Partially Hyperbolic Compact Complex Manifolds

joint work with **Hisashi Kasuya** (Osaka University)

arXiv e-print DG 2304.01697

Dan Popovici Université Paul Sabatier, Toulouse, France

Conference "SCV, CR Geometry and Dynamics" Université Côte d'Azur, Nice 30th May – 3rd June 2023

Starting point

If X is an Oeljeklaus-Toma (O-T) manifold, its universal cover is $\widetilde{X} = \mathbb{H}^p \times \mathbb{C}^q$,

for some p, q such that $p + q = \dim_{\mathbb{C}} X = n$, where

- \mathbb{H} is the upper half-plane of \mathbb{C} (a typical hyperbolic manifold)
- \mathbb{C}^q is very non-hyperbolic.

(I) Definition (Kasuya-P. 2023)

Let X be a compact complex manifold with $\dim_{\mathbb{C}} X = n$. Let $p \in \{1, \ldots, n-1\}$. Suppose:

 $\cdot \exists E \subset T^{1,0}X \ a \ C^{\infty} \ complex \ vector \ subbundle, \ rk_{\mathbb{C}}E \geq p;$

 $\exists \omega_E \ge 0, \quad \exists \omega_{nE} \ge 0 \qquad C^{\infty} \ (1, 1) \text{-forms on } X$

such that

(i) $\omega := \omega_E + \omega_{nE} > 0$ on X (i.e. ω is a Hermitian metric); (ii) $\omega_E(x)(\xi, \overline{\xi}) > 0$ $\forall x \in X, \ \forall \xi \in E_x \subset T_x^{1,0}X;$ (iii) $\omega_{nE}(x)(\xi, \overline{\xi}) = 0$ $\forall x \in X, \ \forall \xi \in E_x \subset T_x^{1,0}X;$ (iv) $\Omega := \frac{\omega_E^p}{p!}$ is d-closed and \widetilde{d} (bounded) on (X, ω) . Then, X is partially p-Kähler hyperbolic in the E-directions. The triple $(E, \Omega, \omega = \omega_E + \omega_{nE})$ is called a partially *p*-Kähler hyperbolic structure on X.

Observation

(a) If $p \le n - 2$ and $\omega_E > 0$ in all directions, then ω_E is a Kähler metric

on X. Otherwise, the manifold X need not be Kähler.

(b) If p = n - 1 and $\omega_E > 0$ in all directions, we can choose $E = T^{1,0}X$ and $\omega_{nE} = 0$. Then, the manifold (X, ω_E) is balanced hyperbolic

(Marouani-P. 2022).

(II) Let

$$f: \mathbb{C}^q \longrightarrow (X, \, \omega)$$

be a holomorphic map, $\dim_{\mathbb{C}} X = n$ and $q \in \{1, \ldots, n-1\}$.

Suppose f is non-degenerate at some point $x_0 \in \mathbb{C}^q$: $d_{x_0}f : \mathbb{C}^q \longrightarrow T^{1,0}_{x_0}X$ has maximal rank.

Let

$$\Sigma_f := \left\{ x \in \mathbb{C}^q \mid f \text{ is degenerate at } x \right\} \subset \mathbb{C}^q$$

a proper analytic subset.
$$x \in f^* \cup \Sigma \cap \mathbb{C}^q \text{ and } f^* \cup \Sigma \cap \mathbb{C}^q \setminus \Sigma$$

Then: $f^*\omega \ge 0$ on \mathbb{C}^q and $f^*\omega > 0$ on $\mathbb{C}^q \setminus \Sigma_f$. ($f^*\omega$ is a degenerate Hermitian metric on X.) (i) For every r > 0, the (ω, f) -volume of the ball $B_r \subset \mathbb{C}^q$ is

$$\operatorname{Vol}_{\omega, f}(B_r) := \int_{B_r} f^* \omega_q > 0.$$

(ii) For $z \in \mathbb{C}^q$, let $\tau(z) := |z|^2$ be its squared Euclidean norm. At every point $z \in \mathbb{C}^q \setminus \Sigma_f$, we have:

$$\frac{d\tau}{|d\tau|_{f^{\star}\omega}} \wedge \star_{f^{\star}\omega} \left(\frac{d\tau}{|d\tau|_{f^{\star}\omega}}\right) = f^{\star}\omega_q,\tag{1}$$

where $\star_{f^{\star}\omega}$ is the Hodge star operator induced by $f^{\star}\omega$.

Thus, the (2q-1)-form $d\sigma_{\omega,f} := \star_{f} \star_{\omega} \left(\frac{d\tau}{|d\tau|_{f} \star_{\omega}}\right)$

on $\mathbb{C}^q \setminus \Sigma_f$ is the area measure induced by $f^*\omega$ on the spheres of \mathbb{C}^q . This means that its restriction

$$d\sigma_{\omega,f,t} := \left(\star_{f^{\star}\omega} \left(\frac{d\tau}{|d\tau|_{f^{\star}\omega}} \right) \right)_{|S_t} \tag{2}$$

is the area measure induced by the degenerate metric $f^*\omega$ on the sphere $S_t = \{\tau(z) = t^2\} \subset \mathbb{C}^q$ for every t > 0. In particular, the (ω, f) -area of the sphere $S_r \subset \mathbb{C}^q$ is

$$A_{\omega,f}(S_r) = \int_{S_r} d\sigma_{\omega,f,r} > 0, \quad r > 0.$$

Definition (Marouani-P. 2022) $f : \mathbb{C}^q \longrightarrow X$ has subexponential growth if the following two conditions are satisfied: (i) there exist constants $C_1 > 0$ and $r_0 > 0$ such that $\int_{S_t} |d\tau|_{f^*\omega} d\sigma_{\omega, f, t} \leq C_1 t \ Vol_{\omega, f}(B_t), \quad t > r_0;$

(ii) for every constant C > 0, we have:

$$\limsup_{b \to +\infty} \left(\frac{b}{C} - \log \int_{0}^{b} \operatorname{Vol}_{\omega, f}(B_t) \, dt \right) = +\infty.$$

Definition

$$f: \mathbb{C}^q \longrightarrow X \text{ is } E\text{-horizontal } if \, \forall x \in X,$$
$$Im\left(d_x f: \mathbb{C}^q \longrightarrow T_x^{1,0} X\right) \subset E_x \subset T_x^{1,0} X.$$

Definition (Kasuya-P. 2023)

X is partially p-hyperbolic if $\exists E \subset T^{1,0}X \ C^{\infty}$ complex vector subbundle, $rk_{\mathbb{C}}E \geq p$, such that

 $\nexists E$ -horizontal holomorphic map $f : \mathbb{C}^p \longrightarrow X$ with the properties:

- f is non-degenerate at some point $x_0 \in \mathbb{C}^p$;
- f has subexponential growth.

Theorem A (Kasuya-P. 2023)

X is partially p-Kähler hyperbolic \implies X is partially p-hyperbolic

Idea of proof. By contradiction: suppose \exists a map $f : \mathbb{C}^p \longrightarrow X$ as above. Then, f lifts to a map $\widetilde{f} : \mathbb{C}^p \longrightarrow \widetilde{X}$ such that $f = \pi_X \circ \widetilde{f}$. Put $\widetilde{\omega} := \pi_X^* \omega$ on \widetilde{X} .

• $f^{\star}\omega = f^{\star}\omega_E$ on \mathbb{C}^p (since f is E-horizontal) • $f^{\star}\Omega = \tilde{f}^{\star}(\pi_X^{\star}\Omega) = d(\tilde{f}^{\star}\widetilde{\Gamma})$ on \mathbb{C}^p , where $\tilde{f}^{\star}\widetilde{\Gamma}$ is $(f^{\star}\omega)$ -bounded For every r > 0, we compute $\operatorname{Vol}_{\omega, f}(B_r)$ in two ways:

• Using **Fubini**:

$$\operatorname{Vol}_{\omega, f}(B_r) := \int_{B_r} f^{\star} \omega_p = \int_{0}^{r} \left(\int_{S_t} d\mu_{\omega, f, t} \right) dt \stackrel{\text{\tiny H\bar{o}lder}}{\geq} \dots$$

$$(\text{depends on } A_{\omega, f}(S_t), \text{ with } t \in [0, r]$$

|)

• Using **Stokes** (and the partial *p*-Kähler hyperbolicity assumption): $\operatorname{Vol}_{\omega, f}(B_r) = \int_{B_r} f^*\Omega = \int_{B_r} d(\widetilde{f}^*\widetilde{\Gamma}) = \int_{S_r} \widetilde{f}^*\widetilde{\Gamma} \leq \operatorname{Const} A_{\omega, f}(S_r)$

since $\widetilde{f}^{\star}\widetilde{\Gamma}$ is $\widetilde{\omega}$ -bounded in \mathbb{C}^p .

Then, we get a contradiction via a Gronwall Lemma-type argument.

(III) Examples

O-T manifolds: $X = G/\Lambda$ solvmanifolds

(G is a solvable Lie group, $\Lambda \subset G$ is a lattice)

Specifically: given positive integers s and t, G is the Lie group defined as the semi-direct product

$$G = \mathbb{R}^s \ltimes_\phi (\mathbb{R}^s \oplus \mathbb{C}^t)$$

via the map

$$\phi : \mathbb{R}^s \longrightarrow \operatorname{Aut}(\mathbb{R}^s \oplus \mathbb{C}^t),$$
$$\phi(x) = \operatorname{diag}\left(e^{x_1}, \dots, e^{x_s}, e^{\psi_1(x)}, \dots, e^{\psi_t(x)}\right),$$
where $x = (x_1, \dots, x_s) \in \mathbb{R}^s$ and $\psi_1, \dots, \psi_t : \mathbb{R}^s \longrightarrow \mathbb{C}$ are functions

of the shape

$$\psi_j(x) = \sum_{k=1}^s a_{jk} x_k, \qquad j = 1, \dots, t,$$

with constant coefficients $a_{jk} \in \mathbb{C}$, while diag stands for the diagonal matrix whose diagonal entries are those indicated.

In
$$G = \mathbb{R}^s \ltimes_{\phi} (\mathbb{R}^s \oplus \mathbb{C}^t),$$

 $x = (x_1, \ldots, x_s)$ is the variable in the first copy of \mathbb{R}^s ; $y = (y_1, \ldots, y_s)$ is the variable in the second copy of \mathbb{R}^s ; $z = (z_1, \ldots, z_t)$ the variable of \mathbb{C}^t . We get C^{∞} (1, 0)-forms on G:

$$\alpha_j = dx_j + ie^{-x_j} dy_j, \qquad j = 1, \dots, s,$$

$$\beta_k = e^{-\psi_k} dz_k, \qquad k = 1, \dots, t.$$

They induce:

• an *invariant complex structure* on G;

• C^{∞} (1, 0)-forms (denoted by the same symbols) and a complex structure on the solvmanifold $X = G/\Lambda$, for any lattice $\Lambda \subset G$.

A natural *Hermitian metric* on X is

$$\omega = i\alpha_1 \wedge \overline{\alpha}_1 + \dots + i\alpha_s \wedge \overline{\alpha}_s + i\beta_1 \wedge \beta_1 + \dots + i\beta_t \wedge \beta_t > 0$$

= $\omega_E + \omega_{nE}$.

Main observation On X, we have:

$$\Omega = \omega_E = d\bigg(2i\alpha_1 + \dots + 2i\alpha_s\bigg).$$

Conclusion These solvmanifolds (containing all the O-T manifolds) are partially 1-Kähler hyperbolic.

Recall the construction of **O-T manifolds**

• Let $K \supset \mathbb{Q}$ be a finite extension field of degree s + 2t admitting real embeddings

$$\sigma_1,\ldots,\sigma_s:K\hookrightarrow\mathbb{C}$$

and complex embeddings

$$\sigma_{s+1}, \ldots, \sigma_{s+2t} : K \hookrightarrow \mathbb{C}$$

such that

$$\sigma_{s+i} = \overline{\sigma_{s+i+t}}, \quad i \in \{1, \dots, t\}.$$

• Let U be a free subgroup of rank s of the group of units in the ring \mathcal{O}_K (= the algebraic integers satisfying certain conditions).

(i) Associate with (K, U), via suitable functions $\psi_j : \mathbb{R}^s \to \mathbb{C}$ as above, a *lattice*

$$\Lambda \simeq U \ltimes \mathcal{O}_K \subset G.$$

(ii) Associate with Λ the *O*-*T* manifold

 $X := G/\Lambda.$

(IV) Ahlfors currents

(1) **Background** Let:

• (X, ω) be a compact complex hermitian manifold, $\dim_{\mathbb{C}} X = n$;

• $f : \mathbb{C}^p \longrightarrow (X, \omega)$ be a holomorphic map, non-degenerate at some point $x_0 \in \mathbb{C}^p$ $(1 \le p \le n-1)$;

Consider, for every r > 0:

- $[B_r] \ge 0$ the current of integration on the ball $B_r \subset \mathbb{C}^p$; (bidimension (p, p)-current in \mathbb{C}^p , so of bidegree (0, 0))
- the direct-image current $f_{\star}[B_r] \ge 0$ (a strongly positive bidegree (n-p, n-p)-current in X)

The current

$$T_r := \frac{1}{\operatorname{Vol}_{\omega, f}(B_r)} f_{\star}[B_r] \ge 0$$

has unit mass w.r.t. ω in X:

$$\int_{X} T_r \wedge \omega_p = \frac{1}{\operatorname{Vol}_{\omega, f}(B_r)} \int_{\mathbb{C}^p} [B_r] \wedge f^* \omega_p = 1, \quad \forall r > 0.$$

Therefore, $\exists (T_{r_{\nu}})_{\nu \in \mathbb{N}}$ such that $T_{r_{\nu}} \xrightarrow{\text{weakly}} T \ge 0$ in X. So, T is a strongly positive bidegree (n - p, n - p)-current in X. **Observation** T need not be closed.

Indeed, Stokes yields: $d[B_r] = -[S_r] \neq 0$ for all r > 0.

Definition (standard)

T is called an Ahlfors current if dT = 0.

Question

When does an Ahlfors current exist?

De Thélin (2010) gave sufficient conditions.

(2) **Our result:** in the spirit of this work

Theorem (Kasuya-P. 2023)

If

Suppose $\exists f : \mathbb{C}^p \longrightarrow (X, \omega)$ holomorphic map, non-degenerate at some point.

$$\liminf_{r \to +\infty} \frac{A_{\omega, f}(S_r)}{\operatorname{Vol}_{\omega, f}(B_r)} = 0, \qquad (\star)$$

then $\exists (T_{r_{\nu}})_{\nu \in \mathbb{N}}$ such that $T_{r_{\nu}} \xrightarrow{\text{weakly}} T \ge 0$ in X with dT = 0.

So, T is an Ahlfors current.

Idea of proof. This follows from the estimate:

$$||\partial T_r|| \le \frac{1}{\sqrt{2}} \frac{A_{\omega,f}(S_r)}{\operatorname{Vol}_{\omega,f}(B_r)}, \qquad r > 0,$$

that is proved using integral estimates handled differently to De Thélin's treatment.

The norm || || used on bidegree (n - p + 1, n - p)-currents (such as ∂T_r) on X is defined as follows:

• consider the closed unit ball of C^{∞} forms of bidegree (p-1, p) with respect to the C^0 -norm induced by the metric ω :

$$\mathcal{F}_{\omega}(p-1, p) := \left\{ \psi \in C^{\infty}_{p-1, p}(X, \mathbb{C}) \mid ||\psi||_{C^{0}_{\omega}} := \max_{x \in X} |\psi(x)|_{\omega} \le 1 \right\}$$

• for every bidegree-(n - p + 1, n - p)-current S on X, set

$$||S|| := \sup_{\psi \in \mathcal{F}_{\omega}(p-1,p)} |\langle S, \psi \rangle|.$$

(3) Link with partial hyperbolicity

Definition (Kasuya-P. 2023)

Let $E \subset T^{1,0}X$ be a complex vector subbundle with $rk_{\mathbb{C}}E = p \in \{1, \ldots, n-1\}$, where $n = dim_{\mathbb{C}}X$.

X is said to be strongly partially p-hyperbolic in the Edirections if $\nexists f : \mathbb{C}^p \longrightarrow X$ holomorphic such that:

(i) f is non-degenerate at some x₀ ∈ C^p;
(ii) f is E-horizontal;
(iii) f satisfies the growth condition (★):

$$\liminf_{r \to +\infty} \frac{A_{\omega, f}(S_r)}{\operatorname{Vol}_{\omega, f}(B_r)} = 0.$$

Theorem (Kasuya-P. 2023)

X is partially p-Kähler hyperbolic in the E-directions

\downarrow (a)

X is strongly partially *p*-hyperbolic in the *E*-directions

$\Downarrow(b)$

X is partially p-hyperbolic in the E-directions.

Proof of (a). By contradiction: suppose an *E*-horizontal holomorphic map $f : \mathbb{C}^p \longrightarrow X$ that is non-degenerate at some point and satisfies the growth condition (\star) existed.

$$f \text{ is } E\text{-horizontal} \implies f^{\star}\omega = f^{\star}\omega_E \implies f^{\star}\omega_p = f^{\star}\Omega = d(\widetilde{f}^{\star}\widetilde{\Gamma})$$

on \mathbb{C}^p , where

 $\widetilde{\Gamma}$ is the $\widetilde{\omega}$ -bounded (2p-1)-form on the universal cover \widetilde{X} with the property

$$\pi_X^\star \Omega = d\widetilde{\Gamma}$$

given by the partial p-Kähler hyperbolicity hypothesis on X.

We get:

$$1 = \frac{1}{\operatorname{Vol}_{\omega, f}(B_{r})} \int_{B_{r}} f^{\star} \omega_{p} = \frac{1}{\operatorname{Vol}_{\omega, f}(B_{r})} \int_{B_{r}} d(\widetilde{f}^{\star} \widetilde{\Gamma}) = \frac{1}{\operatorname{Vol}_{\omega, f}(B_{r})} \int_{S_{r}} \widetilde{f}^{\star} \widetilde{\Gamma}$$
$$\leq \frac{C}{\operatorname{Vol}_{\omega, f}(B_{r})} \int_{S_{r}} \sigma_{\omega, f, r} = C \frac{A_{\omega, f}(S_{r})}{\operatorname{Vol}_{\omega, f}(B_{r})}, \qquad r > 0,$$

contradicting the growth hypothesis (\star) on f.

(V) Curvature sign and partial hypebolicity

Recall (Kobayashi 1967)

Let (X, ω) be a Hermitian manifold.

If the holomorphic sectional curvature of (X, ω) is $\leq -C$, for some constant C > 0,

then

X is Kobayashi hyperbolic.

Our case

(a) Brief reminder of a construction from [P.2022]

 (X, ω) compact complex Hermitian manifold, $\dim_{\mathbb{C}} X = n$; The multiplication map:

$$\omega_{n-2} \wedge \cdot : \Lambda^{1,1}T^{\star}X \longrightarrow \Lambda^{n-1,n-1}T^{\star}X$$

is bijective. Hence:

 $\exists ! \rho_{\omega} \in C^{\infty}_{1,1}(X, \mathbb{R}) \text{ such that } i\partial \bar{\partial} \omega_{n-2} = \omega_{n-2} \wedge \rho_{\omega}.$

An explicit computation yields:

$$\star \rho_{\omega} = \frac{1}{n-1} \frac{\omega \wedge i\partial \bar{\partial} \omega_{n-2}}{\omega_n} \omega_{n-1} - i\partial \bar{\partial} \omega_{n-2}.$$

This throws up the C^{∞} function $f_{\omega}: X \longrightarrow \mathbb{R}$,

$$f_{\omega} := \frac{\omega \wedge i \partial \bar{\partial} \omega_{n-2}}{\omega_n}.$$

• the function f_{ω} plays a role similar in certain respects to the scalar curvature of ω ;

• the (n-1, n-1)-form

$$\star \rho_{\omega} = \frac{1}{n-1} f_{\omega} \,\omega_{n-1} - i\partial\bar{\partial}\omega_{n-2}$$

plays a role similar to various curvature forms (e.g. Ricci).

Definition (P. 2022)

The metric ω is said to be **pluriclosed star split** if $\partial \overline{\partial} (\star \rho_{\omega}) = 0.$

Theorem (P. 2022)

Suppose X is compact, $n = \dim_{\mathbb{C}} X \ge 3$. (i) If ω is pluriclosed star split, then $f_{\omega} > 0$ on X or $f_{\omega} < 0$ on X or $f_{\omega} = 0$ on X. (ii) If $f_{\omega} = Const \neq 0$, then ω is pluriclosed star split $\iff \omega$ Gauduchon. (iii) If ω is Gauduchon, then ω is pluriclosed star split $\iff f_{\omega} = Const.$ (iv) If ω is balanced and pluriclosed star split, then $f_{\omega} = Const \ge 0.$

Question (P. 2022)

When ω is pluriclosed star split, does the sign of f_{ω} depend only on the complex structure of X?

- Yes if X is a complex nilmanifold of complex dimension 3. (follows from Fino-Ugarte 2013)
- **Open** in general.

(b) Link with partial hyperbolicity

Definition $\dim_{\mathbb{C}} X = n$

Let

• $E \subset T^{1,0}X$ be a C^{∞} complex vector subbundle with $rkE = p \in \{1, \ldots, n-1\};$

• Ω be a real (p, p)-form on X.

 Ω is negative in the *E*-directions $\stackrel{def}{\iff} \forall x_0 \in X \exists C^{\infty}$ frame $\{\xi_1, \ldots, \xi_p\}$ of *E* on a neighbourhood *U* of x_0 such that

$$\Omega(\xi_1, \, \bar{\xi}_1, \dots, \xi_p, \, \bar{\xi}_p) < 0, \qquad \forall \, x \in U.$$

Theorem (Kasuya-P. 2023)

Let

• X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$;

• $E \subset T^{1,0}X$ be a C^{∞} complex vector subbundle with rkE = n-1.

If $\exists \omega$ Hermitian metric on X such that

- $f_{\omega} > 0$ on X;
- the (n-1, n-1)-form $\star \rho_{\omega}$ is negative in the *E*-directions

then

X is strongly partially (n-1)-hyperbolic in the E-directions.

Proof. By contradiction: suppose $\exists f : \mathbb{C}^{n-1} \longrightarrow X$ holomorphic, non-degenerate at some point,

E-horizontal and satisfying the growth condition (\star) .

Then, f induces an Ahlfors current

$$T = \lim_{r_{\nu} \to +\infty} T_{r_{\nu}} \ge 0 \quad \text{bidegree} (1, 1) - \text{current on } X.$$

We get:

(a) on the one hand, from dT = 0 and the formula for $\star \rho_{\omega}$, we get, via Stokes:

$$\int_X T \wedge \star \rho_\omega = \frac{1}{n-1} \int_X f_\omega T \wedge \omega_{n-1} > 0,$$

where the inequality follows from the hypothesis $f_{\omega} > 0$ and the property $T \ge 0$ (with $T \ne 0$).

- (b) on the other hand,
- f is *E*-horizontal and $\star \rho_{\omega}$ is negative in the *E*-directions \implies $f^{\star}(\star \rho_{\omega})$ is a negative (n-1, n-1)-form on \mathbb{C}^{n-1} .

Therefore, we get:

$$\int_{X} T \wedge \star \rho_{\omega} = \lim_{\nu \to +\infty} \int_{X} T_{r_{\nu}} \wedge \star \rho_{\omega}$$
$$= \lim_{\nu \to +\infty} \frac{1}{\operatorname{Vol}_{\omega, f}(B_{r_{\nu}})} \int_{B_{r_{\nu}}} f^{\star}(\star \rho_{\omega}) \leq 0.$$

This contradicts the inequality obtained under (a). q.e.d.