Partially Hyperbolic Compact Complex Manifolds

joint work with Hisashi Kasuya
(Osaka University)
arXiv e-print DG 2304.01697

Dan Popovici
Université Paul Sabatier, Toulouse, France

Conference "SCV, CR Geometry and Dynamics"
Université Côte d'Azur, Nice 30th May - 3rd June 2023

Starting point

If X is an Oeljeklaus-Toma (O-T) manifold, its universal cover is

$$
\tilde{X}=\mathbb{H}^{p} \times \mathbb{C}^{q},
$$

for some p, q such that $p+q=\operatorname{dim}_{\mathbb{C}} X=n$, where
\mathbb{H} is the upper half-plane of \mathbb{C} (a typical hyperbolic manifold)
\mathbb{C}^{q} is very non-hyperbolic.

(I) Definition (Kasuya-P. 2023)

Let X be a compact complex manifold with $\operatorname{dim}_{\mathbb{C}} X=n$. Let $p \in\{1, \ldots, n-1\}$. Suppose:
$\cdot \exists E \subset T^{1,0} X$ a C^{∞} complex vector subbundle, $r k_{\mathbb{C}} E \geq p ;$
$\cdot \exists \omega_{E} \geq 0, \quad \exists \omega_{n E} \geq 0 \quad C^{\infty}(1,1)$-forms on X
such that
(i) $\omega:=\omega_{E}+\omega_{n E}>0$ on $X \quad$ (i.e. ω is a Hermitian metric);
(ii) $\omega_{E}(x)(\xi, \bar{\xi})>0 \quad \forall x \in X, \forall \xi \in E_{x} \subset T_{x}^{1,0} X$;
(iii) $\omega_{n E}(x)(\xi, \bar{\xi})=0 \quad \forall x \in X, \forall \xi \in E_{x} \subset T_{x}^{1,0} X$;
(iv) $\Omega:=\frac{\omega_{E}^{p}}{p!} \quad$ is d-closed and $\widetilde{d}($ bounded) on (X, ω).

Then, X is partially p-Kähler hyperbolic in the E-directions.

The triple $\left(E, \Omega, \omega=\omega_{E}+\omega_{n E}\right)$ is called a partially p-Kähler hyperbolic structure on X.

Observation
(a) If $p \leq n-2$ and $\omega_{E}>0$ in all directions, then ω_{E} is a Kähler metric
on X. Otherwise, the manifold X need not be Kähler.
(b) If $p=n-1$ and $\omega_{E}>0$ in all directions, we can choose
$E=T^{1,0} X$ and $\omega_{n E}=0$. Then, the manifold $\left(X, \omega_{E}\right)$ is balanced hyperbolic
(Marouani-P. 2022).
(II) Let

$$
f: \mathbb{C}^{q} \longrightarrow(X, \omega)
$$

be a holomorphic map, $\operatorname{dim}_{\mathbb{C}} X=n$ and $q \in\{1, \ldots, n-1\}$.
Suppose f is non-degenerate at some point $x_{0} \in \mathbb{C}^{q}$:

$$
d_{x_{0}} f: \mathbb{C}^{q} \longrightarrow T_{x_{0}}^{1,0} X \quad \text { has maximal rank. }
$$

Let

$$
\begin{gathered}
\Sigma_{f}:=\left\{x \in \mathbb{C}^{q} \mid f \text { is degenerate at } x\right\} \subset \mathbb{C}^{q} \\
\\
\text { a proper analytic subset. }
\end{gathered}
$$

Then: $f^{\star} \omega \geq 0$ on \mathbb{C}^{q} and $f^{\star} \omega>0$ on $\mathbb{C}^{q} \backslash \Sigma_{f}$.
($f^{\star} \omega$ is a degenerate Hermitian metric on X.)
(i) For every $r>0$, the (ω, f)-volume of the ball $B_{r} \subset \mathbb{C}^{q}$ is

$$
\operatorname{Vol}_{\omega, f}\left(B_{r}\right):=\int_{B_{r}} f^{\star} \omega_{q}>0
$$

(ii) For $z \in \mathbb{C}^{q}$, let $\tau(z):=|z|^{2}$ be its squared Euclidean norm. At every point $z \in \mathbb{C}^{q} \backslash \Sigma_{f}$, we have:

$$
\begin{equation*}
\frac{d \tau}{|d \tau|_{f^{\star} \omega}} \wedge \star_{f^{\star} \omega}\left(\frac{d \tau}{|d \tau|_{f^{\star} \omega}}\right)=f^{\star} \omega_{q}, \tag{1}
\end{equation*}
$$

where $\star_{f^{\star} \omega}$ is the Hodge star operator induced by $f^{\star} \omega$.

Thus, the $(2 q-1)$-form

$$
d \sigma_{\omega, f}:=\star_{f^{\star} \omega}\left(\frac{d \tau}{|d \tau|_{f^{\star} \omega}}\right)
$$

on $\mathbb{C}^{q} \backslash \Sigma_{f}$ is the area measure induced by $f^{\star} \omega$ on the spheres of \mathbb{C}^{q}. This means that its restriction

$$
\begin{equation*}
d \sigma_{\omega, f, t}:=\left(\star_{f^{\star} \omega}\left(\frac{d \tau}{|d \tau|_{f^{\star} \omega}}\right)\right)_{\mid S_{t}} \tag{2}
\end{equation*}
$$

is the area measure induced by the degenerate metric $f^{\star} \omega$ on the sphere $S_{t}=\left\{\tau(z)=t^{2}\right\} \subset \mathbb{C}^{q}$ for every $t>0$.
In particular, the (ω, f)-area of the sphere $S_{r} \subset \mathbb{C}^{q}$ is

$$
A_{\omega, f}\left(S_{r}\right)=\int_{S_{r}} d \sigma_{\omega, f, r}>0, \quad r>0
$$

Definition (Marouani-P. 2022) $f: \mathbb{C}^{q} \longrightarrow X$ has subexponential growth if the following two conditions are satisfied:
(i) there exist constants $C_{1}>0$ and $r_{0}>0$ such that

$$
\int_{S_{t}}|d \tau|_{f^{\star} \omega} d \sigma_{\omega, f, t} \leq C_{1} t \operatorname{Vol}_{\omega, f}\left(B_{t}\right), \quad t>r_{0}
$$

(ii) for every constant $C>0$, we have:

$$
\limsup _{b \rightarrow+\infty}\left(\frac{b}{C}-\log \int_{0}^{b} \operatorname{Vol}_{\omega, f}\left(B_{t}\right) d t\right)=+\infty
$$

Definition

$f: \mathbb{C}^{q} \longrightarrow X$ is E-horizontal if $\forall x \in X$,

$$
\operatorname{Im}\left(d_{x} f: \mathbb{C}^{q} \longrightarrow T_{x}^{1,0} X\right) \subset E_{x} \subset T_{x}^{1,0} X
$$

Definition (Kasuya-P. 2023)
X is partially p-hyperbolic if $\exists E \subset T^{1,0} X C^{\infty}$ complex vector subbundle, $r k_{\mathbb{C}} E \geq p$, such that
$\nexists E$-horizontal holomorphic map $f: \mathbb{C}^{p} \longrightarrow X$ with the properties:

- f is non-degenerate at some point $x_{0} \in \mathbb{C}^{p}$;
- f has subexponential growth.

Theorem A (Kasuya-P. 2023)

X is partially p-Kähler hyperbolic $\Longrightarrow X$ is partially p-hyperbolic Idea of proof. By contradiction: suppose \exists a map $f: \mathbb{C}^{p} \longrightarrow X$ as above. Then, f lifts to a map $\widetilde{f}: \mathbb{C}^{p} \longrightarrow \widetilde{X}$ such that $f=\pi_{X} \circ \widetilde{f}$. Put $\widetilde{\omega}:=\pi_{X}^{\star} \omega$ on \widetilde{X}.

$$
\begin{gathered}
\pi_{X}^{\star} \Omega=d \widetilde{\Gamma} \text { on } \widetilde{X}, \text { with } \widetilde{\Gamma} \widetilde{\omega} \text {-bounded } \\
\Omega:=\frac{\omega_{E}^{p}}{p!} \text { on } X
\end{gathered}
$$

- $f^{\star} \omega=f^{\star} \omega_{E}$ on $\mathbb{C}^{p} \quad$ (since f is E-horizontal)

For every $r>0$, we compute $\operatorname{Vol}_{\omega, f}\left(B_{r}\right)$ in two ways:

- Using Fubini:

$$
\operatorname{Vol}_{\omega, f}\left(B_{r}\right):=\int_{B_{r}} f^{\star} \omega_{p}=\int_{0}^{r}\left(\int_{S_{t}} d \mu_{\omega, f, t}\right) d t \stackrel{\text { Hider }}{\geq} \cdots
$$

$$
\text { (depends on } A_{\omega, f}\left(S_{t}\right) \text {, with } t \in[0, r] \text {) }
$$

- Using Stokes (and the partial p-Kähler hyperbolicity assumption):

$$
\operatorname{Vol}_{\omega, f}\left(B_{r}\right)=\int_{B_{r}} f^{\star} \Omega=\int_{B_{r}} d\left(\tilde{f}^{\star} \widetilde{\Gamma}\right)=\int_{S_{r}} \tilde{f}^{\star} \widetilde{\Gamma} \leq \operatorname{Const} A_{\omega, f}\left(S_{r}\right)
$$

since $\widetilde{f} \star \widetilde{\Gamma}$ is $\widetilde{\omega}$-bounded in \mathbb{C}^{p}.
Then, we get a contradiction via a Gronwall Lemma-type argument.

(III) Examples

O-T manifolds: $X=G / \Lambda$ solvmanifolds
(G is a solvable Lie group, $\Lambda \subset G$ is a lattice)
Specifically: given positive integers s and t, G is the Lie group defined as the semi-direct product

$$
G=\mathbb{R}^{s} \ltimes_{\phi}\left(\mathbb{R}^{s} \oplus \mathbb{C}^{t}\right)
$$

via the map

$$
\begin{gathered}
\phi: \mathbb{R}^{s} \longrightarrow \operatorname{Aut}\left(\mathbb{R}^{s} \oplus \mathbb{C}^{t}\right) \\
\phi(x)=\operatorname{diag}\left(e^{x_{1}}, \ldots, e^{x_{s}}, e^{\psi_{1}(x)}, \ldots, e^{\psi_{t}(x)}\right),
\end{gathered}
$$

where $x=\left(x_{1}, \ldots, x_{s}\right) \in \mathbb{R}^{s}$ and $\psi_{1}, \ldots, \psi_{t}: \mathbb{R}^{s} \longrightarrow \mathbb{C}$ are functions
of the shape

$$
\psi_{j}(x)=\sum_{k=1}^{s} a_{j k} x_{k}, \quad j=1, \ldots, t
$$

with constant coefficients $a_{j k} \in \mathbb{C}$, while diag stands for the diagonal matrix whose diagonal entries are those indicated.

In $G=\mathbb{R}^{s} \ltimes_{\phi}\left(\mathbb{R}^{s} \oplus \mathbb{C}^{t}\right)$,
$x=\left(x_{1}, \ldots, x_{s}\right)$ is the variable in the first copy of \mathbb{R}^{s};
$y=\left(y_{1}, \ldots, y_{s}\right)$ is the variable in the second copy of \mathbb{R}^{s};
$z=\left(z_{1}, \ldots, z_{t}\right)$ the variable of \mathbb{C}^{t}.

We get $C^{\infty}(1,0)$-forms on G :

$$
\begin{aligned}
\alpha_{j} & =d x_{j}+i e^{-x_{j}} d y_{j}, \quad j=1, \ldots, s, \\
\beta_{k} & =e^{-\psi_{k}} d z_{k}, \quad k=1, \ldots, t
\end{aligned}
$$

They induce:

- an invariant complex structure on G;
- $C^{\infty}(1,0)$-forms (denoted by the same symbols) and a complex structure on the solvmanifold $X=G / \Lambda$, for any lattice $\Lambda \subset G$.

A natural Hermitian metric on X is

$$
\begin{aligned}
\omega & =i \alpha_{1} \wedge \bar{\alpha}_{1}+\cdots+i \alpha_{s} \wedge \bar{\alpha}_{s}+i \beta_{1} \wedge \bar{\beta}_{1}+\cdots+i \beta_{t} \wedge \bar{\beta}_{t}>0 \\
& =\omega_{E}+\omega_{n E}
\end{aligned}
$$

Main observation On X, we have:

$$
\Omega=\omega_{E}=d\left(2 i \alpha_{1}+\cdots+2 i \alpha_{s}\right) .
$$

Conclusion These solvmanifolds (containing all the O-T manifolds) are partially 1-Kähler hyperbolic.

Recall the construction of O-T manifolds

- Let $K \supset \mathbb{Q}$ be a finite extension field of degree $s+2 t$ admitting real embeddings

$$
\sigma_{1}, \ldots, \sigma_{s}: K \hookrightarrow \mathbb{C}
$$

and complex embeddings

$$
\sigma_{s+1}, \ldots, \sigma_{s+2 t}: K \hookrightarrow \mathbb{C}
$$

such that

$$
\sigma_{s+i}=\overline{\sigma_{s+i+t}}, \quad i \in\{1, \ldots, t\}
$$

- Let U be a free subgroup of rank s of the group of units in the ring \mathcal{O}_{K} ($=$ the algebraic integers satisfying certain conditions).
(i) Associate with (K, U), via suitable functions $\psi_{j}: \mathbb{R}^{s} \rightarrow \mathbb{C}$ as above, a lattice

$$
\Lambda \simeq U \ltimes \mathcal{O}_{K} \subset G
$$

(ii) Associate with Λ the $O-T$ manifold

$$
X:=G / \Lambda .
$$

(IV) Ahlfors currents
(1) Background Let:

- (X, ω) be a compact complex hermitian manifold, $\operatorname{dim}_{\mathbb{C}} X=n$;
- $f: \mathbb{C}^{p} \longrightarrow(X, \omega)$ be a holomorphic map, non-degenerate at some point $x_{0} \in \mathbb{C}^{p}(1 \leq p \leq n-1)$;

Consider, for every $r>0$:

- $\left[B_{r}\right] \geq 0$ the current of integration on the ball $B_{r} \subset \mathbb{C}^{p}$; (bidimension (p, p)-current in \mathbb{C}^{p}, so of bidegree $(0,0)$)
- the direct-image current $f_{\star}\left[B_{r}\right] \geq 0$
(a strongly positive bidegree $(n-p, n-p)$-current in X)

The current

$$
T_{r}:=\frac{1}{\operatorname{Vol}_{\omega, f}\left(B_{r}\right)} f_{\star}\left[B_{r}\right] \geq 0
$$

has unit mass w.r.t. ω in X :

$$
\int_{X} T_{r} \wedge \omega_{p}=\frac{1}{\operatorname{Vol}_{\omega, f}\left(B_{r}\right)} \int_{\mathbb{C}^{p}}\left[B_{r}\right] \wedge f^{\star} \omega_{p}=1, \quad \forall r>0 .
$$

Therefore, $\exists\left(T_{r_{\nu}}\right)_{\nu \in \mathbb{N}}$ such that $T_{r_{\nu}} \xrightarrow{\text { mand }} T \geq 0$ in X.
So, T is a strongly positive bidegree $(n-p, n-p)$-current in X.

Observation T need not be closed.
Indeed, Stokes yields: $d\left[B_{r}\right]=-\left[S_{r}\right] \neq 0$ for all $r>0$.
Definition (standard)
T is called an Ahlfors current if $d T=0$.

Question

When does an Ahlfors current exist?
De Thélin (2010) gave sufficient conditions.
(2) Our result: in the spirit of this work

Theorem (Kasuya-P. 2023)

Suppose $\exists f: \mathbb{C}^{p} \longrightarrow(X, \omega)$ holomorphic map, non-degenerate at some point.

If

$$
\liminf _{r \rightarrow+\infty} \frac{A_{\omega, f}\left(S_{r}\right)}{V o l_{\omega, f}\left(B_{r}\right)}=0
$$

then $\exists\left(T_{r_{\nu}}\right)_{\nu \in \mathbb{N}}$ such that $T_{r_{\nu}} \xrightarrow{\text { weath }} T \geq 0$ in X with

$$
d T=0 .
$$

So, T is an Ahlfors current.

Idea of proof. This follows from the estimate:

$$
\left\|\partial T_{r}\right\| \leq \frac{1}{\sqrt{2}} \frac{A_{\omega, f}\left(S_{r}\right)}{\operatorname{Vol}_{\omega, f}\left(B_{r}\right)}, \quad r>0
$$

that is proved using integral estimates handled differently to De Thélin's treatment.

The norm || || used on bidegree $(n-p+1, n-p)$-currents (such as ∂T_{r}) on X is defined as follows:

- consider the closed unit ball of C^{∞} forms of bidegree ($p-1, p$) with respect to the C^{0}-norm induced by the metric ω :
$\mathcal{F}_{\omega}(p-1, p):=\left\{\left.\psi \in C_{p-1, p}^{\infty}(X, \mathbb{C})\left|\|\psi\|_{C_{\omega}^{0}}:=\max _{x \in X}\right| \psi(x)\right|_{\omega} \leq 1\right\}$
- for every bidegree- $(n-p+1, n-p)$-current S on X, set

$$
\|S\|:=\sup _{\psi \in \mathcal{F}_{\omega}(p-1, p)}|\langle S, \psi\rangle| .
$$

(3) Link with partial hyperbolicity

Definition (Kasuya-P. 2023)

Let $E \subset T^{1,0} X$ be a complex vector subbundle with $r k_{\mathbb{C}} E=p \in\{1, \ldots, n-1\}$, where $n=\operatorname{dim}_{\mathbb{C}} X$.
X is said to be strongly partially p-hyperbolic in the E directions if $\exists f: \mathbb{C}^{p} \longrightarrow X$ holomorphic such that:
(i) f is non-degenerate at some $x_{0} \in \mathbb{C}^{p}$;
(ii) f is E-horizontal;
(iii) f satisfies the growth condition (\star):

$$
\liminf _{r \rightarrow+\infty} \frac{A_{\omega, f}\left(S_{r}\right)}{V o l_{\omega, f}\left(B_{r}\right)}=0 .
$$

Theorem (Kasuya-P. 2023)

X is partially p-Kähler hyperbolic in the E-directions
$\Downarrow(a)$
X is strongly partially p-hyperbolic in the E-directions
$\Downarrow(b)$
X is partially p-hyperbolic in the E-directions.
Proof of (a). By contradiction: suppose an E-horizontal holomorphic map $f: \mathbb{C}^{p} \longrightarrow X$ that is non-degenerate at some point and satisfies the growth condition (\star) existed.
f is E-horizontal $\Longrightarrow f^{\star} \omega=f^{\star} \omega_{E} \Longrightarrow f^{\star} \omega_{p}=f^{\star} \Omega=d\left(\tilde{f}^{\star} \widetilde{\Gamma}\right)$
on \mathbb{C}^{p}, where
$\widetilde{\Gamma}$ is the $\widetilde{\omega}$-bounded $(2 p-1)$-form on the universal cover \widetilde{X} with the property

$$
\pi_{X}^{\star} \Omega=d \widetilde{\Gamma}
$$

given by the partial p-Kähler hyperbolicity hypothesis on X.
We get:

$$
\begin{aligned}
1 & =\frac{1}{\operatorname{Vol}_{\omega, f}\left(B_{r}\right)} \int_{B_{r}} f^{\star} \omega_{p}=\frac{1}{\operatorname{Vol}_{\omega, f}\left(B_{r}\right)} \iint_{B_{r}} d\left(\widetilde{f}^{\star} \widetilde{\Gamma}\right)=\frac{1}{\operatorname{Vol}_{\omega, f}\left(B_{r}\right)} \iint_{S_{r}} \widetilde{f}^{\star} \widetilde{\Gamma} \\
& \leq \frac{C}{\operatorname{Vol}_{\omega, f}\left(B_{r}\right)} \int_{S_{r}} \sigma_{\omega, f, r}=C \frac{A_{\omega, f}\left(S_{r}\right)}{\operatorname{Vol}_{\omega, f}\left(B_{r}\right)}, \quad r>0,
\end{aligned}
$$

contradicting the growth hypothesis (\star) on f.
(V) Curvature sign and partial hypebolicity

Recall (Kobayashi 1967)

Let (X, ω) be a Hermitian manifold.
If the holomorphic sectional curvature of (X, ω) is $\leq-C$, for some constant $C>0$, then
X is Kobayashi hyperbolic.

Our case

(a) Brief reminder of a construction from [P.2022]
(X, ω) compact complex Hermitian manifold, $\operatorname{dim}_{\mathbb{C}} X=n$;
The multiplication map:

$$
\omega_{n-2} \wedge \cdot: \Lambda^{1,1} T^{\star} X \longrightarrow \Lambda^{n-1, n-1} T^{\star} X
$$

is bijective. Hence:
$\exists!\rho_{\omega} \in C_{1,1}^{\infty}(X, \mathbb{R})$ such that $i \partial \bar{\partial} \omega_{n-2}=\omega_{n-2} \wedge \rho_{\omega}$.

An explicit computation yields:

$$
\star \rho_{\omega}=\frac{1}{n-1} \frac{\omega \wedge i \partial \bar{\partial} \omega_{n-2}}{\omega_{n}} \omega_{n-1}-i \partial \bar{\partial} \omega_{n-2}
$$

This throws up the C^{∞} function $f_{\omega}: X \longrightarrow \mathbb{R}$,

$$
f_{\omega}:=\frac{\omega \wedge i \partial \bar{\partial} \omega_{n-2}}{\omega_{n}}
$$

- the function f_{ω} plays a role similar in certain respects to the scalar curvature of ω;
- the ($n-1, n-1$)-form

$$
\star \rho_{\omega}=\frac{1}{n-1} f_{\omega} \omega_{n-1}-i \partial \bar{\partial} \omega_{n-2}
$$

plays a role similar to various curvature forms (e.g. Ricci).

Definition (P. 2022)

The metric ω is said to be pluriclosed star split if

$$
\partial \bar{\partial}\left(\star \rho_{\omega}\right)=0 .
$$

Theorem (P. 2022)

Suppose X is compact, $n=\operatorname{dim}_{\mathbb{C}} X \geq 3$.
(i) If ω is pluriclosed star split, then

$$
f_{\omega}>0 \text { on } X \quad \text { or } \quad f_{\omega}<0 \text { on } X \quad \text { or } \quad f_{\omega}=0 \text { on } X .
$$

(ii) If $f_{\omega}=$ Const $\neq 0$, then
ω is pluriclosed star split $\Longleftrightarrow \omega$ Gauduchon.
(iii) If ω is Gauduchon, then ω is pluriclosed star split $\Longleftrightarrow f_{\omega}=$ Const.
(iv) If ω is balanced and pluriclosed star split, then

$$
f_{\omega}=\text { Const } \geq 0 .
$$

Question (P. 2022)

When ω is pluriclosed star split, does the sign of f_{ω} depend only on the complex structure of X ?

- Yes if X is a complex nilmanifold of complex dimension 3.
(follows from Fino-Ugarte 2013)
- Open in general.
(b) Link with partial hyperbolicity

Definition $\operatorname{dim}_{\mathbb{C}} X=n$
Let

- $E \subset T^{1,0} X$ be a C^{∞} complex vector subbundle with rkE $=p \in$ $\{1, \ldots, n-1\}$;
- Ω be a real (p, p)-form on X.
Ω is negative in the E-directions $\stackrel{\text { def }}{\Longleftrightarrow} \forall x_{0} \in X \exists C^{\infty}$ frame $\left\{\xi_{1}, \ldots, \xi_{p}\right\}$ of E on a neighbourhood U of x_{0} such that

$$
\Omega\left(\xi_{1}, \bar{\xi}_{1}, \ldots, \xi_{p}, \bar{\xi}_{p}\right)<0, \quad \forall x \in U
$$

Theorem (Kasuya-P. 2023)

Let

- X be a compact complex manifold, $\operatorname{dim}_{\mathbb{C}} X=n$;
- $E \subset T^{1,0} X$ be a C^{∞} complex vector subbundle with rkE $=$ $n-1$.

If $\exists \omega$ Hermitian metric on X such that

- $f_{\omega}>0$ on X;
- the $(n-1, n-1)$-form $\star \rho_{\omega}$ is negative in the E-directions then
X is strongly partially $(n-1)$-hyperbolic in the E-directions.

Proof. By contradiction: suppose $\exists f: \mathbb{C}^{n-1} \longrightarrow X$ holomorphic, non-degenerate at some point,
E-horizontal and satisfying the growth condition (\star).
Then, f induces an Ahlfors current

$$
T=\lim _{r_{\nu} \rightarrow+\infty} T_{r_{\nu}} \geq 0 \quad \text { bidegree }(1,1)-\text { current on } X .
$$

We get:
(a) on the one hand, from $d T=0$ and the formula for $\star \rho_{\omega}$, we get, via Stokes:

$$
\int_{X} T \wedge \star \rho_{\omega}=\frac{1}{n-1} \int_{X} f_{\omega} T \wedge \omega_{n-1}>0
$$

where the inequality follows from the hypothesis $f_{\omega}>0$ and the property $T \geq 0$ (with $T \neq 0$).
(b) on the other hand,

$$
f \text { is } E \text {-horizontal and } \star \rho_{\omega} \text { is negative in the } E \text {-directions } \Longrightarrow
$$

$$
f^{\star}\left(\star \rho_{\omega}\right) \text { is a negative }(n-1, n-1) \text {-form on } \mathbb{C}^{n-1} .
$$

Therefore, we get:

$$
\begin{aligned}
\int_{X} T \wedge \star \rho_{\omega} & =\lim _{\nu \rightarrow+\infty} \int_{X} T_{r_{\nu}} \wedge \star \rho_{\omega} \\
& =\lim _{\nu \rightarrow+\infty} \frac{1}{\operatorname{Vol}_{\omega, f}\left(B_{r_{\nu}}\right)} \int_{B_{r_{\nu}}} f^{\star}\left(\star \rho_{\omega}\right) \leq 0 .
\end{aligned}
$$

This contradicts the inequality obtained under (a).
q.e.d.

