Non-Kähler Mirror Symmetry of the Iwasawa Manifold

Dan Popovici

Université Paul Sabatier,
Toulouse, France

ICMAT, Madrid
$21^{\text {st }}$ January 2020

(I) Standard point of view (Kähler case)

Calabi-Yau (C-Y) threefolds:
compact Kähler manifolds X with $\operatorname{dim}_{\mathbb{C}} X=3$ such that K_{X} is trivial
Frequent extra assumption (justified by the Bogomolov Decomposition Theorem for C-Y manifolds):

$$
h^{1,0}(X)=h^{2,0}(X)=0
$$

This assumption implies that X is projective.

Bogomolov-Tian-Todorov Theorem: in this case, the local universal family $\left(X_{t}\right)_{t \in \Delta}$ of deformations of X ($=$ the Kuranishi family of X) is unobstructed, i.e.
Δ is smooth, so can be viewed as an open ball

$$
\Delta:=\operatorname{Def}(X) \subset H^{0,1}\left(X, T^{1,0} X\right)
$$

Recall the isomorphisms

$$
\begin{array}{r}
T_{0}^{1,0} \Delta \xrightarrow{\simeq} H^{0,1}\left(X, T^{1,0} X\right) \xrightarrow{\stackrel{T_{\Omega}}{\simeq} H^{2,1}(X, \mathbb{C})} \\
\left.[\theta]_{\bar{\partial}} \longmapsto[\theta\lrcorner \Omega\right]_{\bar{\partial}}
\end{array}
$$

where ρ is the Kodaira-Spencer map and T is the Calabi-Yau isomorphism defined by a fixed holomorphic non-vanishing 3 -form

$$
\Omega \in H^{0}\left(X, K_{X}\right) \simeq H^{3,0}(X, \mathbb{C})
$$

Ω is unique up to a multiplicative constant and represents the triviality of K_{X} (the C-Y structure)
(2) Metric (Kähler) side of the mirror

The Kähler cone of X :
$\mathcal{K}_{X}:=\left\{[\omega] \in H^{1,1}(X, \mathbb{R}) \mid \omega\right.$ Kähler metric on $\left.X\right\}$
the set of all Kähler classes on X
$\mathcal{K}_{X} \subset H^{1,1}(X, \mathbb{R})$ is an open convex cone

The Kähler cone is complexified to

$$
\widetilde{\mathcal{K}}_{X} \subset H^{1,1}(X, \mathbb{C})
$$

(the Kähler moduli space of X)
to match the complex moduli space $\Delta \subset H^{2,1}(X, \mathbb{C})$.
Recall: $H^{1,1}(X, \mathbb{C})=H_{D R}^{2}(X, \mathbb{C})$ if we assume $h^{2,0}(X)=0$, so \mathcal{K}_{X} is an open convex cone in $H_{D R}^{2}(X, \mathbb{R})$. Its complexification is defined as

$$
\widetilde{\mathcal{K}}_{X}=\mathcal{K}_{X} \oplus H^{2}(X, \mathbb{R}) / 2 \pi i H^{2}(X, \mathbb{Z})
$$

(1) + (2) The Mirror Conjecture

The Kähler C-Y threefolds ought to come in pairs (X, \widetilde{X}) such that there are local biholomorphisms (= the mirror maps)

$$
\operatorname{Def}(X) \simeq \widetilde{\mathcal{K}}_{\widetilde{X}} \text { and } \quad \operatorname{Def}(\widetilde{X}) \simeq \widetilde{\mathcal{K}}_{X}
$$

Obvious necessary condition

$$
T_{0}^{1,0} \operatorname{Def}(X) \simeq T_{\left[\widetilde{\omega}_{0}\right]}^{1,0} \widetilde{\mathcal{K}}_{\widetilde{X}} \text { and } T_{0}^{1,0} \operatorname{Def}(\widetilde{X}) \simeq T_{\left[\omega_{0}\right]}^{1,0} \widetilde{\mathcal{K}}_{X}
$$

which means

$$
H^{2,1}(X) \simeq H^{1,1}(\widetilde{X}) \quad \text { and } \quad H^{2,1}(\widetilde{X}) \simeq H^{1,1}(X)
$$

hence

$$
h^{2,1}(X)=h^{1,1}(\widetilde{X}) \quad \text { and } \quad h^{2,1}(\widetilde{X})=h^{1,1}(X) .
$$

Obstruction to an all-Kähler mirror symmetry

There exist Kähler C-Y threefolds X such that

$$
h^{2,1}(X)=0 \quad \text { (i.e. } X \text { is rigid, it does not deform). }
$$

Hence, if X admits a mirror dual \widetilde{X}, the mirror dual cannot be Kähler since $h^{1,1}(\widetilde{X})=0$ in this case.

Conclusion: the mirror symmetry cannot hold entirely within the Kähler realm.

Another classical feature of the Kähler (projective) mirror symmetry:
use of Gromov-Witten invariants attached to pseudo-holomorphic curves and counting of rational curves

But what if there are no curves at all?
(II) Our new point of view

(possibly non-Kähler case)

X a compact complex possibly non-Kähler manifold such that K_{X} is trivial (still called a Calabi-Yau manifold), $\operatorname{dim}_{\mathbb{C}} X=n$

Recall: a Hermitian metric on X is any C^{∞} positive definite (1, 1)-form $\omega>0$ on X.

- ω is a Gauduchon metric if

$$
\partial \bar{\partial} \omega^{n-1}=0
$$

Gauduchon metrics always exist (Gauduchon 1977).

- ω is a strongly Gauduchon (sG) metric (P. 2013) if

$$
\partial \omega^{n-1} \text { is } \bar{\partial} \text {-exact. }
$$

sG metrics need not exist although they do on many manifolds.
Recall: X is an sGG manifold (P.-Ugarte 2014) if
every Gauduchon metric on X is strongly Gauduchon.

- every $\partial \bar{\partial}$-manifold is sGG;
- the Iwasawa manifold and all its small deformations are sGG but are not $\partial \bar{\partial}$-manifolds.

Recall:

- if X is a $\partial \bar{\partial}$-manifold, the Hodge decomposition and symmetry hold on X;
- if X is a $\partial \bar{\partial}$-manifold and if K_{X} is trivial, the Bogomolov-TianTodorov theorem still holds on X (P.2013), i.e.
the Kuranishi family of X is unobstructed.
- Recall the Bott-Chern cohomology

$$
H_{B C}^{p, q}(X, \mathbb{C})=\frac{\operatorname{ker} \partial \cap \operatorname{ker} \bar{\partial}}{\operatorname{Im} \partial \bar{\partial}}
$$

and the Aeppli cohomology

$$
H_{A}^{p, q}(X, \mathbb{C})=\frac{\operatorname{ker} \partial \bar{\partial}}{\operatorname{Im} \partial+\operatorname{Im} \bar{\partial}}
$$

There is a canonical non-degenerate duality

$$
\begin{gathered}
H_{B C}^{1,1}(X, \mathbb{C}) \times H_{A}^{n-1, n-1}(X, \mathbb{C}) \rightarrow \mathbb{C}, \\
\left([\alpha]_{B C}, \quad[\beta]_{A}\right) \mapsto \int_{X} \alpha \wedge \beta .
\end{gathered}
$$

One of our main tools

The Gauduchon cone (P. 2013) of X :

$$
\mathcal{G}_{X}:=\left\{\left[\omega^{n-1}\right]_{A} \in H_{A}^{n-1, n-1}(X, \mathbb{R})\right.
$$

$\mid \omega$ is a Gauduchon metric on $X\}$

$$
\mathcal{G}_{X} \subset H_{A}^{n-1, n-1}(X, \mathbb{R})
$$

is an open convex cone in $H_{A}^{n-1, n-1}(X, \mathbb{R})$.

- \mathcal{G}_{X} replaces the Kähler cone \mathcal{K}_{X} when X is non-Kähler
- \mathcal{G}_{X} provides a transcendental substitute for cohomology classes of (currents of integration on) curves.

Our testing ground

The Iwasawa manifold: is the quotient $X=G / \Gamma$, where

$$
G:=\left\{\left(\begin{array}{ccc}
1 & z_{1} & z_{3} \\
0 & 1 & z_{2} \\
0 & 0 & 1
\end{array}\right) ; z_{1}, z_{2}, z_{3} \in \mathbb{C}\right\} \subset G L_{3}(\mathbb{C})
$$

is the Heisenberg group and $\Gamma \subset G$ is the subgroup of matrices with entries $z_{1}, z_{2}, z_{3} \in \mathbb{Z}[i]$.

- The map

$$
\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}, z_{2}\right)
$$

factors through the action of Γ to a (holomorphically locally trivial) proper holomorphic submersion

$$
\pi: X \rightarrow B
$$

where the base $B=\mathbb{C}^{2} / \mathbb{Z}[i] \oplus \mathbb{Z}[i]=\mathbb{C} / \mathbb{Z}[i] \times \mathbb{C} / \mathbb{Z}[i]$ is a twodimensional Abelian variety (the product of two elliptic curves) and where all the fibres are isomorphic to the Gauss elliptic curve $\mathbb{C} / \mathbb{Z}[i]$.

Consequence 1

There exist no curves normalised by smooth rational curves on X.
Reason: any map from such a curve to any factor $\mathbb{C} / \mathbb{Z}[i]$ would be constant.
(Indeed, thanks to the Riemann-Hurwitz formula, any non-constant map between two smooth curves is genus-decreasing.)

Consequence 2

There exist three holomorphic 1 -forms $\alpha, \beta, \gamma \in C_{1,0}^{\infty}(X, \mathbb{C})$ on X such that

$$
d \alpha=d \beta=0 \quad \text { and } \quad d \gamma=\partial \gamma=-\alpha \wedge \beta \neq 0
$$

The forms α, β, γ explicitly determine the whole cohomology of X.
Reason: the \mathbb{C}^{3}-valued holomorphic 1-form on G

$$
G \ni M=\left(\begin{array}{ccc}
1 & z_{1} & z_{3} \\
0 & 1 & z_{2} \\
0 & 0 & 1
\end{array}\right) \mapsto M^{-1} d M=\left(\begin{array}{ccc}
0 & d z_{1} d z_{3}-z_{1} d z_{2} \\
0 & 0 & d z_{2} \\
0 & 0 & 0
\end{array}\right)
$$

is invariant under the action of Γ.

Hence it descends to a holomorphic 1-form on X giving rise to the (1, 0)-forms α, β, γ on X induced respectively by the forms

$$
d z_{1}, d z_{2}, d z_{3}-z_{1} d z_{2}
$$

of \mathbb{C}^{3}. Thus,

$$
\alpha, \beta, \gamma \in C_{1,0}^{\infty}(X, \mathbb{C})
$$

and

$$
\bar{\partial} \alpha=\bar{\partial} \beta=\bar{\partial} \gamma=0 .
$$

Note that $d z_{1}, d z_{2}$ are closed and $d\left(d z_{3}-z_{1} d z_{2}\right)=-d z_{1} \wedge d z_{2}$.

Vertical and horizontal forms

From the exact sequence

$$
0 \rightarrow \pi^{\star} \Omega_{B}^{1} \rightarrow \Omega_{X}^{1} \rightarrow \Omega_{X / B}^{1} \rightarrow 0
$$

as the map $H^{1}\left(\pi^{\star} \Omega_{B}^{1}\right)=H^{1}\left(\mathcal{O}_{X}\right) \otimes H^{0}\left(\pi^{\star} \Omega_{B}^{1}\right) \rightarrow H^{1}\left(\mathcal{O}_{X}\right) \otimes$ $H^{0}\left(\Omega_{X}^{1}\right)=H^{1}\left(\Omega_{X}^{1}\right)$ is injective due to the triviality of Ω_{B}^{1} and Ω_{X}^{1},
we get the simple presentation

$$
0 \rightarrow H^{0}\left(\pi^{\star} \Omega_{B}^{1}\right) \rightarrow H^{0}\left(\Omega_{X}^{1}\right) \rightarrow H^{0}\left(\Omega_{X / B}^{1}\right) \rightarrow 0
$$

Thus, the form γ is a representative of $H^{0}\left(\Omega_{X / B}^{1}\right)$ in $H^{0}\left(\Omega_{X}^{1}\right)$. In other words, the forms α and β are horizontal (i.e. coming from B), while γ is vertical (i.e. lives on the fibres).

Examples of cohomology groups

- De Rham cohomology

$$
\begin{aligned}
H^{1}(X, \mathbb{C}) & =\left\langle\{\alpha\}_{D R},\{\beta\}_{D R},\{\bar{\alpha}\}_{D R},\{\bar{\beta}\}_{D R}\right\rangle=\pi^{\star} H^{1}(B, \mathbb{C}), \\
\pi^{\star} H^{2}(B, \mathbb{C}) & =\left\langle\{\alpha \wedge \bar{\alpha}\}_{D R},\{\alpha \wedge \bar{\beta}\}_{D R},\{\beta \wedge \bar{\alpha}\}_{D R},\{\beta \wedge \bar{\beta}\}_{D R}\right\rangle \simeq H_{B C}^{1,1}(X, \mathbb{C}) \\
& \simeq \pi^{\star} H^{1,1}(B, \mathbb{C}) \\
H^{2}(X, \mathbb{C}) & =\pi^{\star} H^{2}(B, \mathbb{C}) \oplus\left\langle\{\gamma \wedge \alpha\}_{D R},\{\gamma \wedge \beta\}_{D R}\right\rangle \oplus\left\langle\{\bar{\gamma} \wedge \bar{\alpha}\}_{D R},\{\bar{\gamma} \wedge \bar{\beta}\}_{D R}\right\rangle, \\
\pi^{\star} H^{3}(B, \mathbb{C}) & =0, \\
H^{3}(X, \mathbb{C}) & =\left\langle\{\alpha \wedge \beta \wedge \gamma\}_{D R}\right\rangle \oplus\left\{\gamma \wedge \pi^{\star} H^{1,1}(B, \mathbb{C})\right\}_{D R} \oplus\left\{\bar{\gamma} \wedge \pi^{\star} H^{1,1}(B, \mathbb{C})\right\}_{D R} \\
& \oplus\left\langle\{\bar{\alpha} \wedge \bar{\beta} \wedge \bar{\gamma}\}_{D R}\right\rangle .
\end{aligned}
$$

- Other cohomologies

$$
\begin{aligned}
& H_{\bar{\partial}}^{1,0}(X, \mathbb{C})=\left\langle[\alpha]_{\bar{\partial}},[\beta]_{\bar{\partial}},[\gamma]_{\bar{\partial}}\right\rangle, \quad H_{\bar{\partial}}^{0,1}(X, \mathbb{C})=\left\langle[\bar{\alpha}]_{\bar{\partial}},[\bar{\beta}]_{\bar{\partial}}\right\rangle=\pi^{\star} H_{\bar{\partial}}^{0,1}(B, \mathbb{C}), \\
& H_{\bar{\partial}}^{3,0}(X, \mathbb{C})=\langle[\alpha \wedge \beta \wedge \gamma] \overline{\bar{\sigma}}\rangle, \quad H_{\bar{\partial}}^{0,3}(X, \mathbb{C})=\langle[\bar{\alpha} \wedge \bar{\beta} \wedge \bar{\gamma}] \overline{\bar{\delta}}\rangle, \\
& H_{\bar{\partial}}^{2,1}(X, \mathbb{C})=\left\langle[\alpha \wedge \gamma \wedge \bar{\alpha}]_{\bar{\alpha}},[\alpha \wedge \gamma \wedge \bar{\beta}]_{\bar{\partial}},[\beta \wedge \gamma \wedge \bar{\alpha}]_{\bar{\sigma}},[\beta \wedge \gamma \wedge \bar{\beta}]_{\bar{\partial}}\right\rangle \\
& \oplus\left\langle[\alpha \wedge \beta \wedge \bar{\alpha}]_{\bar{\partial}},[\alpha \wedge \beta \wedge \bar{\beta}]_{\bar{\sigma}}\right\rangle \\
& =\left\langle[\alpha \wedge \gamma \wedge \bar{\alpha}]_{\bar{\alpha}},[\alpha \wedge \gamma \wedge \bar{\beta}]_{\bar{\partial}},[\beta \wedge \gamma \wedge \bar{\alpha}]_{\bar{\partial}},[\beta \wedge \gamma \wedge \bar{\beta}]_{\bar{\partial}}\right\rangle \oplus \pi^{\star} H_{\bar{\partial}}^{2,1}(B, \mathbb{C}), \\
& H_{\bar{\partial}}^{1,2}(X, \mathbb{C})=\left\langle[\alpha \wedge \bar{\alpha} \wedge \bar{\gamma}]_{\bar{\partial}},[\beta \wedge \bar{\alpha} \wedge \bar{\gamma}]_{\overline{\bar{\sigma}}},[\alpha \wedge \bar{\beta} \wedge \bar{\gamma}]_{\bar{\partial}},[\beta \wedge \bar{\beta} \wedge \bar{\gamma}] \overline{\bar{\gamma}}\right\rangle \\
& \oplus\left\langle[\gamma \wedge \bar{\alpha} \wedge \bar{\gamma}]_{\bar{\partial}},[\gamma \wedge \bar{\beta} \wedge \bar{\gamma}] \overline{\bar{\delta}}\right\rangle .
\end{aligned}
$$

Known facts about the Iwasawa manifold X :

- X is a compact complex manifold, $\operatorname{dim}_{\mathbb{C}} X=3$;
- X is a nilmanifold since
G is a connected, simply connected, nilpotent complex Lie group;
- $E_{1}(X) \neq E_{\infty}(X)$ in the Frölicher spectral sequence. In particular, X is not a $\partial \bar{\partial}$-manifold and very far from being Kähler.
However, $E_{2}(X)=E_{\infty}(X)$ in the Frölicher spectral sequence.
- X is complex parallelisable (i.e. $T^{1,0} X$ is trivial).

In particular, K_{X} is trivial, so X is $\mathrm{C}-\mathrm{Y}$.

- Nakamura (1975): the Kuranishi family $\left(X_{t}\right)_{t \in \Delta}$ of $X=X_{0}$ is unobstructed,
so Δ is smooth, so can be viewed as an open ball

$$
\Delta:=\operatorname{Def}(X) \subset H^{0,1}\left(X, T^{1,0} X\right) \simeq H^{2,1}(X, \mathbb{C})
$$

Moreover, $\operatorname{dim}_{\mathbb{C}} \Delta=6$ and

$$
\Delta=\left\{t=t_{i \lambda} \in \mathbb{C}^{6}| | t \mid<\varepsilon ; i=1,2,3 ; \lambda=1,2\right\} .
$$

- the X_{t} 's with $t_{11}=t_{12}=t_{21}=t_{22}=0$ are complex paralellisable;
- the X_{t} 's with $t_{31}=t_{32}=0$ are not complex paralellisable.
- there is no Hodge decomposition of weight 3 on X since $H_{\widehat{\partial}}^{2,1}(X, \mathbb{C})$ does not inject canonically into $H_{D R}^{3}(X, \mathbb{C})$.

In fact: $b_{3}=10$
while $h^{3,0}=h^{0,3}=1$ and $h^{2,1}=h^{1,2}=6$.
Thus $10=b_{3}<h^{3,0}+h^{2,1}+h^{1,2}+h^{0,3}=14$.
So, in a sense, the vector space $H_{\bar{\partial}}^{2,1}(X, \mathbb{C})$ is "too large" to fit into $H_{D R}^{3}(X, \mathbb{C})$.

Main Theorem

The Iwasawa manifold is its own mirror dual in the sense that its Kuranishi family "corresponds" to its Gauduchon cone.

Specifically, we define a mirror map

$$
\widetilde{\mathcal{M}}: \Delta_{[\gamma]} \rightarrow \widetilde{\mathcal{G}}_{X}
$$

that we prove to be a local biholomorphism and to define an isomorphism of variations of Hodge structures (VHS) parametrised respectively by $\Delta_{[\gamma]}$ and by $\widetilde{\mathcal{G}}_{X}$.

Terminology:

(i) $\left(X_{t}\right)_{t \in \Delta_{[\gamma]}}$ is the local universal family of essential deformations of the Iwasawa manifold $X=X_{0}$;
(ii) The complexified Gauduchon cone is defined as

$$
\widetilde{\mathcal{G}}_{X}:=\mathcal{G}_{X} \oplus H_{A}^{2,2}\left(X_{0}, \mathbb{R}\right) / 2 \pi i H_{A}^{2,2}\left(X_{0}, \mathbb{Z}\right)
$$

where $H_{A}^{2,2}\left(X_{0}, \mathbb{Z}\right)$ is defined beforehand as a lattice in $H_{A}^{2,2}\left(X_{0}, \mathbb{R}\right)$.

Piece of initial evidence for this mirror symmetry

There exists a canonical isomorphism

$$
T_{0}^{1,0} \Delta_{[\gamma]}=H_{[\gamma]}^{2,1}(X, \mathbb{C}) \simeq H_{A}^{2,2}(X, \mathbb{C})=T_{\left[\omega_{0}^{2}\right]}^{1,0} \widetilde{\mathcal{G}}_{X}
$$

Notation

- $\omega_{0}:=i \alpha \wedge \bar{\alpha}+i \beta \wedge \bar{\beta}+i \gamma \wedge \bar{\gamma}>0$
is a Hermitian metric on $X=X_{0}$ that we show to be Gauduchon.

Reason

There are explicit descriptions

$$
H_{[\mid]}^{21}(X, \mathbb{C})=\left\langle[\alpha \wedge \gamma \wedge \bar{\alpha}]_{\delta,}[\alpha \wedge \gamma \wedge]_{\bar{\delta}},[\beta \wedge \gamma \wedge \bar{a}]_{\bar{\delta}},\left[\beta \wedge \gamma \wedge \bar{\beta}_{\bar{\delta}}\right\rangle\right.
$$

and

$$
H_{A}^{22_{A}^{2}}(X, \mathbb{C})=\left\langle[\alpha \wedge \gamma \wedge \bar{\alpha} \wedge \wedge]_{A},[\alpha \wedge \gamma \wedge \bar{\beta} \wedge \overline{\bar{\gamma}}]_{A},[\beta \wedge \gamma \wedge \bar{\alpha} \wedge \overline{\bar{\gamma}}]_{A},[\beta \wedge \gamma \wedge \bar{\beta} \wedge \overline{\bar{\gamma}}]_{A}\right\rangle
$$

that imply the isomorphism $H_{: j}^{21}(X, \mathbb{C}) \simeq H_{A}^{2,2}(X, \mathbb{C})$.

Some steps in the construction of the mirror map

(1) Complex-structure side of the mirror

- The essential deformations of X
$H_{\bar{\partial}}^{2,1}(X, \mathbb{C})$ is "pared down" to a 4 -dimensional vector subspace

$$
\gamma \wedge \pi^{\star} H^{1,1}(B, \mathbb{C})=H_{[\gamma]}^{2,1}(X, \mathbb{C}) \subset H_{\bar{\partial}}^{2,1}(X, \mathbb{C})
$$

that injects canonically into $H_{D R}^{3}(X, \mathbb{C})$ and parametrises what we call the essential deformations of X.

Specifically, $T_{0}^{1,0} \Delta \xrightarrow{\rho} H^{0,1}\left(X, T^{1,0} X\right)$ (Kodaira-Spencer map) and
(i) the map

$$
\left.H^{0,1}\left(X, T^{1,0} X\right) \xrightarrow{\cdot\lrcorner[\gamma]_{\bar{\gamma}}} H_{\bar{\partial}}^{0,1}(X, \mathbb{C}), \quad[\theta] \mapsto[\theta\lrcorner \gamma\right]_{\bar{\partial}},
$$

is well defined. Its kernel

$$
\begin{aligned}
H_{[\gamma]}^{0,1}\left(X, T^{1,0} X\right) & \left.=\left\{[\theta] \in H^{0,1}\left(X, T^{1,0} X\right) /[\theta\lrcorner \gamma\right]=0 \in H_{\bar{\partial}}^{0,1}(X, \mathbb{C})\right\} \\
& =\left\langle\left[\bar{\alpha} \otimes \xi_{\alpha}\right],\left[\bar{\alpha} \otimes \xi_{\beta}\right],\left[\bar{\beta} \otimes \xi_{\alpha}\right],\left[\bar{\beta} \otimes \xi_{\beta}\right]\right\rangle
\end{aligned}
$$

is the subspace of
$H^{0,1}\left(X, T^{1,0} X\right)=\left\langle\left[\bar{\alpha} \otimes \xi_{\alpha}\right],\left[\bar{\alpha} \otimes \xi_{\beta}\right],\left[\bar{\alpha} \otimes \xi_{\gamma}\right],\left[\bar{\beta} \otimes \xi_{\alpha}\right],\left[\bar{\beta} \otimes \xi_{\beta}\right],\left[\bar{\beta} \otimes \xi_{\gamma}\right]\right\rangle$
corresponding to the $1^{s t}$-order deformations of the base torus B (= the horizontal $1^{\text {st }}$-order deformations of X).

We define
$H_{[\gamma]}^{2,1}(X, \mathbb{C})=\left\langle[\alpha \wedge \gamma \wedge \bar{\alpha}]_{\bar{\partial}},[\alpha \wedge \gamma \wedge \bar{\beta}]_{\bar{\partial}},[\beta \wedge \gamma \wedge \bar{\alpha}]_{\bar{\partial}},[\beta \wedge \gamma \wedge \bar{\beta}]_{\bar{\partial}}\right\rangle$
as the image of $H_{[\gamma]}^{0,1}\left(X, T^{1,0} X\right)$ under the C-Y isomorphism

$$
T_{\Omega}: H^{0,1}\left(X, T^{1,0} X\right) \rightarrow H_{\bar{\partial}}^{2,1}(X, \mathbb{C})
$$

(ii) Bearing in mind that $\Delta \subset H^{0,1}\left(X, T^{1,0} X\right)$ is an open subset, we put

$$
\operatorname{EssDef}(X)=\Delta_{[\gamma]}:=\Delta \cap H_{[\gamma]}^{0,1}\left(X, T^{1,0} X\right)
$$

We may say that the family of deformations $\left(X_{t}\right)_{t \in \Delta_{[\gamma]}}$ is "polarised" by the (1,0)-class $[\gamma]_{\bar{\partial}} \in H_{\bar{\partial}}^{1,0}(X, \mathbb{C})$ by analogy with the standard case of a Kähler class [ω] on X_{0}. Recall
the fibres X_{t} polarised by $[\omega]$, i.e. the fibres X_{t} for which $[\omega]$ remains of J_{t}-type $(1,1)$, are precisely those corresponding to $[\theta] \in$ $H^{0,1}\left(X_{0}, T^{1,0} X_{0}\right)$ satisfying the condition $\left.[\theta\lrcorner \omega\right]=0$ in $H^{0,2}\left(X_{0}, \mathbb{C}\right)$
(iii) This operation is equivalent to removing from the Kuranishi family $\left(X_{t}\right)_{t \in \Delta}$ the two dimensions corresponding to complex parallelisable deformations X_{t} of X (that have a similar geometry to that of X, so no geometric information is lost) and we are left with a family

$$
\left(X_{t}\right)_{t \in \Delta_{[\gamma]}}
$$

of non-complex parallelisable deformations that we call essential.

- Result

Doing the analogous construction on every essential deformation X_{t} with $t \in \Delta_{[\gamma]}$, we get a Hodge decomposition of weight 3 for every $t \in \Delta_{[\gamma]}$ in the following form:

There exist canonical isomorphisms
$H_{D R}^{3}(X, \mathbb{C}) \simeq H_{\bar{\partial}}^{3,0}\left(X_{t}, \mathbb{C}\right) \oplus H_{[\gamma]}^{2,1}\left(X_{t}, \mathbb{C}\right) \oplus H_{[\gamma]}^{1,2}\left(X_{t}, \mathbb{C}\right) \oplus H_{\bar{\partial}}^{0,3}\left(X_{t}, \mathbb{C}\right)$, and

$$
H_{\bar{\partial}}^{3,0}\left(X_{t}, \mathbb{C}\right) \simeq \overline{H_{\bar{\partial}}^{0,3}\left(X_{t}, \mathbb{C}\right)} \quad \text { and } \quad H_{[\gamma]}^{2,1}(X, \mathbb{C}) \simeq \overline{H_{[\gamma]}^{1,2}(X, \mathbb{C})}
$$

Moreover, $\quad \Delta_{[\gamma]} \ni t \mapsto H_{[\gamma]}^{2,1}\left(X_{t}, \mathbb{C}\right)$
is a C^{∞} vector bundle of rank 4. The vector subbundles of the constant bundle $\mathcal{H}^{3}=\left(\Delta_{[\gamma]} \ni t \mapsto H_{D R}^{3}(X, \mathbb{C})=H^{3}(X, \mathbb{C})\right)$

$$
F^{2} \mathcal{H}^{3}:=\mathcal{H}^{3,0} \oplus \mathcal{H}_{[\gamma]}^{2,1} \supset F^{3} \mathcal{H}^{3}:=\mathcal{H}^{3,0}
$$

are holomorphic and there is a flat connection

$$
\nabla: \mathcal{H}^{3} \longrightarrow \mathcal{H}^{3} \otimes \Omega_{\Delta_{[\gamma]}}
$$

(the Gauss-Manin connection) that satisfies the Griffiths transversality condition

$$
\nabla F^{3} \mathcal{H}^{3} \subset F^{2} \mathcal{H}^{3} \otimes \Omega_{\Delta_{[\gamma]}}
$$

- Link with the Frölicher spectral sequence

There exists a canonical isomorphism

$$
H_{[\gamma]}^{2,1}(X, \mathbb{C}) \simeq E_{2}^{2,1}(X, \mathbb{C})
$$

and analogous canonical isomorphisms

$$
H_{[\gamma]}^{2,1}\left(X_{t}, \mathbb{C}\right) \simeq E_{2}^{2,1}\left(X_{t}, \mathbb{C}\right), \quad t \in \Delta_{[\gamma]}
$$

Recall (known fact):

$$
E_{2}\left(X_{t}\right)=E_{\infty}\left(X_{t}\right), \quad t \in \Delta_{[\gamma]},
$$

in the Frölicher spectral sequence.

So our Hodge decomposition of weight 3 for the essential deformations of the Iwasawa manifold reflects precisely this E_{2} degeneration since there exist isomorphisms

$$
H_{D R}^{3}(X, \mathbb{C}) \simeq E_{2}^{3,0}\left(X_{t}, \mathbb{C}\right) \oplus E_{2}^{2,1}\left(X_{t}, \mathbb{C}\right) \oplus E_{2}^{1,2}\left(X_{t}, \mathbb{C}\right) \oplus E_{2}^{0,3}\left(X_{t}, \mathbb{C}\right)
$$

for all $t \in \Delta_{[\gamma]}$.

(2) Metric side of the mirror

- Construction of two families of Gauduchon metrics
- $\left(\omega_{t}\right)_{t \in \Delta_{[\gamma]}}$ a C^{∞} family of Gauduchon metrics on the fibres $\left(X_{t}\right)_{t \in \Delta_{[\gamma]}}$;
- $\left(\omega_{t}^{1,1}\right)_{t \in \Delta}$ a C^{∞} family of Gauduchon metrics on the central fibre $X=X_{0}$ (the Iwasawa manifold);
$\omega_{t}^{1,1}$ is the $(1,1)$-component of ω_{t} w.r.t. the complex structure J_{0} of X_{0}.
- We prove that the Aeppli cohomology groups

$$
\Delta_{[\gamma]} \ni t \mapsto H_{A}^{2,2}\left(X_{t}, \mathbb{C}\right)
$$

define a C^{∞} vector bundle $\mathcal{H}_{A}^{2,2}$ of rank 4 that injects as a C^{∞} vector subbundle of the constant bundle $\mathcal{H}^{4} \rightarrow \Delta_{[\gamma]}$ whose fibres are the De Rham cohomology groups $H_{D R}^{4}\left(X_{t}, \mathbb{C}\right)=H^{4}(X, \mathbb{C})$.

This injection is proved by using in a crucial way the

sGG property

(cf. P-Ugarte 2014) of all the small deformations X_{t} of the Iwasawa manifold $X=X_{0}$.

We also use the family $\left(\omega_{t}\right)_{t \in \Delta_{[\gamma]}}$ of Gauduchon metrics thereon.

Denoting by $\widetilde{H_{\omega_{t}}^{2,2}}$ the image of $H_{A}^{2,2}\left(X_{t}, \mathbb{C}\right)$ into $H^{4}(X, \mathbb{C})$ under this ω_{t}-induced injection:

$$
H_{A}^{2,2}\left(X_{t}, \mathbb{C}\right) \xrightarrow{Q_{\omega_{t}}} Q_{\omega_{t}}\left(H_{A}^{2,2}\left(X_{t}, \mathbb{C}\right)\right) \subset H^{4}(X, \mathbb{C}),
$$

we get a C^{∞} vector bundle of rank 4

$$
\mathcal{G}_{X_{0}} \ni\left[\left(\omega_{t}^{1,1}\right)^{2}\right]_{A} \mapsto \widetilde{H_{\omega_{t}}^{2,2}} \subset H^{4}(X, \mathbb{C})
$$

over the subset of the Gauduchon cone

$$
\left\{\left[\left(\omega_{t}^{1,1}\right)^{2}\right]_{A} \mid t \in \Delta_{[\gamma]}\right\} \subset \mathcal{G}_{X}
$$

This is to be compared with the VHS induced by the holomorphic family $\left(B_{t}\right)_{t \in \Delta_{[\gamma]}}$ of two-dimensional base tori of the family $\left(X_{t}\right)_{t \in \Delta_{[\gamma]}}$

$$
H^{2}(B, \mathbb{C}) \simeq H^{2,0}\left(B_{t}, \mathbb{C}\right) \oplus H^{1,1}\left(B_{t}, \mathbb{C}\right) \oplus H^{0,2}\left(B_{t}, \mathbb{C}\right), \quad t \in \Delta_{[\gamma]}
$$

thanks to isomorphisms

$$
\begin{aligned}
H^{1,1}\left(B_{t}, \mathbb{C}\right) & \simeq H_{A}^{2,2}\left(X_{t}, \mathbb{C}\right) \\
& \simeq Q_{\omega_{t}}\left(H_{A}^{2,2}\left(X_{t}, \mathbb{C}\right)\right): \widetilde{H_{\omega_{t}}^{2,2}} \subset H_{D R}^{4}(X, \mathbb{C})
\end{aligned}
$$

- The positive mirror map

We put

$$
\mathcal{M}: \Delta_{[\gamma]} \rightarrow \mathcal{G}_{X}, \quad t \mapsto\left[\left(\omega_{t}^{1,1}\right)^{2}\right]_{A}
$$

This is a kind of "absolute value" of the complex mirror map that we define.

