Adiabatic Limit and Deformations of Complex Structures

Dan Popovici

Université Paul Sabatier, Toulouse, France

Krasnoyarsk, Russia August 2019

Classification of compact complex manifolds

X a compact complex manifold, $n={\rm dim}_{\mathbb C} X$

Complex structure: $d = \partial + \bar{\partial}$

Idea

The transcendental methods, introduced for the study of not necessarily algebraic manifolds, are also relevant to the study of **projective manifolds**. (1) Metrical point of view: ω > 0 (1, 1)-form C[∞] on X (Hermitian metric, always exists)
Examples : (i) ω is called Kähler if dω = 0 (does not exist in general)

If $\dim_{\mathbb{C}} X \ge 3$, very few manifolds X are Kahler.

(ii) ω is called **Gauduchon** if $\partial \bar{\partial} \omega^{n-1} = 0$ (always exists)

(iii) ω is called **strongly Gauduchon** if $\partial \omega^{n-1}$ is $\bar{\partial}$ -exact (P. 2009) (does not exist in general)

(iv) ω is called **balanced** if $d\omega^{n-1} = 0$ (Gauduchon 1977) (does not exist in general)

(2) Cohomological point of view

- **De Rham** cohomology group:

$$H^k_{DR}(X,\mathbb{C}) := \frac{\ker d}{\operatorname{Im} d}$$
 (depends only on the differential structure)

- **Dolbeault** cohomology group:

$$H^{p,q}_{\bar{\partial}}(X,\mathbb{C}) := \frac{\ker \bar{\partial}}{\operatorname{Im} \bar{\partial}} \qquad (\text{depends on the complex structure})$$

Topological obstruction to X being Kähler:

$$0 \neq \{\omega^k\}_{DR} \in H^{2k}_{DR}(X, \mathbb{C}), \text{ hence } b_{2k} \neq 0 \text{ for all } k.$$
(Betti numbers of X)

(A) First type of operations on compact manifolds

Modifications : $\sigma : \widetilde{X} \to X$ holomorphic, bimeromorphic

Examples : (i) X is called **Moishezon** if $\exists \sigma : \widetilde{X} \to X$ modification with \widetilde{X} **projective**;

Recall: \widetilde{X} **projective** $\stackrel{\text{def}}{\iff} \exists N \in \mathbb{N}^* \text{ s.t. } \widetilde{X} \hookrightarrow \mathbb{CP}^N$ (embedding as a closed submanifold)

(ii) X is called **class** \mathcal{C} if $\exists \sigma : \widetilde{X} \to X$ modification with \widetilde{X} compact **Kähler**.

Demailly-Paun (2001) : X is class $C \iff \exists T$ Kähler current on X (i.e. dT = 0 and T > 0). **Moishezon** (1967) : if X is **Moishezon** and **non-projective**, then X is **not Kähler**.

(B) Second type of operations on manifolds

Deformations of the **complex structure:** notion of **holomorphic family** $(X_t)_{t \in \Delta}$ of compact complex manifolds

*** (ocemplex manifold

 $\downarrow \pi$

 $\mathbf{A} \subset \mathbb{C} \operatorname{disc}$

 π is a **proper holomorphic submersion**.

Main result

Theorem (P. 2019) If the fibre $X_t := \pi^{-1}(t)$ is **Moishezon** for all $t \in \Delta \setminus \{0\}$, then the limiting fibre $X_0 := \pi^{-1}(0)$ is also **Moishe-zon**.

Remarks: (i) This is a deformation closedness result. It is optimal (Hironaka 1962).

- (i) The statement is purely algebraic;
- (ii) Surprisingly, the proof uses techniques that are

-analytic;

-non-Kähler (e.g. $\partial \bar{\partial}$ -manifolds, SG and E_r -sG manifolds).

(C) Third type of operations on manifolds

Conifold transitions: $\sigma : \widetilde{X} \to X_0$ holomorphic s.t.

$$\begin{split} &\cdot \widetilde{X} \text{ is smooth and } X_0 \text{ is singular, } \dim_{\mathbb{C}} \widetilde{X} = \dim_{\mathbb{C}} X = 3 ;\\ &\cdot \exists \Lambda = \{x_1, \dots, x_N\} \subset X_0 \text{ s.t. } X_0 \setminus \Lambda \text{ is smooth } ;\\ &\cdot \sigma^{-1}(x_i) := C_i \text{ is a } (-1, -1)\text{-curve} : \text{ smooth rational curve s.t.} \\ &N_{\widetilde{X}} C_i \simeq \mathcal{O}_{C_i}(-1) \oplus \mathcal{O}_{C_i}(-1) ;\\ &\cdot \sigma : \widetilde{X} \setminus \pi^{-1}(\Lambda) \to X_0 \setminus \Lambda \text{ is biholomorphic } ; \end{split}$$

 $\cdot \exists (X_t)_{t \in \Delta}$ analytic family of complex spaces s.t. X_t is compact **smooth** for all $t \neq 0$.

Typical case : $\cdot \widetilde{X}$ is **Kähler** and **Calabi-Yau** (i.e. $K_{\widetilde{X}}$ is **trivial**);

• K_{X_t} is **trivial**;

• the classes $[E_1], \ldots, [E_N]$ generate $H_2(\widetilde{X}, \mathbb{Z})$, hence $b_2(X_t) = 0$, hence X_t is **non-Kähler** (and even **non-class** \mathcal{C}) for all $t \neq 0$.

However, we have

Fu-Li-Yau (2012) : X_t admits a balanced metric for all $t \neq 0$. Friedman (2017) : X_t is a $\partial \bar{\partial}$ -manifold for all $t \neq 0$.

$\partial \bar{\partial}$ -manifolds (= cohomologically Kählér manifolds)

Definition (Deligne-Griffiths-Morgan-Sullivan 1976) A compact complex manifold X is called $\partial \bar{\partial} \iff def$

 $\forall u \in C_{p,q}^{\infty}(X, \mathbb{C}) \text{ s.t. } du = 0, \text{ the following equivalences hold:}$

$$u \in \operatorname{Im} \partial \iff u \in \operatorname{Im} \bar{\partial} \iff u \in \operatorname{Im} d \iff u \in \operatorname{Im} (\partial \bar{\partial}).$$

Fundamental property. If X is a $\partial \partial$ -manifold, then

$$\begin{split} H^k_{DR}(X,\,\mathbb{C}) &\simeq \bigoplus_{p+q=k} H^{p,\,q}_{\bar{\partial}}(X,\,\mathbb{C}) & \text{Hodge decomposition} \\ H^{p,\,q}_{\bar{\partial}}(X,\,\mathbb{C}) &\simeq \overline{H^{q,\,p}_{\bar{\partial}}(X,\,\mathbb{C})} & \text{Hodge symmetry} \end{split}$$

 $\begin{array}{l} \mathbf{E_1}(\mathbf{X}) = \mathbf{E_\infty}(\mathbf{X}) \\ \textbf{(Frölicher spectral sequence)} \end{array}$

Conjecture (P. 2015)

X is a $\partial \bar{\partial}$ -manifold $\stackrel{?}{\Longrightarrow}$ X is a balanced manifold.

Conjecture (P. 2016)

$$\exists a metric \ \omega \ on \ X \ s.t. \ \partial \overline{\partial} \omega = 0 \ \stackrel{?}{\Longrightarrow} E_2(X) = E_{\infty}(X).$$

(Frölicher spectral sequence)

Deformation properties of $\partial \bar{\partial}$ **-manifolds**

• Openness (Wu 2007)

 $X_0 \text{ is a } \partial \bar{\partial} \text{-manifold} \implies X_t \text{ is a } \partial \bar{\partial} \text{-manifold} \quad \forall t \sim 0.$

• Non-openness (Angella-Kasuya 2013)

 $X_t \text{ is a } \partial \bar{\partial} \text{-manifold} \quad \forall t \in \Delta \setminus \{0\} \implies X_0 \text{ is a } \partial \bar{\partial} \text{-manifold.}$

• Deformation limits (P. 2019)

 $X_t \text{ is } a \ \partial \overline{\partial} \text{-manifold} \quad \forall t \in \Delta \setminus \{0\}$

 $\implies X_0 \text{ is an } E_r\text{-sG manifold},$

where $r \in \mathbb{N}^*$ is the first page at which the Frölicher spectral sequence of X_0 degenerates.

Recent metrical notions

• E_r -sG manifolds for r = 1, 2, 3 (P. 2019)

 $X \text{ sG manifold } (= E_1 \text{-sG}) \implies X E_2 \text{-sG} \implies X E_3 \text{-sG}$

• sGG manifolds (P.–Ugarte 2014) :

every Gauduchon metric is sG(This is equivalent to a special case of the $\partial\bar{\partial}$ -property.)

Theorem (P. 2011 et P.–Ugarte 2014) The sG and sGG properties are deformation open and stable under modifications.

Further conjectures

(I) Deformation closedness of the **class C** property

 $X_t \text{ is class } \mathbf{C} \text{ for all } t \in \Delta \setminus \{0\} \stackrel{?}{\Longrightarrow} X_0 \text{ is class } \mathbf{C}.$

(transcendental version of our main result being presented)

This conjecture motivated our work with L. Ugarte where we introduced sGG manifolds. (II) Analytic Zariski-topology deformation openness of **Kählerianity**

If X_0 is **Kähler**, then conjecturally $\exists \Sigma = \bigcup_{\nu \in \mathbb{N}} \Sigma_{\nu} \subset \Delta$,

with Σ_{ν} proper analytic subset of Δ such that

- X_t is **Kähler** for all $t \in \Delta \setminus \Sigma$

and

 $-X_t$ is class C for all $t \in \Sigma$.

The Frölicher spectral sequence

Let X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$.

Page 0: the Dolbeault complex, i.e.

$$\cdots \xrightarrow{d_0} E_0^{p, q-1} \xrightarrow{d_0} E_0^{p, q} \xrightarrow{d_0} E_0^{p, q+1} \xrightarrow{d_0} \ldots,$$

with $E_0^{p, q} := C_{p, q}^{\infty}(X, \mathbb{C})$ (smooth (p, q)-forms on X) and $d_0 := \overline{\partial}$. Put

$$E_1^{p,q} := \ker d_0^{p,q} / \operatorname{Im} d_0^{p,q-1} = H_{\bar{\partial}}^{p,q}(X, \mathbb{C}).$$

Page 1: the cohomology spaces of page 0, i.e.

$$\cdots \xrightarrow{d_1} E_1^{p-1, q} \xrightarrow{d_1} E_1^{p, q} \xrightarrow{d_1} E_1^{p+1, q} \xrightarrow{d_1} \cdots,$$

with differential defined as $d_1([\alpha]_{\bar{\partial}}) := [\partial \alpha]_{\bar{\partial}}$.

Page r: $\cdots \xrightarrow{d_r} E_r^{p-r, q+r-1} \xrightarrow{d_r} E_r^{p, q} \xrightarrow{d_r} E_r^{p+r, q-r+1} \xrightarrow{d_r} \cdots$

So,
$$d_r$$
 is of bidegree $(r, -r+1)$ for every $r \in \mathbb{N}^*$. Put
 $E_{r+1}^{p,q} := \ker d_r^{p,q} / \operatorname{Im} d_r^{p-r,q+r-1}.$

Fact (Frölicher 1955): This spectral sequence converges to the **De Rham cohomology** of X, i.e. there are (non-canonical) isomorphisms:

$$H_{DR}^k(X, \mathbb{C}) \simeq \bigoplus_{p+q=k} E_{\infty}^{p, q}, \qquad k = 0, \dots, 2n,$$

where $E_{\infty}^{p,q} = \cdots = E_{r+2}^{p,q} = E_{r+1}^{p,q} = E_r^{p,q}$ for all p,q and where $r \ge 1$ is the smallest positive integer such that the spectral sequence degenerates at E_r . (We write $E_r(X) = E_{\infty}(X)$.)

Thus, the degeneration at E_r is a purely **numerical property**:

$$E_r(X) = E_{\infty}(X) \iff b_k = \sum_{p+q=k} \dim_{\mathbb{C}} E_r^{p,q} \quad \forall k = 0, \dots, 2n.$$

In particular,

$$\sum_{p+q=k} h^{p, q} \ge \dots \ge \sum_{p+q=k} \dim_{\mathbb{C}} E_l^{p, q} \ge \sum_{p+q=k} \dim_{\mathbb{C}} E_{l+1}^{p, q} \ge \dots \ge b_k.$$

Hence, the following implications hold:

$$E_1(X) = E_{\infty}(X) \implies E_2(X) = E_{\infty}(X) \implies \cdots \implies E_r(X) = E_{\infty}(X)$$

Relations to other properties

- If X is a $\partial \bar{\partial}$ -manifold, then $E_1(X) = E_{\infty}(X)$.
- The converse is false.

e.g. If $\dim_{\mathbb{C}} X = 2$ (i.e. a complex surface), then

- $\cdot \ E_1(X) = E_{\infty}(X)$
- · X is a $\partial \bar{\partial}$ -manifold $\iff X$ is Kähler.

• The property $E_1(X) = E_{\infty}(X)$ does not imply either the Hodge symmetry or the canonical Hodge decomposition. It only implies the much weaker numerical Hodge decomposition. The 1st new ingredient in the proof of the main result (X, ω) : a compact complex Hermitian manifold, $\dim_{\mathbb{C}} X = n$

Recall:

- ω is called **Gauduchon** if $\partial \omega^{n-1} \in \ker \overline{\partial}$ (i.e. E_1 -closed);
- ω is called **strongly Gauduchon** (sG) if $\partial \omega^{n-1} \in \operatorname{Im} \bar{\partial}$

$$(\iff \{\partial \omega^{n-1}\}_{E_1} = 0 \in E_1^{n, n-1}(X), \text{ i.e. } \partial \omega^{n-1} \text{ is } E_1 - \text{exact})$$

Trivial observation

If ω is a **Gauduchon metric**, then $\partial \omega^{n-1}$ is E_r -closed for every $r \in \mathbb{N}^*$.

This means that $\partial \omega^{n-1}$ represents an E_r -cohomology class $\{\partial \omega^{n-1}\}_{E_r} \in E_r^{n, n-1}(X).$

Definition (P. 2019) Fix any $r \in \mathbb{N}^*$. A Gauduchon metric ω on X is called an E_r -sG metric if $\partial \omega^{n-1}$ is E_r -exact.

• This means that $\{\partial \omega^{n-1}\}_{E_r} = 0 \in E_r^{n, n-1}(X)$, which is equivalent to the existence of forms ζ and ξ such that

$$\partial \omega^{n-1} = \partial \zeta + \bar{\partial} \xi$$

and such that ζ satisfies the following tower of (r-1) equations:

$$\bar{\partial}\zeta = \partial v_{r-3}$$
$$\bar{\partial}v_{r-3} = \partial v_{r-4}$$
$$\vdots$$
$$\bar{\partial}v_0 = 0.$$

Definition (P. 2019) Fix any $r \in \mathbb{N}^*$. The compact complex manifold X is called an E_r -sG manifold if there exists an E_r -sG metric ω on X.

• The following implications hold:

 ω is $E_1 - sG \implies \omega$ is $E_2 - sG \implies \omega$ is $E_3 - sG$ X is $E_1 - sG \implies X$ is $E_2 - sG \implies X$ is $E_3 - sG$.

- For bidegree reasons, no new E_r -sG notion is obtained for $r \ge 4$.
- Obvious equivalence: ω is E_1 -sG $\iff \omega$ is sG;

- L. Ugarte showed that
 - There exist E_2 -sG manifolds that are not E_1 -sG.

(e.g. all the **Calabi-Eckmann manifolds**, except the **Hopf manifolds**)

- If X is a **Hopf manifold**, then X is not E_r -sG for any $r \in \mathbb{N}^*$.
- Any possible complex structure on the 6-sphere S^6 (if any) is E_3 -sG.

· If the analogous statement could be proved in the E_1 -sG case, interesting conclusions would follow for S^6 .

The 2^{nd} new ingredient in the proof of the main result Recall: the $\partial \bar{\partial}$ -property of compact complex manifolds is not deformation closed.

However, we have

Theorem A (P. 2019) If X_t is a $\partial \overline{\partial}$ -manifold for every $t \in \Delta \setminus \{0\}$, then X_0 is an E_r -sG manifold, where $r \in \mathbb{N}^*$ is the smallest positive integer s.t. $E_r(X_0) = E_{\infty}(X_0)$.

To be compared with the stronger

Theorem (P. 2009) Under the same assumptions as above, X_0 is an sG manifold (= E_1 -sG manifold).

(given an ad hoc proof in 2009)

The more conceptual proof of the 2019 result relies on the notion of **adiabatic limit** for **complex structures** (P. 2017) inspired by the analogous concept in foliation theory.

Let X be a compact complex manifold, $\dim_{\mathbb{C}} X = n$. For every constant $h \in \mathbb{C}$, let

 $d_h := h\partial + \bar{\partial} : C_k^{\infty}(X, \mathbb{C}) \longrightarrow C_{k+1}^{\infty}(X, \mathbb{C}), \quad k \in \{0, \dots, 2n\}.$

Immediate properties.

(1) The pointwise maps

$$\theta_h: \Lambda^{p, q} T^{\star} X \longrightarrow \Lambda^{p, q} T^{\star} X, \qquad u \mapsto \theta_h u := h^p u,$$

are isomorphisms for $h \neq 0$ and the operators d and d_h are related by

$$d_h = \theta_h d\theta_h^{-1}.$$

(2) Hence
$$d_h^2 = 0$$
, inducing the d_h -cohomology
 $H_{d_h}^k(X, \mathbb{C}) := \ker d_h / \operatorname{Im} d_h.$

(3) We get induced isomorphisms in cohomology: $H_{DR}^k(X, \mathbb{C}) \xrightarrow{\simeq} H_{d_h}^k(X, \mathbb{C}), \quad \{u\}_d \mapsto \{\theta_h u\}_{d_h},$ whenever $h \neq 0$. (5) If ω is a Hermitian metric on X, let

 $\Delta_h: C_k^{\infty}(X, \mathbb{C}) \longrightarrow C_k^{\infty}(X, \mathbb{C}), \quad \Delta_h := d_h d_h^{\star} + d_h^{\star} d_h,$

be the associated d_h -Laplacian.

It is elliptic, so it induces the Hodge isomorphism

$$\ker \Delta_h \simeq H^k_{d_h}(X, \mathbb{C})$$

The Frölicher approximating vector bundle (FAVB) (P. 2019)

Let $(X_t)_{t \in \Delta}$ be a holomorphic family of compact complex manifolds.

- $\cdot d = \partial_t + \bar{\partial}_t$ for all $t \in \Delta$ since $X_t \simeq X$ (C^{∞} diffeomorphism)
- $\cdot d_{h,t} := h\partial_t + \bar{\partial}_t \quad \text{for } (h, t) \in \mathbb{C} \times \Delta$
- $\cdot \ \theta_{h,t} : \Lambda^k T^* X \longrightarrow \Lambda^k T^* X, \quad u = \sum_{p+q=k} u_t^{p,q} \mapsto \theta_{h,t} u := \sum_{p+q=k} h^p u_t^{p,q}$

• For every $(h, t) \in \mathbb{C}^* \times B$, we get an isomorphism in cohomology:

$$\theta_{h,t}: H^k_{DR}(X, \mathbb{C}) \xrightarrow{\simeq} H^k_{d_{h,t}}(X_t, \mathbb{C})$$

Proposition (P.2019) For every $k = 0, \ldots, 2n$, put

$$\mathcal{A}_{h,t}^{k} = H_{d_{h,t}}^{k}(X_{t}, \mathbb{C}), \quad (h, t) \in \mathbb{C}^{\star} \times B$$
$$\mathcal{A}_{0,t}^{k} = \bigoplus_{p+q=k} E_{\infty}^{p,q}(X_{t}), \quad (h, t) = (0, t) \in \{0\} \times B$$

Then, the holomorphic trivialisation $(\theta_{h,t})_{(h,t)\in\mathbb{C}^*\times B}$ of the vector bundle $\mathcal{A}^k \to \mathbb{C}^*\times B$ of rank b_k extends holomorphically across $\{0\} \times B$ to yield a holomorphic vector bundle $\mathcal{A}^k \to \mathbb{C} \times B$.

Definition (P.2019) This holomorphic vector bundle is called the **FAVB** of the family $(X_t)_{t \in \Delta}$ in degree k.

Proof of Theorem A

• Let γ_0 be an arbitrary Gauduchon metric on X_0 . Extend it arbitrarily to a C^{∞} family $(\gamma_t)_{t \in B}$ of Gauduchon metrics on the X_t 's.

• Consider the C^{∞} section

$$\sigma(h, t) := \begin{cases} \{\partial_t \gamma_t^{n-1}\}_{d_{h,t}} \in H^{2n-1}_{d_{h,t}}(X_t, \mathbb{C}) = \mathcal{A}^{2n-1}_{h,t}, \\ & \text{if} \quad (h, t) \in \mathbb{C}^* \times B, \\ \{\partial_t \gamma_t^{n-1}\}_{E_r(X_t)} \in \bigoplus_{p+q=2n-1} E^{p,q}_r(X_t) = \mathcal{A}^{2n-1}_{0,t}, \\ & \text{if} \quad (h, t) = (0, t) \in \{0\} \times B, \end{cases}$$

of the FAVB $\mathcal{A}^{2n+1} \to \mathbb{C} \times B$.

• X_t is a $\partial \bar{\partial}$ -manifold for all $t \neq 0$, so

$$\sigma(h, t) = \{\partial_t \gamma_t^{n-1}\}_{d_{h,t}} = 0 \in \mathcal{A}_{h,t}^{2n-1}$$

for all $(h, t) \in \mathbb{C}^* \times B^*$.

Hence, by continuity, σ must be identically zero on $\mathbb{C} \times B$. In particular,

$$\sigma(0, t) = \{\partial_t \gamma_t^{n-1}\}_{E_r(X_t)} = 0 \in \mathcal{A}_{0, t}^{2n-1} \quad \text{for all } t \in B.$$

This means precisely that $\partial_t \gamma_t^{n-1}$ is $E_r(X_t)$ -exact for every $t \in B$. In other words, γ_t is an E_r -sG metric on X_t for every $t \in B$, including t = 0.

In particular, X_0 is an E_r -sG manifold. q.e.d.