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(I) Background

X compact complex manifold, n = dimg X

(1) e Kobayashi (1970)

X 1s Kobayashi hyperbolic g}

the Kobayashi pseudo-distance of X is a distance

e Brody (1978)

X is Brody hyperbolic <d£f>

A f . C — X non-constant holomorphic map

(Such a map is called an entire curve.)



Theorem (Brody 1978) When X is compact, one has:
X 1s Kobayasht hyperbolic <— X is Brody hyperbolic.
e For a possibly non-compact X, one always has:

X is Kobayashi hyperbolic = X is Brody hyperbolic

but the converse fails in general.

Question 1 (Marouani-P. 2021) What is the relevant analogue
of the Brody hyperbolicity when entire curves f : C — X are
replaced by divisors f: C" 1 — X, where n = dime X 7



(2) Gromov (1991)

o Let my X — X be the universal cover of X

o [f w is a Hermitian metric on X, we put w := W’)}w its lift to X.

(So, w is a Hermitian metric on X.)

e [et a be a O k-form on X.

a is d(bounded) w.r.t. w g Ty = df on X for some C'®

(k — 1)-form 8 on X that is bounded w.r.t. &.

e X is Kahler hyperbolic g

3w Kihler metric on X such that w is d(bounded) w.r.t. w.
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Fact (Gromov 1991) If X is compact, one has:
X 1s Kahler hyperbolic — X 1is Kobayashi hyperbolic.

However, the converse fails in general.

Question 2 (Marouani-P. 2021) What is the relevant analogue
of the Kahler hyperbolicity when X is not Kahler?



(3) Fact (Gromov 1991 + Chen-Yang 2017)

If X 1s compact, one has:
X is Kahler hyperbolic = Kx is ample (= X 1is projective).

Gromov proved that Ky is big. The reinforcement of the result to
ample may have been known before Chen-Yang 2017.

Conjecture (Kobayashi)

If X 1s compact, one expects to have:

X 15 Kobayashi hyperbolic :?> Kx is ample

(= X is projective).



So, the standard notions of hyperbolicity can only occur in the pro-
jective context.

Question 3 (Marouani-P. 2021) Do any hyperbolicity phenom-
ena occur outside the projective or even outside the Kahler con-
text?



(4) Definition (Gauduchon 1977)

Let X be a compler manifold with dimgX = n.

A balanced metric on X is any C°° positive definite (1, 1)-
form w >0 on X (i.e. any Hermitian metric w) such that

dw™ 1 = 0.

The manifold X is balanced <= dw balanced metric on X.



Examples of balanced manifolds include:
(a) all complex parallelisable compact complex manifolds X:

THOX s holomorphically trivial.

Fact (Wang 1954) A compact complex manifold X is complex
parallelisable <— X = G/TU" for some simply connected, con-
nected complex Lie group G and some discrete subgroup I'.

(b) all Calabi-Eckmann manifolds: X = §2"+1 x §2m+1 equipped
with the Calabi-Eckmann complex structure;

(c) all twistor spaces (Penrose 1976, Atiyah-Hitchin-Singer 1978,
Gauduchon 1991);



(d) many nilmanifolds and solvmanifolds: X = G/I" with G a (real)

nilpotent or solvable Lie group endowed with an invariant complex
structure and I' a lattice therein.
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(IT) Our two hyperbolicity notions
(1) Answering Question 2

Definition (Marouani-P. 2021)

Let X be a compact complex manifold with dimcX = n.

X 15 balanced hyperbolic g

Jw balanced metric on X such that w1 is d(bounded) w.r.t. w.

Recall: this means that
W}}wn_l —dl' on X

for some @-bounded C* (2n—3)-form I on X, where y : X — X
is the universal cover of X.
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Balanced hyperbolic manifolds generalise both
-Gromov’s Kahler hyperbolic manifolds;
and

-degenerate balanced manitolds.

Definition (P. 2015 for the name — the notion predates this)

Let X be a compact complex manifold with dimgX = n.

d
X 1s degenerate balanced <éf>

Jw Hermitian metric on X such that w1t € Imd.
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e There is no analogous phenomenon in the Kahler case:

if X is compact, no C°° (1, 1)-form w > 0 on X can be such that
w € Imd.

e Two known classes of degenerate balanced manifolds:
(a) the connected sums
Xjp = (57 x 5°)

of k copies (with k > 2) of S x S% endowed with the Friedman-Lu-
Tian complex structure J;. constructed via conifold transitions, where
S3 is the 3-sphere:
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Fu-Li-Yau (2012): dw balanced metric on (X, Ji.).

Moreover, H?)R(Xk, C) = {0}, so for any balanced metric w, H%R(Xk, C)
{w?}pp =0, hence w is degenerate balanced.

(b) the Yachou manifolds (1998)
X =G/T

arising as the quotient of any semi-simple complex Lie group G by
a lattice I' C G.

Obvious fact

Fvery degenerate balanced manifold is balanced hyperbolic.
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(2) Answering Question 1

Observation (trivial)

For any complex Lie group G with dimcG = n and any lattice
I' C G, there exists a holomorphic map

f.Ccvl — x.=@g/r

that is non-degenerate at some point © € C* 1.

Reason. There are non-degenerate holomorphic maps:
c 16 =98 @ — GJI,

where the exponential map exp : g — G is holomorphic (and im-
mersive at least at 0 € g since dpg = idg) since the Lie group G is
complex.
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However, the Friedman-Lu-Tian and the Yachou manifolds deserve
to be called hyperbolic.

Notation. e For any integer n > 2 and any r > 0, let
Br={zeC" 1| |z] <r}

and
Sy ={zeC" | |z| =r}
be the open ball, resp. the sphere, of radius r centred at 0 € C*~1.

For any (1, 1)-form v > 0 on a complex manifold and any positive
integer p, we use the notation:

f}/p

Vp = —.
p p!
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e For any compact Hermitian manifold (X, w) with dim¢cX =n > 2
and any holomorphic map

f:(Cn_l—>X

that is non-degenerate at some point & € C*~! (i.e. its differential
map df : C" 1t — T't(1)X at x has maximal rank):

. there exists a proper analytic subset ¥ < C"~! such that f is
non-degenerate at every point z € cn—l \ X

- ffw>00onC" land ffw>00n C* 1\ X

(i.e. f*w is a degenerate metric on C"1 and a genuine metric on

(C”_l \ Z)

17



Definition (Marouani-P. 2021)
(i) For everyr >0, the (w, f)-volume of the ball B, C C*~1 is

Vol, ¢(Br) = /f*wn_l > 0.

B,
(i) Forz € C" 1 let 7(z) := |z|? be its squared Euclidean norm.
At every point z € C*—1 \ X, we have:
dr dr
/N S Fx = W, _ 1
drlpes “(Idﬂ fm)) Fen-t &

where x ¢x,, 15 the Hodge star operator induced by frw.
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Thus, the (2n — 3)-form

y . dr
Ow,f'_ Jrw |d7—|f*w

on Cn—1 \ X is the area measure induced by f*w on the spheres of
C"~L. This means that its restriction

dT
o= (e () 2

is the area measure induced by the degenerate metric f*w on the
sphere Sy = {1(2) = t2} € C" ! for every t > 0. In particular,
the area of the sphere Sy C C" 1 w.r.t. Aoy, f . 18

ijf(sr) = /dOwjfﬂa > (), r > 0.
Sr
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Definition (Marouani-P. 2021) Let (X, w) be a compact Her-
matian manifold with dimeX =n > 2 and let

.ol 5 x
be a holomorphic map, non-degenerate at some point r € cn—1,

f has subexponential growth if the following two conditions
are satisfied:

(1) there exist constants C1 > 0 and ro > 0 such that

/ ‘d7_|f*w dgw,f,t < (it Vol%f(Bt), t>10;
St
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(11) for every constant C' > 0, we have:

b
lim sup (— — log F(b)) = +00,
b—+-00 ¢

where

F(b) :/bvolwyf(Bt) dt:/</f*wn_1> dt, b>0.
0 0
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Observation Any holomorphic map f : C"~ ' — (X, w) such
that

n—1
frw=8:=(1/2) Y idzj A dz
j=1
(the standard Kdahler metric, i.e. the Fuclidean metric)

has subexponential growth.
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Observation The following identities hold for allt > 0:
/]dﬂf*w doy, ft = 2/75667 A Fwy,_o — /i(@T — O7) AN d(f wp—9)

St By By
= Q/Af*w(ié?@T) ffwp—1 — /2’(87 — O1) AN d( f*wp—9
Bt Bt

where A frw 1S the trace w.r.t. f*w or, equivalently, the pointwise
adjoint of the operator of multiplication by f*w, while

n—1
i00T =i00|2|* =Y idzj Adzj =
j=1

is the standard metric of C" 1.

23



Observation (trivial)
The subexponential growth condition on f s independent of the
choice of Hermitian metric w on X.
Proof. Let wy and wy be arbitrary Hermitian metrics on X.
Since X is compact, there exists a constant A > 0 such that
(1/A)wy S wp < Awy

on X. Hence,
(1/4) ffun < fwp < A fru
on C* L. []
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Standard definition

A holomorphic map f : C"~t — (X, w) is of finite order if there
exist constants C, Co, rg > 0 such that

Vol, r(Br) < Cq rC2 for all r > 1.

e By the above proof, f being of finite order does not depend on the
choice of Hermitian metric w on X.

o If f has finite order, then f satisfies part (ii) of the subexponential
growth condition.
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Definition (Marouani-P. 2021)
Let X be a compact complex manifold with dimcX = n.

X 1s divisorially hyperbolic if there is no holomorphic map
f cl — x

such that f is non-degenerate at some point x € C* 1 and f
has subexponential growth.

Question What about the case where X is non-compact ¢
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For all compact complex manifolds X, we get the following picture:

X is Kahler hyperbolic —> X is Brody hyperbolic

| |

X is balanced hyperbolic = X is divisorially hyperbolic

1

X is degenerate balanced
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The only implication that has yet to be proved is

Theorem (Marouani-P. 2021)
Fvery balanced hyperbolic compact complex manifold is di-
visorially hyperbolic.
Proof. Let X be a balanced hyperbolic compact complex manifold,
dime X = n. Let w be a balanced hyperbolic metric on X.
Thus, it 7y X —> X is the universal cover of X, we have
W}z—wn_l —dl' on X,

where I is an &-bounded € (2n — 3)-form on X and & = T W 18
the lift of the metric w to X.
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Suppose there exists a holomorphic map
f crl s x

that is non-degenerate at some point 2 € C* ! and has subexponen-
tial growth. We will prove that

f*wn—l — O

on C" ! in contradiction to the non-degeneracy assumption.

Since C"~1 is simply connected, there exists a lift f of f to X ,
namely a holomorphic map

f:Cn_1%X

such that f = 7wy o f. In particular, d, f is injective since dg f is.
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We have:
ot = i ) =d(fT) >0 on C"!
>0 on C"I\ X,

where © C C"~1 is the proper analytic subset of all points z € C*~1
such that d, f is not of maximal rank.

Claim. The (2n — 3)-form f*T is (f*w)-bounded on C*~1,

30



Proof of Claim. For any tangent vectors vy, . .., v9,_3 in C* ™1 we
have:

~ ~

(FT) (01, van—3)l* = [T(fevr,. ., frvan—a)[

@ s : 2
< C f*vl‘g;--- ‘f*UZn—Z%‘@
_ 2 2
= C U1 o UV9n—3 G
(0) 9 2
= C U1 f*w e (U9 —3 f*w’

where C' > 0 is a constant independent of the v;’s that exists such that

inequality (a) holds thanks to the w-boundedness of I' on X, while
(b) follows from f*w = f*w. ]
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End of Proof of Theorem.
e On the one hand, we have dr = 2t dt and

r

dr
Voo, (B0) = [ Franc= [ [dwsg)de= [ dmgin
B, 0 S '

where dp,, r 4 1s the positive measure on Sy defined by

1
Q_td'uwyfat A (d7->|St = (f*wn_1)|st, t > 0.

Thus, the measures du,, r 4 and doy, 4 on Sy are related by

1
‘dT’f*w

1
—d,uw’f’t = dO_w,f,lb r > 0.

2t
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Now, the Holder inequality yields:

1 (St)
/ dO’ f t ~ f .
s, ]dﬂf* fS ]dT|f*w doy, .t
This leads to:
.

.
1 1
Volef(BT) — /(/Z_td'uw’f’t) dr = / (/ |d7‘f*w dUw,f,t) dr
0 0 St

St
T

5 f(St>
O Js, ldT | prydo, 14

tdt, r >0.
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e On the other hand, for every » > 0, we have:

VO1w,f(B7”) = /f*wnl = /d(];*r) = /f*r
By By Sy
(a)
< C /dgw,f = CAw,f(ST>a
Sr

where C' > 0 is a constant that exists such that inequality (a) holds
thanks to the boundedness of f*T.
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Putting the above inequalities together, we get for every r > r:

tVOiw f(Bt)
— [ Vol, +(By) ’ dt
ol f / @ fs idTif*w daw,f,t

r

(@) 2 (b)
> . /Volw,f(Bt) dt := Cy F(r),

0

where (a) follows from assumption (i) in the subexponential growth
condition and (b) is the definition of a function F' : (rg, +00) —
(0, +00) with Cy := 2/(Cy C?).
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Deriving F', we get for every r > 0:
Fl(r) = Vol, ¢(By) > Cy F(r).

This amounts to

d

£<10g F(t)) > Ch, t>r1p.

Integrating this over t € |a, b, with ry < a < b arbitrary, we get:

—log F(a) > —log F'(b) + C5(b—a), rg<a<b.

Now, fix an arbitrary a > rg and let b — 4o00. Thanks to the
subexponential growth assumption made on f, there exists a sequence
of reals b; — +o00 such that the right-hand side of the above inequality
for b = b; tends to 400 as j — +o0.
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This forces F'(a) = 0 for every a > 0, hence

Vol ¢(Br) <: /f*wn—1> =0

By

for every r > 7. This amounts to f*w" 1 = 0 on C* !, contradicting
the non-degeneracy assumption on f. []
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Examples

(1) Consider the semi-simple complex Lie group G = SL(2, C).
[ts complex structure is described by three holomorphic (1, 0)-forms
a, 3, that satisfy the structure equations:

dao =B ANy, dBb=~vNa, dy=aAlp.

Moreover, the dual of the Lie algebra g = TG of GG is generated, as
an R-vector space, by these forms and their conjugates:

(Te)—< 5%0457>
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The C'* positive definite (1, 1)-form

) ) — 1
=—-a/Na+-=-0AN —vy N\ 7Y
W 204 OH—Zﬁ 5+27 Y

defines a left-invariant (under the action of G on itself) Hermitian
metric on G. We get
1 —
w? =S dlanda+BNdB+yAdy) € Imd.

S0, w is a degenerate balanced metric on G.
Since it is left-invariant under the G-action, w descends to a degen-

erate balanced metric on the compact quotient X = G/I" of G by
any lattice I'. In particular, this example illustrates Yachou’s result in

the special case of G = SL(2, C).
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Now, consider the holomorphic map
e~1

o Gosne o, faa - (G 2.

This map is non-degenerate at every point z = (21, 22) € <C2, as can
be seen at once.

However, f is not of subexponential growth, as can be checked.

Actually, there is no non-degenerate holomorphic map ¢ : C? —
X = G/T of subexponential growth thanks to X being degenerate
balanced (hence also balanced hyperbolic) and to our above theorem.
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(2) Any complex torus
X =C"/T,
where I' C (C", +) is any lattice, is not divisorially hyperbolic.
Reason. Any Hermitian metric with constant coefficients on C™ (for

example, the Euclidean metric 8 = (1/2) »_;idz; A dz;) defines a
Kahler metric w on X:

™w =4,
where 7 : C — X is the projection. If j : C*~1 — C” is the
obvious inclusion (21, ...,,2,—-1) — (21, .. .,, 2n), the non-degenerate

holomorphic map f = 7w o j : C*~1 — X has subexponential growth
because f*w = j*3 = By, where §y is the Euclidean metric of C* 1.
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(3) The Iwasawa manifold X = G /T is not divisorially hyperbolic,
where G = (C?, %) is the nilpotent complex Lie group (called the
Heisenberg group) whose group operation is defined as

(C1, €2, G3) * (21, 22, 23) = (C1 + 21, G2 + 22, (3 + 23+ (1 22),

while the lattice I' C G consists of the elements (21, 29, 23) € G with
21, 29, 23 € Zli].

Reason. There is an explicit Hermitian metric wg on X that lifts to
the Hermitian metric
w = 7wy
— idz; Adz + (1+ |21]%) idzo A dzo + idzs A dzs
— Z11dzg3 N dzyg — z11dzo N\ dz3

on G = C3, where 7 : G — X is the projection.
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Considering the non-degenerate holomorphic map f = woj : C2 —»
X, where j : C? — C3is the obvious inclusion (21, z9) — (21, 22, 0),
we get

ffwy = w = wice = idz1 Adzp + (1 + \21|2) idzo N\ dZo
on C2. Hence,
frwg = 2(1+ |21*) dVj

on C2, where we put dVj := idz; A dz; A idzo A dZo.. Thus, for the
ball B, C C? of radius r centred at 0, we get

1
VOlwo,f<B7“) — 5 /f*w% = /(1 + ‘21‘2> dVy < ¢ r4(1 + 7“2)7 r > 0,
By B,
where co > 0 is a constant independent of r. This shows that f is

of finite order, hence f satisfies property (ii) in the definition of the
subexponential growth condition. It also satisfies property (i).
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(4) No Nakamura manifold X = G/I" is divisorially hyperbolic,
where G = (C3, %) is the solvable, non-nilpotent complex Lie group
whose group operation is defined as

(C1, Co, C3) % (21, 22, 23) = (C1 + 21, Co + € Slzg, (3 + €Slz3),
while I' C G 1s a lattice.
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(IIT) Positivity properties of balanced or divisorially
hyperbolic manifolds

Question 4 (Marouani-P. 2021) Let X be a compact complex
manifold. If X 1s balanced hyperbolic or merely divisorially hy-
perbolic, does X have any positivity property (e.g. at the level of
Kx)?
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Recall

- Bott-Chern cohomology group:

ker @ N ker 0
Im (90)
- Aeppli cohomology group:

HLA(X,C) =

(depends on the complex structure)

ker(00)
Imd 4+ Imd

We will use the Serre-type duality:

Hph(X, C)x HY " HX, C) — C,

({udpo. {v}a) = {u}po-{v}a = / uAv,

X

(X, C) =

(depends on the complex structure)
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as well as:

- the Gauduchon cone Gx of X (P. 2015)

Gy = {{wn_l}A S Hj}l_l’n_l(X, R) | w is a Gauduchon metric on X}

c HV"HX, R)

-the strongly Gauduchon (sG) cone 8Gx of X (P. 2015)

SGx = {{w”_l}A € Hﬁ_l’n_l(X, R) | w is an sG metric on X}

c H V" HX, R).

47



Recall: a Hermitian metric w on X 1is said to be a:

-Gauduchon metric (Gauduchon 1077) if
Ao = 0

-strongly Gauduchon (sG) metric (P. 2013) if
w1 € Im d.

Obviously;,
S¢ x C g X
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Original observation.

Let X be a compact complex manifold with dimgX =n. The map:

P=P' D HLL(X,R)— H "X, R)

n—1,n—1

{a}pr— {(a"Hyr=bn=y

1s well defined in the sense that it is independent of the choice
of a C°° representative o of its De Rham cohomology class, where
(o hyn=Ln=1 s the component of bidegree (n — 1, n — 1) of the
(2n — 2)-form o 1.
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Definition (Marouani-P. 2021)

Let {a} € H%R(X, R) be a real De Rham cohomology class (not
necessarily of type (1, 1) ).

{a} is divisorially Kahler <déf> P({a}) € Gx

{a} is divisorially nef §LN P({a}) €@y

(the closure of the Gauduchon cone)

A C°° complex line bundle L on X 1is divisorially nef <déf>

its first Chern class c1(L) is divisorially nef.
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Examples of results.

Theorem (Marouani-P. 2021)

Let L be a holomorphic line bundle on an n-dimensional pro-
jective manifold X. The following equivalence holds:

L s divisorially nef — " 'D>0 for all effective divisors

1D D/ (%@;@))nl

and (i/2m) O, (L) is the curvature form of L with respect to any
Hermaitian fibre metric h.

where
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This is the divisorial analogue of the classical nefness property on
projective manifolds X:

L isnet < L.C' > 0 for every curve C C X.

Theorem (Marouani-P. 2021)
A class {a}tpp € H%R(X, R) is divisorially nef

<—

for every constant € > 0, there exists a representative ()z €

> (X, R) of the class P({a}pp) such that

n—1,n—1
O > —cw"!

7

where w > 0 is any pregiven Hermitian metric on X.
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Question 5 (Marouani-P. 2021) Let X be a compact complex
manzifold.

X 1s balanced hyperbolic or divisorially hyperbolic
?
—

K 1s divisorially nef or divisorially Kahler
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(IV) Properties of balanced hyperbolic manifolds

(1) A Hard Lefschetz-type theorem

Theorem (Marouani-P. 2021)
Let X be a compact complex manifold with dimgX = n.

(1) If w is a balanced metric on X, the linear map:

{wn—1}pr A Hpp(X, C) — HFH(X, C),

{u}pr — {wn—1 N ufppR,
is well defined and depends only on the cohomology class {w,_1}pp €
H#'> (X, C).
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(ii) If, moreover, X has the following additional OO-type prop-
erty: for every form v € C7% (X, C) such that dv = 0, the follow-

ing tmplication holds:

(%) v € Imd = v € Im(00),

the above map is an isomorphism.

As a consequence of this discussion, we obtain the following vanishing
properties for the cohomology of degenerate balanced manifolds.
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Proposition (Marouani-P. 2021) Let X be a compact de-
generate balanced manifold.

(i) The Bott-Chern cohomology groups of types (1, 0) and (0, 1)
of X wvanish: Hgg(X, C)=0 and H%é(X, C)=0.

(11) If, moreover, X satisfies hypothesis (%), its De Rham coho-
mology group of degree 1 vanishes: H})R(X, C)=0.
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(2) In the L? setting of the universal cover X, our main result in
degree 1 and its dual degree 2n — 1 is

Theorem (Marouani-P. 2021) Let X be a compact complex
balanced hyperbolic manifold with dim¢X = n.

Let m : X — X be the universal cover of X and w = m*w the
lift to X of a balanced hyperbolic metric w on X.

There are no non-zero Ag-harmonic Lc%-forms of pure types and
of degrees 1 and 2n — 1 on X:

Hy (X, C©) =HAUX, C) =0 and HY"THX, €)=} "X, )

where Ay = dd~ + d~d is the d-Laplacian induced by the metric
w.
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In the same L7 setting of the universal cover X , our main result in
degree 2 is

Theorem (Marouani-P. 2021) Let X be a compact complex
balanced hyperbolic manifold with dim¢X = n.

Let m : X — X be the universal cover of X and w = m*w the
lift to X of a balanced hyperbolic metric w on X.

There are no non-zero semi-positive Ax-harmonic L%—fwms of

pure type (1, 1) on X:
1.1 1,1, 5 1.1 _
{a» E”HA?(X, C) | « ZO}{O},

where T =T = [Ay, 0w A -] and A= = |[d+ T, d"+ 7.
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