l-1}.$$

From $d\tilde{\omega}^{n-1} = 0$, we deduce that $\partial\bar{\partial}\Omega^{n-1, n-1} = 0$. Thus, it suffices to check that $\Omega^{n-1, n-1} > 0$. This follows from $\omega^{n-1} > 0$ and from the real (n-1, n-1)-form $(\rho^{2,0})^l \wedge (\rho^{0,2})^l \wedge \omega^{n-2l-1}$ being weakly (semi)-positive at every point of X.

(2) **Balanced SKT metrics**

Proposition 0.5 (Ivanov- Papadopoulos '13, P. '15) If a Hermitian metric ω on a compact complex manifold X is both **SKT** and **balanced**, then ω is **Kähler**.

Proof. The *SKT* assumption on ω translates to:

$$\partial \bar{\partial} \omega = 0 \iff \partial \omega \in \ker \bar{\partial} \iff \star (\partial \omega) \in \ker \partial^{\star},$$

where we use the standard formula $\partial^* = - \star \bar{\partial} \star$ involving the Hodgestar operator induced by ω .

The *balanced* assumption on ω translates to:

 $d\omega^{n-1} = 0 \iff \partial \omega^{n-1} = 0 \iff \omega^{n-2} \wedge \partial \omega = 0 \iff \partial \omega$ is primitive. Moreover, since $\partial \omega$ is *primitive* when ω is balanced, we get:

$$\star(\partial\omega) = i \frac{\omega^{n-3}}{(n-3)!} \wedge \partial\omega = \frac{i}{(n-2)!} \partial\omega^{n-2} \in \operatorname{Im} \partial.$$

Hence, if ω is both *SKT* and *balanced*, we get: $\star(\partial \omega) \in \ker \partial^{\star} \cap \operatorname{Im} \partial = \{0\},$ where the last identity follows from $\ker \partial^{\star} \perp \operatorname{Im} \partial$. Hence $\partial \omega = 0,$

meaning that ω is *Kähler*.

Our approach and results

Question (strengthening of Streets-Tian)

Does there exist a Kähler metric in the Aeppli cohomology class of every Hermitian-symplectic metric?

Recall

 ω is H-S $\implies \omega$ is SKT (i.e. $\partial \bar{\partial} \omega = 0$).

Hence, ω defines an *Aeppli cohomology class*:

$$\{\omega\}_A \in H^{1,1}_A(X, \mathbb{C}) := \frac{\ker\left(\partial\bar{\partial}\right)}{\operatorname{Im}\partial + \operatorname{Im}\bar{\partial}}.$$

The *Hermitian-symplectic* condition can be expressed as follows.

Lemma 0.6 Let ω be a Hermitian metric on a compact complex manifold X.

(I) The following statements are equivalent.

(a) ω is Hermitian-symplectic.

(b) There exists a form $\rho^{2,0} \in C^{\infty}_{2,0}(X, \mathbb{C})$ satisfying the equations:

(i)
$$\partial \rho^{2,0} = 0$$
 and (ii) $\bar{\partial} \rho^{2,0} + \partial \omega = 0$.

(c) There exists a form $\rho^{0,2} \in C^{\infty}_{0,2}(X, \mathbb{C})$ satisfying the equations:

(*iii*)
$$\bar{\partial}\rho^{0,2} = 0$$
 and (*iv*) $\partial\rho^{0,2} + \bar{\partial}\omega = 0$.

(II) If $\dim_{\mathbb{C}} X = 3$, the equivalences under (I) simplify to:

 ω is Hermitian-symplectic $\iff \partial \omega \in Im \bar{\partial} \iff \bar{\partial} \omega \in Im \partial$.

Proof of (II). We show that $\partial \rho^{2,0} = 0$ whenever $\bar{\partial} \rho^{2,0} + \partial \omega = 0$. On the one hand:

$$\int_{X} i\partial\rho^{2,0} \wedge \bar{\partial}\rho^{0,2} = -\int_{X} \bar{\partial}(i\partial\rho^{2,0} \wedge \rho^{0,2}) = 0.$$

On the other hand:

$$i\partial\rho^{2,0} \wedge \bar{\partial}\rho^{0,2} = \partial\rho^{2,0} \wedge \star \overline{\partial\rho^{2,0}} = |\partial\rho^{2,0}|^2_{\omega} dV_{\omega} \ge 0.$$

(I) A new energy functional

and

Lemma and Definition 0.7 For every Hermitian-symplectic metric ω on X, there exists a unique smooth (2, 0)-form $\rho_{\omega}^{2, 0}$ on X such that:

(i)
$$\partial \rho_{\omega}^{2,0} = 0$$
 and (ii) $\bar{\partial} \rho_{\omega}^{2,0} = -\partial \omega$
(iii) $\rho_{\omega}^{2,0} \in \operatorname{Im} \partial_{\omega}^{\star} + \operatorname{Im} \bar{\partial}_{\omega}^{\star}$.

Property (iii) ensures that $\rho_{\omega}^{2,0}$ has minimal L_{ω}^2 -norm among all the (2, 0)-forms satisfying properties (i) and (ii).

We call $\rho_{\omega}^{2,0}$ the (2, 0)-torsion form and its conjugate $\rho_{\omega}^{0,2}$ the (0, 2)-torsion form of the Hermitian-symplectic metric ω .

One has the explicit Neumann-type formula:

$$\rho_{\omega}^{2,0} = -\Delta_{BC}^{-1} [\bar{\partial}^{\star} \partial \omega + \bar{\partial}^{\star} \partial \partial^{\star} \partial \omega], \qquad (1)$$

where Δ_{BC}^{-1} is the Green operator of the Bott-Chern Laplacian Δ_{BC} induced by ω , while $\partial^* = \partial^*_{\omega}$ and $\bar{\partial}^* = \bar{\partial}^*_{\omega}$ are the formal adjoints of ∂ , resp. $\bar{\partial}$, w.r.t. the L^2 inner product defined by ω .

Observation 0.8 When $\dim_{\mathbb{C}} X = 3$, formula (1) simplifies to $\rho_{\omega}^{2,0} = -\Delta''^{-1} \bar{\partial}^{\star} (\partial \omega),$ (2)

where $\Delta''^{-1} = \Delta_{\omega}''^{-1}$ is the Green operator of the $\bar{\partial}$ -Laplacian $\Delta'' = \Delta_{\omega}'' := \bar{\partial}\bar{\partial}^{\star} + \bar{\partial}^{\star}\bar{\partial}$ induced by ω via $\bar{\partial}^{\star} = \bar{\partial}_{\omega}^{\star}$.

For every *Hermitian-symplectic Aeppli class* $\{\omega\}_A$, we denote by

$$\begin{aligned} \mathcal{S}_{\{\omega\}} &:= \left\{ \omega + \partial \bar{u} + \bar{\partial} u \mid u \in C^{\infty}_{1,0}(X, \mathbb{C}) \text{ such that } \omega + \partial \bar{u} + \bar{\partial} u > 0 \right\} \\ &\subset \{\omega\}_A \cap C^{\infty}_{1,1}(X, \mathbb{R}) \end{aligned}$$

the set of all (necessarily H-S) metrics in $\{\omega\}_A$.

It is an *open convex subset* of the real affine space $\{\omega\}_A \cap C^{\infty}_{1,1}(X, \mathbb{R}) = \{\omega + \partial \bar{u} + \bar{\partial} u \mid u \in C^{\infty}_{1,0}(X, \mathbb{C})\}.$ **Definition 0.9** Let X be a compact complex Hermitian-symplectic manifold with $\dim_{\mathbb{C}} X = n$. For the Aeppli cohomology class $\{\omega_0\}_A$ of any Hermitian-symplectic metric ω_0 , we define the following energy functional:

$$F: \mathcal{S}_{\{\omega_0\}} \to [0, +\infty), \qquad F(\omega) = \int_X |\rho_{\omega}^{2, 0}|_{\omega}^2 \, dV_{\omega} = ||\rho_{\omega}^{2, 0}||_{\omega}^2,$$

where $\rho_{\omega}^{2,0}$ is the (2, 0)-torsion form of the H-S metric $\omega \in S_{\{\omega_0\}}$, while $| \omega$ is the pointwise norm and $| | | \omega$ is the L^2 norm induced by ω . The introduction of this functional is justified by

Lemma 0.10 Fix a Hermitian-symplectic Aeppli class $\{\omega_0\}_A$. For any H-S metric $\omega \in S_{\{\omega_0\}}$, the following equivalence holds:

 ω is Kähler $\iff F(\omega) = 0.$

Proof. If ω is Kähler, $\partial \omega = 0$ and the minimal L^2 -norm solution of the equation $\bar{\partial}\rho = 0$ vanishes. Thus $\rho_{\omega}^{2,0} = 0$, hence $F(\omega) = 0$.

Conversely, if $F(\omega) = 0$, then $\rho_{\omega}^{2,0}$ vanishes identically on X, hence $\partial \omega = -\bar{\partial} \rho_{\omega}^{2,0} = 0$, so ω is Kähler.

Computation of the critical points of F

Theorem 0.11 The differential at ω of F is given by the formula: $(d_{\omega}F)(\gamma) = -2 \operatorname{Re} \langle \langle u, \bar{\partial}^{\star}\omega \rangle \rangle_{\omega} + 2 \operatorname{Re} \int_{X} u \wedge \rho_{\omega}^{2,0} \wedge \overline{\rho_{\omega}^{2,0}} \wedge \bar{\partial} \left(\frac{\omega^{n-3}}{(n-3)!}\right),$ for every (1, 1)-form $\gamma = \partial \bar{u} + \bar{\partial} u.$

In particular, when n = 3, this formula reduces to:

$$(d_{\omega}F)(\gamma) = -2 \operatorname{Re} \langle \langle u, \, \bar{\partial}^{\star} \omega \rangle \rangle_{\omega}.$$

Corollary 0.12 Suppose n = 3. Then a Hermitian-symplectic metric ω on a compact complex manifold X of dimension 3 is a **critical point** of the energy functional F **if and only if** ω is **Kähler**.

Proof. " \Leftarrow " If ω is Kähler, $\partial \omega = 0$. Hence, $\rho_{\omega}^{2,0} = 0$, so $F(\omega) = 0$ and ω is a minimum for F.

" \Longrightarrow " A metric ω is a critical point of F if and only if $(d_{\omega}F)(\gamma) = 0$ for every $\gamma = \partial \bar{u} + \bar{\partial} u$. By the above discussion, this amounts to Re $\langle \langle u, \bar{\partial}^* \omega \rangle \rangle_{\omega} = 0$ for every (1, 0)-form u.

Thus, if ω is a critical point of F, by taking $u = \bar{\partial}^* \omega$ we get $\bar{\partial}^* \omega = 0$. This is equivalent to ω being balanced. However, ω is already SKT since it is Hermitian-symplectic, so ω must be Kähler. **Corollary 0.13** Let X be a compact complex manifold of dimension n = 3 admitting Hermitian-symplectic metrics. Then, for any Aeppli-cohomologous Hermitian-symplectic metrics ω and ω_{η} :

 $\omega_{\eta} = \omega + \partial \bar{\eta} + \bar{\partial} \eta > 0, \quad \text{with } \eta \in C^{\infty}_{1,0}(X, \mathbb{C}),$

the respective (2, 0)-torsion forms $\rho_{\omega}^{2,0}$ and $\rho_{\eta}^{2,0} := \rho_{\omega_{\eta}}^{2,0}$ satisfy the identity:

$$||\rho_{\eta}^{2,0}||_{\omega_{\eta}}^{2} + \int_{X} \frac{\omega_{\eta}^{3}}{3!} = ||\rho_{\omega}^{2,0}||_{\omega}^{2} + \int_{X} \frac{\omega^{3}}{3!}$$

and are related by

$$\rho_{\eta}^{2,\,0} = \rho_{\omega}^{2,\,0} + \partial\eta.$$

Proof of the first statement. In an arbitrary dimension n, we compute the differential of the map

$$\mathcal{S}_{\{\omega_0\}} \ni \omega \mapsto \int\limits_X \frac{\omega^n}{n!} := \operatorname{Vol}_\omega(X)$$

when the metric ω varies in its Aeppli cohomology class $\{\omega_0\}_A$. For any real, Aeppli null-cohomologous (1, 1)-form $\gamma = \partial \bar{u} + \bar{\partial} u$ (with

$$\begin{split} u \in C^{\infty}_{1,0}(X, \mathbb{C})), &\text{ we have} \\ \frac{d}{dt}|_{t=0} \int_{X} \frac{(\omega + t\gamma)^{n}}{n!} = \frac{1}{(n-1)!} \int_{X} \omega^{n-1} \wedge \gamma = 2 \operatorname{Re} \int_{X} \bar{\partial} u \wedge \frac{\omega^{n-1}}{(n-1)!} \\ &= 2 \operatorname{Re} \int_{X} u \wedge \bar{\partial} \star \omega = 2 \operatorname{Re} \int_{X} u \wedge \star \left(- \star \bar{\partial} \star \omega \right) \\ &= 2 \operatorname{Re} \int_{X} u \wedge \star \partial^{\star} \omega = 2 \operatorname{Re} \int_{X} u \wedge \star \overline{\bar{\partial}^{\star} \omega} \\ &= 2 \operatorname{Re} \left(\langle u, \bar{\partial}^{\star} \omega \rangle \right). \end{split}$$

The last quantity is $-(d_{\omega}F)(\gamma)$ when n = 3.

(II) Generalised volume of Hermitian-symplectic Aeppli classes

The main takeaway from the last corollary is that the sum

 $F(\omega) + \operatorname{Vol}_{\omega}(X)$

(where $\operatorname{Vol}_{\omega}(X) := \int_X \omega^3/3!$) remains **constant** when ω ranges over the (necessarily Hermitian-symplectic) metrics in the Aeppli cohomology class of a fixed Hermitian-symplectic metric ω_0 .

Definition 0.14 Let X be a 3-dimensional compact Hermitiansymplectic manifold. For any H-S metric ω on X, the constant

$$A = A_{\{\omega\}_A} := F(\omega) + \operatorname{Vol}_{\omega}(X) > 0$$

depending only on $\{\omega\}_A$ is called the **generalised volume** of the *H-S Aeppli class* $\{\omega\}_A$.

Digression

Definition 0.15 If ω is an *H-S* metric on a compact complex manifold X with $\dim_{\mathbb{C}} X = 3$ and $\rho_{\omega}^{2,0}$ is the (2, 0)-torsion form of ω , we define the following volume form on X:

$$d\widetilde{V}_{\omega} := (1 + |\rho_{\omega}^{2,0}|_{\omega}^2) \, dV_{\omega}.$$

Its volume depends only on the H-S Aeppli class:

$$\int_X d\widetilde{V}_{\omega_1} = \int_X d\widetilde{V}_{\omega_2} = A, \quad \text{for all metrics } \omega_1, \omega_2 \in \{\omega\}_A,$$

where $A = A_{\{\omega\}_A} > 0$ is the *generalised volume* of the H-S Aeppli class $\{\omega\}_A$.

Therefore, it seems natural to consider the Monge-Ampère equation:

$$\frac{(\omega + i\partial\bar{\partial}\varphi)^3}{3!} = b\,d\widetilde{V}_{\omega},$$

subject to the condition $\omega + i\partial \bar{\partial} \varphi > 0$, where b > 0 is a given constant.

By Tosatti-Weinkove '10, $\exists !b > 0$ such that this equation is solvable. Moreover, for that b, the solution $\omega + i\partial \bar{\partial} \varphi > 0$ is unique. Note that

$$b = \frac{\operatorname{Vol}_{\omega + i\partial \bar{\partial}\varphi}(X)}{A_{\{\omega\}_A}} \in (0, \ 1]$$

since $A_{\{\omega\}_A} = F(\omega + i\partial\bar{\partial}\varphi) + \operatorname{Vol}_{\omega + i\partial\bar{\partial}\varphi}(X) \ge \operatorname{Vol}_{\omega + i\partial\bar{\partial}\varphi}(X)$. We hope that this can shed some light on the mysterious constant *b* in this context.

(III) Obstruction to the existence of a Kähler metric in a given Hermitian-symplectic Aeppli class

Theorem and Definition 0.16 (a) The (0, 2)-torsion form $\rho_{\omega}^{0, 2}$ of any H-S metric ω is E_2 -closed: it defines an E_2 -cohomology class

$$\{\rho_{\omega}^{0,\,2}\}_{E_2} \in E_2^{0,\,2}(X)$$

on the second page of the Frölicher spectral sequence of X.

(b) When $\dim_{\mathbb{C}} X = 3$, $\{\rho_{\omega}^{0,2}\}_{E_2}$ depends only on the Aeppli class $\{\omega\}_A$.

(a consequence of $F(\omega) + Vol_{\omega}(X) = Const$ when the H-S metric ω varies in a given Aeppli class)

 $\{\rho_{\omega}^{0,2}\}_{E_2} \stackrel{def}{=} the E_2$ -torsion class of the H-S Aeppli class $\{\omega\}_A$.

(c) When $\dim_{\mathbb{C}} X = 3$, the vanishing of the E₂-torsion class: $\{\rho_{\omega}^{0,2}\}_{E_2} = 0 \in E_2^{0,2}(X)$

is a necessary condition for the Aeppli class $\{\omega\}_A$ to contain a Kähler metric.

Natural question. Do there exist compact 3-dimensional Hermitiansymplectic manifolds on which all or some E_2 -torsion classes are non-vanishing?

(IV) First Cohomological interpretation of the generalised volume

Let X be a compact H-S manifold with $\dim_{\mathbb{C}} X = 3$.

(a) For any H-S metric ω on X, the d-closed real 2-form $\widetilde{\omega} = \rho_{\omega}^{2,0} + \omega + \rho_{\omega}^{0,2}$

is called the **minimal completion** of ω , where $\rho_{\omega}^{2,0}$, resp. $\rho_{\omega}^{0,2}$, is the (2, 0)-torsion form, resp. the (0, 2)-torsion form, of ω . Thus, $d\widetilde{\omega} = 0$.

(b) We have:

$$\int_{X} \frac{\widetilde{\omega}^3}{3!} = \operatorname{Vol}_{\omega}(X) + F(\omega) = A_{\{\omega\}_A}.$$

(c) For any Aeppli-cohomologous H-S metrics ω and ω_{η} :

$$\omega_{\eta} = \omega + \partial \bar{\eta} + \bar{\partial} \eta > 0 \quad \text{(where } \eta \in C^{\infty}_{1,0}(X, \mathbb{C})\text{)},$$

the respective minimal completion 2-forms $\widetilde{\omega}_{\eta}$ and $\widetilde{\omega}$ lie in the same De Rham cohomology class.

Thus,
$$A_{\{\omega\}_A} = \{\widetilde{\omega}\}_{DR}^3 / 3!.$$

(V) Second Cohomological interpretation of the generalised volume

• Any H-S metric ω on X defines an E_2 -Aeppli class:

$$\{\omega\}_{E_2,A} \in E^{1,1}_{2,A}(X).$$

(The higher-page Bott-Chern and Aeppli cohomologies were introduced in 2020 by P.-Stelzig-Ugarte.)

• For every $r \in \mathbb{N}$, the notion of page- $r-\partial\bar{\partial}$ -manifold was introduced in 2020 by P.-Stelzig-Ugarte. We have:

 $page-0-\partial\bar{\partial}-manifold=\partial\bar{\partial}-manifold,$

X is a page- $r - \partial \bar{\partial}$ -manifold $\implies X$ is a page- $(r+1) - \partial \bar{\partial}$ -manifold.

Theorem 0.17 Let X be a page-1- $\partial\bar{\partial}$ -manifold, $\dim_{\mathbb{C}} X = 3$. (a) There is a natural E_2 -Bott-Chern class $\mathfrak{c}_{\omega} \in E_{2,BC}^{2,2}(X)$ associated with any E_2 -Aeppli class $\{\omega\}_{E_2,A} \in E_{2,A}^{1,1}(X)$ of H-S metrics ω on X.

(b) Suppose there exists a Hermitian-symplectic metric ω on X whose E_2 -torsion class vanishes (i.e. $\{\rho_{\omega}^{0,2}\}_{E_2} = 0 \in E_2^{0,2}(X)$).

Then, the generalised volume $A = F(\omega) + Vol_{\omega}(X)$ of $\{\omega\}_A$ is given as the following intersection number in cohomology:

$$A = \frac{1}{6} \mathfrak{c}_{\omega} \cdot \{\omega\}_{E_2, A}$$

(VI) Search for critical points of the functional F

Let X be a compact Hermitian-symplectic manifold, $\dim_{\mathbb{C}} X = 3$.

Goal: minimising the map

$$\mathcal{S}_{\{\omega_0\}} \ni \omega \longmapsto F(\omega) = ||\rho_{\omega}^{2,0}||_{\omega}^2 \in [0, +\infty)$$

in a given H-S Aeppli class $\{\omega_0\}_A \in H_A^{1,1}(X, \mathbb{R}).$

We have seen that, by our results, this is equivalent to maximising the volume within a given H-S Aeppli class: $\{\omega_0\}_A \in H^{1,1}_A(X, \mathbb{R})$:

$$\mathcal{S}_{\{\omega_0\}} \ni \omega \longmapsto \operatorname{Vol}_{\omega}(X).$$

Proposition 0.18 Let X be a compact H-S manifold with $\dim_{\mathbb{C}} X = 3$. Fix an arbitrary Hermitian metric γ and an H-S metric ω on X. Let $A = A_{\{\omega\}_A} > 0$ be the generalised volume of the class $\{\omega\}_A$ and let $c = c_{\omega, \gamma} > 0$ be the constant defined by the requirement

$$\frac{(\int \omega \wedge \gamma^2 / 2!)^3}{(\int \gamma^3 / 3!)^2} = \frac{6A}{c}$$

If there exists a solution $\eta \in C^{\infty}_{1,0}(X, \mathbb{C})$ of the Monge-Ampèretype equation

$$(\omega + \partial \bar{\eta} + \bar{\partial} \eta)^3 = c \left(\Lambda_\gamma \omega\right)^3 \frac{\gamma^3}{3!} \qquad (\star)$$

such that $\omega_{\eta} := \omega + \partial \bar{\eta} + \bar{\partial} \eta > 0$, then ω_{η} is a Kähler metric lying in the Aeppli cohomology class $\{\omega\}_A$ of ω . However, equation (*) is heavily underdetermined and it is hard to see how one could go about solving it. For this reason, we replace it by a family of Monge-Ampère-type equations of the familiar kind after we have stratified the given Hermitian-symplectic Aeppli class $\{\omega\}_A$ by *Bott-Chern subclasses* (or *strata*) in the following way.

(1) We consider a *partition* of $S_{[\omega]}$ of the shape:

$$\mathcal{S}_{[\omega]} = \cup_{j \in J} \mathcal{D}_{[\omega_j]},$$

where $(\omega_j)_{j \in J}$ is a family of H-S metrics in $\{\omega\}_A$ and

$$\mathcal{D}_{[\omega_j]} := \{ \omega' > 0 \mid \omega' - \omega_j \in \operatorname{Im}(\partial \bar{\partial}) \}, \quad j \in J.$$

(2) For each $j \in J$, we choose an arbitrary Hermitian metric γ_j on X such that $\Lambda_{\gamma_j}\omega_j = 1$ at every point of X. Then, on each Bott-Chern stratum $\mathcal{D}_{[\omega_j]} \subset \mathcal{S}_{[\omega]}$, the Tosatti-Weinkove result in [TW10, Corollary 1] ensures the existence of a *unique* constant $b_j > 0$ such that the equation

$$\frac{(\omega_j + i\partial\bar{\partial}\varphi)^3}{3!} = b_j A \frac{dV_{\gamma_j}}{\int\limits_X dV_{\gamma_j}} \qquad (\star\star\star_j),$$

subject to the extra condition $\omega_j + i\partial \bar{\partial} \varphi > 0$, is *solvable*, where A > 0 is the *generalised volume* of $\{\omega\}_A$. (Hence, A is independent of j.)

In this way, we associate a constant $b_j \in (0, 1]$ with every Bott-Chern stratum $\mathcal{D}_{[\omega_j]}$ of $\mathcal{S}_{[\omega]}$.

(3) The problem of *minimising* the functional F in $\mathcal{S}_{[\omega]}$ (equivalently, *maximising* $\mathcal{S}_{[\omega]} \ni \omega' \mapsto \operatorname{Vol}_{\omega'}(X)$) becomes equivalent to proving that the value 1 is attained by one of the constants b_j .

Proposition 0.19 If there exists $j \in J$ such that $b_j = 1$, the solution $\omega_j + i\partial \bar{\partial} \varphi_j$ of equation $(\star \star \star_j)$ is a Kähler metric lying in the Bott-Chern subclass $\mathcal{D}_{[\omega_j]}$, hence also in the Aeppli class $\{\omega\}_A$.

(4) The next observation is that, within Bott-Chern subclasses of Hermitian-symplectic metrics that contain a *Gauduchon* metric, the volume remains *constant* and all the metrics are *Gauduchon*. These Bott-Chern subclasses will be called *Gauduchon strata*.

Lemma 0.20 Let $\dim_{\mathbb{C}} X = 3$. Suppose that a metric ω on X is both **SKT** and **Gauduchon**. Then, for every $\varphi : X \longrightarrow \mathbb{R}$, we have

$$(a) \int_{X} (\omega + i\partial \bar{\partial}\varphi)^3 = \int_{X} \omega^3 \quad and \quad (b) \ \partial \bar{\partial} (\omega + i\partial \bar{\partial}\varphi)^2 = 0.$$

(5) Volume comparison within a Bott-Chern stratum

Lemma 0.21 Let X be a 3-dimensional compact complex manifold. Suppose that ω is an **SKT non-Gauduchon** metric on X. Then, the map

$$\left\{\varphi \in C^{\infty}(X) \left| \omega + i\partial \bar{\partial}\varphi > 0 \right\} \ni \varphi \longmapsto \int_{X} \frac{(\omega + i\partial \bar{\partial}\varphi)^3}{3!} := Vol_{\omega_{\varphi}}(X)$$

does not achieve any local extremum.

Conclusion. The volume of $\omega_{\varphi} := \omega + i\partial \bar{\partial} \varphi > 0$ is *constant* on the *Gauduchon strata* (if any), while it *achieves no local extremum* on the *non-Gauduchon strata*.