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(I) Standard point of view (Kähler case)

Calabi-Yau (C-Y) threefolds:

compact Kähler manifolds X with dimCX = 3 such that KX is trivial

Frequent extra assumption (justified by the Bogomolov Decom-
position Theorem for C-Y manifolds):

h1, 0(X) = h2, 0(X) = 0

This assumption implies that X is projective.
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(1) Complex-structure side of the mirror

Bogomolov-Tian-Todorov Theorem: in this case, the local uni-
versal family (Xt)t∈∆ of deformations of X (= the Kuranishi family
of X) is unobstructed, i.e.

∆ is smooth, so can be viewed as an open ball

∆ := Def(X) ⊂ H0, 1(X, T 1, 0X).
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Recall the isomorphisms

T
1, 0
0 ∆

ρ−→
'

H0, 1(X, T 1, 0X)
TΩ−→
'

H2, 1(X, C),

[θ]∂̄ 7−→ [θyΩ]∂̄

where ρ is the Kodaira-Spencer map and T is the Calabi-Yau
isomorphism defined by a fixed holomorphic non-vanishing 3-form

Ω ∈ H0(X, KX) ' H3, 0(X, C).

Ω is unique up to a multiplicative constant and represents the triviality
of KX (the C-Y structure)
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(2) Metric (Kähler) side of the mirror

The Kähler cone of X :

KX :=

{
[ω] ∈ H1, 1(X, R) | ω Kähler metric on X

}
the set of all Kähler classes on X

KX ⊂ H1, 1(X, R) is an open convex cone
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The Kähler cone is complexified to

K̃X ⊂ H1, 1(X, C)

(the Kähler moduli space of X)

to match the complex moduli space ∆ ⊂ H2, 1(X, C).

Recall: H1, 1(X, C) = H2
DR(X, C) if we assume h2, 0(X) = 0, so

KX is an open convex cone in H2
DR(X, R). Its complexification is

defined as

K̃X = KX ⊕H2(X, R)/2πiH2(X, Z)
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(1) + (2) The Mirror Conjecture

The Kähler C-Y threefolds ought to come in pairs (X, X̃)
such that there are local biholomorphisms (= the mirror maps)

Def(X) ' K̃
X̃

and Def(X̃) ' K̃X .

Obvious necessary condition

T
1, 0
0 Def(X) ' T

1, 0
[ω̃0]
K̃
X̃

and T
1, 0
0 Def(X̃) ' T

1, 0
[ω0]
K̃X ,

which means

H2, 1(X) ' H1, 1(X̃) and H2, 1(X̃) ' H1, 1(X),

hence
h2, 1(X) = h1, 1(X̃) and h2, 1(X̃) = h1, 1(X).
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Obstruction to an all-Kähler mirror symmetry

There exist Kähler C-Y threefolds X such that

h2, 1(X) = 0 ( i.e. X is rigid, it does not deform).

Hence, if X admits a mirror dual X̃ , the mirror dual cannot be Kähler
since h1, 1(X̃) = 0 in this case.

Conclusion: the mirror symmetry cannot hold entirely within the
Kähler realm.
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Another classical feature of the Kähler (projective) mir-
ror symmetry:

use of Gromov-Witten invariants attached to pseudo-holomorphic
curves and counting of rational curves

But what if there are no curves at all?
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(II) Our new point of view
(possibly non-Kähler case)

X a compact complex possibly non-Kähler manifold such that KX is
trivial (still called a Calabi-Yau manifold) , dimCX = n

Recall: a Hermitian metric on X is any C∞ positive definite
(1, 1)-form ω > 0 on X .

• ω is a Gauduchon metric if

∂∂̄ωn−1 = 0

Gauduchon metrics always exist (Gauduchon 1977).
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• ω is a strongly Gauduchon (sG) metric (P. 2013) if

∂ωn−1 is ∂̄-exact.

sG metrics need not exist although they do on many manifolds.

Recall: X is an sGG manifold (P.-Ugarte 2014) if

every Gauduchon metric on X is strongly Gauduchon.

• every ∂∂̄-manifold is sGG;

• the Iwasawa manifold and all its small deformations are sGG
but are not ∂∂̄-manifolds.
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Recall:

• if X is a ∂∂̄-manifold, the Hodge decomposition and symmetry
hold on X ;

• if X is a ∂∂̄-manifold and if KX is trivial, the Bogomolov-Tian-
Todorov theorem still holds on X (P.2013), i.e.

the Kuranishi family of X is unobstructed.
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• Recall the Bott-Chern cohomology

H
p, q
BC(X, C) =

ker ∂ ∩ ker ∂̄

Im ∂∂̄

and the Aeppli cohomology

H
p, q
A (X, C) =

ker ∂∂̄

Im ∂ + Im ∂̄

There is a canonical non-degenerate duality

H
1, 1
BC(X, C) × H

n−1, n−1
A (X, C)→ C,

([α]BC, [β]A) 7→
∫
X

α ∧ β.
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One of our main tools

The Gauduchon cone (P. 2013) of X :

GX :=

{
[ωn−1]A ∈ H

n−1, n−1
A (X, R)

| ω is a Gauduchon metric on X

}
GX ⊂ H

n−1, n−1
A (X, R)

is an open convex cone in H
n−1, n−1
A (X, R).
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• GX replaces the Kähler cone KX when X is non-Kähler

• GX provides a transcendental substitute for cohomology classes of
(currents of integration on) curves.
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Our testing ground

The Iwasawa manifold: is the quotient X = G/Γ, where

G :=


1 z1 z3

0 1 z2
0 0 1

 ; z1, z2, z3 ∈ C

 ⊂ GL3(C)

is the Heisenberg group and Γ ⊂ G is the subgroup of matrices
with entries z1, z2, z3 ∈ Z[i].
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• The map

(z1, z2, z3) 7→ (z1, z2)

factors through the action of Γ to a (holomorphically locally trivial)
proper holomorphic submersion

π : X → B,

where the base B = C2/Z[i] ⊕ Z[i] = C/Z[i] × C/Z[i] is a two-
dimensional Abelian variety (the product of two elliptic curves) and
where all the fibres are isomorphic to the Gauss elliptic curve C/Z[i].
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Consequence 1

There exist no curves normalised by smooth rational curves on X.

Reason: any map from such a curve to any factor C/Z[i] would be
constant.

(Indeed, thanks to the Riemann-Hurwitz formula, any non-constant
map between two smooth curves is genus-decreasing.)
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Consequence 2

There exist three holomorphic 1-forms α, β, γ ∈ C∞1, 0(X, C) on X
such that

dα = dβ = 0 and dγ = ∂γ = −α ∧ β 6= 0.

The forms α, β, γ explicitly determine the whole cohomology of X.

Reason: the C3-valued holomorphic 1-form on G

G 3M =

1 z1 z3
0 1 z2
0 0 1

 7→M−1 dM =

0 dz1 dz3 − z1 dz2
0 0 dz2
0 0 0


is invariant under the action of Γ.
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Hence it descends to a holomorphic 1-form on X giving rise to the
(1, 0)-forms α, β, γ on X induced respectively by the forms

dz1, dz2, dz3 − z1dz2

of C3. Thus,

α, β, γ ∈ C∞1, 0(X, C)

and

∂̄α = ∂̄β = ∂̄γ = 0.

Note that dz1, dz2 are closed and d(dz3 − z1dz2) = −dz1 ∧ dz2.
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Vertical and horizontal forms

From the exact sequence

0→ π?Ω1
B → Ω1

X → Ω1
X/B → 0,

as the map H1(π?Ω1
B) = H1(OX) ⊗ H0(π?Ω1

B) → H1(OX) ⊗
H0(Ω1

X) = H1(Ω1
X) is injective due to the triviality of Ω1

B and Ω1
X ,

we get the simple presentation

0→ H0(π?Ω1
B)→ H0(Ω1

X)→ H0(Ω1
X/B)→ 0.

Thus, the form γ is a representative of H0(Ω1
X/B

) in H0(Ω1
X). In

other words, the forms α and β are horizontal (i.e. coming from B),
while γ is vertical (i.e. lives on the fibres).

21



Examples of cohomology groups

• De Rham cohomology

H1(X,C) =

〈
{α}DR, {β}DR, {ᾱ}DR, {β̄}DR

〉
= π?H1(B,C),

π?H2(B,C) =

〈
{α ∧ ᾱ}DR, {α ∧ β̄}DR, {β ∧ ᾱ}DR, {β ∧ β̄}DR

〉
' H1, 1

BC(X, C)

' π?H1, 1(B,C)

H2(X,C) = π?H2(B,C)⊕
〈
{γ ∧ α}DR, {γ ∧ β}DR

〉
⊕
〈
{γ̄ ∧ ᾱ}DR, {γ̄ ∧ β̄}DR

〉
,

π?H3(B,C) = 0,

H3(X,C) =

〈
{α ∧ β ∧ γ}DR

〉
⊕ {γ ∧ π?H1, 1(B,C)}DR ⊕ {γ̄ ∧ π?H1, 1(B,C)}DR

⊕
〈
{ᾱ ∧ β̄ ∧ γ̄}DR

〉
.
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• Other cohomologies

H1, 0

∂̄
(X,C) =

〈
[α]∂̄, [β]∂̄, [γ]∂̄

〉
, H0, 1

∂̄
(X,C) =

〈
[α]∂̄, [β]∂̄

〉
= π?H0, 1

∂̄
(B,C),

H3, 0

∂̄
(X,C) =

〈
[α ∧ β ∧ γ]∂̄

〉
, H0, 3

∂̄
(X,C) =

〈
[α ∧ β ∧ γ]∂̄

〉
,

H2, 1

∂̄
(X, C) =

〈
[α ∧ γ ∧ α]∂̄, [α ∧ γ ∧ β]∂̄, [β ∧ γ ∧ α]∂̄, [β ∧ γ ∧ β]∂̄

〉
⊕
〈

[α ∧ β ∧ α]∂̄, [α ∧ β ∧ β]∂̄

〉
=

〈
[α ∧ γ ∧ α]∂̄, [α ∧ γ ∧ β]∂̄, [β ∧ γ ∧ α]∂̄, [β ∧ γ ∧ β]∂̄

〉
⊕ π?H2, 1

∂̄
(B, C),

H1, 2

∂̄
(X, C) =

〈
[α ∧ α ∧ γ]∂̄, [β ∧ α ∧ γ]∂̄, [α ∧ β ∧ γ]∂̄, [β ∧ β ∧ γ]∂̄

〉
⊕
〈

[γ ∧ α ∧ γ]∂̄, [γ ∧ β ∧ γ]∂̄

〉
.
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Known facts about the Iwasawa manifold X:

· X is a compact complex manifold, dimCX = 3;

· X is a nilmanifold since

G is a connected, simply connected, nilpotent complex Lie group;

· E1(X) 6= E∞(X) in the Frölicher spectral sequence. In particular,
X is not a ∂∂̄-manifold and very far from being Kähler.

However, E2(X) = E∞(X) in the Frölicher spectral sequence.

· X is complex parallelisable (i.e. T 1, 0X is trivial).

In particular, KX is trivial, so X is C-Y.
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· Nakamura (1975): the Kuranishi family (Xt)t∈∆ of X = X0 is un-
obstructed,

so ∆ is smooth, so can be viewed as an open ball

∆ := Def(X) ⊂ H0, 1(X, T 1, 0X) ' H2, 1(X, C).

Moreover, dimC∆ = 6 and

∆ = {t = tiλ ∈ C6 | |t| < ε; i = 1, 2, 3;λ = 1, 2}.

· the Xt’s with t11 = t12 = t21 = t22 = 0 are complex paralellisable;

· the Xt’s with t31 = t32 = 0 are not complex paralellisable.
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• there is no Hodge decomposition of weight 3 on X since H
2, 1
∂̄

(X, C)

does not inject canonically into H3
DR(X, C).

In fact: b3 = 10

while h3, 0 = h0, 3 = 1 and h2, 1 = h1, 2 = 6.

Thus 10 = b3 < h3, 0 + h2, 1 + h1, 2 + h0, 3 = 14.

So, in a sense, the vector space H
2, 1
∂̄

(X, C) is “too large” to fit into

H3
DR(X, C).
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Main Theorem

The Iwasawa manifold is its own mirror dual in the sense that its
Kuranishi family “corresponds” to its Gauduchon cone.

Specifically, we define a mirror map

M̃ : ∆[γ]→ G̃X
that we prove to be a local biholomorphism and to define an
isomorphism of variations of Hodge structures (VHS)

parametrised respectively by ∆[γ] and by G̃X .
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Terminology:

(i) (Xt)t∈∆[γ]
is the local universal family of essential defor-

mations of the Iwasawa manifold X = X0;

(ii) The complexified Gauduchon cone is defined as

G̃X := GX ⊕H
2, 2
A (X0, R)/2πiH

2, 2
A (X0, Z),

whereH
2, 2
A (X0, Z) is defined beforehand as a lattice inH

2, 2
A (X0, R).
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Piece of initial evidence for this mirror symmetry

There exists a canonical isomorphism

T
1, 0
0 ∆[γ] = H

2, 1
[γ]

(X, C) ' H
2, 2
A (X, C) = T

1, 0

[ω2
0]
G̃X .

Notation

· ω0 := iα ∧ α + iβ ∧ β + iγ ∧ γ > 0

is a Hermitian metric on X = X0 that we show to be Gauduchon.
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Reason

There are explicit descriptions

H2, 1
[γ] (X, C) =

〈
[α ∧ γ ∧ α]∂̄, [α ∧ γ ∧ β]∂̄, [β ∧ γ ∧ α]∂̄, [β ∧ γ ∧ β]∂̄

〉
and

H2, 2
A (X, C) =

〈
[α ∧ γ ∧ ᾱ ∧ γ̄]A, [α ∧ γ ∧ β̄ ∧ γ̄]A, [β ∧ γ ∧ ᾱ ∧ γ̄]A, [β ∧ γ ∧ β̄ ∧ γ̄]A

〉
that imply the isomorphismH2, 1

[γ] (X, C) ' H2, 2
A (X, C).
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Some steps in the construction of the mirror map

(1) Complex-structure side of the mirror

• The essential deformations of X

H
2, 1
∂̄

(X, C) is “pared down” to a 4-dimensional vector subspace

γ ∧ π?H1, 1(B, C) = H
2, 1
[γ]

(X, C) ⊂ H
2, 1
∂̄

(X, C)

that injects canonically into H3
DR(X, C) and parametrises what we

call the essential deformations of X .
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Specifically, T
1, 0
0 ∆

ρ−→
'

H0, 1(X, T 1, 0X) (Kodaira-Spencer map) and

(i) the map

H0, 1(X, T 1, 0X)
·y[γ]∂̄−→ H

0, 1
∂̄

(X, C), [θ] 7→ [θyγ]∂̄,

is well defined. Its kernel

H
0, 1
[γ]

(X, T 1, 0X) =

{
[θ] ∈ H0, 1(X, T 1, 0X)

/
[θyγ] = 0 ∈ H0, 1

∂̄
(X, C)

}
=

〈
[α⊗ ξα], [α⊗ ξβ], [β ⊗ ξα], [β ⊗ ξβ]

〉
is the subspace of
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H0, 1(X, T 1, 0X) =

〈
[α⊗ξα], [α⊗ξβ], [α⊗ξγ], [β⊗ξα], [β⊗ξβ], [β⊗ξγ]

〉
corresponding to the 1st-order deformations of the base torus B (=
the horizontal 1st-order deformations of X).

We define

H
2, 1
[γ]

(X, C) =

〈
[α∧γ∧α]∂̄, [α∧γ∧β]∂̄, [β∧γ∧α]∂̄, [β∧γ∧β]∂̄

〉
as the image of H

0, 1
[γ]

(X, T 1, 0X) under the C-Y isomorphism

TΩ : H0, 1(X, T 1, 0X)→ H
2, 1
∂̄

(X, C).
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(ii) Bearing in mind that ∆ ⊂ H0, 1(X, T 1, 0X) is an open subset,
we put

EssDef(X) = ∆[γ] := ∆ ∩H0, 1
[γ]

(X, T 1, 0X).

We may say that the family of deformations (Xt)t∈∆[γ]
is “polarised”

by the (1, 0)-class [γ]∂̄ ∈ H
1, 0
∂̄

(X, C) by analogy with the standard

case of a Kähler class [ω] on X0. Recall

the fibres Xt polarised by [ω], i.e. the fibres Xt for which [ω] re-
mains of Jt-type (1, 1), are precisely those corresponding to [θ] ∈
H0, 1(X0, T

1, 0X0) satisfying the condition [θyω] = 0 in H0, 2(X0, C)
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(iii) This operation is equivalent to removing from the Kuranishi fam-
ily (Xt)t∈∆ the two dimensions corresponding to complex parallelis-
able deformations Xt of X (that have a similar geometry to that of
X , so no geometric information is lost) and we are left with a family

(Xt)t∈∆[γ]

of non-complex parallelisable deformations that we call essential.
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• Result

Doing the analogous construction on every essential deformation Xt
with t ∈ ∆[γ], we get a Hodge decomposition of weight 3 for every
t ∈ ∆[γ] in the following form:

There exist canonical isomorphisms

H3
DR(X, C) ' H

3, 0
∂̄

(Xt, C)⊕H2, 1
[γ]

(Xt, C)⊕H1, 2
[γ]

(Xt, C)⊕H0, 3
∂̄

(Xt, C),

and

H
3, 0
∂̄

(Xt, C) ' H
0, 3
∂̄

(Xt, C) and H
2, 1
[γ]

(X, C) ' H
1, 2
[γ]

(X, C).
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Moreover, ∆[γ] 3 t 7→ H
2, 1
[γ]

(Xt, C)

is aC∞ vector bundle of rank 4. The vector subbundles of the constant
bundle H3 = (∆[γ] 3 t 7→ H3

DR(Xt, C) = H3(X, C))

F 2H3 := H3, 0 ⊕H2, 1
[γ]
⊃ F 3H3 := H3, 0

are holomorphic and there is a flat connection

∇ : H3 −→ H3 ⊗ Ω∆[γ]

(the Gauss-Manin connection) that satisfies the Griffiths transver-
sality condition

∇F 3H3 ⊂ F 2H3 ⊗ Ω∆[γ]
.
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• Link with the Frölicher spectral sequence

There exists a canonical isomorphism

H
2, 1
[γ]

(X, C) ' E
2, 1
2 (X, C)

and analogous canonical isomorphisms

H
2, 1
[γ]

(Xt, C) ' E
2, 1
2 (Xt, C), t ∈ ∆[γ].

Recall (known fact):

E2(Xt) = E∞(Xt), t ∈ ∆[γ],

in the Frölicher spectral sequence.
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So our Hodge decomposition of weight 3 for the essential deforma-
tions of the Iwasawa manifold reflects precisely this E2 degeneration
since there exist isomorphisms

H3
DR(X, C) ' E

3, 0
2 (Xt, C)⊕E2, 1

2 (Xt, C)⊕E1, 2
2 (Xt, C)⊕E0, 3

2 (Xt, C).

for all t ∈ ∆[γ].
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(2) Metric side of the mirror

• Construction of two families of Gauduchon metrics

· (ωt)t∈∆[γ]
aC∞ family of Gauduchon metrics on the fibres (Xt)t∈∆[γ]

;

· (ω
1, 1
t )t∈∆ a C∞ family of Gauduchon metrics on the central fibre

X = X0 (the Iwasawa manifold);

ω
1, 1
t is the (1, 1)-component of ωt w.r.t. the complex structure J0

of X0.
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• We prove that the Aeppli cohomology groups

∆[γ] 3 t 7→ H
2, 2
A (Xt, C)

define a C∞ vector bundleH2, 2
A of rank 4 that injects as a C∞ vector

subbundle of the constant bundle H4→ ∆[γ] whose fibres are the De

Rham cohomology groups H4
DR(Xt, C) = H4(X, C).

This injection is proved by using in a crucial way the
sGG property

(cf. P-Ugarte 2014) of all the small deformations Xt of the Iwasawa
manifold X = X0.

We also use the family (ωt)t∈∆[γ]
of Gauduchon metrics thereon.
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Denoting by H̃
2, 2
ωt the image of H

2, 2
A (Xt, C) into H4(X, C) under

this ωt-induced injection:

H
2, 2
A (Xt, C)

Qωt−→ Qωt

(
H

2, 2
A (Xt, C)

)
⊂ H4(X, C),

we get a C∞ vector bundle of rank 4

GX0
3
[

(ω
1, 1
t )2

]
A
7→ H̃

2, 2
ωt ⊂ H4(X, C)

over the subset of the Gauduchon cone{[
(ω

1, 1
t )2

]
A
| t ∈ ∆[γ]

}
⊂ GX .
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This is to be compared with the VHS induced by the holomorphic
family (Bt)t∈∆[γ]

of two-dimensional base tori of the family (Xt)t∈∆[γ]

H2(B, C) ' H2, 0(Bt, C)⊕H1, 1(Bt, C)⊕H0, 2(Bt, C), t ∈ ∆[γ],

thanks to isomorphisms

H1, 1(Bt, C) ' H
2, 2
A (Xt, C)

' Qωt(H
2, 2
A (Xt, C)) := H̃

2, 2
ωt ⊂ H4

DR(X, C).
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• The positive mirror map

We put

M : ∆[γ]→ GX , t 7→
[

(ω
1, 1
t )2

]
A
.

This is a kind of “absolute value” of the complex mirror map that we
define.
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