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(I) Background

X compact complex manifold, n = dimCX

(1) • Kobayashi (1970)

X is Kobayashi hyperbolic
def⇐⇒

the Kobayashi pseudo-distance of X is a distance

• Brody (1978)

X is Brody hyperbolic
def⇐⇒

@f : C −→ X non-constant holomorphic map

(Such a map is called an entire curve.)
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Theorem (Brody 1978) When X is compact, one has:

X is Kobayashi hyperbolic ⇐⇒ X is Brody hyperbolic.

• For a possibly non-compact X , one always has:

X is Kobayashi hyperbolic =⇒ X is Brody hyperbolic

but the converse fails in general.

Question 1 (Marouani-P. 2021) What is the relevant analogue
of the Brody hyperbolicity when entire curves f : C −→ X are
replaced by divisors f : Cn−1 −→ X, where n = dimCX?
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(2) Gromov (1991)

• Let πX : X̃ −→ X be the universal cover of X .

• If ω is a Hermitian metric on X , we put ω̃ := π?Xω its lift to X̃ .

(So, ω̃ is a Hermitian metric on X̃ .)

• Let α be a C∞ k-form on X .

α is d̃(bounded) w.r.t. ω
def⇐⇒ π?Xα = dβ on X̃ for some C∞

(k − 1)-form β on X̃ that is bounded w.r.t. ω̃.

• X is Kähler hyperbolic
def⇐⇒

∃ω Kähler metric on X such that ω is d̃(bounded) w.r.t. ω.
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Fact (Gromov 1991) If X is compact, one has:

X is Kähler hyperbolic =⇒ X is Kobayashi hyperbolic.

However, the converse fails in general.

Question 2 (Marouani-P. 2021) What is the relevant analogue
of the Kähler hyperbolicity when X is not Kähler?
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(3) Fact (Gromov 1991 + Chen-Yang 2017)

If X is compact, one has:

X is Kähler hyperbolic =⇒ KX is ample ( =⇒ X is projective).

Gromov proved that KX is big. The reinforcement of the result to
ample may have been known before Chen-Yang 2017.

Conjecture (Kobayashi)

If X is compact, one expects to have:

X is Kobayashi hyperbolic
?

=⇒ KX is ample

( =⇒ X is projective).
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So, the standard notions of hyperbolicity can only occur in the pro-
jective context.

Question 3 (Marouani-P. 2021) Do any hyperbolicity phenom-
ena occur outside the projective or even outside the Kähler con-
text?
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(4) Definition (Gauduchon 1977)

Let X be a complex manifold with dimCX = n.

A balanced metric on X is any C∞ positive definite (1, 1)-
form ω > 0 on X (i.e. any Hermitian metric ω) such that

dωn−1 = 0.

The manifold X is balanced ⇐⇒ ∃ω balanced metric on X .
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Examples of balanced manifolds include:

(a) all complex parallelisable compact complex manifolds X :

T 1, 0X is holomorphically trivial.

Fact (Wang 1954) A compact complex manifold X is complex
parallelisable ⇐⇒ X = G/Γ for some simply connected, con-
nected complex Lie group G and some discrete subgroup Γ.

(b) all Calabi-Eckmann manifolds: X = S2n+1 × S2m+1 equipped
with the Calabi-Eckmann complex structure;

(c) all twistor spaces (Penrose 1976, Atiyah-Hitchin-Singer 1978,
Gauduchon 1991);
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(d) many nilmanifolds and solvmanifolds: X = G/Γ with G a (real)
nilpotent or solvable Lie group endowed with an invariant complex
structure and Γ a lattice therein.
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(II) Our two hyperbolicity notions

(1) Answering Question 2

Definition (Marouani-P. 2021)

Let X be a compact complex manifold with dimCX = n.

X is balanced hyperbolic
def⇐⇒

∃ω balanced metric on X such that ωn−1 is d̃(bounded) w.r.t. ω.

Recall: this means that

π?Xω
n−1 = dΓ on X̃

for some ω̃-bounded C∞ (2n−3)-form Γ on X̃ , where πX : X̃ −→ X
is the universal cover of X .

11



Balanced hyperbolic manifolds generalise both

-Gromov’s Kähler hyperbolic manifolds;

and

-degenerate balanced manifolds.

Definition (P. 2015 for the name – the notion predates this)

Let X be a compact complex manifold with dimCX = n.

X is degenerate balanced
def⇐⇒

∃ω Hermitian metric on X such that ωn−1 ∈ Im d.
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• There is no analogous phenomenon in the Kähler case:

if X is compact, no C∞ (1, 1)-form ω > 0 on X can be such that
ω ∈ Im d.

• Two known classes of degenerate balanced manifolds:

(a) the connected sums

Xk = ]k(S3 × S3)

of k copies (with k ≥ 2) of S3 × S3 endowed with the Friedman-Lu-
Tian complex structure Jk constructed via conifold transitions, where
S3 is the 3-sphere;
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Fu-Li-Yau (2012): ∃ω balanced metric on (Xk, Jk).

Moreover,H4
DR(Xk, C) = {0}, so for any balanced metric ω,H4

DR(Xk, C) 3
{ω2}DR = 0, hence ω is degenerate balanced.

(b) the Yachou manifolds (1998)

X = G/Γ

arising as the quotient of any semi-simple complex Lie group G by
a lattice Γ ⊂ G.

Obvious fact

Every degenerate balanced manifold is balanced hyperbolic.
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(2) Answering Question 1

Observation (trivial)

For any complex Lie group G with dimCG = n and any lattice
Γ ⊂ G, there exists a holomorphic map

f : Cn−1 −→ X := G/Γ

that is non-degenerate at some point x ∈ Cn−1.

Reason. There are non-degenerate holomorphic maps:

Cn−1 −→ T
1, 0
e G = g

exp−→ G −→ G/Γ,

where the exponential map exp : g −→ G is holomorphic (and im-
mersive at least at 0 ∈ g since d0g = idg) since the Lie group G is
complex.
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However, the Friedman-Lu-Tian and the Yachou manifolds deserve
to be called hyperbolic.

Notation. • For any integer n ≥ 2 and any r > 0, let

Br := {z ∈ Cn−1 | |z| < r}
and

Sr := {z ∈ Cn−1 | |z| = r}
be the open ball, resp. the sphere, of radius r centred at 0 ∈ Cn−1.

For any (1, 1)-form γ ≥ 0 on a complex manifold and any positive
integer p, we use the notation:

γp :=
γp

p!
.
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• For any compact Hermitian manifold (X, ω) with dimCX = n ≥ 2
and any holomorphic map

f : Cn−1 −→ X

that is non-degenerate at some point x ∈ Cn−1 (i.e. its differential
map dxf : Cn−1 −→ Tf (x)X at x has maximal rank):

· there exists a proper analytic subset Σ ⊂ Cn−1 such that f is
non-degenerate at every point z ∈ Cn−1 \ Σ;

· f?ω ≥ 0 on Cn−1 and f?ω > 0 on Cn−1 \ Σ

(i.e. f?ω is a degenerate metric on Cn−1 and a genuine metric on
Cn−1 \ Σ)
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Definition (Marouani-P. 2021)

(i) For every r > 0, the (ω, f )-volume of the ball Br ⊂ Cn−1 is

Volω, f (Br) :=

∫
Br

f?ωn−1 > 0.

(ii) For z ∈ Cn−1, let τ (z) := |z|2 be its squared Euclidean norm.
At every point z ∈ Cn−1 \ Σ, we have:

dτ

|dτ |f?ω
∧ ?f?ω

(
dτ

|dτ |f?ω

)
= f?ωn−1, (1)

where ?f?ω is the Hodge star operator induced by f?ω.
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Thus, the (2n− 3)-form

dσω, f := ?f?ω

(
dτ

|dτ |f?ω

)
on Cn−1 \Σ is the area measure induced by f?ω on the spheres of
Cn−1. This means that its restriction

dσω, f, t :=

(
?f?ω

(
dτ

|dτ |f?ω

))
|St

(2)

is the area measure induced by the degenerate metric f?ω on the
sphere St = {τ (z) = t2} ⊂ Cn−1 for every t > 0. In particular,
the area of the sphere Sr ⊂ Cn−1 w.r.t. dσω, f, r is

Aω, f (Sr) =

∫
Sr

dσω, f, r > 0, r > 0.
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Definition (Marouani-P. 2021) Let (X, ω) be a compact Her-
mitian manifold with dimCX = n ≥ 2 and let

f : Cn−1 −→ X

be a holomorphic map, non-degenerate at some point x ∈ Cn−1.

f has subexponential growth if the following two conditions
are satisfied:

(i) there exist constants C1 > 0 and r0 > 0 such that∫
St

|dτ |f?ω dσω, f, t ≤ C1tVolω, f (Bt), t > r0;
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(ii) for every constant C > 0, we have:

lim sup
b→+∞

(
b

C
− logF (b)

)
= +∞,

where

F (b) :=

b∫
0

Volω, f (Bt) dt =

b∫
0

(∫
Bt

f?ωn−1

)
dt, b > 0.
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Observation Any holomorphic map f : Cn−1 −→ (X, ω) such
that

f?ω = β := (1/2)

n−1∑
j=1

idzj ∧ dz̄j

(the standard Kähler metric, i.e. the Euclidean metric)

has subexponential growth.
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Observation The following identities hold for all t > 0:∫
St

|dτ |f?ω dσω, f, t = 2

∫
Bt

i∂∂̄τ ∧ f?ωn−2 −
∫
Bt

i(∂̄τ − ∂τ ) ∧ d(f?ωn−2)

= 2

∫
Bt

Λf?ω(i∂∂̄τ ) f?ωn−1 −
∫
Bt

i(∂̄τ − ∂τ ) ∧ d(f?ωn−2),

where Λf?ω is the trace w.r.t. f?ω or, equivalently, the pointwise
adjoint of the operator of multiplication by f?ω, while

i∂∂̄τ = i∂∂̄|z|2 =

n−1∑
j=1

idzj ∧ dz̄j := β

is the standard metric of Cn−1.
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Observation (trivial)

The subexponential growth condition on f is independent of the
choice of Hermitian metric ω on X.

Proof. Let ω1 and ω2 be arbitrary Hermitian metrics on X .

Since X is compact, there exists a constant A > 0 such that

(1/A)ω2 ≤ ω1 ≤ Aω2

on X . Hence,
(1/A) f?ω2 ≤ f?ω1 ≤ Af?ω2

on Cn−1. �
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Standard definition

A holomorphic map f : Cn−1→ (X, ω) is of finite order if there
exist constants C1, C2, r0 > 0 such that

Volω, f (Br) ≤ C1 r
C2 for all r ≥ r0.

• By the above proof, f being of finite order does not depend on the
choice of Hermitian metric ω on X .

• If f has finite order, then f satisfies part (ii) of the subexponential
growth condition.
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Definition (Marouani-P. 2021)

Let X be a compact complex manifold with dimCX = n.

X is divisorially hyperbolic if there is no holomorphic map

f : Cn−1 −→ X

such that f is non-degenerate at some point x ∈ Cn−1 and f
has subexponential growth.

Question What about the case where X is non-compact?
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For all compact complex manifolds X , we get the following picture:

X is Kähler hyperbolic =⇒ X is Brody hyperbolic

=⇒ =⇒

X is balanced hyperbolic =⇒ X is divisorially hyperbolic

=
⇒

X is degenerate balanced
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The only implication that has yet to be proved is

Theorem (Marouani-P. 2021)

Every balanced hyperbolic compact complex manifold is di-
visorially hyperbolic.

Proof. Let X be a balanced hyperbolic compact complex manifold,
dimCX = n. Let ω be a balanced hyperbolic metric on X .

Thus, if πX : X̃ −→ X is the universal cover of X , we have

π?Xω
n−1 = dΓ on X̃,

where Γ is an ω̃-bounded C∞ (2n − 3)-form on X̃ and ω̃ = π?Xω is

the lift of the metric ω to X̃ .
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Suppose there exists a holomorphic map

f : Cn−1 −→ X

that is non-degenerate at some point x ∈ Cn−1 and has subexponen-
tial growth. We will prove that

f?ωn−1 = 0

on Cn−1, in contradiction to the non-degeneracy assumption.

Since Cn−1 is simply connected, there exists a lift f̃ of f to X̃ ,
namely a holomorphic map

f̃ : Cn−1 −→ X̃

such that f = πX ◦ f̃ . In particular, dxf̃ is injective since dxf is.
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We have:

f?ωn−1 = f̃?(π?Xω
n−1) = d(f̃?Γ) ≥ 0 on Cn−1

> 0 on Cn−1 \ Σ,

where Σ ⊂ Cn−1 is the proper analytic subset of all points z ∈ Cn−1

such that dzf is not of maximal rank.

Claim. The (2n− 3)-form f̃?Γ is (f?ω)-bounded on Cn−1.
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Proof of Claim. For any tangent vectors v1, . . . , v2n−3 in Cn−1, we
have:

|(f̃?Γ)(v1, . . . , v2n−3)|2 = |Γ(f̃?v1, . . . , f̃?v2n−3)|2
(a)
≤ C |f̃?v1|2ω̃ . . . |f̃?v2n−3|2ω̃
= C |v1|2f̃?ω̃ . . . |v2n−3|2f̃?ω̃
(b)
= C |v1|2f?ω . . . |v2n−3|2f?ω,

where C > 0 is a constant independent of the vj’s that exists such that

inequality (a) holds thanks to the ω̃-boundedness of Γ on X̃ , while
(b) follows from f̃?ω̃ = f?ω. �
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End of Proof of Theorem.

• On the one hand, we have dτ = 2t dt and

Volω, f (Br) =

∫
Br

f?ωn−1 =

r∫
0

(∫
St

dµω, f, t

)
dt =

∫
Br
dµω, f, t ∧

dτ

2t
,

where dµω, f, t is the positive measure on St defined by

1

2t
dµω, f, t ∧ (dτ )|St = (f?ωn−1)|St, t > 0.

Thus, the measures dµω, f, t and dσω, f, t on St are related by

1

2t
dµω, f, t =

1

|dτ |f?ω
dσω, f, t, t > 0.
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Now, the Hölder inequality yields:∫
St

1

|dτ |f?ω
dσω, f, t ≥

A2
ω, f (St)∫

St
|dτ |f?ω dσω, f, t

.

This leads to:

Volω, f (Br) =

r∫
0

(∫
St

1

2t
dµω, f, t

)
dτ =

r∫
0

(∫
St

1

|dτ |f?ω
dσω, f, t

)
dτ

≥ 2

r∫
0

A2
ω, f (St)∫

St
|dτ |f?ω dσω, f, t

t dt, r > 0.
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• On the other hand, for every r > 0, we have:

Volω, f (Br) =

∫
Br

f?ωn−1 =

∫
Br

d(f̃?Γ) =

∫
Sr

f̃?Γ

(a)
≤ C

∫
Sr

dσω, f = C Aω, f (Sr),

where C > 0 is a constant that exists such that inequality (a) holds
thanks to the boundedness of f̃?Γ.
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Putting the above inequalities together, we get for every r > r0:

Volω, f (Br) ≥
2

C2

r∫
0

Volω, f (Bt)
tVolω, f (Bt)∫

St
|dτ |f?ω dσω, f, t

dt

(a)
≥ 2

C1C2

r∫
r0

Volω, f (Bt) dt
(b)
:= C2F (r),

where (a) follows from assumption (i) in the subexponential growth
condition and (b) is the definition of a function F : (r0, +∞) −→
(0, +∞) with C2 := 2/(C1C

2).
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Deriving F , we get for every r > 0:

F ′(r) = Volω, f (Br) ≥ C2F (r).

This amounts to
d

dt

(
logF (t)

)
≥ C2, t > r0.

Integrating this over t ∈ [a, b], with r0 < a < b arbitrary, we get:

− logF (a) ≥ − logF (b) + C2 (b− a), r0 < a < b.

Now, fix an arbitrary a > r0 and let b → +∞. Thanks to the
subexponential growth assumption made on f , there exists a sequence
of reals bj → +∞ such that the right-hand side of the above inequality
for b = bj tends to +∞ as j → +∞.
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This forces F (a) = 0 for every a > 0, hence

Volω, f (Br)

(
=

∫
Br

f?ωn−1

)
= 0

for every r > r0. This amounts to f?ωn−1 = 0 on Cn−1, contradicting
the non-degeneracy assumption on f . �
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Examples

(1) Consider the semi-simple complex Lie group G = SL(2, C).
Its complex structure is described by three holomorphic (1, 0)-forms
α, β, γ that satisfy the structure equations:

dα = β ∧ γ, dβ = γ ∧ α, dγ = α ∧ β.

Moreover, the dual of the Lie algebra g = TeG of G is generated, as
an R-vector space, by these forms and their conjugates:

(TeG)? = 〈α, β, γ, α, β, γ〉.
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The C∞ positive definite (1, 1)-form

ω :=
i

2
α ∧ α +

i

2
β ∧ β +

i

2
γ ∧ γ

defines a left-invariant (under the action of G on itself) Hermitian
metric on G. We get

ω2 =
1

2
d(α ∧ dα + β ∧ dβ + γ ∧ dγ) ∈ Im d.

So, ω is a degenerate balanced metric on G.

Since it is left-invariant under the G-action, ω descends to a degen-
erate balanced metric on the compact quotient X = G/Γ of G by
any lattice Γ. In particular, this example illustrates Yachou’s result in
the special case of G = SL(2, C).
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Now, consider the holomorphic map

f : C2→ G = SL(2, C), f (z1, z2) =

(
ez1 z2
0 e−z1

)
.

This map is non-degenerate at every point z = (z1, z2) ∈ C2, as can
be seen at once.

However, f is not of subexponential growth, as can be checked.

Actually, there is no non-degenerate holomorphic map g : C2 →
X = G/Γ of subexponential growth thanks to X being degenerate
balanced (hence also balanced hyperbolic) and to our above theorem.
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(2) Any complex torus

X = Cn/Γ,

where Γ ⊂ (Cn, +) is any lattice, is not divisorially hyperbolic.

Reason. Any Hermitian metric with constant coefficients on Cn (for
example, the Euclidean metric β = (1/2)

∑
j idzj ∧ dz̄j) defines a

Kähler metric ω on X :
π?ω = β,

where π : Cn → X is the projection. If j : Cn−1 −→ Cn is the
obvious inclusion (z1, . . . , , zn−1) 7→ (z1, . . . , , zn), the non-degenerate
holomorphic map f = π ◦ j : Cn−1 → X has subexponential growth
because f?ω = j?β = β0, where β0 is the Euclidean metric of Cn−1.
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(3) The Iwasawa manifoldX = G/Γ is not divisorially hyperbolic,
where G = (C3, ?) is the nilpotent complex Lie group (called the
Heisenberg group) whose group operation is defined as

(ζ1, ζ2, ζ3) ? (z1, z2, z3) = (ζ1 + z1, ζ2 + z2, ζ3 + z3 + ζ1 z2),

while the lattice Γ ⊂ G consists of the elements (z1, z2, z3) ∈ G with
z1, z2, z3 ∈ Z[i].

Reason. There is an explicit Hermitian metric ω0 on X that lifts to
the Hermitian metric

ω = π?ω0

= idz1 ∧ dz̄1 + (1 + |z1|2) idz2 ∧ dz̄2 + idz3 ∧ dz̄3

− z̄1 idz3 ∧ dz̄2 − z1 idz2 ∧ dz̄3

on G = C3, where π : G→ X is the projection.
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Considering the non-degenerate holomorphic map f = π◦j : C2 −→
X , where j : C2 −→ C3 is the obvious inclusion (z1, z2) 7→ (z1, z2, 0),
we get

f?ω0 = j?ω = ω|C2 = idz1 ∧ dz̄1 + (1 + |z1|2) idz2 ∧ dz̄2

on C2. Hence,
f?ω2

0 = 2(1 + |z1|2) dV0

on C2, where we put dV0 := idz1 ∧ dz̄1 ∧ idz2 ∧ dz̄2.. Thus, for the
ball Br ⊂ C2 of radius r centred at 0, we get

Volω0, f (Br) =
1

2

∫
Br

f?ω2
0 =

∫
Br

(1 + |z1|2) dV0 ≤ c2 r
4(1 + r2), r > 0,

where c2 > 0 is a constant independent of r. This shows that f is
of finite order, hence f satisfies property (ii) in the definition of the
subexponential growth condition. It also satisfies property (i).
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(4) No Nakamura manifold X = G/Γ is divisorially hyperbolic,
where G = (C3, ?) is the solvable, non-nilpotent complex Lie group
whose group operation is defined as

(ζ1, ζ2, ζ3) ? (z1, z2, z3) = (ζ1 + z1, ζ2 + e−ζ1z2, ζ3 + eζ1z3),

while Γ ⊂ G is a lattice.
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(III) Positivity properties of balanced or divisorially
hyperbolic manifolds

Question 4 (Marouani-P. 2021) Let X be a compact complex
manifold. If X is balanced hyperbolic or merely divisorially hy-
perbolic, does X have any positivity property (e.g. at the level of
KX)?
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Recall

- Bott-Chern cohomology group:

H
p, q
BC(X,C) :=

ker ∂ ∩ ker ∂̄

Im (∂∂̄)
(depends on the complex structure)

- Aeppli cohomology group:

H
p, q
A (X,C) :=

ker(∂∂̄)

Im ∂ + Im ∂̄
(depends on the complex structure)

We will use the Serre-type duality:

H
1, 1
BC(X, C)×Hn−1, n−1

A (X, C) −→ C,

({u}BC, {v}A) 7→ {u}BC.{v}A :=

∫
X

u ∧ v,
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as well as:

- the Gauduchon cone GX of X (P. 2015)

GX :=

{
{ωn−1}A ∈ H

n−1, n−1
A (X, R) | ω is a Gauduchon metric on X

}
⊂ H

n−1, n−1
A (X, R)

-the strongly Gauduchon (sG) cone SGX of X (P. 2015)

SGX :=

{
{ωn−1}A ∈ H

n−1, n−1
A (X, R) | ω is an sG metric on X

}
⊂ H

n−1, n−1
A (X, R).
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Recall: a Hermitian metric ω on X is said to be a:

-Gauduchon metric (Gauduchon 1077) if

∂∂̄ωn−1 = 0

-strongly Gauduchon (sG) metric (P. 2013) if

∂ωn−1 ∈ Im ∂̄.

Obviously,
SGX ⊂ GX .
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Original observation.

Let X be a compact complex manifold with dimCX = n. The map:

P = Pn−1
n−1, n−1 : H2

DR(X, R) −→ H
n−1, n−1
A (X, R)

{α}DR 7−→ {(αn−1)n−1, n−1}A,

is well defined in the sense that it is independent of the choice
of a C∞ representative α of its De Rham cohomology class, where
(αn−1)n−1, n−1 is the component of bidegree (n − 1, n − 1) of the
(2n− 2)-form αn−1.
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Definition (Marouani-P. 2021)

Let {α} ∈ H2
DR(X, R) be a real De Rham cohomology class (not

necessarily of type (1, 1)).

{α} is divisorially Kähler
def⇐⇒ P ({α}) ∈ GX

{α} is divisorially nef
def⇐⇒ P ({α}) ∈ GX

(the closure of the Gauduchon cone)

A C∞ complex line bundle L on X is divisorially nef
def⇐⇒

its first Chern class c1(L) is divisorially nef.
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Examples of results.

Theorem (Marouani-P. 2021)

Let L be a holomorphic line bundle on an n-dimensional pro-
jective manifold X. The following equivalence holds:

L is divisorially nef =⇒ Ln−1.D ≥ 0 for all effective divisors D ≥ 0 on X,

where

Ln−1.D :=

∫
D

(
i

2π
Θh(L)

)n−1

and (i/2π) Θh(L) is the curvature form of L with respect to any
Hermitian fibre metric h.
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This is the divisorial analogue of the classical nefness property on
projective manifolds X :

L is nef ⇐⇒ L.C ≥ 0 for every curve C ⊂ X .

Theorem (Marouani-P. 2021)

A class {α}DR ∈ H2
DR(X, R) is divisorially nef

⇐⇒

for every constant ε > 0, there exists a representative Ωε ∈
C∞n−1, n−1(X, R) of the class P ({α}DR) such that

Ωε ≥ −ε ωn−1,

where ω > 0 is any pregiven Hermitian metric on X.
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Question 5 (Marouani-P. 2021) Let X be a compact complex
manifold.

X is balanced hyperbolic or divisorially hyperbolic

?
=⇒

KX is divisorially nef or divisorially Kähler
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(IV) Properties of balanced hyperbolic manifolds

(1) A Hard Lefschetz-type theorem

Theorem (Marouani-P. 2021)

Let X be a compact complex manifold with dimCX = n.

(i) If ω is a balanced metric on X, the linear map:

{ωn−1}DR ∧ · : H1
DR(X, C) −→ H2n−1

DR (X, C),

{u}DR 7−→ {ωn−1 ∧ u}DR,
is well defined and depends only on the cohomology class {ωn−1}DR ∈
H2n−2
DR (X, C).
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(ii) If, moreover, X has the following additional ∂∂̄-type prop-
erty: for every form v ∈ C∞1, 1(X, C) such that dv = 0, the follow-
ing implication holds:

(?) v ∈ Im ∂ =⇒ v ∈ Im (∂∂̄),

the above map is an isomorphism.

As a consequence of this discussion, we obtain the following vanishing
properties for the cohomology of degenerate balanced manifolds.
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Proposition (Marouani-P. 2021) Let X be a compact de-
generate balanced manifold.

(i) The Bott-Chern cohomology groups of types (1, 0) and (0, 1)

of X vanish: H
1, 0
BC(X, C) = 0 and H

0, 1
BC(X, C) = 0.

(ii) If, moreover, X satisfies hypothesis (?), its De Rham coho-
mology group of degree 1 vanishes: H1

DR(X, C) = 0.
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(2) In the L2 setting of the universal cover X̃ , our main result in
degree 1 and its dual degree 2n− 1 is

Theorem (Marouani-P. 2021) Let X be a compact complex
balanced hyperbolic manifold with dimCX = n.

Let π : X̃ −→ X be the universal cover of X and ω̃ := π?ω the
lift to X̃ of a balanced hyperbolic metric ω on X.

There are no non-zero ∆ω̃-harmonic L2
ω̃-forms of pure types and

of degrees 1 and 2n− 1 on X̃:

H1, 0
∆ω̃

(X̃, C) = H0, 1
∆ω̃

(X̃, C) = 0 and Hn, n−1
∆ω̃

(X̃, C) = Hn−1, n
∆ω̃

(X̃, C) = 0,

where ∆ω̃ := dd?ω̃ + d?ω̃d is the d-Laplacian induced by the metric
ω̃.
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In the same L2 setting of the universal cover X̃ , our main result in
degree 2 is

Theorem (Marouani-P. 2021) Let X be a compact complex
balanced hyperbolic manifold with dimCX = n.

Let π : X̃ −→ X be the universal cover of X and ω̃ := π?ω the
lift to X̃ of a balanced hyperbolic metric ω on X.

There are no non-zero semi-positive ∆τ̃ -harmonic L2
ω̃-forms of

pure type (1, 1) on X̃:{
α1, 1 ∈ H1, 1

∆τ̃
(X̃, C) | α1, 1 ≥ 0

}
= {0},

where τ̃ = τ̃ω̃ := [Λω̃, ∂ω̃ ∧ ·] and ∆τ̃ := [d + τ̃ , d? + τ̃?].
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