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Context and motivation

X a compact complex manifold, dimCX = n

Definition. X is a ∂∂̄-manifold if

∀p, q, ∀u ∈ C∞p, q(X, C) s.t. du = 0, we have equivalences:

u ∈ Im d ⇐⇒ u ∈ Im ∂ ⇐⇒ u ∈ Im ∂̄ ⇐⇒ u ∈ Im (∂∂̄).

The idea goes back to Deligne-Griffiths-Morgan-Sullivan 1975.
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Standard fact. ([DGMS75]) X is a ∂∂̄-manifold ⇐⇒
∀k ∈ {0, 1, . . . , 2n}, the identity induces an isomorphism

Hk
DR(X, C) '

⊕
p+q=k

H
p, q
∂̄

(X, C) (Hodge decomposition)

in the following sense:

• ∀(p, q) s.t. p + q = k, every class [αp, q]∂̄ ∈ H
p, q
∂̄

(X, C) can be

represented by a d-closed (p, q)-form αp, q;

• the linear map⊕
p+q=k

H
p, q
∂̄

(X, C) 3
∑

p+q=k
[αp, q]∂̄ 7−→

{ ∑
p+q=k

αp, q
}
DR
∈ Hk

DR(X, C)

is independent of the choices of d-closed representatives αp, q of
the classes [αp, q]∂̄ (i.e. well-defined) and bijective.

(i.e. X is cohomologically Kähler)
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Standard facts.

• The following implications hold:

X is compact Kähler =⇒ X is class C =⇒ X is a ∂∂̄-manifold

=⇒ E1(X) = E∞(X) (in the Frölicher spectral sequence – FSS)

If n ≥ 3, all the implications are strict.

4



• If X is a ∂∂̄-manifold, X has the Hodge symmetry property:

for all p, q,

(i) every class [αp, q]∂̄ ∈ H
p, q
∂̄

(X, C) can be represented by a d-

closed (p, q)-form αp, q;

(ii) the linear map

H
p, q
∂̄

(X, C) 3 [αp, q]∂̄ 7−→ [αp, q]∂̄ ∈ H
q, p
∂̄

(X, C)

is independent of the choices of d-closed representatives αp, q of the
classes [αp, q]∂̄ (i.e. well-defined) and bijective.
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Examples.

(1) The twistor space X of any K3 surface has E1(X) = E∞(X)
but is not a ∂∂̄-manifold.

(no Hodge symmetry – P. 2011)

(2) Let X = G/H , also denoted I(3), be the Iwasawa manifold,
where

G :=

M =

1 z1 z3
0 1 z2
0 0 1

 ; z1, z2, z3 ∈ C

 ⊂ GL3(C)

and H ⊂ G is its discrete subgroup Γ ⊂ G of matrices with entries
z1, z2, z3 ∈ Z[i].

I(3) is a compact complex manifold, dimCI
(3) = 3.
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There exist C∞ (1, 0)-forms α, β, γ on X , induced resp. by dz1,
dz2, dz3 − z1dz2 (look at M 7→M−1dM) satisfying:

∂̄α = ∂̄β = ∂̄γ = 0

but
∂α = ∂β = 0 and ∂γ = −α ∧ β 6= 0.

Therefore, E1(X) 6= E∞(X). In particular,X is not a ∂∂̄-manifold.

However, E2(X) = E∞(X). This leads to a Hodge theory for X if
the E

p, q
1 (X)’s are replaced by the E

p, q
2 (X)’s.

(exploited in P. 2018: “Non-Kähler Mirror Symmetry of the Iwasawa
Manifold”)
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Main Theorem and Definition. (P.-Stelzig-Ugarte 2020)

Fix r ∈ N?. The following are equivalent:

(1) (i) ∀p, q, every class {αp, q}Er ∈ E
p, q
r (X) can be represented

by a d-closed (p, q)-form αp, q;

(ii) ∀k, the linear map⊕
p+q=k

E
p, q
r (X) 3

∑
p+q=k

{αp, q}Er 7−→
{ ∑
p+q=k

αp, q
}
DR
∈ Hk

DR(X, C)

is well-defined and bijective.

(X is said to have the Er-Hodge Decomposition property)
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(2) Er(X) = E∞(X) (Frölicher) and the De Rham cohomology of
X is pure.

(3) ∀p, q, ∀u ∈ C∞p, q(X, C) s.t. du = 0, we have equivalences:

u ∈ Im d ⇐⇒ u is Er-exact ⇐⇒ u is Er-exact

⇐⇒ u is ErEr-exact.

(4) ∀p, q, the canonical linear maps:

E
p, q
r, BC(X) −→ E

p, q
r (X) −→ E

p, q
r, A(X)

are isomorphisms.

(5) ∀p, q, the canonical linear map:

E
p, q
r, BC(X) −→ E

p, q
r, A(X)

is injective.
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X is said to be a page-(r − 1)-∂∂̄-manifold if X satisfies any
of the equivalent properties (1)-(5).

Observation. (trivial)

(i) X is a page-0-∂∂̄-manifold ⇐⇒ X is a ∂∂̄-manifold;

(ii) {X ∂∂̄-manifolds} ⊂ {X page-1-∂∂̄-manifolds} ⊂ . . .

· · · ⊂ {X page-r-∂∂̄-manifolds} ⊂ {X page-(r+1)-∂∂̄-manifolds} ⊂
. . .
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Terminology

(a) ∀p, q, let

H
p, q
DR(X, C) :=

{
{α}DR ∈ H

p+q
DR (X, C) | ∃α ∈ C∞p, q(X, C)

representing {α}DR
}
⊂ H

p+q
DR (X, C).

The De Rham cohomology is pure (pure and full) if for every k

Hk
DR(X, C) =

⊕
p+q=k

H
p, q
DR(X, C).

(i.e. the sum is direct and the H
p, q
DR(X, C)’s fill out Hk

DR(X, C))
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(b) Recall (Cordero-Fernandez-Gray-Ugarte 1997)

E
p, q
r (X) =

Z
p, q
r

Cp, qr
,

where

•Zp, qr is the space ofEr-closed (p, q)-forms (i.e. forms that represent
Er-classes): ∃ ul ∈ C∞p+l, q−l(X) such that

∂̄α = 0 and ∂α = ∂̄u1

∂u1 = ∂̄u2
...

∂ur−2 = ∂̄ur−1.
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• Cp, qr is the space of Er-exact (p, q)-forms (i.e. forms that represent
the zero Er-class): ∃ ζ ∈ C∞p−1, q(X) and ξ ∈ C∞p, q−1(X) such that

α = ∂ζ + ∂̄ξ,

with ξ arbitrary and ζ satisfying the following tower of (r − 1) equa-
tions:

∂̄ζ = ∂vr−3

∂̄vr−3 = ∂vr−4
...

∂̄v1 = ∂v0

∂̄v0 = 0,

for some forms v0, . . . , vr−3. (When r = 2, ζr−2 = ζ0 must be ∂̄-
closed.)
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•We have (obvious):

· · · ⊂ Cp, qr (X) ⊂ Cp, qr+1(X) ⊂ · · · ⊂ Zp, qr+1(X) ⊂ Zp, qr (X) ⊂ . . . ,

with {0} = Cp, q0 (X) ⊂ Cp, q1 (X) = (Im ∂̄)p, q

and Zp, q1 (X) = (ker ∂̄)p, q ⊂ Zp, q0 (X) = C∞p, q(X).
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Our definitions

• α ∈ C∞p, q(X) is ErEr-closed if ∃ C∞ forms η1, . . . , ηr−1 and
ρ1, . . . , ρr−1 such that

∂α = ∂̄η1 ∂̄α = ∂ρ1

∂η1 = ∂̄η2 ∂̄ρ1 = ∂ρ2
...

∂ηr−2 = ∂̄ηr−1, ∂̄ρr−2 = ∂ρr−1.

(r − 1 equations in each tower)

• Observation: α ErEr-closed =⇒ ∂∂̄α = 0.
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• α ∈ C∞p, q(X) is ErEr-exact if there exist smooth forms ζ, ξ, η
such that

α = ∂ζ + ∂∂̄ξ + ∂̄η (1)

and such that ζ and η further satisfy the following conditions.
∃ C∞ forms vr−3, . . . , v0 and ur−3, . . . , u0 such that:

∂̄ζ = ∂vr−3 ∂η = ∂̄ur−3

∂̄vr−3 = ∂vr−4 ∂ur−3 = ∂̄ur−4
...

∂̄v0 = 0, ∂u0 = 0.

(r − 1 equations in each tower)
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(c) We also define:

• The Er-Bott-Chern cohomology group of bidegree (p, q) of X :

E
p, q
r, BC(X) :=

{α ∈ C∞p, q(X) | dα = 0}
{α ∈ C∞p, q(X) | α is ErEr-exact}

.

• The Er-Aeppli cohomology group of bidegree (p, q) of X :

E
p, q
r, A(X) :=

{α ∈ C∞p, q(X) | α is ErEr − closed}
{α ∈ C∞p, q(X) | α ∈ Im ∂ + Im ∂̄}

.

• Observation: ∃ canonical maps induced by the identity:

E
p, q
r, BC(X) −→ E

p, q
r (X) −→ E

p, q
r, A(X)
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First class of primary examples (I)

Recall: X is complex parallelisable
def⇐⇒ T 1, 0X is trivial

These are not ∂∂̄-manifolds unless they are complex tori.

Theorem. If X is a complex parallelisable nilmanifold, then
X is a page-1-∂∂̄-manifold.

Sketch of proof.

• X is complex parallelisable ⇐⇒ X = G/Γ,

with G a complex Lie group and Γ a co-compact discrete
subgroup

(Wang 1954)
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• Sakane (1976): if X is complex parallelisable, ∃ a canonical
isomorphism

H
p, q
∂̄

(X, C) ' Λp(g1,0)⊗Hq(g0,1)

(the Dolbeault cohomology of the Lie algebra g)

Since

∂|∧p(g1,0)
= d|∧p(g1,0)

, ∂̄|∧p(g1,0)
= 0 and ∂̄|∧q(g0,1)

= d|∧q(g0,1)
,

d1 = ∂ ⊗ Id, hence E
p, q
2 (X) = Hp(g1,0)⊗Hq(g0,1) = Hp, q(gC), so

E2(X) = E∞(X).

• Nomizu: Hp, q(gC) ' H
p, q
DR(X, C) since X is a nilmanifold with

an invariant complex structure J .
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Corollary. The Iwasawa manifold is a page-1-∂∂̄-manifold.

Proposition.Let (Xt)t∈B be the Kuranishi family of the Iwasawa
manifold X0. For every t ∈ B, we have:

(i) Xt is a page-1-∂∂̄-manifold if and only if Xt is complex
parallelisable (i.e. lies in Nakamura’s class (i));

(ii) if Xt lies in one of Nakamura’s classes (ii) or (iii), the De
Rham cohomology of Xt is not pure, so Xt is not a page-r-∂∂̄-
manifold for any r ∈ N.

20



Further primary examples

(II) Two families of nilmanifolds with abelian complex struc-
tures with members of arbitrarily high dimensions. In some sense,
these form the opposite of the first class among nilmanifolds.

Theorem. Let n ≥ 3 and G be the nilpotent Lie group with
abelian complex structure defined by the structure equations

(Ab1n) dω1 = 0, dω2 = 0, dω3 = ω2∧ω1, . . . , dωn = ωn−1∧ω1,

or

(Ab2n) dω1 = 0, . . . , dωn−1 = 0, dωn = ω1 ∧ ω2 + ω3 ∧ ω4 +

· · · + ωn−2 ∧ ωn−1 (only for odd n ≥ 3).

Then, any nilmanifold Γ\G is a page-1-∂∂̄-manifold.
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Proposition Let X = (Γ\G, J) be a complex nilmanifold of
complex dimension 3, different from a torus, endowed with an
invariant complex structure J .

If there exists r ∈ N? such that X is a page-(r− 1)-∂∂̄-manifold,
then J is equivalent to the complex parallelisable structure of
I(3) or to the abelian complex structure J̃ defined by (Ab1n)
in the above Theorem for n = 3.

In both cases r = 2, i.e. both of these manifolds are page-1-∂∂̄-
manifolds.

In other words: in complex dimension 3, the only complex nilman-
ifolds which are page-(r − 1)-∂∂̄ for some r ∈ N? are, apart from a

torus, I(3) and the nilmanifold X̃ == (Γ\G, J̃).
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Numerical characterisation of page-r-∂∂̄-manifolds

Let b(X) =
∑
k∈Z bk(X), hBC(X) =

∑
p,q∈Z h

p,q
BC(X)

and hA(X), h∂(X), h∂̄(X) (defined analogously).

• Angella-Tomassini (2013): there are inequalities:

hBC(X) + hA(X)
(∗)
≥ h∂̄(X) + h∂(X)

(∗∗)
≥ 2 b(X) (2)

and X is a ∂∂̄-manifold ⇐⇒ (∗) and (∗∗) are both equalities.

• Standard fact: E1(X) = E∞(X) ⇐⇒ (∗∗) is an equality.
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Our numerical criterion

Theorem. For every compact complex manifold X and for every
r ∈ N?, there is an inequality:

hBC(X) + hA(X) ≥ 2

 r∑
i=1

ei(X)− (r − 1)b(X)

 ,

where ei :=
∑
p,q∈Z dimE

p,q
i (X).

Moreover, equality holds for some fixed r ∈ N? if and only if X
is a page-r-∂∂̄-manifold.
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Idea of proof. Consider the bounded double complex

AX := (C∞p, q(X), ∂, ∂̄)

and apply its decomposition (Stelzig 2020) into bounded indecom-
posable double complexes (squares, even-length zigzags and
odd-length zigzags).

Corollary. For every bidegree (p, q), we have the inequality:

h
p, q
BC + h

p, q
A ≥ h

p, q
∂̄

+ h
q, p
∂̄
. (3)

Moreover, X is a page-1-∂∂̄-manifold if and only if (3) is an
equality for every bidegree (p, q)

The inequality was proved in Angella-Tomassini (2013), but the char-
acterisation of the equality is new.
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Application: our third class of primary examples (III)

Nakamura manifolds (Nakamura 1975)

Let G := Cnφ C2, where φ is either

φ(z) =

(
ez 0
0 e−z

)
or φ(z) =

(
eRe(z) 0

0 e-Re(z)

)

(complex parallelizable, resp. completely solvable case).

Define X to be the quotient of G by a lattice of the form Γ nφ Γ′

with Γ ⊂ C, Γ′ ⊂ C2 lattices.

The Nakamura manifolds X are among the best known solvmani-
folds, but are not nilmanifolds.
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Angella-Kasuya (2017): computed the Hodge, Bott-Chern and Aeppli
numbers for certain families of lattices Γ ⊂ C. (These numbers turn
out to be independent of Γ′ ⊂ C2). Their calculations yield:

hBC(X) = h∂̄(X).

Hence, by our numerical characterisation, we get

Corollary. The complex parallelisable and the completely solvable
Nakamura manifolds considered in Angella-Kasuya (2017) are
page-1-∂∂̄-manifolds.
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Behaviour of page-r-∂∂̄-manifolds by geometric operations

In particular, we obtain construction methods for new examples from
given ones. These include:

(IV) products of page-ri-∂∂̄-manifolds, with possibly different
ri’s;

Theorem. Let X and Y be compact complex manifolds.

If X is a page-r-∂∂̄-manifold and Y is a page-r′-∂∂̄-manifold,
the product X×Y is a page-r̃-∂∂̄-manifold, where r̃ = max{r, r′}.

Conversely, if X × Y is a page-r-∂∂̄-manifold, so are both
factors X and Y .
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(V) blow-ups of page-r1-∂∂̄-submanifolds of page-r2-∂∂̄-
manifolds, possibly with r1 6= r2;

Theorem. Let X be a compact complex manifold.

Let X̃ be the blow-up of X along a submanifold Z ⊂ X.

• If X is page-r-∂∂̄ and Z is page-r′-∂∂̄, then X̃ is a page-r̃-
∂∂̄-manifold, where r̃ = max{r, r′}.
• Conversely, if X̃ is page r-∂∂̄, so are X and Z.

• Moreover, the page-r-∂∂̄-property of compact complex mani-
folds is a bimeromorphic invariant if and only if it is stable under
passage to submanifolds.
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Idea of proof. Let µ : X̃ −→ X

be the blow-up of X along Z ⊂ X . Consider the double complex

AX := (C∞p, q(X), ∂, ∂̄).

Let (AX [i])p,q := A
p−i,q−i
X be the the shifted double complex. We

have the following E1-isomorphism:

A
X̃
'1 AX ⊕

codimZ−1⊕
i=1

AZ [i].

· AZ [i] is page-r′-∂∂̄ ⇐⇒ AZ is page-r′-∂∂̄ (because the occurring
zigzags only get shifted);

· the direct sum is page-r̃-∂∂̄ ⇐⇒ each summand is page-r-∂∂̄ (for
possibly different values of r and different from r̃).
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(VI) the projectivised bundle P(V) of any holomorphic vector
bundle V on a page-r-∂∂̄-manifold;

Theorem. For any vector bundle V over X, the projectivised
bundle P(V) is a page-r-∂∂̄-manifold if and only if X is.

(VII) small deformations of a page-1-∂∂̄-manifold with fixed
Hodge numbers.

Theorem. (consequence of our numerical characterisation + defor-
mation semi-continuity of the Hodge numbers)

If X0 is a page-1-∂∂̄-manifold, then every sufficiently small
deformation Xt of X0 which satisfies

h∂̄(Xt) = h∂̄(X0)

is again page-1-∂∂̄.
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Serre-type duality results

Theorem. Let X be a compact complex manifold with dimCX =
n. Fix an arbitrary r ∈ N?.

For every p, q ∈ {0, . . . , n}, the canonical bilinear pairings:

E
p, q
r (X)× En−p, n−qr (X) −→ C, ({α}Er, {β}Er) 7→

∫
X

α ∧ β,

and

E
p, q
r, BC(X)× En−p, n−qr, A (X) −→ C,

({α}Er, BC , {β}Er, A) 7−→
∫
X

α ∧ β,

are well defined and non-degenerate.
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Idea of proof. Fix an arbitrary Hermitian metric ω on X .

• Case of E
·, ·
r (X): use a pseudo-differential Laplacian

∆̃
(ω)
r

(introduced in P. 2016 and P. 2019) giving a Hodge isomorphism

Hp, qr := ker ∆̃
(ω)
r ' E

p, q
r (X),

for every r ∈ N? and all p, q ∈ {0, . . . , n}.
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Examples

· When r = 1, ∆̃
(ω)
1 = ∆′′ = ∂̄∂̄? + ∂̄?∂̄ (the usual ∂̄-Laplacian, a

differential operator);

· When r = 2, for all p, q = 0, . . . , n,

∆̃
(ω)
2 := ∂p′′∂? + ∂?p′′∂ + ∂̄∂̄? + ∂̄?∂̄ : C∞p, q(X) −→ C∞p, q(X),

where p′′ : C∞p, q(X) −→ Hp, q
∆′′ (X) := ker ∆′′ is the orthogonal projec-

tion w.r.t. the L2 inner product defined by ω onto the ∆′′-harmonic
space in the standard 3-space decomposition

C∞p, q(X) = Hp, q
∆′′ (X)⊕ Im ∂̄ ⊕ Im ∂̄?.

(introduced in P. 2016 as a pseudo-differential operator)
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• Case of E
·, ·
r, BC(X) and E

·, ·
r, A(X): we introduced the following

Definition. Let (X, ω) be an n-dimensional compact complex
Hermitian manifold. Fix r ≥ 1 and a bidegree (p, q).

A form α ∈ C∞p, q(X) is E?r -closed w. r. t. the metric ω ⇐⇒
∃ forms vl ∈ C∞p−l, q+l(X) with l ∈ {1, . . . , r − 1} satisfying the

following tower of r equations:

∂̄?α = 0

∂?α = ∂̄?v1

∂?v1 = ∂̄?v2
...

∂?vr−2 = ∂̄?vr−1.
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Example of results.

Proposition. ∀α ∈ C∞p, q(X), the following equivalences hold:

(i) α ∈ Hp, qr ⇐⇒ α is Er-closed and E?r -closed.

(ii) α is Er-closed ⇐⇒ ?ᾱ is E?r -closed.
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Example of application.

The higher-page Bott-Chern and Aeppli cohomologies provide the
natural framework for the study of several special types of Hermitian
metrics.

Proposition. Let X be a compact complex manifold with dimCX =
n and let ω be a Hermitian metric on X.

(i) The metric ω is strongly Gauduchon (sG) if and only if
ωn−1 is E2E2-closed.

In particular, in this case, ωn−1 induces an E2-Aeppli cohomol-

ogy class {ωn−1}E2,A
∈ En−1, n−1

2,A (X).
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(ii) The metric ω is Hermitian-symplectic (H-S) if and only
if ω is E3E3-closed.

In particular, in this case, ω induces an E3-Aeppli cohomology

class {ω}E3,A
∈ E1, 1

3,A(X).

When n = 3, ω is Hermitian-symplectic (H-S) if and only if
ω is E2E2-closed.

In particular, in this case, ω induces an E2-Aeppli cohomology

class {ω}E2,A
∈ E1, 1

2,A(X).
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Applications to the deformation theory and to non-Kähler
mirror symmetry

• Essential deformations: introduced in (P. 2018) in the special

case of the Iwasawa manifold I(3):

the small deformations of I(3) that have a different geometry from
I(3) (= the non-complex parallelisable small deformations of I(3)

= the small deformations of I(3) that are parametrised by E
n−1, 1
2

rather than E
n−1, 1
1 ).
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P-Stelzig-Ugarte 2020: define the space of small essential defor-
mations for an arbitrary Calabi-Yau page-1-∂∂̄-manifold.

Theorem. Let X be a compact Calabi-Yau page-1-∂∂̄-manifold
with dimCX = n. Fix a non-vanishing holomorphic (n, 0)-form u
on X and suppose that

ψ1(t)y(ρ1(s)yu) ∈ Zn−2, 2
2 (4)

for all ψ1(t), ρ1(s) ∈ C∞0, 1(X, T 1, 0X) such that ψ1(t)yu, ρ1(s)yu ∈
ker d ∪ Im ∂.

(i) Then, the essential Kuranishi family of X is unob-
structed.

(ii) If, moreover, Zn−1, 1
1 = Zn−1, 1

2 , the Kuranishi family of
X is unobstructed.
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