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Introduction

The main theme of this book is the classification of compact complex manifolds. No such complete
classification exists at the moment or may even be achievable in the future, but this text aims at
offering a unified panorama of old and especially new developments in this direction.

(I) Differential forms and complex structure

Let X be a complex manifold of complex dimension n ≥ 1. This means that X is a differentiable
(C∞) manifold equipped with a holomorphic atlas with values in Cn, namely with an open cover
(Uα)α and C∞ maps φα : Uα −→ Cn such that the transition maps φαβ := φα◦φ−1

β : φβ(Uα∩Uβ) −→
φα(Uα ∩ Uβ) are holomorphic.

Equivalently, a complex manifold is a C∞-differentiable manifold X equipped with a complex
structure. This is an almost complex structure, namely an endomorphism J : TXR −→ TXR of
the real tangent bundle such that J2 = −Id, which is further required to be integrable (in the sense
that what is called its Nijenhuis tensor NJ vanishes).

Alternatively, the complex structure can be seen as a splitting

d = ∂ + ∂̄

of the Poincaré differential operator d : C∞
k (X, C) −→ C∞

k+1(X, C) of order one acting on the C-
valued C∞ differential forms of any degree k ∈ {0, . . . , 2n} on X into two differential operators of
order one:

∂ : C∞
p, q(X, C) −→ C∞

p+1, q(X, C) and ∂̄ : C∞
p, q(X, C) −→ C∞

p, q+1(X, C)

acting on the C-valued C∞ differential forms of any bidegree (p, q), with p, q ∈ {0, . . . , n}, on X.
For any complex structure d = ∂ + ∂̄, one has

∂̄2 = 0,

a property that is equivalent to the integrability condition. This further implies that ∂2 = 0 and
∂∂̄ + ∂̄∂ = 0.

At the local level, if (z1, . . . , zn) are local holomorphic coordinates on an open subset U ⊂ X,
we have zk = xk + i yk for every k and (x1, y1, . . . , xn, yn) is a system of local C∞ real coordinates
on U . The 1-forms dzk := dxk + idyk are said to be of bidegree (or type) (1, 0), while the 1-
forms dz̄k := dxk − idyk are said to be of bidegree (or type) (0, 1). For any p, q ∈ {0, . . . , n}, with
p+ q = k ∈ {0, . . . , 2n}, the differential forms of bidegree (or type) (p, q) are those k-forms that are
generated (locally on U) by exterior products of p dzj’s and q dz̄k’s:

u =
∑

|J |=p, |K|=q

uIJ̄ dzJ ∧ dz̄K , (1)

8
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where the coefficients uIJ̄ are C∞ C-valued functions on U , while J := (1 ≤ j1 < · · · < jp ≤ n) and
K := (1 ≤ k1 < · · · < kq ≤ n) are multi-indices of lengths p, resp. q. One puts dzJ := dzj1∧· · ·∧dzjp
and dz̄K := dz̄k1 ∧ · · · ∧ dz̄kq .

A C∞ (p, q)-form on X is a globally and intrinsically defined object. Its local shape (1) trans-
forms, under a change of local holomorphic coordinates from (z1, . . . , zn) on some open subset U ⊂ X
to (w1, . . . , wn) on some open subset V ⊂ X, according to the usual rules of calculus, starting from
the identities:

dzj =
n∑
k=1

∂zj
∂wk

dwk and dz̄j =
n∑
k=1

∂z̄j
∂wk

dwk (2)

on U ∩ V for every j ∈ {1, . . . , n}. The vector fields

∂

∂zj
:=

1

2

(
∂

∂xj
− i ∂

∂yj

)
on U are said to be of type (1, 0), while the vector fields

∂

∂z̄j
:=

1

2

(
∂

∂xj
+ i

∂

∂yj

)
on U are said to be of type (0, 1). The differential of a C1 function f : U −→ C is the 1-form on U
given by

df =
n∑
j=1

∂f

∂xj
dxj +

n∑
j=1

∂f

∂yj
dyj =

n∑
j=1

∂f

∂zj
dzj +

n∑
j=1

∂f

∂z̄j
dz̄j = ∂f + ∂̄f, (3)

where we put ∂f :=
∑n

j=1
∂f
∂zj

dzj (a (1, 0)-form) and ∂̄f :=
∑n

j=1
∂f
∂z̄j

dz̄j (a (0, 1)-form). Moreover,

a C∞ function f : U −→ C is holomorphic if and only if ∂f
∂z̄j

= 0 for all j ∈ {1, . . . , n}, namely

if and only if ∂̄f = 0. These are the Cauchy-Riemann equations. In particular, this accounts
for (2), a special case of (3), since ∂zj/∂wk = 0 and ∂z̄j/∂wk = 0 thanks to the functions zj being
holomorphic.

For an arbitrary C1 form u of bidegree (or type) (p, q) on X, ∂u and ∂̄u are a (p + 1, q)-form,
resp. a (p, q+ 1)-form, on X. In local coordinates, they are obtained by applying ∂, resp. ∂̄, to the
coefficients of u written locally in the form (1), so we get:

∂u =
∑

|J |=p, |K|=q

∂uIJ̄ ∧ dzJ ∧ dz̄K and ∂̄u =
∑

|J |=p, |K|=q

∂̄uIJ̄ ∧ dzJ ∧ dz̄K , (4)

where we have, according to (3),

∂uIJ̄ =
n∑
j=1

∂uIJ̄
∂zj

dzj and ∂̄uIJ̄ =
n∑
j=1

∂uIJ̄
∂z̄j

dz̄j.

We stress again that (p, q)-forms and k-forms on X (in particular, the 1-form df = ∂f + ∂̄f
for any C1 function f : X → C) are globally and intrinsically defined objects on X. Indeed, if
TXR denotes the real tangent bundle and (TXR)⋆ the real cotangent bundle of X, the complexified
exterior algebra Λ•(C⊗ TX)⋆ := C⊗R Λ•(TXR)⋆ splits canonically at every point of X as

Λk(C⊗ TX)⋆ =
∑
p+q=k

Λp, qT ⋆X, 0 ≤ k ≤ 2n,
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where the space of (p, q)-forms is defined pointwise as

Λp, qT ⋆X := ΛpT ⋆X ⊗ ΛqT ⋆X,

where T ⋆X is the holomorphic cotangent bundle ofX (generated locally by the (1, 0)-forms dz1, . . . , dzn)
and T ⋆X is the anti-holomorphic cotangent bundle of X (generated locally by the (0, 1)-forms
dz̄1, . . . , dz̄n).

In particular, every k-form α splits uniquely into pure-type forms αp, q of respective bidegrees
(p, q):

α =
∑
p+q=k

αp, q.

The forms αp, q are called the pure-type components of α.

(II) Context

Much of the material discussed in this book lies at the intersection of complex differential geometry,
complex algebraic geometry and complex analysis, with significant input from geometric PDE’s
(mainly the theory of elliptic differential and pseudo-differential operators) and pluripotential theory
(mainly the theory of currents).

We now indicate briefly how these fields are involved in our discussion.

(A) Complex algebraic geometry

The main objects of study in algebraic geometry are the projective manifolds. A compact complex
manifold X is said to be projective if it can be embedded as a closed submanifold into a complex
projective space, namely if there exists an integer N ≥ 1 such that X ↪→ CPN .

More generally, X is said to be Moishezon if it is bimeromorphically equivalent to a projective
manifold, namely if there exists a projective manifold X̃ and a holomorphic bimeromorphic map
(called a modification) µ : X̃ −→ X. Intuitively, Moishezon manifolds are those compact complex
manifolds that admit “many” (in a precise sense) divisors (= formal linear combinations with integer
coefficients of complex hypersurfaces of X).

In particular, projective manifolds have many subvarieties, which can be used to study the
geometry of the ambient manifold. Thus, in this algebraic context, the tools and objects of study
are often:

-subvarieties: curves, hypersurfaces, etc;

-holomorphic vector bundles and their holomorphic sections;

These lead to a positivity theory, a major theme in algebraic geometry. Intuitively, the more
global holomorphic sections a holomorphic vector bundle has, the more “positive” it is. For example,
positivity notions for complex line bundles include ampleness, bigness and nefness, all of which lie
at the heart of very active current research.

-coherent sheaves.

These can be seen as a kind of holomorphic vector bundles with singularities.
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(B) Complex analytic and differential geometry

One of the main objects of study in this setting is provided by the Hermitian metrics on a given
complex manifold X. Such a metric is defined by a C∞, positive definite, (1, 1)-form ω on X. In
local coordinates (z1, . . . , zn) on some open subset U ⊂ X, it has the shape

ω =
n∑

j, k=1

ωjk̄ idzj ∧ dz̄k,

where the ωjk̄’s are C-valued C∞ functions on U such that the matrix (ωjk̄)1≤j, k≤n is positive definite
at every point of U . This is equivalent to requiring all the eigenvalues of the matrix (ωjk̄)1≤j, k≤n to
be positive at every point of U and implies the Hermitian property

ωjk̄ = ωkj̄, 1 ≤ j, k ≤ n.

The coefficients ωjk̄ depend on the choice of local holomorphic coordinates (z1, . . . , zn), but the
pointwise positive definiteness (ωjk̄)1≤j, k≤n > 0 does not.

In other words, a real C∞ (1, 1)-form ω on X defines a Hermitian metric if and only if ω > 0
(in the sense that its coefficient matrix (ωjk̄)1≤j, k≤n is positive definite at every point in some, hence
any, local holomorphic coordinate system). This is equivalent to saying that ω defines a pointwise
(positive definite) inner product ⟨· , ·⟩ω : T 1, 0X × T 1, 0X −→ C on the holomorphic tangent bundle
of X:

⟨· , ·⟩ω, x : T 1, 0
x X × T 1, 0

x X −→ C, x ∈ X,
and that the inner product ⟨· , ·⟩ω, x on T 1, 0

x X depends in a C∞ way on x ∈ X. Explicitly, T 1, 0X is
generated by ∂/∂z1, . . . , ∂/∂zn on U and〈

∂

∂zj
,
∂

∂zk

〉
ω

= ωjk̄, 1 ≤ j, k ≤ n,

at every point x ∈ X.
The inner product ⟨· , ·⟩ω induces by duality a pointwise inner product, denoted by the same

symbol, on the holomorphic cotangent bundle Λ1, 0T ⋆X (generated by dz1, . . . , dzn on U), given by

⟨dzj , dzk⟩ω = ωjk̄, 1 ≤ j, k ≤ n,

at every point x ∈ X, where the matrix (ωjk̄)1≤j, k≤n is the transpose of the inverse of (ωjk̄)1≤j, k≤n
at every point. By conjugation, we get an induced inner product on Λ0, 1T ⋆X and thus also on
CT ⋆X = Λ1, 0T ⋆X ⊕ Λ0, 1T ⋆X by putting ⟨dzj , dz̄k⟩ω = 0 for all j, k.

More generally, ω induces a pointwise inner product on Λp, qT ⋆X for every bidegree (p, q). From
this, we get an L2 inner product on the space of global C∞ (p, q)-forms on X, defined by

⟨⟨u, v⟩⟩ω :=

∫
X

⟨u(x) , v(x)⟩ω dVω,

where dVω := ωn/n! is the volume form on X induced by ω.
The L2 inner product defined by a given Hermitian metric ω induces formal adjoints d⋆ = d⋆ω :

C∞
k (X, C) −→ C∞

k−1(X, C), ∂⋆ = ∂⋆ω : C∞
p, q(X, C) −→ C∞

p−1, q(X, C) and ∂̄⋆ = ∂̄⋆ω : C∞
p, q(X, C) −→

C∞
p, q−1(X, C) of the differential operators d, ∂ and ∂̄.

An important notion is the following
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Definition 0.0.1. A Kähler metric on a complex manifold X is a Hermitian metric ω on X such
that dω = 0.

A complex manifold X is said to be a Kähler manifold if a Kähler metric exists on X.

Being d-closed, any Kähler metric ω defines a De Rham cohomology class {ω} ∈ H2
DR(X, R),

called a Kähler class.
Compact Kähler manifolds are few and far between. They are the main object of study of Kähler

geometry and they have very good properties, many of which will be presented in this book, often in
the more general setting of generalisations of compact Kähler manifolds. Every projective manifold
is Kähler, but the converse fails. The following important result characterises projective manifolds
within the larger class of compact Kähler manifolds.

Theorem 0.0.2. (Kodaira’s Embedding Theorem) A compact complex manifold X is projec-
tive if and only if X carries an integral Kähler class {ω} ∈ H2(X, Z).

The meaning of a real De Rham cohomology class {ω} ∈ H2
DR(X, R) of degree 2 being integral

is that {ω} is the first Chern class of a holomorphic line bundle L on X, or equivalently, that {ω}
is the cohomology class of the curvature form of such a bundle equipped with a Hermitian metric
on its fibres.

Unlike projective manifolds, a compact Kähler manifold need not have other submanifolds than
its points and itself. In particular, neither complex curves nor complex hypersurfaces need exist
on it. Hence, in the transcendental context of compact Kähler manifolds, the objects used for
investigation are often analytic generalisations of the algebraic objects used in the study of projective
manifolds. Foremost among these are the (d)-closed positive currents, which can be regarded as
generalisations of complex submanifolds. Indeed, if Y ⊂ is a p-dimensional complex submanifold of
a compact complex n-dimensional manifold X, the current of integration [Y ] on Y is the d-closed
positive current of bidegree (n−p, n−p) (equivalently, of bidimension (p, p)) defined by integrating
on Y the restrictions of the smooth (p, p)-forms on X:

C∞
p, p(X, C) ∋ γ 7−→

∫
Y

γ|Y := ⟨[Y ], γ⟩ ∈ C.

The current of integration [Y ] on Y makes sense even when Y is a singular subvariety of X.
More generally, bidegree (p, p)-currents T can be viewed as generalisations of (p, p)-forms. Lo-

cally, any such current is of the shape

T =
∑

|J |=|K|=p

TJK dzJ ∧ dz̄K ,

where the TJ K ’s are, in general, merely distributions. In particular, distributions identify with
currents of degree 0. A current T is said to be closed (or d-closed) if dT = 0. In particular, a
d-closed bidegree (p, p)-current T on X defines a De Rham cohomology class {T} ∈ H2p

DR(X, C).
Locally,

dT =
∑

|J |=|K|=p

dTJK ∧ dzJ ∧ dz̄K ,

where the differentials dTJK (which are currents of degree 1) are computed in the sense of distribu-
tions. As we said above, d[Y ] = 0 for every subvariety Y ⊂ X. When the current T is positive (a
property that will also be called semi-positive in this book), its coefficients TJ K are even complex
measures. This brings about the link with pluripotential theory.
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A transcendental analogue of Moishezon manifolds is provided by the (Fujiki) class C mani-
folds. These are the compact complex manifolds that are bimeromorphically equivalent to compact
Kähler manifolds. Specifically, a compact complex manifold X belongs to this class if and only if
there exists a compact Kähler manifold X̃ and a holomorphic bimeromorphic map (called a modifi-

cation) µ : X̃ −→ X.
The link with the theory of currents is demonstrated yet again by the following results of Ji-

Shiffman and Demailly-Paun characterising Moishezon, respectively class C manifolds, by the exis-
tence of singular analogues of Kähler metrics.

Theorem 0.0.3. (a) ([JS93]) A compact complex manifold X is a Moishezon manifold if and
only if there exists a Kähler current T with integral class {T} ∈ H2(X, Z) on X.

(b) ([DP04]) A compact complex manifold X is a class C manifold if and only if there exists
a Kähler current on X.

A Kähler current is a d-closed (1, 1)-current T on X such that T ≥ εω on X for some constant
ε > 0 and some Hermitian metric ω on X. This is a strong positivity condition on T .

We sum up our discussion so far of the classification of compact complex manifolds in the following
implication diagram:

XKähler

=⇒ =⇒

X projective X class C.

=⇒
=⇒

XMoishezon

All these implications are strict when dimCX ≥ 3. Examples to this effect will be presented
throughout the book. Theorems 0.0.2 and 0.0.3 show that projective and Moishezon manifolds can
be characterised by the existence of integral objects, so they are in the realm of algebraic geometry,
while Kähler and class C manifolds are characterised by the existence of transcendental objects, so
they are in the realm of analytic geometry.

In our study of the classification of compact complex manifolds beyond the Kähler and the class
C manifolds, we will be mainly pursuing two points of view.

(1) Metric point of view

Let X be a compact complex manifold with dimCX = n ≥ 2. One way of studying these manifolds is
to investigate the various types of special Hermitian metrics they carry. When n ≥ 3, comparatively
few such manifolds are Kähler, hence the need to weaken the Kähler assumption on the metric in
order to enlarge the class of manifolds under investigation. The case of complex surfaces involves
special phenomena that are well documented in the literature, so we will be mainly interested in the
case where n ≥ 3 and the relatively recent developments it subsumes.

In the next diagram, we give the definitions of six special kinds of Hermitian metrics ω on a given
compact complex manifold X together with the various implications among them. Except for the
Gauduchon metrics, which always exist on X by [Gau77a], the other five types of metrics need not
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exist. When they do, they give information about the geometry of the manifold X which then bears
the name of the metrics it carries. For example, X is said to be a Hermitian-symplectic (H-S), SKT,
balanced or strongly Gauduchon (sG) manifold if it carries the stated type of Hermitian metrics.

dω = 0 =⇒ ∃ ρ0, 2 ∈ C∞
0, 2(X, C) s.t. =⇒ ∂∂̄ω = 0

d(ρ0, 2 + ω + ρ0, 2) = 0
(ω is Kähler) (ω is Hermitian-symplectic (H-S)) (ω is SKT)

=⇒

(P )

dωn−1 = 0 =⇒ ∃ Ωn−2, n ∈ C∞
n−2, n(X, C) s.t. =⇒ ∂∂̄ωn−1 = 0

d(Ωn−2, n + ωn−1 + Ωn−2, n) = 0
(ω is balanced) (ω is strongly Gauduchon (sG)) (ω is Gauduchon).

Balanced metrics were introduced in [Gau77b] under the name semi-Kähler and then discussed
again in [Mic83], while strongly Gauduchon (sG) metrics were introduced in [Pop13] by requiring
∂ωn−1 ∈ Im ∂̄, a definition that was then proved in [Pop13, Proposition 4.2] to be equivalent to
the description on the second line in the above picture (P). In particular, the notion of H-S metric
is the analogue in bidegree (1, 1) of the notion of sG metric. Finally, SKT metrics are also called
pluriclosed metrics in the literature.

Much of the non-Kähler complex geometry centres on special kinds of Hermitian metrics like
those we have just mentioned.

(2) Cohomological point of view

Let X be a compact complex manifold with dimCX = n ≥ 2. Thanks to the integrability property
d2 = 0, ∂2 = 0, ∂̄2 = 0, each of the differential operators d, ∂, ∂̄ induces a complex:

-the De Rham complex of X:

· · · d−→ C∞
k−1(X, C)

d−→ C∞
k (X, C) d−→ C∞

k+1(X, C)
d−→ · · · ,

giving rise to the De Rham cohomology spaces of X:

Hk
DR(X,C) :=

ker (d : C∞
k (X, C) −→ C∞

k+1(X, C))
Im (d : C∞

k−1(X, C) −→ C∞
k (X, C))

, k ∈ {0, . . . , 2n},

depending only on the differential structure of X;

-for every fixed q ∈ {0, . . . , n}, the conjugate Dolbeault complex of X:

· · · ∂−→ C∞
p−1, q(X, C)

∂−→ C∞
p, q(X, C)

∂−→ C∞
p+1, q(X, C)

∂−→ · · · ,

giving rise to the conjugate Dolbeault cohomology spaces of X:

Hp, q
∂ (X,C) :=

ker (∂ : C∞
p, q(X, C) −→ C∞

p+1, q(X, C))
Im (∂ : C∞

p−1, q(X, C) −→ C∞
p, q(X, C))

, p, q ∈ {0, . . . , n},

depending on the complex structure of X;
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-for every fixed p ∈ {0, . . . , n}, the Dolbeault complex of X:

· · · ∂̄−→ C∞
p, q−1(X, C)

∂̄−→ C∞
p, q(X, C)

∂̄−→ C∞
p, q+1(X, C)

∂̄−→ · · · ,

giving rise to the Dolbeault cohomology spaces of X:

Hp, q

∂̄
(X,C) :=

ker (∂̄ : C∞
p, q(X, C) −→ C∞

p, q+1(X, C))
Im (∂̄ : C∞

p, q−1(X, C) −→ C∞
p, q(X, C))

, p, q ∈ {0, . . . , n},

depending on the complex structure of X.

The compactness of X implies the finite dimensionality (as C-vector spaces) of all of the above
cohomology spaces whose dimensions are important geometric invariants of a compact complex
manifold. Of particular interest are the Betti numbers:

bk = bk(X) := dimCH
k
DR(X,C), k ∈ {0, . . . , 2n},

depending only on the differential structure of X (so, they are topological invariants) and the Hodge
numbers:

hp, q = hp, q
∂̄

(X) := dimCH
p, q

∂̄
(X,C), p, q ∈ {0, . . . , n},

depending on the complex structure of X.

Two other cohomologies that play a key role in non-Kähler complex geometry are

-the Bott-Chern cohomology, whose spaces are defined as

Hp, q
BC(X,C) :=

ker (∂ : C∞
p, q(X, C) −→ C∞

p+1, q(X, C)) ∩ ker (∂̄ : C∞
p, q(X, C) −→ C∞

p, q+1(X, C))
Im (∂∂̄ : C∞

p−1, q−1(X, C) −→ C∞
p, q(X, C))

,

and

-the Aeppli cohomology, whose spaces are defined as

Hp, q
A (X,C) :=

ker (∂∂̄ : C∞
p, q(X, C) −→ C∞

p+1, q+1(X, C))
Im (∂ : C∞

p−1, q(X, C) −→ C∞
p, q(X, C)) + Im (∂̄ : C∞

p, q−1(X, C) −→ C∞
p, q(X, C))

,

for all p, q ∈ {0, . . . , n}.

We denote by {α}DR, [α]∂, [α]∂̄, [α]BC , [α]A the De Rham, conjugate Dolbeault, Dolbeault,
Bott-Chern, respectively Aeppli cohomology class of a given form α that represents such a class.

There are well-defined, canonical linear maps induced by the identity among these cohomologies:

Hp, q
BC(X, C)→ Hp, q

∂̄
(X, C)→ Hp, q

A (X, C), [α]BC 7→ [α]∂̄ 7→ [α]A,

Hp, q
BC(X, C)→ Hp, q

∂ (X, C)→ Hp, q
A (X, C), [α]BC 7→ [α]∂ 7→ [α]A,

and
Hp, q
BC(X, C)→ Hp+q

DR (X, C)→ Hp, q
A (X, C), [α]BC 7→ {α}DR 7→ [αp, q]A,

where, for the last map, αp, q denotes the (p, q)-type component of the (p+q)-form α =
∑

r+s=p+q α
r, s.

By canonical we mean that these maps depend only on the complex structure of X, so, in particular,
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they are independent of the choice of a Hermitian metric. However, these maps need not be either
injective or surjective on an arbitrary X. One of the remarkable properties of a class of compact
complex manifolds (the so-called ∂∂̄-manifolds) that strictly contains the Kähler class is that all
the maps on the first two rows above are isomorphisms, while the two maps on the third row are
injective, respectively surjective. In particular, on a compact Kähler manifold X, the Dolbeault,
conjugate Dolbeault, Bott-Chern and Aeppli cohomologies are canonically isomorphic. For this
reason, the subscript can be dropped in that case, so Hp, q(X, C) stands for any (usually Dolbeault
in practice) of these cohomology groups of bidegree (p, q) on a compact Kähler X.

(a) The Frölicher spectral sequence

Finally, let us mention that one of the main goals of Hodge Theory is to relate the differential
structure of a given compact complex manifold X to its complex structure. One way of doing this
is to relate the De Rham cohomology of X to its Dolbeault cohomology. This is done by a classical
object called the Frölicher spectral sequence of X whose basic idea we now set out to explain.

If there is a canonical isomorphism

Hk
DR(X, C) ≃

⊕
p+q=k

Hp, q

∂̄
(X, C) (5)

induced by the identity map as discussed above for every k ∈ {0, . . . , 2n}, the cohomology of X
is well behaved. This is what happens when X is a compact Kähler manifold, or more generally
a ∂∂̄-manifold. However, for an arbitrary X, there are no such isomorphisms if only because the
inequality

bk(X) ≤
∑
p+q=k

hp, q
∂̄

(X),

which always holds for every k, may be strict for some k. Intuitively, in this case some of the
Dolbeault cohomology groups Hp, q

∂̄
(X, C) are “too big” to fit inside the De Rham cohomology

group Hp+q
DR (X, C). Therefore, they must be refined to fit inside.

The Frölicher spectral sequence of X consists of a finite sequence of complexes, called pages, that
successively refine the Dolbeault cohomology of X until it “fits” inside the De Rham cohomology.
Specifically, it consists of the following complexes.

Page 0: the Dolbeault complex, i.e.

. . .
d0−→ Ep, q−1

0 (X)
d0−→ Ep, q

0 (X)
d0−→ Ep, q+1

0 (X)
d0−→ . . . ,

where Ep, q
0 (X) := C∞

p, q(X, C) and d0 := ∂̄. For every bidegree (p, q), put

Ep, q
1 (X) := ker dp, q0 /Im dp, q−1

0 = Hp, q

∂̄
(X, C).

This is the Dolbeault cohomology space of X of bidegree (p, q).

Page 1: the cohomology spaces of page 0, i.e.

. . .
d1−→ Ep−1, q

1 (X)
d1−→ Ep, q

1 (X)
d1−→ Ep+1, q

1 (X)
d1−→ . . . ,

with differential defined as d1([α]∂̄) := [∂α]∂̄.
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Then, one continues inductively, defining each page as the cohomology of the previous page.

Page r:

. . .
dr−→ Ep−r, q+r−1

r (X)
dr−→ Ep, q

r (X)
dr−→ Ep+r, q−r+1

r (X)
dr−→ . . . .

So, dr is of bidegree (r, −r + 1) for every r ∈ N⋆. Put

Ep, q
r+1(X) := ker dp, qr /Im dp−r, q+r−1

r .

Theorem 0.0.4. (Frölicher 1955) The Frölicher spectral sequence converges to the De Rham
cohomology of X, i.e. there is an integer r ≥ 1 such that Ep, q

r (X) = Ep, q
r+1(X) = Ep, q

r+2(X) = · · · :=
Ep, q

∞ (X) for all p, q and there are (non-canonical) isomorphisms:

Hk
DR(X, C) ≃

⊕
p+q=k

Ep, q
∞ (X), k = 0, . . . , 2n.

If r is the smallest positive integer with the above property, the spectral sequence is said to
degenerate at page r (or at Er). We write Er(X) = E∞(X) in this case.

Thus, the degeneration at Er of the Frölicher spectral sequence is a purely numerical property:

Er(X) = E∞(X) ⇐⇒ bk =
∑
p+q=k

dimCE
p, q
r for all k = 0, . . . , 2n.

In particular, for every k and every l the following inequalities hold:∑
p+q=k

hp, q
∂̄

(X) ≥ · · · ≥
∑
p+q=k

dimCE
p, q
l (X) ≥

∑
p+q=k

dimCE
p, q
l+1(X) ≥ · · · ≥ bk(X).

Hence, the following implications hold:

E1(X) = E∞(X) =⇒ E2(X) = E∞(X) =⇒ · · · =⇒ Er(X) = E∞(X) =⇒ Er+1(X) = E∞(X) =⇒ . . .

In particular, for every given integer r ≥ 1, we obtain a new class of compact complex manifolds:
those X whose Frölicher spectral sequence degenerates at Er.

(b) ∂∂̄-manifolds

Note that the Frölicher degeneration at E1 does not imply the existence of a canonical isomorphism
(5) for every k. It only implies the existence of non-canonical isomorphisms since finite-dimensional
vector spaces of the same dimension are (non-canonically, in general) isomorphic. Nor does the
E1(X) = E∞(X) property imply any relation between Hp, q

∂̄
(X, C) and Hq, p

∂̄
(X, C).

There is a stronger property of compact complex manifolds that implies (and is implied by) these
cohomological properties. The idea goes back to Deligne-Griffiths-Morgan-Sullivan [DGMS75].

Definition 0.0.5. A compact complex manifold X is called a ∂∂̄-manifold if, for every bidegree
(p, q) and for every form u ∈ C∞

p, q(X, C) such that du = 0, the following equivalences hold:

u ∈ Im ∂ ⇐⇒ u ∈ Im ∂̄ ⇐⇒ u ∈ Im d ⇐⇒ u ∈ Im (∂∂̄). (6)
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It turns out that this property is equivalent to the identity map inducing a canonical isomorphism
(5) for every k.

Theorem and Definition 0.0.6. Let X be a compact complex manifold with dimCX = n. The
following statements are equivalent.

(1) X is a ∂∂̄-manifold.

(2) For every bidegree (p, q), every Dolbeault cohomology class [αp, q]∂̄ ∈ Hp, q

∂̄
(X, C) can be

represented by a d-closed (p, q)-form and for every k, the linear map⊕
p+q=k

Hp, q

∂̄
(X, C) ∋

∑
p+q=k

[αp, q]∂̄ 7→
{ ∑
p+q=k

αp, q
}
DR

∈ Hk
DR(X, C)

is well-defined by means of d-closed pure-type representatives αp, q of their respective Dolbeault
cohomology classes and bijective.

In this case, X is said to have the Hodge Decomposition property.

(3) The Frölicher spectral sequence of X degenerates at E1 and the De Rham cohomology of
X is pure.

(4) For all p, q ∈ {0, . . . , n}, the canonical linear maps

Hp, q
BC(X, C) −→ Hp, q

∂̄
(X, C) and Hp, q

∂̄
(X, C) −→ Hp, q

A (X, C)

are isomorphisms.

(5) For all p, q ∈ {0, . . . , n}, the canonical linear map Hp, q
BC(X, C) −→ Hp, q

A (X, C) is injective.

An explanation of the terminology is in order. Well-definedness in (2) means that the map does
not depend on the choices of d-closed representatives αp, q of the classes {αp, q}∂̄. Meanwhile, the
De Rham cohomology of X is said to be pure if, for every k, the vector subspaces Hp, q

DR(X, C) of
Hk
DR(X, C), consisting of De Rham cohomology classes representable by pure-type (p, q)-forms with

p+ q = k, are in a direct sum and if they fill out Hk
DR(X, C). Some authors call this property of the

De Rham cohomology pure and full.

The Hodge Decomposition property, in the strong form defined in (2) of Theorem and Definition
0.0.6, implies the Hodge Symmetry property.

Theorem 0.0.7. Every ∂∂̄-manifold X has the Hodge Symmetry property in the sense that the
following two conditions are satisfied:

(a) every class [αp, q]∂̄ ∈ H
p, q

∂̄
(X, C) contains a d-closed representative αp, q;

(b) the linear map

Hp, q

∂̄
(X, C) ∋ [αp, q]∂̄ 7→ [αp, q]∂̄ ∈ H

q, p

∂̄
(X, C)

is well-defined (in the sense that it does not depend on the choice of d-closed representative αp, q

of the class [αp, q]∂̄) and bijective.

A fundamental result in Hodge Theory is the following

Theorem 0.0.8. (∂∂̄-lemma) Every compact Kähler manifold is a ∂∂̄-manifold.
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For this reason, ∂∂̄-manifolds are called cohomologically Kähler manifolds by some authors. They
are precisely those compact complex manifolds that support a Hodge Theory with the same prop-
erties as on compact Kähler manifolds, but they need not support any Kähler metric.

We can now continue our implication diagram by adding the last notions presented above.

X balanced

=⇒ =⇒

X class C X strongly Gauduchon

=⇒
=⇒

X ∂∂̄-manifold

=⇒

E1(X) = E∞(X).

All these implications are strict when dimCX ≥ 3. Examples to this effect will be presented
throughout the book. That every class C manifold is balanced was proved by Alessandrini and
Bassanelli in [AB95] as a consequence of their stronger result to the effect that every modification
of a compact balanced manifold is again balanced.

Generalisations of ∂∂̄-manifolds were found recently by Popovici, Stelzig and Ugarte ([PSU20a],
[PSU20b], [PSU20c]). They are called page r-∂∂̄-manifolds, for a given integer r ≥ 0. When r = 0,
these are precisely the ∂∂̄-manifolds, but the class of page r-∂∂̄-manifolds increases as r increases
and contains many interesting non-Kähler compact complex manifolds.

(3) Interplay between the metric and the cohomological points of view

Another basic idea of Hodge theory is to interpret the various cohomology spaces as harmonic spaces,
namely as the kernels of certain elliptic differential operators called Laplacians.

Suppose X is a compact complex manifold on which a Hermitian metric ω has been fixed. Using
the L2 inner product induced by ω on the spaces of C∞ forms onX, one defines first-order differential
operators d⋆, ∂⋆, ∂̄⋆ as the adjoints of d, ∂, ∂̄ which, in turn, induce Laplace-Beltrami operators:

∆ = ∆ω := dd⋆ + d⋆d : C∞
k (X, C)→ C∞

k (X, C),

∆′ = ∆′
ω := ∂∂⋆ + ∂⋆∂ : C∞

p, q(X, C)→ C∞
p, q(X, C),

∆′′ = ∆′′
ω := ∂̄∂̄⋆ + ∂̄⋆∂̄ : C∞

p, q(X, C)→ C∞
p, q(X, C),

∆BC := ∂⋆∂+ ∂̄⋆∂̄+(∂∂̄)(∂∂̄)⋆+(∂∂̄)⋆(∂∂̄)+ (∂⋆∂̄)⋆(∂⋆∂̄)+ (∂⋆∂̄)(∂⋆∂̄)⋆ : C∞
p, q(X, C)→ C∞

p, q(X, C),
∆A := (∂∂̄)⋆(∂∂̄) + ∂∂⋆ + ∂̄∂̄⋆ + (∂∂̄)(∂∂̄)⋆ + (∂∂̄⋆)(∂∂̄⋆)⋆ + (∂∂̄⋆)⋆(∂∂̄⋆) : C∞

p, q(X, C)→ C∞
p, q(X, C),

in every (bi-)degree. Note that ∆, ∆′ and ∆′′ are of order 2, while ∆BC and ∆A (called the Bott-
Chern, respectively the Aeppli, Laplacian) are of order 4. Each of them is adapted to one type of
cohomology on X. They all turn out to be elliptic and this, together with the compactness of X,
leads to Hodge isomorphisms:
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Hk
DR(X, C) ≃ Hk

∆(X, C),

Hp, q
∂ (X, C) ≃ Hp, q

∆′ (X, C), Hp, q

∂̄
(X, C) ≃ Hp, q

∆′′(X, C),

Hp, q
BC(X, C) ≃ H

p, q
∆BC

(X, C), Hp, q
A (X, C) ≃ Hp, q

∆A
(X, C),

where Hk
P (X, C) and H

p, q
P (X, C) stand for the kernels of P in degree k and bidegree (p, q), where

P ∈ {∆,∆′,∆′′,∆BC ,∆A}.
In particular, the ∂̄-Laplacian ∆′′ yields a Hodge theory for the first page of the Frölicher spectral

sequence of X. A Hodge theory for the higher pages (starting from the second one) of the Frölicher
spectral sequence was found recently in [Pop16]. Rather surprisingly, the corresponding Laplacian
is not a differential operator, but a pseudo-differential operator. It is defined as

∆̃ = ∂p′′∂⋆ + ∂⋆p′′∂ +∆′′ : C∞
p, q(X, C) −→ C∞

p, q(X, C),

where
p′′ : C∞

p, q(X, C) = ker∆′′ ⊕ Im ∂̄ ⊕ Im ∂̄⋆ −→ ker∆′′

is the orthogonal projection onto the kernel of ∆′′ induced by the above three-space L2
ω-orthogonal

decomposition of the space of smooth (p, q)-forms.
A Hodge theory for every page r ≥ 3 of the Frölicher spectral sequence was then found in [Pop19]

and [PSU20b] by means of pseudo-differential Laplacians.
Moreover, higher-page analogues of the Bott-Chern and Aeppli cohomologies were found and

given appropriate Hodge theories in [PSU20b].

The way in which metric and cohomological considerations inform each other can also be seen
in the following, seemingly purely metric, notion introduced and studied in [Pop15a] and [PU18].

Definition 0.0.9. ([Pop15a], [PU18]) A compact complex manifold X is said to be an sGG man-
ifold if every Gauduchon metric on X is strongly Gauduchon.

It turns out that this notion also has an entirely cohomological description as a special case of
the ∂∂̄-property.

Proposition 0.0.10. ([PU18]) Let X be a compact complex manifold with dimCX = n. Then, X is
an sGG manifold if and only if for every d-closed (n, n−1)-form Γ on X, the following implication
holds:

Γ ∈ Im ∂ =⇒ Γ ∈ Im ∂̄.

This notion even has purely numerical descriptions, one of which being the following

Theorem 0.0.11. ([PU18]) On any compact complex manifold X we have b1 ≤ 2h0, 1
∂̄

.

Moreover, X is an sGG manifold if and only if b1 = 2h0, 1
∂̄

.

The class of sGG manifolds lies between the classes of ∂∂̄- and strongly Gauduchon manifolds
and turns out to have good deformation and modification properties.
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(4) Deformations of complex structures

Another method of investigating the classification of compact complex manifolds is to study their
variation in families. The central notion is the following

Definition 0.0.12. A holomorphic family of compact complex manifolds is a proper holomorphic
submersion π : X −→ B between complex manifolds X and B.

π−1(0) = X0 Xt X complex manifold

yπ
0 t B ⊂ C disc

The manifold X is called the total space of the family, while B, that will often be taken to
be a small open disc about the origin in C, is called the base of the family. For every t ∈ B,
Xt := π−1(t) ⊂ X is a compact complex manifold, called the fibre over t.

By a classical theorem of Ehresmann’s [Ehr47], the differential structure of any fibre Xt remains
unchanged under small varations of t. So, any holomorphic family of compact complex manifolds
is locally C∞ trivial. It is even globally C∞ trivial if the base B is contractible. Thus, we have C∞

diffeomorphisms Xt ≃ X for t ∈ B (if B is e.g. a disc), where X is the C∞ manifold underlying the
fibres Xt.

However, the complex structure Jt of Xt depends on t in general, so the splitting

d = ∂t + ∂̄t, t ∈ B,

depends on t. Thus, the family (Xt)t∈B of compact complex manifolds can be viewed as a single
C∞ manifold X endowed with a family (Jt)t∈B of complex structures varying holomorphically with
t ∈ B.

In particular, the De Rham coomology of the fibres Xt is independent of t, so we can identify

Hk
DR(Xt, C) ≃ Hk

DR(X, C)

for every k and every t. However, the Dolbeault, conjugate Dolbeault, Bott-Chern, Aeppli and
Frölicher cohomologies depend on t, giving rise to t-dependent vector spacesHp, q

∂̄
(Xt, C),Hp, q

∂ (Xt, C),
Hp, q
BC(Xt, C), Hp, q

A (Xt, C), Ep, q
r (Xt) in every bidegree (p, q).

One line of investigation that will be pursued in this book aims at understanding how the various
properties of compact complex manifolds that were mentioned above (e.g. projectivity, Moishezon
property, Kälerianity, class C property, ∂∂̄-property, etc) vary under deformations of the complex
structure. This problem can mainly be considered from two points of view.
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The openness point of view aims at determining whether a given property that an arbitrary
fibre Xt0 may have is inherited by all the nearby fibres Xt when t is sufficiently close to t0. The
prototypical example of such a result is the following one by Kodaira and Spencer.

Theorem 0.0.13. ([KS60]) Let π : X −→ B be a holomorphic family of compact complex manifolds.
Suppose the fibre Xt0 is Kähler for some t0 ∈ B. Then, the fibre Xt is Kähler for every t ∈ B
sufficiently close to t0.

Thus, the Kähler property of compact complex manifolds is open under deformations of the
complex structure. So are the ∂∂̄-property (by a result of Wu [WU06], reproved by Angella and
Tomassini in [AT13]), the property of the Frölicher spectral sequence degenerating at E1 (a classical
result that follows at once from the Kodaira-Spencer theory) and the strongly Gauduchon property
([Pop09a]). However, the class C property is not deformation open (by Campana [Cam91a] and
Lebrun-Poon [LP92]) and neither is the balanced property (by Alessandrini and Bassanelli [AB90]).

The closedness point of view aims at determining whether a given property of compact complex
manifolds survives in the limit under deformations. In fact, if a fibre, say X0, has been fixed, it can
be viewed as the limit of the nearby fibres Xt when t ∈ B tends to 0 ∈ B. Thus, one can wonder
whether the limit fibre X0 retains a certain property that all the fibres Xt with t ̸= 0 have.

An example of such a result is the following

Theorem 0.0.14. ([Pop09a], [Pop09b], [Pop10a], [Pop19]) Let π : X −→ B be a holomorphic
family of compact complex manifolds, where B ⊂ C is a small disc about the origin. Suppose the
fibre Xt is Moishezon for all t ∈ B \ {0}. Then, X0 is again a Moishezon manifold.

This result is optimal since an example of Hironaka’s [Hir62] shows that the limit fibre X0

need not be Kähler even if all the other fibres are assumed projective. Note that the statement
of Theorem 0.0.14 is purely algebraic, so it falls into the realm of algebraic geometry. However,
the proof is analytic and uses non-Kähler techniques and notions, including ∂∂̄-manifolds, strongly
Gauduchon metrics and generalisations thereof introduced in [Pop19], as well as Hodge theory for
the higher pages (i.e. starting from the second one) of the Frölicher spectral sequence.

A purely transcendental version of Theorem 0.0.14 is conjectured to hold.

Conjecture 0.0.15. Let π : X −→ B be a holomorphic family of compact complex manifolds, where
B ⊂ C is a small disc about the origin. Suppose the fibre Xt is a class C manifold for all t ∈ B\{0}.
Then, X0 is again a class C manifold.

A two-stage strategy of attack for this conjecture was proposed in [PU18], where the first stage
was implemented. This strategy motivated in part the introduction of sGG manifolds.

To situate these issues in their context, we recall the following major result of Siu’s ([Siu98] and
[Siu00]), although we will not discuss it in this book.

Theorem 0.0.16. (Siu’s invariance of the plurigenera) Let π : X −→ ∆ be a projective
holomorphic family of compact complex manifolds over the unit disc ∆ ⊂ C. Then, for every
m ∈ N⋆, the m-genus dimCH

0(Xt, mKXt) is independent of the fibre Xt := π−1(t), t ∈ ∆.

By KXt one means the canonical line bundle of the fibre Xt, mKXt stands for itsm
th tensor power

(in additive notation in the Picard group), whileH0 denotes the space of global holomorphic sections.
The invariance of the plurigenera plays a major role in the Minimal Model Program (MMP) where
projective (or merely compact Kähler) manifolds are to be classified up to birational equivalence.
Siu also conjectured the Kähler version of Theorem 0.0.16.
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(5) Non-Kähler mirror symmetry

Some of the techniques alluded to above and explained at length throughout this book were used in
[Pop18a] to propose a new approach to the Mirror Symmetry Conjecture extended to the possibly
non-Kähler context.

At the centre of Mirror Symmetry lie the Calabi-Yau manifolds. In this book, the term applies
to any compact complex manifold X whose canonical line bundle KX is trivial. Many non-Kähler
compact complex manifolds, including all the nilmanifolds, satisfy this condition. In the standard
Mirror Symmetry theory, additional assumptions, which imply projectiveness, are made on these
manifolds. However, in our approach, they need not be Kähler.

The central prediction of Mirror Symmetry is that two kinds of structures, complex and metric,
ought to get exchanged between any Calabi-Yau manifold (of complex dimension 3) and its mirror
dual manifold, another Calabi-Yau manifold (of complex dimension 3) predicted to correspond to
any original such manifold:{

complex structures on X

}
←→

{
metric structures on X̃

}
,

where X̃ is the mirror dual of X. In other words, Calabi-Yau manifolds ought to come in pairs
(X, X̃) such that the complex structures on X correspond to the metric structures on X̃ and vice
versa.

We will assume that n := dimCX = dimCX̃ ≥ 3 is arbitrary.

(a) The complex structure side of the mirror

The starting point of the theory on this side of the mirror is the following theorem by Bogo-
molov, Tian and Todorov to the effect that the Calabi-Yau assumption combined with the Kähler
assumption (although the weaker ∂∂̄-assumption suffices) on a given compact complex manifold X
ensures that the complex structure of X can be deformed in all the “available directions”. In fact,
these directions are parametrised by the cohomology group H0, 1

∂̄
(X, T 1, 0X) of bidegree (0, 1) with

values in the holomorphic tangent bundle T 1, 0X of X. However, for an arbitrary X, not all these
deformations need define complex structures (since some of them may not satisfy the integrability
condition, so they may only define almost complex structures).

Theorem 0.0.17. Let X be a ∂∂̄-manifold whose canonical bundle KX is trivial. Then, the
Kuranishi family of X is unobstructed.

The Kuranishi family (Xt)t∈B of X = X0 is, intuitively, the family of all possible small deforma-
tions of the complex structure of X. In the case of unobstructedness, the base

B := Def(X) ⊂ H0, 1

∂̄
(X, T 1, 0X)

is smooth and can be seen as an open ball about 0 in the C-vector space H0, 1

∂̄
(X, T 1, 0X).

In our generalised setting, we often make use of the notion of small essential deformations that
was introduced in [Pop18a] for the Iwasawa manifold and in [PSU20c] for a larger class of manifolds
whose Frölicher spectral sequence does not degenerate at E1.

(b) The metric side of the mirror

The main tool of investigation on this side of the mirror in the classical approach to Mirror
Symmetry is the Kähler cone KX of a given compact Kähler manifold. It is defined as the set of
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all the Dolbeault cohomology classes of type (1, 1) that are representable by Kähler metrics. These
classes are called Kähler classes.

One of the new ideas in our generalised approach to Mirror Symmetry is to replace the Kähler
cone by the Gauduchon cone GX of a given compact complex manifold X. This object was
introduced in [Pop15a] as the set of all the Aeppli cohomology classes of type (n − 1, n − 1) that
can be represented by the (n− 1)-st power of a Gauduchon metric:

GX :=

{
[ωn−1]A ∈ Hn−1, n−1

A (X, R) | ω is a Gauduchon metric on X

}
⊂ Hn−1, n−1

A (X, R).

It turns out that GX is an open convex cone in Hn−1, n−1
A (X, R).

The Gauduchon cone GX is never empty (since Gauduchon metrics exist on every X). It serves
as a substitute for both the Kähler cone (which is empty when X is non-Kähler) and the various
cones of classes of curves on X (which may not exist when X is non-projective).

The well-known duality between curves and divisors in algebraic geometry is replaced in this
transcendental context by the duality between the Bott-Chern cohomology of bidegree (1, 1) and
the Aeppli cohomology of bidegree (n− 1, n− 1):

H1, 1
BC(X, C)×H

n−1, n−1
A (X, C)→ C, ([α]BC , [β]A) 7→

∫
X

α ∧ β.

This pairing is well-defined and non-degenerate, so the spaces H1, 1
BC(X, C) and H

n−1, n−1
A (X, C)

are dual to each other.

(a) + (b)

Bringing the two kinds of structures together, we proposed in [Pop18a] a generalisation of the
Mirror Symmetry Conjecture that can be loosely formulated as follows.

Conjecture 0.0.18. The sGG Calabi-Yau compact complex manifolds of complex dimension n ≥ 3
come in pairs

(X, X̃)

such that there exist local biholomorphisms (= the mirror maps)

Def(X) ≃ G̃X̃ et Def(X̃) ≃ G̃X

inducing further correspondences between the complex structures on X and the metric structures on
X̃ and vice-versa.

By G̃X and G̃X̃ we mean the complexified Gauduchon cones of X, respectively X̃.

Our testing ground

The Iwasawa manifold is the 3-dimensional compact complex manifold defined as the quotient
X = G/Γ, where

G :=


1 z1 z3
0 1 z2
0 0 1

 ; z1, z2, z3 ∈ C

 ⊂ GL3(C)

is the Heisenberg group and Γ ⊂ G is the subgroup of matrices of the same shape with entries
z1, z2, z3 ∈ Z[i]. This manifold is non-Kähler (and its Frölicher spectral sequence does not even
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degenerate at E1, so, in particular, X is not a ∂∂̄-manifold), but it is an sGG manifold with a
trivial canonical bundle.

The notion of small essential deformations of the Iwasawa manifold was introduced in [Pop18a]
(and was later generalised in [PSU20c] to a much larger class of manifolds). The main result of
[Pop18a] can be loosely stated as follows.

Theorem 0.0.19. The Iwasawa manifold is its own mirror dual in the sense that the small
essential deformations of its complex structure “correspond” to the (Aeppli cohomology classes of
its) Gauduchon metrics (i.e. to its own Gauduchon cone).

(III) Organisation of the material in this book

In chapter 1, after explaining the basics of Hodge Theory (ellipticity of certain differential operators,
harmonic theory, duality), we present two points of view on the Frölicher spectral sequence and then
we discuss the class of ∂∂̄-manifolds and several characterisations thereof.

In chapter 2, we present the Kodaira-Spencer deformation theory of smooth families of elliptic
differential operators and their geometric applications to families of compact complex manifolds
where these operators are mostly Laplacians. The unobstructedness theorem of Bogomolov, Tian
and Todorov is also discussed in detail.

In chapter 3, we present the generalisations of several classical Hodge-theoretical notions and
results to the context where the Dolbeault cohomology, that forms the first page of the Frölicher
spectral sequence, is replaced by the cohomology of the higher pages. These are recent results ob-
tained mainly in [Pop16], [Pop17], [PSU20a], [PSU20b] and [PSU20c]. In particular, the notion of
page-r-∂∂̄-manifold, generalising that of ∂∂̄-manifold, is presented, together with higher-page ana-
logues of the Bott-Chern and Aeppli cohomologies, an adaptation of the adiabatic limit construction
to the case of complex structures and the role it plays in the context of the Frölicher spectral se-
quence.

In chapter 4, we discuss at length several classes of special Hermitian metrics (Gauduchon,
strongly Gauduchon, Er-sG, balanced, SKT, Hermitian-symplectic) on compact complex manifolds
and the roles they play in the classification of compact complex manifolds and in positivity problems
in complex geometry.

In chapter 5.1, we present the notion of small deformations of a compact complex manifold that
are co-polarised by a balanced class. This was introduced in [Pop13] as a generalisation of the
classical notion of small deformations polarised by a Kähler class.

In chapter 6, following [Pop18a], we present an extension to the possibly non-Kähler context of
the Mirror Symmetry Conjecture as an application of some of the ideas and techniques discussed
previously in the book. In particular, we show that the Iwasawa manifold is its own mirror dual in
this generalised sense. We also introduce the notion of small essential deformations of this manifold.
This notion was subsequently generalised to the larger class of page-1-∂∂̄-manifolds in [PSU20c].

In chapter 7, we present two proofs of the fact that any deformation limit of Moishezon manifolds
is again Moishezon. This chapter, based on [Pop09a], [Pop09b], [Pop10a] and [Pop19], makes use
of strongly Gauduchon and Er-sG metrics, as well as the class of ∂∂̄-manifolds, the theory of the
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Frölicher spectral sequence, the adiabatic limit construction and the Kodaira-Spencer deformation
theory.

Chapter 8 is an appendix gathering standard material on nilmanifolds, solvmanifolds and left-
invariant complex structures thereon. These constitute a rich source of examples for many of the
issues discussed in the book.



Chapter 1

Cohomology and Metrics

1.1 Bott-Chern and Aeppli Cohomologies

Let X be a compact complex manifold with n = dimCX. We denote by C∞
p, q(X, C) = C∞

p, q, resp.
C∞
k (X, C) = C∞

k , the space of C-valued C∞ differential forms of bidegree (p, q), resp. of degree k,
on X. For every k ∈ {0, . . . , 2n}, we have

C∞
k (X, C) =

⊕
p+q=k

C∞
p, q(X, C)

and the complex structure of X induces a splitting

d = ∂ + ∂̄

of the Poincaré differential operator d : C∞
k (X, C) → C∞

k+1(X, C) into a part of type (1, 0), ∂ :
C∞
p, q(X, C) → C∞

p+1, q(X, C), and a part of type (0, 1), ∂̄ : C∞
p, q(X, C) → C∞

p, q+1(X, C), defined in
every bidegree (p, q). While d depends only on the differential structure of X, ∂ and ∂̄ depend on
the complex structure. All three operators d, ∂ and ∂̄ are linear differential operators of order 1.

The following notions are standard and widely used.

Definition 1.1.1. For every p, q ∈ {0, . . . , n} and every k ∈ {0, . . . , 2n}, one defines:

(i) the Bott-Chern cohomology group of bidegree (or type) (p, q) of X as

Hp, q
BC(X, C) =

ker ∂ ∩ ker ∂̄

Im (∂∂̄)
;

(ii) the Dolbeault cohomology group of bidegree (or type) (p, q) of X as

Hp, q

∂̄
(X, C) =

ker ∂̄

Im ∂̄
;

(iii) the conjugate Dolbeault cohomology group of bidegree (or type) (p, q) of X as

Hp, q
∂ (X, C) =

ker ∂

Im ∂
;

(iv) the Aeppli cohomology group of bidegree (or type) (p, q) of X as

27
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Hp, q
A (X, C) =

ker(∂∂̄)

Im ∂ + Im ∂̄
;

(v) the De Rham cohomology group of degree k of X as

Hk
DR(X, C) =

ker d

Im d
,

where all the kernels and images are considered as C-vector subspaces of C∞
p, q(X, C) or C∞

k (X, C),
according to the case.

The first observation is that the Bott-Chern cohomology maps canonically to all the other coho-
mologies, which map canonically to the Aeppli cohomology. These maps need not be either injective,
or surjective, in general.

Lemma 1.1.2. The following canonical linear maps in cohomology are well defined:

Hp, q
BC(X, C)→ Hp, q

∂̄
(X, C)→ Hp, q

A (X, C), [α]BC 7→ [α]∂̄ 7→ [α]A,

Hp, q
BC(X, C)→ Hp, q

∂ (X, C)→ Hp, q
A (X, C), [α]BC 7→ [α]∂ 7→ [α]A,

and
Hp, q
BC(X, C)→ Hp+q

DR (X, C)→ Hp, q
A (X, C), [α]BC 7→ {α}DR 7→ [αp, q]A,

where, for the last map, αp, q denotes the (p, q)-type component of the (p+ q)-form α =
∑

r+s=k α
r, s.

Proof. The second row of maps can be treated analogously to the first one, so we will only deal with
the first and third rows. For any α ∈ C∞

p, q(X, C), the following implications hold:

α ∈ ker ∂ ∩ ker ∂̄ =⇒ α ∈ ker ∂̄ =⇒ α ∈ ker(∂∂̄) and α ∈ ker ∂ ∩ ker ∂̄ =⇒ α ∈ ker d,

while for any α ∈ C∞
k (X, C) (k = p + q here) such that dα = 0, we have ∂αr, s + ∂̄αr+1, s−1 = 0,

hence ∂∂̄αr, s = 0, for all r, s such that r + s = k.
It remains to prove that the above maps are independent of the choices of representatives of the

respective cohomology classes. This is equivalent to proving, respectively, the inclusions:

Im (∂∂̄) ⊂ Im ∂̄ ⊂ Im ∂ + Im ∂̄ and Im (∂∂̄) ⊂ Im d

for every α ∈ C∞
p, q(X, C), as well as, in the case of the last map, the following implication for every

α ∈ C∞
k (X, C): α ∈ Im d =⇒ αr, s ∈ Im ∂ + Im ∂̄ for all r, s such that r + s = k.

These inclusions are obvious. As for the last implication, suppose that α = dβ for some β ∈
C∞
k−1(X, C). Then, αr, s = ∂βr−1, s + ∂̄βr, s−1 ∈ Im ∂ + Im ∂̄ for all r, s such that r + s = k. □

1.1.1 Basics of Hodge theory

The fundamental fact in Hodge theory is the possibility of realising the various cohomology groups
as vector spaces of harmonic forms, namely as kernels of Laplace-type elliptic differential operators.
The necessary Laplacians are defined using a given Hermitian metric ω on X and depend on ω, as
do their kernels, unlike the cohomology groups which are canonical (i.e. depend only on the complex
structure of X).
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Hermitian metrics

We start by recalling the very basic facts about Hermitian metrics (see [Dem97, chapter VI] for
further details).

Definition 1.1.3. A Hermitian metric ω on X is a family (⟨ ·, · ⟩ω(x))x∈X , where, for every point
x ∈ X,

⟨ ·, · ⟩ω(x) : T 1, 0
x X × T 1, 0

x X → C

is an inner product on the holomorphic tangent space to X at x, such that the inner products
⟨ ·, · ⟩ω(x) depend in a C∞ way on x ∈ X.

By an inner product on a C-vector space we mean a positive definite sesquilinear map. It is
standard that any Hermitian metric ω on X identifies canonically with a unique C∞ (1, 1)-form
ω (denoted henceforth by the same letter) that is positive definite at every point x ∈ X. Some
authors call it the Kähler form associated with the Hermitian metric and denote these two objects
differently, but we will not use this terminology. In local holomorphic coordinates z1, . . . , zn on some
open subset U ⊂ X, any such object is of the shape

ω =
n∑

j,k=1

ωjk̄ idzj ∧ dz̄k, (1.1)

where the coefficients ωjk̄ : U → C are C∞ functions such that the matrix (ωjk̄(x))jk̄ is positive
definite (equivalently, its eigenvalues are all positive) at every point x ∈ X.

In fact, an equivalent definition for a Hermitian metric ω on X is as a family (ω(α))α∈Λ of locally
defined, positive definite C∞ (1, 1)-forms ω(α), defined respectively by the analogues of (1.1) on open
coordinate subsets Uα ⊂ X that cover X, such that ω(α) = ω(β) on Uα∩Uβ whenever this intersection
is non-empty.

In particular, Hermitian metrics always exist on any given X. Indeed, take any open cover of X
by coordinate patches, take any locally defined Hermitian metrics on these patches and glue them
together into a global Hermitian metric on X using a partition of unity.

On the other hand, any Hermitian metric ω on X induces, for any bidegree (p, q) (resp. any
degree k), a pointwise inner product ⟨ ·, · ⟩ = ⟨ ·, · ⟩ω on the space C∞

p, q(X, C) (resp. C∞
k (X, C)).

Indeed, the metric on T 1, 0
x X induces the dual metric on Λ1, 0T ⋆xX, which in turn induces a metric

on Λp, 0T ⋆xX, for every p ∈ {0, . . . , n}, in the usual way:

⟨dzj1 ∧ . . . dzjp , dzk1 ∧ . . . dzkp⟩ω := det(⟨dzjl , dzkr⟩ω)1≤l,r≤p.

By conjugation, we then get a metric on Λ0, qT ⋆xX, for every q ∈ {0, . . . , n}, and finally an induced
metric on Λp, qT ⋆xX, for all p, q ∈ {0, . . . , n}. Note that, by construction, ⟨u, v⟩ω = 0 whenever u is
of type (p, q) and v is of type (r, s) with (p, q) ̸= (r, s).

The pointwise inner product induces a pointwise norm in the usual way: |u|2 = |u|2ω := ⟨u, u⟩ω.

Integrating the pointwise inner product leads to

Definition 1.1.4. For all p, q ∈ {0, . . . , n}, the L2 inner product induced on C∞
p, q(X, C) by a

Hermitian metric ω on X is defined as

⟨⟨u, v⟩⟩ = ⟨⟨u, v⟩⟩ω =

∫
X

⟨u(x), v(x)⟩ω dVω(x),
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where dVω := ωn

n!
is the volume form induced by ω.

The L2 inner product induces an L2 norm in the usual way: ||u||2 = ||u||2ω := ⟨⟨u, u⟩⟩ω.

Note that dVω is a C∞ positive definite (n, n)-form on X. In particular, it induces canonically
a positive measure on X w.r.t. which the above integration is performed.

Hodge isomorphism for the De Rham and Dolbeault cohomologies

Once a Hermitian metric ω has been fixed on an n-dimensional compact complex manifold X, one
defines formal adjoints d⋆ = d⋆ω : C∞

k+1(X, C)→ C∞
k (X, C), ∂⋆ = ∂⋆ω : C∞

p+1, q(X, C)→ C∞
p, q(X, C)

and ∂̄⋆ = ∂̄⋆ω : C∞
p, q+1(X, C) → C∞

p, q(X, C) w.r.t. ω of the operators d : C∞
k (X, C) → C∞

k+1(X, C),
∂ : C∞

p, q(X, C)→ C∞
p+1, q(X, C) and ∂̄ : C∞

p, q(X, C)→ C∞
p, q+1(X, C) by requiring that the identities

⟨⟨du, v⟩⟩ = ⟨⟨u, d⋆v⟩⟩, ⟨⟨∂u, v⟩⟩ = ⟨⟨u, ∂⋆v⟩⟩, ⟨⟨∂̄u, v⟩⟩ = ⟨⟨u, ∂̄⋆v⟩⟩

hold for all smooth forms u, v of the relevant (bi)degrees. Note that the compactness of X is key in
these definitions. When X is not compact, one requires the above identities (which are integrations
by parts) to hold only for forms u and v such that the intersection of their supports is compact.

One then goes on to define the Laplace-Beltrami operators corresponding to d, ∂ and resp.
∂̄ by the formulae

∆ = ∆ω := dd⋆ + d⋆d : C∞
k (X, C)→ C∞

k (X, C),

∆′ = ∆′
ω := ∂∂⋆ + ∂⋆∂ : C∞

p, q(X, C)→ C∞
p, q(X, C),

∆′′ = ∆′′
ω := ∂̄∂̄⋆ + ∂̄⋆∂̄ : C∞

p, q(X, C)→ C∞
p, q(X, C),

for all k ∈ {0, . . . , 2n} and all p, q ∈ {0, . . . , n}. Obviously, all three of them are self-adjoint
differential operators of order two.

Note that, in general, ∆(C∞
p, q(X, C)) is not contained in C∞

p, q(X, C), so ∆ does not preserve
bidegrees. This is a major source of complications when the metric ω is arbitrary. However, when
ω is Kähler, the d-Laplacian ∆ preserves bidegrees. (See e.g. [Dem97, chapter VI]).

Lemma 1.1.5. The kernels of the above Laplacians can be described as:

ker∆ = ker d ∩ ker d⋆, ker∆′ = ker ∂ ∩ ker ∂⋆, ker∆′′ = ker ∂̄ ∩ ker ∂̄⋆.

Proof. Let us prove the description of ker∆, the other two being analogous. Since X is compact, for
every form u, we have

⟨⟨∆u, u⟩⟩ = ||du||2 + ||d⋆u|| ≥ 0.

Thus, having fixed any form u, we have: ∆u = 0 iff ⟨⟨∆u, u⟩⟩ = 0 iff du = 0 and d⋆u = 0. □

Let us now recall the following fundamental facts of Hodge theory (see e.g. [Dem97, chapter VI]
for the proofs and further details).

Theorem 1.1.6. Let (X, ω) be a compact Hermitian manifold with dimCX = n. Then:

(1) the differential operators ∆, ∆′ and ∆′′ are elliptic (i.e. their principal symbols are injective
at every point);

(2) the kernels of ∆, ∆′ and ∆′′ are finite dimensional, while their images are closed and
finite codimensional in C∞

k (X, C) (for ∆), resp. in C∞
p, q(X, C) (for ∆′ and ∆′′).
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Moreover, for all k ∈ {0, . . . , 2n} and all p, q ∈ {0, . . . , n}, the following orthogonal (for the
L2
ω-norm) two-space decompositions hold:

C∞
k (X, C) = ker∆⊕ Im∆, C∞

p, q(X, C) = ker∆′ ⊕ Im∆′, C∞
p, q(X, C) = ker∆′′ ⊕ Im∆′′,

where all the kernels and images involved are taken in the respective (bi)degrees.

(3) furthermore, the following L2
ω-orthogonal two-space decompositions hold:

Im∆ = Im d⊕ Im d⋆, Im∆′ = Im ∂ ⊕ Im ∂⋆, Im∆′′ = Im ∂̄ ⊕ Im ∂̄⋆.

Hence, we get the following L2
ω-orthogonal three-space decompositions:

C∞
k (X, C) = ker∆⊕ Im d⊕ Im d⋆,

C∞
p, q(X, C) = ker∆′ ⊕ Im ∂ ⊕ Im ∂⋆,

C∞
p, q(X, C) = ker∆′′ ⊕ Im ∂̄ ⊕ Im ∂̄⋆,

in which we further have:

ker d = ker∆⊕ Im d and ker d⋆ = ker∆⊕ Im d⋆,

ker ∂ = ker∆′ ⊕ Im ∂ and ker ∂⋆ = ker∆′ ⊕ Im ∂⋆,

ker ∂̄ = ker∆′′ ⊕ Im ∂̄ and ker ∂̄⋆ = ker∆′′ ⊕ Im ∂̄⋆

in all the degrees k ∈ {0, . . . , 2n} and all the bidegrees (p, q) with p, q ∈ {0, . . . , n}.

Let us only point out that conclusion (2) above follows from G̊arding’s estimate (or the a
priori estimate, depending on the terminology being used) satisfied by any elliptic operator on a
compact manifold (without boundary). Conclusion (3) further follows from the integrability of the
operators d, ∂, ∂̄, namely d2 = 0, ∂2 = 0 and ∂̄2 = 0.

As an immediate consequence, one gets the Hodge isomorphisms that display the De Rham,
Dolbeault and conjugate Dolbeault cohomology groups as isomorphic to the spaces of ∆-harmonic,
∆′′-harmonic and resp. ∆′-harmonic spaces of forms of the same (bi)degrees.

Corollary 1.1.7. Let (X, ω) be a compact Hermitian manifold with dimCX = n. Then, for all
k ∈ {0, . . . , 2n} and all p, q ∈ {0, . . . , n}, the following Hodge isomorphisms hold:

Hk
DR(X, C) ≃ Hk

∆(X, C),

Hp, q
∂ (X, C) ≃ Hp, q

∆′ (X, C),

Hp, q

∂̄
(X, C) ≃ Hp, q

∆′′(X, C),

where Hk
∆(X, C) := ker(∆ : C∞

k (X, C) → C∞
k (X, C)), Hp, q

∆′ (X, C) := ker(∆′ : C∞
p, q(X, C) →

C∞
p, q(X, C)) and H

p, q
∆′′(X, C) := ker(∆′′ : C∞

p, q(X, C)→ C∞
p, q(X, C)).
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A consequence of this is that a way to relateHk
DR(X, C) to

⊕
p+q=k

Hp, q

∂̄
(X, C) is to relateHk

∆(X, C)

to
⊕

p+q=k

Hp, q
∆′′(X, C). We will see later on in this chapter that the De Rham and Dolbeault coho-

mologies need not be isomorphic and we will describe the class of compact complex manifolds, called
∂∂̄-manifolds, for which there is a canonical such isomorphism.

Hodge isomorphism for the Bott-Chern and Aeppli cohomologies

Unlike the De Rham and Dolbeault cohomologies, whose Hodge theories have long been known, the
Bott-Chern and Aeppli cohomologies were given a similar treatment much more recently. For this
reason, we will spell out most of the details of the proofs in what follows. The main references here
are [KS60] and [Sch07]. A brief account also appeared in [Pop15].

The first step is the construction of Laplacians whose kernels will be isomorphic to the Bott-Chern
and Aeppli cohomology groups. In the Bott-Chern case, we have

Definition 1.1.8. (Kodaira-Spencer [KS60, §.6], see also Schweitzer [Sch07, 2.c., p. 9-10])
The 4-th order Bott-Chern Laplacian ∆BC : C∞

p, q(X, C)→ C∞
p, q(X, C) is defined as

∆BC := ∂⋆∂ + ∂̄⋆∂̄ + (∂∂̄)(∂∂̄)⋆ + (∂∂̄)⋆(∂∂̄) + (∂⋆∂̄)⋆(∂⋆∂̄) + (∂⋆∂̄)(∂⋆∂̄)⋆. (1.2)

Note the pattern: ∆BC is a sum of (necessarily non-negative) operators of the shape A⋆A. Hence,
its kernel is the intersection of the kernels of all its terms, while ker(A⋆A) = kerA since ⟨⟨A⋆Au, u⟩⟩ =
||Au||2, so A⋆Au = 0 iff Au = 0. On the other hand, looking ahead to the Hodge isomorphism
ker∆BC ≃ Hp, q(X, C) that we wish to get, we need ker∆BC = ker ∂ ∩ ker ∂̄ ∩ ker(∂∂̄)⋆, because
ker(∂∂̄)⋆ is the orthogonal complement of Im (∂∂̄). This accounts for the first three terms on the
right of (1.2). However, their sum is not elliptic, as will be seen shortly, so we add the last three
terms on the right of (1.2) to make the sum elliptic. Note that these extra terms do not change the
kernel of the sum since each of them ends with either ∂ or ∂̄, which have already featured at the
end of the first two terms and have thus already contributed to the kernel of the sum.

The operator ∆BC is obviously self-adjoint and non-negative. Let us now prove its main property.

Proposition 1.1.9. ∆BC is elliptic.

Proof. We may assume, without loss of generality, that we are in an open subset of Cn and that the
metric ω is the standard one: ω =

∑n
j=1 idzj ∧ dz̄j. Indeed, the ellipticity of ∆BC depends solely

on its principal part, which remains unchanged if a different metric is chosen. Metric changes affect
only the lower order terms.

We will use the following expressions of ∂⋆ and ∂̄⋆ in local coordinates w.r.t. the standard metric:

∂ =
n∑
j=1

dzj ∧
∂

∂zj
, hence ∂⋆ = −

n∑
l=1

∂

∂z̄l

(
∂

∂zl
⌟ ·
)

∂̄ =
n∑
k=1

dz̄k ∧
∂

∂z̄k
, hence ∂̄⋆ = −

n∑
r=1

∂

∂zr

(
∂

∂z̄r
⌟ ·
)
, (1.3)

where ξ⌟· is the contraction (a zero-th order operator) of differential forms by the vector field ξ. The
above formulae follow from the following easy-to-check formulae (for operators of order 1, resp. 0):(

∂

∂zj

)⋆
= − ∂

∂z̄j
and

(
∂

∂zj
⌟ ·
)⋆

= dzj ∧ · (1.4)
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and their conjugates.
Recall that the first-order differential operators ∂/∂zj and ∂/∂z̄k act non-trivially only on the

(function) coefficients of differentials forms, while the zero-th order contraction operators (∂/∂zj)⌟·
and (∂/∂z̄k)⌟· act non-trivially only on the dzj’s and the dz̄k’s. For example,

∂

∂zj

(∑
I, J

uIJ̄ dzI∧dz̄J
)

=
∑
I, J

∂uIJ̄
∂zj

dzI∧dz̄J and
∂

∂zl
⌟

(∑
I, J

uIJ̄ dzI∧dz̄J
)

=
∑
I, J

uIJ̄
∂

∂zl
⌟(dzI∧dz̄J).

So, ∂/∂zj and ∂/∂z̄k act independently from (∂/∂zj)⌟· and (∂/∂z̄k)⌟·. This leads to the formulae:

∂

∂zj

(
∂

∂zk
⌟u

)
=

∂

∂zk
⌟
∂u

∂zj
and

∂

∂zj

(
∂

∂z̄k
⌟u

)
=

∂

∂z̄k
⌟
∂u

∂zj
(1.5)

and their analogues with ∂/∂z̄j in place of ∂/∂zj, for all differential forms u of all bidegrees.
Using formulae (1.3) and (1.5), we see that, for any u, the expressions in local coordinates for

the 4-th order terms of ∆BCu read:

∆BCu = ∂⋆∂u+ ∂̄⋆∂̄u+ T1 + T2 + T3 + T4,

where

T1 = ∂̄⋆∂⋆∂∂̄u =
∑
j, k, l, r

∂

∂zr

[
∂

∂z̄r
⌟
∂

∂z̄l

(
∂

∂zl
⌟[dzj ∧

∂

∂zj
(dz̄k ∧

∂u

∂z̄k
)]

)]
=

∑
j, k, l, r

∂

∂zr

[
∂

∂z̄r
⌟
∂

∂z̄l

(
∂

∂zl
⌟[dzj ∧ dz̄k ∧

∂2u

∂zj∂z̄k
]

)]
=

∑
j, k, l, r

∂

∂zr

[
∂

∂z̄r
⌟
∂

∂z̄l

(
δjl dz̄k ∧

∂2u

∂zj∂z̄k
+ dzj ∧ dz̄k ∧

(
∂

∂zl
⌟
∂2u

∂zj∂z̄k

))]
=

∑
j, k, l, r

∂

∂zr

[
δjl δkr

∂3u

∂zj∂z̄k∂z̄l
− δjl dz̄k ∧

(
∂

∂z̄r
⌟

∂3u

∂zj∂z̄k∂z̄l

)]
+

∑
j, k, l, r

∂

∂zr

[
− δkr dzj ∧

(
∂

∂zl
⌟

∂3u

∂zj∂z̄k∂z̄l

)
+ dzj ∧ dz̄k ∧

(
∂

∂z̄r
⌟
∂

∂zl
⌟

∂3u

∂zj∂z̄k∂z̄l

)]
=

∑
j, k

∂4u

∂zj∂zk∂z̄j∂z̄k
−
∑
j, k, r

dz̄k ∧
(
∂

∂z̄r
⌟

∂4u

∂zj∂zr∂z̄j∂z̄k

)
−

∑
j, k, l

dzj ∧
(
∂

∂zl
⌟

∂4u

∂zj∂zk∂z̄k∂z̄l

)
+
∑
j, k, l, r

dzj ∧ dz̄k ∧
(
∂

∂z̄r
⌟
∂

∂zl
⌟

∂4u

∂zj∂zr∂z̄k∂z̄l

)
(1.6)

and

T2 = ∂∂̄∂̄⋆∂⋆u =
∑
j, k, l, r

dzj ∧
∂

∂zj

[
dz̄k ∧

∂

∂z̄k

(
∂

∂zr

[
∂

∂z̄r
⌟
∂

∂z̄l

(
∂

∂zl
⌟u

)])]
=

∑
j, k, l, r

dzj ∧
∂

∂zj

[
dz̄k ∧

(
∂

∂z̄r
⌟
∂

∂zl
⌟

∂3u

∂zr∂z̄k∂z̄l

)]
=

∑
j, k, l

dzj ∧ dz̄k ∧
(
∂

∂z̄r
⌟
∂

∂zl
⌟

∂4u

∂zj∂zr∂z̄k∂z̄l

)
(1.7)
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and

T3 = ∂̄⋆∂∂⋆∂̄u =
∑
j, k, l, r

∂

∂zr

[
∂

∂z̄r
⌟

(
dzj ∧

∂

∂zj

[
∂

∂z̄l

(
∂

∂zl
⌟(dz̄k ∧

∂u

∂z̄k
)

)])]
= −

∑
j, k, l, r

∂

∂z̄r
⌟

[
dzj ∧ dz̄k ∧

(
∂

∂zl
⌟

∂4u

∂zr∂zj∂z̄l∂z̄k

)]
=

∑
j, k, l

dzj ∧
(
∂

∂zl
⌟

∂4u

∂zj∂zk∂z̄k∂z̄l

)
−
∑
j, k, l

dzj ∧ dz̄k ∧
(
∂

∂z̄r
⌟
∂

∂zl
⌟

∂4u

∂zj∂zr∂z̄k∂z̄l

)
(1.8)

and

T4 = ∂⋆∂̄∂̄⋆∂u =
∑
j, k, l, r

∂

∂z̄l

[
∂

∂zl
⌟

(
dz̄k ∧

∂

∂z̄k

[
∂

∂zr

(
∂

∂z̄r
⌟[dzj ∧

∂u

∂zj
]

)])]
= −

∑
j, k, l, r

∂

∂zl
⌟

(
dz̄k ∧ dzj ∧

(
∂

∂z̄r
⌟

∂4u

∂zj∂zr∂z̄k∂z̄l

))
=

∑
j, k, r

dz̄k ∧
(
∂

∂z̄r
⌟

∂4u

∂zj∂zr∂z̄j∂z̄k

)
−
∑
j, k, l, r

dz̄k ∧ dzj ∧
(
∂

∂zl
⌟
∂

∂z̄r
⌟

∂4u

∂zj∂zr∂z̄k∂z̄l

)
. (1.9)

Adding up the identities (1.6)–(1.9), we see that all the terms cancel out, except for the first
term on the r.h.s. of (1.6). We conclude that the principal part of ∆BC is

T1 + T2 + T3 + T4 =
∑
j, k

∂4u

∂zj∂zk∂z̄j∂z̄k
=

1

16

∑
j, k

(
∂2

∂x2j
+

∂2

∂y2j

)(
∂2

∂x2k
+

∂2

∂y2k

)
u.

Hence, the principal symbol of ∆BC is

σ∆BC
(x; (ξ, η))u(x) =

1

16

n∑
j, k=1

(ξ2j + η2j ) (ξ
2
k + η2k)u(x) =

[
1

4

n∑
j=1

(ξ2j + η2j )

]2
u(x),

for all forms u and all points (x; (ξ, η)) ∈ RTX in the real tangent bundle of X, where we put

(ξ, η) =
n∑
j=1

ξj(x)
∂
∂xj

+
n∑
j=1

ηj(x)
∂
∂yj
∈RTxX.

In particular, σ∆BC
(x; (ξ, η)) is injective for all x ∈ X and all (ξ, η) ̸= 0. Consequently, ∆BC is

elliptic. □

Thanks to G̊arding’s estimate for elliptic differential operators on compactmanifolds (see [Dem97,
chapter VI, corollary 2.4]), we immediately get the following analogue in the Bott-Chern context of
Theorem 1.1.6 and of Corollary 1.1.7.

Corollary 1.1.10. Let (X, ω) be a compact Hermitian manifold with dimCX = n. Fix arbitrary
p, q ∈ {0, . . . , n}.

(1) The following L2
ω-orthogonal three-space decomposition holds:

C∞
p, q(X,C) = ker∆BC ⊕ Im ∂∂̄ ⊕ (Im ∂⋆ + Im ∂̄⋆).

(2) Moreover
ker ∂ ∩ ker ∂̄ = ker∆BC ⊕ Im ∂∂̄,
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yielding the Hodge isomorphism

Hp, q
BC(X, C) ≃ H

p, q
∆BC

(X, C),

where Hp, q
∆BC

(X, C) = ker(∆BC : C∞
p, q(X, C)→ C∞

p, q(X, C)) is the Bott-Chern harmonic space.

In particular, dimHp, q
BC(X, C) < +∞.

(3) We also have

Im∆BC = Im ∂∂̄ ⊕ (Im ∂⋆ + Im ∂̄⋆) and ker(∂∂̄)⋆ = ker∆BC ⊕ (Im ∂⋆ + Im ∂̄⋆).

Hence
ker∆BC = ker ∂ ∩ ker ∂̄ ∩ ker(∂∂̄)⋆.

The analogous discussion can be had for the Aeppli cohomology. Following the pattern described
after Definition 1.1.8, we put

Definition 1.1.11. (Schweitzer [Sch07, §.2, 2.c])
The 4-th order Aeppli Laplacian ∆A : C∞

p, q(X, C)→ C∞
p, q(X, C) is defined as

∆A := (∂∂̄)⋆(∂∂̄) + ∂∂⋆ + ∂̄∂̄⋆ + (∂∂̄)(∂∂̄)⋆ + (∂∂̄⋆)(∂∂̄⋆)⋆ + (∂∂̄⋆)⋆(∂∂̄⋆). (1.10)

As in the case of the Bott-Chern Laplacian, the first three terms suffice to produce the desired
kernel for ∆A (that will be isomorphic to the Aeppli cohomology group). However, their sum is not
elliptic, so we complete it by adding the last three terms which do not change the kernel of the sum,
but make it elliptic.

Again as in the case of the Bott-Chern Laplacian, the operator ∆A is obviously self-adjoint and
non-negative. Crucially, we also have

Proposition 1.1.12. ∆A is elliptic.

Proof. It is similar to that of Proposition 1.1.9 and is left to the reader. □

Yet again, G̊arding’s estimate for elliptic differential operators on compactmanifolds (see [Dem97,
chapter VI, corollary 2.4]) leads to the following analogue in the Aeppli context of Corollary 1.1.10.

Corollary 1.1.13. Let (X, ω) be a compact Hermitian manifold with dimCX = n. Fix arbitrary
p, q ∈ {0, . . . , n}.

(1) The following L2
ω-orthogonal three-space decomposition holds:

C∞
p, q(X,C) = ker∆A ⊕ (Im ∂ + Im ∂̄)⊕ Im (∂∂̄)⋆.

(2) Moreover
ker(∂∂̄) = ker∆A ⊕ (Im ∂ + Im ∂̄),

yielding the Hodge isomorphism

Hp, q
A (X, C) ≃ Hp, q

∆A
(X, C),

where Hp, q
∆A

(X, C) = ker(∆A : C∞
p, q(X, C)→ C∞

p, q(X, C)) is the Aeppli harmonic space.

In particular, dimHp, q
A (X, C) < +∞.

(3) We also have

Im∆A = (Im ∂ + Im ∂̄)⊕ Im (∂∂̄)⋆ and ker ∂⋆ ∩ ker ∂̄⋆ = ker∆A ⊕ Im (∂∂̄)⋆.

Hence
ker∆A = ker(∂∂̄) ∩ ker ∂⋆ ∩ ker ∂̄⋆.
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1.1.2 Duality between the Bott-Chern and Aeppli cohomologies of com-
plementary bidegrees

Recall the classical Poincaré duality for the De Rham cohomology: for every k ∈ {0, . . . , 2n}, the
bilinear pairing

Hk
DR(X, C)×H2n−k

DR (X, C)→ C, ({α}DR, {β}DR) 7→
∫
X

α ∧ β,

is well-defined (i.e. independent of the choices of representatives α and β of their respective co-
homology classes) and non-degenerate (i.e. for all non-zero classes {α}DR ∈ Hk

DR(X, C) and
{β}DR ∈ H2n−k

DR (X, C), the maps ({α}DR, ·) : H2n−k
DR (X, C)→ C and (·, {β}DR) : Hk

DR(X, C)→ C
are not identically zero). This means that Hk

DR(X, C) is the dual of H2n−k
DR (X, C).

Similarly, the classical Serre duality for the Dolbeault cohomology ensures that, for all p, q ∈
{0, . . . , n}, the bilinear pairing

Hp, q

∂̄
(X, C)×Hn−p, n−q

∂̄
(X, C)→ C, ([α]∂̄, [β]∂̄) 7→

∫
X

α ∧ β,

is well-defined and non-degenerate. Thus, Hp, q

∂̄
(X, C) is the dual of Hn−p, n−q

∂̄
(X, C).

We will now derive the analogue in the Bott-Chern-Aeppli context of the Serre duality. The
main point is the following

Proposition 1.1.14. Let (X, ω) be a compact Hermitian manifold with dimCX = n. Fix arbitrary
p, q ∈ {0, . . . , n}. Then, under the Hodge star isomorphism

⋆ = ⋆ω : C∞
p, q(X, C)→ C∞

n−q, n−p(X, C), u ∧ ⋆v̄ = ⟨u, v⟩ω dVω, (1.11)

the Bott-Chern and Aeppli three-space decompositions are related by the following isomorphisms:

⋆ : Hp, q
∆BC

(X, C) −→ Hn−q, n−p
∆A

(X, C)
⋆ : Im (∂∂̄) −→ Im (∂∂̄)⋆

⋆ : (Im ∂⋆ + Im ∂̄⋆) −→ (Im ∂ + Im ∂̄).

Proof. Thanks to the L2
ω-orthogonal three-space decompositions given by Corollaries 1.1.10 and

1.1.13, it suffices to prove the inclusions (which, once proved, will be equalities):

⋆(Hp, q
∆BC

(X, C)) ⊂ Hn−q, n−p
∆A

(X, C)
⋆(Im (∂∂̄)) ⊂ Im (∂∂̄)⋆

⋆(Im ∂⋆ + Im ∂̄⋆) ⊂ Im ∂ + Im ∂̄.

These inclusions follow easily from the following formulae (see [Dem97, chapter VI] or easy
verification based on the definition (1.12) of ⋆):

⋆⋆ = (−1)k Id on k-forms; ∂⋆ = − ⋆ ∂̄⋆, ∂̄⋆ = − ⋆ ∂⋆, d⋆ = − ⋆ d ⋆ . (1.12)

Indeed, for any form u, we have: ⋆∂∂̄u = ±(⋆∂⋆) (⋆∂̄⋆) (⋆u) = ±(∂∂̄)⋆ (⋆u) ∈ Im (∂∂̄)⋆. This
proves the second of the above inclusions. The third one can be proved analogously. It remains
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to prove the first one. Thanks to (1.12) and to the descriptions of the kernels of ∆BC and ∆A in
Corollaries 1.1.10 and 1.1.13, we get the following equivalences for every form u:

u ∈ Hp, q
∆BC

(X, C) ⇐⇒ ∂u = 0, ∂̄u = 0, (∂∂̄)⋆u = 0

⇐⇒ ∂̄⋆(⋆u) = 0, ∂⋆(⋆u) = 0, ∂∂̄(⋆u) = 0 ⇐⇒ ⋆u ∈ Hn−q, n−p
∆A

(X, C).

□

We are now ready to prove that the Aeppli cohomology is canonically dual to the Bott-Chern
cohomology of the complementary bidegree. Note that the next statement depends only on the
complex structure of the manifold, no metric is involved.

Theorem 1.1.15. Let X be a compact complex manifold with dimCX = n. Then, for all p, q ∈
{0, . . . , n}, the bilinear pairing

Hp, q
BC(X, C)×H

n−p, n−q
A (X, C)→ C, ([α]BC , [β]A) 7→

∫
X

α ∧ β,

is well-defined and non-degenerate. Thus, Hp, q
BC(X, C) is the dual of Hn−p, n−q

A (X, C).

Proof. If α is changed to another representative α+ ∂∂̄u of the same Bott-Chern cohomology class,
then

∫
X
(α+ ∂∂̄u) ∧ β =

∫
X
α ∧ β ±

∫
X
u ∧ ∂∂̄β =

∫
X
α ∧ β, since ∂∂̄β = 0. Indeed, β represents an

Aeppli class.
On the other hand, if β is changed to another representative β + ∂ξ + ∂̄ζ of the same Aeppli

cohomology class, then
∫
X
α ∧ (β + ∂ξ + ∂̄ζ) =

∫
X
α ∧ β ±

∫
X
∂α ∧ ξ ±

∫
X
∂̄α ∧ ζ =

∫
X
α ∧ β, since

∂α = 0 and ∂̄α = 0. Indeed, α represents a Bott-Chern class.
We conclude that the bilinear map in the statement is well defined (i.e. independent of the

choices of representatives of the cohomology classes involved).
To prove non-degeneracy, we fix an arbitrary Hermitian metric ω on X.
Let [α]BC ∈ Hp, q

BC(X, C) be a non-zero class. Thanks to the Hodge isomorphism for the Bott-
Chern cohomology (see (2) of Corollary 1.1.10), this class contains a unique (and necessarily non-
zero) Bott-Chern harmonic representative. Let us call it α ∈ Hp, q

∆BC
(X, C) \ {0}. By Proposition

1.1.14, we must have ⋆α ∈ Hn−q, n−p
∆A

(X, C). Then, we also have ⋆ᾱ ∈ Hn−p, n−q
∆A

(X, C), as can be
immediately checked from the description of ker∆A given in (3) of Corollary 1.1.13. Thus, ⋆ᾱ defines
a class in Hn−p, n−q

A (X, C) and, under the pairing in the statement, we get

(α, ⋆ᾱ) 7→
∫
X

α ∧ ⋆ᾱ =

∫
X

|α|2ω dVω = ||α||2ω ̸= 0.

Similarly, let [β]A ∈ Hn−p, n−q
A (X, C) be a non-zero class and let β be its Aeppli harmonic

representative. Then, β ̸= 0 and ⋆β̄ is Bott-Chern harmonic of bidegree (p, q). Since

(⋆β̄, β) 7→
∫
X

⋆β̄ ∧ β =

∫
X

|β|2ω dVω = ||β||2ω ̸= 0,

we are done. □
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1.2 The Frölicher spectral sequence

Let X be a compact complex manifold with dimCX = n. The Frölicher spectral sequence (FSS) of X
is an object that relates the complex structure of X to its differential structure at the cohomological
level. If no assumption is made on X, the individual Dolbeault cohomology groups Hp, q

∂̄
(X, C) may

be “too big” for their direct sum over all p, q with p+q = k to inject into the corresponding De Rham
cohomology group Hk

DR(X, C). In that case, they need to be “pared down” to spaces of smaller
dimensions whose direct sum injects. This reduction is made inductively: the first page, denoted by
E1, of the Frölicher spectral sequence consists of the Dolbeault cohomology of X, while every page
Er is defined to be the cohomology of the previous page Er−1. Thus, every Er is a refinement of
Er−1. The process stops (i.e. becomes stationary) after finitely many steps, which means that there
exists an r ∈ N⋆ such that Er = Er+1 = . . . . This stationary value is denoted by E∞. One says
that the spectral sequence degenerates at Er. A key feature is that, for every k, the vector spaces
Ep, q

∞ with p+ q = k add up (as a non-canonical direct sum, in general) to the De Rham cohomology
space Hk

DR(X, C). For this reason, one says that the Frölicher spectral sequence converges to the
De Rham cohomology of X. Some authors call it the Hodge-De Rham spectral sequence.

A spectral sequence can be associated, in the way that will be described below, with every
abstractly defined double complex A = (Ap, q, ∂1, ∂2), where A = ⊕p, q∈ZAp, q is a bigraded vector
space endowed with endomorphisms ∂1 : A

p, q → Ap+1, q of bidegree (or type) (1, 0) and ∂2 : A
p, q →

Ap, q+1 of bidegree (or type) (0, 1), such that the sum d = ∂1 + ∂2 is integrable, namely d2 = 0.
Even more generally, one can associate a spectral sequence with any differential module (K, d)

equipped with a filtration {0} ⊂ · · · ⊂ Kp+1 ⊂ Kp ⊂ · · · ⊂ K by differential submodules (i.e.
d(Kp) ⊂ Kp for all p)).

In what follows, we will only be concerned with the double complex A = (C∞
p, q(X, C), ∂, ∂̄) on

a compact complex manifold X, but many results apply in the more general abstract setting.
There are at least two equivalent points of view on the FSS: the classical, more formal one, that

employs the language of filtrations and is widely used in algebraic geometry; and a more recent and
concrete one, introduced by Cordero, Fernández, Gray and Ugarte in [CFGU97], that is more suited
to our purposes throughout this book. We will describe both of them.

1.2.1 The classical point of view

In this subsection, we will follow, to some extent, the presentation in [Voi02, §.8.3].

Filtration on the spaces of smooth forms

For all non-negative integers k ≤ 2n and p ≤ min{k, n}, we let

FpC∞
k (X, C) :=

⊕
i≥p

C∞
i, k−i(X) ⊂ C∞

k (X, C)

and get a filtration of C∞
k (X, C) for every k:

{0} ⊂ · · · ⊂ Fp+1C∞
k (X, C) ⊂ FpC∞

k (X, C) ⊂ · · · ⊂ C∞
k (X, C). (1.13)

Definition 1.2.1. A k-form α lying in FpC∞
k (X, C) is said to be of filtration type Fp.

Note that d(FpC∞
k (X, C)) ⊂ FpC∞

k+1(X, C) for all p, k, so the De Rham complex restricts to
FpC∞

• (X, C) for every p. The cohomology of this restricted De Rham complex features on the left
in (1.14) below and is a refined version of the filtration (1.15) on the De Rham cohomology.
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Filtration on the De Rham cohomology spaces

On the other hand, let

F pHk
DR(X, C) :=

FpC∞
k (X, C) ∩ ker d

FpC∞
k (X, C) ∩ Im d

⊂ Hk
DR(X, C),

be the subspace of De Rham cohomology classes of degree k that are representable by forms in
FpC∞

k (X, C). It can be easily seen that F pHk
DR(X, C) coincides with the image of the following

canonical linear map induced by the identity:

ker (d : FpC∞
k (X, C)→ FpC∞

k+1(X, C))
Im (d : FpC∞

k−1(X, C)→ FpC∞
k (X, C))

−→ Hk
DR(X, C), (1.14)

which, for every form u =
∑
i≥p

ui, k−i ∈ ker d ∩ FpC∞
k (X, C), maps the class of u modulo Im (d :

FpC∞
k−1(X, C)→ FpC∞

k (X, C)) to the De Rham class {
∑
i≥p

ui, k−i}DR of u.

In this way, we get a filtration of Hk
DR(X, C) for every k:

{0} ⊂ · · · ⊂ F p+1Hk
DR(X, C) ⊂ F pHk

DR(X, C) ⊂ · · · ⊂ Hk
DR(X, C). (1.15)

The successive quotients of the filtration (1.15), namely the vector spaces

GpH
p+q
DR (X, C) :=

F pHp+q
DR (X, C)

F p+1Hp+q
DR (X, C)

,

are called the graded modules associated with the filtration (1.15). The analogous objects
GpC

∞
p+q(X, C) for the filtration (1.13) will also be used.

Definition of the Frölicher spectral sequence

The following theorem is a general result that applies to all spectral sequences although we only
state it in the Frölicher case.

Theorem 1.2.2. For every r ∈ N and p, q ∈ {0, . . . , n}, there is a complex of C-vector spaces:

. . .
dr−→ Ep, q

r (X)
dr−→ Ep+r, q−r+1

r (X)
dr−→ . . .

whose morphisms, called differentials, are all of type (r, −r + 1), with the following properties.

(i) Ep, q
0 (X) = GpC

∞
p+q(X, C) =

FpC∞
p+q(X, C)

Fp+1C∞
p+q(X, C)

= C∞
p, q(X, C) and d0 = ∂̄;

(ii) For every r ∈ N and every bidegree (p, q), there is a canonical isomorphism

Ep, q
r+1(X) ≃ ker(dr : E

p, q
r (X)→ Ep+r, q−r+1

r (X))

Im (dr : E
p−r, q+r−1
r (X)→ Ep, q

r (X))
.

(iii) For r sufficiently large and every bidegree (p, q), there is a canonical isomorphism

Ep, q
r (X) ≃ GpH

p+q
DR (X, C) :=

F pHp+q
DR (X, C)

F p+1Hp+q
DR (X, C)
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whose inverse GpH
p+q
DR (X, C)→ Ep, q

r is induced by the projection

F pHp+q
DR (X, C) ∋

{∑
i≥p

ui, p+q−i
}
DR

7→ {up, q}Er ∈ Ep, q
r (X).

Notation 1.2.3. For all r ≫ 1 and all p, q, we let

Ep, q
∞ (X) := Ep, q

r (X) = Ep, q
r+1(X) = Ep, q

r+2(X) = . . . .

Definition 1.2.4. (i) The sequence of complexes

(Ep, q
r (X), dr)r∈N

is called the Frölicher spectral sequence (FSS) of the compact complex manifold X.
Alternatively, it is called the spectral sequence associated with the filtration F •H•

DR(X, C) of
the De Rham cohomology of X.

(ii) For every r ∈ N, the family of complexes (E•, •
r (X), dr) is called the r-th page of the

Frölicher spectral sequence.

(iii) The Frölicher spectral sequence of X is said to degenerate at Er, or at the r-th page,
if Ep, q

r (X) = Ep, q
r+1(X) = Ep, q

r+2(X) = . . . for all p, q ∈ {0, . . . , n}. In this case, we write

Er(X) = E∞(X).

The degeneration property Er(X) = E∞(X) is obviously equivalent to all the differentials ds
vanishing identically for all s ≥ r.

As for the statement of Theorem 1.2.2, note that (i) says that the zero-th page of the FSS is
the Dolbeault complex of X, (ii) says that, for every r, the (r+ 1)-st page is the cohomology of the
previous page r-th page (hence the first page E1 is the Dolbeault cohomology of X), while (iii) gives
a canonical isomorphism

Ep, q
∞ (X) ≃ GpH

p+q
DR (X, C)

in every bidegree (p, q). However, the isomorphism Hk
DR(X, C) ≃ ⊕0≤p≤kGpH

k
DR(X, C) is not

canonical, so, in general, we only get non-canonical isomorphisms:

Hk
DR(X, C) ≃

⊕
p+q=k

Ep, q
∞ (X), k ∈ {0, . . . , 2n}. (1.16)

Consequently, the degeneration property Er(X) = E∞(X) is equivalent to the existence of non-
necessarily canonical isomorphisms

Hk
DR(X, C) ≃

⊕
p+q=k

Ep, q
r (X), k ∈ {0, . . . , 2n}. (1.17)

On the other hand, since X is compact, all the spaces Ep, q
1 (X) = Hp, q

∂̄
(X, C) are finite dimen-

sional. Meanwhile, every Ep, q
r+1(X) is a quotient of a subspace of Ep, q

r (X), so

· · · ≤ dimEp, q
r+1(X) ≤ dimEp, q

r (X) ≤ · · · ≤ dimEp, q
1 (X), p, q ∈ {0, . . . , n}.

Together with (1.16), this last fact implies
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Corollary 1.2.5. The following dimension inequalities hold on any compact complex manifold X:

bk =
∑
p+q=k

ep, q∞ ≤ · · · ≤
∑
p+q=k

ep, qr+1 ≤
∑
p+q=k

ep, qr ≤
∑
p+q=k

hp, q
∂̄
, k ∈ {0, . . . , 2n}, r ∈ N⋆, (1.18)

where the bk := dimHk
DR(X) are the Betti numbers, the hp, q

∂̄
:= dimHp, q

∂̄
(X) = ep, q1 are the

Hodge numbers, and the ep, qr := dimEp, q
r (X).

Consequently, the degeneration property Er(X) = E∞(X) is purely numerical:

Corollary 1.2.6. Let r ∈ N⋆. The Frölicher spectral sequence of X degenerates at Er if and only if

bk =
∑
p+q=k

ep, qr

for all k ∈ {0, . . . , 2n}.

Proof of Theorem 1.2.2

Further notation and general definitions, including those of the differentials (dr)r≥1, will be intro-
duced in the course of this proof. We will explicitly define the spaces Ep, q

r (X) and the differentials
dr and will then show that they satisfy the conclusions of Theorem 1.2.2.

For all r, p, q, consider the vector subspace of FpC∞
p+q(X, C):

Zp, qr :=

{
α ∈ FpC∞

p+q(X, C) | dα ∈ Fp+rC∞
p+q+1(X, C)

}
.

Thus, for a form α =
∑

i≥p α
i, p+q−i ∈ FpC∞

p+q(X, C), the condition dα ∈ Fp+rC∞
p+q+1(X, C) is

equivalent to the vanishing of all the pure-type components of dα whose holomorphic degree is
≤ p + r − 1. It is, therefore, a partial vanishing condition on dα, or a kind of partial closedness
condition on α, that becomes stronger and stronger as r increases.

The space of exact forms of filtration type Fp with Fp−r-type potentials is defined as

Bp, qr := FpC∞
p+q(X, C) ∩ d

(
Fp−rC∞

p+q−1(X, C)
)

= d

(
Zp−r, q+r−1
r

)
, (1.19)

where the last identity is a useful alternative description of the space Bp, qr that the reader will easily
check. Finally, set

Ep, q
r (X) =

Zp, qr

Bp, qr−1 + Z
p+1, q−1
r−1

. (1.20)

We pause briefly to observe a few basic properties of these spaces relative to one another.

Lemma 1.2.7. The following inclusions hold for all r, p, q:

(a) Bp, qr−1 ⊂ Bp, qr ⊂ Zp, qr and Zp+1, q−1
r−1 ⊂ Zp, qr .

In particular, Bp, qr−1+Z
p+1, q−1
r−1 is contained in Zp, qr , so definition (1.20) of Ep, q

r (X) is meaningful.

(b) Zp+1, q−1
r−1 ⊂ Zp, qr ⊂ Zp, qr−1.
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In particular, we infer from (a) and (b) that, in every fixed bidegree (p, q), the spaces Zp, qr become
smaller and smaller, while the spaces Bp, qr become larger and larger, as r increases.

(c) d(Zp, qr ) ⊂ Zp+r, q−r+1
r , hence also d(Zp+1, q−1

r−1 ) ⊂ Zp+r, q−r+1
r−1 ;

(d) d(Bp, qr−1) = {0}, hence d(Bp, qr−1) ⊂ B
p+r, q−r+1
r−1

Proof. (a) If α ∈ Bp, qr−1, then α ∈ FpC∞
p+q(X, C) and α = dβ for some β ∈ Fp−r+1C∞

p+q−1(X, C).
Since Fp−r+1C∞

p+q−1(X, C) ⊂ Fp−rC∞
p+q−1(X, C), we get that α = dβ ∈ Bp, qr . This proves the first

inclusion.
On the other hand, if α = dβ ∈ Bp, qr , then α ∈ FpC∞

p+q(X, C) and dα = 0, hence α ∈ Zp, qr . This
proves the second inclusion.

To prove the third inclusion, we notice that α ∈ Zp+1, q−1
r−1 if and only if α ∈ Fp+1C∞

p+q(X, C)
and dα ∈ Fp+rC∞

p+q+1(X, C). On the other hand, α ∈ Zp, qr if and only if α ∈ FpC∞
p+q(X, C) and

dα ∈ Fp+rC∞
p+q+1(X, C). Since Fp+1C∞

p+q(X, C) ⊂ FpC∞
p+q(X, C), the inclusion is proved.

(b) All three spaces Zp+1, q−1
r−1 , Zp, qr and Zp, qr−1 consist of (p + q)-forms α of respective filtration

types Fp+1, Fp and Fp, such that dα is of respective filtration types Fp+r, Fp+r and Fp+r−1. The
two stated inclusions follow from the inclusions Fp+1 ⊂ Fp and Fp+r ⊂ Fp+r−1.

(c) The first inclusion follows at once from d(Zp, qr ) ⊂ Fp+rC∞
p+q+1(X, C) and d2 = 0.

(d) This is obvious (see last identity in (1.19)). □

Lemma 1.2.7 shows us how to define the differentials in the spectral sequence. We let them be
induced by d in the following way:

dr : E
p, q
r (X) −→ Ep+r, q−r+1

r (X), dr({α}Er) := {dα}Er . (1.21)

Given (1.20), we see that this definition is well posed thanks to (c) of Lemma 1.2.7 and to the
inclusion of the first space below in the last:

d(Bp, qr−1 + Z
p+1, q−1
r−1 ) = d(Zp+1, q−1

r−1 ) = Bp+r, q−r+1
r−1 ⊂ Bp+r, q−r+1

r−1 + Zp+r+1, q−r
r−1

where the first (resp. second) identity follows from (d) of Lemma 1.2.7 (resp. from (1.19)).

To finish the proof of Theorem 1.2.2, we will now check that the objects we have defined satisfy
properties (i)–(iii) in the statement.

• Checking (i). From the definitions, we get:

· Zp, q0 = FpC∞
p+q(X, C), because the condition dα ∈ FpC∞

p+q+1(X, C) is automatically satisfied
by all α ∈ FpC∞

p+q(X, C);
· Bp, q−1 = FpC∞

p+q(X, C) ∩ d(Fp+1C∞
p+q−1(X, C)) = d(Fp+1C∞

p+q−1(X, C));

· Zp+1, q−1
−1 = Fp+1C∞

p+q(X, C), because the condition dα ∈ FpC∞
p+q+1(X, C) is automatically

satisfied by all α ∈ Fp+1C∞
p+q(X, C).

Consequently, Bp, q−1 ⊂ Z
p+1, q−1
−1 , hence Bp, q−1 + Zp+1, q−1

−1 = Zp+1, q−1
−1 = Fp+1C∞

p+q(X, C). We get:

Ep, q
0 (X) =

FpC∞
p+q(X, C)

Fp+1C∞
p+q(X, C)

= C∞
p, q(X, C).
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Moreover, the map d0 : E
p, q
0 (X)→ Ep, q+1

0 (X) acts as follows. For every α ∈ C∞
p, q(X, C),

α 7→
(
dα = ∂α + ∂̄α mod Fp+1C∞

p+q+1(X, C)
)

= ∂̄α,

because ∂α ∈ Fp+1C∞
p+q+1(X, C). Therefore, d0 = ∂̄.

• Checking (ii). We will prove that the map Zp, qr+1 ∋ α 7→ {α}Er induces a well-defined linear
bijection:

Zp, qr+1

Bp, qr + Zp+1, q−1
r

−→ ker(dr : E
p, q
r (X)→ Ep+r, q−r+1

r (X))

Im (dr : E
p−r, q+r−1
r (X)→ Ep, q

r (X))
. (1.22)

· The first thing we need to prove in order to show well-definedness is the following implication:

α ∈ Zp, qr+1 =⇒ {α}Er ∈ ker(dr : E
p, q
r (X)→ Ep+r, q−r+1

r (X)). (1.23)

Let α ∈ Zp, qr+1. Then, on the one hand, dα ∈ Fp+r+1C∞
p+q+1(X, C), so dα ∈ Zp+r+1, q−r

r−1 ⊂
Zp+r+1, q−r
r−1 + Bp+r, q−r+1

r−1 . Hence, {dα}Er = 0 ∈ Ep+r, q−r+1
r .

On the other hand, since Zp, qr+1 ⊂ Zp, qr (see (b) of Lemma 1.2.7), α represents a class {α}Er ∈
Ep, q
r (X). Then, by (1.21), dr({α}Er) = {dα}Er = 0, the last identity having been proved just above.
Thus, implication (1.23) is proved.

· The second thing we need to prove in order to show well-definedness is the following implication:

α ∈ Bp, qr + Zp+1, q−1
r =⇒ {α}Er ∈ Im (dr : E

p−r, q+r−1
r (X)→ Ep, q

r (X)). (1.24)

Let α = β+dγ, with β ∈ Zp+1, q−1
r and dγ ∈ Bp, qr . The condition on dγ means that we can choose

γ ∈ Zp−r, q+r−1
r (see (1.19)). Meanwhile, Zp+1, q−1

r ⊂ Zp+1, q−1
r−1 ⊂ Zp+1, q−1

r−1 + Bp, qr−1, so the condition
on β implies that {β}Er = 0. Therefore, we get

{α}Er = {β}Er + {dγ}Er = dr({γ}Er) ∈ Im (dr : E
p−r, q+r−1
r (X)→ Ep, q

r (X)),

where the class {γ}Er is a meaningful object because γ ∈ Zp−r, q+r−1
r .

This proves implication (1.24).

· We will now prove that the map (1.22) is injective.
Let α ∈ Zp, qr+1 such that {α}Er ∈ Im (dr : Ep−r, q+r−1

r (X) → Ep, q
r (X)). We have to prove that

α ∈ Bp, qr + Zp+1, q−1
r .

The hypothesis on {α}Er means that {α}Er = {dβ}Er for some β ∈ Zp−r, q+r−1
r . This is further

equivalent to
α = dβ + u+ v, with u ∈ Zp+1, q−1

r−1 and v ∈ Bp, qr−1.

Hence, we get: dβ ∈ d(Zp−r, q+r−1
r ) = Bp, qr (see (1.19) for the last identity). Meanwhile, we have:

v ∈ Bp, qr−1 ⊂ Bp, qr (see (a) of Lemma 1.2.7 for the inclusion), hence dβ + v ∈ Bp, qr . We will now show
that u ∈ Zp+1, q−1

r . This will imply that α = u+ (dβ + v) ∈ Zp+1, q−1
r + Bp, qr and we will be done.

To show that u ∈ Zp+1, q−1
r , we need to show two things:

u ∈ Fp+1C∞
p+q(X, C) and du ∈ Fp+r+1C∞

p+q+1(X, C).

However, we know that u ∈ Zp+1, q−1
r−1 , hence u ∈ Fp+1C∞

p+q(X, C). On the other hand, du = dα
(because d(dβ+v) = 0, since dβ+v ∈ Bp, qr ⊂ Im d) and dα ∈ Fp+r+1C∞

p+q+1(X, C) because α ∈ Z
p, q
r+1

(by hypothesis).
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· We will now prove that the map (1.22) is surjective.
Let α ∈ Zp, qr such that {α}Er ∈ ker dr. The latter property means that {dα}Er = 0 ∈

Ep+r, q−r+1
r (X), which is equivalent to dα ∈ Bp+r, q−r+1

r−1 + Zp+r+1, q−r
r−1 , and further equivalent to

dα = dβ + γ, with β ∈ Zp+1, q−1
r−1 and γ ∈ Zp+r+1, q−r

r−1 .

On the one hand, this implies that d(α − β) = γ ∈ Zp+r+1, q−r
r−1 ⊂ Fp+r+1C∞

p+q+1(X, C), which
further implies that

α− β ∈ Zp, qr+1 (1.25)

since α − β ∈ FpC∞
p+q(X, C). This last fact follows from α ∈ FpC∞

p+q(X, C) (because α ∈ Zp, qr , by
assumption) and from β ∈ Fp+1C∞

p+q(X, C) ⊂ FpC∞
p+q(X, C).

On the other hand, β ∈ Zp+1, q−1
r−1 ⊂ Bp, qr−1 + Z

p+1, q−1
r−1 , hence {β}Er = 0 ∈ Ep, q

r (X), so

{α− β}Er = {α}Er ∈ Ep, q
r (X). (1.26)

We see that (1.25) and (1.25) prove, between them, the surjectivity of the map (1.22).

• Checking (iii). Fix p, q ∈ {0, . . . , n}. Let m := p+ q. For all s≫ 1 (at least for s ≥ m), we have:
F sC∞

m (X, C) = {0}, F sC∞
m−1(X, C) = {0} and F sC∞

m+1(X, C) = {0}. Therefore,

Zp, qs+1 =

{
α ∈ FpC∞

p+q(X, C) | dα ∈ Fp+s+1C∞
m+1(X, C) = {0}

}
= FpC∞

p+q(X, C) ∩ ker d.

Similarly, we get

Zp+1, q−1
s = Fp+1C∞

p+q(X, C) ∩ ker d.

On the other hand, Bp, qs = d(Zp−s, q+s−1
s ). Now, since s ≥ m = p + q ≥ p, we have p − s ≤ 0,

hence Fp−sC∞
p+q−1(X, C) = C∞

p+q−1(X, C). Therefore, we get

Zp−s, q+s−1
s =

{
α ∈ C∞

p+q−1(X, C) | dα ∈ FpC∞
p+q(X, C)

}
,

hence
Bp, qs = d(Zp−s, q+s−1

s ) = FpC∞
p+q(X, C) ∩ Im d, s ≥ m = p+ q.

Putting together the results of these computations, we infer that, for all s ≥ p+ q, we have:

Ep, q
s+1(X) =

Zp, qs+1

Zp+1, q−1
s + Bp, qs

=
FpC∞

p+q(X, C) ∩ ker d

[FpC∞
p+q(X, C) ∩ im d] + [Fp+1C∞

p+q(X, C) ∩ ker d]

(a)
≃

FpC∞
p+q(X,C)∩ker d

FpC∞
p+q(X,C)∩im d

[FpC∞
p+q(X,C)∩im d]+[Fp+1C∞

p+q(X,C)∩ker d]
FpC∞

p+q(X,C)∩im d

(b)
≃ F pHp+q

DR (X, C)
Fp+1C∞

p+q(X,C)∩ker d
Fp+1C∞

p+q(X,C)∩im d

=
F pHp+q

DR (X, C)
F p+1Hp+q

DR (X, C)
= GpH

p+q
DR (X, C),

where the canonical isomorphisms (a) and (b) followed respectively from the general canonical
isomorphisms:

G

H
≃ G/K

H/K
and

A+B

A
≃ B

A ∩B
,
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that are elementarily known to hold for any modules K ⊂ H ⊂ G and A,B.

The proof of Theorem 1.2.2 is complete. □

We end this subsection with the following useful result that gives a necessary and sufficient
condition for the spaces F pHk

DR(X, C) in the filtration (1.15) of Hk
DR(X, C) to coincide with the

more refined spaces on the left-hand side of (1.14). We say that d strictly preserves the filtration
in this case. This result is taken from [Del71, Proposition 1.3.2], but our presentation will mainly
follow [SB18, Lemma 1.3].

Proposition 1.2.8. The Frölicher spectral sequence of X degenerates at E1 if and only if

F pHk
DR(X, C) =

ker (d : FpC∞
k (X, C)→ FpC∞

k+1(X, C))
Im (d : FpC∞

k−1(X, C)→ FpC∞
k (X, C))

. (1.27)

for all k ∈ {0, . . . , 2n} and all p ∈ {0, . . . ,min(k, n)}.

Proof. The latter property in the equivalence we have to prove amounts to having the identity

(⋆p) d(FpC∞
k−1) = FpC∞

k ∩ Im d

for all k ∈ {0, . . . , 2n} and all p ∈ Z. Note that the inclusion “⊂” always holds trivially.

“ =⇒ ” Suppose that E1(X) = E∞(X). We fix an arbitrary k ∈ {0, . . . , 2n} and will prove
(⋆p) by downward induction on p. It is clear that (⋆p) holds trivially for all p ≥ k + 1 because
FpC∞

k = FpC∞
k−1 = {0} in that case.

Now, suppose that (⋆p+1) holds for some p. We will prove that (⋆p) also holds by proving, by
upward induction on l, that the following identity holds:

(⋆p, l) d(FpC∞
k−1) = FpC∞

k ∩ d(Fp−lC∞
k−1)

for every l. Again, the inclusion “⊂” always holds trivially, while identity (⋆p, l) holds trivially when
l = 0 because d(FpC∞

k−1) ⊂ FpC∞
k .

Having fixed an arbitrary l ≥ 1, suppose that (⋆p, l−1) holds. We will prove (⋆p, l).
The hypothesis E1(X) = E∞(X) amounts to all the maps dr vanishing identically for all r ≥ 1.

Let q be such that k = p− l+ q+1. The vanishing of the map dl : E
p−l, q
l (X)→ Ep, q−l+1

l (X) means

that, for every α ∈ Zp−l, ql (i.e. for every α ∈ Fp−lC∞
k−1 such that dα ∈ FpC∞

k ), we can write

dα = dw + v

for forms w ∈ Zp−l+1, q−1
l−1 (i.e. w ∈ Fp−l+1C∞

k−1 and dw ∈ FpC∞
k ) and v ∈ Zp+1, q−l

l−1 (i.e. v ∈ Fp+1C∞
k

and dv ∈ Fp+lC∞
k+1). We get v = d(α− w), hence

v ∈ Fp+1C∞
k ∩ Im d = d(Fp+1C∞

k−1),

where the last identity is the inductive hypothesis (⋆p+1).
Since d(Fp+1C∞

k−1) ⊂ d(Fp−l+1C∞
k−1) and w ∈ Fp−l+1C∞

k−1, this implies that

dα = dw + v ∈ FpC∞
k ∩ d(Fp−l+1C∞

k−1) = d(FpC∞
k−1),

where the last identity is the inductive hypothesis (⋆p, l−1).
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Since dα was chosen arbitrarily in FpC∞
k ∩ d(Fp−lC∞

k−1), we have proved the inclusion FpC∞
k ∩

d(Fp−lC∞
k−1) ⊂ d(FpC∞

k−1), which is nothing but the non-trivial inclusion in (⋆p, l).

“⇐=” Suppose that (⋆p) holds for all k and p. Then (⋆p, l) holds for all k, p and all l ∈ {0, . . . , p}.
We need to prove that E1(X) = E∞(X), which is equivalent to proving that all the maps dl :
Ep−l, q
l (X) → Ep, q−l+1

l (X) vanish identically for all l ≥ 1 and all p, q. This is further equivalent to
proving the inclusion:

d(Zp−l, ql ) ⊂ d(Zp−l+1, q−1
l−1 ) + Zp+1, q−l

l−1 (1.28)

for all l ≥ 1 and all p, q.
To prove this inclusion, let α ∈ Zp−l, ql . Then, dα ∈ FpC∞

k ∩ d(Fp−lC∞
k−1). Hence, by (the

non-trivial inclusion of) (⋆p, l), dα ∈ d(FpC∞
k−1). Thus, there exists w ∈ FpC∞

k−1 such that dα = dw.

Now, w ∈ Zp−l+1, q−1
l−1 (or, equivalently, w ∈ Fp−l+1C∞

k−1 and dw ∈ FpC∞
k ). Indeed, we even have:

w ∈ FpC∞
k−1 ⊂ Fp−l+1C∞

k−1 (the inclusion being a consequence of p ≥ p − l + 1, since l ≥ 1) and
dw = dα ∈ FpC∞

k .
We conclude that

dα = dw ∈ d(Zp−l+1, q−1
l−1 ) ⊂ d(Zp−l+1, q−1

l−1 ) + Zp+1, q−l
l−1 .

This proves inclusion (1.28) and we are done. □

1.2.2 The Cordero-Fernández-Gray-Ugarte point of view

In this subsection, we will follow the presentation in [CFGU97], but with significant additions and
modifications. Although the two points of view on the Frölicher spectral sequence (FSS) discussed
in this book are equivalent, the main difference is that the cohomology classes that constitute the
spaces Ep, q

r (X) are represented by pure-type forms in the Cordero-Fernández-Gray-Ugarte approach.
This is certainly not the case in the classical approach, where these representatives α are only of
filtration type Fp such that dα is of filtration type Fp+r (see (1.20) and the definition of Zp, qr in
1.2.1).

Terminology and the main result

The following terminology is taken from [Pop19] and was also used in [PSU20].

Definition 1.2.9. Fix r ≥ 2 and p, q ∈ {0, . . . , n}.
(i) A form α ∈ C∞

p, q(X, C) is said to be Er-closed if and only if there exist forms ul ∈ C∞
p+l, q−l(X)

with l ∈ {1, . . . , r − 1} satisfying the following tower of r equations:

∂̄α = 0

∂α = ∂̄u1

∂u1 = ∂̄u2
...

∂ur−2 = ∂̄ur−1.

We say in this case that ∂̄α = 0 and ∂α runs at least (r − 1) times. An (r − 1)-tuple
(u1, . . . , ur−1) of forms with the above property is called a system of ∂̄-potentials for ∂α.
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(i’) If we only have ∂̄α = 0, we say that α is E1-closed or ∂̄-closed.

(i”) We set X p, q
r := {α ∈ C∞

p, q(X, C) | α is Er-closed}.

(ii) Fix r ≥ 2. A form α ∈ C∞
p, q(X, C) is Er-exact if and only if there exist forms ζ ∈ C∞

p−1, q(X)
and ξ ∈ C∞

p, q−1(X) such that
α = ∂ζ + ∂̄ξ,

with ξ arbitrary and ζ satisfying the following tower of (r − 1) equations:

∂̄ζ = ∂vr−3

∂̄vr−3 = ∂vr−4

...

∂̄v1 = ∂v0

∂̄v0 = 0,

for some forms v0, . . . , vr−3. (When r = 2, ζr−2 = ζ0 must be ∂̄-closed.)
We say in this case that ∂̄ζ reaches 0 in at most (r− 1) steps. An (r− 2)-tuple (v0, . . . , vr−3)

of forms with the above property is called a system of ∂-potentials for ∂̄ζ.

(ii’) If α ∈ Im ∂̄, we say that α is E1-exact or ∂̄-exact.

(ii”) We set Yp, qr := {α ∈ C∞
p, q(X, C) | α is Er-exact}.

Note the obvious inclusions:

· · · ⊂ Yp, qr ⊂ Yp, qr+1 ⊂ · · · ⊂ X
p, q
r+1 ⊂ X p, q

r ⊂ . . . ,

a twofold reason for the dimension of the quotient X p, q
r /Yp, qr to be non-increasing with r.

The main result of this subsection is the following explicit description of the Frölicher spectral
sequence by means of pure-type forms. The reader uninterested in the formal description of the FSS
spelt out in §.1.2.2 may wish to adopt the following result as the definition of the FSS.

Theorem 1.2.10. (Cordero-Fernández-Gray-Ugarte [CFGU97]) Let X be a compact complex man-
ifold with dimCX = n. Fix r ∈ N⋆ and p, q ∈ {0, . . . , n}. Then:

(1) the spaces in the Frölicher spectral sequence of X have canonical isomorphisms:

Ep, q
r (X) ≃ X

p, q
r

Yp, qr
;

(2) the differentials in the Frölicher spectral sequence of X are given by

dr : E
p, q
r (X)→ Ep+r, q−r+1

r (X), dr

(
{α}Er

)
= (−1)r−1{∂ur−1}Er ,

for any choice of Er-closed representatives α ∈ C∞
p, q(X, C) and any choice of ∂̄-potentials u1, . . . , ur−1

of ∂α as in (i) of Definition 1.2.9.
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Proof of (1) of Theorem 1.2.10

We will keep the notation of §.1.2.2. Starting from definition (1.20) of Ep, q
r (X), we get canonical

isomorphisms:

Ep, q
r (X) ≃

Zp, qr /Zp+1, q−1
r−1

(Bp, qr−1 + Z
p+1, q−1
r−1 )/Zp+1, q−1

r−1

≃
Zp, qr /Zp+1, q−1

r−1

Bp, qr−1/(B
p, q
r−1 ∩ Z

p+1, q−1
r−1 )

from the general canonical isomorphisms G/H ≃ (G/K)/(H/K) and (A+B)/A ≃ B/(A∩B) that
are elementarily known to hold for any modules K ⊂ H ⊂ G and A,B (and were already used in
§.1.2.2). So, it suffices to prove the following canonical isomorphisms:

(a)
Zp, qr

Zp+1, q−1
r−1

≃ X p, q
r and (b)

Bp, qr−1

Bp, qr−1 ∩ Z
p+1, q−1
r−1

≃ Yp, qr .

• Proof of (a). Starting from the definition of the spaces Zp, qr , we compute:

Zp, qr

Zp+1, q−1
r−1

=
FpC∞

p+q ∩ d−1(Fp+rC∞
p+q+1)

Fp+1C∞
p+q ∩ d−1(Fp+rC∞

p+q+1)

=
{αp, q + αp+1, q−1 + · · ·+ αp+q, 0 | d(αp, q + αp+1, q−1 + · · ·+ αp+q, 0) ∈ Fp+rC∞

p+q+1}
{αp+1, q−1 + · · ·+ αp+q, 0 | d(αp+1, q−1 + · · ·+ αp+q, 0) ∈ Fp+rC∞

p+q+1}
(i)
≃ {αp, q | ∃αp+1, q−1, . . . , αp+q, 0 s. t. d(αp, q + αp+1, q−1 + · · ·+ αp+q, 0) ∈ Fp+rC∞

p+q+1}
= X p, q

r ,

where the isomorphism (i) follows from the fact that the kernel of the following linear surjection
induced by the projection onto the (p, q)-type component:

{αp, q + αp+1, q−1 + · · ·+ αp+q, 0 | d(αp, q + αp+1, q−1 + · · ·+ αp+q, 0) ∈ Fp+rC∞
p+q+1}

−→

{αp, q | ∃αp+1, q−1, . . . , αp+q, 0 s. t. d(αp, q + αp+1, q−1 + · · ·+ αp+q, 0) ∈ Fp+rC∞
p+q+1}

is {αp+1, q−1 + · · ·+ αp+q, 0 | d(αp+1, q−1 + · · ·+ αp+q, 0) ∈ Fp+rC∞
p+q+1}.

• Proof of (b). We start by noticing that

Bp, qr−1 ∩ Z
p+1, q−1
r−1 = d(Zp−r+1, q+r−2

r−1 ) ∩ Zp+1, q−1
r−1

(i)
= d(Zp−r+1, q+r−2

r−1 ) ∩ Fp+1C∞
p+q(X, C)

(ii)
= Fp+1C∞

p+q(X, C) ∩ d(Fp−r+1C∞
p+q−1(X, C)),

where (i) follows from Zp+1, q−1
r−1 ⊂ Fp+1C∞

p+q(X, C) and from d2 = 0, while (ii) follows from the

inclusions Zp−r+1, q+r−2
r−1 ⊂ Fp−r+1C∞

p+q−1(X, C) and Fp+1C∞
p+q(X, C) ⊂ FpC∞

p+q(X, C).
Therefore, we get:
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Bp, qr−1

Bp, qr−1 ∩ Z
p+1, q−1
r−1

=
FpC∞

p+q ∩ d(Fp−r+1C∞
p+q−1)

Fp+1C∞
p+q ∩ d(Fp−r+1C∞

p+q−1)

=
{dβ ∈ d(Fp−r+1C∞

p+q−1) | 0 = (dβ)p−r+1, q+r−1 = · · · = (dβ)p−1, q+1}
{dβ ∈ d(Fp−r+1C∞

p+q−1) | 0 = (dβ)p−r+1, q+r−1 = · · · = (dβ)p−1, q+1 = (dβ)p, q}
(i)
≃ {(dβ)p, q | dβ ∈ d(Fp−r+1C∞

p+q−1), 0 = (dβ)p−r+1, q+r−1 = · · · = (dβ)p−1, q+1}
= Yp, qr ,

where the isomorphism (i) follows from the fact that the kernel of the following linear surjection
induced by the projection onto the (p, q)-type component:

{dβ ∈ d(Fp−r+1C∞
p+q−1) | 0 = (dβ)p−r+1, q+r−1 = · · · = (dβ)p−1, q+1}

−→

{(dβ)p, q | dβ ∈ d(Fp−r+1C∞
p+q−1), 0 = (dβ)p−r+1, q+r−1 = · · · = (dβ)p−1, q+1}

is {dβ ∈ d(Fp−r+1C∞
p+q−1) | 0 = (dβ)p−r+1, q+r−1 = · · · = (dβ)p−1, q+1 = (dβ)p, q}.

Proof of (2) of Theorem 1.2.10

The main point is the following

Lemma 1.2.11. (a) The following linear maps are well defined:

X p, q
r

T p, q
r−→ Zp, qr

Zp+1, q−1
r−1

P p, q
r−→ Zp, qr

Zp+1, q−1
r−1 + Bp, qr−1

= Ep, q
r (X)

X p, q
r ∋ α 7→ (α− u1 + u2 − · · ·+ (−1)r−1 ur−1 mod Zp+1, q−1

r−1 ) ∈ Zp, qr /Zp+1, q−1
r−1

Zp, qr /Zp+1, q−1
r−1 ∋ (ρ mod Zp+1, q−1

r−1 ) 7→ (ρ mod (Zp+1, q−1
r−1 + Bp, qr−1) ∈ Zp, qr /(Zp+1, q−1

r−1 + Bp, qr−1),

where (u1, . . . , ur−1) is an arbitrary system of ∂̄-potentials for ∂α.

(b) The map T p, qr is an isomorphism (and P p, q
r is surjective).

(c) The restriction to Zp, qr of the projection C∞
p+q(X, C) → C∞

p, q(X, C) onto the (p, q)-type
component is a surjection onto X p, q

r :

πp, qr : Zp, qr −→ X p, q
r , β 7→ βp, q,

whose kernel is Zp+1, q−1
r−1 . Moreover, the inverse of T p, qr is induced by this same projection:

Zp, qr /Zp+1, q−1
r−1 ∋ (β mod Zp+1, q−1

r−1 )
(T p, q

r )−1

7→ βp, q ∈ X p, q
r .

(d) The kernel of the surjection Sp, qr := P p, q
r ◦ T p, qr : X p, q

r −→ Ep, q
r (X) is Yp, qr .
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Proof. (a) It is obvious that P p, q
r is well defined and surjective. To prove that T p, qr is well defined,

we need to prove that, for every α ∈ X p, q
r and for any two systems (u1, . . . , ur−1) and (v1, . . . , vr−1)

of ∂̄-potentials for ∂α, we have:

ρ1 := α−u1+u2−· · ·+(−1)r−1 ur−1, ρ2 := α−v1+v2−· · ·+(−1)r−1 vr−1 ∈ Zp, qr and ρ1−ρ2 ∈ Zp+1, q−1
r−1 .

From (i) of Definition 1.2.9, we get:

dα = ∂α = ∂̄u1 = du1 − ∂u1 = du1 − ∂̄u2 = d(u1 − u2) + ∂u2
...

= d(u1 − u2 + · · ·+ (−1)r ur−1) + (−1)r−1 ∂ur−1.

The analogous identity holds for (v1, . . . , vr−1), so we get:

dρ1 = (−1)r−1 ∂ur−1 and dρ2 = (−1)r−1 ∂vr−1.

Since α ∈ C∞
p, q and uj, vj ∈ C∞

p+j, q−j for all j ∈ {1, . . . , r − 1}, we see that ρ1, ρ2 ∈ FpC∞
p+q and

dρ1, dρ2 ∈ Fp+rC∞
p+q+1, which translates to ρ1, ρ2 ∈ Zp, qr . This proves the first contention.

On the other hand, from the above identities we also get:

d(ρ1 − ρ2) = (−1)r−1 ∂(ur−1 − vr−1) ∈ Fp+rC∞
p+q+1.

Since ρ1 − ρ2 ∈ Fp+1C∞
p+q (because the two occurences of α cancel each other out in the difference),

this translates to ρ1 − ρ2 ∈ Zp+1, q−1
r−1 ⊂ Zp+1, q−1

r−1 + Bp, qr−1, which proves the second contention.

(b) The map T p, qr is obviously injective since, if α − u1 + u2 − · · · + (−1)r−1 ur−1 ∈ Zp+1, q−1
r−1 ⊂

Fp+1C∞
p+q, then α ∈ Fp+1C∞

p+q (because uj ∈ Fp+1C∞
p+q for all j). However, α ∈ C∞

p, q, so α = 0.
Let us now prove that T p, qr is surjective. Let β = βp, q + βp+1, q−1 + · · · ∈ Zp, qr , where upper

indices stand for bidegrees. Then,

Fp+rC∞
p+q ∋ dβ = ∂̄βp, q + (∂βp, q + ∂̄βp+1, q−1) + · · ·+ (∂βp+r−2, q−r+2 + ∂̄βp+r−1, q−r+1) + Fp+rC∞

p+q,

where the last occurence of Fp+rC∞
p+q stands for terms belonging to this space. Hence, ∂̄βp, q +

(∂βp, q + ∂̄βp+1, q−1) + · · · + (∂βp+r−2, q−r+2 + ∂̄βp+r−1, q−r+1) = 0, which translates to the vanishing
of all the pure-type components of this sum:

∂̄βp, q = 0

∂βp, q = −∂̄βp+1, q−1

∂βp+1, q−1 = −∂̄βp+2, q−2

...

∂βp+r−2, q−r+2 = −∂̄βp+r−1, q−r+1.

However, this tower of r equations expresses precisely the fact that βp, q ∈ X p, q
r and that

(−βp+1, q−1, βp+2, q−2, . . . , (−1)r−1 βp+r−1, q−r+1) is a system of ∂̄-potentials for ∂βp, q. It follows that

T p, qr (βp, q) = βp, q + βp+1, q−1 + · · ·+ βp+r−1, q−r+1 mod Zp+1, q−1
r−1 = β mod Zp+1, q−1

r−1 .

This proves the surjectivity of T p, qr .
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(c) To prove this part, it suffices to track the arguments in the above proof of the surjectivity of
T p, qr backwards.

Indeed, it was already proved under (b) that, for every β = βp, q + βp+1, q−1 + · · · ∈ Zp, qr , we have
βp, q ∈ X p, q

r . To see that πp, qr is surjective, let βp, q ∈ X p, q
r . Then, it satisfies the above tower of r

equations for some system (−βp+1, q−1, βp+2, q−2, . . . , (−1)r−1 βp+r−1, q−r+1) of ∂̄-potentials for ∂βp, q.
Then, β := βp, q + βp+1, q−1 + · · ·+ βp+r−1, q−r+1 ∈ Zp, qr because β ∈ FpC∞

p+q, and

dβ = ∂̄βp, q + (∂βp, q + ∂̄βp+1, q−1) + · · ·+ (∂βp+r−2, q−r+2 + ∂̄βp+r−1, q−r+1) + ∂βp+r−1, q−r+1

= ∂βp+r−1, q−r+1 ∈ Fp+rC∞
p+q+1.

Since πp, qr (β) = βp, q, the surjectivity of πp, qr is proved. The last statement is obvious.

(d) Let α ∈ X p, q
r . We have the following equivalences:

α ∈ kerSp, qr ⇐⇒ α− u1 + u2 − · · ·+ (−1)r−1 ur−1 ∈ Zp+1, q−1
r−1 + Bp, qr−1

⇐⇒ ∃ η ∈ Zp+1, q−1
r−1 ,∃ γ ∈ Zp−r+1, q+r−2

r−1 such that

α = u1 − u2 + · · ·+ (−1)r ur−1 + η + dγ.

The last identity is further equivalent to:

α = u1 − u2 + · · ·+ (−1)r ur−1 + ηp+1, q−1 + · · ·+ ηp+r−1, q−r+1 + Fp+r

+ ∂γp−r+1, q+r−2 + · · ·+ ∂γp+r−2, q−r+1 + Fp+r

+ ∂̄γp−r+1, q+r−2 + · · ·+ ∂̄γp+r−1, q−r + Fp+r.

We will now equate the terms of equal bidegrees on either side of the above identity. If r = 1, in
bidegree (p, q) we get α = ∂̄γp−r+1, q+r−2, so α ∈ Im ∂̄ = Yp, q1 . If r ≥ 2, the above identity implies:

α = ∂γp−1, q + ∂̄γp, q−1

∂̄γp−1, q = −∂γp−2, q+1

∂̄γp−2, q+1 = −∂γp−3, q+2

...

∂̄γp−r+2, q+r−3 = −∂γp−r+1, q+r−2

∂̄γp−r+1, q+r−2 = 0.

This tower of r equations expresses the fact that α ∈ Yp, qr .
We have thus proved the inclusion kerSp, qr ⊂ Yp, qr , which yields the obvious surjection below:

Ep, q
r (X) ≃ X p, q

r

kerSp, qr
↠
X p, q
r

Yp, qr
≃ Ep, q

r (X),

where the first isomorphism follows from the surjectivity of Sp, qr (a composition of two surjections),
while the last isomorphism was proved in (1) of Theorem 1.2.10. Since all these vector spaces are
finite dimensional, we get dim kerSp, qr = dimYp, qr , hence kerSp, qr = Yp, qr since we already had one
inclusion. □

End of proof of (2) of Theorem 1.2.10. The maps Sp, qr factor through Yp, qr to isomorphisms Ŝp, qr

and we get:



CHAPTER 1. COHOMOLOGY AND METRICS 52

X p, q
r

Yp, qr

Ŝp, q
r−−→
≃

Ep, q
r (X)

dr−→ Ep+r, q−r+1
r (X)

(
̂

Sp+r, q−r+1
r )−1

−−−−−−−−−→
≃

X p+r, q−r+1
r

Yp+r, q−r+1
r

,

where dr is the differential defined in the classical way in (1.21). From the way in which each of
these maps acts, that we made explicit above, we get that the composition

( ̂Sp+r, q−r+1
r )−1 ◦ dr ◦ Ŝp, qr :

X p, q
r

Yp, qr
−→ X

p+r, q−r+1
r

Yp+r, q−r+1
r

acts, for α ∈ X p, q
r , as follows:

α mod Yp, qr 7→
(
d(α− u1 + u2 − · · ·+ (−1)r−1 ur−1)

)p+r, q−r+1

mod Yp+r, q−r+1
r .

Since the (p+ r, q − r+ 1)-type component of d(α− u1 + u2 − · · ·+ (−1)r−1 ur−1) is (−1)r−1 ∂ur−1,
we get that the above composition of maps acts, for α ∈ X p, q

r , as follows:

X p, q
r

Yp, qr
∋ (α mod Yp, qr ) 7→ ((−1)r−1 ∂ur−1 mod Yp+r, q−r+1

r ) ∈ X
p+r, q−r+1
r

Yp+r, q−r+1
r

.

This completes the proof of (2) of Theorem 1.2.10. □

An immediate consequence of Theorem 1.2.10 is that the maps d1 are defined by ∂ in the Dol-
beault cohomology:

Corollary 1.2.12. The first page of the Frölicher spectral sequence consists of the linear maps:

Ep, q
1 (X) = Hp, q

∂̄
(X, C) d1−→ Ep+1, q

1 (X) = Hp+1, q

∂̄
(X, C), d1([α]∂̄) = [∂α]∂̄.

This fact has an interesting consequence on the geometry of the manifold X.

Definition 1.2.13. Let p ∈ {0, . . . , n}. A holomorphic p-form on X is a form α ∈ C∞
p, 0(X, C) such

that ∂̄α = 0.

A key observation is the following

Proposition 1.2.14. Let X be an n-dimensional compact complex manifold whose Frölicher spectral
sequence degenerates at E1.

Then, for every p ∈ {0, . . . , n}, every holomorphic p-form on X is d-closed.

Proof. Let α ∈ C∞
p, 0(X, C) be a holomorphic p-form. Since ∂̄α = 0, α represents a Dolbeault

cohomology class [α]∂̄ ∈ H
p, 0

∂̄
(X, C) = Ep, 0

1 (X).
Now, since E1(X) = E∞(X), all the maps d1 vanish identically. Hence, d1([α]∂̄) = [∂α]∂̄ = 0

(see Corollary 1.2.12), which means that the (p+1, 0)-form ∂α is ∂̄-exact. Thus, ∂α = ∂̄β for some
(p+ 1, −1)-form β. For bidegree reasons, we must have β = 0, hence ∂α = 0. Then also dα = 0. □

One way in which this result can be used is to conclude that E1(X) ̸= E∞(X) for a specific
compact complex manifold X on which a non-d-closed holomorphic p-form has been found.
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1.2.3 The notion of purity for the De Rham cohomology

In this subsection, we discuss a property that the De Rham cohomology may or may not have and
its links with the Frölicher spectral sequence. We will follow the presentation of [PSU20, §.3.1].

We start with a statement that is immediate to prove.

Lemma 1.2.15. The following relations hold:

C∞
k (X, C) = FpC∞

k (X, C)⊕Fk−p+1C∞
k (X, C) for all 0 ≤ p ≤ min{k, n}; (1.29)

C∞
p, q(X) = FpC∞

k (X, C) ∩ F qC∞
k (X, C) for all p, q such that p+ q = k. (1.30)

Proof. Left to the reader. □

Now, for all p, q ∈ {0, . . . , n}, let us consider the following space of De Rham cohomology classes
of degree p+ q that are representable by pure-type (p, q)-forms:

Hp, q
DR(X) :=

{
c ∈ Hp+q

DR (X, C) | ∃α ∈ C∞
p, q(X) ∩ c

}
⊂ Hp+q

DR (X, C).

This definition makes it obvious that the analogue of the Hodge symmetry for the spaces Hp, q
DR(X)

always holds. In other words, the conjugation induces an isomorphism

Hp, q
DR(X) ∈ {α}DR 7→ {ᾱ}DR ∈ H

q, p
DR(X) for all 0 ≤ p, q ≤ n. (1.31)

The following analogue in cohomology of identity (1.30), resp. of one of the inclusions defining
the filtration (1.13) of C∞

k (X, C), can be immediately proved to hold.

Lemma 1.2.16. The following relations hold:

Hp, q
DR(X) = F pHk

DR(X, C) ∩ F qHk
DR(X, C) for all p, q such that p+ q = k; (1.32)

H i, k−i
DR (X) ⊂ F pHk

DR(X, C) for all i ≥ p and all p ≤ k. (1.33)

Proof. Everything is obvious, except perhaps the inclusion “⊃“ in (1.32) which can be proved as

follows. Let {α}DR = {β}DR ∈ F pHk
DR(X, C)∩F qHk

DR(X, C) with α =
∑

i≥p α
i, k−i ∈ FpC∞

k (X, C)
and β =

∑
s≤p β

s, k−s ∈ F qC∞
k (X, C). Since α and β are De Rham-cohomologous, there exists a

form σ ∈ C∞
k−1(X, C) such that α − β = dσ. This identity implies, after equating the terms with a

holomorphic degree > p on either side, the second identity below:

α− αp, q =
∑
i>p

αi, k−i = d(
∑
j≥p

σj, k−1−j)− ∂̄σp, q−1,

which, in turn, implies that {α}DR = {αp, q − ∂̄σp, q−1}DR. Since αp, q − ∂̄σp, q−1 is a (p, q)-form, we
get {α}DR ∈ Hp, q

DR(X) and we are done. □

Note that, with no assumption on X, the subspaces H i, k−i
DR (X) may have non-zero mutual inter-

sections inside Hk
DR(X, C), so they may not sit in a direct sum.

Let us now introduce the following
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Definition 1.2.17. Let X be an n-dimensional compact complex manifold. The De Rham cohomol-
ogy of X is said to be pure if

Hk
DR(X, C) =

⊕
p+q=k

Hp, q
DR(X) for all k ∈ {0, . . . , 2n}.

Note that the above definition requires all the subspaces Hp, q
DR(X) of Hk

DR(X, C) with p+ q = k
to form a direct sum and to add up to the total space Hk

DR(X, C).

Note on terminology 1.2.18. Some authors call this property complex-C∞-pure-and-full in
degree k (cf. [LZ09]). It was remarked in [AT11] that the complex-C∞-full property in degree
k (i.e. the sum of the Hp, q

DR(X)’s is not necessarily direct but it fills out Hk
DR(X, C)) implies the

complex-C∞-pure property in degree (2n − k) (i.e. the sum of the Hp, q
DR(X)’s is direct but it

may not fill out H2n−k
DR (X, C)). We will show further down that the converse is also true, i.e.

the complex-C∞-pure property in degree k implies the complex-C∞-full property in degree
(2n− k). Therefore, compact complex manifolds satisfying either the complex-C∞-full property in
every degree k or the complex-C∞-pure property in every degree k are of pure De Rham
cohomology in the sense of our Definition 1.2.17. In algebraic geometry, this property is referred to
by saying that “the Hodge filtration induces a pure Hodge structure on the de Rham cohomology”.

Proposition 1.2.19. Suppose X is an n-dimensional compact complex manifold whose De Rham
cohomology is pure. Then

F pHk
DR(X, C) =

⊕
i≥p

H i, k−i
DR (X) for all p ≤ k. (1.34)

In particular, the spaces Ep, q
∞ (X) in the Frölicher spectral sequence of X are given by

Ep, q
∞ (X) ≃ Hp, q

DR(X) for all p, q ∈ {0, . . . , n}, (1.35)

where ≃ stands for the canonical isomorphism induced by the identity.

Proof. Inclusion “⊃” in (1.34) follows at once from (1.33) and from the De Rham purity assumption.
To prove inclusion “⊂” in (1.34), let {α}DR ∈ F pHk

DR(X, C) with α =
∑
r≥p

αr, k−r ∈ ker d.

Since F pHk
DR(X, C) ⊂ Hk

DR(X, C) = ⊕p+q=kHp, q
DR(X) (the last identity being due to the purity

assumption), there exist pure-type d-closed forms βr, k−r such that {α}DR = {
∑

0≤r≤k β
r, k−r}DR.

Hence, there exists a (k − 1)-form σ such that α−
∑

0≤r≤k β
r, k−r = −dσ, which amounts to

αr, k−r − βr, k−r + ∂σr−1, k−r + ∂̄σr, k−r−1 = 0, r ∈ {0, . . . , k},

with the understanding that αr, k−r = 0 whenever r < p.
Therefore, βr, k−r = ∂σr−1, k−r + ∂̄σr, k−r−1 whenever r < p. Since every βr, k−r is d-closed (hence

also ∂- and ∂̄-closed), we infer that σr−1, k−r and σr, k−r−1 are ∂∂̄-closed for every r < p. Hence

k∑
r=0

βr, k−r − d(
∑
r<p

σr, k−r−1) =
∑
r<p

(βr, k−r − ∂σr−1, k−r − ∂̄σr, k−r−1)− ∂σp−1, k−p +
k∑
r≥p

βr, k−r

=
∑
r≥p

βr, k−r − ∂σp−1, k−p.

(1.36)
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Note that from the identity βp−1, k−p+1 = ∂σp−2, k−p+1+ ∂̄σp−1, k−p and the d-closedness of βp−1, k−p+1

we infer that ∂σp−1, k−p ∈ ker d.
Thus, (1.36) shows that the k-form

∑
r≥p β

r, k−r−∂σp−1, k−p ∈ FpC∞
k (X, C), whose all pure-type

components are d-closed, is De Rham-cohomologous to
∑

0≤r≤k β
r, k−r, hence to α. Consequently,

we have

{α}DR =

{∑
r≥p

βr, k−r − ∂σp−1, k−p
}
DR

∈
⊕
i≥p

H i, k−i
DR (X).

The proof of (1.34) is complete.
Identity (1.35) follows at once from (1.34) and from (iii) of Theorem 1.2.2. □

We end this discussion by noticing an immediate consequence of a standard fact.

Observation 1.2.20. Let X be a compact complex manifold X with dimCX = n. Then, the following
inequality holds between the dimensions of the Bott-Chern cohomology space Hp, q

BC(X) of X and of
Hp, q
DR(X):

hp, qBC ≥ hp, qDR for all 0 ≤ p, q ≤ n. (1.37)

Moreover, if the De Rham cohomology of X is pure, then

∑
p+q=k

hp, qBC ≥ bk for all 0 ≤ k ≤ 2n, (1.38)

where bk := dimCH
k
DR(X, C) is the k-th Betti number of X.

Proof. It is standard (and immediate to check) that, for every bidegree (p, q), the canonical map
Hp, q
BC(X) ∋ {α}BC 7→ {α}DR ∈ Hp+q

DR (X, C) is well defined (i.e. independent of the choice of
representative α of the Bott-Chern class {α}BC). This map need not be either injective, or surjective,
but its image is, obviously, Hp, q

DR(X). Hence inequality (1.37).
Inequality (1.38) follows at once from (1.37) and from the De Rham purity assumption. □

1.3 ∂∂̄-Manifolds

Let X be a compact complex manifold with dimCX = n. The following notion goes back to Deligne-
Griffiths-Morgan-Sullivan [DGMS75]. The name was given in [Pop14, Definition 1.6].

Definition 1.3.1. A compact complex manifold X is said to be a ∂∂̄-manifold if for any d-closed
pure-type form u on X, the following exactness properties are equivalent:

u is d-exact ⇐⇒ u is ∂-exact ⇐⇒ u is ∂̄-exact ⇐⇒ u is ∂∂̄-exact.

The main interest in ∂∂̄-manifolds stems from the fact that they support the same nice Hodge
theory as compact Kähler manifolds do. For this reason, some authors call them cohomologically
Kähler manifolds. They are actually characterised by these Hodge-theoretical properties, as we
will see in the next subsection.
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1.3.1 Cohomological characterisations of ∂∂̄-manifolds

We will discuss four such characterisations: in terms of the Dolbeault cohomology; in terms of De
Rham purity and the FSS; in terms of the Bott-Chern and Aeppli cohomologies; in purely numerical
terms involving the Bott-Chern and Aeppli cohomologies.

(I) Characterisation in terms of the Dolbeault cohomology

The first of these characterisations will show that ∂∂̄-manifolds are precisely those compact complex
manifolds that canonically support the Hodge decomposition. In particular, the Frölicher spectral
sequence of any ∂∂̄-manifold will be seen to degenerate at E1.

Theorem 1.3.2. A compact complex n-dimensional manifold X is a ∂∂̄-manifold if and only if
the identity induces an isomorphism between ⊕p+q=kHp, q

∂̄
(X, C) and Hk

DR(X, C), for every
k ∈ {0, . . . , 2n}, in the following sense:

(a) for every bidegree (p, q) with p+q = k, every Dolbeault cohomology class [αp, q]∂̄ ∈ H
p, q

∂̄
(X, C)

contains a d-closed representative αp, q;
(b) the linear map⊕

p+q=k

Hp, q

∂̄
(X, C) ∋

∑
p+q=k

[αp, q]∂̄ 7→
{ ∑
p+q=k

αp, q
}
DR

∈ Hk
DR(X, C) (1.39)

is well-defined by means of d-closed reprsentatives (in the sense that it does not depend on the
choices of d-closed representatives αp, q of the Dolbeault classes [αp, q]∂̄) and bijective.

The above latter property of manifolds has a name:

Definition 1.3.3. If the identity induces an isomorphism ⊕p+q=kHp, q

∂̄
(X, C) ≃ Hk

DR(X, C) in the
sense of Theorem 1.3.2 for every k ∈ {0, . . . , 2n}, we say that the manifold X has the Hodge
Decomposition property.

We saw earlier in (1.17) that the property E1(X) = E∞(X) is equivalent to a weaker, non-
canonical, ersatz Hodge decomposition property. Note that whenever the identity induces a well-
defined (not necessarily injective) linear map Hp, q

∂̄
(X) −→ Hk

DR(X, C) by means of d-closed rep-
resentatives of the Dolbeault classes in Hp, q

∂̄
(X), the image of this map is Hp, q

DR(X). Indeed, one
inclusion is obvious. The reverse inclusion follows from the trivial observation that any d-closed
(p, q)-form is ∂̄-closed, so it defines a Dolbeault cohomology class.

Proof of Theorem 1.3.2.

“ =⇒ ” Suppose that X is a ∂∂̄-manifold.

(a) Let [αp, q]∂̄ ∈ H
p, q

∂̄
(X, C) be an arbitrary class and let αp, q be an arbitrary representative of

it. Then, ∂̄αp, q = 0. We need to prove the existence of a (p, q− 1)-form β such that d(α− ∂̄β) = 0,
which is equivalent to ∂α = ∂∂̄β. Such a β exists if and only if ∂α is ∂∂̄-exact.

Now, ∂α is d-closed, ∂-exact and of pure type (p+1, q), so by the ∂∂̄-assumption on X, ∂α must
also be ∂∂̄-exact.
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(b) To prove well-definedness, fix a bidegree (p, q) and let αp, q1 and αp, q2 be d-closed representa-
tives of the same Dolbeault cohomology class. This means that αp, q1 −α

p, q
2 is ∂̄-exact. Since it is also

d-closed and of pure type, it must be d-exact, by the ∂∂̄-assumption on X. Thus, {α1}DR = {α2}DR,
which is what we had to prove.

We will now prove that, for every bidegree (p, q) with p+q = k, the identity induces an injection

Hp, q

∂̄
(X, C) ↪→ Hk

DR(X, C), [αp, q]∂̄ 7→ {αp, q}DR,

by means of d-closed representatives αp, q of their respective Dolbeault cohomology classes.
Indeed, let αp, q be a d-closed representative of its Dolbeault cohomology class such that {αp, q}DR =

0. Then, αp, q is a d-exact pure-type form, so by the ∂∂̄-assumption on X, αp, q must also be ∂̄-exact.
Thus, [αp, q]∂̄ = 0. This proves the injectivity of the above map Hp, q

∂̄
(X, C) −→ Hk

DR(X, C).
Next, we prove that for any fixed k and any distinct bidegrees (p, q) ̸= (r, s) with p+q = r+s = k,

the images inHk
DR(X, C) ofH

p, q

∂̄
(X, C) andHr, s

∂̄
(X, C) under the above canonical injections induced

by the identity meet only at 0. Suppose to the contrary that there exist d-closed and non-∂̄-exact
forms αp, q and αr, s of the shown bidegrees such that {αp, q}DR = {αr, s}DR. Then, αp, q − αr, s = dβ
for some form β, so

αp, q = ∂βp−1, q + ∂̄βp, q−1 and αr, s = −∂βr−1, s − ∂̄βr, s−1.

Then, αp, q − ∂̄βp, q−1 = ∂βp−1, q. Meanwhile, the pure-type form ∂βp−1, q is d-closed and ∂-exact, so
by the ∂∂̄-assumption on X, it is also ∂̄-exact. Hence, αp, q − ∂̄βp, q−1 is ∂̄-exact and then so is αp, q.
This contradicts the hypothesis on αp, q.

We conclude from the discussions of the last two points that the map (1.39) is injective. In
particular, ∑

p+q=k

hp, q ≤ bk, k ∈ {0, . . . , 2n}.

On the other hand, we know from Corollary 1.2.5 that the reverse inequality holds on any compact
complex manifold X (whether it is ∂∂̄ or not). This fact forces the equalities

∑
p+q=k h

p, q = bk for
k ∈ {0, . . . , 2n}, so the map (1.39) must be bijective.

The proof of the Hodge Decomposition property of X is now complete.

“⇐=” Suppose that X has the Hodge Decomposition property.

Fix a d-closed (p, q)-form α for an arbitrary bidegree (p, q). Put k = p + q. We will expand on
the arguments in the proof of the implication (iii) =⇒ (i) of Proposition (5.17) of [DGMS75].
• Let us first prove the equivalence:

α ∈ Im ∂̄
(i)⇐⇒ α ∈ Im d.

Since α is d-closed and of pure type, α is also ∂̄-closed. Thus, α defines classes in both Hp, q

∂̄
(X) and

Hp, q
DR(X). Meanwhile, X has the Hodge Decomposition property, so the identity induces a linear

injection Hp, q

∂̄
(X) ↪→ Hp+q

DR (X) whose image is Hp, q
DR(X). Therefore, [α]∂̄ = 0 implies {α}DR = 0

(because the image of 0 under a linear map is 0) and {α}DR = 0 implies [α]∂̄ = 0 (by injectivity of
this map). This proves the above equivalence.

Since the above equivalence has been proved in every bidegree, by conjugation we also get the
equivalence u ∈ Im ∂ ⇔ u ∈ Im d in every bidegree for every d-closed pure-type form u.
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• Let us now prove the equivalence:

α ∈ Im (∂∂̄)
(ii)⇐⇒ α ∈ Im ∂̄.

The implication “ =⇒ ” being trivial, we will prove the implication “⇐=”. Suppose there exists
β ∈ C∞

p, q−1(X) such that α = ∂̄β. Then α− dβ = −∂β ∈ C∞
p+1, q−1(X), hence

⊕l≤pH l, k−l
DR (X) = F qHk

DR(X, C) ∈ {α}DR = {−∂β}DR ∈ F p+1Hk
DR(X, C) = ⊕i≥p+1H

i, k−i
DR (X),

where the De Rham purity assumption was used. Since ⊕i≥p+1H
i, k−i
DR (X) ∩ ⊕l≤pH l, k−l

DR (X) = {0},
we get {α}DR = 0, a fact that also follows from the assumption on α and the equivalence (i).

Recall that F pHk
DR(X, C) is the image of the map

ker(d : FpC∞
k (X, C)→ FpC∞

k+1(X, C))
Im (d : FpC∞

k−1(X, C)→ FpC∞
k (X, C))

→ Hk
DR(X, C)

and that this map is injective for all p, k if and only if the Frölicher spectral sequence ofX degenerates
at E1. Indeed, the map is injective if and only if

Im (d : FpC∞
k−1(X, C)→ FpC∞

k (X, C)) = FpC∞
k (X, C) ∩ Im d,

which Proposition 1.2.8 ensures to be true if and only if E1(X) = E∞(X).

In our case, E1(X) = E∞(X) (because X has the Hodge Decomposition property). Using the
injectivity of the above map, the vanishing of the class {α}DR ∈ F pHk

DR(X, C) implies that α = du

for some form u ∈ FpC∞
k−1(X, C). From the analogous argument for F qHk

DR(X, C) we infer that the
vanishing of the class {α}DR ∈ F qHk

DR(X, C) implies that α = dv for some form v ∈ F qC∞
k−1(X, C).

In particular, u− v ∈ ker d ∩ (FpC∞
k−1(X, C) + F qC∞

k−1(X, C)), hence u− v defines a class

{u− v}DR ∈ F pHk−1
DR (X, C) + F qHk−1

DR (X, C).

Therefore, there exist forms u1 ∈ FpC∞
k−1(X, C) ∩ ker d and v1 ∈ F qC∞

k−1(X, C) ∩ ker d such that

u− v = u1 − v1 + dη

for some form η ∈ C∞
k−2(X, C). Equating the terms of bidegree (p− 1, q), we get vp−1, q = vp−1, q

1 −
∂ηp−2, q − ∂̄ηp−1, q−1. Hence,

α = dv = ∂vp−1, q = ∂vp−1, q
1 − ∂∂̄ηp−1, q−1.

Now, since v1 ∈ F qC∞
k−1(X, C) ∩ ker d, we get 0 = dv1 = ∂vp−1, q

1 + forms of holomorphic degrees

≥ q + 1. Thus, ∂vp−1, q
1 = 0, so α = ∂∂̄ηp−1, q−1 ∈ Im (∂∂̄). □

(II) Characterisation in terms of De Rham purity and the FSS

We have already seen that E1(X) = E∞(X) whenever X is a ∂∂̄-manifold. We will now see by how
much the converse fails.
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Theorem 1.3.4. Let X be a compact complex manifold with dimCX = n. Then, the following two
conditions are equivalent:

(i) X is a ∂∂̄-manifold;

(ii) the Frölicher spectral sequence of X degenerates at E1 and the De Rham cohomology of
X is pure.

Let us recall the following standard fact. WhenX is a compact complex surface (i.e. dimCX = 2),
the Frölicher spectral sequence of X always degenerates at E1 (see [BHPV04, Theorem IV-2.8]), but
the De Rham cohomology of X is pure if (and only if) the first Betti number b1 of X is even (see
[BHPV04, Proposition IV-2.9]).

Proof of Theorem 1.3.4. We know from Theorem 1.3.2 that X is a ∂∂̄-manifold if and only if X has
the Hodge Decomposition property.

(i) =⇒ (ii) We have already seen that the Hodge Decomposition property implies E1(X) =
E∞(X) and that the image of each Hp, q

∂̄
(X) in Hp+q

DR (X, C) under the map induced by the identity
is Hp, q

DR(X). We get (ii).

(ii) =⇒ (i) Since the De Rham cohomology of X is supposed pure, we know from Proposition
1.2.19 that Ep, q

∞ (X) ≃ Hp, q
DR(X) (isomorphism induced by the identity) for all bidegrees (p, q). On

the other hand, Ep, q
∞ (X) = Ep, q

r (X) for all bidegrees (p, q) since we are assuming that Er(X) =
E∞(X). Together with the De Rham purity assumption, these facts imply that X has the Hodge
Decomposition property. □

Definition 1.3.5. Fix p, q ∈ {0, . . . , n}. We say that the conjugation induces an isomorphism
between Hp, q

∂̄
(X) and the conjugate of Hq, p

∂̄
(X) if the following two conditions are satisfied:

(a) every class [αp, q]∂̄ ∈ H
p, q

∂̄
(X) contains a d-closed representative αp, q;

(b) the linear map

Hp, q

∂̄
(X) ∋ [αp, q]∂̄ 7→ [αp, q]∂̄ ∈ H

q, p

∂̄
(X)

is well-defined (in the sense that it does not depend on the choice of d-closed representative αp, q

of the class {αp, q}Er) and bijective.

Moreover, if the conjugation induces an isomorphism Hp, q

∂̄
(X) ≃ Hq, p

∂̄
(X) for every p, q ∈

{0, . . . , n}, we say that the manifold X has the Hodge Symmetry property.

We shall now see that the Hodge Decomposition property implies the Hodge Symmetry property.

Corollary 1.3.6. Any ∂∂̄-manifold has the Hodge Symmetry property.

Proof. We have already noticed in (1.31) that the conjugation (trivially) induces an isomorphism
between any space Hp, q

DR(X) and the conjugate of Hq, p
DR(X). Meanwhile, we have seen that the

∂∂̄-assumption implies that the identity induces an isomorphism between any space Hp, q

∂̄
(X) and

Hp, q
DR(X). Hence, the conjugation induces an isomorphism between any space Hp, q

∂̄
(X) and the

conjugate of Hq, p

∂̄
(X). □
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(III) Characterisation in terms of the Bott-Chern and Aeppli cohomologies

Most of the material in this part is to be found, explicitly or implicitly, in [DGMS75], while the
presentation is taken from [Pop14, §.4.3] and owes some key observations to [Wu06]. We will often
refer to the canonical linear maps induced by the identity map in Lemma 1.1.2.

The main result is the following

Theorem 1.3.7. Let X be a compact complex manifold with dimCX = n. The following statements
are equivalent.

(i) X is a ∂∂̄-manifold;

(ii) For every bidegree (p, q), the canonical linear map Hp, q
BC(X, C) −→ Hp, q

A (X, C) is injective;
(iii) For every bidegree (p, q), the canonical linear map Hp, q

BC(X, C) −→ Hp, q
A (X, C) is surjective.

We will actually prove rather more, a bidegree-sensitive statement. For a fixed bidegree (p, q),
we will say that the ∂∂̄-property holds in C∞

p, q(X, C) if all the exactness properties of Definition
1.3.1 are equivalent for every d-closed form u ∈ C∞

p, q(X, C). We start by introducing some ad hoc
terminology.

Definition 1.3.8. For a given k ∈ {0, 1, . . . , 2n}, a given compact complex manifold X (with
dimCX = n) is said to satisfy property:

(Ak) if the natural map Hp, q
BC(X, C) −→ Hp, q

A (X, C) is injective for all p, q such that p+ q = k.

This property is clearly equivalent to property

(A′
k) ker ∂ ∩ ker ∂̄ ∩ (Im ∂ + Im ∂̄) = Im (∂∂̄), for all p, q s.t. p+ q = k.

(Bk) if the natural map Hp, q
BC(X, C) −→ Hp, q

A (X, C) is surjective for all p, q such that p+q = k.

This property is clearly equivalent to property

(B′
k) Im ∂ + Im ∂̄ + (ker ∂ ∩ ker ∂̄) = ker(∂∂̄), for all p, q s.t. p+ q = k.

(Ck) if the natural maps Hp, q
BC(X, C) −→ Hp, q

∂ (X, C) and
Hp, q
BC(X, C) −→ Hp, q

∂̄
(X, C) are injective for all p, q such that p+ q = k.

This property is clearly equivalent to the simultaneous occurence of

(C ′
k)(i) Im ∂ ∩ ker ∂̄ = Im (∂∂̄) and (C ′

k)(ii) Im ∂̄ ∩ ker ∂ = Im (∂∂̄),
for all p, q such that p+ q = k.

(D′
k) if (i) Im ∂̄ + ker ∂ = ker(∂∂̄) and (ii) Im ∂ + ker ∂̄ = ker(∂∂̄)

for all p, q such that p+ q = k.

(Lk) if the ∂∂̄-property holds in every space of forms C∞
p, q(X, C) with p+ q = k.

It is obvious that (Lk) implies each of the other properties listed above and that (Lk) is implied
by the simultaneous occurence of these other properties. As already pointed out, the following
equivalences are obvious
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(Ak)⇐⇒ (A′
k), (Bk)⇐⇒ (B′

k), (Ck)⇐⇒ (C ′
k).

The inclusions ⊃ in (A′
k), ⊂ in (B′

k), ⊃ in (C ′
k)(i), (ii) and ⊂ in (D′

k)(i), (ii) are obvious. The
following statement is implicit in [DGMS] and, obviously, implies Theorem 1.3.7.

Proposition 1.3.9. (contained in Lemma 5.15 of [DGMS75]) Let X be a compact complex manifold,
dimCX = n. For every k ∈ {1, . . . , 2n}, the following equivalences hold:

(Lk)⇐⇒ (Ak)⇐⇒ (Ck)⇐⇒ (D′
k−1)⇐⇒ (Bk−1).

Proof. Fix an arbitrary k ∈ {1, . . . , 2n}. In view of what we have already noticed, it suffices to prove
the equivalences

(A′
k)⇐⇒ (C ′

k)⇐⇒ (D′
k−1)⇐⇒ (B′

k−1).

Proof of (A′
k) =⇒ (C ′

k). Let u ∈ C∞
p, q(X, C) (where p+q = k) such that ∂̄u = 0 and u = ∂v for some

(p − 1, q)-form v. Then u = ∂v + 0 ∈ ker ∂ ∩ ker ∂̄ ∩ (Im ∂ + Im ∂̄). Then (A′
k) forces u ∈ Im (∂∂̄).

This proves (i) of (C ′
k). The proof of (ii) of (C ′

k) is similar with ∂ and ∂̄ reversed.

Proof of (C ′
k) =⇒ (A′

k). Let u ∈ C∞
p, q(X, C) (where p + q = k) such that ∂u = 0, ∂̄u = 0 and

u = ∂v + ∂̄w for some (p− 1, q)-form v and some (p, q − 1)-form w. Then we have:

· Im ∂ ∋ ∂v = u− ∂̄w ∈ ker ∂̄, hence ∂v ∈ Im ∂ ∩ ker ∂̄ = Im (∂∂̄), the last identity of subspaces
being given by the hypothesis (C ′

k)(i). Thus ∂v ∈ Im (∂∂̄).

· Im ∂̄ ∋ ∂̄w = u− ∂v ∈ ker ∂, hence ∂̄w ∈ Im ∂̄ ∩ ker ∂ = Im (∂∂̄), the last identity of subspaces
being given by the hypothesis (C ′

k)(ii). Thus ∂̄w ∈ Im (∂∂̄).

It is now clear that u = ∂v + ∂̄w ∈ Im (∂∂̄). This proves (A′
k).

Proof of (C ′
k) =⇒ (D′

k−1). Let u ∈ C∞
r, s(X, C) (where r + s = k − 1) such that ∂∂̄u = 0. Then:

· ∂u is a k-form of type (r+1, s) and ∂u ∈ ker ∂̄ ∩ Im ∂ = Im (∂∂̄), the last identity of subspaces
being given by the hypothesis (C ′

k)(i). Hence ∂u = ∂∂̄ζ for some (r, s− 1)-form ζ. This amounts to
∂(u− ∂̄ζ) = 0 or again to u− ∂̄ζ ∈ ker ∂.

We get u = ∂̄ζ + (u− ∂̄ζ) ∈ Im ∂̄ + ker ∂. This proves (D′
k−1)(i).

· ∂̄u is a k-form of type (r, s+1) and ∂̄u ∈ ker ∂ ∩ Im ∂̄ = Im (∂∂̄), the last identity of subspaces
being given by the hypothesis (C ′

k)(ii). Hence ∂̄u = ∂∂̄w for some (r − 1, s)-form w. This amounts
to ∂̄(u+ ∂w) = 0 or again to u+ ∂w ∈ ker ∂̄.

We get u = −∂w + (u+ ∂w) ∈ Im ∂ + ker ∂̄. This proves (D′
k−1)(ii).

Proof of (D′
k−1) =⇒ (C ′

k). Let u ∈ C∞
p, q(X, C) (where p + q = k) such that ∂̄u = 0 and u = ∂v

for some (k − 1)-form v of type (p − 1, q). Then 0 = ∂̄u = −∂∂̄v, hence v ∈ ker(∂∂̄). Since
ker(∂∂̄) = Im ∂̄ + ker ∂ for (k − 1)-forms by (D′

k−1)(i), we can find a (p − 1, q − 1)-form w and a
(p− 1, q)-form ζ such that

v = ∂̄w + ζ and ∂ζ = 0.
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Applying ∂, we get: u = ∂v = ∂∂̄w. Thus u ∈ Im (∂∂̄). This proves (C ′
k)(i).

Reversing the roles of ∂ and ∂̄, we get (C ′
k)(ii) in a similar way from (D′

k−1)(ii).

Proof of (D′
k−1) =⇒ (B′

k−1). Let u ∈ C∞
r, s(X, C) (where r + s = k − 1) such that ∂∂̄u = 0. Thanks

to (D′
k−1)(ii), we can find an (r − 1, s)-form v and an (r, s)-form w such that

u = ∂v + w and w ∈ ker ∂̄.

Now since ∂̄w = 0, we also have ∂∂̄w = 0. Hence by (D′
k−1)(i) we can write

w = ∂̄ζ + ρ with ρ ∈ ker ∂

for some (r, s− 1)-form ζ and some (r, s)-form ρ. We get: ρ = w − ∂̄ζ and since w, ∂̄ζ ∈ ker ∂̄, we
finally get ρ ∈ ker ∂̄. Given the choice of ρ, this implies that ρ ∈ ker ∂ ∩ ker ∂̄.

Putting the bits together, we have

u = ∂v + ∂̄ζ + ρ ∈ Im ∂ + Im ∂̄ + (ker ∂ ∩ ker ∂̄).

This proves (B′
k−1).

Proof of (B′
k−1) =⇒ (D′

k−1). This implication is trivial because Im ∂ + (ker ∂ ∩ ker ∂̄) ⊂ ker ∂ and
Im ∂̄ + (ker ∂ ∩ ker ∂̄) ⊂ ker ∂̄.

Proposition 1.3.9 is proved. □

Proof of Theorem 1.3.7. It follows trivially from Proposition 1.3.9 since X being a ∂∂̄-manifold is
equivalent to property (Lk) of Definition 1.3.8 holding for all k. □

(IV) Numerical characterisation

The material in this part is due to Angella and Tomassini [AT13]. The dimensions of the Bott-
Chern, resp. Aeppli, cohomology spaces Hp, q

BC(X) and Hp, q
A (X) will be denoted by hp, qBC , resp. h

p, q
A .

Similarly, a lower case letter will stand for the dimension of the vector space denoted by the same
capital letter. The main result is the following

Theorem 1.3.10. ([AT13]) Let X be a compact complex manifold with dimCX = n. Then, for
every k ∈ {0, . . . , 2n}, the following inequality holds:∑

p+q=k

(hp, qBC + hp, qA ) ≥ 2bk. (1.40)

Moreover, X is a ∂∂̄-manifold if and only if equality occurs in (1.40) for every k ∈ {0, . . . , 2n}.

The proof proceeds in several straightforward steps, the first of which consists in considering the
following vector spaces introduced by Varouchas in [Var86]:

A•, • :=
Im ∂̄ ∩ Im ∂

Im ∂∂̄
, B•, • :=

ker ∂̄ ∩ Im ∂

Im ∂∂̄
, C•, • :=

ker ∂∂̄

ker ∂̄ + Im ∂
,

and

D•, • :=
Im ∂̄ ∩ ker ∂

Im ∂∂̄
, E•, • :=

ker ∂∂̄

ker ∂ + Im ∂̄
, F •, • :=

ker ∂∂̄

ker ∂̄ + ker ∂
.
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These vector spaces are easily seen to be finite-dimensional by comparisons with H•, •
BC(X) and

H•, •
A (X) which are known to be finite-dimensional. (See §.1.1.1.)

Lemma 1.3.11. The identity map induces the following well-defined maps in cohomology and the
following sequences are exact for every bidegree (p, q):

0 −→ Dp, q ↪→ Hp, q
BC(X)

T p, q
BC−−→ Hp, q

∂̄
(X)

T p, q
E−−→ Ep, q ↠ F p, q −→ 0. (1.41)

0 −→ Ap, q ↪→ Bp, q T p, q
B−−→ Hp, q

∂̄
(X)

T p, q
A−−→ Hp, q

A (X) ↠ Cp, q −→ 0, (1.42)

Proof. It consists in straigtforward verifications that are left to the reader. They also appear in
[Var86, section 3.1.]. □

The first properties of the above vector spaces are summed up in the following

Lemma 1.3.12. Let X be a compact complex n-dimensional manifold.
(i) The following identities hold in every bidegree (p, q):

Ap, q = Aq, p and F p, q = F q, p; Bp, q = Dq, p and Cp, q = Eq, p.

Moreover, the following inclusions and surjections (defined by the identity map on forms) hold:

Ap, q ⊂ Dp, q ⊂ Hp, q
BC(X) and Hp, q

A (X) ↠ Cp, q ↠ F p, q

in every bidegree (p, q). Likewise, the conjugated relations hold:

Ap, q ⊂ Bp, q ⊂ Hp, q
BC(X) and Hp, q

A (X) ↠ Ep, q ↠ F p, q.

(ii) The following canonical bilinear pairings are well defined and non-degenerate, hence
define dualities:

Ap, q × F n−p, n−q −→ C, Bp, q × En−p, n−q −→ C and Cp, q ×Dn−p, n−q −→ C,

for every bidegree (p, q), where in each of the three cases every pair ({α}, {β}) of classes of respective
bidegrees (p, q) and (n− p, n− q) is mapped to

∫
X
α ∧ β ∈ C.

In particular, the exact sequences (1.41) and (1.42) are dual to each other in complementary
bidegrees (i.e. if (1.41) is considered in bidegree (p, q), its dual is (1.42) considered in bidegree
(n− p, n− q)).

(iii) Consequently, we get the following dimension identities:

ap, q = aq, p = fn−p, n−q = fn−q, n−p and bp, q = dq, p = en−p, n−q = cn−q, n−p,

for every bidegree (p, q).
(iv) The linear maps ∂̄ : Cp, q → Dp, q+1 and ∂ : Ep, q → Bp+1, q are well defined and bijective

for every bidegree (p, q).
Consequently, we get the following dimension identities:

cp, q = dp, q+1 and ep, q = bp+1, q.
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Proof. Again, the proof consists in straigtforward verifications that are left to the reader. The
duality statements can be proved in the same way as the duality between the Bott-Chern and
Aeppli cohomologies was proved in §.1.1.1. □

From these considerations, we go on to get the following result whose set of relations (1.44)
proves the first statement in Theorem 1.3.10.

Corollary 1.3.13. For every bidegree (p, q), the following inequality holds:

hp, qBC + hp, qA ≥ hp, q
∂̄

+ hq, p
∂̄
. (1.43)

In particular, for every k ∈ {0, . . . , 2n}, we have:

hkBC + hkA = 2hk∂̄ + ak + fk ≥ 2hk∂̄ ≥ 2bk, (1.44)

where hkBC :=
∑

p+q=k h
p, q
BC, a

k :=
∑

p+q=k a
p, q and the numbers hkA, b

k, ck, dk, ek, fk are defined
analogously, while bk is the k-th Betti number of X.

Proof. From the exact sequence (1.41) in bidegree (p, q), resp. the exact sequence (1.42) in bidegree
(q, p), we infer the identities:

hp, qBC = dp, q + hp, q
∂̄
− ep, q + fp, q and hq, pA = aq, p − bq, p + hq, p

∂̄
+ cq, p.

Since hp, qA = hq, pA , summing up the above two identities and using the numerical relations obtained
under (iii) of Lemma 1.3.12 to cancel the terms reoccuring with opposite signs, we get

hp, qBC + hp, qA = (hp, q
∂̄

+ hq, p
∂̄

) + (ap, q + fp, q).

The contention follows since ap, q, fp, q ≥ 0, while hk
∂̄
≥ bk by Corollary 1.2.5. □

The next result proves one implication of the second statement in Theorem 1.3.10.

Corollary 1.3.14. Let X be a compact complex manifold with dimCX = n.
If X is a ∂∂̄-manifold, then

hkBC + hkA = 2bk (1.45)

for every k ∈ {0, . . . , 2n}.

Proof. If X is a ∂∂̄-manifold, then E1(X) = E∞(X), hence hk
∂̄
= bk for all k. (See Theorem 1.3.4

and Corollary 1.2.6.)
On the other hand, if X is a ∂∂̄-manifold, then ap, q = 0 for all p, q, as follows immediately from

the definition of Ap, q and from Definition 1.3.1. Then, by (iii) of Lemma 1.3.12, fp, q = 0 for all p, q.
Hence, ak = fk = 0 for all k.

The contention now follows from (1.44). □

We will now split the proof of the remaining implication of the second statement in Theorem
1.3.10 into three lemmas which are motivated by the (immediate) observation thatX is a ∂∂̄-manifold
if and only if the canonical linear map

∑
p+q=kH

p, q
BC(X, C) −→ Hk

DR(X, C) is an isomorphism for
all k. The goal is to establish these isomorphisms under hypothesis (1.40).

Lemma 1.3.15. If hkBC + hkA = 2bk for all k ∈ {0, . . . , 2n}, then E1(X) = E∞(X) and ak = fk = 0
for all k.
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Proof. We infer from (1.44) that, if hkBC + hkA = 2bk for all k, then ak = fk = 0 and hk
∂̄
= bk for all

k. Meanwhile, Corollary 1.2.6 ensures that E1(X) = E∞(X) if and only if hk
∂̄
= bk for all k. □

The next lemma is slightly more substantial.

Lemma 1.3.16. Fix an arbitrary k ∈ {0, . . . , 2n}. If ak+1 = 0, then the identity-induced canonical
linear map ⊕

p+q=k

Hp, q
BC(X, C) −→ Hk

DR(X, C)

is surjective.

Proof. Proving the claim is equivalent to proving that every class in Hk
DR(X, C) admits a represen-

tative whose all pure-type components are d-closed.
Let {α}DR ∈ Hk

DR(X, C) be an arbitrary class and let α =
∑k

l=0(−1)l αk−l, l be an arbitrary
(necessarily d-closed) representative of it, where αk−l, l is of pure type (k − l, l) for every l. The
property dα = 0 translates to

∂αk, 0 = 0, ∂̄α0, k = 0 and ∂̄αk−l, l − ∂αk−l−1, l+1 = 0 for all l ∈ {0, . . . , k − 1}.

Thus, we get the first identity below, while the hypothesis ak+1 = 0 implies ak−l, l+1 = 0 for all l,
hence the last identity below:

∂̄αk−l, l = ∂αk−l−1, l+1 ∈ Im ∂̄ ∩ Im ∂ = Im (∂∂̄).

Therefore, for every l ∈ {0, . . . , k − 1}, there exists ηk−l−1, l ∈ C∞
k−l−1, l(X, C) such that

∂̄αk−l, l = ∂αk−l−1, l+1 = ∂∂̄ηk−l−1, l.

Put

η :=
k−1∑
l=0

(−1)l ηk−l−1, l.

We obviously have {α}DR = {α + dη}DR, while

α + dη = (αk, 0 + ∂ηk−1, 0) +
k−1∑
l=1

(−1)l (ηk−l, l + ∂ηk−l−1, l − ∂̄αk−l, l−1) + (−1)k (α0, k − ∂̄η0, k−1),

where the parantheses on the right enclose pure-type forms that are easily seen to be both ∂- and
∂̄-closed, hence d-closed.

Thus, the class {α}DR is represented the form α+dη whose all pure-type components are d-closed.
□

The last of the three lemmas is straightforward.

Lemma 1.3.17. If hkBC ≥ bk and hkBC + hkA = 2bk for all k ∈ {0, . . . , 2n}, then hkBC = bk for all
k ∈ {0, . . . , 2n}.
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Proof. The Bott-Chern/Aeppli duality (see Theorem 1.1.15), resp. the Poincaré duality, implies the
first, resp. the last, identity below:

bk ≤ hkBC = h2n−kA = 2b2n−k − h2n−kBC ≤ b2n−k = bk, k ∈ {0, . . . , 2n}.

Consequently, hkBC = bk for all k. □

End of proof of Theorem 1.3.10. Suppose that hkBC + hkA = 2bk for all k ∈ {0, . . . , 2n}. Then,
by Lemma 1.3.15, ak = 0 for all k. Hence, by Lemma 1.3.15, the map

∑
p+q=kH

p, q
BC(X, C) −→

Hk
DR(X, C) is surjective for all k. In particular, hkBC ≥ bk for all k.
The last identity and the hypothesis imply, thanks to Lemma 1.3.17, that hkBC = bk for all

k. Hence, the surjective linear map
∑

p+q=kH
p, q
BC(X, C) −→ Hk

DR(X, C) is an isomorphism, which

amounts to X being a ∂∂̄-manifold. □

1.3.2 The ∂∂̄-lemma on compact Kähler manifolds

Compact Kähler manifolds are the object of study of Kähler geometry and constitute fundamental
examples of ∂∂̄-manifolds. However, there exist many non-Kähler ∂∂̄-manifolds, as we will see
further down.

Definition 1.3.18. (i) A Kähler metric on a complex manifold X is a Hermitian metric ω such
that dω = 0.

(ii) A complex manifold X is said to be a Kähler manifold if there exists a Kähler metric on X.

Hermitian commutation relations

Before discussing the so-called ∂∂̄-lemma on compact Kähler manifolds, let us briefly review the
generalisation to the Hermitian context of theKähler commutation relations. This generalisation
was established by Demailly in [Dem84] (see also [Dem97, VII, §.1), but originates in Griffiths’s work
[Gri69] and is also much related to §.1 of Chapter 1 in Ohsawa’s work [Ohs82]. We refer the reader
to the original sources for the proofs.

Proposition 1.3.19. ([Dem84], see also [Dem97, VII, §.1]) Let (X, ω) be a compact complex Her-
mitian manifold. Then, the following Hermitian commutation relations hold in every bidegree:

(i) (∂ + τ)⋆ = i [Λ, ∂̄]; (ii) (∂̄ + τ̄)⋆ = −i [Λ, ∂];
(iii) ∂ + τ = −i [∂̄⋆, L]; (iv) ∂̄ + τ̄ = i [∂⋆, L], (1.46)

where the upper symbol ⋆ stands for the formal adjoint w.r.t. the L2 inner product induced by ω, L =
Lω := ω ∧ · is the Lefschetz operator of multiplication by ω, Λ = Λω := L⋆ and τ = τω := [Λ, ∂ω ∧ ·]
is the torsion operator (of order zero and type (1, 0)) associated with the metric ω.

Again following [Dem97, VII, §.1], the commutation relations (1) immediately induce via the
Jacobi identity the Bochner-Kodaira-Nakano-type identity

∆′′ = ∆′ + [∂, τ ⋆]− [∂̄, τ̄ ⋆] (1.47)

relating the ∂̄-Laplacian ∆′′ = [∂̄, ∂̄⋆] = ∂̄∂̄⋆ + ∂̄⋆∂̄ and the ∂-Laplacian ∆′ = [∂, ∂⋆] = ∂∂⋆ + ∂⋆∂.
This, in turn, induces the following Bochner-Kodaira-Nakano-type identity (cf. [Dem84]) in which
the first-order terms have been absorbed in the twisted Laplace-type operator ∆′

τ := [∂+τ, (∂+τ)⋆]:
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∆′′ = ∆′
τ + Tω, (1.48)

where Tω :=

[
Λ, [Λ, i

2
∂∂̄ω]

]
− [∂ω ∧ ·, (∂ω ∧ ·)⋆] is a zeroth order operator of type (0, 0) associated

with the torsion of ω. Formula (1.48) is obtained from (1.47) via the following identities (cf. [Dem84]
or [Dem97, VII, §.1]) which have an interest of their own:

(i) [L, τ ] = 3 ∂ω ∧ ·, (ii) [Λ, τ ] = −2i τ̄ ⋆,
(iii) [∂, τ̄ ⋆] = −[∂, ∂̄⋆] = [τ, ∂̄⋆], (iv) − [∂̄, τ̄ ⋆] = [τ, (∂ + τ)⋆] + Tω. (1.49)

Note that (iii) yields, in particular, that ∂ and ∂̄⋆ + τ̄ ⋆ anti-commute, hence by conjugation, ∂̄ and
∂⋆ + τ ⋆ anti-commute, i.e.

[∂, ∂̄⋆ + τ̄ ⋆] = 0 and [∂̄, ∂⋆ + τ ⋆] = 0. (1.50)

The Kähler case

If the metric ω is Kähler, then ∂ω = 0, so τ = 0 and (1.47) and (1.48) reduce to

∆′′ = ∆′ =
1

2
∆ (1.51)

as operators ∆′,∆′′,∆ : C∞
p, q(X, C) −→ C∞

p, q(X, C) in every bidegree (p, q). Note that, in particular,
∆ preserves bidegrees when the metric ω is Kähler.

Also note that, thanks to ω being Kähler, (4.83) reduces to

[∂, ∂̄⋆] = 0 and [∂̄, ∂⋆] = 0, (1.52)

meaning that ∂ anti-commutes with ∂̄⋆ and ∂̄ anti-commutes with ∂⋆.

We can now prove the following fundamental fact that underlies the theory of ∂∂̄-manifolds.

Theorem 1.3.20. (the ∂∂̄-lemma) Every compact Kähler manifold is a ∂∂̄-manifold.

Proof. Let (X, ω) be a compact Hermitian manifold. Fix a bidegree (p, q) and let u ∈ C∞
p, q(X, C)

such that du = 0. Thus, ∂u = 0 and ∂̄u = 0.
Notice that the following implications always hold, even if the metric ω is not Kähler:

u ∈ Im (∂∂̄) =⇒ u ∈ Im ∂ and u ∈ Im ∂̄ and u ∈ Im d.

(Fot the last one, note that, if u = ∂∂̄v, then u = d(∂̄v).)
Similarly, the following equivalences always hold, even if the metric ω is not Kähler:

u ∈ Im ∂̄ ⇐⇒ u ⊥ Hp, q
∆′′(X, C)

u ∈ Im ∂ ⇐⇒ u ⊥ Hp, q
∆′ (X, C)

u ∈ Im d ⇐⇒ u ⊥ Hp+q
∆ (X, C).

Now, suppose that ω is Kähler. Thanks to (1.51), the above equivalences imply the following
equivalences:

u ∈ Im ∂̄ ⇐⇒ u ∈ Im ∂ ⇐⇒ u ∈ Im d,
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so it remains to prove the implication:

u ∈ Im ∂̄ =⇒ u ∈ Im (∂∂̄).

To prove this implication, suppose that u = ∂̄v for some v ∈ C∞
p, q−1(X, C). Thanks to the

L2
ω-orthogonal 3-space decomposition

C∞
p, q−1(X, C) = ker∆′ ⊕ Im ∂ ⊕ Im ∂⋆,

the form v splits uniquely as v = w + ∂α + ∂⋆β, with w ∈ ker∆′. We get

u = ∂̄v = ∂̄w + ∂̄∂α+ ∂̄∂⋆β. (1.53)

Now, (1.51) implies the first identity in

w ∈ ker∆′ = ker∆′′ = ker ∂̄ ∩ ker ∂̄⋆.

In particular, ∂̄w = 0. On the other hand, from (1.52) we get: ∂̄∂⋆β = −∂⋆∂̄β.
In the light of the last two pieces of information, from (1.53) we get:

ker ∂ ∋ u+ ∂∂̄α = ∂⋆(−∂̄β) ∈ Im ∂⋆

Since ker ∂ ⊥ Im ∂⋆, we get u+ ∂∂̄α = 0, hence u = −∂̄∂α ∈ Im (∂∂̄). □

1.3.3 A counter-example: the Iwasawa manifold

We have seen so far that, for a compact complex manifold X, the following implications hold:

X is Kähler =⇒ X is ∂∂̄ =⇒ E1(X) = E∞(X).

We will see later on that, when dimCX ≥ 3, all these implications are strict, but let us now point
out an example where even the weakest of these properties is not satisfied. Historically, this was the
first example of a compact complex manifold X for which E1(X) ̸= E∞(X).

Definition 1.3.21. The Iwasawa manifold X = G/Γ, denoted sometimes by I(3), is the compact
complex manifold of complex dimension 3 defined as the quotient of the Heisenberg group

G :=


1 z1 z3
0 1 z2
0 0 1

 ; z1, z2, z3 ∈ C

 ⊂ GL3(C)

by its discrete subgroup Γ ⊂ G of matrices with entries z1, z2, z3 ∈ Z[i].

The Heisenberg group G is a simply connected, connected complex Lie group whose complex
manifold structure is inherited from C3 via the obvious diffeomorphism G ≃ C3 and whose group
operation is the multiplication of matrices1 z1 z3

0 1 z2
0 0 1

 1 w1 w3

0 1 w2

0 0 1

 =

1 z1 + w1 z3 + z1w2 + w3

0 1 z2 + w2

0 0 1

 .

Since the holomorphic 1-form on G
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G ∋M 7→M−1 dM

is invariant under the action of Γ, it descends to a holomorphic 1-form on X. An elementary
calculation shows that

if M =

1 z1 z3
0 1 z2
0 0 1

 then M−1 dM =

0 dz1 dz3 − z1 dz2
0 0 dz2
0 0 0

 .

We get holomorphic 1-forms on the Iwasawa manifold X induced by the following forms on C3:

α = φ1 := dz1, β = φ2 := dz2, γ = φ3 := dz3 − z1dz2. (1.54)

Denoting the induced forms by the same symbols φ1, φ2, φ3 (or α, β, resp. γ), it is obvious that

dφ1 = dφ2 = 0 while dφ3 = −φ1 ∧ φ2 ̸= 0 on X. (1.55)

Since the holomorphic 1-form φ3 on X is not d-closed, we conclude the following fact via Proposition
1.2.14.

Proposition 1.3.22. The Frölicher spectral sequence of the Iwasawa manifold does not degenerate
at E1.

In particular, the Iwasawa manifold is not a ∂∂̄-manifold, hence not a Kähler manifold.

Due to the key role played by the Iwasawa manifold in non-Kähler geometry, we will now give a
rundown of its basic properties that will be fleshed out throughtout the book.

The map (z1, z2, z3) 7→ (z1, z2) factors through the action of Γ to a (holomorphically locally
trivial) proper holomorphic submersion

π : X → B,

where the base B = C2/Z[i] ⊕ Z[i] = C/Z[i] × C/Z[i] is a two-dimensional Abelian variety (the
product of two elliptic curves) and where all the fibres are isomorphic to the Gauss elliptic curve
C/Z[i]. This description displays the non-existence on X of curves normalised by smooth rational
curves, as any map from such a curve to any factor C/Z[i] would be constant. Indeed, thanks to the
Riemann-Hurwitz formula, any non-constant map between two smooth curves is genus-decreasing.)

From the exact sequence
0→ π⋆Ω1

B → Ω1
X → Ω1

X/B → 0,

as the map H1(π⋆Ω1
B) = H1(OX)⊗H0(π⋆Ω1

B)→ H1(OX)⊗H0(Ω1
X) = H1(Ω1

X) is injective due to
the triviality of Ω1

B and Ω1
X , we get the simple presentation

0→ H0(π⋆Ω1
B)→ H0(Ω1

X)→ H0(Ω1
X/B)→ 0.

Thus, the form γ (also denoted by φ3) is a representative of H0(Ω1
X/B) in H

0(Ω1
X). In other words,

the forms α and β are horizontal (i.e. coming from B), while γ is vertical (i.e. lives on the fibres).
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It follows that the De Rham cohomology of the Iwasawa manifold X reads

H1
DR(X,C) =

〈
{α}DR, {β}DR, {ᾱ}DR, {β̄}DR

〉
= π⋆H1

DR(B,C),

π⋆H2
DR(B,C) =

〈
{α ∧ ᾱ}DR, {α ∧ β̄}DR, {β ∧ ᾱ}DR, {β ∧ β̄}DR

〉
≃ H1, 1

BC(X, C) ≃ π⋆H1, 1(B,C)

H2
DR(X,C) = π⋆H2

DR(B,C)⊕
〈
{γ ∧ α}DR, {γ ∧ β}DR

〉
⊕
〈
{γ̄ ∧ ᾱ}DR, {γ̄ ∧ β̄}DR

〉
,

π⋆H3
DR(B,C) = 0,

H3
DR(X,C) =

〈
{α ∧ β ∧ γ}DR

〉
⊕ {γ ∧ π⋆H1, 1(B,C)}DR ⊕ {γ̄ ∧ π⋆H1, 1(B,C)}DR

⊕
〈
{ᾱ ∧ β̄ ∧ γ̄}DR

〉
H4
DR(X,C) =

〈
{α ∧ β ∧ γ ∧ ᾱ}DR, {α ∧ β ∧ γ ∧ β̄}DR

〉
⊕
〈
{α ∧ γ ∧ ᾱ ∧ γ̄}DR, {α ∧ γ ∧ β̄ ∧ γ̄}DR, {β ∧ γ ∧ ᾱ ∧ γ̄}DR, {β ∧ γ ∧ β̄ ∧ γ̄}DR

〉
⊕
〈
{α ∧ ᾱ ∧ β̄ ∧ γ̄}DR, {β ∧ ᾱ ∧ β̄ ∧ γ̄}DR

〉
. (1.56)

Furthermore, thanks to (1.55), the triple Massey product of the De Rham cohomology classes
{α}, {β}, {β} ∈ H1

DR(X, C) is

⟨α, β, β⟩ = {β ∧ γ}DR ∈ H2
DR(X,C)/{α} ∪H1

DR(X, C) + {β} ∪H1
DR(X,C).

Thus, ⟨α, β, β⟩ ≠ 0 thanks to (1.56) and to {α} ∪H1
DR(X, C) + {β} ∪H1

DR(X,C) = π⋆H2
DR(B,C).

Therefore, we get the following strenghtening of a part of Proposition 1.3.22.

Proposition 1.3.23. No complex structure on the C∞ manifold underlying the Iwasawa manifold
(in particular, no deformation of X) is Kähler or even ∂∂̄.

It is known ([Nak75], [Sch07], [Ang11]) that the forms α, β, γ generate the entire cohomology
of X. For example, we shall need the following descriptions in terms of generators of the following
cohomology groups:

H1, 0

∂̄
(X,C) =

〈
[α]∂̄, [β]∂̄, [γ]∂̄

〉
, H0, 1

∂̄
(X,C) =

〈
[α]∂̄, [β]∂̄

〉
= π⋆H0, 1

∂̄
(B,C),

H1, 1

∂̄
(X, C) =

〈
[α ∧ α]∂̄, [α ∧ β]∂̄, [β ∧ α]∂̄, [β ∧ β]∂̄, [γ ∧ α]∂̄, [γ ∧ β]∂̄

〉
,

H3, 0

∂̄
(X,C) =

〈
[α ∧ β ∧ γ]∂̄

〉
, H0, 3

∂̄
(X,C) =

〈
[α ∧ β ∧ γ]∂̄

〉
,

H2, 1

∂̄
(X, C) =

〈
[α ∧ γ ∧ α]∂̄, [α ∧ γ ∧ β]∂̄, [β ∧ γ ∧ α]∂̄, [β ∧ γ ∧ β]∂̄

〉
⊕
〈
[α ∧ β ∧ α]∂̄, [α ∧ β ∧ β]∂̄

〉
= [γ ∧ π⋆H1, 1

∂̄
(B, C)]∂̄ ⊕ π⋆H

2, 1

∂̄
(B, C), (1.57)

H1, 2

∂̄
(X, C) =

〈
[α ∧ α ∧ γ]∂̄, [β ∧ α ∧ γ]∂̄, [α ∧ β ∧ γ]∂̄, [β ∧ β ∧ γ]∂̄

〉
⊕
〈
[γ ∧ α ∧ γ]∂̄, [γ ∧ β ∧ γ]∂̄

〉
.
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On the other hand, since G is a connected, simply connected, nilpotent complex Lie group, X is
what is called a nilmanifold. Furthermore, X is a complex parallelisable compact complex manifold
(i.e. its holomorphic tangent bundle T 1, 0X is trivial – see §.4.5.3, including Definition 4.5.29 and
Theorem 4.5.30, as well as §.8, for further details). In particular, its canonical bundle KX is trivial,
so X is a Calabi-Yau manifold in the generalised sense that will be adopted throughout this book.



Chapter 2

Kodaira-Spencer Deformation Theory

The main object of study in this chapter and throughout much of this book is the following concept.

Definition 2.0.1. A holomorphic family of compact complex manifolds is a proper holomor-
phic submersion π : X −→ B between complex manifolds X and B.

In this context, X is called the total space, while B is called the base, of the family. Above every
point t ∈ B there lies a compact complex manifold Xt := π−1(t) ⊂ X , called the fibre above t. Of
course, the smoothness of Xt follows from π being submersive, while the compactness of Xt follows
from π being proper. Thus, we have a family (Xt)t∈B of equidimensional compact complex manifolds
parametrised by the points of the base B. We usually let m = dimCB and n = dimCXt for t ∈ B.

π−1(0) = X0 Xt X complex manifold

yπ
0 t B complex manifold

(with a base point 0 ∈ B)

A common situation occurs when the base B is an open ball about the origin in some Cm or,
more generally, when a base point 0 ∈ B has been fixed. We can then take the fibre above 0 ∈ B as
a reference fibre and view the fibres Xt for t ∈ B sufficiently close to 0 as small deformations of X0.
If t is allowed to lie anywhere in B, the family π : X −→ B can be seen as a family of holomorphic
deformations of X0.

On the other hand, if the proper submersion π : X −→ B is only assumed to be C∞ and X and

72
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B are only assumed to be C∞ (not necessarily complex analytic) manifolds, we have a C∞ family
of compact differentiable manifolds or a C∞ family of deformations of X0.

2.1 Ehresmann’s theorem

The fundamental fact of life in deformation theory is the following

Theorem 2.1.1. (Ehresmann [Ehr47]) (i) Every holomorphic family of compact complex manifolds
is locally C∞ trivial in the following sense.

There exists a C∞ manifold X such that every point t0 ∈ B has an open neighbourhood U ⊂ B
for which there exists a C∞ diffeomorphism

T : XU −→ X × U such that pr2 ◦ T = π,

where XU = π−1(U) ⊂ X and pr2 : X × U −→ U is the projection on the second factor.

(ii) If the base B is contractible, the family is even globally C∞ trivial in the sense that
there exists a C∞ manifold X and a C∞ diffeomorphism

T : X −→ X ×B such that pr2 ◦ T = π,

where pr2 : X ×B −→ B is the projection on the second factor.

(iii) Suppose that the base B of the family is an open ball about the origin in some Cm.
The local trivialisation T = (T0, π) : X −→ X0 × B of (i), obtained after possibly replacing B

by a neighbourhood U of 0 ∈ B, can be chosen such that the fibres of the map T0 : X −→ X0 are
complex submanifolds of X .

For the proof, we will follow [Dem96, I.§.10] and [Voi02, §.9.1.1], but let us first make a few

Comments.

(1) The fact that the submanifolds T−1
0 (x) ⊂ X , with x ∈ X0, are complex (i.e. holomorphic)

says that the family (Jt)t∈B of complex structures of the fibres (Xt)t∈B varies holomorphically with
t ∈ B. Meanwhile, (i) implies that, at least locally, all the fibres Xt are C

∞-diffeomorphic to a fixed
C∞ manifold X:

Xt
C∞

≃ X, t ∈ U.

Thus, Theorem 2.1.1 says that locally, and also globally if the base B is contractible, giving a
holomorphic family π : X −→ B of compact complex manifolds is equivalent to giving a C∞

manifold X equipped with a holomorphic family (Jt)t∈B of complex structures.

(2) The proof, which will be seen to be an easy consequence of the classical Tubular Neighbourhood
Theorem, will show that parts (i) and (ii) of Theorem 2.1.1 remain true when the family π : X −→ B
is only supposed to be C∞.

(3) Giving a C∞ trivialisation T = (T0, π) : X −→ X0 × B as in Theorem 2.1.1 (after possibly
shrinking B about its base point 0 and taking the reference C∞ manifold X to be the C∞ manifold
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underlying X0 – a posteriori, it will be the same C∞ manifold underlying any fibre Xt sufficiently
close to X0) is equivalent to giving its first component

T0 : X −→ X0.

Moreover, up to composing T0 with (T0|X0)
−1, we may assume that

T0|X0 = IdX0 .

In other words, we may assume that T0 is a retraction of X onto X0.

(4) Part (iii) of Theorem 2.1.1 implies that, for every x ∈ X0, the T0-fibre through x is a complex
submanifold of X that is biholomorphic to B via

π|T−1
0 (x) : T

−1
0 (x)

≃−→ B.

However, the complex submanifolds (T−1
0 (x))x∈X0 do not vary holomorphically with x ∈ X0 because

the map T0 : X −→ X0 is not holomorphic, hence the fibresXt are not bimeromorphically equivalent,
in general. Nevertheless, the C∞-diffeomorphisms

T0|Xt : Xt −→ X0, t ∈ B,

enable one to view the complex structures of the fibres Xt as complex structures Jt on X0 (or,
equivalently, on the C∞ manifold X that underlies all the fibres Xt) that vary in a holomorphic way
with t ∈ B.

(5) Since, in general, the complex structure Jt of Xt varies (albeit holomorphically) with t ∈ B,
the Dolbeault, Er, Bott-Chern and Aeppli cohomology spaces of the fibres Xt, as well as their
dimensions, change with t.

However, since it depends only on the differential structure of the fibres, which is locally constant,
the De Rham cohomology of Xt is locally constant in the sense that we can identify:

Hk
DR(Xt, C) = Hk

DR(X, C), k ∈ {0, . . . , 2n},

for all t in a small enough neighbourhood of any given point t0 ∈ B.

Proof of Theorem 2.1.1.

The arguments for the proofs of (i) and (iii), resp. (ii), are those given in [Voi02, §.9.1.1], resp.
[Dem96, I.§.10].

(i) We may assume that t0 = 0. To find a local trivialisation T = (T0, π) : XU −→ X0 × U ,
we need to find a submersion T0 : XU −→ X0 (i.e. a way of projecting some XU onto X0) with an
extra property. If XU were the total space of a bundle and X0 one of its fibres, we could choose T0 to
be the bundle projection. However, we are almost there since the Tubular Neighbourhood Theorem
identifies a small neighbourhood of X0 in the ambient manifold X with a small neighbourhood of
the said X0 in its normal bundle in X . So, all we have to do is to apply this classical theorem.

Since the manifolds X and X are real analytic (and even more), the real analytic Tubular Neigh-
bourhood Theorem yields:

-an open neighbourhood W of X0 in the total space of its normal bundle NXX0 in X (i.e. an
open neighbourhood W of the zero section of NXX0);
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-an open neighbourhood V of X0 in X ;
-a real analytic diffeomorphism ψ : W

≃−→ V .

When the family π : X −→ B is only C∞, we apply the usual Tubular Neighbourhood Theorem
that yields a C∞ diffeomorphism ψ : W

≃−→ V .

• Let us recall briefly the outline of the proof of this standard theorem. Fix a real analytic metric
ω on X in the neighbourhood of X0 and consider the induced geodesic map:

NXX0 ⊃ W ∋ (x, u)
ψ7→ γu(1) ∈ V ⊂ X ,

where W is an open neighbourhood of X0 in NXX0, x ∈ X0 and

u ∈ (NXX0)x
ω≃ {u ∈ TxX | u ⊥ TxX0},

while γu(1) is the endpoint of the unique geodesic γu starting at x with tangent vector u. The
orthogonality condition u ⊥ TxX0 is w.r.t. the metric ω and so is the identification between the
fibre of the normal bundle at x and the orthogonal complement of the tangent space to X0 at x in
the tangent space to X at x.

The map ψ is the identity map on X0 (i.e. when u = 0) and its differential at every point of
X0 is an isomorphism. Hence, by the (real analytic) Local Inversion Theorem, ψ maps an open
neighbourhood W of X0 in NXX0 (shrink the original W if necessary) onto an open neighbourhood
V of X0 in X (again, shrink the original V if necessary).

•We now go back to the proof of Theorem 2.1.1. Denote by σ : NXX0 −→ X0 the normal bundle
projection map and consider the composition T0 := σ ◦ ψ−1 : V −→ X0 defined by

V
ψ−1

−−→ W
σ−→ X0.

Thus, T0 is a real analytic retraction of V onto X0.
Consequently, since π is also a submersion, the differential of the map (T0, π) : V −→ X0 × B

is invertible along X0. By the (real analytic) Local Inversion Theorem and the compactness of X0,
there exists an open neighbourhood V ′ of X0 in V such that

(T0, π)|V ′ : V ′ −→ X0 ×B

is a (real analytic) embedding.
Now, π is proper and π−1(0) = X0 ⊂ V ′, so there exists an open neighbourhood U ⊂ B of 0 such

that V ′′ := π−1(U) ⊂ V ′. Hence, (T0, π)(V
′′) = X0 × U , and therefore the map

T := (T0, π)|V ′′ : V ′′ = π−1(U) −→ X0 × U

is a (real analytic) diffeomorphism satisfying the condition pr2 ◦ T = π. This proves (i).

(iii) For every x ∈ X0, the map

ψx : Wx := (NXX0)x ∩W −→ X

is real analytic, hence it admits a power series expansion in any arbitrarily chosen R-linear coordinates
on the complex vector space (NXX0)x. Let
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ψhx : Wx −→ X

be the holomorphic map obtained by retaining the holomorphic part of this power series expansion
of ψx.

Now, ψhx is independent of the choice of coordinates and varies in a C∞ way with x ∈ X0, so we
get a C∞ map

ψh : W −→ X

which is holomorphic on the fibres of σ (i.e. the fibres of the normal bundle NXX0).
Moreover, the differential dx(π ◦ ψ) of π ◦ ψ at every point x ∈ X0 is C-linear (and, of course,

surjective) because the differential dxψ of ψ induces the canonical isomorphism between (NNX0)x
and (NXX0)x. Therefore, the differential dx(π ◦ ψ) of π ◦ ψ at every point x ∈ X0 equals the
differential dx(π ◦ ψh) of π ◦ ψh at x. So, the latter differential must be surjective. Therefore, by
the Local Inversion Theorem, ψh is a local diffeomorphism from some neighbourhood W ′ of X0 in
NXX0 to X .

It remains to put
T := (σ ◦ (ψh)−1, π) : X −→ X0 ×B

to get the desired trivialisation required to prove (iii).

(ii) Suppose that B is contractible and fix a base point 0 ∈ B. Then, there exists a C∞ homotopy:

H : B × [0, 1] −→ B such that H(•, 0) = IdB and H(•, 1) = (B −→ {0}),

where (B −→ {0}) stands for the constant map sending all the points in B to 0 ∈ B.
Let us now consider the C∞ manifold

X̃ :=

{
(x, t, s) ∈ X ×B × [0, 1] | π(x) = H(t, s)

}
.

Note that we can view X as the set of pairs (x, t) such that t ∈ B and x ∈ Xt. The condition x ∈ Xt

is obviously equivalent to π(x) = t. Similarly, we can view X̃ as the set of triples (x, t, s) such that
(x, H(t, s)) ∈ X , or equivalently such that x ∈ XH(t, s). In particular, if we put

X̃|B×{s} := {(x, t, s′) ∈ X̃ | s′ = s}, for all s ∈ [0, 1],

we get X̃|B×{0} = X and X̃|B×{1} = X0 ×B.

Thus, proving (ii) reduces to finding a C∞ diffeomorphism T : X̃|B×{0} −→ X̃|B×{1} such that
pr2 ◦ T = π.

Now, the map π̃ := pr2×pr3 : X̃ −→ B× [0, 1] is still a C∞ submersion, as can easily be checked.

Therefore, the vector field ∂/∂s on B × [0, 1] lifts under π̃ to a vector field ξ on X̃ in the sense that

π̃⋆ξ =
∂

∂s
.

(For the fact that currents and vector fields have well-defined pullbacks or lifts under submersions,
thanks to the possibility of integrating differential forms along the (necessarily smooth) fibres of a
submersion and to a generalised Fubini theorem involving fibrewise integrations, the reader is referred
to [Dem97, I§.2.15].)

Let φs be the flow of the vector field ξ ∈ C∞(X̃ , T X̃ ). Then, for every s ∈ [0, 1],
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φs : X̃|B×{0} −→ X̃|B×{s}, φs(x, t, 0) = (ρs(x), t, s),

is an isomorphism that commutes with the projection on B, where ρs is a smooth function of x.

Therefore, we can choose T = φ1 : X̃|B×{0} = X −→ X̃|B×{1} = X0 ×B and we are done. □

2.2 The Kodaira-Spencer map

Let π : X −→ B be a holomorphic family of compact complex manifolds. Fix an arbitrary base
point 0 ∈ B. The differential map

dπ : T 1, 0X −→ π⋆(T 1, 0B)

is a morphism of holomorphic vector bundles over X . Since X0 = π−1(0) ⊂ X , we have

T 1, 0X0 = ker

(
(dπ)|X0

)
,

so we get an exact sequence of holomorphic vector bundles over X0:

0 −→ T 1, 0X0 −→ T 1, 0X|X0

dπ−→ π⋆(T 1, 0B)|X0 −→ 0. (2.1)

Meanwhile, π⋆(T 1, 0B)|X0 = X0× T 1, 0
0 B is the trivial holomorphic vector bundle over X0 of fibre

T 1, 0
0 B. Therefore, the exact sequence (2.1) defines an extension of the holomorphic vector bundle
T 1, 0X0 by the trivial holomorphic vector bundle of fibre T 1, 0

0 B. This extension is equivalent to the
connecting morphism

ρ : T 1, 0
0 B = H0(X0, π

⋆(T 1, 0B)|X0) −→ H1(X0, OX0(T
1, 0X0)) ≃ H0, 1(X0, T

1, 0X0)

that is part of the long exact sequence associated with (2.1).

Definition 2.2.1. The linear map ρ : T 1, 0
0 B −→ H0, 1(X0, T

1, 0X0) is called the Kodaira-Spencer
map at 0 of the family π : X −→ B.

The main interest in the Kodaira-Spencer map stems from the following loosely stated principle
that will be made precise in the next two subsections.

Fact 2.2.2. The Kodaira-Spencer map at 0 can be seen as the differential at t = 0 of the map

B ∋ t 7→ Jt, (2.2)

where Jt is the complex structure of the fibre Xt.

In other words, the Kodaira-Spencer map is the classifying map for the 1-st order deformations
of (the complex structure of) X0.
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2.2.1 The formal approach

The presentation in this subsection will follow that of [Voi02, §.9.1.2], as has the one above in §.2.2.
• Let X := X0 and let x ∈ X be an arbitrarily fixed point. We start by reinterpreting Jt at x as

a form αt ∈ Ω0, 1
X,x ⊗ T 1, 0

x X = Hom(T 0, 1
x X, T 1, 0

x X).

Let T = (T0, π) : X ≃−→ X0 × B be a local C∞ trivialisation of the family near 0 given by
Ehresmann’s Theorem 2.1.1. (Shrink B about 0 if necessary.) For every t ∈ B, we have a C∞

diffeomorphism
Tt : Xt

≃−→ X0 := X, xt 7→ x,

induced by T . We fix a point x ∈ X and let xt := T−1
t (x) ∈ Xt for all t ∈ B. The differential at xt

of this diffeomorphism defines an isomorphism of C-vector spaces

(dTt)xt : T
1, 0
xt Xt

≃−→ T 1, 0
x X, t ∈ B,

which associates with the complex structure Jt on TxtXt a unique complex structure It on TxX in
the obvious, bijective, way. In this way, we get a family

B ∋ t 7→ It

of complex structures on TxX.
Now, giving I0 is equivalent to giving the C-vector subspace T 1, 0

x X ⊂ CTxX and is still equivalent
to giving the direct sum decomposition

CTxX = T 1, 0
x X ⊕ T 0, 1

x X.

Moreover, once I0 has been fixed, one can specify any other complex structure on TxX (in particular,
every other It) in terms of I0 in the following way. For every t ∈ B close to 0, the C-vector subspace
(T 1, 0

x X)t ⊂ CTxX defining It is actually defined by a form

αt ∈ Ω0, 1
X,x ⊗ T

1, 0
x X = Hom(T 0, 1

x X, T 1, 0
x X), T 0, 1

x X ∋ u 7→ αt(u) ∈ T 1, 0
x X,

which takes every point u of T 0, 1
x X to its (T 0, 1

x X)t-parallel projection onto T 1, 0
x X.

Indeed, if we have specified the C-vector subspace (T 1, 0
x X)t ⊂ CTxX, we let (T 0, 1

x X)t ⊂ CTxX be
its complex conjugate w.r.t. the real structure of CTxX. Then, the linear map αt : T

0, 1
x X −→ T 1, 0

x X
is defined as the composition:

T 0, 1
x X

(a)
≃−→ (T 1, 0

x X)t
(b)−→ T 1, 0

x X,

where the isomorphism (a) is the inverse of the composition of maps:

(T 1, 0
x X)t ↪→ (T 1, 0

x X)t ⊕ (T 0, 1
x X)t = CTxX = T 1, 0

x X ⊕ T 0, 1
x X ↠ T 0, 1

x X,

(so, the isomorphism (a) is the (T 1, 0
x X)-parallel projection onto (T 1, 0

x X)t restricted to T 0, 1
x X), while

the map (b) is the projection onto T 1, 0
x X restricted to (T 0, 1

x X)t.
Conversely, if we have specified a linear map αt : T 0, 1

x X −→ T 1, 0
x X, we associate with it a

complex structure It on TxX by declaring that the vectors of type (0, 1) for It are

(T 0, 1
x X)t := {u− αt(u) | u ∈ T 0, 1

x X}. (2.3)

(The vectors u ∈ T 0, 1
x X are, of course, the vectors of type (0, 1) for I0.)
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We conclude that, once we have fixed a point x ∈ X and a complex structure I0 on TxX, giving
a family of complex structures (It)t∈B on TxX whose member for t = 0 is I0 is equivalent to giving
a family of forms αt ∈ Ω0, 1

X,x ⊗ T 1, 0
x X = Hom(T 0, 1

x X, T 1, 0
x X) with t ∈ B such that α0 = 0.

• If we now allow the point x ∈ X to move, we conclude that giving a holomorphic family (Jt)t∈B
of complex structures on the fibres (Xt)t∈B whose member for t = 0 is a pregiven J0 (or, equivalently,
a holomorphic family (It)t∈B of complex structures on the fixed manifold X := X0 whose member for
t = 0 is a pregiven J0) is equivalent to giving a holomorphic family (αt)t∈B of smooth T 1, 0X-valued
(0, 1)-forms such that α0 = 0.

In other words, we have proved the following

Proposition 2.2.3. Let π : X −→ B be a holomorphic family of compact complex manifolds. Fix an
arbitrary base point 0 ∈ B and, for every ∈ B, denote by Jt the complex structure of Xt := π−1(t).

Then, the map B ∋ t 7→ Jt is equivalent to the holomorphic map

B ∋ t α7→ αt ∈ C∞
0, 1(X, T

1, 0X), (2.4)

where X := X0 and the forms αt are uniquely associated with the complex structures Jt as explained
above.

• We are now in a position to make Fact 2.2.2 precise by proving that the Kodaira-Spencer map
at 0 is intimately related to the differential of the above map α at t = 0. This provides the first
reason we will discuss for thinking of the Kodaira-Spencer map at 0 as the 1-st order variation of
the complex structure of X0 (identified with the form α0) as it deforms to the complex structures of
the nearby fibres Xt (identified respectively with the forms αt when t remains close to 0).

Theorem 2.2.4. In the situation of Proposition 2.2.3, the map

T 1, 0
0 B ∋ u 7→ (d0α)(u) ∈ C∞

0, 1(X, T
1, 0X)

takes values in the space of ∂̄-closed forms in C∞
0, 1(X, T

1, 0X).

Moreover, for every u ∈ T 1, 0
0 B, the following identity holds:

[(d0α)(u)]∂̄ = ρ(u) ∈ H0, 1(X, T 1, 0X), (2.5)

where ρ : T 1, 0
0 B −→ H0, 1(X, T 1, 0X) is the Kodaira-Spencer map at 0 of the family π : X −→ B.

The ∂̄-closedness conclusion of Theorem 2.2.4 is w.r.t. the canonical (0, 1)-connection ∂̄ of the
holomorphic vector bundle T 1, 0X (which is the holomorphic tangent bundle ofX0). As usual, [ ]∂̄ de-
notes a ∂̄-cohomology class for the canonical ∂̄ of T 1, 0X, while H0, 1(X, T 1, 0X) is the corresponding
∂̄-cohomology space at the level of C∞

0, 1(X, T
1, 0X).

Proof of Theorem 2.2.4. We will divide the proof into two steps.

• Step 1: reinterpretation of the Kodaira-Spencer map.

The main observation is that part (iii) of Ehresmann’s Theorem 2.1.1 enables us to view the
quotient bundle π⋆(T 1, 0B) of T 1, 0X as a subbundle (albeit only C∞) and thus, in particular, to
get a C∞ splitting of the exact sequence (2.1).

Indeed, after possibly shrinking B about 0, there exists a C∞ trivialisation T = (T0, π) : X
≃−→

X0 × B such that, for every x ∈ X0, T
−1
0 (x) is a complex (i.e. holomorphic) submanifold of X .

Therefore, the holomorphic tangent bundles of the complex submanifolds T−1
0 (x) form a C∞ complex
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subbundle T 1, 0
X/B of T 1, 0

X . (Note that this subbundle is only C∞ because the complex submanifolds

T−1
0 (x) ⊂ X vary only in a C∞ way with x ∈ X0.) Moreover, we have a vector bundle isomorphism:

dπ : T 1, 0
X/B

≃−→ π⋆(T 1, 0B)

whose inverse induces a C∞ morphism of vector bundles σ := j ◦ (dπ)−1 : π⋆(T 1, 0B) −→ T 1, 0
X that

makes the following diagram commutative:

π⋆(T 1, 0B) T 1, 0
X

T 1, 0
X/B

(dπ)−1 ≃

σ

j

where j is the inclusion map. Note that σ defines a C∞ splitting of the short exact sequence

0 −→ T 1, 0
X/B

j−→ T 1, 0
X −→ π⋆(T 1, 0B) −→ 0,

which, by restriction to X0, defines a C
∞ splitting of the short exact sequence (2.1).

In particular, σ defines a C∞ vector bundle section:

σ ∈ C∞(X , Hom (π⋆(T 1, 0B), T 1, 0
X )).

Since the morphism vector bundle Hom (π⋆(T 1, 0B), T 1, 0
X ) is holomorphic, it is equipped with a

canonical ∂̄ operator. When applied to σ, it induces a vector (0, 1)-form

∂̄σ ∈ C∞
0, 1(X , Hom (π⋆(T 1, 0B), T 1, 0

X )).

With this construction understood, the definition of ρ as the connecting morphism induced by
the short exact sequence (2.1) implies the following expression for ρ in terms of σ:

T 1, 0
0 B ∋ v 7→ ρ(v) = [(∂̄σ)(v)]∂̄.

• Step 2: computations in local coordinates.

Thanks to Step 1, we are reduced to proving the formula

(∂̄σ)(v) = (d0α)(v), for all v ∈ T 1, 0
0 B. (2.6)

This is a local identity, so it lends itself to being proved by a computation in local coordinates. Let
n = dimCXt and m = dimC.

Let (t1, . . . , tm) be a system of local holomorphic coordinates centred at 0 on B and let (z1, . . . , zn)
be locally defined holomorphic functions on X such that (z1, . . . , zn, π

⋆t1, . . . , π
⋆tm) is a local holo-

morphic coordinate system on X . W.r.t. these coordinates, the map π : X −→ B is given by

(z1, . . . , zn, π
⋆t1, . . . , π

⋆tm)
π7→ (t1, . . . , tm).

Meanwhile, the horizontal projection T0 : X −→ X0 = X has the following shape in these coordi-
nates:

T0 = (T
(1)
0 (z1, . . . , zn, t1, . . . , tm), . . . , T

(n)
0 (z1, . . . , zn, t1, . . . , tm)),

where the T
(j)
0 ’s are C∞ functions of (z1, . . . , zn, t1, . . . , tm) that are holomorphic in the ti’s.
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Thus, if we put x := T0(z1, . . . , zn, t1, . . . , tm), (T
0, 1
x X)t is generated by

(dT0)x(
∂

∂z̄i
) =

∂T0
∂z̄i

(x) =
∑
j

∂T
(j)
0

∂z̄i
(x)

∂

∂zj
+
∑
j

∂T
(j)
0

∂z̄i
(x)

∂

∂z̄j
∈ T 1, 0

x X ⊕ T 0, 1
x X,

because ∂T0/∂t̄i = 0 for all i. Hence, at x := T0(z1, . . . , zn, t1, . . . , tm), we get:

T 0, 1
x X ∋ u :=

∑
j

∂T
(j)
0

∂z̄i
(x)

∂

∂z̄j

αt7−→ αt(u) = −
∑
j

∂T
(j)
0

∂z̄i
(x)

∂

∂zj
∈ T 1, 0

x X

because, as we saw above, the vectors of type (0, 1) for It, x are (dT0)x(∂/∂z̄i) and we know, from
the definition of αt, that they are given by u− αt(u) when u ranges over T 0, 1

x X. (See (2.3).)

Since T0|X0 = IdX0 , we have (∂T
(j)
0 /∂z̄i)(z1, . . . , zn, 0, . . . , 0) = δi j (the Kronecker symbol).

Hence, the above formula for αt(u) yields:

αt(
∂

∂z̄i
) = −

∑
j

∂T
(j)
0

∂z̄i
(x)

∂

∂zj
at (z1, . . . , zn, 0, . . . , 0).

Differentiating this identity w.r.t. tk, we find at (z1, . . . , zn, 0, . . . , 0):

∂αt
∂tk |t=0

(
∂

∂z̄i

)
= − ∂

∂z̄i

(∑
j

∂T
(j)
0

∂tk |t=0

∂

∂zj

)
for all k ∈ {1, . . . ,m}. (2.7)

This computes one of the terms in (2.6). To compute the other term, we notice that the vector
field σ(∂/∂tk) is the unique vector field ξ of type (1, 0) on X with the following two properties:

(dT0)(ξ) = 0 and (dπ)(ξ) =
∂

∂tk
∈ C∞(B, T 1, 0B).

(In other words, σ(∂/∂tk) is the unique horizontal vector field of type (1, 0) on X which is a lift
under π of the (1, 0)-vector field ∂/∂tk on B.)

Now, (dT0)(
∂
∂tk

) =
∑
j

∂T
(j)
0

∂tk

∂
∂zj

and dT0 = Id on X0. Hence, we find at (z1, . . . , zn, 0, . . . , 0):

σ(
∂

∂tk
) =

∂

∂tk
−
∑
j

∂T
(j)
0

∂tk

∂

∂zj
for all k ∈ {1, . . . ,m}. (2.8)

Putting together (2.7) and (2.8), we get:

∂αt
∂tk |t=0

(
∂

∂z̄i

)
=

∂

∂z̄i

(
σ(

∂

∂tk
)|t=0

)
for all k ∈ {1, . . . ,m} and all i ∈ {1, . . . , n}.

This is equivalent to

(d0α)

(
∂

∂tk |t=0

)(
∂

∂z̄i

)
= (∂̄σ)

(
∂

∂z̄i

)(
∂

∂tk |t=0

)
for all k ∈ {1, . . . ,m} and all i ∈ {1, . . . , n},

which is further equivalent to
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(d0α)

(
∂

∂tk |t=0

)
= (∂̄σ)

(
∂

∂tk |t=0

)
for all k ∈ {1, . . . ,m}.

This proves (2.6) and we are done. □

2.2.2 The analytic approach

The presentation in this subsection will follow that of [Kod86, §.9.1.2]. The context and the notation
are the same as throughout this chapter.

The complex structure J0 (resp. Jt) of X0 (resp. Xt) is equivalent to the corresponding ∂̄-
operator, ∂̄0 (resp. ∂̄t). The point of view adopted here consists in working directly with ∂̄t and
studying its variation with t; in other words, viewing the family π : X −→ B as a holomorphic
family (∂̄t)t∈B of complex structures (or, equivalently, of ∂̄-operators) on X0 := X.

Expression of ∂̄t in terms of ∂̄0

Let Uj ⊂ X0 be a coordinate patch and let (ζαj (z, t))1≤α≤n be a local Jt-holomorphic coordinate
system on Uj, where t = (t1, . . . , tm) ∈ B are local holomorphic coordinates centred at 0 on B. On
the other hand, let (z1, . . . , zn) be a local J0-holomorphic coordinate system centred at an arbitrarily
given point x ∈ X0. Thus,

ζαj (z, t) = ζαj (z1, . . . , zn, t1, . . . , tm), α ∈ {1, . . . , n}

are C∞ functions of the variables z1, . . . , zn, t1, . . . , tm and

(ζ1j (z1, . . . , zn, t1, . . . , tm), . . . , ζ
n
j (z1, . . . , zn, t1, . . . , tm), t1, . . . , tm)

is a system of local holomorphic coordinates on X .
In particular, for t = 0, (ζ1j (z, 0), . . . , ζ

n
j (z, 0)) and (z1, . . . , zn) are two systems of local J0-

holomorphic coordinates on X0. Therefore, the functions ζαj (z, 0) are holomorphic functions of
z1, . . . , zn and

det

(
∂ζαj (z, 0)

∂zλ

)
1≤α, λ≤n

̸= 0.

(The last statement follows from 0 ̸= dζ1j (z, 0)∧· · ·∧dζnj (z, 0) = det( ) dz1∧· · ·∧dzn.) By continuity
w.r.t. t, we get

det

(
∂ζαj (z, t)

∂zλ

)
1≤α, λ≤n

̸= 0 for all t ∈ B,

after possibly shrinking B about 0.

Lemma 2.2.5. For every α ∈ {1, . . . , n} and every t ∈ B sufficiently close to 0, there exists a
unique n-tuple (ψ1

j (z, t), . . . , ψ
n
j (z, t)) of J0-(0, 1)-forms such that the latter identity below holds:

∂̄0ζ
α
j (z, t) =

n∑
ν=1

∂ζαj (z, t)

∂z̄ν
dz̄ν =

n∑
λ=1

ψλj (z, t)
∂ζαj (z, t)

∂zλ
. (2.9)
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Proof. Note that (2.9) features identities of J0-(0, 1)-forms and that, when t ̸= 0, ζαj (z, t) need not
be J0-holomorphic, so, in general, ∂̄0ζ

α
j (z, t) ̸= 0.

The system of the latter identities in (2.9) when α is allowed to vary from 1 to n can be put in
matrix form as ∂̄0ζ

1
j (z, t)
...

∂̄0ζ
n
j (z, t)

 =

(
∂ζαj (z, t)

∂zλ

)
1≤α, λ≤n

ψ
1
j (z, t)
...

ψnj (z, t)

 .

Since the (n × n)-matrix (∂ζαj (z, t)/∂zλ)1≤α, λ≤n is invertible, this system has a unique solution
(ψ1

j (z, t), . . . , ψ
n
j (z, t)). □

Let us now write every J0-(0, 1)-form ψλj (z, t) in terms of the J0-holomorphic coordinates (z1, . . . , zn):

ψλj (z, t) :=
n∑
ν=1

ψλjν(z, t) dz̄ν , for all λ ∈ {1, . . . , n},

where the ψλjν(z, t) are C
∞ functions on Uj ×B. We will now make the following key observation.

Lemma and Definition 2.2.6. Let X = ∪jUj be an open covering of X0 by coordinate patches
with the above properties. For all j, k, the following gluing property holds:

n∑
λ=1

ψλj (z, t)
∂

∂zλ
=

n∑
λ=1

ψλk (z, t)
∂

∂zλ
on (Uj ×B) ∩ (Uk ×B). (2.10)

In other words, after possibly shrinking B about 0, for every t ∈ B, we get a globally defined C∞

T 1, 0X0-valued J0-(0, 1)-form on X0 that we denote by

ψ(t) = ψ(z, t) =
n∑
λ=1

ψλ(z, t)
∂

∂zλ
∈ C∞

0, 1(X0, T
1, 0X0).

Proof. The coefficients of the ψλj (z, t) on the right-hand side of (2.9) can be expressed as

∂ζαj (z, t)

∂zλ
=

n∑
β=1

∂ζαj

∂ζβk

∂ζβk (z, t)

∂zλ
, α, λ, j, k, (2.11)

because ζαj (z, t) is a holomorphic function of ζ1k , . . . , ζ
n
k , t1, . . . , tm:

ζαj = fαjk(ζ
1
k , . . . , ζ

n
k , t1, . . . , tm), α, j.

Applying ∂̄0 to both sides of the above identity, we get:

∂̄0ζ
α
j (z, t) =

n∑
β=1

∂ζαj

∂ζβk
∂̄0ζ

β
k (z, t), α, j, k. (2.12)

Indeed, to be even more explicit, for every λ we have:

∂ζαj (z, t)

∂z̄λ
=

n∑
β=1

∂ζαj

∂ζβk

∂ζβk (z, t)

∂z̄λ
.
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So, it suffices to multiply both sides by dz̄λ and sum over λ to get (2.12).
Now, on the one hand, we get:

n∑
λ=1

∂ζαj (z, t)

∂zλ
ψλj (z, t)

(a)
= ∂̄0ζ

α
j (z, t)

(b)
=

n∑
β=1

∂ζαj

∂ζβk

n∑
λ=1

ψλk (z, t)
∂ζβk (z, t)

∂zλ
,

where (a) follows from (2.9) and (b) follows from (2.12) and again (2.9) with indices (k, β) in place
of (j, α). On the other hand, the left-hand side quantity above can be written in the following way
thanks to (2.11):

n∑
λ=1

∂ζαj (z, t)

∂zλ
ψλj (z, t) =

n∑
λ=1

( n∑
β=1

∂ζαj

∂ζβk

∂ζβk (z, t)

∂zλ

)
ψλj (z, t) =

n∑
β=1

∂ζαj

∂ζβk

n∑
λ=1

ψλj (z, t)
∂ζβk (z, t)

∂zλ
.

Using the fact that det(∂ζβk (z, t)/∂zλ)β, λ ̸= 0 for all t ∈ B sufficiently close to 0 and comparing the
two expressions we got for the left-hand side quantity, we get:

ψλj (z, t) = ψλk (z, t) for all (z, t) ∈ Uj ∩ Uk and all λ ∈ {1, . . . , n}.
The proof is complete. □

The vector-valued form ψ(t) ∈ C∞
0, 1(X0, T

1, 0X0) defined in formula (2.10) will be our main object
of study in the remainder of this subsection. When the vector fields ∂/∂zλ are considered as 1-st
order differential operators, so can ψ(t), which will then take C-valued smooth functions on X0 = X
to C-valued J0-(0, 1)-forms. The following immediate observation shows that what we have proved
so far is that the vector-valued form ψ(t), viewed as a differential operator as explained above,
measures the discrepancy between ∂̄t and ∂̄0.

Observation 2.2.7. Formula (2.9) is equivalent to

(∂̄0 − ψ(t)) ζαj (z, t) = 0 for all α ∈ {1, . . . , n}. (2.13)

Since the ζαj (z, t), with α ∈ {1, . . . , n}, are the coordinates defining the complex structure Jt on
Uj, what this actually says is the following

Theorem 2.2.8. After possibly shrinking B about 0, for every t ∈ B and for every locally defined
C-valued C∞ function f on X := X0, the following equivalence holds:

f is Jt − holomorphic ⇐⇒ (∂̄0 − ψ(t)) f ≡ 0. (2.14)

Proof. It follows immediately from (2.13) by writing f = f(ζ1j (z, t), . . . , ζ
n
j (z, t)). Indeed, we have

(∂̄0 − ψ(t)) f(ζ1j (z, t), . . . , ζnj (z, t)) =
n∑

α=1

∂f

∂ζαj
(∂̄0 − ψ(t)) ζαj (z, t) +

n∑
α=1

∂f

∂ζ̄αj
(∂̄0 − ψ(t)) ζ̄αj (z, t)

(a)
=

n∑
α=1

n∑
ν=1

∂f

∂ζ̄αj

(
∂ζ̄αj (z, t)

∂z̄ν
−

n∑
µ=1

ψµν̄
∂ζ̄αj
∂zµ

)
dz̄ν

=
∑
α, ν, λ

(
δλν −

∑
µ

ψµν̄ ψ̄
λ
µ̄

)(
∂ζαj
∂zλ

)
dz̄ν

∂f

∂ζ̄αj
,
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where the first sum on the r.h.s. of the first line vanishes because (∂̄0 − ψ(t)) ζαj (z, t) = 0 for all α

by (2.13), while to get (a), we expanded each J0-(0, 1)-form ψµ(z, t) as ψµ(z, t) =
n∑
ν=1

ψµν̄ (z, t) dz̄
ν .

Since

det

(
δλν −

∑
µ

ψµν̄ ψ̄
λ
µ̄

)
λ, ν

̸= 0,

we conclude that (∂̄0−ψ(t)) f = 0 if and only if ∂f
∂ζ̄αj

= 0 for all α ∈ {1, . . . , n}. The latter condition
being equivalent to f being Jt-holomorphic on Uj, we are done. □

The upshot of this discussion is that the vector-valued (0, 1)-form ψ(t), which can also be viewed
as a 1-st order differential operator of bidegree (0, 1), is the analogue in this approach of (and,
indeed, equivalent to) the vector-valued (0, 1)-form −αt of Proposition 2.2.3.

Conclusion 2.2.9. For every t ∈ B sufficiently close to 0, the deformation Xt of X0, or equivalently
the deformation Jt of the complex structure J0, is equivalent to the vector-valued (0, 1)-form

ψ(t) = ψ(z, t) =
n∑
λ=1

ψλ(z, t)
∂

∂zλ
∈ C∞

0, 1(X0, T
1, 0X0)

and again equivalent to the 1-st order differential operator

∂̄t ≃ ∂̄0 − ψ(t)
which can be identified to the ∂̄-operator of the complex structure Jt thanks to property (2.14).

Moreover, ψ(0) = 0.

We draw the reader’s attention to the following minor, but key, fact. The ∂̄-operator ∂̄t of the
complex structure Jt takes functions f to Jt-(0, 1)-forms ∂̄tf (and Jt-(p, q)-forms u to Jt-(p, q + 1)-
forms ∂̄tu). By contrast, the operator ∂̄0 − ψ(t) takes functions f to J0-(0, 1)-forms (and J0-(p, q)-
forms to J0-(p, q+1)-forms). Hence, the operators ∂̄t and ∂̄0−ψ(t) do not coincide in general (unless
t = 0). They are only equivalent, namely they determine each other, as the notation of Conclusion
2.2.9 indicates.

1-st order deformations of X0

The main result of this subsection is the following analogue of Theorem 2.2.4 . Like its predecessor,
it makes precise in the language of this subsection the principle that was loosely stated as Fact 2.2.2.

Theorem 2.2.10. Let π : X −→ B be a holomorphic family of compact complex manifolds and let
ψ(t) = ψ(z, t) ∈ C∞

0, 1(X0, T
1, 0X0) be the object defined in Lemma and Definition 2.2.6.

Then, for every holomorphic vector field ∂
∂t
∈ Γ(U, T 1, 0B) on some small open neighbourhood

U ⊂ B of 0, the following two statements hold.

(a) The T 1, 0X0-valued J0-(0, 1)-form
∂ψ(t)
∂t |t=0

is ∂̄0-closed, hence it defines a cohomology class{
∂ψ(t)

∂t |t=0

}
∂̄0

∈ H0, 1(X0, T
1, 0X0);

(b) The following identity holds:

ρ

(
∂

∂t |t=0

)
= −

{
∂ψ(t)

∂t |t=0

}
∂̄0

,

where ρ : T 1, 0
0 B −→ H0, 1(X0, T

1, 0X0) is the Kodaira-Spencer map at 0 of the family π : X −→ B.
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Preliminaries to the proof of Theorem 2.2.10

We start by defining a pairing between T 1, 0X0-valued J0-(0, •)-forms that will play a key role in
what follows.

Definition 2.2.11. Let p, q ∈ {0, . . . , n} and let φ ∈ C∞
0, p(X0, T

1, 0X0) and ψ ∈ C∞
0, q(X0, T

1, 0X0).
The bracket [φ, ψ] ∈ C∞

0, p+q(X0, T
1, 0X0) of φ and ψ is defined in the following way.

If U ⊂ X0 is an open coordinate patch equipped with a system (z1, . . . zn) of local J0-holomorphic
coordinates on X0 in which φ and ψ are of the shape:

φ =
n∑
λ=1

φλ
∂

∂zλ
and ψ =

n∑
λ=1

ψλ
∂

∂zλ
,

with the φλ’s, resp. the ψλ’s, C-valued (0, p)-forms, resp. C-valued (0, q)-forms, we put

[φ, ψ] :=
n∑

λ, µ=1

(
φµ ∧ ∂ψ

λ

∂zµ
− (−1)pq ψµ ∧ ∂φ

λ

∂zµ

)
∂

∂zλ
.

As usual, when ∂
∂zµ

acts as a 1-st order differential operator on forms (e.g. on ψλ or φλ), it acts

on their (function) coefficients only. We now list the basic properties of this bracket.

Lemma 2.2.12. (i) [φ, ψ] is independent of the choice of local coordinates (z1, . . . zn).

(ii) For all p, q, r ∈ {0, . . . , n} and all vector-valued forms φ ∈ C∞
0, p(X0, T

1, 0X0), ψ ∈ C∞
0, q(X0, T

1, 0X0),
τ ∈ C∞

0, r(X0, T
1, 0X0), the following identities hold:

(a) [φ, ψ] = −(−1)pq [ψ, φ]; (anti-commutation)

(b) ∂̄0[φ, ψ] = [∂̄0φ, ψ] + (−1)p [φ, ∂̄0ψ]; (Leibniz rule)

(c) (−1)pr [[φ, ψ], τ ] + (−1)qp [[ψ, τ ], φ] + (−1)rq [[τ, φ], ψ] = 0. (Jacobi identity)

Proof. It is straightforward and is left to the reader. □

In what follows, we may assume without loss of generality that m = 1, so (t1, . . . , tm) = t.
Otherwise, we can choose local coordinates t1, . . . , tm near 0 on B such that t = tk for some k.

The next result expresses the key integrability condition for ∂̄0 − ψ(t) (namely the property
(∂̄0 − ψ(t))2 = 0 that makes it into a complex, rather than just an almost complex, structure) as
a condition on ψ(t) via the bracket. In other words, this provides a complement or a converse
to Conclusion 2.2.9 in that it specifies which vector-valued forms ψ(t) ∈ C∞

0, 1(X0, T
1, 0X0) can be

realised as a small deformation Jt of the complex structure J0 of a given X0.

Lemma 2.2.13. Let X0 be a compact complex manifold and let ψ(t) ∈ C∞
0, 1(X0, T

1, 0X0). We denote
by ∂̄0 the ∂̄-operator of X0 and also the canonical (0, 1)-connection it induces on the holomorphic
tangent bundle T 1, 0X0.

Then, the following equivalence holds:

(∂̄0 − ψ(t))2 = 0 ⇐⇒ ∂̄0ψ(t) =
1

2
[ψ(t), ψ(t)]. (2.15)



CHAPTER 2. KODAIRA-SPENCER DEFORMATION THEORY 87

The condition on the r.h.s. of equivalence (2.15) will be called the integrability condition imposed
on ψ(t). The parameter t in Lemma 2.2.13 does not play any role and could have been omitted, but
we kept it for the sake of notation continuity.

Proof of Lemma 2.2.13. The statement is of a local nature, so we fix local holomorphic coordinates
z1, . . . zn on X0 and write

ψ(t) =
n∑
λ=1

ψλ
∂

∂zλ
,

where the ψλ’s are C-valued (0, 1)-forms.
Fix an arbitrary bidegree (p, q) and an arbitrary form u ∈ C∞

p, q(X0, C). We get:

(∂̄0 − ψ(t))2 u = ∂̄20u− ∂̄0(ψ(t)u)− ψ(t)(∂̄0u) + (ψ(t) ∧ ψ(t))u

= −∂̄0
( n∑

λ=1

ψλ ∧ ∂u

∂zλ

)
−

n∑
λ=1

ψλ ∧ ∂

∂zλ
(∂̄0u) +

n∑
λ, µ=1

ψλ ∧ ∂

∂zλ

(
ψµ ∧ ∂u

∂zµ

)
.

Since

−∂̄0
( n∑

λ=1

ψλ ∧ ∂u

∂zλ

)
= −

n∑
λ=1

∂̄0ψ
λ ∧ ∂u

∂zλ
+

n∑
λ=1

ψλ ∧ ∂̄0
(
∂u

∂zλ

)
= −(∂̄0ψ(t))u+

n∑
λ=1

ψλ ∧ ∂̄0
(
∂u

∂zλ

)
and since ∂̄0(

∂u
∂zλ

) = ∂
∂zλ

(∂̄0u) for every λ (see below), the above formula reduces to

(∂̄0 − ψ(t))2 u = −(∂̄0ψ(t))u+
n∑

λ, µ=1

ψλ ∧ ∂ψ
µ

∂zλ
∧ ∂u

∂zµ
+

n∑
λ, µ=1

ψλ ∧ ψµ ∧ ∂2u

∂zλ∂zµ

= −(∂̄0ψ(t))u+
1

2
[ψ(t), ψ(t)]u,

where the last identity follows from
n∑

λ, µ=1

ψλ∧ψµ∧ ∂2u
∂zλ∂zµ

= 0 due to the fact that ψλ∧ψµ = −ψµ∧ψλ

for all λ, µ.
This proves equivalence (2.15).
It remains to check that ∂̄0(

∂u
∂zλ

) = ∂
∂zλ

(∂̄0u) for every C-valued form u and every λ. Let

u =
∑

|I|=p, |J |=q

uIJ̄ dzI ∧ dz̄J .

We have:

∂̄0

(
∂u

∂zλ

)
=

∑
I, J

∂̄0

(
∂uIJ̄
∂zλ

)
∧ dzI ∧ dz̄J =

∑
I, J

∑
k

∂

∂z̄k

(
∂uIJ̄
∂zλ

)
dz̄k ∧ dzI ∧ dz̄J

=
∂

∂zλ

(∑
I, J

∂̄0uIJ̄ ∧ dzI ∧ dz̄J
)

=
∂

∂zλ
(∂̄0u)

and we are done. □

Let us now see yet another way of proving that the vector-valued form ψ(t) associated with a
deformation of complex structures satisfies the integrability condition (2.15).
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Lemma 2.2.14. Let π : X −→ B be a holomorphic family of compact complex manifolds and, for
every t ∈ B sufficiently close to 0, let ψ(t) ∈ C∞

0, 1(X0, T
1, 0X0) be the vector-valued form of Lemma

and Definition 2.2.6. Then, ψ(t) satisfies the integrability condition:

∂̄0ψ(t) =
1

2
[ψ(t), ψ(t)], t ∈ B. (2.16)

Proof. Applying ∂̄0 to (2.9) (with the variable t dropped to lighten the notation), we get:

0 = ∂̄20ζ
α
j = ∂̄0

( n∑
λ=1

ψλj
∂ζαj
∂zλ

)
=

n∑
λ=1

∂ζαj
∂zλ

∂̄0ψ
λ
j −

n∑
λ=1

ψλj ∧ ∂̄0
(
∂ζαj
∂zλ

)
,

which yields

n∑
λ=1

∂ζαj
∂zλ

∂̄0ψ
λ
j =

n∑
µ=1

ψµj ∧ ∂̄0
(
∂ζαj
∂zµ

)
=

n∑
µ, ν=1

∂2ζαj
∂zµ ∂z̄ν

ψµj ∧ dz̄ν . (2.17)

Meanwhile, from (2.9) we also get:

∂ζαj
∂z̄ν

=
n∑
λ=1

ψλjν̄
∂ζαj
∂zλ

, ν ∈ {1, . . . , n},

so (2.17) becomes

n∑
λ=1

∂ζαj
∂zλ

∂̄0ψ
λ
j =

n∑
λ, µ=1

∂ζαj
∂zλ

ψµj ∧
n∑
ν=1

∂ψλjν̄
∂zµ

dz̄ν +
n∑

λ, µ=1

∂2ζαj
∂zλ ∂zµ

ψµj ∧
n∑
ν=1

ψλjν̄ dz̄ν

=
n∑

λ, µ=1

∂ζαj
∂zλ

ψµj ∧
∂ψλj
∂zµ

+
n∑

λ, µ=1

∂2ζαj
∂zλ ∂zµ

ψµj ∧ ψλj =
n∑

λ, µ=1

∂ζαj
∂zλ

ψµj ∧
∂ψλj
∂zµ

,

where the last identity follows from the vanishing of the latter sum of its l.h.s. due to the anti-
commutation of 1-forms ψµj ∧ ψλj = −ψλj ∧ ψ

µ
j for all λ and µ.

We have thus got:

n∑
λ=1

∂ζαj
∂zλ

∂̄0ψ
λ
j =

n∑
λ=1

( n∑
µ=1

ψµj ∧
∂ψλj
∂zµ

)
∂ζαj
∂zλ

, for all j, α.

Let us now restore the variable t. Since det

(
∂ζαj (z, t)

∂zλ

)
α, λ

̸= 0 for all t ∈ B close to 0, we get:

∂̄0ψ
λ
j (t) =

n∑
µ=1

ψµj (t) ∧
∂ψλj (t)

∂zµ
, for all j, λ,

which amounts to the integrability condition ∂̄0ψ(t) =
1
2
[ψ(t), ψ(t)] holding for t ∈ B close to 0. □
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Proof of Theorem 2.2.10

(a) Taking (∂/∂t)|t=0 in the integrability condition and using the commutation of (∂/∂t) with
∂̄0, we get:

∂̄0

(
∂ψ(t)

∂t |t=0

)
=

1

2

[
∂ψ(t)

∂t |t=0
, ψ(0)

]
+

1

2

[
ψ(0),

∂ψ(t)

∂t |t=0

]
= 0

because ψ(0) = 0. Thus, (∂ψ(t)/∂t)|t=0 is ∂̄0-closed.

(b) Recall the notation:

ζαj (z, t) := fαjk(ζ
1
k(z, t), . . . , ζ

n
k (z, t), t1, . . . , tm) on (Uj ×B) ∩ (Uk ×B) (2.18)

that we will now shorten to ζαj = fαjk(ζk, t) for all α, j, k. So, fαjk is the change of coordinates map
that also encodes the change of complex structure through its dependence on t.

The cohomology class ρ( ∂
∂t |t=0

) ∈ H0, 1(X0, T
1, 0X0) ≃ H1(X0, OX0(T

1, 0X0)) can be identified

with the Čech cohomology class of a 1-cocycle {θjk} ∈ Z1({Uj}, OX0(T
1, 0X0)), where

θjk :=
n∑

α=1

∂fαjk(ζk, t)

∂t |t=0

∂

∂ζαj
, j, k.

Recall that we are assuming, without loss of generality, that m = 1, so (t1, . . . , tm) = t. Taking
(∂/∂t)|t=0 in (2.18), we get:

∂ζαj
∂t |t=0

=
n∑
β=1

∂ζαj

∂ζβk

∂ζβk
∂t |t=0

+
∂fαjk(ζk, t)

∂t |t=0
.

If we put:

ξj :=
n∑

α=1

∂ζαj
∂t |t=0

∂

∂ζαj
∈ C∞(Uj, T

1, 0X0), for all j,

and if we multiply the preceding identity by ∂/∂ζαj and then sum over α ∈ {1, . . . , n}, we get:

ξj =
n∑

α, β=1

∂ζαj

∂ζβk

∂ζβk
∂t |t=0

∂

∂ζαj
+

n∑
α=1

∂fαjk(ζk, t)

∂t |t=0

∂

∂ζαj

=
n∑
β=1

∂ζβk
∂t |t=0

( n∑
α=1

∂ζαj

∂ζβk

∂

∂ζαj

)
+ θjk

=
n∑
β=1

∂ζβk
∂t |t=0

∂

∂ζβk
+ θjk = ξk + θjk.

In other words, we have:

θjk = ξj − ξk for all j, k, or equivalently δ{ξj} = −{θjk}, (2.19)

where δ is the Čech differential.

On the other hand, taking (∂/∂t)|t=0 in (2.9), we get
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∂̄0

(
∂ζαj
∂t |t=0

)
=

n∑
λ=1

∂ψλj
∂t |t=0

∂ζαj
∂zλ

(z, 0)

because ψλj (z, 0) = 0. (Recall that ψ(0) = 0.) Using this identity after we have applied ∂̄0 to the
definition of ξj, we get:

∂̄0ξj =
n∑

α=1

∂̄0

(
∂ζαj
∂t |t=0

)
∂

∂ζαj
=

n∑
α, λ=1

∂ψλj
∂t |t=0

∂ζαj
∂zλ

(z, 0)
∂

∂ζαj

=
n∑
λ=1

∂ψλj
∂t |t=0

∂

∂zλ
=

∂

∂t

( n∑
λ=1

ψλj
∂

∂zλ

)
|t=0

=
∂ψ

∂t |t=0
.

Thus, we have got:

∂̄0ξj =
∂ψ

∂t |t=0
for all j. (2.20)

From the fact that ρ( ∂
∂t |t=0

) ∈ H0, 1(X0, T
1, 0X0) ≃ H1(X0, OX0(T

1, 0X0)) identifies with the Čech

cohomology class of {θjk} and from (2.19) and (2.20), we get

ρ

(
∂

∂t |t=0

)
= −

{
∂ψ(t)

∂t |t=0

}
∂̄0

,

which is what we had to prove.
Indeed, (2.20) means that the Čech 0-cochain {ξj} ∈ C0({Uj}, C∞T 1, 0X0

), where C∞T 1, 0X0
is the sheaf

of germs of C∞ sections of the vector bundle T 1, 0X0, when viewed in the long exact sequence of
cohomology groups

0 −→ H0(X0, OX0(T
1, 0X0)) −→ C∞

0, 0(X0, T
1, 0X0)

∂̄0−→ Z0, 1

∂̄0
(T 1, 0X0)

δ⋆−→ H1(X0, OX0(T
1, 0X0)) −→ . . .

induced by the short exact sequence of sheaves

0 −→ OX0(T
1, 0X0) −→ C∞T 1, 0X0

∂̄0−→ ∂̄0C∞T 1, 0X0
−→ 0,

has the property that ∂̄0{ξj} = ∂ψ
∂t |t=0

, which implies that δ⋆(∂ψ
∂t |t=0

) = ρ( ∂
∂t |t=0

). □

We have proved, in two different ways, that the Kodaira-Spencer map at a point 0 ∈ B can be
viewed as classifying the 1-st order deformations of the (complex structure of) X0. (See Theorems
2.2.4 and 2.2.10.) For this reason, we introduce the following piece of notation.

Notation 2.2.15. Let π : X −→ B be a holomorphic family of compact complex manifolds. We fix
a reference point 0 ∈ B and let ρ : T 1, 0

0 B −→ H0, 1(X0, T
1, 0X0) be the Kodaira-Spencer map at 0.

For every holomorphic vector field ∂
∂t
∈ Γ(U, T 1, 0B) on some small open neighbourhood U ⊂ B of

0, we put
∂Xt

∂t |t=0
:= ρ

(
∂

∂t |t=0

)
.
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2.3 The Kodaira-Nirenberg-Spencer existence theorem

The point of view taken in this section is a kind of converse to that of the previous section. Specifi-
cally, we will address the following

Question 2.3.1. Let X be a compact complex manifold and let θ ∈ H0, 1(X, T 1, 0X).
When does there exist a holomorphic family of compact complex manifolds π : X −→ B, with B

a small open disc about 0 in C, such that

π−1(0) = X and
∂Xt

∂t |t=0
= −θ?

The problem being local, it suffices to consider a small neighbourhood of 0 in the base B, while
supposing B to be 1-dimensional places no restriction at all on the context. The gist of the question
is: when can X be deformed in the direction of the given −θ? A posteriori, −θ will be the tangent
vector at 0 to B.

The presentation in this section will follow [Kod86, §.5.3] and [KNS58].

2.3.1 Obstructions to deforming a given complex structure

We start by describing a procedure for the construction of small holomorphic deformations (Xt)t∈B
of a given X := X0 when this is possible. The study will also reveal the obstructions to being able
to do this. We will denote by ∂̄ := ∂̄0 the ∂̄-operator of the complex structure of X = X0.

Let m := dimCH
0, 1(X, T 1, 0X) and let B ⊂ Cm be a small open ball that we will allow ourselves

to shrink about 0 as much as necessary. In view of Conclusion 2.2.9 and Lemmas 2.2.13 and 2.2.14,
we need to construct vector-valued forms ψ(t) ∈ C∞

0, 1(X, T
1, 0X) depending holomorphically on t ∈ B

and satisfying the integrability condition (2.16) for all t ∈ B close to 0, such that ψ(0) = 0.
Thus, we need to construct ψ(t) as a convergent power series

ψ(t) = ψ1(t) +
+∞∑
ν=2

ψν(t), (2.21)

where, for every ν ∈ N⋆, the vector-valued form

ψν(t) =
∑

ν1+···+νm=ν

ψν1...νm t
ν1
1 . . . tνmm ∈ C∞

0, 1(X, T
1, 0X)

is a homogeneous polynomial of degree ν in the variables t = (t1, . . . , tm) ∈ B ⊂ Cm. In particular,
we are looking to construct vector-valued forms ψν1...νm ∈ C∞

0, 1(X, T
1, 0X) for (ν1, . . . , νm) ∈ Nm.

The integrability condition (2.16) is equivalent to the following system of equations:

(Eq. 1) ∂̄ψ1(t) = 0

(Eq. ν) ∂̄ψν(t) =
1

2

ν−1∑
µ=1

[ψµ(t), ψν−µ(t)], with ν ≥ 2, (2.22)

that must be satisfied for all t ∈ B sufficiently close to 0. Note that, for every ν ≥ 1, the terms
featuring in (Eq. ν) are homogeneous polynomials of degree ν in t = (t1, . . . , tm) ∈ B. This is an
inductively defined system of equations in that, for every ν ≥ 2, the right-hand side term of (Eq. ν)
is determined by the solutions ψλ of the previous equations (Eq.λ) with λ ≤ ν − 1.
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Suppose, furthermore, that a vector-valued form θ ∈ H0, 1(X, T 1, 0X) has been given beforehand
and that we are looking to deform X = X0 in the direction of −θ. To make a choice, suppose that
(∂/∂t)|t=0 = (∂/∂tk)|t=0 for some k ∈ {1, . . . ,m}. Then, Theorem 2.2.10 imposes the following extra
condition on ψ(t): {

∂ψ(t)

∂tk |t=0

}
∂̄

= θ, or equivalently {ψ0...1...0}∂̄ = θ, (2.23)

with 1 in the k-th slot in ψ0...1...0.

Construction of ψ1(t)

Note that ∂̄ψ0...1...0 = 0 (with 1 in the k-th slot) for all k ∈ {1, . . . ,m}, because ∂̄ψ1(t) = 0 for all
t close to 0, by (Eq. 1). Since, ideally, we would like to reach every θ ∈ H0, 1(X, T 1, 0X) (i.e. to
deform X in all possible directions), we let

{β1, . . . , βm}

be a collection of m ∂̄-closed vector-valued forms βλ ∈ C∞
0, 1(X, T

1, 0X) such that the set of their
cohomology classes {

{β1}∂̄, . . . , {βm}∂̄
}

is a basis of H0, 1(X, T 1, 0X), and we let

ψ1(t) = β1 t1 + · · ·+ βm tm ∈ C∞
0, 1(X, T

1, 0X) ∩ ker ∂̄

for a priori arbitrary complex variables t1, . . . , tm ∈ C such that (t1, . . . , tm) is as close as will be
necessary to 0 ∈ Cm.

In other words, we choose ψ0...1...0 = βλ (with 1 in the λ-th slot) for every λ ∈ {1, . . . ,m}.
In this way, ψ1(t) satisfies (Eq. 1) for all t = (t1, . . . , tm) ∈ Cm and ψ(t) can be made to satisfy
condition (2.23) for any pregiven choice of θ ∈ H0, 1(X, T 1, 0X) after the ψν(t)’s with ν ≥ 2 have
been constructed.

Construction of (ψν(t))ν≥2

We have to solve the equations (Eq. ν), for all ν ≥ 2, once ψ1(t) has been chosen as explained above.
Now, for a given ν ≥ 2, equation (Eq. ν) is solvable if and only if its right-hand side term is

∂̄-exact. This need not always be the case, but the weaker statement below always holds.

Lemma 2.3.2. For every ν ≥ 2, the vector-valued form on the right-hand side of equation (Eq. ν)
is ∂̄-closed.

Proof. We will run an induction on ν ≥ 2. Equation (Eq. 1) is now known to be satisfied.

If ν = 2, the r.h.s. term of equation (Eq. ν) is (1/2) [ψ1(t), ψ1(t)]. Using (b) of Lemma 2.2.12
(the Leibniz rule for the bracket), we get:

∂̄[ψ1(t), ψ1(t)] = [∂̄ψ1(t), ψ1(t)]− [ψ1(t), ∂̄ψ1(t)] = 0,

because ∂̄ψ1(t) = 0 thanks to equation (Eq. 1).
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Fix an arbitrary ν ≥ 2 and suppose that the right-hand side term of (Eq. l) is ∂̄-closed for all
l ∈ {2, . . . , ν}. We will prove that the right-hand side term of (Eq. ν + 1) is ∂̄-closed. (Actually, we
implicitly suppose that the form ψl(t) has been constructed for every l ∈ {1, . . . , ν}, since otherwise
the right-hand side term of (Eq. ν + 1) does not exist and, thus, there is nothing to prove. This
means that we also suppose the equation (Eq. l) to be solvable for all l ∈ {2, . . . , ν}, namely that its
right-hand side term is even ∂̄-exact.)

We start with a general remark. For every ν ∈ N⋆ and every t ∈ Cm, we consider the following
expression of degree ≤ ν in t:

σν(t) := ψ1(t) + · · ·+ ψν(t) ∈ C∞
0, 1(X, T

1, 0X).

Then, the integrability condition (2.16), which we already know is equivalent to the system of
equations (Eq. ν) with ν ∈ N⋆, is further equivalent to the following condition:

∀ ν ≥ 1, ∂̄σν(t) =
1

2
[σν(t), σν(t)] +O(tν+1) (2.24)

(because ∂̄σν(t) is the part of degree ≤ ν in t of ∂̄ψ(t) and [σν(t), σν(t)] contains, without being
reduced to, all the terms of degree ≤ ν in t of [ψ(t), ψ(t)]). This is further equivalent to

∀ ν ≥ 1, ∂̄σν(t)−
1

2
[σν(t), σν(t)] = φν+1(t) +O(tν+2) (2.25)

for some homogeneous expression φν+1(t) of degree ν+1 in t (which is, obviously, uniquely determined
by this requirement). Note that ∂̄σν(t) is the part of degree ≤ ν in t of −(1/2) [σν(t), σν(t)], while
φν+1(t) is the homogeneous part of degree ν + 1 in t of −(1/2) [σν(t), σν(t)].

Applying ∂̄ and noticing that ∂̄(−(1/2) [σν(t), σν(t)]) = [σν(t), ∂̄σν(t)] (thanks to (a) and (b) of
Lemma 2.2.12), we get:

∂̄φν+1(t) = [σν(t), ∂̄σν(t)] +O(tν+2), ∀ ν ≥ 1

(a)⇐⇒ ∂̄φν+1(t) =
1

2

[
σν(t), [σν(t), σν(t)]

]
+O(tν+2), ∀ ν ≥ 1

(b)⇐⇒ ∂̄φν+1(t) =
1

2

[
ψ(t), [ψ(t), ψ(t)]

]
+O(tν+2), ∀ ν ≥ 1

(c)⇐⇒ ∂̄φν+1(t) = O(tν+2), ∀ ν ≥ 1
(d)⇐⇒ ∂̄φν+1(t) = 0, ∀ ν ≥ 1, (2.26)

where (a) follows from (2.24) and [σν(t), O(tν+1)] ∈ O(tν+2) (since all the terms in σν(t) are of degree
≥ 1 in t); (b) follows from the fact that [ψ(t), [ψ(t), ψ(t)]] has the same terms of degree ≤ ν+1 in t
as [σν(t), [σν(t), σν(t)]]; (c) follows from the fact that [ψ(t), [ψ(t), ψ(t)]] = 0 by the Jacobi identity
(see (c) of Lemma 2.2.12); (d) follows from ∂̄φν+1(t) being homogeneous of degree ν + 1 in t.

After this general remark, let us now return to the induction process in the proof of Lemma
2.3.2. Recall that we are supposing the forms ψ1(t), . . . , ψν(t) to have been constructed as solutions
of equations (Eq. 1), . . . , (Eq. ν). We are looking to prove that

1

2

ν∑
µ=1

[ψµ(t), ψν+1−µ(t)] ∈ ker ∂̄.
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Since this vector-valued form is the homogeneous part of degree ν + 1 of (1/2) [ψ(t), ψ(t)], which
coincides with the homogeneous part of degree ν + 1 of (1/2) [σν(t), σν(t)], which further coincides,
thanks to (2.25), with −φν+1(t), we are done thanks to (2.26).

The proof of Lemma 2.3.2 is complete. □

Conclusion 2.3.3. All the obstructions to solving the equations (Eq. ν)ν∈N⋆ lie in H0, 2(X, T 1, 0X).

Proof. Since ψν(t) ∈ C∞
0, 1(X, T

1, 0X) for all ν ∈ N⋆, Lemma 2.3.2 yields:

1

2

ν−1∑
µ=1

[ψµ(t), ψν−µ(t)] ∈ C∞
0, 1(X, T

1, 0X) ∩ ker ∂̄, ν ≥ 2.

Therefore, the right-hand side terms of equations (Eq. ν) define cohomology classes{
1

2

ν−1∑
µ=1

[ψµ(t), ψν−µ(t)]

}
∂̄

∈ H0, 2(X, T 1, 0X), ν ≥ 2.

Obviously, these classes vanish inH0, 2(X, T 1, 0X) if and only if the right-hand side terms of equations
(Eq. ν)ν≥2 are ∂̄-exact.

Meanwhile, for every ν ≥ 2, equation (Eq. ν) is solvable if and only if its right-hand side term is
∂̄-exact. □

This answers the qualitative part of Question 2.3.1 and potentially gives a sufficient (but, as
will be seen in the next section, unnecessary) condition for the existence of small holomorphic
deformations of a given compact complex manifold X in all the available directions. However, we
have yet to determine whether the solutions (ψν)ν≥1 of equations (Eq. ν)ν≥1 (which, as we have seen
above, exist if all the obstructions vanish, for example if H0, 2(X, T 1, 0X) = 0) can be chosen in such
a way that the power series (2.21) converges absolutely (w.r.t. an appropriate norm) on a small
neighbourhood of 0 ∈ B (i.e. whether it defines genuine small holomorphic deformations of the
complex structure of X). In other words, we have yet to determine whether the above candidate for
a sufficient condition is indeed one such condition.

Note also that, for every ν ≥ 2, even if equation (Eq. ν) is solvable, the solution is not unique,
since we can add any element in ker ∂̄ to any solution to get another solution. Finding appropriate
choices of solutions will be key.

2.3.2 Convergence of the power series defining small deformations

To lift the suspense, let us say right away that the qualitative obstructions found in the previous
subsection are the only obstructions to deforming the complex structure of X. In other words, if
all the equations (Eq. ν)ν≥2 are solvable, their solutions (ψν)ν≥2 can always be chosen such that the
power series (2.21) converges absolutely. This is the content of the following important existence
theorem of Kodaira-Nirenberg-Spencer.

Theorem 2.3.4. ([KNS58]) Let X be a compact complex manifold such that H0, 2(X, T 1, 0X) = 0.
Then, there exists a holomorphic family π : X −→ B ⊂ Cm of compact complex manifolds, where

m := dimCH
0, 1(X, T 1, 0X) and B is a small open ball about the origin in Cm, such that:

(i) π−1(0) = X;
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(ii) the Kodaira-Spencer map at 0

ρ : T 1, 0
0 B −→ H0, 1(X, T 1, 0X),

∂

∂t |t=0
7→ ∂Xt

∂t |t=0
,

is an isomorphism.

In other words, if the space H0, 2(X, T 1, 0X) that contains all the qualitative obstructions to
locally deforming X vanishes, then X can, indeed, be deformed in all the available directions
(parametrised by H0, 1(X, T 1, 0X)).

Preliminaries to the proof of Theorem 2.3.4

We will prove the absolute convergence of the power series (2.21) w.r.t. a family of Hölder norms, for
the definition of which we need to fix an (arbitrary) Hermitian metric ω on X. As in the case of C-
valued forms, ω induces a pointwise and an L2 inner product on the spaces C∞

0, q(X, T
1, 0X) of smooth

T 1, 0X-valued (0, q)-forms on X. The L2 inner product then induces a formal adjoint ∂̄⋆ = ∂̄⋆ω :
C∞

0, q(X, T
1, 0X) −→ C∞

0, q−1(X, T
1, 0X) of the canonical (0, 1)-connection ∂̄ : C∞

0, q−1(X, T
1, 0X) −→

C∞
0, q(X, T

1, 0X) of the holomorphic vector bundle T 1, 0X, which induces, in turn, a Laplace-type
differential operator of order two

∆′′ = ∆′′
ω := ∂̄∂̄⋆ω + ∂̄⋆ω∂̄ : C∞

0, q(X, T
1, 0X) −→ C∞

0, q(X, T
1, 0X), q ∈ {0, . . . , n},

where n := dimCX.
As in the scalar case, ∆′′ is elliptic and ∂̄ is integrable (i.e. ∂̄2 = 0), so by standard elliptic theory

we get an L2
ω-orthogonal 3-space decomposition:

C∞
0, q(X, T

1, 0X) = H0, q
∆′′(X, T

1, 0X)⊕ ∂̄C∞
0, q−1(X, T

1, 0X)⊕ ∂̄⋆C∞
0, q+1(X, T

1, 0X)

in which ker ∂̄ = H0, q
∆′′(X, T 1, 0X) ⊕ ∂̄C∞

0, q−1(X, T
1, 0X), where H0, q

∆′′(X, T 1, 0X) := ker∆′′ is the
harmonic space of bidegree (0, q).

• Definition of the Hölder norm

(a) Case of functions in open subsets of R2n (the local situation)

Let U ⊂ R2n be an open subset, let x = (x1, . . . , x2n) be the real coordinates in R2n and let
f : U −→ C be a C∞ function. For every multi-index h = (h1, . . . h2n) ∈ N2n, we consider the
differential operator of order |h| := h1 + . . . h2n:

Dh :=

(
∂

∂x1

)h1
. . .

(
∂

∂x2n

)h2n
.

Definition 2.3.5. For every k ∈ N and every α ∈ (0, 1), the Hölder norm |f |Uk+α of f : U −→ C
is defined as

|f |Uk+α :=
k∑

|h|=0

∑
Dh

sup
x∈U

∣∣∣∣Dhf(x)

∣∣∣∣+∑
Dk

sup
x, y∈U

|Dkf(x)−Dkf(y)|
|x− y|α

.
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Note that the first double sum on the right-hand side of the expression of |f |Uk+α is the Ck norm
|f |Ck of f , while the second sum will be used later on to get equicontinuity and apply the Ascoli
Theorem.

(b) Case of global C∞ sections of Λ0, qT ⋆X ⊗ T 1, 0X (the global situation)

Let X be a compact complex manifold with dimCX = n and let X = ∪jUj be a finite open
covering of X by coordinate patches. For every j, let zj = (z1j , . . . , z

n
j ) be a system of holomorphic

coordinates on Uj. Putting z
ν
j := x2ν−1

j + i x2νj , we get real coordinates xj = (x1j , . . . , x
2n
j ) on Uj, for

every j.
Now, for every vector-valued form φ ∈ C∞

0, q(X, T
1, 0X), we write

φ|Uj
=

1

q!

∑
λ

ν1,..., νq

φλjν̄1...ν̄q(xj) dz̄
ν1
j ∧ · · · ∧ dz̄

νq
j ⊗

∂

∂zλj
,

where the φλjν̄1...ν̄q(xj) are C
∞ functions on Uj viewed as an open subset of R2n.

Definition 2.3.6. For every k ∈ N, every α ∈ (0, 1) and every φ ∈ C∞
0, q(X, T

1, 0X), the Hölder
norm |φ|k+α of φ is defined as

|φ|k+α := max
j

max
λ

ν1,..., νq

∣∣∣∣φλjν̄1...ν̄q ∣∣∣∣Uj

k+α

.

Note that |φ|k+α depends on the choices of a covering (Uj)j of X and of coordinates (zj)j thereon.
However, the induced topology on C∞

0, q(X, T
1, 0X) does not depend on these choices. We now fix

once and for all a choice of (Uj)j and choices of (zj)j. For the sake of comparison, recall that the C0

norm of φ ∈ C∞
0, q(X, T

1, 0X) on X is defined as:

|φ|0 := max
j

max
λ

ν1,..., νq

sup
xj∈Uj

∣∣∣∣φλjν̄1...ν̄q(xj)∣∣∣∣.
• Fundamental elliptic theory results

We will only remind the reader of the standard a priori estimate for the elliptic differential
operator ∆′′ : C∞

0, q(X, T
1, 0X) −→ C∞

0, q(X, T
1, 0X) on a given compact Hermitian manifold (X, ω).

This estimate is not peculiar to ∆′′, but is satisfied by every elliptic operator on a compact manifold.

Theorem 2.3.7. For every q ∈ {0, . . . , n}, every integer k ≥ 2 and every α ∈ (0, 1), there exists a
constant Ck, α > 0, depending only on k and α, such that the following a priori estimate holds:

|φ|k+α ≤ Ck, α (|∆′′φ|k−2+α + |φ|0) (2.27)

for every φ ∈ C∞
0, q(X, T

1, 0X).

Proof. Since this is standard elliptic theory fare, we leave the reader peruse the proof in, for example,
the appendix to [Kod86]. □
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However, we will spell out the details of the proof of the next result, which is a corollary of
Theorem 2.3.7 and will play a key role in what follows. Recall first that the restriction of

H0, q
∆′′(X, T

1, 0X)⊕ Im∆′′ = C∞
0, q(X, T

1, 0X)
∆′′
−→ C∞

0, q(X, T
1, 0X) = H0, q

∆′′(X, T
1, 0X)⊕ Im∆′′

to Im∆′′ defines an isomorphism:

∆′′
|Im∆′′ : Im∆′′ −→ Im∆′′

whose inverse, when extended by 0 across H0, q
∆′′(X, T 1, 0X) := ker∆′′, is called the Green operator:

G : C∞
0, q(X, T

1, 0X) −→ C∞
0, q(X, T

1, 0X), G|Im∆′′ :=

(
∆′′

|Im∆′′

)−1

and G| ker∆′′ := 0.

To simplify the notation, we will denote the Green operator of ∆′′ by G := ∆
′′−1.

Lemma 2.3.8. For every q ∈ {0, . . . , n}, every integer k ≥ 2 and every α ∈ (0, 1), there exists a
constant C1 := C1(k, α) > 0, depending only on k and α, such that the following estimate holds:

|∆′′−1ψ|k+α ≤ C1 |ψ|k−2+α (2.28)

for every ψ ∈ C∞
0, q(X, T

1, 0X) such that ψ ⊥ ker∆′′.

The orthogonality (with respect to the L2 inner product induced by ω) constraint placed on ψ is,
obviously, equivalent to the requirement ψ ∈ Im∆′′. Thus, estimate (2.28) improves on the general
a priori estimate (2.27) in this special case in that the C0-norm term on the right is no longer
necessary.

Proof of Lemma 2.3.8. Since the restriction of ∆′′ to Im∆′′ is bijective onto Im∆′′, every ψ ∈ Im∆′′

is determined by φ := ∆
′′−1ψ.

The a priori estimate (2.27) applied to φ = ∆
′′−1ψ yields:

|∆′′−1ψ|k+α ≤ Ck, α (|ψ|k−2+α + |∆
′′−1ψ|0)

for every ψ ∈ Im∆′′ ⊂ C∞
0, q(X, T

1, 0X). Thus, to prove (2.28), it suffices to prove that there exists
a constant C2 := C2(k, α) > 0, depending only on k and α, such that the following estimate holds:

|∆′′−1ψ|0 ≤ C2 |ψ|k−2+α (2.29)

for every ψ ∈ Im∆′′ ⊂ C∞
0, q(X, T

1, 0X) such that ψ ⊥ ker∆′′.
We will prove this fact by contradiction. Suppose there exists no constant C2 > 0 such that

inequality (2.29) holds for all ψ ∈ Im∆′′ ⊂ C∞
0, q(X, T

1, 0X) with ψ ⊥ ker∆′′. Then, for every
m ∈ N⋆, there exists ψm ∈ Im∆′′ ⊂ C∞

0, q(X, T
1, 0X) such that

(a) |∆′′−1ψm|0 = 1 and (b) |ψm|k−2+α <
1

m
(2.30)

(or simply |∆′′−1ψm|0 = 1 for all m ∈ N⋆ and lim
m→+∞

|ψm|k−2+α = 0).

Then, by the general a priori estimate (2.27) applied to φm = ∆
′′−1ψm, we get

|∆′′−1ψm|k+α ≤ Ck, α (|ψm|k−2+α + |∆
′′−1ψm|0) <

(
1

m
+ 1

)
Ck, α < 2Ck, α, m ∈ N⋆.
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Given the definition of the Hölder norm | |k+α, these inequalities imply that the coefficients of
∆

′′−1ψm have uniformly bounded and uniformly equicontinuous derivatives of every order l ≤ k in
every Uj. Therefore, Ascoli’s theorem implies the existence of a subsequence (ψlm)m of (ψm)m and
the existence of φ̃ ∈ C∞

0, q(X, T
1, 0X) such that

∆
′′−1ψlm

uniformly−−−−−−→
m→+∞

φ̃ and Dh(∆
′′−1ψlm)

uniformly−−−−−−→
m→+∞

Dhφ̃ for all h such that |h| ≤ k.

Now, since k ≥ 2 and ∆′′ is of order 2, this and (a) of (2.30) further imply that

|φ̃|0 = 1 and ψlm = ∆′′(∆
′′−1ψlm)

uniformly−−−−−−→
m→+∞

∆′′φ̃. (2.31)

Meanwhile, since k − 2 ≥ 0, from (b) of (2.30) we get:

|ψlm|0 ≤ |ψlm |k−2+α −−−−→
m→+∞

0, hence ψlm
uniformly−−−−−−→
m→+∞

0. (2.32)

From (2.31) and (2.32), we get ∆′′φ̃ = 0, so φ̃ ∈ ker∆′′.
On the other hand, we will show that φ̃ ∈ Im∆′′. Then, we can conclude that φ̃ ∈ ker∆′′ ∩

Im∆′′ = {0}, where the last identity follows from ker∆′′ ⊥ Im∆′′. Consequently, φ̃ = 0, which
contradicts the property |φ̃|0 = 1. (See (2.31).)

Now, proving that φ̃ ∈ Im∆′′ is equivalent to proving that φ̃ ⊥ ker∆′′. Let u ∈ ker∆′′,
arbitrary. Since ∆

′′−1 : Im∆′′ → Im∆′′ is bijective, for every m, there is a unique vm such that
∆

′′−1ψlm = ∆′′vm. We get:

⟨⟨∆′′−1ψlm , u⟩⟩ = ⟨⟨∆′′vm, u⟩⟩ = ⟨⟨vm, ∆′′u⟩⟩ = 0, for every m ∈ N⋆.

On the other hand, we know that ∆
′′−1ψlm converges, as m→ +∞, to φ̃ uniformly, hence also in

the L2 topology since X is compact and the metric ω is smooth. Therefore, ⟨⟨∆′′−1ψlm , u⟩⟩ converges
to ⟨⟨φ̃, u⟩⟩. Since ⟨⟨∆′′−1ψlm , u⟩⟩ = 0 for all m, we get ⟨⟨φ̃, u⟩⟩ = 0. Since u ∈ ker∆′′ is arbitrary,
we get φ̃ ⊥ ker∆′′ and we are done. □

• Minimal L2-norm solutions of ∂̄ equations

If ρ ∈ ∂̄(C∞
0, q(X, T

1, 0X)), it is obvious that the equation ∂̄φ = ρ has solutions φ. However, the
solution is unique only up to ker ∂̄. Since the orthogonal complement of ker ∂̄ in C∞

0, q(X, T
1, 0X)

is Im ∂̄⋆ (see the L2-orthogonal decomposition recalled earlier in this subsection), the solution of
minimal L2 norm is the unique solution that lies in Im ∂̄⋆.

The following result gives a formula and a Hölder-norm estimate for the (unique) minimal L2-
norm solution of this equation.

Lemma 2.3.9. Let (X, ω) be an n-dimensional compact Hermitian manifold. Fix q ∈ {0, . . . , n}.
For every ρ ∈ ∂̄(C∞

0, q(X, T
1, 0X)), the minimal L2

ω-norm solution of the equation

∂̄φ = ρ (2.33)

is given by the following Neumann formula:

φ = ∂̄⋆∆
′′−1ρ. (2.34)
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Moreover, for every integer k ≥ 1 and every α ∈ (0, 1), there exists a constant ck, α > 0 inde-
pendent of ρ such that the minimal L2

ω-norm solution φ of equation (2.33) satisfies the following
estimate:

|φ|k+α ≤ ck, α |ρ|k−1+α. (2.35)

Proof. Since ∂̄⋆∆
′′−1ρ ∈ Im ∂̄⋆, it will be the minimal L2-norm solution of equation (2.33) if it is a

solution at all. To prove this last fact, note that ∂̄∆
′′−1ρ = 0 since ∆

′′−1ρ ∈ Im ∂̄ ⊂ ker ∂̄. (Note
that ∂̄ commutes with ∆′′, hence also with ∆

′′−1.) Therefore, we get:

∂̄(∂̄⋆∆
′′−1ρ) = (∂̄∂̄⋆ + ∂̄⋆∂̄) (∆

′′−1ρ) = ∆′′∆
′′−1ρ = ρ,

proving that ∂̄⋆∆
′′−1ρ is, indeed, a solution of equation (2.33).

Now, for φ = ∂̄⋆∆
′′−1ρ, we have

|φ|k+α = |∂̄⋆∆′′−1ρ|k+α
(a)

≤ K1 |∆
′′−1ρ|k+1+α

(b)

≤ K1C1 |ρ|k−1+α,

where K1 > 0 is a constant independent of ρ that trivially exists such that inequality (a) is satisfied
because ∂̄⋆ is a differential operator of order 1, while inequality (b) follows from the key a priori
estimate (2.28) since ρ ∈ Im ∂̄, so ρ ⊥ ker∆′′.

Estimate (2.35) follows by taking ck, α := K1C1. □

• An auxiliary scalar power series

One of the key ideas in the proof of the convergence of the power series (2.21) of vector-valued
forms is to compare it with an elementary scalar power series. Even if the T 1, 0X-valued forms are
of bidegree (0, 1) in our case, we introduce the following piece of notation (cf. [KNS58]) in the more
general case of the bidegree (0, q).

Notation 2.3.10. Fix k ∈ N⋆ and α ∈ (0, 1). For any formal power series

ψ(t) =
∑
ν≥1

ψν(t) =
∑
ν≥1

∑
ν1+···+νm=ν

ψν1...νm t
ν1
1 . . . tνmm

with vector-valued form coefficients ψν1...νm ∈ C∞
0, q(X, T

1, 0X) and any formal power series

a(t) =
∑
ν≥1

aν(t) =
∑
ν≥1

∑
ν1+···+νm=ν

aν1...νm t
ν1
1 . . . tνmm

with constant numerical coefficients aν1...νm ≥ 0, we give the following meaning to the symbol
≪:

|ψ|k+α(t)≪ a(t) ⇐⇒ |ψν1...νm|k+α ≤ aν1...νm for all ν1, . . . , νm ∈ N.

Similarly, if b(t) is another formal power series with constant numerical coefficients bν1...νm ≥ 0,
we write b(t)≪ a(t) to mean that bν1...νm ≤ aν1...νm for all ν1, . . . , νm ∈ N.

The following elementary observation will play a key role in the proof of Theorem 2.3.4.

Lemma 2.3.11. Consider the fomal power series f(s) :=
∑
n≥1

sn

n2 with s ∈ C. Then,

f(s)2 ≪ 16sf(s).
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Proof. We have:

f(s)2 =

(∑
l≥1

sl

l2

)(∑
r≥1

sr

r2

)
=

( ∑
l, r≥1

sl+r

l2 r2

)
(a)
=
∑
n≥1

n∑
l=1

sn+1

l2 (n+ 1− l)2

= s
∑
n≥1

sn
n∑
l=1

1

l2 (n+ 1− l)2
,

where identity (a) follows by putting l + r := n+ 1 ≥ 2.
Now, if l ≤ n

2
, then n+ 1− l ≥ n

2
+ 1 > n

2
. Thus, either l ≥ n

2
or n+ 1− l > n

2
. Hence

l (n+ 1− l) ≥ n

2
l if l ≤ n

2
; and l (n+ 1− l) ≥ n

2
(n+ 1− l) if l ≥ n

2
.

Therefore, we get:

n∑
l=1

1

l2 (n+ 1− l)2
=

[n
2
]∑

l=1

1

l2 (n+ 1− l)2
+

n∑
l=[n

2
]+1

1

l2 (n+ 1− l)2

≤
[n
2
]∑

l=1

4

n2l2
+

n∑
l=[n

2
]+1

4

n2 (n+ 1− l)2
≤ 4

n2

+∞∑
l=1

1

l2
+

4

n2

+∞∑
l=1

1

l2

≤ 2
4

n2

π2

6
<

16

n2
,

which proves the contention. □

Proof of Theorem 2.3.4

Once ψ1(t) = β1 t1+ · · ·+βm tm ∈ C∞
0, 1(X, T

1, 0X)∩ker ∂̄ has been chosen arbitrarily, for arbitrarily
fixed representatives β1, . . . , βm of a basis ({β1}∂̄, . . . , {βm}∂̄) of H0, 1(X, T 1, 0X) (see explanations
in §.2.3.1), we will define ψν(t) to be the minimal L2

ω-norm solution of equation (Eq. ν) for every
ν ≥ 2. We will then go on to prove the absolute convergence in all the Hölder norms | |k+α, with
k ≥ 2 and α ∈ (0, 1), of the power series (2.21) for this choice of ψν(t)’s and for all t in a sufficiently
small (but depending on k) neighbourhood of 0 in B. That the Ck solution ψ(z, t) (which is also
holomorphic in t) obtained in this way is also C∞ will be seen by a different argument in the end.

Thanks to the Neumann formula (2.34), the (unique) minimal L2
ω-norm solution of equation

(Eq. 2) is

ψ2(t) = ∂̄⋆∆
′′−1

(
1

2
[ψ1(t), ψ1(t)]

)
. (2.36)

Then, we continue by induction on ν ≥ 2: once ψ1(t), . . . , ψν(t) have been constructed as the
minimal L2

ω-norm solutions of equations (Eq. 2), . . . , (Eq. ν) respectively, we define ψν+1(t) to be the
minimal L2

ω-norm solution of equation (Eq. ν + 1). Thanks to the Neumann formula (2.34), this is

ψν+1(t) = ∂̄⋆∆
′′−1

(
1

2

ν∑
µ=1

[ψµ(t), ψν+1−µ(t)]

)
= −∂̄⋆∆′′−1φν+1(t), (2.37)

where the last identity follows from the definition and the expression proved for φν+1(t) in the proof
of Lemma 2.3.2.

We now form the power series ψ(t) (see 2.21) with these choices of ψν(t)’s. We will need the
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General Remark 2.3.12. Let X be a compact complex manifold. Fix an integer k ≥ 2 and
0 < α < 1. Then, there exists a constant C ′ = C ′

k, α > 0 such that

|[φ, ψ]|k−1+α ≤ C ′ |φ|k+α |ψ|k+α for all φ, ψ ∈ C∞
0, 1(X, T

1, 0X). (2.38)

Proof. This follows trivially from the fact that φ and ψ contain vector fields ∂/∂zj which, when used
as 1-st order differential operators in the bracket [φ, ψ], add one partial derivative to the (k − 1)
partial derivatives already controlled by the Hölder norm | |k−1+α. □

We now come to the main estimate for the power series ψ(t).

Claim 2.3.13. Fix an integer k ≥ 2 and 0 < α < 1. Then, there exist constants A = Ak, α > 0
and B = Bk, α > 0 such that

|ψ|k+α(t)≪
A

B
f(B (t1 + · · ·+ tm)). (2.39)

Proof of Claim 2.3.13. Recall that σ1(t) = ψ1(t) = β1 t1 + · · · + βm tm. Thus, σ1(t) satisfies the
estimate

|σ1|k+α(t)≪
A

B
f(B (t1 + · · ·+ tm)) (2.40)

if A > 0 is large enough, for any B > 0. Indeed, since σ1(t) is homogeneous of degree 1 in t, only the
term B (t1+ · · ·+ tm) of f(B (t1+ · · ·+ tm)) is relevant on the right of (2.40) and the two occurrences
of B cancel each other out. We choose A > 0 large enough for (2.40) to hold.

Next, we pick any positive constant B such that

B > 64 ck, αC
′A, (2.41)

where ck, α > 0 is the constant occuring in the general estimate (2.35) of Lemma 2.3.9, C ′ > 0 is the
constant occuring in the general estimate (2.38) and A > 0 is constant chosen to satisfy (2.40).

With these choices of constants A and B, we will prove that

|σν |k+α(t)≪
A

B
f(B (t1 + · · ·+ tm)), (2.42)

for every ν ≥ 1, by induction on ν. This will prove (2.39). Recall that we denote σν(t) := ψ1(t) +
· · ·+ ψν(t) for every ν ≥ 1.

The case ν = 1 was settled in (2.40). Suppose that we have proved (2.42) for ν. We will now
prove it for ν + 1.

The first, second and third comparisons below are respectively implied by estimates (2.38), (2.42)
and Lemma 2.3.11:

|[σν , σν ]|k−1+α(t) ≪ C ′ |σν |k+α(t) |σν |k+α(t)≪ C ′ A
2

B2
f 2(B (t1 + · · ·+ tm))

≪ 16C ′ A
2

B
(t1 + · · ·+ tm) f(B (t1 + · · ·+ tm)).

Since 2φν+1(t) is the homogeneous part of degree ν + 1 in t = (t1, . . . , tm) of −[σν(t), σν(t)] (cf.
proof of Lemma 2.3.2), the homogeneous part of degree ν + 1 in t of the above estimate reads:

|2φν+1|k−1+α(t) ≪ 16C ′ A
2

B
(t1 + · · ·+ tm)

Bν (t1 + · · ·+ tm)
ν

ν2

=
16C ′A2Bν−1

ν2
(t1 + · · ·+ tm)

ν+1. (2.43)
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Therefore, we get:

|ψν+1|k+α(t) = |∂̄⋆∆′′−1φν+1|k+α(t)
(a)
≪ ck, α |φν+1|k−1+α(t)

(b)
≪ ck, α

8C ′A2Bν−1

ν2
(t1 + · · ·+ tm)

ν+1
(c)
≪ ABν

8ν2
(t1 + · · ·+ tm)

ν+1

(d)
≪ ABν

(ν + 1)2
(t1 + · · ·+ tm)

ν+1, (2.44)

where (a) follows from the general estimate (2.35) of Lemma 2.3.9, (b) follows from (2.43), (c) follows
from the choice (2.41) of B, while (d) follows from the trivial inequality (1/8ν2) < 1/(ν + 1)2 that
holds for all ν ≥ 1.

Since the last quantity on the right-hand side of (2.44) is precisely the homogeneous part of
degree ν +1 in t of (A/B) f(B (t1+ · · ·+ tm)), this proves (2.42) for ν +1 and finishes the inductive
process.

Claim 2.3.13 is proved. □

End of proof of Theorem 2.3.4.

Let us consider the formal power series with constant numerical coefficients:

a(t) := (A/B) f(B (t1 + · · ·+ tm)),

where f(s) :=
∑

ν≥1(s
ν/ν2) is the formal power series defined in Lemma 2.3.11. Since the radius of

convergence of f(s) is 1, for every fixed integer k ≥ 2, the power series a(t) converges absolutely for
all t ∈ Bε0(k) ⊂ Cm, where Bε0(k) is the open ball centred at the origin of radius ε0(k) in Cm. We
may choose any ε0(k) > 0 such that

ε0(k) <
1

mBk

,

where Bk := B > 64 ck, αC
′A is the constant (necessarily dependent on k) chosen in (2.41).

Consequently, Claim 2.3.13 implies that for every fixed integer k ≥ 2, ψ(t) ∈ Ck
0, 1(X, T

1, 0X) for
all t ∈ Bε0(k). However, Bk might tend to +∞ when k tends to +∞, in which case ε0(k)0 tends to
0 and the ball Bε0(k) on which ψ(t) is of class Ck shrinks to a point. In this case, we cannot infer
that ψ(t) is of class C∞ for t in some open ball centred at 0 ∈ B. So, we need an extra argument to
pass from Ck for all k ∈ N to C∞.

Before spelling it out, note that, in local coordinates (z, t), we have

ψ(t) = ψ(z, t) =
n∑

α, µ=1

ψαµ̄(z, t) dz̄µ ⊗
∂

∂zα
,

where the coefficients ψαµ̄(z, t) are C
k functions of (z, t) which are even holomorphic in t (by con-

struction as a convergent power series).
Now, ψ(z, t) is C∞ in (z, t) if and only if ψαµ̄(z, t) is C

∞ in (z, t) for all α and all µ. Recall that
ψν(t) ∈ Im ∂̄⋆ ⊂ ker ∂̄⋆ for all ν ≥ 2, because it is the solution of minimal L2 norm of a ∂̄ equation.
This implies that ∆′′ψν(t) = ∂̄⋆∂̄ψν(t) for all ν ≥ 2, hence

∆′′
( +∞∑

ν=2

ψν(t)

)
= ∂̄⋆∂̄

( +∞∑
ν=1

ψν(t)

)
= ∂̄⋆∂̄ψ(t),
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where the first identity follows from ∂̄ψ1(t) = 0.
Meanwhile, we know that ∂̄ψ(t) = (1/2) [ψ(t), ψ(t)] (the integrability condition). Hence:

∆′′
( +∞∑

ν=2

ψν(t)

)
= ∂̄⋆∂̄ψ(t) =

1

2
∂̄⋆[ψ(t), ψ(t)].

Since ∂ψ(t)/∂t̄λ = 0 for all λ ∈ {1, . . . ,m} (because ψ(t) is holomorphic in t = (t1, . . . , tm)), we infer
that

m∑
λ=1

∂2ψ(t)

∂tλ ∂t̄λ
+∆′′ψ(t)− 1

2
∂̄⋆[ψ(t), ψ(t)]− ∂̄∂̄⋆ψ1(t) = 0. (2.45)

Now, this 2-nd order PDE, for which ψ(t) is a solution, is elliptic for t in a small enough
neighbourhood of 0 in B. To see this, note that the sum of the first two terms on the l.h.s. of (2.45)
constitutes a Laplacian in the (z, t) variables, which is an elliptic operator, while the principal part
of the third term −1

2
∂̄⋆[ψ(t), ψ(t)] is

−1

2

n∑
λ=1

n∑
β, γ=1

ωγ̄ β
n∑
µ=1

[
ψµ(t)

∂2ψλγ̄ (t)

∂zβ ∂zµ
− ψµγ̄ (t)

n∑
ν=1

∂2ψλν̄ (t)

∂zβ ∂zµ

]
∂

∂zλ
.

Now, recall that ψ(0) = 0. Hence, the coefficients ψµ(t) and ψµγ̄ (t) tend to 0 when |t| → 0. Therefore,
when |t| is small enough, the coefficients of the principal part of −1

2
∂̄⋆[ψ(t), ψ(t)] are small and can

be absorbed into the coefficients of the principal part of ∆′′.
We can now conclude: since ψ(z, t) is a solution of an elliptic PDE for all t such that |t| < ε⋆,

for some ε⋆ > 0 small enough, ψ(z, t) depends in a C∞ way on (z, t) ∈ X ×Bε⋆ . Since, as has been
explained, it is also holomorphic in t, the proof of Theorem 2.3.4 is complete. □

2.4 The Bogomolov-Tian-Todorov theorem

Let X be a compact complex manifold with dimCX = n. We saw in §.2.3 that, if the vector
space H0, 2(X, T 1, 0X) that contains all the possible qualitative obstructions to locally deforming
the complex structure of X vanishes, then we can indeed deform this complex structure in all the
available directions. These directions are parametrised by the vector space H0, 1(X, T 1, 0X). So,
there are no quantitative obstructions.

The main result of §.2.3 throws up the natural question of what happens if the vector space
H0, 2(X, T 1, 0X) does not vanish. Can we still deform the complex structure of X in all the available
directions, at least under certain assumptions on X? In this section we will pin down a pair of
assumptions on X under which this happens, namely there are no obstructions to deforming such
an X. As in the previous case of §.2.3, these assumptions constitute only a sufficient condition for
the unobstructedness of the small deformations of X in all the available directions.

In the classical Bogomolov-Tian-Todorov theorem, the first of the above mentioned hypotheses
on X was its Kählerianity. We will see that this assumption can be weakened to the requirement
that X be only a ∂∂̄-manifold. The second hypothesis that is often made on X requires it to also
belong to another important class of compact complex manifolds that we now discuss briefly.
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2.4.1 Calabi-Yau manifolds

For many authors, Calabi-Yau (C-Y) manifolds are at least supposed to be Kähler and often even
projective. We will not make any Kählerianity assumption on them, but will strip them to their one
key feature.

Definition 2.4.1. A compact complex manifold X is said to be a Calabi-Yau manifold if its
canonical bundle KX is trivial.

Let n = dimCX. Recall that the canonical bundle of X is the holomorphic line bundle of (n, 0)-
forms on X:

KX := Λn, 0T ⋆X = det(Λ1, 0T ⋆X) = − det(T 1, 0X).

Thus, if (z1, . . . , zn) is a system of local holomorphic coordinates on X, the holomorphic n-form
dz1 ∧ · · · ∧ dzn defines a local holomorphic frame of KX . As with any holomorphic line bundle, the
triviality is equivalent to the existence of a non-vanishing global holomorphic section:

KX is trivial ⇐⇒ ∃u ∈ H0(X, KX) ≃ Hn, 0

∂̄
(X, C) such that u(x) ̸= 0 ∀x ∈ X

⇐⇒ ∃u ∈ C∞
n, 0(X, C) such that ∂̄u = 0 and u(x) ̸= 0 ∀x ∈ X.

When KX is trivial, the Hodge number hn, 0
∂̄

= 1, so the non-vanishing holomorphic n-form u on
X is unique up to a multiplicative constant. Such a form will be called a Calabi-Yau form. Note that
Hn, 0

∂̄
(X, C) = C∞

n, 0(X, C) ∩ ker ∂̄ since, for bidegree reasons, the only ∂̄-exact (n, 0)-form is zero.

So, every u ∈ C∞
n, 0(X, C) ∩ ker ∂̄ identifies with [u]∂̄ ∈ H

n, 0

∂̄
(X, C) ≃ H0(X, KX).

Before moving on, let us mention the following elementary observation that will prove useful in
computations in local coordinates.

Lemma 2.4.2. Let X be an n-dimensional Calabi-Yau manifold. Fix a form u ∈ C∞
n, 0(X, C)∩ker ∂̄

such that u(z) ̸= 0 for every z ∈ X. Then, for every x ∈ X, there exist local holomorphic coordinates
z1, . . . , zn centred at x on an open neighbourhood U of x such that

u|U = dz1 ∧ · · · ∧ dzn.

Proof. Let w1, . . . , wn be arbitrary local holomorphic coordinates centred at x on an open neighbour-
hood Ũ of x. Let U = D(x1, R1)×· · ·×D(xn, Rn) ⊂ Ũ be an open polydisc about x = (x1, . . . , xn).
Then u|U = f dw1 ∧ · · · ∧ dwn for some non-vanishing holomorphic function f : U → C. Define new
local holomorphic coordinates z1, . . . , zn centred at x by z2 := w2, . . . zn := wn and

z1(w1, w2, . . . , wn) =

w1∫
x1

f(t, w2, . . . , wn) dt, (w1, w2, . . . , wn) ∈ U,

where the integral can be taken along any path in D(x1, R1) from x1 to w1 because the disc is
(obviously) simply connected. We get:

∂z1
∂w1

= f and dz1 ∧ · · · ∧ dzn = det

(
∂zj
∂wk

)
1≤j, k≤n

dw1 ∧ · · · ∧ dwn = f dw1 ∧ · · · ∧ dwn = u|U .

Since f is non-vanishing, z1, . . . , zn are indeed coordinates. The proof is complete. □
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Lemma and Definition 2.4.3. Suppose that KX is trivial and let u be a Calabi-Yau form on
X. Then, for every q = 0, . . . , n, u defines an isomorphism (that will be called the Calabi-Yau
isomorphism):

Tu : C∞
0, q(X, T

1, 0X)
·⌟u−→ C∞

n−1, q(X, C) (2.46)

mapping any θ ∈ C∞
0, q(X, T

1, 0X) to Tu(θ) := θ⌟u, where the operation denoted by ·⌟ combines the
contraction of u by the (1, 0)-vector field component of θ with the exterior multiplication by the
(0, q)-form component.

Proof. Once we have fixed a system (z1, . . . , zn) of local holomorphic coordinates on some open
subset U ⊂ X, we can write:

θ =
∑
|J |=q
1≤j≤n

θj
J̄
dz̄J ⊗

∂

∂zj
∈ C∞

0, q(U, T
1, 0X) and u = f dz1 ∧ · · · ∧ dzn,

for some C∞ functions θjJ and some non-vanishing C∞ function f on U . We have:

Tu(θ) = θ⌟u =
∑
|J |=q
1≤j≤n

(−1)j−1 fθj
J̄
dz̄J ∧ dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn,

where the symbol ̂ indicates a missing factor.
The map Tu is injective and surjective because f does not vanish. □

We shall now compare, in the case q = 1, the images under the operation ·⌟u of the kernel and
the image of ∂̄ with the analogous subspaces of C∞

n−1, 1(X, C), with the result that the Calabi-Yau
isomorphism is extended in cohomology.

Lemma and Definition 2.4.4. Suppose that KX is trivial and let u be a Calabi-Yau form on
X. Then, when q = 1, the isomorphism Tu of (2.46) satisfies:

Tu(ker ∂̄) = ker ∂̄ and Tu(Im ∂̄) = Im ∂̄. (2.47)

Hence Tu induces an isomorphism in cohomology

T[u] : H0, 1(X, T 1, 0X)
·⌟[u]−→ Hn−1, 1(X, C) (2.48)

defined by T[u]([θ]) = [θ⌟u] for all [θ] ∈ H0, 1(X, T 1, 0X).

The isomorphism T[u] will be called the Calabi-Yau isomorphism in cohomology.

Proof. It relies on the following formulae that the reader can easily check in local coordinates:

∂̄(θ⌟u) = (∂̄θ)⌟u+ θ⌟(∂̄u) = (∂̄θ)⌟u, ∂̄(ξ⌟u) = (∂̄ξ)⌟u− ξ⌟(∂̄u) = (∂̄ξ)⌟u (2.49)

for all θ ∈ C∞
0, 1(X, T

1, 0X) and all ξ ∈ C∞(X, T 1, 0X). Note, however, that the analogous identities
for ∂ fail. These formulae imply the inclusions:

Tu(ker ∂̄) ⊂ ker ∂̄ and Tu(Im ∂̄) ⊂ Im ∂̄.
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To prove the reverse inclusion of the former equality in (2.47), suppose that θ⌟u ∈ ker ∂̄ for some
θ ∈ C∞

0, 1(X, T
1, 0X). By (2.49), this means that (∂̄θ)⌟u = 0, which is equivalent to ∂̄θ = 0 since the

map Tu of (2.46) is an isomorphism.
To prove the reverse inclusion of the latter equality in (2.47), let θ ∈ C∞

0, 1(X, T
1, 0X) such that

θ⌟u = ∂̄v for some (n− 1, 0)-form v. If we let

v =
∑
j

vj dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn

with respect to local holomorphic coordinates z1, . . . , zn on some open subset U ⊂ X and use the
notation in the proof of Lemma and Definition 2.4.3, the identity θ⌟u = ∂̄v reads:∑

j, k

(−1)j−1fθj
k̄
dz̄k ∧ dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn =

∑
j, k

∂vj
∂z̄k

dz̄k ∧ dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ dzn,

which is equivalent to θj
k̄
= ∂

∂z̄k
((−1)j−1 vj

f
) for all j, k since f is holomorphic without zeroes. Setting

ξj := (−1)j−1 vj
f
for all j, we get the local representative of a global vector field

ξ :=
∑
j

ξj
∂

∂zj
∈ C∞(X, T 1, 0X)

satisfying θ = ∂̄ξ on X. Hence θ ∈ Im ∂̄. We have thus proved that Im ∂̄ ⊂ Tu(Im ∂̄), hence the
latter identity in (2.47). □

We shall now see that the isomorphisms Tu of (2.46) and their inverses enable one to extend the
Lie bracket of T 1, 0X to C-valued (n− 1, q)-forms.

Definition 2.4.5. ([Tia87, p. 631]) Suppose that KX is trivial and let u be a Calabi-Yau form
on X. For all q1, q2 ∈ {0, . . . , n}, define the following bracket:

[·, ·] : C∞
n−1, q1

(X, C)× C∞
n−1, q2

(X, C) −→ C∞
n−1, q1+q2

(X, C),

[ζ1, ζ2] := Tu

[
T−1
u ζ1, T

−1
u ζ2

]
, (2.50)

where the operation [ , ] on the right-hand side of (2.50) combines the Lie bracket of the T 1, 0X-parts
of T−1

u ζ1 ∈ C∞
0, q1

(X, T 1, 0X) and T−1
u ζ2 ∈ C∞

0, q2
(X, T 1, 0X) with the wedge product of their (0, q1)−

and respectively (0, q2)-form parts.

In other words, putting ζ1 := Φ1⌟u and ζ2 := Φ2⌟u with (uniquely determined) Φ1 ∈ C∞
0, q1

(X, T 1, 0X)
and Φ2 ∈ C∞

0, q2
(X, T 1, 0X), we define:

[Φ1⌟u, Φ2⌟u] := [Φ1, Φ2]⌟u. (2.51)

The main technical ingredient in [Tia87] and [Tod89] was the following general observation, the
so-called Tian-Todorov lemma (cf. Lemma 3.1. in [Tia87], Lemma 1.2.4. in [Tod89]).

Lemma 2.4.6. Let X be a compact complex manifold (n = dimCX) such that KX is trivial. Then,
for any forms ζ1, ζ2 ∈ C∞

n−1, 1(X, C) such that ∂ζ1 = ∂ζ2 = 0, we have
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[ζ1, ζ2] ∈ Im ∂.

More precisely, the identity
[θ1⌟u, θ2⌟u] = −∂(θ1⌟(θ2⌟u)) (2.52)

holds for θ1, θ2 ∈ C∞
0, 1(X, T

1, 0X) whenever ∂(θ1⌟u) = ∂(θ2⌟u) = 0.

Proof. We will make a computation in local coordinates z1, . . . , zn chosen such that u = dz1∧· · ·∧dzn
on some open subset U ⊂ X. Such coordinates exist by Lemma 2.4.2.

To lighten the notation, we will sometimes put d̂zλ := dz1 ∧ · · · ∧ d̂zλ ∧ · · · ∧ dzn for every λ.

Similarly, we sometimes put ̂dzλ ∧ dzµ := dz1 ∧ · · · ∧ d̂zλ ∧ · · · ∧ d̂zµ ∧ · · · ∧ dzn when λ < µ.
Let

θ1|U = φ =
n∑
λ=1

φλ
∂

∂zλ
and θ2|U = ψ =

n∑
µ=1

ψµ
∂

∂zµ
,

with φλ, ψµ ∈ C∞
0, 1(U, C). From Definition 2.2.11, we get:

[φ⌟u, ψ⌟u] = [φ, ψ]⌟u =
n∑
λ=1

(−1)λ−1

[ n∑
µ=1

(
φµ ∧ ∂ψ

λ

∂zµ
+ ψµ ∧ ∂φ

λ

∂zµ

)]
∧ d̂zλ. (2.53)

On the other hand, we have: ψ⌟u =
n∑
µ=1

(−1)µ−1 ψµ ∧ dz1 ∧ · · · ∧ d̂zµ ∧ · · · ∧ dzn. Hence,

φ⌟(ψ⌟u) =
n∑

λ, µ=1

(−1)µ φλ ∧ ψµ ∧ ∂

∂zλ
⌟(dz1 ∧ · · · ∧ d̂zµ ∧ · · · ∧ dzn)

=
∑
λ<µ

(−1)λ+µ−1 φλ ∧ ψµ ∧ dz1 ∧ · · · ∧ d̂zλ ∧ · · · ∧ d̂zµ ∧ · · · ∧ dzn

+
∑
λ>µ

(−1)λ+µ φλ ∧ ψµ ∧ dz1 ∧ · · · ∧ d̂zµ ∧ · · · ∧ d̂zλ ∧ · · · ∧ dzn.

By permuting the indices λ and µ in the last sum, we get:

φ⌟(ψ⌟u) =
∑
λ<µ

(−1)λ+µ−1 (φλ ∧ ψµ − φµ ∧ ψλ) ∧ dz1 ∧ · · · ∧ d̂zλ ∧ · · · ∧ d̂zµ ∧ · · · ∧ dzn.

Applying ∂, we get:

∂(φ⌟(ψ⌟u)) =
∑
λ<µ

(−1)λ+µ−1

( n∑
ρ=1

∂(φλ ∧ ψµ − φµ ∧ ψλ)
∂zρ

∧ dzρ
)
∧ ̂dzλ ∧ dzµ

=
∑
λ<µ

(−1)µ ∂(φ
λ ∧ ψµ − φµ ∧ ψλ)

∂zλ
∧ d̂zµ +

∑
λ<µ

(−1)λ−1 ∂(φ
λ ∧ ψµ − φµ ∧ ψλ)

∂zµ
∧ d̂zλ.

After permuting the indices λ and µ in the last sum, we get:

∂(φ⌟(ψ⌟u)) =
n∑
µ

(−1)µ−1

(∑
λ>µ

∂(φµ ∧ ψλ − φλ ∧ ψµ)
∂zλ

−
∑
λ<µ

∂(φλ ∧ ψµ − φµ ∧ ψλ)
∂zλ

)
∧ d̂zµ

=
n∑
µ

(−1)µ−1

[
φµ ∧

∑
λ>µ

∂ψλ

∂zλ
−
∑
λ>µ

ψλ ∧ ∂φ
µ

∂zλ
+ ψµ ∧

∑
λ>µ

∂φλ

∂zλ
−
∑
λ>µ

φλ ∧ ∂ψ
µ

∂zλ

+ ψµ ∧
∑
λ<µ

∂φλ

∂zλ
−
∑
λ<µ

φλ ∧ ∂ψ
µ

∂zλ
+ φµ ∧

∑
λ<µ

∂ψλ

∂zλ
−
∑
λ<µ

ψλ ∧ ∂φ
µ

∂zλ

]
∧ d̂zµ.
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Collecting terms yields the first identity below, while the second one follows by permuting the indices
λ and µ:

∂(φ⌟(ψ⌟u)) =
n∑
µ=1

(−1)µ−1

[
φµ ∧

∑
λ ̸=µ

∂ψλ

∂zλ
−
∑
λ ̸=µ

ψλ ∧ ∂φ
µ

∂zλ
+ ψµ ∧

∑
λ ̸=µ

∂φλ

∂zλ
−
∑
λ ̸=µ

φλ ∧ ∂ψ
µ

∂zλ

]
∧ d̂zµ

=
n∑
λ=1

(−1)λ−1

[ n∑
µ=1

(
φλ ∧ ∂ψ

µ

∂zµ
− ψµ ∧ ∂φ

λ

∂zµ
+ ψλ ∧ ∂φ

µ

∂zµ
− φµ ∧ ∂ψ

λ

∂zµ

)]
∧ d̂zλ.

Note that the last sum runs a priori over the indices µ ̸= λ. However, the paranthesis term of the
sum

∑
µ corresponding to µ = λ vanishes in an obvious way (pairwise cancellations of the terms).

Recalling (2.53), we see that the sums featuring in the second and fourth terms in the paranthesis
under

∑n
µ=1 in the above expression for ∂(φ⌟(ψ⌟u)) yield −[φ⌟u, ψ⌟u]. Therefore, we get:

∂(φ⌟(ψ⌟u)) = −[φ⌟u, ψ⌟u]

+
n∑
λ=1

(−1)λ−1 φλ ∧
n∑
µ=1

∂ψµ

∂zµ
∧ d̂zλ +

n∑
λ=1

(−1)λ−1 ψλ ∧
n∑
µ=1

∂φµ

∂zµ
∧ d̂zλ. (2.54)

Let us now express the hypothesis ∂(φ⌟u) = ∂(ψ⌟u) = 0 in local coordinates.
Applying ∂ in the expression we had above for ψ⌟u, we get:

∂(ψ⌟u) =
n∑
µ=1

(−1)µ−1

( n∑
l=1

∂ψµ

∂zl
dzl

)
∧ dz1 ∧ · · · ∧ d̂zµ ∧ · · · ∧ dzn =

( n∑
µ=1

∂ψµ

∂zµ

)
∧ dz1 ∧ · · · ∧ dzn.

Thus, the hypothesis ∂(ψ⌟u) = 0 is equivalent to
∑n

µ=1(∂ψ
µ/∂zµ) = 0. (Recall that this sum is a

C-valued (0, 1)-form.) Similarly, the hypothesis ∂(φ⌟u) = 0 is equivalent to
∑n

µ=1(∂φ
µ/∂zµ) = 0.

We conclude that (2.54) reduces to

∂(φ⌟(ψ⌟u)) = −[φ⌟u, ψ⌟u]

unde the assumption ∂(φ⌟u) = ∂(ψ⌟u) = 0. This proves (2.52) and completes the proof of Lemma
2.4.6. □

□

2.4.2 The unobstructedness theorem for Calabi-Yau ∂∂̄-manifolds

We are now in a position to state and prove the main result of this section. It is an occasion
for witnessing the key role played by ∂∂̄-manifolds which do the same job in this context (see e.g.
[Pop13, Theorem 1.2]) as the stronger compact Kähler manifolds of the original theorem (see [Tia87]
and [Tod89]).

By the Kuranishi family of X being unobstructed, we will mean that (the complex structure
of) X can be locally deformed in all the available directions. In other words, the conclusion of
Theorem 2.3.4 holds. Equivalently, there is a holomorphic family of compact complex manifolds
π : X −→ B whose central fibre X0 is the given X and whose base B is an open ball centred at
the origin in H0, 1(X, T 1, 0X). This family of small deformations of X is called the Kuranishi family
of X. The Kuranishi family is a general object that exists for every compact complex manifold
X (see [Kur62]), even when the small deformations of X are obstructed, but the base B need not
be smooth. In general, B is only an analytic subset of H0, 1(X, T 1, 0X). Unobstructedness of the
Kuranishi family is thus equivalent to B being smooth and an open ball in H0, 1(X, T 1, 0X). The
Kuranishi family being an infinitesimal notion, the size of B is irrelevant, so B can be shrunk at
will about 0.
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Theorem 2.4.7. (Bogomolov-Tian-Todorov theorem for Calabi-Yau ∂∂̄-manifolds) Let X be a ∂∂̄-
manifold whose canonical bundle KX is trivial. Then, the Kuranishi family of X is unobstructed.

Proof. This proof is taken from [Pop13].
Let [η] ∈ H0, 1(X, T 1, 0X) be an arbitrary nonzero class. Pick any d-closed representative w1

of the class [η]⌟[u] ∈ Hn−1, 1(X, C). Such a d-closed representative exists by (a) of Theorem 1.3.2
thanks to the ∂∂̄ assumption on X. This is virtually the only modification of the proof compared to
the Kähler case where the ∆′′-harmonic representative of the class [η]⌟[u] was chosen. Since ∆′ = ∆′′

in the Kähler case, ∆′′-harmonic forms are also ∂-closed, hence d-closed, but this no longer holds in
the non-Kähler case.

Since Tu is an isomorphism, there is a unique Φ1 ∈ C∞
0, 1(X, T

1, 0X) such that Φ1⌟u = w1. Now
∂̄w1 = 0, so the former equality in (2.47) implies that ∂̄Φ1 = 0. Moreover, since [Φ1⌟u] = [w1], (2.48)
implies that [Φ1] = [η] ∈ H0, 1(X, T 1, 0X) and this is the original class we started off with. However,
Φ1 need not be the ∆′′-harmonic representative of the class [η] in the non-Kaehler case (in contrast
to the Kähler case of [Tia87] and [Tod89]). Meanwhile, by the choice of w1, we have

∂(Φ1⌟u) = 0,

so the Tian-Todorov Lemma 2.4.6 applied to ζ1 = ζ2 = Φ1⌟u yields [Φ1⌟u, Φ1⌟u] ∈ Im ∂. On
the other hand, [Φ1⌟u, Φ1⌟u] ∈ ker ∂̄ by Lemma 2.3.2. By the ∂∂̄ property of X applied to the
(n− 1, 2)-form 1/2 [Φ1⌟u, Φ1⌟u], there exists ψ2 ∈ C∞

n−2, 1(X, C) such that

∂̄∂ψ2 =
1

2
[Φ1⌟u, Φ1⌟u].

We can choose ψ2 of minimal L2-norm with this property (i.e. ψ2 ∈ Im(∂∂̄)⋆, see the orthogonal
three-space decomposition for the Aeppli cohomology in (1) and (2) of Corollary 1.1.13). Put
w2 := ∂ψ2 ∈ C∞

n−1, 1(X, C). Since Tu is an isomorphism, there is a unique Φ2 ∈ C∞
0, 1(X, T

1, 0X) such
that Φ2⌟u = w2. Implicitly, ∂(Φ2⌟u) = 0. Moreover, using (2.49), we get

(∂̄Φ2)⌟u = ∂̄(Φ2⌟u) =
1

2
[Φ1⌟u, Φ1⌟u] =

1

2
[Φ1, Φ1]⌟u,

where the last identity follows from (2.51). Hence

(Eq. 1) ∂̄Φ2 =
1

2
[Φ1, Φ1].

We can now continue inductively. Suppose we have constructed Φ1, . . . ,ΦN−1 ∈ C∞
0, 1(X, T

1, 0X)
such that

∂(Φk⌟u) = 0 and ∂̄(Φk⌟u) =
1

2

k−1∑
l=1

[Φl⌟u, Φk−l⌟u], 1 ≤ k ≤ N − 1.

By formulae (2.49), (2.51) and since Tu is an isomorphism, the latter identity above is equivalent to

(Eq. (k − 1)) ∂̄Φk =
1

2

k−1∑
l=1

[Φl, Φk−l], 1 ≤ k ≤ N − 1.

Then, again by Lemma 2.3.2, we have

1

2

N−1∑
l=1

[Φl⌟u, ΦN−l⌟u] ∈ ker ∂̄.
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On the other hand, since Φ1⌟u, . . . ,ΦN−1⌟u ∈ ker ∂, the Tian-Todorov Lemma 2.4.6 gives

[Φl⌟u, ΦN−l⌟u] ∈ Im ∂ for all l = 1, . . . , N − 1.

Thanks to the last two relations, the ∂∂̄ property of X implies the existence of a form ψN ∈
C∞
n−2, 1(X, C) such that

∂̄∂ψN =
1

2

N−1∑
l=1

[Φl⌟u, ΦN−l⌟u].

We can choose ψN of minimal L2-norm with this property (i.e. ψN ∈ Im(∂∂̄)⋆). Letting wN :=
∂ψN ∈ C∞

n−1, 1, there exists a unique ΦN ∈ C∞
0, 1(X, T

1, 0X) such that ΦN⌟u = wN . Implicitly

∂(ΦN⌟u) = 0.

We also have ∂̄(ΦN⌟u) = 1
2

N−1∑
l=1

[Φl⌟u, ΦN−l⌟u] by construction. By formulae (2.49), (2.51) and since

Tu is an isomorphism, this amounts to

(Eq. (N − 1)) ∂̄ΦN =
1

2

N−1∑
l=1

[Φl, ΦN−l].

We have thus shown inductively that the equation (Eq. k) is solvable for every k ∈ N⋆. As we
saw in §.2.3.2, this implies the convergence of the power series Φ(t) := Φ1 t+Φ2 t

2+ · · ·+ΦN t
N+ . . .

in all the Hölder norms | |k+α, with k ≥ 2 and α ∈ (0, 1), for all t ∈ C such that |t| < εk, because
the ψν ’s have been chosen of minimal L2 norms with their respective properties. This produces a
form Φ(t) ∈ C∞

0, 1(X, T
1, 0X) that varies holomorphically with t ∈ D(0, ε⋆) ⊂ C for some ε⋆ > 0

and defines a complex structure ∂̄t on X that identifies with ∂̄ −Φ(t) and is the deformation of the
original complex structure ∂̄ of X in the direction of the originally given [η] ∈ H0, 1(X, T 1, 0X). The
proof is complete. □

We end this section by noticing that the full force of the ∂∂̄ assumption is not needed in Theorem
2.4.7, but only a special case thereof, since only two applications in very particular situations have
been made of it.

First, we needed any Dolbeault cohomology class [α] ∈ Hn−1, 1(X, C) (denoted by [η]⌟[u] in the
proof) to be representable by a d-closed form. The proof of Lemma ?? shows this to be equivalent
to requiring that any ∂-exact (n, 1)-form ∂α for which ∂̄α = 0 be ∂∂̄-exact. This is equivalent to
requiring the following linear map (which is always well defined)

A1 : Hn−1, 1

∂̄
(X, C) −→ Hn, 1

BC (X, C), [α]∂̄ 7→ [∂α]BC (2.55)

to vanish identically, where the subscript BC indicates a Bott-Chern cohomology group. By duality,
the vanishing of A1 is equivalent to the vanishing of its dual map

A⋆1 : H0, n−1
A (X, C) −→ H1, n−1

∂̄
(X, C), [u]A 7→ [∂u]∂̄, (2.56)

where the subscript A indicates an Aeppli cohomology group.
The other special case of the ∂∂̄ lemma needed in the proof of Theorem 2.4.7 was the requirement

that any ∂-exact and d-closed (n−1, 2)-form β (denoted by [Φ1⌟u, Φ1⌟u] in the proof) be ∂∂̄-exact.
This is equivalent to requiring the following linear map (which is always well defined)
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B : Hn−1, 2
BC (X, C) −→ Hn−1, 2

∂ (X, C), [β]BC 7→ [β]∂ (2.57)

to be injective. From the exact sequence

Hn−2, 2
A (X, C) A2−→ Hn−1, 2

BC (X, C) B−→ Hn−1, 2
∂ (X, C),

we infer that B being injective is equivalent to the linear map A2 vanishing identically, where

A2 : Hn−2, 2
A (X, C) −→ Hn−1, 2

BC (X, C), [v]A 7→ [∂v]BC . (2.58)

This discussion can be summed up as follows.

Observation 2.4.8. Let X be a compact complex manifold with dimCX = n whose canonical bundle
KX is trivial such that the linear maps A1 and A2 defined in (2.55) and (2.58) vanish identically.
Then the Kuranishi family of X is unobstructed.

2.4.3 Two examples of unobstructedness for C-Y non-∂∂̄ manifolds

We saw in §.1.3.3 that the 3-dimensional Iwasawa manifold, that we will often denote by I(3), is
not a ∂∂̄-manifold. It does not even have the weaker Frölicher degeneration at E1 property. (See
Proposition 1.3.22.) We also saw in Proposition 1.3.23 that no small deformation of I(3) is a ∂∂̄-
manifold. However, we will see later that Nakamura divided the small deformations of I(3) into three
classes, (i), (ii) and (iii), in [Nak75] and that those in class (iii) have the property E1(X) = E∞(X).
(See e.g. tables 2.2 and 2.3 in [Ang14].)

On the other hand, we also saw in §.1.3.3 that I(3) is a complex parallelisable manifold, meaning
that its holomorphic tangent bundle is trivial. This implies that its canonical bundle is also trivial,
making I(3) a Calabi-Yau manifold in the sense of Definition 2.4.1.

Thus, as a Calabi-Yau non-∂∂̄-manifold, I(3) does not satisfy the hypotheses of Theorem 2.4.7,
so we cannot use that theorem to determine the (un)obstructedness status of the Kuranishi family
of I(3).

Nevertheless, following [Nak75], we will now see that a simple computation proves the unob-
structedness of the Kuranishi family of I(3). A striking feature is that the general process described
in §.2.3.1 becomes finite in the case of I(3), namely the power series (2.21) contains only finitely
many (actually, only two) terms. So, no convergence issue is involved.

Unobstructedness of the Kuranishi family of the Iwasawa manifold I(3)

Let X = I(3) be the Iwasawa manifold. It is a nilmanifold since the Heisenberg group G defining
it is nilpotent. Let φ1 = dz1, φ2 = dz2, φ3 = dz3 − z1dz2 be the holomorphic 1-forms on X defined
in (1.54). They are linearly independent at every point of X. Since φ1 and φ2 are d-closed while
φ3 is not d-closed, the number r introduced in Definition 2.4.12 below equals 2 in the case of I(3).
Hence, by Kodaira’s theorem 4.5.37, the C-vector space H0, 1

∂̄
(X, C) has complex dimension 2 and

is spanned by the Dolbeault cohomology classes [φ1]∂̄ and [φ2]∂̄. Let θ1, θ2, θ3 ∈ H0(X, Ω1
X) be the

holomorphic vector fields dual to φ1, φ2, φ3. They are given by

θ1 =
∂

∂z1
, θ2 =

∂

∂z2
+ z1

∂

∂z3
, θ3 =

∂

∂z3
(2.59)

and satisfy the relations
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[θ1, θ2] = −[θ2, θ1] = θ3, [θ1, θ3] = [θ2, θ3] = 0, (2.60)

i.e. [θi, θj] = 0 whenever {i, j} ≠ {1, 2}.
Since the holomorphic tangent bundle T 1, 0X is trivial and spanned by θ1, θ2, θ3, the cohomology

group H0, 1(X, T 1, 0X) of T 1, 0X-valued (0, 1)-forms on X is a C-vector space of dimension 6 spanned
by the classes of θi φλ :

H0, 1(X, T 1, 0X) =
⊕

1≤i≤3, 1≤λ≤2

C{θi φλ}, dimCH
0, 1(X, T 1, 0X) = 6. (2.61)

This will be seen to imply that the Kuranishi family of X = I(3) is a 6 -parameter family.

Proposition 2.4.9. The Kuranishi family of the 3-dimensional nilmanifold I(3) is unobstructed.

Proof. For X = I(3), we get:

[θiφλ, θkφν ] = [θi, θk]φλ ∧ φν , i, k, λ, ν = 1, 2, 3, (2.62)

with [θi, θk] given in (4.122).
We have seen in (4.124) that the classes {θi φλ}, with 1 ≤ i ≤ 3, 1 ≤ λ ≤ 2, form a basis

of H0, 1(X, T 1, 0X). Consequently the Kuranishi family of X can be described by 6 parameters
t = (tiλ)1≤i≤3, 1≤λ≤2. By (4.112), the T 1, 0X-valued (0, 1)-forms θi φλ are ∆′′-harmonic when 1 ≤
λ ≤ 2. Thus, to construct the vector (0, 1)-forms ψ(t) ∈ C∞(X, Λ0, 1T ⋆X ⊗ T 1, 0X) that describe
the Kuranishi family of X = C3/Γ, we start off by setting

ψ1(t) :=
3∑
i=1

2∑
λ=1

tiλθiφλ, t = (tiλ)1≤i≤3, 1≤λ≤2, (2.63)

for which we see that

1

2
[ψ1(t), ψ1(t)] =

1

2

∑
i,j=1,2,3

∑
λ,µ=1,2

tiλtjµ[θi, θj]φλ ∧ φµ.

By (4.122), this translates to

1

2
[ψ1(t), ψ1(t)] =

1

2
(t11t22θ3 φ1 ∧ φ2 + t12t21θ3 φ2 ∧ φ1

− t21t12θ3 φ1 ∧ φ2 − t22t11θ3 φ2 ∧ φ1).

Since φ1 ∧ φ2 = −φ2 ∧ φ1, we get

1

2
[ψ1(t), ψ1(t)] = (t11t22 − t12t21) θ3 φ1 ∧ φ2. (2.64)

On the other hand, for the choice (4.125) we see that

∂̄ψ1(t) = dψ1(t) =
3∑
i=1

2∑
λ=1

tiλ θi dφλ = 0 (2.65)

since dφ1 = dφ2 = 0. Now setting
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ψ2(t) := −(t11t22 − t12t21) θ3φ3, (2.66)

and using (1.55) and (4.126), we find

∂̄ψ2(t) = dψ2(t) = (t11t22 − t12t21) θ3 (−dφ3)

= (t11t22 − t12t21) θ3 φ1 ∧ φ2 =
1

2
[ψ1(t), ψ1(t)]. (2.67)

In particular, [ψ1(t), ψ1(t)] is seen to be ∂̄-exact here (although it need not be so in the case of
an arbitrary manifold), but the solution ψ2(t) of equation (4.129) need not be of minimal L2-norm
(unlike the ψ2(t) defined in the case of a general manifold). In other words, in the special case of the
Iwasawa manifold, a solution ψ2(t) of (4.129) is easily observed and we are spared the application of
the general formulae. This readily yields the desired ψ(t) by setting

ψ(t) := ψ1(t) + ψ2(t) =
3∑
i=1

2∑
λ=1

tiλ θi φλ − (t11t22 − t12t21) θ3 φ3, (2.68)

for which we find

1

2
[ψ(t), ψ(t)] =

2∑
j,,k=1

1

2
[ψj(t), ψk(t)] =

1

2
[ψ1(t), ψ1(t)]. (2.69)

Indeed, [ψj(t), ψk(t)] = 0 for all (i, j) ̸= (1, 1) since these terms involve only brackets of the shape
[θ3, θi] = 0 and [θi, θ3] = 0 which vanish by (4.122).

On the other hand, combining (4.127) and (4.129), we get

∂̄ψ(t) = ∂̄ψ1(t) + ∂̄ψ2(t) = ∂̄ψ2(t) =
1

2
[ψ1(t), ψ1(t)]. (2.70)

Then (4.131) and (4.132) yield

∂̄ψ(t) =
1

2
[ψ(t), ψ(t)], (2.71)

showing that ψ(t) defined in (4.130) satisfies the integrability condition (2.15).
Thus, this T 1, 0X-valued (0, 1)-form ψ(t) defines a locally complete complex analytic family of

deformations Xt of X = I(3) depending on 6 effective parameters t = (tiλ)1≤i≤3, 1≤λ≤2.

Unobstructedness of the Kuranishi family of the 5-dimensional Iwasawa manifold I(5)

Let us now consider the nilmanifold X = I(5) of complex dimension 5 whose complex structure is
described by five holomorphic (1, 0)-forms φ1, . . . , φ5 satisfying the equations

dφ1 = dφ2 = 0, dφ3 = φ1 ∧ φ2, dφ4 = φ1 ∧ φ3, dφ5 = φ2 ∧ φ3. (2.72)

If θ1, . . . , θ5 form the dual basis of (1, 0)-vector fields, then [θi, θj] = 0 except in the following cases:

[θ1, θ2] = −θ3, [θ1, θ3] = −θ4, [θ2, θ3] = −θ5, (2.73)

hence also [θ2, θ1] = θ3, [θ3, θ1] = θ4, [θ3, θ2] = θ5.
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In particular, H0, 1(X, T 1. 0X) = ⟨[φ1⊗θi], [φ2⊗θi] | i = 1, . . . , 5⟩, so dimCH
0, 1(X, T 1. 0X) = 10.

This manifold is the 5-dimensional analogue of the Iwasawa manifold, hence the notation I(5).
We will now see that I(5) shares with I(3) the unobstructedness property of the Kuranishi family.
The following fact was observed in [Rol11].

Proposition 2.4.10. The Kuranishi family of the 5-dimensional nilmanifold described above is
unobstructed.

Proof. Consider any ψ1(t) :=
5∑
i=1

2∑
λ=1

tiλ θi φλ with arbitrary coefficients tiλ ∈ C such that |t| is close

to 0. Then

[ψ1(t), ψ1(t)] =
5∑

i, j=1

2∑
λ, µ=1

tiλ tjµ [θi, θj]φλ ∧ φµ.

Since [θi, θj] = 0 except when (i, j) ∈ {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}, we get

[ψ1(t), ψ1(t)] = [−(t11t22 − t21t12) θ3 + (t12t21 − t22t11) θ3 − (t11t32 − t31t12) θ4 + (t12t31 − t32t11) θ4
− (t21t32 − t31t22) θ5 + (t22t31 − t32t21) θ5]φ1 ∧ φ2

= 2 [D21(t) θ3 +D31(t) θ4 +D32(t) θ5] φ1 ∧ φ2,

where we set Dji := D12
ji and

Dλµ
ji :=

∣∣∣∣tiµ tjλ
tjµ tiλ

∣∣∣∣
.
Since φ1 ∧ φ2 = ∂̄φ3, equation (Eq. 2) reads

∂̄ψ2(t) = (D21(t) θ3 +D31(t) θ4 +D32(t) θ5) ∂̄φ3,

so an obvious solution is ψ2(t) = (D21(t) θ3 +D31(t) θ4 +D32(t) θ5) φ3.
We now go on to compute

[ψ1(t), ψ2(t)] =
5∑
i=1

2∑
λ=1

tiλD21(t) [θi, θ3]φλ ∧ φ3

+
5∑
i=1

2∑
λ=1

tiλD31(t) [θi, θ4]φλ ∧ φ3 +
5∑
i=1

2∑
λ=1

tiλD32(t) [θi, θ5]φλ ∧ φ3

All the terms on the second line above vanish since [θi, θ4] = [θi, θ5] = 0 for all i, and so do the
terms with i /∈ {1, 2} on the first line (see (6.83)), so using (6.83) we get

[ψ1(t), ψ2(t)] = −
2∑

λ=1

t1λD21(t) θ4 φλ ∧ φ3 −
2∑

λ=1

t2λD21(t) θ5 φλ ∧ φ3.

We infer that equation (Eq. 3) ∂̄ψ3(t) = [ψ1(t), ψ2(t)] has the obvious solution

ψ3(t) = −D21(t) [(t11 θ4 + t21 θ5)φ4 + (t12 θ4 + t22 θ5)φ5].
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To study equation (Eq. 4), namely

∂̄ψ4(t) = [ψ1(t), ψ3(t)] +
1

2
[ψ2(t), ψ2(t)],

we notice that [ψ1(t), ψ3(t)] = [ψ2(t), ψ2(t)] = 0 because [θi, θ4] = [θi, θ5] = 0 for all i and [θ3, θ3] =
0. Consequently, equation (Eq. 4) is the trivial equation ∂̄ψ4(t) = 0 admitting the trivial solution
ψ4(t) = 0.

We conclude that the Kuranishi family of X is unobstructed and the deformations of its complex

structure in any pregiven direction ψ1(t) :=
5∑
i=1

2∑
λ=1

tiλ θi φλ are defined by the finite sum

ψ(t) =
5∑
i=1

2∑
λ=1

tiλ θi φλ+(D21(t) θ3+D31(t) θ4+D32(t) θ5) φ3−D21(t) [(t11 θ4+t21 θ5)φ4+(t12 θ4+t22 θ5)φ5].

So, no convergence issues are involved. □

Further details on complex parallelisable manifolds

We take this opportunity to spell out some general facts that were either used above or will be used
in the sequel.

Let X be a compact complex manifold, dimCX = n. Since there are no non-zero ∂̄-exact (1, 0)-
forms on X (for obvious bidegree reasons), we have

H1, 0

∂̄
(X, C) = {u ∈ C∞(X, Λ1, 0T ⋆X) ; ∂̄u = 0},

i.e. H1, 0

∂̄
(X, C) consists of holomorphic 1-forms on X. Putting h1, 0

∂̄
(X) := dimCH

1, 0

∂̄
(X, C), we

have the trivial

Observation 2.4.11. If X is complex parallelisable, then h1, 0
∂̄

(X) = n.

Proof. By the complex parallelisable hypothesis on X, the rank-n analytic sheaf Ω1
X is trivial, hence

it is generated by n holomorphic 1-forms φ1, . . . , φn ∈ H1, 0

∂̄
(X, C) that are linearly independent at

every point of X. In particular, {φ1, . . . , φn} is a basis of H1, 0

∂̄
(X, C) ≃ H0(X, Ω1

X). □

Suppose now that X is compact complex parallelisable. Let θ1, . . . , θn ∈ H0(X, T 1, 0X) be n
holomorphic vector fields that are linearly independent at every point of X, chosen to be dual to the
holomorphic (1, 0)-forms φ1, . . . , φn ∈ H1, 0(X, C) considered in the above proof. For every smooth
function g : X → C, we have

∂g =
n∑
λ=1

(θλg)φλ, ∂̄g =
n∑
λ=1

(θ̄λg)φλ, (2.74)

i.e. the familiar formalism induced by local holomorphic coordinates finds a global analogue on a
compact complex parallelisable manifold in a formalism where θλ replaces ∂/∂zλ and φλ replaces dzλ.
Thus any (0, 1)-form φ on X has a unique decomposition

φ =
n∑
λ=1

fλφλ
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with f1, . . . , fn : X → C functions onX. Thus there is an implicit L2 inner product on C∞(X, Λ0, 1T ⋆X)

defined as follows (no Hermitian metric is needed on X): for any φ =
n∑
λ=1

fλφλ, ψ =
n∑
λ=1

gλφλ ∈

C∞(X, Λ0, 1T ⋆X), set

⟨⟨φ, ψ⟩⟩ :=
∫
X

( n∑
λ=1

fλ ḡλ

)
in

2

φ1 ∧ · · · ∧ φn ∧ φ1 ∧ · · · ∧ φn. (2.75)

It is clear that dV := in
2
φ1 ∧ · · · ∧φn ∧φ1 ∧ · · · ∧φn > 0 is a global volume form on X and that the

above L2 inner product is independent of the choices made. We can define the formal adjoint ∂̄⋆ of
∂̄ w.r.t. this L2 inner product in the usual way: for any smooth (0, 1)-form φ, define ∂̄⋆φ to be the
unique smooth function on X satisfying

⟨⟨∂̄⋆φ, g⟩⟩ = ⟨⟨φ, ∂̄g⟩⟩

for any smooth function g on X. A trivial calculation using Stokes’s theorem gives

∂̄⋆φ = −
n∑
λ=1

θλfλ (2.76)

for any smooth (0, 1)-form φ =
n∑
λ=1

fλφλ on X. Thus we see that

∂̄⋆φν = 0, ν = 1, . . . , n, (2.77)

because φν =
n∑
λ=1

δνλφλ and θλδνλ = 0 (since the δνλ are constants).

Now, let us introduce the following

Definition 2.4.12. Let X be a complex parallelisable compact complex nilmanifold with n =
dimCX = n.

We denote by r ∈ {0, 1, . . . , n} the maximal number of d-closed holomorphic 1-forms on X that
are linearly independent at every point of X.

We will see in a moment that r is an invariant of X. In our case, even if X is not a nilmanifold,
r is the number of d-closed forms among φ1, . . . , φn. After a possible reordering, we can suppose
that φ1, . . . , φr are d-closed and φr+1, . . . , φn are not d-closed. Then we have

∂φ1 = · · · = ∂φr = 0 or equivalently ∂̄φ1 = · · · = ∂̄φr = 0. (2.78)

Thus the ∂̄-closed (0, 1)-forms φ1, . . . , φr define Dolbeault (0, 1)-cohomology classes in H0, 1(X, C).
We can define the ∂̄-Laplacian on forms of X in the usual way:

∆′′ := ∂̄∂̄⋆ + ∂̄⋆∂̄.

The corresponding harmonic space of (0, 1)-forms H0, 1
∆′′ (X, C) := ker∆′′ = ker ∂̄∩ker ∂̄⋆ satisfies the

Hodge isomorphism H0, 1
∆′′ (X, C) ≃ H0, 1(X, C). Notice that (4.110) and (4.111) give

∆′′φν = 0, ν = 1, . . . , r, (2.79)

i.e. the forms φ1, . . . , φr are ∆′′-harmonic. On the other hand, φr+1, . . . , φn are not ∆′′-harmonic.
Thus, the number r satisfies:
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r ≤ h0, 1(X). (2.80)

Suppose now that the compact complex parallelisable X is a nilmanifold.

Fact 2.4.13. (see e.g. [Nak75] or [CFGU00, p.5405-5406]) If X is a compact complex paral-
lelisable nilmanifold, the holomorphic 1-forms φ1, . . . , φn that form a basis of H1, 0(X, C) can be
chosen such that

dφµ =
∑

1≤λ<ν≤n

cµλν φλ ∧ φν , 1 ≤ µ ≤ n, (2.81)

with constant coefficients cµλν ∈ C satisfying

cµλν = 0 whenever µ ≤ λ or µ ≤ ν.

Taking this standard fact (which in [Nak75] follows from the existence of a Chevalley decompo-
sition of the nilpotent Lie algebra g) for granted, we now spell out the details of the proof of the
following result of Kodaira’s along the lines of [Nak75, Theorem 3, p. 100].

Theorem 2.4.14. If X is a compact complex parallelisable nilmanifold, then h0, 1
∂̄

(X) = r.

Moreover, the ∆′′-harmonic (0, 1)-forms φ1, . . . , φr form a basis of the harmonic spaceH0, 1
∆′′ (X, C).

Equivalently, the Dolbeault (0, 1)-cohomology classes [φ1]∂̄, . . . , [φr]∂̄ form a basis of H0, 1

∂̄
(X, C).

Proof. The only thing that needs proving is that the linearly independent forms φ1, . . . , φr ∈
H0, 1

∆′′ (X, C) generate H0, 1
∆′′ (X, C). Pick an arbitrary C∞ (0, 1)-form φ on X and write

φ =
n∑
λ=1

fλ φλ

with C∞ functions f1, . . . , fn on X. Using formula (4.107) for ∂̄ and the obvious identities ∂̄ φλ =
dφλ, λ = 1, . . . , n, due to φλ being holomorphic, we get:

∂̄φ =
n∑

λ, ν=1

(θ̄νfλ)φν ∧ φλ +
n∑
µ=1

fµ dφµ

=
n∑

λ, ν=1

(θ̄νfλ)φν ∧ φλ +
n∑
µ=1

fµ
∑

1≤ν<λ≤n

cµνλ φν ∧ φλ

=
∑

1≤ν<λ≤n

(
θ̄νfλ − θ̄λfν +

n∑
µ=1

cµνλ fµ

)
φν ∧ φλ, (2.82)

where the second line above follows from the conjugate of (4.114).
Now φ is ∆′′-harmonic if and only if

(i) ∂̄φ = 0⇐⇒ θ̄νfλ − θ̄λfν +
n∑
µ=1

cµνλ fµ = 0 for 1 ≤ ν < λ ≤ n (cf. (4.115));

and
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(ii) ∂̄⋆φ = 0⇐⇒
n∑
λ=1

θλ fλ = 0 (cf. (4.109)).

Suppose that φ is ∆′′-harmonic. Then the above (i) reads:

θ̄λfν =
n∑
µ=1

cµνλ fµ + θ̄νfλ, 1 ≤ ν < λ ≤ n.

Summing over λ = 1, . . . , n and using formula (4.107) for ∂̄, we get

∂̄fν =
n∑
λ=1

(θ̄λfν)φλ =
n∑

λ, µ=1

cµνλ fµφλ +
n∑
λ=1

(θ̄νfλ)φλ, ν = 1, . . . , n,

with the understanding that cµνλ = 0 if ν ≥ λ. Now ∆′′fν = ∂̄⋆∂̄fν since fν is a function. Taking ∂̄⋆

on either side above and using formula (4.109) for ∂̄⋆, we get

∆′′fν = −
n∑

λ, µ=1

θλ (cµνλ fµ)−
n∑
λ=1

θλ (θ̄νfλ)

= −
n∑

λ, µ=1

cµνλ θλfµ, for all ν = 1, . . . , n, (2.83)

because θλ (cµνλfµ) = cµνλ θλfµ due to cµνλ being constant, while
n∑
λ=1

θλfλ = 0 due to φ being

∆′′-harmonic (cf. (ii) or (4.109)).
Taking now ν = n in (4.116), we get ∆′′fn = 0 since cµnλ = 0 for all µ, λ by Fact 4.5.36 and the

obvious inequality µ ≤ ν = n. Thus the compactness of X and the ellipticity of ∆′′ yield

fn is constant on X if ∆′′φ = 0. (2.84)

Taking now ν = n− 1 in (4.116) and using the fact that θλfn = 0 for all λ (since fn is constant
by (4.117)), we get

∆′′fn−1 = −
n∑
λ=1

( n−1∑
µ=1

cµn−1λ θλfµ

)
= 0 on X,

since cµn−1λ = 0 for all µ = 1, . . . , n− 1 and λ = 1, . . . , n by Fact 4.5.36 and the obvious inequality
µ ≤ ν = n− 1. Hence we get

fn−1 is constant on X if ∆′′φ = 0. (2.85)

We can now continue by decreasing induction on ν. Taking ν = n − 2 in (4.116) and using the
fact that θλfn = θλfn−1 = 0 for all λ (since fn is constant by (4.117) and fn−1 is constant by (4.118)),
we get

∆′′fn−2 = −
n∑
λ=1

( n−2∑
µ=1

cµn−2λ θλfµ

)
= 0 on X,

since cµn−2λ = 0 for all µ = 1, . . . , n− 2 and λ = 1, . . . , n by Fact 4.5.36 and the obvious inequality
µ ≤ ν = n− 2. Hence we get
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fn−2 is constant on X if ∆′′φ = 0. (2.86)

Running a decreasing induction on ν, we get

fν := Cν is constant on X for all ν = 1, . . . , n if ∆′′φ = 0. (2.87)

We conclude that whenever ∆′′φ = 0 we have

φ =
n∑
ν=1

Cν φν with Cν constant for all ν = 1, . . . , n.

On the other hand, since ∆′′φ = 0, we must have ∂̄φ = 0 which amounts to
n∑
ν=1

Cν ∂̄φν = 0.

However, we know that ∂̄φν = 0 for all ν ∈ {1, . . . , r} (cf. (4.111)), hence
n∑

ν=r+1

Cν ∂̄φν = 0. Now

the forms

∂̄φν = dφν =
∑
λ,µ

cνλµ φλ ∧ φµ, ν = 1, . . . , n,

are linearly independent because φ1, . . . , φn are linearly independent at every point of X. Hence
Cν = 0 for all ν = r + 1, . . . , n. We get

φ =
r∑

ν=1

Cν φν with Cν constant for all ν = 1, . . . , r.

Since φ has been chosen arbitrary in H0, 1
∆′′ (X, C), we have proved that the linearly independent

forms φ1, . . . , φr ∈ H
0, 1
∆′′ (X, C) generate H0, 1

∆′′ (X, C). The proof of Kodaira’s theorem 4.5.37 is
complete. □

When applying Observation 4.5.35 and Kodaira’s Theorem 4.5.37 to the Iwasawa manifold (for
which r = 2), we get the following standard fact.

Observation 2.4.15. For the Iwasawa manifold, we have:

h1, 0 = 3 and h0, 1 = 2.

Since, on the other hand, the first Betti number is b1 = 4 (cf. e.g. [Ang14]), we see that
b1 < h1, 0 + h0, 1. Thus, we obtain again the following fact that was already observed in Proposition
1.3.22: the Frölicher spectral sequence of the Iwasawa manifold does not degenerate at E1.

2.5 Smooth families of elliptic differential operators

In this section, we discuss the fundamental results of Kodaira and Spencer on the behaviour of the
eigenvalues, the eigenspaces, the kernels, the orthogonal projections thereon and the Green operators
of elliptic differential operators in smooth families thereof. In particular, the semi-continuity results
and their geometric applications pervade the theory of deformations of complex structures. Our
presentation will closely follow [KS60] and [Kod86, Chapter 7].
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2.5.1 Statements of the main results

We first fix the notation for this subsection. Let

π : B −→ X

be a C∞ complex vector bundle over a compact oriented differentiable manifold X. Let L(B) :=
C∞(X, B) be the C-vector space of global C∞ sections of B and let E : L(B) −→ L(B) be an
elliptic, self-adjoint linear partial differential operator of even order m on B. We will usually denote
by ψ ∈ L(B) an arbitrary smooth global section of B.

We also fix a Riemannian metric g on X and a Hermitian metric h on the fibres on B. Together,
g and h induce a pointwise inner product ⟨ , ⟩ = ⟨ , ⟩g, h and an L2 inner product ⟨⟨ , ⟩⟩ = ⟨⟨ , ⟩⟩g, h
on the space L(B) of global C∞ sections of B.

The discussion in §.1.1.1 yields the following information via the G̊arding estimate (or the a
priori estimate). The C-vector space F := kerE ⊂ L(B) is finite dimensional, since E is elliptic and
X is compact. Since E is also self-adjoint, there is an L2

g, h-orthogonal two-space decomposition:

L(B) = kerE ⊕ ImE.

We denote by
F : L(B) −→ kerE = F

the orthogonal projection onto F . There is an operator G = E−1 : L(B) −→ ImE ⊂ L(B), called
the Green operator of E, such that

EG(ψ) = GE(ψ) = ψ − Fψ, for all ψ ∈ L(B).

Thus, the restriction E|ImE
: E −→ E is bijective and G is the extension by 0 over kerE of the

inverse of this restriction.

We now recall the following standard fundamental result for the reader’s convenience. For a
self-adjoint elliptic operator on a compact manifold, it affirms the existence of a countable orthonor-
mal basis of eigenvectors and the fact that the spectrum is real, discrete and has +∞ as its only
accumulation point.

Theorem 2.5.1. There exists a countable set of sections {eh | h ∈ N⋆} ⊂ L(B), such that:

(i) Eeh = λh eh, with λh ∈ R, for every h ∈ N⋆;
(ii) {eh | h ∈ N⋆} is an orthonormal basis of L(B), namely:

(a) ⟨⟨eh, ek⟩⟩ = δhk for all h, k ∈ N⋆;
(b) for every ψ ∈ L(B), we have

ψ =
+∞∑
h=1

⟨⟨ψ, eh⟩⟩ eh,

where the series converges in the L2 norm || ||.

(iii) λ1 ≤ λ2 ≤ . . . λh ≤ λh+1 ≤ . . . and lim
h→+∞

λh = +∞.
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Proof. See, for example, [Gil84, Lemma 1.6.3]. □

Henceforth, we shall denote by λ1 ≤ λ2 ≤ . . . λh ≤ λh+1 ≤ . . . the ordered eigenvalues of a given
E as above. As a consequence of the above, we get the following formulae.

Corollary 2.5.2. (i) For every ψ ∈ L(B), we have

Eψ =
+∞∑
h=1

λh ⟨⟨ψ, eh⟩⟩ eh.

(ii) Suppose that · · · ≤ λq < λq+1 = · · · = λp = 0 < λp+1 ≤ . . . for some q ≤ p. Then,
{eq+1, . . . , ep} is an orthonormal basis of kerE and we have

Fψ =

p∑
h=q+1

⟨⟨ψ, eh⟩⟩ eh

Gψ =
∑

h/∈{q+1,...,p}

1

λh
⟨⟨ψ, eh⟩⟩ eh

We will now introduce the analogues of a family of manifolds for vector bundles, sections thereof
and differential operators.

Definition 2.5.3. Let X be a compact oriented differentiable manifold X and let ∆ ⊂ RN be a
small open subset, for some integer N ≥ 1.

(i) We say that (Bt)t∈∆ is a C∞ family of C∞ complex vector bundles Bt −→ X over X
(or that Bt varies C

∞ with t ∈ ∆) if there exists a C∞ complex vector bundle π : B −→ X × ∆
such that

Bt = π−1(X × {t}) = B|X×{t}, t ∈ ∆.

(ii) Let (Bt)t∈∆ be a C∞ family of C∞ complex vector bundles Bt −→ X as in (i).

(a) For every t ∈ ∆, let ψt ∈ L(Bt) = C∞(X, Bt) be a smooth global section of Bt.
We say that (ψt)t∈∆ is a C∞ family of sections (or that ψt varies C

∞ with t ∈ ∆) if there

exists a C∞ section ψ̃ ∈ C∞(X ×∆, B) of B such that

ψt = ψ̃|X×{t}, t ∈ ∆.

(b) For every t ∈ ∆, let Et : L(Bt) −→ L(Bt) be a linear operator on Bt.
We say that (Et)t∈∆ is a C∞ family of linear operators (or that Et varies C

∞ with t ∈ ∆) if
for every C∞ family (ψt)t∈∆ of sections ψt ∈ L(Bt), the family (Etψt)t∈∆ is a C∞ family of sections.

(c) For every t ∈ ∆, let ht be a Hermitian metric on Bt in the sense that ht = ⟨ , ⟩t =
(⟨ , ⟩t, x)x∈X is a family of positive definite inner products on the fibres (Bt)x of Bt that vary in a
C∞ way with the point x ∈ X.

We say that (ht)t∈∆ is a C∞ family of (fibre) metrics (or that ht varies C
∞ with t ∈ ∆) if

there exists a Hermitian metric h on the vector bundle B such that

ht = h|X×{t}, t ∈ ∆.
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Part (ii)(a) can be reworded in a more concrete, but equivalent way, in a local trivialisation.

Observation 2.5.4. In the context of (ii)(a) of the above Definition 2.5.3, a family (ψt)t∈∆ of
sections ψt ∈ L(Bt) = C∞(X, Bt) is a C∞ family of sections (or C∞, for short) if and only if
ψ1
t , . . . , ψ

r
t are C∞ functions of (x, t) ∈ X × ∆, where ψ1

t , . . . , ψ
r
t are the fibre coordinates of ψt

and r := rkBt for all t ∈ ∆.

Part (ii)(b) of Definition 2.5.3 can be made more concrete in local coordinates as follows.

Observation 2.5.5. In the context of Definition 2.5.3, for every ψt ∈ L(Bt) write:

(Etψt)(x) =
m∑
µ=0

Eµ(x, t, Dj)ψt(x), t ∈ ∆,

where every Eµ(x, t, Dj) is a homogeneous polynomial of degree µ in the partial derivatives Dj.
Then, (Et)t∈∆ is a C∞ family of linear operators if and only if the coefficients of the polyno-

mials Eµ(x, t, Dj) are all C∞ functions of (x, t) ∈ X ×∆.

In the context of (ii)(c) of Definition 2.5.3, once a Riemannian metric g has been fixed on X, a
C∞ family (ht)t∈∆ of (fibre) metrics on the vector bundles (Bt)t∈∆ induces a C∞ family (⟨⟨ , ⟩⟩t)t∈∆
of L2 inner products on the sections of the Bt’s and the associated C∞ family (|| , ||t)t∈∆ of L2

norms.

The Kodaira-Spencer fundamental theorems ([KS60]) on families of elliptic operators

Let:

• (Bt, ht)t∈∆ be a C∞ family of Hermitian C∞ complex vector bundles on a compact Riemannian
manifold (X, g);

• (Et, ht)t∈∆ be a C∞ family of self-adjoint elliptic linear differential operators Et : L(Bt) −→
L(Bt) of even order m;

• (λh(t))h∈N⋆ be, for every fixed t ∈ ∆, the eigenvalues of Et and let (eh(t))h∈N⋆ be the corre-
sponding eigensections eh(t) ∈ L(Bt) such that:

· Et eh(t) = λh(t) eh(t), h ∈ N⋆, t ∈ ∆;

· (eh(t))h∈N⋆ is an orthonormal basis of L(Bt), t ∈ ∆;

· λ1(t) ≤ · · · ≤ λh(t) ≤ . . . and lim
h→+∞

λh(t) = +∞.

Then, the following statements hold.

Theorem A For every h ∈ N⋆, the function ∆ ∋ t 7→ λh(t) is continuous.

Theorem B The function
∆ ∋ t 7→ dim kerEt

is upper-semicontinuous.
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Theorem C If dim kerEt is independent of t ∈ ∆, then (Ft)t∈∆ is a C∞ family of linear
operators, where Ft : L(Bt) −→ kerEt is the orthogonal projection w.r.t. the L2 inner product
⟨⟨ , ⟩⟩t, for every t ∈ ∆.

Theorem D If dim kerEt is independent of t ∈ ∆, then (Gt)t∈∆ is a C∞ family of linear
operators, where Gt := E−1

t is the Green operator of Et for every t ∈ ∆.

Before moving on to the proofs of these theorems, let us point out the

Observation 2.5.6. Having fixed an arbitrary h ∈ N⋆, the function ∆ ∋ t 7→ λh(t) need not be
differentiable.

Example. Notice that the eigenvalues of the operator Et :=

(
1 t
1 1

)
are λ1(t) = 1 +

√
t and

λ1(t) = 1−
√
t, which are not differentiable functions of t. □

2.5.2 Preliminary steps in the proofs of Theorems A, B, C, D

Step 1. First, we have the following analogue for vector bundles of Ehresmann’s theorem. We
assume that ∆ ⊂ RN is a small open ball about 0 and ∆ε ⊂ ∆ is the ball of radius ε about 0.

Theorem 2.5.7. Let (Bt)t∈∆ be a C∞ family of C∞ complex vector bundles Bt −→ X and let
π : B −→ X × ∆ be the corresponding C∞ complex vector bundle such that Bt = π−1(X × {t}) =
B|X×{t} for all t ∈ ∆.

Then, there exist ε > 0 and a C∞ diffeomorphism T : B0 × ∆ε −→ B of C-vector bundles
over X×∆ε that respects the fibres, namely the restriction of T to every fibre π−1

0 (x, t) of the vector
bundle π0 : B0 ×∆ε −→ X ×∆ε defines a C-vector space isomorphism

T|π−1
0 (x, t) : π

−1
0 (x, t)

≃−→ π−1(x, t)

onto the corresponding fibre of B for every (x, t) ∈ X ×∆ε.

Proof. This situation is easier to handle than the one in Ehresmann’s theorem since the vector
bundle π : B −→ X ×∆ is given. The details are left to the reader and are also spelt out in [Kod86,
Lemma 7.1]. □

Consequently, the vector bundles Bt are C
∞ isomorphic to B0 for all t ∈ ∆ sufficiently close to

0. Therefore, we may assume without loss of generality that all the Bt’s coincide with a fixed C∞

vector bundle B −→ X, after possibly shrinking ∆ about 0. In particular, henceforth, we place
ourselves in the situation

Et : L(B) −→ L(B), t ∈ ∆.

However, the Hermitian fibre metric ht on B depends on t ∈ ∆ and so do ⟨ , ⟩t, ⟨⟨ , ⟩⟩t and || ||t,
but they are mutually equivalent by uniform multiplicative constants.

Notation 2.5.8. For every k ∈ N⋆, let ||ψ||k stand for the k-th Sobolev norm of a given section
ψ ∈ L(B).

After possibly shrinking ∆ about 0, we may assume that ||ψ||k is independent of t ∈ ∆. Note that
the meaning of ||ψ||0 is either as the Sobolev norm W 0 or as the L2 norm induced by the Hermitian
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L2 inner product ⟨⟨ , ⟩⟩t at t = 0. However, there is no risk of confusion since it can easily be seen
that the L2 norms || ||0 and || ||t, induced respectively by the L2 inner products ⟨⟨ , ⟩⟩0 and ⟨⟨ , ⟩⟩t,
are uniformly equivalent in the following sense. There exists a constant K0 > 1 independent of t ∈ ∆
such that

1

K0

||ψ||0 ≤ ||ψ||t ≤ K0 ||ψ||0, ψ ∈ L(B). (2.88)

Step 2. The following technical result will be crucial.

Theorem 2.5.9. Let (Et)t∈∆ be a C∞ family of elliptic, not necessarily self-adjoint, differential
operators of even order m. Suppose that Et : L(B) −→ L(B) is bijective for all t ∈ ∆.

If there exists a constant c > 0 independent of t ∈ ∆ such that

||Etψ||0 ≥ c ||ψ||0 for all ψ ∈ L(B), (2.89)

the inverse operator E−1
t varies in a C∞ way with t ∈ ∆.

The key point about hypothesis (2.89) is the uniformity of the constant c. A constant depending
on t with this property always exists thanks to Et being elliptic and to X being compact, as follows
from the a priori estimate by arguments for the Sobolev norms similar to those used in the proof of
(2.29) with Hölder norms.

The main ingredients in the proof of Theorem 2.5.9.

We start by introducing the notion of Cr family (ψt)t∈∆ of C∞ sections ψt ∈ L(B). This will mean
that the sections ψt depend in a Cr way on t, but surprisingly, this property is not the complete
analogue of the notion of C∞ family (ψt)t∈∆ of C∞ sections ψt ∈ L(B).

Definition 2.5.10. For every t ∈ ∆, let ψt ∈ L(B) = C∞(X, B) be a smooth global section of B.
We say that (ψt)t∈∆ is a Cr family of C∞ sections (or that ψt varies Cr with t ∈ ∆) if

Dlψ1(x, t), . . . , Dlψr(x, t) are Cr functions of (x, t) for every l = (l1, . . . , ln), where

Dl :=
∂l1+···+ln

∂xl11 . . . ∂x
ln
n

and ψt = (ψ1(x, t), . . . , ψr(x, t)) are the local fibre coordinates of ψt in a local trivialisation of B.

In other words, it does not suffice to require each component ψj(x, t) of ψt to be Cr in (x, t),
but we need all their derivatives of arbitrary orders w.r.t. the variables x = (x1, . . . , xn) to be Cr in
(x, t). We saw in Observation 2.5.4 that, when r = +∞, this extra requirement is unnecessary.

However, in the case of families of operators, the Cr regularity is defined in analogous fashion to
the C∞ regularity.

Definition 2.5.11. For every t ∈ ∆, let Et : L(Bt) −→ L(Bt) be a linear operator on Bt.
We say that (Et)t∈∆ is a Cr family of linear operators (or that Et varies C

r with t ∈ ∆) if
for every Cr family (ψt)t∈∆ of C∞ sections ψt ∈ L(Bt), the family (Etψt)t∈∆ is a Cr family of C∞

sections.
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From the definitions, we immediately get the following equivalence:

E−1
t varies C∞ with t ∈ ∆ ⇐⇒ E−1

t varies Cr with t ∈ ∆ for every r ∈ N.

The other main ingredient in the proof of Theorem 2.5.9 is the following a priori estimate
w.r.t. Sobolev norms in families of elliptic operators. This is to be compared with its Hölder norm
analogue for just one elliptic operator that we saw in Theorem 2.3.7.

Theorem 2.5.12. Let (Et)t∈∆ be a C∞ family of elliptic linear differential operators Et : L(B) −→
L(B) of even order m.

Then, for every k ∈ N, there exists a constant ck > 0 independent of t ∈ ∆ such that the
following uniform a priori estimate holds:

||ψ||2k+m ≤ ck (||Etψ||2k + ||ψ||20) (2.90)

for every ψ ∈ L(B) and every t ∈ ∆.

Proof. This is a standard result whose proof can be found, e.g. in [Kod86, Lemma 7.3]. □

We will apply this result in the following way to the proof of Theorem 2.5.9. For every t ∈ ∆,
we have:

||ψ||0 ≤
1

c
||Etψ||0 ≤

1

c
||Etψ||k, ψ ∈ L(B),

where the first inequality is hypothesis (2.89) of Theorem 2.5.9, while the second inequality is trivial.
Together with the uniform a priori estimate (2.90), this yields:

||ψ||k+m ≤ c′k ||Etψ||k, ψ ∈ L(B), t ∈ ∆, (2.91)

where c′k > 0 is a constant independent of t ∈ ∆ and of ψ ∈ L(B).
On the other hand, for every point x in a chart domain, the Sobolev inequality yields:

|Dlψλ(x)| ≤ ck+m−l, l ||ψ||k+m, ψ = (ψ1, . . . , ψr) ∈ L(B), l such that k +m− l > n

2
,

where n := dimRX. Together with (2.91), this leads to

|Dlψλ(x)| ≤ c′k, l ||Etψ||k, ψ = (ψ1, . . . , ψr) ∈ L(B), k > l −m+
n

2
, t ∈ ∆, x ∈ X, (2.92)

for some constant c′k, l > 0 independent of t ∈ ∆.
Inequality (2.92) will be the main tool in the proof of Theorem 2.5.9.

Proof of Theorem 2.5.9 by induction.

We will prove the following implication by induction on r ∈ N:
(φt)t∈∆ is a Cr family of sections φt ∈ L(B) =⇒

(ψt := E−1
t φt)t∈∆ is a Cr family of sections ψt ∈ L(B). (2.93)

• The case r = 0. Suppose that (φt = Etψt)t∈∆ varies in a C0 way with t ∈ ∆. We have to prove
that, for every Dl and every λ ∈ {1, . . . , r}, Dlψλ(x, t) is continuous in (x, t).
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Since Dlψλ(x, t) is continuous in x, it suffices to prove that, for every s ∈ ∆, we have the
convergence:

Dlψλ(x, t) −−−→
t−→s

Dlψλ(x, s) uniformly w.r.t. x.

To see this, fix any s ∈ ∆ and any l ∈ N. Choose an integer k such that k > l −m+ n
2
and set

c′ := c′k, l, the constant of (2.92). Then, (2.92) applied to ψt − ψs ∈ L(B) yields the first inequality
below:

|Dlψλ(x, t)−Dlψλ(x, s)| ≤ c′ ||Et(ψt − ψs)||k ≤ c′ ||Etψt − Esψs||k + c′ ||Esψs − Etψs||k
= c′ ||φt − φs||k + c′ ||Etψs − Esψs||k. (2.94)

Now, ||φt−φs||k converges to 0 as t→ s, because this k-th Sobolev norm involves the L2 norms
of all the derivatives up to order k w.r.t. the variables x = (x1, . . . , xn) and because Dlφλ(x, t) is
continuous in (x, t) for every λ and every l, by the C0 assumption on the family (φt)t∈∆. Thus,
|Dlφλ(x, t)−Dlφλ(x, s)| converges uniformly w.r.t. x to 0 when t→ s, for every l.

Meanwhile, ||Etψs − Esψs||k converges to 0 as t → s, because the coefficients of Et are C∞

functions of (x, t).
Thus, we infer from (2.94) that Dlψλ(x, t) converges uniformly w.r.t. x to Dlψλ(x, s) when

t→ s. This completes the proof of the case r = 0.

• The case r = 1. Suppose that (φt = Etψt)t∈∆ varies in a C1 way with t ∈ ∆. We have to prove
that (ψt = E−1

t φt)t∈∆ varies in a C1 way with t ∈ ∆.
Let t = (t1, . . . , tN) ∈ RN . For every k, define the derivative of φt w.r.t. tk by

∂φt
∂tk

=

(
∂φ1(x, t)

∂tk
, . . . ,

∂φr(x, t)

∂tk

)
∈ L(B),

where φt(x) = (φ1(x, t), . . . , φr(x, t)) in a local trivialisation of B. Note that ∂φt/∂tk ∈ L(B)
because the transition matrices of B do not depend on t.

Suppose we have proved that ψt is differentiable in t ∈ ∆. Then, differentiating the identity
φt = Etψt w.r.t. tk, we get:

∂φt
∂tk

= Et
∂ψt
∂tk

+
∂Et
∂tk

ψt,

hence
∂ψt
∂tk

= E−1
t

(
∂φt
∂tk
− ∂Et
∂tk

ψt

)
:= ηk, t, k ∈ {1, . . . , N},

where ∂Et/∂tk is the differential operator obtained from Et by differentiating w.r.t. tk the coefficients
of Et viewed as polynomials of D1, . . . , Dn.

Now, φt varies in a C1 way with t ∈ ∆. Hence, ∂φt

∂tk
varies in a C0 way with t ∈ ∆ and ψt = E−1

t φt
varies in a C0 way with t ∈ ∆ by the case r = 0. Consequently, ηk, t varies in a C0 way with t ∈ ∆.

Therefore, to prove that ψt varies in a C1 way with t ∈ ∆, we have to prove that, for every Dl,
Dlψλ(x, t) is differentiable in t ∈ ∆ and

∂

∂tk
Dlψλ(x, t) = Dlηλk, t(x), λ ∈ {1, . . . , r}, k ∈ {1, . . . , N},

where ηk, t(x) = (η1k, t(x), . . . , η
r
k, t(x)) in a local trivialisation of B.

The proof of this fact is straightforward and is left to the reader, as is the case r ≥ 2. For the
details, the reader is referred to [Kod86, Theorem 7.5]. □
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Step 3. Henceforth, we shall assume that each operator Et is self-adjoint (and, of course,
also elliptic).

Lemma 2.5.13. Let (ah)h∈N be an arbitrary sequence of complex numbers. Fix any t ∈ ∆. The
following statements are equivalent.

(i) (ah)h∈N represents an element of L(B), in the sense that there exists ψ ∈ L(B) such that

ψ =
+∞∑
h=1

ah eh(t).

(ii) For every l ∈ N⋆,
+∞∑
h=1

|λh(t)|2l |ah|2 < +∞.

Proof. It is standard and straightforward and is left to the reader. □

Note that the expression in (ii) of Lemma 2.5.13 is the squared L2 norm (induced by ht) of E
l
tψ:

||El
tψ||2t =

+∞∑
h=1

|λh(t)|2l |ah|2, l ∈ N⋆,

where El
t := Et ◦ · · · ◦ Et (l times) and ψ =

+∞∑
h=1

ah eh(t) ∈ L(B). Thus, the implication (i) =⇒ (ii)

follows immediately from El
t : L(B) −→ L(B), for every l.

Since it will be needed later, we now state and prove a key ingredient for the proof of the above
Lemma 2.5.13 that we have not elaborated on.

Lemma 2.5.14. Fix t ∈ ∆. For every k ∈ N⋆, there exists a constant c′′k > 0 such that, for every

ψ =
+∞∑
h=1

ah eh(t) ∈ L(B), the following inequality holds:

||ψ||2k ≤ c′′k

+∞∑
h=1

(
1 +

k∑
l=1

|λh(t)|2l
)
|ah|2. (2.95)

Proof. We will apply the uniform a priori estimate (2.90) repeatedly. Since the estimate remains
true when the constant ck is replaced by a larger one, we may assume that ck ≥ 1. When k = 0, for
all ψ ∈ L(B) and all t ∈ ∆, we get:

||ψ||2m ≤ c0 (||Etψ||20 + ||ψ||20).

When k = m, (2.90) implies the first inequality below, while the second one follows from the above
inequality and from c0 ≥ 1:

||ψ||22m ≤ cm (||Etψ||2m + ||ψ||20) ≤ c0 cm (||E2
t ψ||20 + ||Etψ||20 + ||ψ||20).

Continuing inductively, for every q ∈ N⋆, we get:

||ψ||2qm ≤ c0 cm . . . c(q−1)m (

q∑
l=1

||El
tψ||20 + ||ψ||20).
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Now, fix an arbitrary k ∈ N⋆. Then, there exists a unique q ∈ N such that (q − 1)m < k ≤ qm.
Since m ≥ 2, q ≤ k. Putting ĉk := c0 cm . . . c(q−1)m > 0 (a constant independent of t ∈ ∆) for this q
and using (2.88), we get:

||ψ||2k ≤ ||ψ||2qm ≤ ĉk (
k∑
l=1

||El
tψ||20 + ||ψ||20) ≤ ĉkK

2
0 (

k∑
l=1

||El
tψ||2t + ||ψ||2t ).

Since ||El
tψ||2t =

+∞∑
h=1

|λh(t)|2l |ah|2 and ||ψ||2t =
+∞∑
h=1

|ah|2, (2.95) follows by taking c′′k := ĉkK
2
0 . □

The main technique for the proofs of Theorems A, B, C, D consists in considering, for every
ζ ∈ C, the elliptic differential operator

Et(ζ) := Et − ζ : L(B) −→ L(B), t ∈ ∆,

to which the following simple but critical observation and several of the above preliminary results
will be applied.

Observation 2.5.15. If ζ /∈ Spec (Et) := {λ1(t), λ2(t), . . . }, then Et(ζ) : L(B) −→ L(B) is bijec-
tive.

Proof. Since kerEt(ζ) is the eigenspace of Et corresponding to the “eigenvalue” ζ, we have kerEt(ζ) =
{0} if ζ is not an actual eigenvalue of Et. Therefore, Et(ζ) is injective if ζ /∈ Spec (Et).

To prove surjectivity, pick an arbitrary φ =
+∞∑
h=1

bheh(t) ∈ L(B), with bh ∈ C for every h. Note

that, for any ψ =
+∞∑
h=1

aheh(t) ∈ L(B), we have Et(ζ)ψ =
+∞∑
h=1

(λh(t) − ζ) aheh(t). We want a ψ =

+∞∑
h=1

aheh(t) ∈ L(B) (i.e. we want a sequence of complex numbers (ah)h∈N⋆) such that Et(ζ)ψ = φ,

which is equivalent to having

ah =
bh

λh(t)− ζ
, h ∈ N⋆.

So, we have no choice but to define the ah’s by this formula. Note that they are well defined since
λh(t)− ζ ̸= 0, for every h ∈ N⋆, thanks to the assumption ζ /∈ Spec (Et).

We will now use Lemma 2.5.13 to show that the sequence (ah)h∈N⋆ represents indeed an element

ψ =
+∞∑
h=1

aheh(t) ∈ L(B).

Since φ =
+∞∑
h=1

bheh(t) ∈ L(B), the implication “(i) =⇒ (ii)” of Lemma 2.5.13 ensures that

+∞∑
h=1

|λh(t)|2l |bh|2 < +∞ for every l ∈ N⋆. We infer that

+∞∑
h=1

|λh(t)|2l |ah|2 =
+∞∑
h=1

|λh(t)|2l |bh|2

|λh(t)− ζ|2
≤ C

+∞∑
h=1

|λh(t)|2l |bh|2 < +∞, l ∈ N⋆,

because
1

|λh(t)− ζ|2
≤ C, h ∈ N⋆,
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for some constant C > 0 independent of h since lim
h→+∞

λh(t) = +∞, Spec (Et) is discrete with no

finite accumulation point and ζ /∈ Spec (Et).
Therefore, the implication “(ii) =⇒ (i)” of Lemma 2.5.13 ensures that the sequence (ah)h∈N⋆

represents indeed an element ψ =
+∞∑
h=1

aheh(t) ∈ L(B). □

We now come to a key technical result saying that the hypothesis of Theorem 2.5.9 is uniformly
satisfied by the operators Et(ζ) : L(B) −→ L(B) when t ∈ ∆ and ζ /∈ Spec (Et) vary very little.

Lemma 2.5.16. Let t0 ∈ ∆ and let ζ0 ∈ C \ Spec (Et0). Then, there exist constants δ, c > 0 such
that, for all t ∈ ∆ with |t− t0| < δ and all ζ ∈ C with |ζ − ζ0| < δ, the following inequality holds:

||Et(ζ)ψ||0 ≥ c ||ψ||0 (2.96)

for all ψ ∈ L(B).

Proof. We will proceed by contradiction. Suppose that for every q ∈ N⋆, there exist tq ∈ ∆, ζq ∈ C
and ψq ∈ L(B) such that

|tq − t0| <
1

q
, |ζq − ζ0| <

1

q
, ||Etq(ζq)ψq||0 <

1

q
, and ||ψq||0 = 1.

We wish to understand the variation of the difference Etq(ζq)ψq −Et0(ζ0)ψq as q → +∞. Recall
that m is the order of each Et, hence also the order of each Et(ζ).

The uniform family version of the a priori estimate (2.90) for elliptic operators, applied with
k = 0, yields the first inequality below for a constant c0 > 0 independent of q:

||ψq||2m ≤ c0

(
||Etq(ζq)ψq||20 + ||ψq||20

)
< c0

(
1

q2
+ 1

)
≤ 2c0, q ∈ N⋆. (2.97)

We get

||Etq(ζq)ψq − Et0(ζ0)ψq||0 = ||(Etq − Et0)ψq − (ζq − ζ0)ψq||0 ≤ ||(Etq − Et0)ψq||0 +
1

q

and the last quantity tends to 0 as q → +∞. Indeed, the coefficients of Et are C
∞ functions of

(x, t), limq→+∞ tq = t0, the order of each operator Etq − Et0 is m and ||ψq||m stays bounded, as
q → +∞, thanks to (2.97).

Now, ||Etq(ζq)ψq||0 < 1
q
−−−−→
q→+∞

0. So, together with the above conclusion, this implies that

lim
q→+∞

||Et0(ζ0)ψq||0 = 0. (2.98)

On the other hand, for every ψ =
+∞∑
h=1

aheh(t0) ∈ L(B), we have:

||Et0(ζ0)ψ||t0 =
∣∣∣∣∣∣∣∣ +∞∑
h=1

(λh(t0)− ζ0) aheh(t0)
∣∣∣∣∣∣∣∣
t0

≥ µ0 ||ψ||t0 ,

where µ0 := min
h∈N⋆
|(λh(t0)− ζ0| > 0. This implies the second inequality below:

K0 ||Et0(ζ0)ψq||0 ≥ ||Et0(ζ0)ψq||t0 ≥ µ0 ||ψq||t0 ≥
µ0

K0

||ψq||0 =
µ0

K0

> 0, q ∈ N⋆,
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where the first and third inequalities follow from the fact that the L2 norms || ||0 and || ||t0 are
uniformly equivalent (by means of positive constants independent of q that we denoted by K0 and
1/K0 in (2.88)). Consequently,

||Et0(ζ0)ψq||0 ≥
µ0

K2
0

> 0, q ∈ N⋆,

which contradicts (2.98). □

Step 4. The next goal is to express the spectral projection operators by a Cauchy
integral formula. Let

W :=

{
(t, ζ) ∈ ∆× C | ζ /∈ SpecEt

}
⊂ ∆× C.

Lemma 2.5.16 implies that W is open in ∆×C (because (2.96) implies that kerEt(ζ) = {0}, which
amounts to ζ /∈ SpecEt).

Meanwhile, Et(ζ) : L(B) −→ L(B) is bijective for all (t, ζ) ∈ W . Let

Gt(ζ) := Et(ζ)
−1 : L(B) −→ L(B), (t, ζ) ∈ W,

be its inverse. From Theorem 2.5.9 and Lemma 2.5.16, we get the following crucial piece of infor-
mation which is the culmination of the technical work we have been doing in this subsection.

Conclusion 2.5.17. Gt(ζ) varies in a C∞ way with (t, ζ) ∈ W .

Now, fix an arbitrary t0 ∈ ∆ and pick a Jordan curve C (i.e. a closed simple curve C in the
complex plane) such that

C ∩ SpecEt0 = ∅. (2.99)

Such a curve exists because SpecEt0 ⊂ R is discrete. As is well known, C divides the plane C into
two disjoint regions: the interior of C, denoted by int(C), and the exterior of C, denoted by ext(C).

Property (2.99) means that {t0} × C ⊂ W . Since W is open in ∆ × C, there exists δ > 0 such
that [t0 − δ, t0 + δ]× C ⊂ W . For any t ∈ (t0 − δ, t0 + δ), we put:

Ft(C) :=
⊕

λ(t)∈int(C)

Hλ(t)(Et) ⊂ L(B),

where Hλ(t)(Et) is the λ(t)-eigenspace of Et. Note that, by ellipticity of Et and compactness of X,
the C-vector space Ft(C) is finite dimensional. Furthermore, for any t ∈ (t0 − δ, t0 + δ), we let

Ft(C) : L(B) −→ Ft(C)

be the L2
ht
-orthogonal projection onto Ft(C).

The following simple Cauchy integral formula for orthogonal spectral projectors will play
a key role in the sequel.

Lemma 2.5.18. The orthogonal projector Ft(C) : L(B) −→ Ft(C) satisfies the following formula:

Ft(C)ψ = − 1

2πi

∫
ζ∈C

Gt(ζ)ψ dζ, ψ ∈ L(B), t ∈ (t0 − δ, t0 + δ). (2.100)
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Proof. Let ψ =
+∞∑
h=1

aheh(t) ∈ L(B). Since Et(ζ)ψ =
+∞∑
h=1

(λh(t)− ζ) aheh(t) and Gt(ζ) = Et(ζ)
−1, we

get:

−Gt(ζ)ψ =
+∞∑
h=1

ah
ζ − λh(t)

eh(t), ζ ∈ C.

Therefore,

− 1

2πi

∫
ζ∈C

Gt(ζ)ψ dζ =
+∞∑
h=1

(
1

2πi

∫
ζ∈C

1

ζ − λh(t)
dζ

)
aheh(t) =

∑
λh(t)∈int (C)

aheh(t) = Ft(C)ψ,

where the following elementary fact on the winding number of a Jordan curve around a point in the
complex plane has been used:

1

2πi

∫
ζ∈C

1

ζ − λh(t)
dζ = 1 if λh(t) ∈ int (C) and

1

2πi

∫
ζ∈C

1

ζ − λh(t)
dζ = 0 if λh(t) ∈ ext (C).

□

Corollary 2.5.19. For any t0 ∈ ∆ and any Jordan curve C ⊂ C such that

C ∩ SpecEt0 = ∅,

the orthogonal projector Ft(C) varies in a C∞ way with t ∈ (t0−δ, t0+δ) if δ > 0 is small enough.

Proof. Let (ψt)t∈(t0−δ, t0+δ) be a C
∞ family of sections ψt ∈ L(B). Then, by formula (2.100), we have

Ft(C)ψt = −
1

2πi

∫
ζ∈C

Gt(ζ)ψt dζ, t ∈ (t0 − δ, t0 + δ). (2.101)

Since Gt(ζ) varies in a C∞ way with (t, ζ) ∈ W (by Conclusion 2.5.17) and ψt varies in a C∞ way
with t ∈ (t0 − δ, t0 + δ), we conclude that Ft(C)ψt varies in a C∞ way with t ∈ (t0 − δ, t0 + δ). □

The following consequence is the cornerstone of much of what follows.

Corollary 2.5.20. For any t0 ∈ ∆ and any Jordan curve C ⊂ C such that

C ∩ SpecEt0 = ∅,

the number dimCFt(C) of eigenvalues, counted with multiplicities, of Et lying in int (C) is indepen-
dent of t ∈ (t0 − δ, t0 + δ) if δ > 0 is small enough.

Proof. Let d := dimCFt0(C) and let {e1, . . . , ed} be a basis of Ft0(C). There are two inequalities to
prove.

• The inequality dimCFt(C) ≥ dimCFt0(C) for all t ∈ (t0− δ, t0 + δ) (if δ > 0 is small enough) is
immediate to prove. Indeed, since Ft(C) : L(B) −→ Ft(C) varies in a C∞ way with t ∈ (t0−δ, t0+δ)
(by Corollary 2.5.19), Ft(C) ej varies in a C∞ way with t ∈ (t0 − δ, t0 + δ), for every j ∈ {1, . . . , d}.
Meanwhile, the property of linear independence is stable under small continuous deformations.

Therefore, since the ej = Ft0(C) ej, with j ∈ {1, . . . , d}, are linearly independent and since the
Ft(C) ej vary continuously (even in a C∞ way) with t, the Ft(C) ej, with j ∈ {1, . . . , d}, remain
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linearly independent elements of Ft(C) for all t sufficiently close to t0. Thus, dimCFt(C) ≥ d for all
t close enough to t0.

• We will prove the reverse inequality dimCFt(C) ≤ dimCFt0(C) for all t ∈ (t0 − δ, t0 + δ) (if
δ > 0 is small enough) by contradiction. Suppose there exists a sequence (tq)q∈N⋆ of points tq ∈ ∆
such that

|tq − t0| <
1

q
and dimCFtq(C) ≥ d+ 1

for all q ∈ N⋆. Then, there exist at least d+1 eigenvalues (counted with multiplicities) λhν (tq) := λ
(q)
ν

of Etq that lie in the interior of C, namely

λ(q)ν ∈ SpecEtq ∩ int (C), ν ∈ {1, . . . , d+ 1}.

Let e
(q)
ν := ehν (tq) be the corresponding eigenvectors of Etq lying in the orthonormal basis of L(B)

consisting of such eigenvectors that was chosen earlier.
The Sobolev inequality together with (2.95) yields:∣∣∣∣Dle(q)λν (x)

∣∣∣∣2 ≤ (ck−l, l)
2 c′′k

(
1 +

k∑
α=1

|λ(q)ν |2α
)
, (2.102)

for all ν ∈ {1, . . . , d+ 1}, all points x in a given chart domain U , all integers k > m+ 1+ n
2
and all

multi-indices l such that |l| ≤ m+ 1, where e
(q)
ν := (e

(q) 1
ν , . . . , e

(q) r
ν ) are the fibre coordinates of e

(q)
ν .

Note that the right-hand side of (2.102) is bounded as q → +∞, since λ
(q)
ν ∈ int (C) for all

q. Therefore, the sequence (Dle
(q)λ
ν (x))q∈N⋆ is uniformly bounded when x ∈ U , for all l such that

|l| ≤ m+1. This implies that the sequence (Dle
(q)λ
ν )q∈N⋆ of functions is equicontinuous on U , for all

l such that |l| ≤ m.

Now, the sequence (Dle
(q)λ
ν )q∈N⋆ of functions being uniformly bounded and equicontinuous, it

admits a uniformly convergent subsequence, by Ascoli’s Theorem. Thus, we may assume that the
sequence (Dle

(q)λ
ν )q∈N⋆ of functions converges uniformly on U for all l such that |l| ≤ m.

Let
eλν := lim

q→+∞
e(q)λν , ν ∈ {1, . . . , d+ 1}, λ ∈ {1, . . . , r}.

Then, every eλν is of class Cm and we have:

Dle(q)λν −−−−→
q→+∞

Dleλν ν ∈ {1, . . . , d+ 1}, λ ∈ {1, . . . , r}, |l| ≤ m.

In other words, we get convergences:

e(q)λν −−−−→
q→+∞

eν = (e1ν , . . . , e
r
ν), ν ∈ {1, . . . , d+ 1},

to Cm sections eν = (e1ν , . . . , e
r
ν) of B. The sections {e1, . . . , ed+1} are the sections of B we set out

to produce. They satisfy the following properties:

· ⟨⟨e(q)ν , e
(q)
µ ⟩⟩tq = δνµ for all q, hence ⟨⟨eν , eµ⟩⟩t0 = δνµ for all ν, µ;

· Etqe
(q)
ν −−−−→

q→+∞
Et0eν because Etq has C∞ coefficients and is of order m, for every q;

· Etqe
(q)
ν = λ

(q)
ν e

(q)
ν for all q, hence lim

q→+∞
λ
(q)
ν exists. We denote this limit by λν .

We get: Et0eν = λν eν for all ν ∈ {1, . . . , d + 1}, hence dimCFt0(C) ≥ d + 1, which contradicts
the definition of d as d := dimCFt0(C). □
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2.5.3 The details of the proofs of Theorems A, B, C, D

The main ingredient will be Corollary 2.5.20, of which Theorems B and C are almost immediate
consequences.

Proof of Theorem A.

It is a standard fact that the spectra of the operators (Et)t∈∆ are uniformly bounded below. (In
the geometric applications that will be given in the next section, the operators Et will even be
non-negative, so their spectra will be uniformly bounded below by 0.) Thus, there exists a constant
β ∈ R independent of t ∈ ∆ such that

λ1(t) > β for all t ∈ ∆.

Fix a point t0 ∈ ∆. We will prove by induction on h ∈ N⋆ that

lim
t→t0

λh(t) = λh(t0).

Case h = 1. Let ε > 0 be so small that β < λ1(t0) − ε (and arbitrary with this property). Let
Cε ⊂ C be the circle of radius ε centred at λ1(t0) in the complex plane and let C ⊂ C be a Jordan
curve meeting the real axis at only two points: β and λ := λ1(t0)− ε, such that C ∩ Cε = {λ}.

Thus, Ft0(C) = {0} (i.e. there are no eigenvalues of Et0 in int (C)).
On the one hand, Corollary 2.5.20 applied to C yields a small δ > 0 such that

Ft(C) = {0} for all t ∈ (t0 − δ, t0 + δ).

This translates to λ1(t) ∈ ext (C) ∩ R. Since λ1(t) > β, we get λ1(t) > λ. Thus, we have:

λ1(t) > λ1(t0)− ε, t ∈ (t0 − δ, t0 + δ). (2.103)

On the other hand, Corollary 2.5.20 applied to Cε yields: dimFt(Cε) = dimFt0(Cε) ≥ 1 for all
t ∈ (t0 − δ, t0 + δ), where the last inequality follows from λ1(t0) ∈ int (Cε). (Shrink the previous
δ > 0 if necessary.) Therefore, for every t ∈ (t0−δ, t0+δ), there exists λh(t) ∈ int (Cε). This implies
that

λ1(t) ≤ λh(t) < λ1(t0) + ε, t ∈ (t0 − δ, t0 + δ). (2.104)

Putting (2.103) and (2.104) together, we get:

λ1(t0)− ε < λ1(t) < λ1(t0) + ε, t ∈ (t0 − δ, t0 + δ).

Since the small ε > 0 was arbitrary, this proves that lim
t→t0

λ1(t) = λ1(t0).

Case h ≥ 2. Suppose we have proved that

lim
t→t0

λk(t) = λk(t0) for all k ∈ {1, . . . , h− 1}. (2.105)

We will now prove that lim
t→t0

λh(t) = λh(t0).

(a) Suppose that λ1(t0) = · · · = λh(t0). Fix an arbitrary ε > 0 and let C,Cε ⊂ C be Jordan
curves as in the case h = 1. Then, Corollary 2.5.20 applied to Cε yields:

dimFt(Cε) = dimFt0(Cε) ≥ h, t ∈ (t0 − δ, t0 + δ)
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if δ > 0 is small enough. Hence, λ1(t), . . . , λh(t) ∈ int (Cε) for all t ∈ (t0 − δ, t0 + δ). (Note that
(2.105) has also been used here.) In particular,

|λh(t)− λh(t0)| < ε, t ∈ (t0 − δ, t0 + δ).

This proves that lim
t→t0

λh(t) = λh(t0).

(b) Let l be the (unique) integer such that 2 ≤ l ≤ h and

λ1(t0) ≤ λl−1(t0) < λl(t0) = λl+1(t0) = · · · = λh(t0).

Let ε > 0 be so small that λl−1(t0) < λh(t0)− ε (and arbitrary with this property). Let Ch, ε ⊂ C be
the circle of radius ε centred at λh(t0) in the complex plane and let Ch ⊂ C be a Jordan curve meeting
the real axis at only two points: λ := λ1(t0)− ε and µ := λh(t0)− ε, such that Ch ∩ Ch, ε = {µ}.

Thus, dimFt0(Ch, ε) ≥ h− l+1 (because Et0 has at least the eigenvalues λl(t0), λl+1(t0), . . . , λh(t0)
in int (Ch, ε)). Therefore, Corollary 2.5.20 applied to Ch, ε yields:

dimFt(Ch, ε) = dimFt0(Ch, ε) ≥ h− l + 1, t ∈ (t0 − δ, t0 + δ)

if δ > 0 is small enough. Together with (2.105), this implies that

λh(t) < λh(t0) + ε, t ∈ (t0 − δ, t0 + δ). (2.106)

On the other hand, dimFt0(Ch) = l− 1 (because the only eigenvalues of Et0 lying in int (Ch) are
λ1(t0), . . . , λl−1(t0).) Therefore, Corollary 2.5.20 applied to Ch yields:

dimFt(Ch) = dimFt0(Ch) = l − 1, t ∈ (t0 − δ, t0 + δ).

(Shrink the previous δ > 0 if necessary.) This amounts to exactly l − 1 eigenvalues of Et lying in
intCh. Meanwhile, from (2.105), we get:

lim
t→t0

λk(t) = λk(t0) ∈ int (Ch), k ∈ {1, . . . , l − 1}.

Hence, λ1(t), . . . , λl−1(t) ∈ int (Ch) for all t ∈ (t0− δ, t0 + δ). We conclude that the only eigenvalues
of Et lying in int (Ch) are λ1(t), . . . , λl−1(t) whenever t ∈ (t0 − δ, t0 + δ). This implies that

λk(t) ∈ ext (Ch), k ≥ l,

whenever t ∈ (t0 − δ, t0 + δ). Hence,

µ = λh(t0)− ε < λl(t) ≤ · · · ≤ λh(t) ≤ . . . , t ∈ (t0 − δ, t0 + δ). (2.107)

Putting together (2.106) and (2.107), we get:

λh(t0)− ε < λh(t) < λh(t0) + ε, t ∈ (t0 − δ, t0 + δ).

This proves that lim
t→t0

λh(t) = λh(t0). □
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Proof of Theorem B.

Recall that we set Ft := kerEt = H0(Et) for all t ∈ ∆. Fix t0 ∈ ∆. We have to prove that

∃ δ > 0 such that dimFt ≤ dimFt0 ∀t ∈ (t0 − δ, t0 + δ).

For any ε > 0, let Cε := C(0, ε) ⊂ C be the circle of radius ε centred at the origin in the complex
plane. Since SpecEt0 is discrete, Ft0 = Ft0(Cε) (i.e. 0 is the only eigenvalue of Et0 lying in int (Cε))
if ε is small enough.

Corollary 2.5.20 applied to Cε yields:

dimFt(Cε) = dimFt0(Cε), t ∈ (t0 − δ, t0 + δ),

if δ > 0 is small enough. Since dimFt0(Cε) = dimkerEt0 and since Ft = kerEt ⊂ Ft(Cε) for all t, we
infer that

dimFt ≤ dimFt(Cε) = dimFt0(Cε) = dimFt0 ∀t ∈ (t0 − δ, t0 + δ).

The proof is complete. □

Proof of Theorem C.

As in the proof of Theorem B, fix t0 ∈ ∆ and choose ε > 0 so small that Ft0 = Ft0(Cε), where
Cε := C(0, ε) ⊂ C. Since the following conditions are fulfilled:

(i) dimFt(Cε) = dimFt0(Cε), t ∈ (t0 − δ, t0 + δ), (by Corollary 2.5.20 applied to Cε);

(ii) Ft ⊂ Ft(Cε) for all t ∈ ∆ and Ft0 = Ft0(Cε) (by the choice of ε);

(iii) dimFt = dimFt0 for all t ∈ ∆ (by hypothesis),

we deduce that Ft = Ft(Cε) for all t ∈ (t0 − δ, t0 + δ). Hence, Ft = Ft(Cε) (equality of operators)
for all t ∈ (t0 − δ, t0 + δ).

Now, we know from Corollary 2.5.19 that the operators Ft(Cε) vary in a C∞ way with t ∈
(t0 − δ, t0 + δ). (Shrink δ > 0 if necessary.) Hence, the operators Ft vary in a C∞ way with
t ∈ (t0 − δ, t0 + δ).

Since t0 ∈ ∆ was chosen arbitrarily, we conclude that the operators Ft vary in a C∞ way with
t ∈ ∆. □

Proof of Theorem D.

We will use the following elementary general observation, an application of the Residue Theorem.

Lemma 2.5.21. Let C ⊂ C be a circle centred at the origin in the complex plane. Then, for every
point z ∈ C \ C, the following formula holds:

1

2πi

∫
ζ∈C

1

ζ(z − ζ)
dζ =

{
0, if z ∈ int (C)
1
z
, if z ∈ ext (C).

(2.108)

Proof. Let C̃ ⊂ C be a circle centred at the origin of radius strictly greater than the radius of C.

(a) Case where z ∈ int (C). Consider the holomorphic function

int (C̃) \ {0, z} ∋ ζ g7−→ 1

ζ(z − ζ)
∈ C.
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Both poles z and 0 lie in the interior of C, so the Residue Theorem yields:

1

2πi

∫
ζ∈C

1

ζ(z − ζ)
dζ = Res0 g +Resz g =

1

z
− 1

z
= 0.

(b) Case where z ∈ ext (C). We can choose the circle C̃ ⊂ C so close to C that z lies in its
exterior (but, of course, we still have int (C) ⊊ int (C̃).) Consider the holomorphic function

int (C̃) \ {0} ∋ ζ g7−→ 1

ζ(z − ζ)
∈ C.

The only pole 0 lies in the interior of C, so the Residue Theorem yields:

1

2πi

∫
ζ∈C

1

ζ(z − ζ)
dζ = Res0 g =

1

z
.

The proof of Lemma 2.5.21 is complete. □

The main idea in the proof of Theorem D is to derive an operator analogue of the case z ∈ ext (C)
of the elementary formula (2.108). The role of the variable z ∈ C will be played by any of the elliptic
self-adjoint operators Et, while the role of 1/z will be played by its Green operator Gt := E−1

t .
Similarly, the role of 1/(z − ζ) will be played by the operator Gt(ζ) = Et(ζ)

−1, a genuine inverse
since recall that Et(ζ) = Et − ζ : L(B) −→ L(B) is bijective for all (t, ζ) ∈ W . Since Et is
invertible only on the orthogonal complement of its kernel, the role of the condition z ∈ ext (C) will
be played by the condition SpecEt \ {0} ⊂ ext (C). Thus, we derive the following analogue for the
Green operator of the Cauchy formula-type expression obtained in Lemma 2.5.18 for the orthogonal
projector Ft(C).

Lemma 2.5.22. Under the assumptions of Theorem D, fix an arbitrary point t0 ∈ ∆. Then, the
following formula holds:

Gt ψ =
1

2πi

∫
ζ∈C

1

ζ
Gt(ζ)ψ dζ, ψ ∈ L(B), t ∈ (t0 − δ, t0 + δ), (2.109)

for any circle C centred at the origin in the complex plane such that

SpecEt0 \ {0} ⊂ ext (C)

and for every δ > 0 small enough.

Proof. We have seen earlier (cf. Corollary 2.5.2) that, for every ψ =
+∞∑
h=1

ah eh(t) ∈ L(B), we have

Gt ψ =
∑

λh(t)̸=0

ah
λh(t)

eh(t). (2.110)

Fix t0 ∈ ∆ and let C = C(0, ε) ⊂ C be a circle such that SpecEt0 \ {0} ⊂ ext (C). Choose δ > 0
so small that (t0− δ, t0 + δ)×C ⊂ W . (Recall that W is open.) For every t ∈ (t0− δ, t0 + δ), define
the linear operator Gt(C) : L(B) −→ L(B) by the right-hand side of (2.109), namely

Gt(C)ψ :=
1

2πi

∫
ζ∈C

1

ζ
Gt(ζ)ψ dζ. (2.111)
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We will prove that Gt = Gt(C) for all t ∈ (t0−δ, t0+δ) by working out the expression of Gt(C)ψ
in terms of the Fourier series expansion of ψ and observing in the end that it coincides with the
analogous expression (2.110) for Gtψ.

We have

Gt(ζ)ψ = Gt(ζ)

( +∞∑
h=1

ah eh(t)

)
=

+∞∑
h=1

ah
λh(t)− ζ

eh(t).

Hence,

Gt(C)ψ =
1

2πi

∫
ζ∈C

+∞∑
h=1

ah
ζ (λh(t)− ζ)

eh(t) dζ =
+∞∑
h=1

(
1

2πi

∫
ζ∈C

1

ζ (λh(t)− ζ)
dζ

)
ah eh(t).

Now, by the elementary Lemma 2.5.21 applied with z = λh(t), the paranthesis coefficient of
ah eh(t) in the last sum above equals 0 if λh(t) ∈ int (C), while it equals 1/λh(t) if λh(t) ∈ ext (C).
(Note that Lemma 2.5.21 is applicable in our case because SpecEt∩C = ∅ for every t ∈ (t0−δ, t0+δ),
by our choice of δ.) Therefore, we get:

Gt(C)ψ =
∑

λh(t)∈ext (C)

ah
λh(t)

eh(t).

It is now time to use the hypothesis: dim kerEt0 = dimkerEt for all t ∈ ∆, of Theorem D. As
in the proof of Theorem C, it implies that kerEt = Ft(C) for all t ∈ (t0 − δ, t0 + δ). (Shrink the
previous δ > 0 if necessary.) This means that, for every t ∈ (t0 − δ, t0 + δ), 0 is the only eigenvalue
of Et lying in the interior of C. In other words, for every such t and for every h ∈ N⋆, we have the
equivalence:

λh(t) ̸= 0 ⇐⇒ λh(t) ∈ ext (C).

(Recall that SpecEt ∩ C = ∅ for every t ∈ (t0 − δ, t0 + δ).)
Therefore, we finally get

Gt(C)ψ =
∑

λh(t)̸=0

ah
λh(t)

eh(t)

for every t ∈ (t0 − δ, t0 + δ) and every ψ =
+∞∑
h=1

ah eh(t) ∈ L(B), which is precisely formula (2.110)

that we had for Gtψ. □

End of proof of Theorem D. We saw in Conclusion 2.5.17 that Gt(ζ) varies in a C∞ way with
(t, ζ) ∈ W . This implies, thanks to (2.109), that Gt varies in a C∞ way with t ∈ (t0 − δ, t0 + δ).

Since t0 ∈ ∆ was chosen arbitrarily, we conclude that the operators Gt vary in a C∞ way with
t ∈ ∆. □

2.6 Deformation openness results

In this section, we apply the results of section 2.5 to derive information about the behaviour of three
properties of compact complex manifolds studied in chapter 1 (Kählerianity, the ∂∂̄-property and
the Frölicher degeneration at E1) under holomorphic deformations of the complex structure.

The main sources for this subsection are again [KS60] and [Kod86]. We will mention the extra
ones as they come along.
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The scene switches back to a holomorphic family π : X −→ B of compact complex manifolds
Xt := π−1(t), with dimCXt = n for all t ∈ B. It will be sufficient to restrict attention to the case
where the base B is an open disc about the origin in C, i.e. m = 1. We will denote by X the C∞

manifold that underlies all the fibres Xt. So, there are C∞ diffeomorphisms:

Xt ≃ X, t ∈ B.

(See Ehresmann’s Theorem 2.1.1.) We still denote by Jt the complex structure of Xt, for every
t ∈ B. When a Hermitian metric ωt has been fixed on Xt, for every t ∈ B, such that the family
(ωt)t∈B varies in a C∞ way with t ∈, the abstract self-adjoint elliptic operators Et considered in
section 2.5 will often be the ∂̄t-, the Bott-Chern or the Aeppli Laplacians ∆′′

t , ∆BC, t, ∆A, t of the
fibres (Xt, ωt).

Two points of view will be adopted. The following terminology was used in [Pop14].

Definition 2.6.1. (i) A given property (P ) of a compact complex manifold is said to be open under
holomorphic deformations if for every holomorphic family of compact complex manifolds (Xt)t∈B and
for every t0 ∈ B, the following implication holds:

Xt0 has property (P ) =⇒ Xt has property (P ) for all t ∈ B sufficiently close to t0.

(ii) A given property (P ) of a compact complex manifold is said to be closed under holomorphic
deformations if for every holomorphic family of compact complex manifolds (Xt)t∈B and for every
t0 ∈ B, the following implication holds:

Xt has property (P ) for all t ∈ B \ {t0} =⇒ Xt0 has property (P ).

It is obvious that if a property (P ) is both open and closed, then all the fibres of a family whose
base B is connected satisfy (P ) whenever one of them satisfies (P ).

In this section, we will deal with deformation openness properties. Deformation closedness prop-
erties will be investigated in chapter 7.

2.6.1 Deformation behaviour of the cohomology dimensions

Recall that, unlike the De Rham cohomology, which is the same for all the fibres:

Hk
DR(Xt, C) = Hk

DR(X, C), t ∈ B,

the Dolbeault, Bott-Chern and Aeppli cohomologies of every Xt depend on Jt. So, our first task will
be to probe these dependencies.

Theorem 2.6.2. Let π : X −→ B be a holomorphic family of compact complex manifolds Xt :=
π−1(t), with dimCXt = n for all t ∈ B. Fix an arbitrary bidegree (p, q).

(i) The functions: B ∋ t 7−→ hp, q(t) := dimCH
p, q

∂̄
(Xt, C),

B ∋ t 7−→ hp, qBC(t) := dimCH
p, q
BC(Xt, C),

B ∋ t 7−→ hp, qA (t) := dimCH
p, q
A (Xt, C),

are upper-semicontinuous.

(ii) If the Hodge number hp, q(t) is independent of t ∈ B, then the map

B ∋ t 7−→ Hp, q

∂̄
(Xt, C)
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defines a C∞ vector bundle on B.
The analogous statement holds for hp, qBC(t) and h

p, q
A (t).

Proof. Let (ωt)t∈B be a C∞ family of Hermitian metrics on the respective fibres (Xt)t∈B. By
Corollaries 1.1.7, 1.1.10 and 1.1.13, we have Hodge isomorphisms:

Hp, q

∂̄
(Xt, C) ≃ Hp, q

∆′′(Xt, C),

Hp, q
BC(Xt, C) ≃ Hp, q

∆BC
(Xt, C),

Hp, q
A (Xt, C) ≃ Hp, q

∆A
(Xt, C),

whereHp, q
∆′′(Xt, C) := ker(∆′′

t : C
∞
p, q(Xt, C)→ C∞

p, q(Xt, C)),Hp, q
∆BC

(Xt, C) = ker(∆BC, t : C
∞
p, q(Xt, C)→

C∞
p, q(Xt, C)) and Hp, q

∆A
(Xt, C) = ker(∆A, t : C

∞
p, q(Xt, C)→ C∞

p, q(Xt, C)).
Since (∆′′

t )t∈B, (∆BC, t)t∈B and (∆A, t)t∈B are C∞ families of elliptic, self-adjoint differential op-
erators of even orders, Theorem B of section 2.5 implies contention (i).

To prove (ii), consider the L2
ωt
-orthogonal projections:

πp, qt : C∞
p, q(Xt, C) −→ Hp, q

∆′′(Xt, C),

πp, qBC, t : C
∞
p, q(Xt, C) −→ Hp, q

∆BC
(Xt, C),

πp, qA, t : C
∞
p, q(Xt, C) −→ Hp, q

∆A
(Xt, C).

By Theorem C of section 2.5, each of these orthogonal projectors depends in a C∞ way on t ∈ B
under the corresponding dimension invariance hypothesis. □

The first main consequence of the upper-semicontinuity of the Hodge numbers under deformations
is the deformation openness of the Frölicher degeneration property at E1.

Theorem 2.6.3. Let π : X −→ B be a holomorphic family of compact complex manifolds Xt :=
π−1(t), with t ∈ B. Fix an arbitrary reference point 0 ∈ B.

If the Frölicher spectral sequence of X0 degenerates at E1, then, for all t ∈ B sufficiently
close to 0, we have:

(a) the Frölicher spectral sequence of Xt degenerates at E1;

(b) hp, q(t) = hp, q(0) for every bidegree (p, q).

Proof. By Corollary 1.2.6, the hypothesis E1(X0) = E∞(X0) is equivalent to the numerical identities:

bk =
∑
p+q=k

hp, q(0), k ∈ {0, 1, . . . , 2n}, (2.112)

where bk := dimCH
k
DR(X, C) is the k-th Betti number of the fibres. For every t ∈ B sufficiently

close to 0, we get:

bk
(i)

≤
∑
p+q=k

hp, q(t)
(ii)

≤
∑
p+q=k

hp, q(0)
(iii)
= bk, (2.113)
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where (i) is the dimension inequality (1.18) that is valid on any manifold, (ii) is the upper-semicontinuity
property of Theorem 2.6.2, while (iii) is (2.112).

Thus, inequalities (i) and (ii) must be equalities for every t ∈ B sufficiently close to 0. Now, (i)
being an equality for every degree k is equivalent to E1(Xt) = E∞(Xt), by Corollary 1.2.6, while (ii)
being an equality for every degree k is equivalent to hp, q(t) = hp, q(0) for every bidegree (p, q). □

The second main consequence of the upper-semicontinuity of the Hodge numbers under defor-
mations is the deformation openness of the ∂∂̄-property of compact complex manifolds. This
fact was first proved by Wu in [Wu06] and was reproved by Angella and Tomassini in [AT13] as
a consequence of their numerical characterisation of ∂∂̄-manifolds (see Theorem 1.3.10) and of the
upper-semicontinuity of the Bott-Chern and Aeppli cohomology dimensions. We present below the
proof in [AT13].

Theorem 2.6.4. Let π : X −→ B be a holomorphic family of compact complex manifolds Xt :=
π−1(t), with t ∈ B. Fix an arbitrary reference point 0 ∈ B.

If the fibre X0 is a ∂∂̄-manifold, then, for all t ∈ B sufficiently close to 0, we have:

(a) the fibre Xt is a ∂∂̄-manifold;

(b) hp, qBC(t) = hp, qBC(0) and h
p, q
A (t) = hp, qA (0) for every bidegree (p, q).

Proof. By Theorem 1.3.10, the ∂∂̄ assumption on X0 is equivalent to the identities:∑
p+q=k

(hp, qBC(0) + hp, qA (0)) = 2bk, k ∈ {0, 1, . . . , 2n}.

Meanwhile, the upper-semicontinuity properties of Theorem 2.6.2 yield:

hp, qBC(0) ≥ hp, qBC(t) and hp, qA (0) ≥ hp, qA (t)

for all bidegrees (p, q) and all t ∈ B sufficiently close to 0. Finally, by (1.40), we always have the
inequalities: ∑

p+q=k

(hp, qBC(t) + hp, qA (t)) ≥ 2bk, t ∈ B, k ∈ {0, 1, . . . , 2n}.

Putting together all these pieces of information, we get:

2bk
(i)

≤
∑
p+q=k

(hp, qBC(t) + hp, qA (t))
(ii)

≤
∑
p+q=k

(hp, qBC(0) + hp, qA (0)) = 2bk, k ∈ {0, 1, . . . , 2n},

for all t ∈ B sufficiently close to 0. Hence, both of the above inequalities must be equalities.
In particular, inequalities (i) being equalities for all k ∈ {0, 1, . . . , 2n} and all t ∈ B sufficiently

close to 0 amounts to Xt being a ∂∂̄-manifold for all t ∈ B sufficiently close to 0, thanks again to
Theorem 1.3.10. This proves (a).

Meanwhile, inequalities (ii) being equalities for all bidegrees (p, q) and all t ∈ B sufficiently close
to 0 proves (b). □
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2.6.2 Deformation openness of the Kähler property

We are now ready to present the Kodaira-Spencer theorem (see [KS60, Theorem 15]) saying that if
a fibre X0 in a holomorphic family of compact complex manifolds is Kähler, then all the nearby
fibres Xt are also Kähler. Moreover, any Kähler metric ω0 on X can be deformed to a C∞ family of
Kähler metrics ωt on the nearby fibres Xt. Historically, this important result kick-started the theory
of deformation openness and closedness of various properties of compact complex manifolds.

Let us start with a very simple but crucial observation.

Lemma 2.6.5. Let ω be a Hermitian metric on a compact complex manifold X. The equivalence
holds:

ω is Kähler ⇐⇒ ∆BCω = 0,

where ∆BC : C∞
1, 1(X, C) −→ C∞

1, 1(X, C) is the Bott-Chern Laplacian induced by ω.

Proof. We know from Corollary 1.1.10 that ker∆BC = ker ∂ ∩ ker ∂̄ ∩ ker(∂∂̄)⋆. So, one implication
of the above equivalence is obvious: if ∆BCω = 0, then ∂ω = 0, which means that ω is Kähler.

Suppose now that ω is Kähler, namely dω = 0. This implies ∂ω = 0 and ∂̄ω = 0. To prove that
(∂∂̄)⋆ω = 0, we will use the standard formulae (see (1.12)):

⋆⋆ = (−1)k Id on k-forms; ∂⋆ = − ⋆ ∂̄⋆, ∂̄⋆ = − ⋆ ∂⋆

and the standard formula

⋆ω =
ωn−1

(n− 1)!
, (2.114)

where ⋆ = ⋆ω is the Hodge star operator induced by the Hermitain metric ω (see (1.12)).
We get the equivalences:

(∂∂̄)⋆ω = 0 ⇐⇒ ⋆∂∂̄(⋆ω) = 0 ⇐⇒ ∂∂̄
ωn−1

(n− 1)!
= 0,

where the second one uses the fact that ⋆ is an isomorphism. Now, the last identity holds since
∂̄ωn−1 = (n− 1)ωn−2 ∧ ∂̄ω = 0. Indeed, ∂̄ω = 0 by the Kähler assumption on ω. □

We can now state and prove the main result of this subsection.

Theorem 2.6.6. Let π : X −→ B be a holomorphic family of compact complex manifolds Xt :=
π−1(t), with t ∈ B. Fix an arbitrary reference point 0 ∈ B.

(a) If the fibre X0 is a Kähler manifold, then the fibre Xt is a Kähler manifold for all t ∈ B
sufficiently close to 0.

(b) Moreover, given any Kähler metric ω0 on X0, there exists a small neighbourhood U of 0 in
B and a C∞ family (ωt)t∈U of Kähler metrics on the respective fibres Xt whose member for t = 0
is ω0.

Proof. Since (b) implies (a), we will prove (b). Let ω0 be a Kähler metric on X0. In particular, ω0

is a smooth J0-type (1, 1)-form on X0, hence a smooth 2-form on X (the C∞ manifold underlying
the fibres Xt for t ∈ B close to 0.) For every t ∈ B, let ωt be the Jt-type (1, 1)-component of the
2-form ω0. Clearly, the member for t = 0 of the family of forms (ωt)t∈B is ω0. Moreover, the ωt’s
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vary in a C∞ way with t because they are the Jt-type (1, 1)-components of a fixed 2-form and the
Jt’s depend in a (at least) C∞ way on t.

Now, ω0 is positive definite because it is a metric on X0. By continuity w.r.t. t, ωt remains
positive definite for all t ∈ U if the neighbourhood U of 0 in B is small enough. Hence, ωt is a
Hermitian metric on Xt for every t ∈ U , so (ωt)t∈U is a C∞ family of Hermitian metrics on the
respective fibres Xt, whose member for t = 0 is the original Kähler metric ω0.

We have to change the metrics ωt with t ∈ U \ {0} to make them Kähler. Lemma 2.6.5 tells us
that this amounts to making the ωt’s Bott-Chern harmonic w.r.t. themselves (i.e. for the Bott-Chern
Laplacians induced by the ωt’s).

Let us therefore consider the L2
ωt
-orthogonal projectors:

Ft : C
∞
1, 1(Xt, C) −→ H1, 1

∆BC
(Xt, C), t ∈ U,

onto the kernels of the Bott-Chern Laplacians ∆BC, t induced by the ωt’s in Jt-bidegree (1, 1).
The crucial piece of information that we need at this point is provided by conclusion (b) of

Theorem 2.6.4. Since X0 is a ∂∂̄-manifold (because it is even Kähler, by hypothesis), the dimension
h1, 1BC(t) of H1, 1

∆BC
(Xt, C) (= the dimension of H1, 1

BC(Xt, C), thanks to the Hodge isomorphism) is
independent of t ∈ U if the neighbourhood U of 0 in B is small enough. Therefore, by Theorem C
of section 2.5, Ft varies in a C∞ way with t ∈ U .

Now, put

ω̃t :=
1

2
(Ftωt + Ftωt), t ∈ U.

The Jt-type (1, 1)-forms ω̃t have the following properties:

(i) ω̃t is a real form (i.e. it equals its conjugate) for every t ∈ U ;
(ii) ω̃t varies in a C∞ way with t ∈ U , because Ft and ωt do;
(iii) ω̃0 = ω0 because F0ω0 = ω0 (recall that ω0 is Kähler on X0 and Lemma 2.6.5 applies) and

ω0 is real;

(iv) ω̃t is positive definite on Xt for all t ∈ U (shrink U about 0 if necessary), because ω̃0 is and
ω̃t varies (at least) continuously with t ∈ U ;

(v) ω̃t ∈ ker ∂t for all t ∈ U , because Ftωt ∈ H1, 1
∆BC

(Xt, C) = ker ∂t ∩ ker ∂̄t ∩ ker(∂t∂̄t)
⋆ ⊂

ker ∂t ∩ ker ∂̄t.

(Note that the Bott-Chern harmonic spaceH1, 1
∆BC

(Xt, C) in (v) is defined by the Hermitian metric
ωt, rather than ω̃t.)

Properties (i)-(v) amount to saying that (ω̃t)t∈U is a C∞ family of Kähler metrics on the respective
fibres Xt, whose member for t = 0 is the originally given Kähler metric ω0 on X0. □

2.6.3 Non-deformation openness of the class C property

In this short subsection, we point out, without going into the details of the proofs, a property of
compact complex manifolds that is not open under deformations of the complex structure. We take
this opportunity to introduce two other well-known classes of compact complex manifolds.

A (Fujiki) class C manifold is a compact complex manifold that is bimeromorphic to a compact
Kähler manifold.
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Definition 2.6.7. A compact complex manifold X is said to be a (Fujiki) class C manifold if
there exists a proper holomorphic bimeromorphic map (called a modification)

µ : X̃ → X

from a compact Kähler manifold X̃.

Fujiki introduced class C manifolds X as meromorphic images of compact Kähler manifolds in
[Fuj78], while Varouchas gave them the above nice characterisation in [Var86]. It is a result of
Demailly and Paun that class C manifolds are characterised by the existence of a Kähler current.

Theorem 2.6.8. (Demailly-Paun [DP04]) A compact complex manifold X is of class C if and only
if there exists a Kähler current T on X.

Meanwhile, a Moishezon manifold is a compact complex manifold that is bimeromorphic to a
projective manifold.

Definition 2.6.9. A compact complex manifold X is said to be a Moishezon manifold if there
exists a proper holomorphic bimeromorphic map

µ : X̃ → X

from a projective manifold X̃.

Thus Moishezon manifolds are to projective manifolds what class C manifolds are to compact
Kähler manifolds.

The special case of integral cohomology classes is relevant in characterisations of some of the
above classes of manifolds. Recall that the De Rham cohomology 2-class {ω} ∈ H2

DR(X, R) (resp.
{T} ∈ H2

DR(X, R)) defined by a C∞ d-closed real (1, 1)-form ω (resp. by a d-closed real (1, 1)-
current T ) is said to be integral if it is the first Chern class of a holomorphic line bundle L→ X or,
equivalently, if ω (resp. T ) is the curvature form (resp. curvature current) i

π
Θh(L) of a holomorphic

line bundle (L, h)→ X endowed with a C∞ (resp. singular) Hermitian fibre metric h.
There are neat characterisations of projective and Moishezon manifolds mirroring the general

case of arbitrary (i.e. possibly transcendental) classes that occur on Kähler and class C manifolds.

Theorem 2.6.10. (Kodaira’s Embedding Theorem) A compact complex manifold X is projective if
and only if there exists a Kähler metric ω on X whose De Rham cohomology class {ω} ∈ H2

DR(X, R)
is integral.

Thus projective manifolds are integral class special cases of compact Kähler manifolds. Likewise,
Moishezon manifolds are integral class special cases of class C manifolds as the following characteri-
sation shows.

Theorem 2.6.11. (Ji-Shiffman [JS93]) A compact complex manifold X is Moishezon if and only
if there exists a Kähler current T on X whose De Rham cohomology class {T} ∈ H2

DR(X, R) is
integral.

Finally, let us mention the following

Theorem 2.6.12. Every class C manifold is a ∂∂̄-manifold.
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Proof. Let X be class C manifold. There exists a composition µ : X̃ −→ X of finitely many blow-ups
with smooth centres such that X̃ is compact Kähler. Then, by Theorem 1.3.20, X̃ is a ∂∂̄-manifold,
so its contraction X is again a ∂∂̄-manifold by (4) of Theorem 3.3.33 proved in chapter 3. □

The relations among these properties of a compact complex manifold X are summed up in the
following diagram (skew arrows indicate implications):

(⋆)
X Kähler

=⇒ =⇒

X projective X class C =⇒ X is a
∂∂̄-manifold

=⇒ E1(X) = E∞(X).

=⇒
=⇒

XMoishezon

This introduction was a prelude to the following result of Campana’s (see [Cam91a] and also
Lebrun-Poon [LP92]).

Theorem 2.6.13. The class C property of compact complex manifolds is not open under holo-
morphic deformations.

Sketch of proof. In [Cam91a] and [LP92], families of twistor spaces (Xt)t∈B are pointed out in which
the central fibre X0 is Moishezon. In particular, X0 is also class C. The fibres are twistor spaces of a
special kind constructed by Lebrun in [Leb91]. As with all twistor spaces, dimCXt = 3 for all t ∈ B.

Now, it is a standard fact that the Moishezon property is characterised by the maximality of
the algebraic dimension a(X) of the manifold. In fact, a(X) ≤ dimCX for any compact complex
manifold X and X is Moishezon if and only if a(X) = dimCX.

Thus, in the examples alluded to above, a(X0) = 3. Meanwhile, the nearby fibres Xt can be
chosen to be decidedly non-Moishezon, namely a(Xt) = 0 for t ̸= 0 close to 0.

On the other hand, a result of Campana [Cam91b] says that the Moishezon and class C properties
are equivalent for twistor spaces. So, Xt is not a class C manifold for any t ̸= 0 close to 0. □

Note that the above proof also shows the following

Corollary 2.6.14. The Moishezon property of compact complex manifolds is not open under
holomorphic deformations.

This last fact is hardly surprising since a property tied up with integral classes is not naturally
expected to be deformation open.
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A by-product of the Campana-Lebrun-Poon proof sketched above and of the deformation open-
ness of the ∂∂̄-property seen in Theorem 2.6.4, we get what was probably the first example of a
∂∂̄-manifold that is not of class C, observed in [Pop14, Observation 4.10].

Observation 2.6.15. There exist twistor spaces that are ∂∂̄-manifolds, but are not of class C.

Proof. We place ourselves in the setting of the Campana-Lebrun-Poon Theorem 2.6.13 and its proof.
Being Moishezon, the central fibre X0 is a ∂∂̄-manifold. Therefore, by Theorem 2.6.4, the nearby
fibres Xt are still ∂∂̄-manifolds for all t ∈ B sufficiently close to 0. However, no Xt with t ̸= 0 close
to 0 is a class C manifold, by the proof of Theorem 2.6.13.

Thus, every Xt with t ̸= 0 close to 0 is an example of a ∂∂̄-manifold that is not of class C. □



Chapter 3

Higher-Page Hodge Theory of Compact
Complex Manifolds

The phrase “higher-page” refers to the pages Er with r ≥ 2 of the Frölicher spectral sequence (FSS)
of a compact complex manifold. The main thrust of this chapter is to extend some basic results in
Hodge Theory presented in chapters 1 and 2 to these higher pages of the FSS.

3.1 Pseudo-differential Laplacian and Hodge isomorphism

for the second page of the FSS

The material in this section is taken from [Pop16]. Let X be a compact complex manifold with
dimCX = n. Fix an arbitrary Hermitian metric ω on X. As usual, consider the formal adjoints
∂⋆, ∂̄⋆ of ∂, resp. ∂̄ w.r.t. the L2 inner product defined by ω and the usual Laplace-Beltrami operators
∆′,∆′′ : C∞

p, q(X, C) −→ C∞
p, q(X, C) defined as ∆′ = ∂∂⋆ + ∂⋆∂ and ∆′′ = ∂̄∂̄⋆ + ∂̄⋆∂̄. We saw in

Theorem 1.1.6 that they are elliptic, self-adjoint and non-negative differential operators of order 2
that induce 3-space L2

ω-orthogonal decompositions:

C∞
p, q(X, C) = ker∆′ ⊕ Im ∂ ⊕ Im ∂⋆ and C∞

p, q(X, C) = ker∆′′ ⊕ Im ∂̄ ⊕ Im ∂̄⋆ (3.1)

where the harmonic spaces ker∆′ := Hp, q
∆′ (X, C), ker∆′′ := Hp, q

∆′′(X, C) are finite dimensional, while

ker ∂ = ker∆′ ⊕ Im ∂ and ker ∂̄ = ker∆′′ ⊕ Im ∂̄. (3.2)

We denote by

p′ = p′p, q : C
∞
p, q(X, C) −→ ker∆′ and p′′ = p′′p, q : C

∞
p, q(X, C) −→ ker∆′′ (3.3)

the orthogonal projections defined by the orthogonal splittings (3.1) onto the ∆′-harmonic, resp. the
∆′′-harmonic spaces in bidegree (p, q). Similarly, let

p′⊥ : C∞
p, q(X, C) −→ Im∆′ = Im ∂ ⊕ Im ∂⋆ and p′′⊥ : C∞

p, q(X, C) −→ Im∆′′ = Im ∂̄ ⊕ Im ∂̄⋆ (3.4)

denote the orthogonal projections onto (ker∆′)⊥ = Im∆′, resp. onto (ker∆′′)⊥ = Im∆′′. Note that
the operators p′, p′′, p′⊥, p

′′
⊥ are not differential operators and depend on the metric ω. They clearly

satisfy the properties:

146
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p′ = (p′)⋆ = (p′)2, p′′ = (p′′)⋆ = (p′′)2, p′⊥ = (p′⊥)
⋆ = (p′⊥)

2, p′′⊥ = (p′′⊥)
⋆ = (p′′⊥)

2. (3.5)

We start by giving a metric interpretation of the spaces Ep, q
2 (X) on the second page of the FSS

of X.

Proposition 3.1.1. For every p, q = 0, 1, . . . , n, define the ω-dependent C-vector space

H̃p, q(X, C) := ker(p′′ ◦ ∂) ∩ ker ∂̄

/(
Im ∂̄ + Im (∂| ker ∂̄)

)
(3.6)

in which all the kernels and images involved are understood as subspaces of C∞
p, q(X, C). For every C∞

(p, q)-form α ∈ ker(p′′◦∂)∩ker ∂̄, let [̃α] ∈ H̃p, q(X, C) denote the class of α modulo Im ∂̄+Im (∂| ker ∂̄).
Then, for every p, q, the following linear map:

T = T p, q : H̃p, q(X, C) −→ Ep, q
2 (X), [̃α] 7−→ {α}E2 , (3.7)

is well defined and an isomorphism.

Proof. First note that the inclusion Im ∂̄ + Im (∂| ker ∂̄) ⊂ ker(p′′ ◦ ∂) ∩ ker ∂̄ does hold, so the space

H̃p, q(X, C) is meaningful. Indeed, Im ∂̄ ⊂ ker ∂̄ trivially and Im ∂̄ ⊂ ker(p′′ ◦ ∂) because for every
form u, p′′(∂∂̄u) = −p′′∂̄∂u = 0 since Im ∂̄ is orthogonal onto ker∆′′ (see (3.1)), so p′′∂̄ = 0. Thus
Im ∂̄ ⊂ ker(p′′ ◦∂)∩ker ∂̄. Moreover, Im (∂| ker ∂̄) ⊂ ker(p′′ ◦∂) because ∂2 = 0 and Im (∂| ker ∂̄) ⊂ ker ∂̄

because for any form v ∈ ker ∂̄, we have ∂̄(∂v) = −∂(∂̄v) = 0. Thus Im (∂| ker ∂̄) ⊂ ker(p′′ ◦ ∂)∩ ker ∂̄.
Then note that for any [̃α] ∈ H̃p, q(X, C), we do have {α}∂̄ ∈ ker d1, so the d1-class [[α]∂̄]d1 =

{α}E2 is a meaningful element of Ep, q
2 (X). Indeed, d1({α}∂̄) = {∂α}∂̄, ∂α ∈ ker ∂̄ = ker∆′′ ⊕ Im ∂̄

(because α ∈ ker ∂̄ and (3.2) holds) and p′′(∂α) = 0 (because α ∈ ker(p′′ ◦∂)). The last two relations
amount to ∂α ∈ Im ∂̄. This is equivalent to {∂α}∂̄ = 0, i.e. to d1({α}∂̄) = 0.

To complete the proof of the well-definedness of T , it remains to show that {α}E2 does not

depend on the choice of representative α of the class [̃α], i.e. that the zero element of H̃p, q(X, C)
is mapped by T to the zero element of Ep, q

2 (X). To prove this, let α ∈ ker(p′′ ◦ ∂) ∩ ker ∂̄ be a
(p, q)-form such that α = ∂̄u + ∂v with v ∈ ker ∂̄. We want to show that {α}E2 = 0 ∈ Ep, q

2 (X),
i.e. that {α}∂̄ = d1({β}∂̄) or equivalently that {α}∂̄ = {∂β}∂̄ for some β ∈ C∞

p−1, q(X, C) such that
∂̄β = 0. This is equivalent to showing that α = ∂β+ ∂̄γ for some β ∈ C∞

p−1, q(X, C) such that ∂̄β = 0
and some γ ∈ C∞

p, q−1(X, C). We can choose β := v and γ := u.

To prove that T is injective, let α ∈ ker(p′′ ◦ ∂) ∩ ker ∂̄ be a (p, q)-form s.t. T ([̃α]) = {α}E2 = 0.
Then {α}∂̄ = {∂β}∂̄ for some β ∈ C∞

p−1, q(X, C) such that ∂̄β = 0. Hence α = ∂β + ∂̄γ for some

γ ∈ C∞
p, q−1(X, C). Thus, α ∈ Im ∂̄ + Im (∂| ker ∂̄), so [̃α] = 0.

To prove that T is surjective, let {α}E2 ∈ E
p, q
2 (X). Then ∂̄α = 0 (i.e. α ∈ ker ∂̄) and d1({α}∂̄) =

{∂α}∂̄ = 0 (i.e. ∂α ∈ Im ∂̄, which is equivalent, since we already have ∂α ∈ ker ∂̄ = ker∆′′⊕ Im ∂̄, to

p′′(∂α) = 0, i.e. to α ∈ ker(p′′ ◦∂| ker ∂̄)). Thus, α ∈ ker(p′′ ◦∂)∩ker ∂̄. It is clear that {α}E2 = T ([̃α])
by definition of T . □

The isomorphism (3.7) naturally prompts the introduction of a Laplace-type operator which,
surprisingly, is not a differential operator. It will be the main tool of investigation in this section.
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Definition 3.1.2. ([Pop16, Definition 3.2.]) Let (X, ω) be a compact Hermitian manifold with

dimCX = n. For every p, q ∈ {0, 1, . . . , n}, we define the operator ∆̃ : C∞
p, q(X, C) −→ C∞

p, q(X, C) by

∆̃ := ∂p′′∂⋆ + ∂⋆p′′∂ + ∂̄∂̄⋆ + ∂̄⋆∂̄. (3.8)

We call ∆̃ the pseudo-differential Laplacian associated with the Hermitian metric ω for the
second page of the FSS.

In other words, we have:

∆̃ = ∆′
p′′ +∆′′, where ∆′

p′′ := ∂p′′∂⋆ + ∂⋆p′′∂ : C∞
p, q(X, C) −→ C∞

p, q(X, C). (3.9)

Thus, ∆̃ is the sum of a pseudo-differential regularising operator (∆′
p′′) and an elliptic differential

operator of order two (the classical ∂̄-Laplacian ∆′′).

Clearly, ∆̃ is a non-negative self-adjoint operator whose kernel is ker ∆̃ = ker∆′
p′′ ∩ ker∆′′ and

ker∆′
p′′ = ker(p′′ ◦ ∂) ∩ ker(p′′ ◦ ∂⋆) ⊃ ker ∂ ∩ ker ∂⋆ = ker∆′ (3.10)

because ⟨⟨∆′
p′′u, u⟩⟩ = ||p′′∂u||2 + ||p′′∂⋆u||2. Actually, if we put ∆′

p′′⊥
:= ∂p′′⊥∂

⋆ + ∂⋆p′′⊥∂, then

0 ≤ ∆′
p′′ ≤ ∆′ = ∆′

p′′ +∆′
p′′⊥

since

⟨⟨∆′u, u⟩⟩ = ||∂u||2 + ||∂⋆u||2 = ||p′′∂u||2 + ||p′′∂⋆u||2 + ||p′′⊥∂u||2 + ||p′′⊥∂⋆u||2

= ⟨⟨∆′
p′′u, u⟩⟩+ ⟨⟨∆′

p′′⊥
u, u⟩⟩ (3.11)

for any form u. Indeed, for example, ∂u = p′′∂u + p′′⊥∂u and p′′∂u ⊥ p′′⊥∂u, while ⟨⟨∂⋆p′′∂u, u⟩⟩ =
⟨⟨p′′∂u, ∂u⟩⟩ = ⟨⟨p′′∂u, p′′∂u⟩⟩ = ||p′′∂u||2.

We now pause briefly to notice some of the properties of the pseudo-differential Laplacian ∆̃.

Lemma 3.1.3. (i) If the metric ω is Kähler, then ∆′
p′′ = 0, so ∆̃ = ∆′′.

(ii) For every p, q = 0, 1, . . . , n, let (ψp, qj )1≤j≤hp, q be an arbitrary orthonormal basis of the ∆′′-
harmonic space Hp, q

∆′′(X,C) ⊂ C∞
p, q(X, C). Then ∆′

p′′ is given by the formula

∆′
p′′u =

hp−1, q∑
j=1

⟨⟨u, ∂ψp−1, q
j ⟩⟩ ∂ψp−1, q

j +
hp+1, q∑
j=1

⟨⟨u, ∂⋆ψp+1, q
j ⟩⟩ ∂⋆ψp+1, q

j , u ∈ C∞
p, q(X, C). (3.12)

(iii) For all p, q, ∆̃ : C∞
p, q(X, C) −→ C∞

p, q(X, C) behaves like an elliptic self-adjoint differential

operator in the sense that ker ∆̃ is finite-dimensional, Im ∆̃ is closed and finite codimensional in
C∞
p, q(X, C), there is an orthogonal (for the L2 inner product induced by ω) 2-space decomposition

C∞
p, q(X, C) = ker ∆̃

⊕
Im ∆̃ (3.13)

giving rise to an orthogonal 3-space decomposition

C∞
p, q(X, C) = ker ∆̃

⊕(
Im ∂̄ + Im (∂| ker ∂̄)

)⊕(
Im (∂⋆ ◦ p′′) + Im ∂̄⋆

)
(3.14)
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in which ker ∆̃⊕ (Im ∂̄ + Im (∂| ker ∂̄)) = ker(p′′ ◦ ∂) ∩ ker ∂̄, ker ∆̃⊕ (Im (∂⋆ ◦ p′′) + Im ∂̄⋆) = ker ∂̄⋆ ∩
ker(p′′ ◦ ∂⋆) and (Im ∂̄ + Im (∂| ker ∂̄))⊕ (Im (∂⋆ ◦ p′′) + Im ∂̄⋆) = Im ∆̃.

Moreover, ∆̃ has a compact resolvent which is a pseudo-differential operator G of order −2, the
Green’s operator of ∆̃, hence the spectrum of ∆̃ is discrete and consists of non-negative eigenvalues
that tend to +∞.

Proof. (i) If ω is Kähler, ∆′ = ∆′′, hence p′ = p′′. Since ker∆′ is orthogonal to both Im ∂ and Im ∂⋆,
p′ ◦ ∂ = 0 and p′ ◦ ∂⋆ = 0. Thus p′′ ◦ ∂ = 0 and p′′ ◦ ∂⋆ = 0, so ∆′

p′′ = 0.
(ii) Since ker∆′′ is finite-dimensional, p′′ : C∞

p, q(X, C) −→ ker∆′′ is a regularising operator of

finite rank defined by the C∞ kernel
hp, q∑
j=1

ψp, qj (x)⊗(ψp, qj )⋆(y). Consequently, for every u ∈ C∞
p, q(X, C),

(p′′u)(x) =

∫
X

hp, q∑
j=1

ψp, qj (x) ⟨u(y), ψp, qj (y)⟩ dVω(y), i.e. p′′u =
hp, q∑
j=1

⟨⟨u, ψp, qj ⟩⟩ψ
p, q
j . (3.15)

Taking successively u = ∂⋆v with v ∈ C∞
p+1, q(X, C) and u = ∂w with w ∈ C∞

p−1, q(X, C), we get

p′′∂⋆v =
hp, q∑
j=1

⟨⟨v, ∂ψp, qj ⟩⟩ψ
p, q
j and p′′∂w =

hp, q∑
j=1

⟨⟨w, ∂⋆ψp, qj ⟩⟩ψ
p, q
j .

Formula (3.12) follows at once from these identities.

(iii) Since ker ∆̃ ⊂ ker∆′′ and the latter kernel is finite-dimensional thanks to ∆′′ being elliptic,

ker ∆̃ is finite-dimensional.
The operator ∆̃ is elliptic pseudo-differential as the sum of an elliptic differential operator and a

regularising one, so the elliptic theory applies to it. But we can also argue starting from the obvious
inequality ∆̃ ≥ ∆′′ ≥ 0 (which follows from ⟨⟨∆′

p′′u, u⟩⟩ ≥ 0 for all u) and combining it with the
Gårding inequality for the elliptic differential operator ∆′′. We get constants δ1, δ2 > 0 such that

δ2 ||u||21 ≤ ⟨⟨∆′′u, u⟩⟩+ δ1 ||u||2 ≤ ⟨⟨∆̃u, u⟩⟩+ δ1 ||u||2, u ∈ C∞
p, q(X, C), (3.16)

where || ||1 denotes the Sobolev norm W 1 and || || denotes the L2 = W 0 norm. Since ⟨⟨∆̃u, u⟩⟩ ≤
1
2
||∆̃u||2 + 1

2
||u||2, we get

δ2 ||u||21 ≤
1

2
||∆̃u||2 + (δ1 +

1

2
) ||u||2, u ∈ C∞

p, q(X, C). (3.17)

This suffices to prove that Im ∆̃ is closed by the usual method using the Rellich Lemma (see e.g.

[Dem96, 3.10, p. 18-19]). From closedness of Im ∆̃ and self-adjointness of ∆̃ we get (3.13).
Now (3.14) is easily deduced from (3.13) as follows. It is clear that

Im ∆̃ ⊂ Im (∂ ◦ p′′) + Im (∂⋆ ◦ p′′) + Im ∂̄ + Im ∂̄⋆.

Since Im (∂ ◦ p′′) = Im (∂| ker∆′′) and ker∆′′ ⊂ ker ∂̄, we get Im (∂ ◦ p′′) ⊂ Im (∂| ker ∂̄), hence

Im ∆̃ ⊂
(
Im ∂̄ + Im (∂| ker ∂̄)

)
⊕
(
Im (∂⋆ ◦ p′′) + Im ∂̄⋆

)
. (3.18)

Indeed, we can easily check that the middle sum on the r.h.s. of (3.18) is orthogonal. We have
Im ∂̄ ⊥ Im ∂̄⋆ since ∂̄2 = 0 and Im ∂̄ ⊥ Im (∂⋆ ◦ p′′) since ⟨⟨∂̄u, ∂⋆p′′v⟩⟩ = ⟨⟨∂∂̄u, p′′v⟩⟩ = 0 for all
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u, v because ∂∂̄u ∈ Im ∂̄ ⊥ ker∆′′ ∋ p′′v. Similarly, Im (∂| ker ∂̄) ⊥ Im (∂⋆ ◦ p′′) since ∂2 = 0 and

Im (∂| ker ∂̄) ⊥ Im ∂̄⋆ since ⟨⟨∂u, ∂̄⋆v⟩⟩ = ⟨⟨∂̄∂u, v⟩⟩ = 0 for all u ∈ ker ∂̄ and all v.
Now, putting together (3.13) and (3.18), we get

C∞
p, q(X, C) ⊂ ker ∆̃

⊕(
Im ∂̄ + Im (∂| ker ∂̄)

)⊕(
Im (∂⋆ ◦ p′′) + Im ∂̄⋆

)
in which the inclusion must be an equality because all the three mutually orthogonal spaces on the
r.h.s. are contained in C∞

p, q(X, C). This proves (3.14) and also that the inclusion in (3.18) is an
equality.

The first of the three 2-space decompositions stated after (3.14) will be proved as (3.22) in the
proof of the next Theorem 3.1.4, while the second one can be proved analogously. The third one is
(3.18) that was seen above to be an equality.

The last two statements about the Green’s operator and the spectrum are proved in the usual
way using the elliptic theory. □

We now get the Hodge isomorphism for the second page of the Frölicher spectral se-
quence that we have been aiming at. It is the main result of this section.

Theorem 3.1.4. ([Pop16, Theorem 3.4]) Let (X, ω) be a compact Hermitian manifold with dimCX =

n. For every p, q ∈ {0, 1, . . . , n}, let H̃p, q

∆̃
(X, C) stand for the kernel of ∆̃ acting on (p, q)-forms.

Then the map

S = Sp, q : H̃p, q

∆̃
(X, C) −→ H̃p, q(X, C), α 7−→ [̃α], (3.19)

is an isomorphism. In particular, its composition with the isomorphism T : H̃p, q(X, C) −→
Ep, q

2 (X) defined in (3.7) yields the Hodge isomorphism:

T ◦ S = T p, q ◦ Sp, q : H̃p, q

∆̃
(X, C) −→ Ep, q

2 (X), α 7−→ {α}E2 . (3.20)

Thus, every class {α}E2 ∈ E
p, q
2 (X) contains a unique ∆̃-harmonic representative α.

Proof. Thanks to (3.10), we have

H̃p, q

∆̃
(X, C) = ker(p′′ ◦ ∂) ∩ ker(p′′ ◦ ∂⋆) ∩ ker ∂̄ ∩ ker ∂̄⋆ ⊂ ker(p′′ ◦ ∂) ∩ ker ∂̄. (3.21)

In particular, every form α ∈ H̃p, q

∆̃
(X, C) defines a class [̃α] ∈ H̃p, q(X, C), so the map Sp, q is well

defined. We now prove the following orthogonal decomposition

ker(p′′ ◦ ∂) ∩ ker ∂̄ = ker ∆̃
⊕(

Im ∂̄ + Im (∂| ker ∂̄)

)
, (3.22)

where ker ∆̃ = H̃p, q

∆̃
(X, C) is given by (3.21). It is clear that (3.22) implies that S is an isomorphism.

Thanks to the 3-space orthogonal decomposition (3.14), proving (3.22) is equivalent to proving

ker(p′′ ◦ ∂) ∩ ker ∂̄ =

(
Im (∂⋆ ◦ p′′) + Im ∂̄⋆

)⊥

. (3.23)

Now, the r.h.s. term in (3.23) is the intersection of (Im (∂⋆ ◦ p′′))⊥ = ker (∂⋆ ◦ p′′)⋆ = ker (p′′ ◦ ∂)
with (Im ∂̄⋆)⊥ = ker ∂̄. This proves (3.23), hence also (3.22). □.
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3.2 Serre-type duality for the higher pages of the FSS

The material in this section is taken from [PSU20b]. Let X be a compact complex manifold with
dimCX = n. As usual, for every r ∈ N, we let Ep, q

r (X) stand for the space of bidegree (p, q) featuring
on the rth page of the Frölicher spectral sequence of X.

In this section, we extend the classical Serre duality (that holds, as recalled in §.1.1.2, for the
Dolbeault cohomology, or equivalently for the first page of the FSS) to all the pages. For the sake
of perspicuity, we will first treat the case r = 2 and then the more technically involved case r ≥ 3.

3.2.1 Serre-type duality for the second page of the FSS

The main ingredient in the proof of the next statement is the Hodge theory for the E2-cohomology
described in §.3.1 and based on the construction of the pseudo-differential Laplacian ∆̃.

Theorem 3.2.1. For every p, q ∈ {0, . . . , n}, the canonical bilinear pairing

Ep, q
2 (X)× En−p, n−q

2 (X) −→ C,
(
{α}E2 , {β}E2

)
7→
∫
X

α ∧ β, (3.24)

is well defined (i.e. independent of the choices of representatives of the cohomology classes involved)
and non-degenerate.

Proof. • To prove well-definedness, let {α}E2 ∈ Ep, q
2 (X) and {β}E2 ∈ En−p, n−q

2 (X) be arbitrary
classes in which we choose arbitrary representatives α, β. Thus, ∂̄α = 0, ∂α ∈ Im ∂̄ (since {α}∂̄ ∈
ker d1) and β has the analogous properties. In particular, ∂β = ∂̄v for some (n−p+1, n−q−1)-form
v. Any other representative of the class {α}E2 is of the shape α+ ∂η + ∂̄ζ for some (p− 1, q)-form
η ∈ ker ∂̄ and some (p, q − 1)-form ζ. (Indeed, {∂η}∂̄ = d1({η}∂̄).) We have:

∫
X

(α + ∂η + ∂̄ζ) ∧ β =

∫
X

α ∧ β + (−1)p+q
∫
X

η ∧ ∂β + (−1)p+q
∫
X

ζ ∧ ∂̄β (by Stokes)

=

∫
X

α ∧ β + (−1)p+q
∫
X

η ∧ ∂̄v (since ∂β = ∂̄v and ∂̄β = 0)

=

∫
X

α ∧ β +

∫
X

∂̄η ∧ v =

∫
X

α ∧ β (by Stokes and ∂̄η = 0).

Similarly, the integral
∫
X
α ∧ β does not change if β is replaced by β + ∂a+ ∂̄b with a ∈ ker ∂̄.

• To prove non-degeneracy for the pairing (3.24), we fix an arbitrary Hermitian metric ω on X
and use the pseudo-differential Laplacian associated with ω introduced in Definition 3.1.2, as well
as the Hodge Isomorphism Theorem 3.1.4.

Claim 3.2.2. For every α ∈ C∞
p, q(X), the equivalence holds: ∆̃α = 0 ⇐⇒ ∆̃(⋆ᾱ) = 0, where

⋆ = ⋆ω is the Hodge-star operator associated with ω.

Suppose for a moment that this claim has been proved. To prove non-degeneracy for the pairing
(3.24), let {α}E2 ∈ E

p, q
2 (X) be an arbitrary non-zero class whose unique ∆̃-harmonic representative

is denoted by α. So, α ̸= 0 and ⋆ᾱ ∈ Hn−p, n−q
∆̃

(X) \ {0}. In particular, ⋆ᾱ represents an element in
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En−p, n−q
2 (X) and the pair ({α}E2 , {⋆ᾱ}E2) maps under (3.24) to

∫
X
α∧⋆ᾱ =

∫
X
|α|2ω dVω = ||α||2L2

ω
̸=

0. Since p, q and α were arbitrary, we conclude that the pairing (3.24) is non-degenerate.

• Proof of Claim 3.2.2. Since ∆̃ is a sum of non-negative operators of the shape A⋆A, we have

ker ∆̃ = ker(p′′∂) ∩ ker(p′′∂⋆) ∩ ker ∂̄ ∩ ker ∂̄⋆.

Thus, the third orthogonal 3-space decomposition under (3) of Theorem 1.1.6 yields the following
equivalence:

α ∈ ker ∆̃ ⇐⇒ (i) ∂α ∈ Im ∂̄ ⊕ Im ∂̄⋆, (ii) ∂⋆α ∈ Im ∂̄ ⊕ Im ∂̄⋆ and (iii) α ∈ ker ∂̄ ∩ ker ∂̄⋆.

Let α ∈ ker ∆̃. Since ⋆ : Λp, qT ⋆X −→ Λn−q, n−pT ⋆X is an isomorphism, the well-known identities
⋆⋆ = (−1)p+q on (p, q)-forms, ∂⋆ = − ⋆ ∂̄⋆ and ∂̄⋆ = − ⋆ ∂⋆ yield:

∂̄α = 0 ⇐⇒ ∂ᾱ = 0 ⇐⇒ ∂̄⋆(⋆ᾱ) = 0 and ∂̄⋆α = 0 ⇐⇒ ∂⋆ᾱ = 0 ⇐⇒ ∂̄(⋆ᾱ) = 0.

Thus, α satisfies condition (iii) if and only if ⋆ᾱ satisfies condition (iii).
Meanwhile, α satisfies condition (ii) if and only if there exist forms ξ, η such that ∂⋆α = ∂̄ξ+ ∂̄⋆η.

The last identity is equivalent to

∂̄⋆ᾱ = ∂ξ̄ + ∂⋆η̄ ⇐⇒ −(⋆⋆)∂(⋆ᾱ) = ± ⋆ ∂ ⋆ (⋆ξ̄)± ⋆(− ⋆ ∂̄ ⋆ η̄) ⇐⇒ ∂(⋆ᾱ) = ± ∂̄⋆(⋆ξ̄)± ∂̄(⋆η̄).
Thus, α satisfies condition (ii) if and only if ⋆ᾱ satisfies condition (i).

Similarly, α satisfies condition (i) if and only if there exist forms u, v such that ∂α = ∂̄u + ∂̄⋆v.
The last identity is equivalent to

∂̄ᾱ = ∂ū+ ∂⋆v̄ ⇐⇒ − ⋆ ∂̄ ⋆ (⋆ᾱ) = − ⋆ ∂(⋆ ⋆ ū)− ⋆∂⋆(⋆ ⋆ v̄) ⇐⇒ ∂⋆(⋆ᾱ) = ∂̄⋆(⋆ū) + ∂̄(⋆v̄).
Thus, α satisfies condition (i) if and only if ⋆ᾱ satisfies condition (ii).

This completes the proof of Claim 3.2.2 and implicitly that of Theorem 3.2.1. □.

3.2.2 Serre-type duality for the pages r ≥ 3 of the FSS

In this subsection, we prove the following analogue of Theorem 3.2.1 for every r ≥ 3.

Theorem 3.2.3. For every r ∈ N⋆ and all p, q ∈ {0, . . . , n}, the canonical bilinear pairing

Ep, q
r (X)× En−p, n−q

r (X) −→ C,
(
{α}Er , {β}Er

)
7→
∫
X

α ∧ β, (3.25)

is well defined (i.e. independent of the choices of representatives of the cohomology classes involved)
and non-degenerate.

This result is the sum of Corollaries 3.2.5 and 3.2.10 that will be proved separately.
In order to prove Theorem 3.2.3 (whose only case r ≥ 3 still needs a proof), we will construct

elliptic pseudo-differential operators ∆̃
(ω)
(r) associated with any given Hermitian metric ω on X whose

kernels are isomorphic to the spaces Ep, q
r (X) in every bidegree (p, q). This extends to arbitrary

r ∈ N⋆ the construction performed in Definition 3.1.2 for r = 2. We then apply this construction
to prove the existence of a (non-degenerate) duality between every space Ep, q

r (X) and the space
En−p, n−q
r (X).

Let X be an arbitrary compact complex n-dimensional manifold. Fix r ∈ N and a bidegree (p, q)
with p, q ∈ {0, . . . , n}. We will use the terminology of Definition 1.2.9, except that the C-vector
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space of C∞ Er-closed (resp. Er-exact) (p, q)-forms will now be denoted by Zp, qr (X) (resp. Cp, qr (X)),
instead of X p, q

r (resp. Yp, qr (X)). Of course, Cp, qr (X) ⊂ Zp, qr (X) and Ep, q
r (X) = Zp, qr (X)/Cp, qr (X).

The following statement is implicit in the results of §.1.2.2.

Proposition 3.2.4. Let X be an arbitrary compact complex n-dimensional manifold. Fix r ∈ N
and a bidegree (p, q) with p, q ∈ {0, . . . , n}.

(i) A smooth C-valued (p, q)-form α on X represents an Er-cohomology class, denoted by {α}Er ∈
Ep, q
r (X), on the rth page of the FSS if and only if α is Er-closed.

(ii) A smooth C-valued (p, q)-form α on X represents the zero Er-cohomology class, i.e. {α}Er =
0 ∈ Ep, q

r (X), on the rth page of the FSS if and only if α is Er-exact.

The immediate consequence that we notice is the well-definedness of the pairing that parallels
on any page of the Frölicher spectral sequence the classical Serre duality.

Corollary 3.2.5. Let X be a compact complex manifold with dimCX = n. For every r ∈ N⋆ and
every p, q ∈ {0, . . . , n}, the canonical bilinear pairing

Ep, q
r (X)× En−p, n−q

r (X) −→ C, ({α}Er , {β}Er) 7→
∫
X

α ∧ β,

is well defined (i.e. independent of the choices of representatives of the Er-classes involved).

Proof. By symmetry, it suffices to prove that
∫
X
α ∧ β = 0 whenever α ∈ C∞

p, q(X) is Er-exact
and β ∈ C∞

n−p, n−q(X) is Er-closed. By Definition 1.2.9 and Proposition 3.2.4, these conditions are
equivalent to

∂̄β = 0, ∂β = ∂̄u1, ∂u1 = ∂̄u2, . . . , ∂ur−2 = ∂̄ur−1,

for some forms uj and to: α = ∂ζ + ∂̄ξ for some form ζ satisfying:

∂̄ζ = ∂vr−3, ∂̄vr−3 = ∂vr−4, . . . , ∂̄v1 = ∂v0, ∂̄v0 = 0

for some forms vk. We get: ∫
X

α ∧ β =

∫
X

∂ζ ∧ β +

∫
X

∂̄ξ ∧ β.

Every integral on the r.h.s. above is seen to vanish by repeated integration by parts. Specifically,∫
X
∂̄ξ ∧ β = ±

∫
X

ξ ∧ ∂̄β = 0 since ∂̄β = 0, while for every l ∈ {1, . . . , r − 2} we have:

∫
X

∂ζ ∧ β = ±
∫
X

ζ ∧ ∂β = ±
∫
X

ζ ∧ ∂̄u1 = ±
∫
X

∂̄ζ ∧ u1 = ±
∫
X

∂vr−3 ∧ u1

= ±
∫
X

vr−3 ∧ ∂u1 = ±
∫
X

vr−3 ∧ ∂̄u2 = ±
∫
X

∂̄vr−3 ∧ u2 = ±
∫
X

∂vr−4 ∧ u2

...

= ±
∫
X

v0 ∧ ∂ur−2 = ±
∫
X

v0 ∧ ∂̄ur−1 = ±
∫
X

∂̄v0 ∧ ur−1 = 0,
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since ∂̄v0 = 0. □

We will now prove that the above pairing is also non-degenerate, thus defining a Serre-type
duality on every page of the Frölicher spectral sequence. Much of the following discussion is fairly
technical and appeared in [Pop19, §.2.2 and Appendix], so we will only recall the bare bones. Further
details are given in §.3.2.3.

Let us fix an arbitrary Hermitian metric ω on X. For every bidegree (p, q), ω-harmonic spaces
(also called Er-harmonic spaces):

· · · ⊂ Hp, q
r+1 ⊂ Hp, q

r ⊂ · · · ⊂ H
p, q
1 ⊂ C∞

p, q(X)

were inductively constructed in [Pop17, §.3.2, especially Definition 3.3. and Corollary 3.4. — see Def-
inition 3.5.11 below] such that every subspace Hp, q

r = Hp, q
r (X, ω) is isomorphic to the corresponding

space Ep, q
r (X) on the rth page of the Frölicher spectral sequence.

Moreover, these spaces fit into the inductive construction described in the next

Proposition 3.2.6. Let (X, ω) be a compact Hermitian manifold with dimCX = n.

(i) For every bidegree (p, q), the space C∞
p, q(X) splits successively into mutually L2

ω-orthogonal
subspaces as follows:

C∞
p, q(X) = Im d0 ⊕ Hp, q

1︸︷︷︸
=

⊕ Im d⋆0

︷ ︸︸ ︷
Im d

(ω)
1 ⊕ Hp, q

2︸︷︷︸

=

⊕ Im (d
(ω)
1 )⋆

...

=︷ ︸︸ ︷
Im d

(ω)
r−1 ⊕ Hp, q

r︸︷︷︸

=

⊕ Im (d
(ω)
r−1)

⋆

︷ ︸︸ ︷
Im d(ω)r ⊕ Hp, q

r+1︸ ︷︷ ︸

=

⊕ Im (d(ω)r )⋆

...

where, for r ∈ N⋆, the operators d
(ω)
r are defined as

d(ω)r = d(ω)p, qr = pr∂Dr−1pr : Hp, q
r −→ Hp+r, q−r+1

r (3.26)

using the L2
ω-orthogonal projections pr = pp, qr : C∞

p, q(X) −→ Hp, q
r onto the ω-harmonic spaces Hp, q

r

and where we inductively define

Dr−1 := ((∆̃(1))−1∂̄⋆∂) . . . ((∆̃(r−1))−1∂̄⋆∂) and D0 = Id.

(So, p1 = p′′.) See (iii) below for the inductive definition of the pseudo-differential Laplacians ∆̃(r).
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Thus, the triples (pr, d
(ω)
r , Hp, q

r+1) are defined by induction on r ∈ N⋆: once the triple (pr−1, d
(ω)
r−1, Hp, q

r )

has been constructed for all the bidegrees (p, q), it induces pr, which induces d
(ω)
r , which induces Hp, q

r+1

defined as the L2
ω-orthogonal complement of Im d

(ω)
r in ker d

(ω)
r .

The operators d
(ω)
r can also be considered to be defined on the whole spaces of smooth forms:

d(ω)r = pr∂Dr−1pr : C
∞
p, q(X) −→ C∞

p+r, q−r+1(X).

(ii) The above definition of d
(ω)
r follows from the requirement that the following diagram be

commutative:

Ep, q
r (X)

dr−−−→ Ep+r, q−r+1
r (X)

≃
y ≃

y
Hp, q
r

d
(ω)
r =pr∂Dr−1pr−−−−−−−−−→ Hp+r, q−r+1

r ,

where the maps dr : E
p, q
r (X) −→ Ep+r, q−r+1

r (X) are the differentials on the rth page of the Frölicher

spectral sequence. Thus, the maps d
(ω)
r are the metric realisations, at the level of the harmonic spaces,

of the canonical maps dr.

(iii) For every r ∈ N⋆, the adjoint of d
(ω)
r is

(d(ω)r )⋆ = prD
⋆
r−1∂

⋆pr : Hp+r, q−r+1
r −→ Hp, q

r .

It induces the “Laplacian”

∆̃
(ω)
(r+1) = d(ω)r (d(ω)r )⋆ + (d(ω)r )⋆ d(ω)r : Hp, q

r −→ Hp, q
r

given by the explicit formula

∆̃
(ω)
(r+1) = pr [(∂Dr−1pr) (∂Dr−1pr)

⋆ + (pr∂Dr−1)
⋆ (pr∂Dr−1) + ∆̃(r)] pr,

which is the restriction and co-restriction to Hp, q
r of the pseudo-differential Laplacian

∆̃(r+1) := (∂Dr−1pr) (∂Dr−1pr)
⋆ + (pr∂Dr−1)

⋆ (pr∂Dr−1) + ∆̃(r) : C∞
p, q(X) −→ C∞

p, q(X).

(iv) For every r ∈ N⋆ and every bidegree (p, q), the following orthogonal 3-space decomposition
holds:

Hp, q
r = Im d(ω)r ⊕H

p, q
r+1 ⊕ Im (d(ω)r )⋆,

where ker d
(ω)
r = Im d

(ω)
r ⊕Hp, q

r+1. In particular, this confirms that Hp, q
r+1 is the orthogonal complement

for the L2
ω-inner product of Im d

(ω)
r in ker d

(ω)
r . Moreover,

Hp, q
r+1 = ker ∆̃

(ω)
(r+1) = ker d(ω)r ∩ ker(d(ω)r )⋆ ≃ Ep, q

r+1(X),

for every r ∈ N and all p, q ∈ {0, . . . , n}.
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Proof. The verification of the details of these statements was done in [Pop19, §.2.2 and Appendix].
□

We saw in (i) of Proposition 3.2.4 how the Er-closedness property of a differential form is char-
acterised in explicit terms. We will now define by analogy the property of E⋆

r -closedness when a
Hermitian metric has been fixed.

Definition 3.2.7. Let (X, ω) be an n-dimensional compact complex Hermitian manifold. Fix r ≥ 1
and a bidegree (p, q). A form α ∈ C∞

p, q(X) is said to be E⋆
r -closed with respect to the metric ω if

and only if there exist forms vl ∈ C∞
p−l, q+l(X) with l ∈ {1, . . . , r − 1} satisfying the following tower

of r equations:

∂̄⋆α = 0

∂⋆α = ∂̄⋆v1

∂⋆v1 = ∂̄⋆v2
...

∂⋆vr−2 = ∂̄⋆vr−1.

We say in this case that ∂̄⋆α = 0 and ∂⋆α runs at least (r − 1) times.

We can now use the Er-closedness and E
⋆
r -closedness properties to characterise theHr-harmonicity

property defined above.

Proposition 3.2.8. Let (X, ω) be an n-dimensional compact complex Hermitian manifold. Fix
r ≥ 1 and a bidegree (p, q). For any form α ∈ C∞

p, q(X), the following equivalence holds:

α ∈ Hp, q
r ⇐⇒ α is Er-closed and E⋆

r -closed.

Proof. We know from Proposition 3.2.6 that α ∈ Hp, q
r+1 if and only if α ∈ Hp, q

r and α ∈ ker d
(ω)
r ∩

ker(d
(ω)
r )⋆. Now, for α ∈ Hp, q

r , the definition of d
(ω)
r shows that α ∈ ker d

(ω)
r if and only if α ∈

ker(pr∂Dr−1) and this last fact is equivalent to α being Er+1-closed. Similarly, for α ∈ Hp, q
r , the

definition of (d
(ω)
r )⋆ shows that α ∈ ker(d

(ω)
r )⋆ if and only if α ∈ ker(∂Dr−1pr)

⋆ and this last fact is
equivalent to α being E⋆

r+1-closed. □

Corollary 3.2.9. In the setting of Proposition 3.2.8, the following equivalence holds:

α is Er-closed ⇐⇒ ⋆ᾱ is E⋆
r -closed.

Proof. We know from (i) of Proposition 3.2.4 that α is Er-closed if and only if there exist forms
ul ∈ C∞

p+l, q−l(X) for l = 1, . . . , r − 1 such that

(− ⋆ ∂⋆) ⋆ ᾱ = 0, (− ⋆ ∂̄⋆) ⋆ ᾱ = (− ⋆ ∂⋆) ⋆ ū1, . . . , (− ⋆ ∂̄⋆) ⋆ ūr−2 = (− ⋆ ∂⋆) ⋆ ūr−1.

Indeed, we have transformed the Er-closedness condition of (i) in Proposition 3.2.4 by conjugating
and applying the Hodge star operator several times. Since − ⋆ ∂⋆ = ∂̄⋆ and − ⋆ ∂̄⋆ = ∂⋆, the above
conditions are equivalent to ⋆ᾱ being E⋆

r -closed (with the forms ⋆ūl playing the part of the forms
vl). □

An immediate consequence of this discussion is the analogue on every page Er of the Frölicher
spectral sequence of the classical Serre duality. The well-definedness was proved in Corollary 3.2.5.
The case r = 1 is the Serre duality, while the case r = 2 was proved in Theorem 3.2.1.
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Corollary 3.2.10. Let X be a compact complex manifold with dimCX = n. For every r ∈ N⋆ and
every p, q ∈ {0, . . . , n}, the canonical bilinear pairing

Ep, q
r (X)× En−p, n−q

r (X) −→ C, ({α}Er , {β}Er) 7→
∫
X

α ∧ β,

is non-degenerate.

Proof. Let {α}Er ∈ Ep, q
r (X) \ {0}. If we fix an arbitrary Hermitian metric ω on X, we know from

Proposition 3.2.6 that the associated harmonic spaceHp, q
r is isomorphic to Ep, q

r (X) and that the class
{α}Er contains a (unique) representative α lying in Hp, q

r . By Proposition 3.2.8, this is equivalent
to α being both Er-closed and E⋆

r -closed, while by Corollary 3.2.9, this is further equivalent to ⋆ᾱ
being both E⋆

r -closed and Er-closed, hence to ⋆ᾱ lying in Hn−p, n−q
r .

In particular, ⋆ᾱ represents a non-zero class {⋆ᾱ}Er ∈ En−p, n−q
r (X). We have

({α}Er , {⋆ᾱ}Er) 7→
∫
X

α ∧ ⋆ᾱ = ||α||2 > 0,

where || || stands for the L2
ω-norm. This shows that for every non-zero class {α}Er ∈ Ep, q

r (X), the
map ({α}Er , ·) : En−p, n−q

r (X) −→ C does not vanish identically, proving the non-degeneracy of the
pairing. □

3.2.3 Appendix to §.3.2.2
We now give some further technical details for the discussion in §.3.2.2 and refer to the appendix of
[Pop19] for yet another round of technical details of the inductive construction of a Hodge theory
for the pages Er, with r ≥ 3, of the Frölicher spectral sequence.

Let X be an n-dimensional compact complex manifold. We fix an arbitrary Hermitian metric ω
on X. As seen in §.3.2.2, for every bidegree (p, q), the ω-harmonic spaces (also called Er-harmonic
spaces)

· · · ⊂ Hp, q
r+1 ⊂ Hp, q

r ⊂ · · · ⊂ H
p, q
1 ⊂ C∞

p, q(X)

are such that every Hp, q
r is isomorphic to the corresponding space Ep, q

r (X) featuring on the rth page
of the Frölicher spectral sequence of X.

Moreover, the pseudo-differential “Laplacians” ∆̃(r+1) : Hp, q
r −→ Hp, q

r are such that

ker ∆̃(r) = Hp, q
r , r ∈ N⋆,

where ∆̃(1) = ∆′′ = ∂̄∂̄⋆ + ∂̄⋆∂̄ is the usual ∂̄-Laplacian.
The conclusion of the construction in the appendix to [Pop19] was the following statement. It

gives a 3-space orthogonal decomposition of each space C∞
p, q(X), for every fixed r ∈ N⋆, that parallels

the standard decomposition C∞
p, q(X) = ker∆′′ ⊕ Im ∂̄ ⊕ Im ∂̄⋆ for r = 1.

Proposition 3.2.11. (Corollary 4.6 in [Pop19]) Let (X, ω) be a compact complex n-dimensional

Hermitian manifold. For every r ∈ N⋆, put Dr−1 := ((∆̃(1))−1∂̄⋆∂) . . . ((∆̃(r−1))−1∂̄⋆∂) and D0 = Id.

(i) For all r ∈ N⋆ and all (p, q), the kernel of ∆̃(r+1) : C∞
p, q(X) −→ C∞

p, q(X) is given by

ker ∆̃(r+1) =

(
ker(pr∂Dr−1) ∩ ker(∂Dr−1pr)

⋆

)
∩
(
ker(pr−1∂Dr−2) ∩ ker(∂Dr−2pr−1)

⋆

)
...

∩
(
ker(p1∂) ∩ ker(∂p1)

⋆

)
∩
(
ker ∂̄ ∩ ker ∂̄⋆

)
.
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(ii) For all r ∈ N⋆ and all (p, q), the following orthogonal 3-space decomposition (in which the
sums inside the big parentheses need not be orthogonal or even direct) holds:

C∞
p, q(X) = ker ∆̃(r+1) ⊕

(
Im ∂̄ + Im (∂p1) + Im (∂D1p2) + · · ·+ Im (∂Dr−1pr)

)
⊕

(
Im ∂̄⋆ + Im (p1∂)

⋆ + Im (p2∂D1)
⋆ + · · ·+ Im (pr∂Dr−1)

⋆

)
, (3.27)

where ker ∆̃(r+1)⊕(Im ∂̄+Im (∂p1)+Im (∂D1p2)+· · ·+Im (∂Dr−1pr)) = ker ∂̄∩ker(p1∂)∩ker(p2∂D1)∩
· · · ∩ ker(pr∂Dr−1) and ker ∆̃(r+1) ⊕ (Im ∂̄⋆ + Im (p1∂)

⋆ + Im (p2∂D1)
⋆ + · · · + Im (pr∂Dr−1)

⋆) =
ker ∂̄⋆ ∩ ker(∂p1)

⋆ ∩ ker(∂D1p2)
⋆ ∩ · · · ∩ ker(∂Dr−1pr)

⋆.
For each r ∈ N⋆, pr = pp, qr stands for the L2

ω-orthogonal projection onto Hp, q
r .

We will now cast the 3-space decomposition (3.27) in the terms used in the present chapter.
Based on the terminology introduced in Definition 1.2.9, we defined the following vector spaces for
every r ∈ N⋆ and every bidegree (p, q):

Ep, q∂, r := {α ∈ C∞
p, q(X) | ∂α reaches 0 in at most r steps},

Ep, q
∂̄, r

:= {β ∈ C∞
p, q(X) | ∂̄β reaches 0 in at most r steps}.

When a Hermitian metric ω has been fixed on X and the adjoint operators ∂⋆ and ∂̄⋆ with respect
to ω have been considered, we define the analogous subspaces Ep, q∂⋆, r and E

p, q

∂̄⋆, r
of C∞

p, q(X) by replacing

∂ with ∂⋆ and ∂̄ with ∂̄⋆ in the definitions of Ep, q∂, r and Ep, q
∂̄, r

.

Part (ii) of Proposition 3.2.11 can be reworded as follows.

Proposition 3.2.12. Let (X, ω) be a compact complex n-dimensional Hermitian manifold. For
every r ∈ N⋆ and for all p, q ∈ {0, . . . , n}, the following orthogonal 3-space decomposition (in which
the sums inside the big parantheses need not be orthogonal or even direct) holds:

C∞
p, q(X) = Hp, q

r ⊕
(
Im ∂̄ + ∂(Ep−1, q

∂̄, r−1
)

)
⊕
(
∂⋆(Ep+1, q

∂̄⋆, r−1
) + Im ∂̄⋆

)
, (3.28)

where Hp, q
r is the Er-harmonic space induced by ω (see §.3.2.2 and earlier in this appendix) and the

next two big parantheses are the spaces of Er-exact (p, q)-forms, respectively E⋆
r -exact (p, q)-forms:

Im ∂̄ + ∂(Ep−1, q

∂̄, r−1
) = Cp, qr and ∂⋆(Ep+1, q

∂̄⋆, r−1
) + Im ∂̄⋆ = ⋆Cp, qr .

Moreover, we have

Zp, qr = Hp, q
r ⊕

(
Im ∂̄ + ∂(Ep−1, q

∂̄, r−1
)

)
= Hp, q

r ⊕ Cp, qr ,

⋆Zp, qr = Hp, q
r ⊕

(
∂⋆(Ep+1, q

∂̄⋆, r−1
) + Im ∂̄⋆

)
= Hp, q

r ⊕ ⋆Cp, qr

where Zp, qr and ⋆Zp, qr are the spaces of smooth Er-closed, resp. E
⋆
r -closed, (p, q)-forms.

3.3 Page-r-∂∂̄-manifolds

The material in this section is taken from [PSU20a].
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3.3.1 Definition of page-r-∂∂̄-manifolds

Recall that X is a fixed n-dimensional compact complex manifold and Ep, q
r (X) stands for the space

of bidegree (p, q) on the r-th page of the Frölicher spectral sequence of X.

Definition 3.3.1. Fix r ∈ N⋆ and k ∈ {0, . . . , 2n}. We say that the identity induces an isomor-
phism between ⊕p+q=kEp, q

r (X) and Hk
DR(X, C) if the following two conditions are satisfied:

(a) for every bidegree (p, q) with p+ q = k, every class {αp, q}Er ∈ Ep, q
r (X) contains a d-closed

representative of pure type αp, q ∈ C∞
p, q(X) ;

(b) the linear map⊕
p+q=k

Ep, q
r (X) ∋

∑
p+q=k

{αp, q}Er 7→
{ ∑
p+q=k

αp, q
}
DR

∈ Hk
DR(X, C)

is well-defined (in the sense that it does not depend on the choices of d-closed representatives αp, q

of the classes {αp, q}Er) and bijective.

Moreover, if, for a fixed r ∈ N⋆, the identity induces an isomorphism ⊕p+q=kEp, q
r (X) ≃ Hk

DR(X, C)
for every k ∈ {0, . . . , 2n}, we say that the manifold X has the Er-Hodge Decomposition property.

Note that whenever the identity induces a well-defined (not necessarily injective) linear map
Ep, q
r (X) −→ Hk

DR(X, C), the image of this map is Hp, q
DR(X). Indeed, one inclusion is obvious. The

reverse inclusion follows from the observation that any d-closed (p, q)-form defines an Er-cohomology
class (i.e. it is Er-closed in the terminology of [Pop19]). Further note that whenever X has the Er-
Hodge Decomposition property, the Frölicher spectral sequence of X degenerates at Er (at the
latest).

Definition 3.3.2. Fix r ∈ N⋆ and p, q ∈ {0, . . . , n}. We say that the conjugation induces an
isomorphism between Ep, q

r (X) and the conjugate of Eq, p
r (X) if the following two conditions are

satisfied:

(a) every class {αp, q}Er ∈ Ep, q
r (X) contains a d-closed representative of pure type αp, q ∈

C∞
p, q(X);
(b) the linear map

Ep, q
r (X) ∋ {αp, q}Er 7→ {αp, q}Er ∈ E

q, p
r (X)

is well-defined (in the sense that it does not depend on the choice of d-closed representative αp, q

of the class {αp, q}Er) and bijective.

Moreover, if, for a fixed r ∈ N⋆, the conjugation induces an isomorphism Ep, q
r (X) ≃ Eq, p

r (X) for
every p, q ∈ {0, . . . , n}, we say that the manifold X has the Er-Hodge Symmetry property.

We shall now see that the Er-Hodge Decomposition property implies the Er-Hodge Symmetry
property. This follows from the following characterisation of the former property.

Theorem and Definition 3.3.3. Let X be a compact complex manifold with dimCX = n. Fix an
arbitrary r ∈ N⋆. Then, the following two conditions are equivalent:

(i) X has the Er-Hodge Decomposition property;
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(ii) the Frölicher spectral sequence of X degenerates at Er (we will denote this by Er(X) =
E∞(X)) and the De Rham cohomology of X is pure.

A compact complex manifold X that satisfies any of the equivalent conditions (i) and (ii) is said
to be a page-(r − 1)-∂∂̄-manifold.

Proof. (i) =⇒ (ii) We have already noticed that the Er-Hodge Decomposition property implies
Er(X) = E∞(X) and that the image of each Ep, q

r (X) in Hp+q
DR (X, C) under the map induced by the

identity is Hp, q
DR(X). We get (ii).

(ii) =⇒ (i) Since the De Rham cohomology of X is supposed pure, we know from Proposition
1.2.19 that Ep, q

∞ (X) ≃ Hp, q
DR(X) (isomorphism induced by the identity) for all bidegrees (p, q). On

the other hand, Ep, q
∞ (X) = Ep, q

r (X) for all bidegrees (p, q) since we are assuming that Er(X) =
E∞(X). Combined with the De Rham purity assumption, these facts imply thatX has the Er-Hodge
Decomposition property. □

Corollary 3.3.4. Any page-(r − 1)-∂∂̄-manifold has the Er-Hodge Symmetry property.

Proof. We have already noticed in (1.31) that the conjugation (trivially) induces an isomorphism
between any space Hp, q

DR(X) and the conjugate of Hq, p
DR(X). Meanwhile, we have seen that the page-

(r− 1)-∂∂̄-assumption implies that the identity induces an isomorphism between any space Ep, q
r (X)

and Hp, q
DR(X). Hence, the conjugation induces an isomorphism between any space Ep, q

r (X) and the
conjugate of Eq, p

r (X). □

Another obvious consequence of (ii) of Theorem and Definition 3.3.3 is that the page-r-∂∂̄-
property becomes weaker and weaker as r increases.

Corollary 3.3.5. Let X be a compact complex manifold. Then, for every r ∈ N⋆, the following
implication holds:

X is a page-r-∂∂̄-manifold =⇒ X is a page-(r + 1)-∂∂̄-manifold.

Indeed, the purity of the De Rham cohomology is independent of r, while the property Er(X) =
E∞(X) obviously implies Er+1(X) = E∞(X) for every r ∈ N.

3.3.2 Characterisation in terms of squares and zigzags

The goal of this subsection is to relate the page-r-∂∂̄-property to structural results about double
complexes. Specifically, we work here with arbitrary double complexes, i.e. bigraded vector spaces
A =

⊕
p,q∈ZA

p,q with endomorphisms ∂1, ∂2 of bidegrees (1, 0), resp. (0, 1), satisfying d2 = 0 for
d = ∂1 + ∂2. This degree of generality has the advantage of emphasising which aspects of the
theory are purely algebraic. Even if one is only interested in the complex AX := (C∞

p, q(X), ∂, ∂̄)
of C-valued forms on a complex manifold X, in the more general setting one can consider certain
finite-dimensional subcomplexes on an equal footing.

There are now two Frölicher-style spectral sequences, starting from column, i.e. (∂2-), resp. row,
i.e. (∂1-), cohomology and converging to the total (De Rham) cohomology of (A, d). We denote
them by

iE
p,q
r (A) =⇒ (Hp+q

DR (A), Fi) i = 1, 2.

In the case A = AX , the case i = 1 is the Frölicher spectral sequence and i = 2 its conjugate.
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The following is a minor extension to general double complexes of the definition (based on its
second characterisation) of the page-(r − 1)-∂∂̄-property of manifolds.

Definition 3.3.6. A double complex A is said to satisfy the page-(r − 1)-∂1∂2-property if both
Frölicher spectral sequences degenerate at page r and the De Rham cohomology is pure.

Just as before, one can also see that this property is equivalent to the statement that for i = 1, 2,
every iE

p,q
r (X)-class contains a (∂1 + ∂2)-closed representative and the corresponding map⊕

p+q=k

iE
p,q
r (A) −→ Hk

DR(A)

induced by the identity is well-defined and bijective.

The following observation will motivate the subsequent considerations.

Observation 3.3.7. The Frölicher spectral sequences, as well as HDR, HA and HBC, are compatible
with direct sums. In particular, if A = B ⊕ C, then A satisfies the page-r-∂1∂2-property if and only
if B and C do.

Recall that a (nonzero) double complex A is called indecomposable if there exists no nontrivial
decomposition A = B ⊕ C into subcomplexes B,C, while A is called bounded if Ap,q ̸= 0 for only
finitely many bidegrees (p, q).

Theorem 3.3.8. ([Ste20, KQ19]) For every bounded double complex over a field K, there exists an
isomorphism

A ∼=
⊕
C

C⊕multC(A),

where C runs over a set of representatives for the isomorphism classes of bounded indecomposable
double complexes and multC(A) are cardinal numbers uniquely determined by A.

Moreover, each bounded indecomposable double complex is isomorphic to a complex of one of
the following types:

� square: a double complex generated by a single pure-(p, q)-type element a in a given bidegree
with no further relations:

⟨∂2a⟩ ⟨∂2∂1a⟩

⟨a⟩ ⟨∂1a⟩.

� even-length zigzag of type 1 and length 2l. This is a complex generated by elements
a1, ...al and their differentials such that ∂2a1 = 0 and ∂1a1 = −∂2a2, ∂1a2 = −∂2a3, ...,
∂1al−1 = −∂2al, ∂1al ̸= 0. It is of the shape:
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⟨a1⟩ ⟨∂1a1⟩

⟨a2⟩

⟨al⟩ ⟨∂1al⟩.

···

Here, as in all the following examples, the length of a zigzag is the number of its vertices.

� even-length zigzag of type 2 and length 2l. This is a complex of the shape:

⟨∂2a1⟩

⟨a1⟩ ⟨∂1a1⟩

⟨a2⟩

⟨al⟩.

···

� odd-length zigzag of type M and length 2l+ 1. This is a complex generated by elements
a1, ...., al+1 such that ∂1ai = −∂2ai+1, ∂2a1 = 0 and ∂1al+1 = 0. It has the shape:

⟨a1⟩ ⟨∂1a1⟩

⟨a2⟩

⟨al+1⟩.

···

The special case where l = 0 is also called a dot.

� odd-length zigzag of type L and length 2l + 1 (l > 0). This is a complex generated by
elements a1, ..., al such that both ∂2a1 ̸= 0 ̸= ∂1al and ∂1ai = −∂2ai+1. It has the shape:
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⟨∂2a1⟩

⟨a1⟩ ⟨∂1a1⟩

⟨∂2al⟩

⟨al⟩ ⟨∂1al⟩.

···

It is a useful exercise to work out which indecomposable complexes satisfy the page-r-∂1∂2-
property. Doing it and combining it with Observation 3.3.7, one gets

Theorem 3.3.9. Let A be a bounded double complex over a field K. The following are equivalent:

1. A satisfies the page-r-∂1∂2-property.

2. There exists an isomorphism between A and a direct sum of squares, even-length zigzags of
length ≤ 2r and odd-length zigzags of length one (i.e. dots).

Proof. It follows at once from [Ste20, Thm C, Prop. 6, Cor. 7] as pointed out above. □

Remark 3.3.10. This theorem also gives a quick alternative proof to Prop. 3.3.22 (equivalence of
page-0-∂1∂2 with the usual ∂1∂2-property) of the next subsection.

Indeed, the page-0-∂1∂2-property means that there is a decomposition of A into squares and dots.
Obviously, both satisfy the usual ∂1∂2-property. Conversely, in any zigzag of length ≥ 2, there is a
closed element (‘form’) of pure type, which is ∂1- or ∂2-exact, but no nonzero element in a zigzag is
∂1∂2-exact. Hence, if A satisfies the usual ∂1∂2-property, in any decomposition of A into elementary
complexes only squares and length-one zigzags can occur.

Definition 3.3.11. A map A −→ B of double complexes is an Er-isomorphism if iEr(f) is an
isomorphism for i ∈ {1, 2}.

One writes A ≃r B if there exist such an Er-isomorphism. The usefulness of this notion stems
from the following

Lemma 3.3.12. ([Ste20, Prop. 12]) If H is a linear functor from the category of double complexes
to the category of vector spaces which maps squares and even-length zigzags of length ≤ 2r to 0, then
H(f) is an isomorphism for any Er-isomorphism f .

Lemma 3.3.13. ([Ste20, Prop. 11]) For two double complexes A,B one has A ≃1 B if and only if
‘the same zigzags occur in A and B’, i.e. multZ(A) = multZ(B) for all zigzags Z.

Example 3.3.14. Examples of functors H satisfying the hypotheses of Lemma 3.3.12 are provided
by HDR, H

p,q
BC, E

p,q
r or Hp,q

A .
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By their explicit description above, one sees that an indecomposable double complex C is deter-
mined up to isomorphism by its shape S(C) = {(p, q) ∈ Z2 | Cp,q ̸= 0}. Abusing notation slightly,
it is sometimes convenient to write multS(A) instead of multC(A), when S = S(C).

We will need the following duality results in the special case A = AX , which follow from the real
structure and the Serre duality.

Lemma 3.3.15. ([Ste20, Ch. 4]) Let A = AX for a compact complex manifold X and define the
conjugate complex by Āp,q = Ap,q and the dual complex DA by DAp,q = Hom(An−p,n−q,C), for all
p, q.

Then, conjugation ω 7→ ω and integration ω 7→
∫
X
ω ∧ define an isomorphism, resp. an E1-

isomorphism: A ∼= Ā, resp. A→ DA.
In particular, the set of zigzags occuring in AX is symmetric under reflection along the diagonal

and the antidiagonal. More precisely, for any zigzag shape S, multS(A) = multrS(A) = multdS(A),
where rS = {(p, q) ∈ Z2 | (q, p) ∈ S} and dS := {(p, q) ∈ Z2 | (n− p, n− q) ∈ S}.

As a consequence, we obtain

Proposition 3.3.16. Fix arbitrary integers 0 ≤ k ≤ 2n.
A compact complex manifold X of dimension n satisfies the complex-C∞-pure property in degree

k if and only if it satisfies the complex-C∞-full property in degree 2n− k

Proof. Let Z be a zigzag with Hk
DR(Z) ̸= 0. The sum of the subspaces Hp,q

DR(Z) with p + q = k is
not direct if and only if Z is of odd length and of type L. Meanwhile, the sum of the subspaces
Hp,q
DR(Z) with p + q = k is strictly contained in Hk

DR(Z) if and only if Z is of odd length > 1 (i.e.
not a dot) and of type M . (See [Ste20, Prop. 6, Cor. 7] for both of these statements.).

Hence, X is complex-C∞-pure in degree k if and only if multZ(AX) = 0 for all odd zigzags Z of
type L with Hk

DR(Z) ̸= 0 and X is complex C∞-full in degree k if and only if multZ(AX) = 0 for all
odd zigzags Z of type M and length > 1 with Hk

DR(Z) ̸= 0.
The result then follows from Lemma 3.3.15 and Lemma 3.3.13 since zigzags of type L and those

of type M and length greater than 1 are exchanged when forming the dual complex.

Corollary 3.3.17. For a compact complex manifold X, the following statements are equivalent:

1. X satisfies the complex-C∞-pure property in all degrees;

2. X satisfies the complex-C∞-full property in all degrees;

3. The De Rham cohomology of X is pure (in the sense of Definition 1.2.17).

3.3.3 Numerical characterisation of page-r-∂∂̄-manifolds and applica-
tions

LetX be a compact connected complex manifold. Let b(X) =
∑

k∈Z bk(X), hBC(X) =
∑

p,q∈Z h
p,q
BC(X)

and define hA(X), h∂(X) and h∂̄(X) analogously. Angella and Tomassini showed in [AT13] that
there are inequalities:

hBC(X) + hA(X)
(∗)
≥ h∂̄(X) + h∂(X)

(∗∗)
≥ 2 b(X) (3.29)
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and that both of these inequalities are equalities if and only if X is a ∂∂̄-manifold.

It is a standard fact about spectral sequences that equality in (∗∗) is equivalent to the degener-
ation at E1 of the Frölicher spectral sequence (and its conjugate). One application of our methods
is a generalisation of inequality (∗) and a characterisation of the equality case in terms of our new
classes of manifolds introduced in this paper. The following general statement is new.

Theorem 3.3.18. For every compact complex manifold X and for every r ∈ N⋆, there is an in-
equality:

hBC(X) + hA(X) ≥ 2

(
r∑
i=1

ei(X)− (r − 1)b(X)

)
,

where ei :=
∑

p,q∈Z dimEp,q
i (X). Moreover, equality holds for some fixed r ∈ N⋆ if and only if X is

a page-r-∂∂̄-manifold.

Remark 3.3.19. Since hp, qBC(X) = hn−p, n−qA (X) by duality, one gets hBC(X) = hA(X) and conjuga-
tion yields h∂(X) = h∂̄. Therefore, one can replace (3.29) by the equivalent inequalities hBC(X) ≥
h∂̄(X) ≥ b(X) and have the same characterisations for the equality cases.

For a concrete (non-nilmanifold) instance where this characterisation can be applied, consider
G := C⋉ϕ C2, where ϕ is either

ϕ(z) =

(
ez 0
0 e−z

)
or ϕ(z) =

(
eRe(z) 0
0 e−Re(z)

)
(complex parallelizable, resp. completely solvable case) and define X to be the quotient of G by a
lattice of the form Γ ⋉ϕ Γ

′ with Γ ⊂ C, Γ′ ⊂ C2 lattices. These were studied in [Nak75] and are
called Nakamura manifolds. They are among the best known solvmanifolds, but are not nilmanifolds.
In [AK17], Angella and Kasuya computed the Hodge, Bott-Chern and Aeppli numbers for certain
families of lattices Γ. (These numbers turn out to be independent of Γ′). In particular, their
calculations yield the equality hBC(X) = h∂̄(X). Hence, by Theorem 3.3.18, we get

Corollary 3.3.20. The complex parallelisable and completely solvable Nakamura manifolds con-
sidered in [AK17] are page-1-∂∂̄-manifolds.

Using the upper-semicontinuity of hBC and hA in families of manifolds, we infer the stability of
page-1-∂∂̄-manifolds with fixed Hodge numbers under small deformations of the complex structure
from Theorem 3.3.18. The analogous statement for r ≥ 2 and constant ei with i ≤ r also holds.

Corollary 3.3.21. If X0 is a page-1-∂∂̄-manifold, then every sufficiently small deformation Xt

of X0 which satisfies h∂̄(Xt) = h∂̄(X0) is again page-1-∂∂̄.

If one drops the condition on constant Hodge numbers, one cannot say much in general. In fact,
as we will see, the Iwasawa manifold is page-1-∂∂̄, but any small deformation with different Hodge
numbers is not.

In order to prove Theorem 3.3.18, we will work with abstract bounded double complexes rather
than double complexes of forms and prove the following (more general) statement.
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For a bounded double complex A with finite-dimensional cohomology, let 1er(A), resp. 2er(A), be
the total dimension of the r-th page of the row, resp. column, spectral sequence. There is always an
inequality:

hBC(A) + hA(A) ≥
r∑
i=1

(1ei(A) + 2ei(A))− 2(r − 1)b(A)

and the equality is equivalent to the page-r-∂1∂2 property for A.

Proof of Theorem 3.3.18. Let us compute the quantities

LHS := hA + hBC and RHSr :=
r∑
i=1

(1ei + 2ei))− 2(r − 1)b

individually for every possible indecomposable double complex, i.e. for squares and all zigzags. The
result then follows from the additivity of both quantities under direct sums.

Before spelling out the details, let us say that LHS counts all the zigzags, weighted by their
length, and counts the dots twice. When r = 1, RHS1 counts all the zigzags twice. For an arbitrary
r, the count on the right becomes slightly more involved.

For a square S, one has hA(S) = hBC(S) = 1ei(S) = 1ei(S) = b(S) = 0, so LHS(S) =
RHSr(S) = 0 for any r.

For a dot D, one has hA(D) = hBC(D) = 1ei(D) = 2ei(D) = b(S) = 1, so LHS(D) = RHSr(D)
for any r.

For any other zigzag Z of length l ≥ 2, one has LHS(Z) = l, while RHS depends on the parity
of the length l. For l odd, one has 1ei(Z) = 2ei(Z) = 1 for all i and b(Z) = 1, so RHSr(Z) = 2. In
particular, the inequality is always strict for odd l > 2. If l = 2k is even, then b(Z) = 0 and

1ei(Z) + 2ei(Z) =

{
2 for i ≤ k

0 otherwise.

Therefore,
RHSr(Z) = min{2r, l}.

Thus, we get the inequality. Moreover, equality holds if and only if l ≤ 2r. This completes the
proof. □

3.3.4 Examples of page-r-∂∂̄-manifolds and counterexamples

We shall organise our examples in several classes, each flagged by a specific heading.

(I) Case r = 0 and low dimensions

The first observation is the following rewording of (5.21) in [DGMS75]. See also Theorem 1.3.2.

Proposition 3.3.22. For any compact complex manifold X, the following equivalence holds:

X is a ∂∂̄-manifold ⇐⇒ X is a page-0-∂∂̄-manifold.

In dimensions one and two, it follows from well-known results that the only possible examples of
page-r-∂∂̄-manifolds are Kähler:

Observation 3.3.23. Any compact complex curve is Kähler, hence a ∂∂̄-manifold. A compact
complex surface is a page-r-∂∂̄-manifold (for some r) if any only if it is Kähler.
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Proof. It is standard that the Frölicher spectral sequence of any compact complex surface degenerates
at E1. It is equally standard that Hk

DR is always pure for k = 0, 2, 4, while it follows from the
Buchdahl-Lamari results (see [Buc99] and [Lam99]) that H1

DR (and hence H3
DR) is pure iff the

surface is Kähler. □

(II) Case of the Iwasawa manifold and its small deformations

Recall that the Iwasawa manifold I(3) is the nilmanifold of complex dimension 3 obtained as the
quotient of the Heisenberg group of 3×3 upper triangular matrices with entries in C by the subgroup
of those matrices with entries in Z[i].

It is well known that the Iwasawa manifold is not a ∂∂̄-manifold. In fact, its Frölicher spectral
sequence is known to satisfy E1 ̸= E2 = E∞. On the other hand, it is known that the De Rham
cohomology of the Iwasawa manifold can be generated in every degree by De Rham classes of (d-
closed) pure-type forms. (See e.g. [Ang14].) Together with Cor. 3.3.17 this yields

Proposition 3.3.24. The Iwasawa manifold is a page-1-∂∂̄-manifold.

However, the situation is more complex for the small deformations of the Iwasawa manifold, all
of which are already known to not be ∂∂̄-manifolds. The following result shows, in particular, that
unlike the ∂∂̄-property, the page-1-∂∂̄-property is not deformation open.

Proposition 3.3.25. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X0. For every
t ∈ B, we have:

(i) Xt is a page-1-∂∂̄-manifold if and only if Xt is complex parallelisable (i.e. lies in
Nakamura’s class (i));

(ii) if Xt lies in one of Nakamura’s classes (ii) or (iii), the De Rham cohomology of Xt is not
pure, so Xt is not a page-r-∂∂̄-manifold for any r ∈ N.

Proof. That deformations in Nakamura’s class (i) are page-1-∂∂̄-manifolds can be proved in the
same way as the Iwasawa manifold was proved to have this property in Proposition 3.3.24. This fact
also follows from the far more general Proposition 3.3.28 since all the small deformations Xt of X0

are nilmanifolds.
To show (ii), we will actually prove a slightly more general result. Calculations of Angella [Ang14]

show that the hypotheses of the next Lemma are satisfied in this case. □

Lemma 3.3.26. Let X be a compact complex manifold with b1 = 4, h1,0
∂̄

= h0,1
∂̄

= 2 and h1,0A = 3.
Then, either H1

DR(X,C) or H2
DR(X,C) is not pure.

Proof. The proof is combinatorial. We first give a proof using the notation of [Ste20] and then a
more pictorial proof that is hopefully clearer without having read all of [Ste20]. We will exploit
the fact that the De Rham, Dolbeault and Aeppli cohomologies of indecomposable complexes are
computable. This is spelt out in detail in [Ste20]. Summarised briefly, an even-length zigzag has a
nonzero differential in the Frölicher spectral sequence or its conjugate, but has no De Rham coho-
mology. Meanwhile, odd-length zigzags have no differentials in the Frölicher spectral sequence, but
have a nonzero De Rham cohomology and hp,qA counts the zigzags that have a nonzero component in
degree (p, q) with possibly outgoing but no incoming arrows.

• The formal proof. Denote by A = (C∞
p, q(X), ∂, ∂̄) the double complex of C-valued forms on X.

We investigate for which zigzag shapes S with (1, 0) ∈ S or (0, 1) ∈ S, one can have multS(A) ̸= 0.
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Assume H1
DR(X,C) is pure. This is equivalent to multSp,q

1
(A) = 0 unless p+q = 1, i.e. (p, q) = (1, 0)

or (p, q) = (0, 1), in which case multS1,0
1
(A) = multS0,1

1
(A) = 2. Since h1,0

∂̄
+ h0,1

∂̄
= b1, there are

no differentials in the Frölicher spectral sequences starting or ending in (1, 0) or (0, 1), i.e., one has
multS(A) = 0 for all even-length zigzag shapes such that (1, 0) ∈ S or (0, 1) ∈ S. The only pos-
sible zigzag shapes containing (1, 0) or (0, 1) that are left are S1,2

2 , S2,1
2 and S2,2

2 . One of the latter
two has to occur since otherwise we would have h1,0A = 2. But this means that H2

DR(X,C) is not pure!

• The pictorial proof. Choose any decomposition of the double complex A into squares and
zigzags and assume that H1

DR(X,C) is pure. This means that any zigzag contributing to the De
Rham cohomology H1

DR(X,C) is of length one, i.e. drawing only the odd zigzags and leaving out
the squares and the even zigzags (which do not contribute to the De Rham cohomology), the lower
part of the double complex looks like this:

p

q

0 1 2

0

1

2

. .
.

•

•

• •

•

Here, a • denotes a dot, i.e. a zigzag of length one and multiplicity one. The symmetry along the
diagonal comes from the real structure of A given by complex conjugation. A priori, there may be
other zigzags passing through (1, 0) and (0, 1). Schematically, these would all arise by choosing some
connected subgraph with at least one arrow of the diagram

•

•0,1 •

•1,0 •

∂̄

∂

∂̄

∂

They could either be of even-length or of odd-length and not contributing to H1
DR(X,C) but con-

tributing to H2(X,C). Note that the subdiagram

•1,0 •

•0,1

∂

∂̄

is not allowed since this would give rise to a non-pure class in H1
DR(X,C), i.e. a class which does

not lie in H1,0
DR(X) +H0,1

DR(X)). But we have already ruled this out by purity.

However, since h1,0
∂̄

+ h0,1
∂̄

= b4, there can be no differentials in the Frölicher spectral sequence
starting or ending in degree (1, 0) or (0, 1). In terms of zigzags, this means no even-length zigzag
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passes through these bidegrees. This rules out the zigzags

•0,1 •

•1,0 •

∂

∂̄

∂

• •1,0∂ •1,0 •∂

and their reflections along the diagonal (which have to occur with the same multiplicity since A is
equipped with a real structure). So, the only options for zigzags passing through (1, 0) that are left
are

•

•0,1 •

•1,0 •

∂̄

∂

∂̄

∂

or

•

•1,0 •

∂̄

∂

and one of these has to occur since otherwise H1,0
A would be of dimension 2, contradicting the

assumptions. But the occurence of either one implies that H2
DR(X,C) is not pure. □

(III) Case of complex parallelisable nilmanifolds

We will now prove that all complex parallelisable nilmanifolds are page-1-∂∂̄-manifolds. On the one
hand, this generalises one implication in (i) of Proposition 3.3.25. On the other hand, it provides a
large class of page-1-∂∂̄-manifolds that are not ∂∂̄-manifolds. Indeed, it is known that a nilmanifold
Γ\G is never ∂∂̄ (or even formal in the sense of [DGMS75]) unless it is Kähler (i.e. a complex torus,
or equivalently, the Lie group G is abelian).

Recall that a compact complex parallelisable manifoldX is a manifold whose holomorphic tangent
bundle is trivial. By Wang’s theorem [Wan54], X is a quotient Γ\G of a complex Lie group G by a
co-compact, discrete subgroup Γ. When G is nilpotent, the manifold X is a complex parallelisable
nilmanifold. The Iwasawa manifold is an example of this type. We first need an algebraic result.

Lemma 3.3.27. Let (A·, dA) and (B·, dB) be two complexes of vector spaces and C = A⊗B their
tensor product, considered as a double complex, i.e.:

Cp,q := Ap ⊗Bq

∂1(a⊗ b) := dAa⊗ b
∂2(a⊗ b) := (−1)|a|a⊗ dBb

Then C satisfies the page-1-∂1∂2-property.

Proof. First, we compute the first and second pages of the column Frölicher spectral sequence. (We
only treat the column case, the row case being analogous.) The first page is the column cohomology:

(1E·,·1 , d1) = (Hq(Cp,·, ∂2), ∂1)
Since ∂2 is, up to sign, IdA⊗dB, one has Hq(Cp,·, ∂2) = Ap ⊗ Hq(B, dB) and d1 = dA ⊗ IdH(B).
Therefore, 2E

p,q
2 = Hp(A, dA) ⊗ Hq(B, dB). Now, for every dA-closed element a ∈ Ap and every

dB-closed element b ∈ Bq, the element a⊗ b ∈ Cp+q is d = ∂1+∂2 closed. Similarly, if one of the two
is dA or dB exact, the form a⊗ b will be d-exact. Hence we get a natural map

⊕
p+q=kH

p(A, dA)⊗
Hq(B, dB) → Hk

dR(C). Since we are working over a field, the Künneth formula tells us that this is
an isomorphism.
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Given a complex parallelisable nilmanifold Γ\G, let g be the (real) Lie algebra ofG, and denote by
J : g→ g the endomorphism induced by the complex structure of the Lie group G. Then J2 = −Id
and

[Jx, y] = J [x, y], (3.30)

for all x, y ∈ g. Let g∗C be the dual of the complexification gC of g and denote by g1,0 (respectively
g0,1) the eigenspace of the eigenvalue i (resp. −i) of J considered as an endomorphism of g∗C.
Condition (3.30) is equivalent to [g0,1, g1,0] = 0 which is equivalent to d(g1,0) ⊂

∧
2 (g1,0), i.e. there

is no component of bidegree (1, 1). Therefore, ∂̄ is identically zero on
∧
p (g1,0), and ∂ is identically

zero on
∧
q (g0,1), that is,

∂|∧p(g1,0) = d|∧p(g1,0) , ∂̄|∧p(g1,0) = 0, ∂|∧q(g0,1) = 0, and ∂̄|∧q(g0,1) = d|∧q(g0,1) . (3.31)

Theorem 3.3.28. Complex parallelisable nilmanifolds are page-1-∂∂̄-manifolds.

Proof. Sakane [Sak76] showed that the inclusion of the double complex (
∧·,· g∗C, ∂, ∂̄) as left in-

variant forms into the complex of all forms on Γ\G induces an isomorphism of the respective first
pages of the corresponding Frölicher spectral sequences (hence of all later pages). But the equations
(3.31) mean that the double complex (

∧·,· g∗C, ∂, ∂̄) is the tensor product of the simple complexes
(
∧· g1,0, d) and (

∧·, g0,1, d), so we can apply Lemma 3.3.27.

(IV) Nilmanifolds with abelian complex structures

In this subsection, we construct two classes of page-1-∂∂̄-manifolds which are not biholomorphic to
complex parallelisable nilmanifolds (see Remarks 3.3.30 and 3.3.32). Indeed, they are nilmanifolds
endowed with an invariant complex structure that is abelian, which means that, in contrast to (3.31),
∂ vanishes on left-invariant (p, 0)-forms, i.e. ∂|∧p(g1,0) = 0.

Theorem 3.3.29. Let n ≥ 3 and G be the nilpotent Lie group with abelian complex structure defined
by the structure equations

(Ab1n) dω1 = 0, dω2 = 0, dω3 = ω2 ∧ ω1, . . . , dωn = ωn−1 ∧ ω1,

or

(Ab2n) dω1 = 0, . . . , dωn−1 = 0, dωn = ω1 ∧ ω2 + ω3 ∧ ω4 + · · · + ωn−2 ∧ ωn−1 (only for odd
n ≥ 3).

Then, any nilmanifold Γ\G is a page-1-∂∂̄-manifold.

Proof. Recall that for abelian complex structures, just as for complex parallelisable ones, Dolbeault,
Aeppli and Bott-Chern cohomology groups can be computed via left-invariant forms (see e.g. [LU15]
and the references therein).

We consider first a complex structure defined by (Ab1n). Denote by A the exterior algebra over
the vector space ⟨ω1, . . . , ωn, ω1, . . . , ωn⟩, which is naturally identified with the space of left-invariant
C-valued forms on G. Let us write A1 for (A, ∂, ∂̄), where the exterior algebra A is equipped with
the differentials defined in the statement (Ab1n) of the theorem.

We can also equip A with a different differential dP1 , which acts as follows in degree 1:

dP1(ω
1) = 0, dP1(ω

2) = 0, dP1(ω
3) = ω2 ∧ ω1, . . . , dP1(ω

n) = ωn−1 ∧ ω1.

One has d2P1
= 0, dP1 = ∂P1 + ∂̄P1 , where ∂P1 and ∂̄P1 denote the components of bidegree (1, 0)

and (0, 1), and dP1(A
1,0) ⊆ A2,0. So, (A, dP1) can be considered as the space of left-invariant
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forms on a nilmanifold endowed with a complex parallelisable structure P1. By Theorem 3.3.28,
AP1 := (A, ∂P1 , ∂̄P1) has the page-1-∂P1 ∂̄P1-property. So, by Theorem 3.3.18, hBC(AP1) + hA(AP1) =
h∂P1

(AP1) + h∂̄P1
(AP1).

Define a C-linear involution C : A→ A in degree 1 by C(ω1) = ω1 and C(ωi) = ωi, C(ωi) = ωi

for i > 1 and in degree k by C(α1 ∧ . . . ∧ αk) := C(α1) ∧ . . . ∧ C(αk). This is compatible with the
total degree, but not with the bigrading. One checks that

C ◦ ∂ = ∂̄P1 ◦ C, and C ◦ ∂̄ = ∂P1 ◦ C.

In fact, this holds in degree 1 and in higher degrees it follows from the Leibniz-rule. As a consequence,
C induces isomorphisms

HBC(A1) ∼= HBC(AP1), HA(A1) ∼= HA(AP1), H∂(A1) ∼= H∂̄P1
(AP1), H∂̄(A1) ∼= H∂P1

(AP1).

Here we mean the total cohomologies, e.g. HBC(A1) =
ker ∂∩ker ∂̄

im ∂∂̄
(A1) = ⊕p,qHp,q

BC(A1) and the induced
maps are not assumed to be compatible with the bigrading. The existence of such isomorphisms im-
plies that we also have an equality hBC(A1)+hA(A1) = h∂(A1)+h∂̄(A1), i.e. the page-1-∂∂̄-property
holds for the space of left-invariant forms on G. Since G carries an abelian complex structure, this
implies that Γ\G is a page-1-∂∂̄-manifold.

We consider now a complex nilmanifold, of odd complex dimension n ≥ 3, defined by (Ab2n).
Let us write A2 for (A, ∂, ∂̄), where the exterior algebra A is now equipped with the differentials
defined in the statement (Ab2n) of the theorem. As before, we may also equip A with a different
differential dP2 , which acts as follows in degree 1:

dP2(ω
1) = 0, . . . , dP2(ω

n−1) = 0, dP2(ω
n) = ω1 ∧ ω2 + ω3 ∧ ω4 + · · ·+ ωn−2 ∧ ωn−1.

One has dP2(A
1,0) ⊆ A2,0, so (A, dP2) can be considered as the space of left-invariant forms on a

nilmanifold endowed with a complex parallelisable structure P2. Hence, AP2 := (A, ∂P2 , ∂̄P2) has
the page-1-∂P2 ∂̄P2-property, by Theorem 3.3.28, and we have hBC(AP2) + hA(AP2) = h∂P2

(AP2) +
h∂̄P2

(AP2), by Theorem 3.3.18.
Let us define a C-linear involution C : A→ A in degree 1 by

C(ω2i+1) = ω2i+1, C(ω2i+1) = ω2i+1, C(ω2i) = ω2i, for 0 ≤ i ≤ n− 1

2
,

together with C(ω2n) = ω2n and C(ω2n) = ω2n. We extend C to degree k by C(α1 ∧ . . . ∧ αk) :=
C(α1) ∧ . . . ∧ C(αk). One checks that C ◦ ∂ = ∂̄P2 ◦ C and C ◦ ∂̄ = ∂P2 ◦ C and may conclude as
before.

Remark 3.3.30. Note that C ◦ d = dP1 ◦ C (similarly for P2), and C is compatible with the real
structure. So it induces an isomorphism of the underlying real Lie groups. However, the correspond-
ing complex nilmanifolds are not biholomorphic. Indeed, the Hodge number of bidegree (1, 0) is given
by

h1,0
∂̄

= 2 for (Ab1n), and h1,0
∂̄

= n− 1 for (Ab2n),

whereas h1,0
∂̄P

= n for any complex parallelisable nilmanifold of complex dimension n.

Note that the abelian complex structures defined by (Ab1n) and (Ab2n) coincide precisely when

n = 3. We will denote it by J̃ , and we write X̃ = (Γ\G, J̃) for any nilmanifold endowed with such
complex structure.
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In the following proposition we prove that, in complex dimension 3, the only complex nilmanifolds
which are page-(r − 1)-∂∂̄ for some r ∈ N⋆ are, apart from a torus, the Iwasawa manifold I(3) and

the nilmanifold X̃.

Proposition 3.3.31. Let X = (Γ\G, J) be a complex nilmanifold of complex dimension 3, different
from a torus, endowed with an invariant complex structure J . If there exists r ∈ N⋆ such that X is
a page-(r − 1)-∂∂̄-manifold, then J is equivalent to the complex parallelisable structure of I(3) or to
the abelian complex structure J̃ defined by (Ab1n) in Theorem 3.3.29 for n = 3. In both cases r = 2,
i.e. both of these manifolds are page-1-∂∂̄-manifolds.

Proof. We already know by Theorems 3.3.28 and 3.3.29 that I(3) and X̃ are page-1-∂∂̄-manifolds.
On the other hand, it is proved in [LU15] that for any other invariant complex structure J (i.e. not
equivalent to J̃ or to the complex parallelisable structure of I(3)), the nilmanifold X = (Γ\G, J)
fails to be pure in degree 4 or 5, that is, the direct sum decomposition of Definition 1.2.17 is not
satisfied for k = 4 or k = 5 (or both). So, such complex nilmanifolds X = (Γ\G, J) are not
page-(r − 1)-∂∂̄-manifolds for any r ∈ N⋆.

Remark 3.3.32. According to [Pop15] and [PU18], a compact complex manifold X is called an
sGG manifold if every Gauduchon metric ω on X is sG, i.e. ∂ωn−1 is ∂̄-exact. By the numerical
characterisation proved in [PU18, Theorem 1.6], a compact complex manifold is sGG if and only
if b1 = 2h0,1

∂̄
. For instance, the Iwasawa manifold is sGG (see [PU18]), and more generally any

complex parallelisable nilmanifold is sGG, due to (3.31).
For the nilmanifolds endowed with the abelian complex structures defined in Theorem 3.3.29, we

have the following Betti and Hodge numbers:

b1 = 4 ̸= 2n = 2h0,1
∂̄

for (Ab1n), and b1 = 2(n− 1) ̸= 2n = 2h0,1
∂̄

for (Ab2n).

Hence, such complex nilmanifolds are not sGG-manifolds.
On the other hand, all the sGG nilmanifolds of complex dimension n = 3 are identified in [PU18,

Theorem 6.1]. In particular, there exist complex nilmanifolds different from the Iwasawa manifold

and X̃ which are sGG, so by Proposition 3.3.31, they are not page-(r − 1)-∂∂̄-manifolds for any
r ∈ N⋆.

Therefore, the page-1-∂∂̄ and the sGG properties of compact complex manifolds are unrelated.

3.3.5 Construction methods for page-r-∂∂̄-manifolds

Theorem 3.3.33. Let X and Y be compact complex manifolds.

1. If X is a page-r-∂∂̄-manifold and Y is a page-r′-∂∂̄-manifold, the product X × Y is a page-r̃-
∂∂̄-manifold, where r̃ = max{r, r′}.
Conversely, if the product is a page-r-∂∂̄-manifold, so are both factors.

2. For any vector bundle V over X, the projectivised bundle P(V) is a page-r-∂∂̄-manifold if and
only if X is.

3. Suppose X is a page-r-∂∂̄-manifold. Let f : X −→ Y be a surjective holomorphic map and
assume there exists a d-closed (l, l)-current Ω on X (with l = dimX − dimY ) such that
f∗Ω ̸= 0. Then Y is also a page-r-∂∂̄-manifold.

In particular, this implication always holds when dimX = dimY , e.g. for contractions (take
Ω to be a constant).
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4. Given a a submanifold Z ⊂ X, denote by X̃ the blow-up of X along Z. If X is page-r-∂∂̄ and
Z is page-r′-∂∂̄, then X̃ is a page-r̃-∂∂̄ manifold, where r̃ = max{r, r′}.

Conversely, if X̃ is page r-∂∂̄, so are X and Z.

5. The page-r-∂∂̄-property of compact complex manifolds is a bimeromorphic invariant if and only
if it is stable under passage to submanifolds.

Proof. The proofs are very similar to those in [Ste20, Cor. 28]. We will be using the characterisation
of the page-r-∂∂̄-property in terms of occuring zigzags (Theorem 3.3.9) and E1-isomorphisms (Def.
3.3.11), in particular Lemma 3.3.13.

Writing AX as shorthand for the double complex (C∞·,·(X,C), ∂, ∂̄) and AX [i] for the shifted

double complex with bigrading (AX [i])
p,q := Ap−i,q−iX , we have the following E1-isomorphisms:1

AX×Y ≃1 AX ⊗ AY (3.32)

AP(V) ≃1

rkV−1⊕
i=0

AX [i] (3.33)

AX ≃1 AY ⊕ AX/f ∗AY (3.34)

AX̃ ≃1 AX ⊕
codimZ−1⊕

i=1

AZ [i], (3.35)

Since the occuring zigzags get only shifted, AX [i] satisfies the page-r-∂∂̄-property if and only if
AX does. Furthermore, a direct sum of complexes satisfies the page-r-∂∂̄-property if and only if each
summand does. So, the second, third and fourth E1-isomorphisms imply 2., 3. and 4.

For the first part of (1), we use the first isomorphism and the fact that one knows how irreducible
subcomplexes behave under tensor product (see [Ste20, Prop. 16]). In particular, even-length zigzags
do not get longer and the product of two length-one zigzags is again of length one. For the converse,
note that AX and AY are direct summands in their tensor product, so we can argue as before.

The ’if’ statement in the last part of (5) is a direct consequence of (4) and the weak factorization
theorem [AKMW02], which says that every bimeromorphic map can be factored as a sequence of
blow-ups and blow-downs with smooth centres. The ‘only if’ part also follows from 4. (cf. also
[Me19a]). Indeed, let X be page-r-∂∂̄ and let Z ⊂ X be a submanifold. If Z has codimension one,
we replace X by X × P1

C (which is still page-r-∂∂̄ by 1.) and Z by Z × {0}. By assumption, the
blow-up is still page-r-∂∂̄ and one can apply (4) to infer that the same holds for Z. □

Since for surfaces and threefolds, the centre of a nontrivial blow-up is a point or a curve, we get

Corollary 3.3.34. Fix any r ∈ N. The page-r-∂∂̄-property of compact complex surfaces and three-
folds is a bimeromorphic invariant.

Since it can be proved by the same methods as above, let us also record the following result,
although it is not strictly related to page-r-∂∂̄-manifolds. According to [Pop19], a compact complex

1Proved in [Ste20, Sect. 4] and [Ste19], apart from the case of dominations of unequal dimensions, i.e. the
maps addressed in the third isomorphism, which is treated in [Meng19], together with some related work. Cf. also
[RYY19], [YY18], [Meng20] and [ASTT19] for different approaches to the blow-up question in the setting of particular
cohomologies.
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manifold X is called an Er-sGG manifold if every Gauduchon metric on X is Er-sG. Let Tr :
Hn−1, n−1
A (X) → En, n−1

r (X) be the natural linear map given by [α] 7→ [∂α]. Then, a Gauduchon
metric ω on X is Er-sG if and only if [ωn−1]A ∈ kerTr. Since the Gauduchon cone is open and
non-empty, the following is an easy generalisation of an observation in [Pop15]:

Lemma 3.3.35. A compact complex manifold X is Er-sGG if and only if Tr = 0.

As a consequence of this, we get the bimeromorphic invariance of the Er-sGG property.

Corollary 3.3.36. Let X and X̃ be bimeromorphically equivalent compact complex manifolds.
Then, every Gauduchon metric on X is Er-sG if and only if this is true on X̃.

Proof. By the weak factorisation theorem [AKMW02], it suffices again to check this for blow-ups

X̃ → X with d-dimensional smooth centers Z of codimension ≥ 2. After picking any isomor-
phism realising formula (3.35), any class c ∈ Hn−1, n−1

A (X̃) can be written as c = cX + cZ , with
cX ∈ Hn−1, n−1

A (X) and cZ ∈ Hd, d
A (Z). So, Trc = TrcX + TrcZ = TrcX since ∂η = 0 for all (d, d)-

forms on Z for dimension reasons. □

Note that the above map Tr is given in all cases by applying ∂. Generally speaking, if A = B⊕C,
then HA(A) = HA(B)⊕HA(C) and Er(A) = Er(B)⊕ Er(C) and TAr = TBr + TCr . We omitted the
superscripts on Tr in the above proof for the sake of simplicity.

3.4 Higher-page Bott-Chern and Aeppli cohomologies

The main goal of this section, whose material is taken from [PSU20b], is to continue the construction
of the higher-page Hodge Theory begun in §.3.3 by introducing higher-page analogues of the Bott-
Chern and Aeppli cohomologies that provide a natural link between their classical counterparts and
the Frölicher spectral sequence and, simultaneously, parallel the higher-page Frölicher cohomologies
E•, •
r (X) when r ≥ 2.

3.4.1 Basic definitions

Let X be an n-dimensional compact complex manifold. Fix an arbitrary positive integer r and
a bidegree (p, q). In §.3.2.2, we defined the notions of Er-closedness and Er-exactness for forms
α ∈ C∞

p, q(X) as higher-page analogues of ∂̄-closedness (that can now be called E1-closedness) and
∂̄-exactness (that can now be called E1-exactness). We then gave these notions explicit descriptions
in Proposition 3.2.4.

In the same vein, we say that α is Er-closed if ᾱ is Er-closed and we say that α is Er-exact if
ᾱ is Er-exact. In particular, characterisations of Er-closedness and Er-exactness are obtained by
permuting ∂ and ∂̄ in the characterisations of Er-closedness and Er-exactness of Proposition 3.2.4.

Moreover, we can take our cue from Proposition 3.2.4 to define higher-page analogues of ∂∂̄-
closedness and ∂∂̄-exactness in the following way.

Definition 3.4.1. Suppose that r ≥ 2.

(i) We say that a form α ∈ C∞
p, q(X) is ErEr-closed if there exist smooth forms η1, . . . , ηr−1 and
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ρ1, . . . , ρr−1 such that the following two towers of r − 1 equations are satisfied:

∂α = ∂̄η1 ∂̄α = ∂ρ1

∂η1 = ∂̄η2 ∂̄ρ1 = ∂ρ2
...

∂ηr−2 = ∂̄ηr−1, ∂̄ρr−2 = ∂ρr−1.

(ii) We refer to the properties of α in the two towers of (r − 1) equations under (i) by saying
that ∂α, resp. ∂̄α, runs at least (r − 1) times.

(iii) We say that a form α ∈ C∞
p, q(X) is ErEr-exact if there exist smooth forms ζ, ξ, η such that

α = ∂ζ + ∂∂̄ξ + ∂̄η (3.36)

and such that ζ and η further satisfy the following conditions. There exist smooth forms vr−3, . . . , v0
and ur−3, . . . , u0 such that the following two towers of r − 1 equations are satisfied:

∂̄ζ = ∂vr−3 ∂η = ∂̄ur−3

∂̄vr−3 = ∂vr−4 ∂ur−3 = ∂̄ur−4

...

∂̄v0 = 0, ∂u0 = 0.

(iv) We refer to the properties of ζ, resp. η, in the two towers of (r − 1) equations under (iii)
by saying that ∂̄ζ, resp. ∂η, reaches 0 in at most (r − 1) steps.

When r − 1 = 1, the properties of ∂̄ζ, resp. ∂η, reaching 0 in (r − 1) steps translate to ∂̄ζ = 0,
resp. ∂η = 0.

To unify the definitions, we will also say that a form α ∈ C∞
p, q(X) is E1E1-closed (resp. E1E1-

exact) if α is ∂∂̄-closed (resp. ∂∂̄-exact).
As with Er and Er, it follows at once from Definition 3.4.1 that the ErEr-closedness condition

becomes stronger and stronger as r increases, while the ErEr-exactness condition becomes weaker
and weaker as r increases. In other words, the following inclusions of vector spaces hold:

{∂∂̄-exact forms} ⊂ · · · ⊂ {ErEr-exact forms} ⊂ {Er+1Er+1-exact forms} ⊂ . . .

· · · ⊂ {Er+1Er+1-closed forms} ⊂ {ErEr-closed forms} ⊂ · · · ⊂ {∂∂̄-closed forms}.

The following statement collects a few other immediate relations among these notions.

Lemma 3.4.2. Fix an arbitrary r ∈ N⋆.
(i) A pure-type form α is simultaneously Er-closed and Er-closed if and only if α is simultane-

ously ∂-closed and ∂̄-closed. This is further equivalent to α being d-closed.

(ii) If α is ErEr-exact, then each of the classes {α}Er and {α}Er
contains a ∂∂̄-exact form and

α is both Er-exact and Er-exact.

(iii) Fix any bidegree (p, q) and let α ∈ C∞
p, q(X). If α is ErEr-exact for some r ∈ N⋆, then α is

d-exact.
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Proof. (i) is obvious. To see (ii), let α = ∂ζ + ∂∂̄ξ + ∂̄η be ErEr-exact, with ζ and η satisfying the
conditions under (ii) of Definition 3.4.1. Then

{α}Er = {α− ∂ζ − ∂̄η}Er = {∂∂̄ξ}Er and {α}Er
= {α− ∂ζ − ∂̄η}Er

= {∂∂̄ξ}Er
,

while α = ∂ζ + ∂̄(−∂ξ + η) is Er-exact and α = ∂(ζ + ∂̄ξ) + ∂̄η is Er-exact.
To prove (iii), let α = ∂ζ + ∂∂̄ξ + ∂̄η, where ζ and η satisfy the conditions in the two towers

under (ii) of Definition 3.4.1. Going down the first tower, we get

∂ζ = dζ − ∂̄ζ = dζ − ∂vr−3 = d(ζ − vr−3) + ∂vr−4 = · · · = d(ζ − vr−3 + · · ·+ (−1)r v0).

In particular, ∂ζ is d-exact.
Similarly, going down the second tower, we get

∂̄η = d(η − ur−3 + · · ·+ (−1)r u0).

In particular, ∂̄η is d-exact.
Since ∂∂̄ξ is also d-exact, we infer that α is d-exact. Explicitly, we have

α = d[(ζ + η) + ∂̄ξ − wr−3 + · · ·+ (−1)r w0],

where wj := uj + vj for all j. □

The main takeaway from Lemma 3.4.2 is that ErEr-exactness implies Er-exactness, Er-exactness
and d-exactness. Let us now pause briefly to notice a property involving the spaces Cp, qr of Er-exact
(p, q)-forms, resp. Cp, qr of Er-exact (p, q)-forms.

Lemma 3.4.3. Fix an arbitrary r ∈ N⋆. For any bidegree (p, q), the following identity of vector
subspaces of C∞

p, q(X) holds:

Cp, qr + Cp, qr = Im ∂ + Im ∂̄.

Proof. For any bidegree (p, q), consider the vector spaces (see (iv) of Definition 3.4.1 for the termi-
nology):

Ep, q∂, r := {α ∈ C∞
p, q(X) | ∂α reaches 0 in at most r steps},

Ep, q
∂̄, r

:= {β ∈ C∞
p, q(X) | ∂̄β reaches 0 in at most r steps}.

From the definitions, we get: Cp, qr = ∂(Ep, q
∂̄, r−1

) + Im ∂̄ and Cp, qr = Im ∂ + ∂̄(Ep, q∂, r−1). This trivially
implies the contention. □

We now come to the main definitions of this subsection.

Definition 3.4.4. Let X be an n-dimensional compact complex manifold. Fix r ∈ N⋆ and a bidegree
(p, q).

(i) The Er-Bott-Chern cohomology group of bidegree (p, q) of X is defined as the following
quotient complex vector space:

Ep, q
r, BC(X) :=

{α ∈ C∞
p, q(X) | dα = 0}

{α ∈ C∞
p, q(X) | α is ErEr-exact}

.

(ii) The Er-Aeppli cohomology group of bidegree (p, q) of X is defined as the following quotient
complex vector space:

Ep, q
r, A(X) :=

{α ∈ C∞
p, q(X) | α is ErEr − closed}

{α ∈ C∞
p, q(X) | α ∈ Im ∂ + Im ∂̄}

.
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When r = 1, the above groups coincide with the standard Bott-Chern, respectively Aeppli,
cohomology groups (see [BC65] and [Aep62]). Note that, by (i) of Lemma 3.4.2, the representatives
of Er-Bott-Chern classes can be alternatively described as the forms that are simultaneously Er-
closed and Er-closed, while by Lemma 3.4.3, the Er-Aeppli-exact forms can be alternatively described
as those forms lying in Cp, qr + Cp, qr .

Also note that the inclusions of vector spaces spelt out just before Lemma 3.4.2 and their ana-
logues for the Er- and Er-cohomologies imply the following inequalities of dimensions:

· · · ≤ dimEp, q
r,BC(X) ≤ dimEp, q

r−1, BC(X) ≤ · · · ≤ dimEp, q
1, BC(X) = dimHp, q

BC(X)

and their analogues for the Er-Aeppli cohomology spaces.

3.4.2 Serre-type duality between Er,BC and Er,A cohomologies

The first step towards extending to the higher pages of the Frölicher spectral sequence the standard
Serre-type duality between the classical Bott-Chern and Aeppli cohomology groups of complemen-
tary bidegrees is the following

Proposition 3.4.5. Let X be a compact complex manifold with dimCX = n. For every r ∈ N⋆ and
all p, q ∈ {0, . . . , n}, the following bilinear pairing is well defined:

Ep, q
r, BC(X)× En−p, n−q

r, A (X) −→ C,
(
{α}Er, BC

, {β}Er, A

)
7→
∫
X

α ∧ β,

in the sense that it is independent of the choice of representative of either of the classes {α}Er, BC

and {β}Er, A
.

Proof. The proof consists in a series of integrations by parts (mathematical ping-pong).

• To prove independence of the choice of representative of the Er-Bott-Chern class, let us modify
a representative α to some representative α+ ∂ζ + ∂∂̄ξ + ∂̄η of the same Er-Bott-Chern class. This
means that ∂ζ + ∂∂̄ξ + ∂̄η is ErEr-exact, so ζ and η satisfy the towers of r− 1 equations under (ii)
of Definition 3.4.1. We have∫

X

(α + ∂ζ + ∂∂̄ξ + ∂̄η) ∧ β =

∫
X

α ∧ β ±
∫
X

ζ ∧ ∂β ±
∫
X

ξ ∧ ∂∂̄β ±
∫
X

η ∧ ∂̄β.

Since β is ErEr-closed, it is also ∂∂̄-closed (see (i) of Lemma 3.4.2), so the last but one integral
above vanishes.

Using the r − 1 equations in the first tower under (i) of Definition 3.4.1 (with β in place of α)
and the first tower under (ii) of the same definition, we get:∫

X

ζ ∧ ∂β =

∫
X

ζ ∧ ∂̄η1 = ±
∫
X

∂̄ζ ∧ η1 = ±
∫
X

∂vr−3 ∧ η1 = ±
∫
X

vr−3 ∧ ∂η1

= ±
∫
X

vr−3 ∧ ∂̄η2 = ±
∫
X

∂̄vr−3 ∧ η2 = ±
∫
X

∂vr−4 ∧ η2 = ±
∫
X

vr−4 ∧ ∂η2

...

= ±
∫
X

v0 ∧ ∂̄ηr−1 = ±
∫
X

∂̄v0 ∧ ηr−1 = 0,
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where the last identity follows from ∂̄v0 = 0.
Playing the analogous mathematical ping-pong while using the second tower under both (i) and

(ii) of Definition 3.4.1, we get:∫
X

η ∧ ∂̄β =

∫
X

η ∧ ∂ρ1 = ±
∫
X

∂η ∧ ρ1 = ±
∫
X

∂̄ur−3 ∧ ρ1 = ±
∫
X

ur−3 ∧ ∂̄ρ1

= ±
∫
X

ur−3 ∧ ∂ρ2 = ±
∫
X

∂ur−3 ∧ ρ2 = ±
∫
X

∂̄ur−4 ∧ ρ2 = ±
∫
X

ur−4 ∧ ∂̄ρ2

...

= ±
∫
X

u0 ∧ ∂ρr−1 = ±
∫
X

∂u0 ∧ ρr−1 = 0,

where the last identity follows from ∂u0 = 0.
We conclude that

∫
X
(α + ∂ζ + ∂∂̄ξ + ∂̄η) ∧ β =

∫
X
α ∧ β.

• To prove independence of the choice of representative of the Er-Aeppli class, let us modify a
representative β to some representative β + ∂ζ + ∂̄ξ of the same Er-Aeppli class. So, ζ and ξ are
arbitrary forms. We get:∫

X

α ∧ (β + ∂ζ + ∂̄ξ) =

∫
X

α ∧ β ±
∫
X

∂α ∧ ζ ±
∫
X

∂̄α ∧ ξ = 0,

where the last identity follows from ∂α = 0 and ∂̄α = 0. □

We now take up the issue of the non-degeneracy of the above bilinear pairing. For the sake of
expediency, we start by defining the dual notion to the ErEr-closedness of Definition 3.4.1 after we
have fixed a metric.

Definition 3.4.6. Let (X, ω) be a compact complex Hermitian manifold. Fix an integer r ≥ 2 and
a bidegree (p, q).

We say that a form α ∈ C∞
p, q(X) is E⋆

rE
⋆

r-closed with respect to the Hermitian metric ω if there
exist smooth forms a1, . . . , ar−1 and b1, . . . , br−1 such that the following two towers of r−1 equations
are satisfied:

∂⋆α = ∂̄⋆a1 ∂̄⋆α = ∂⋆b1

∂⋆a1 = ∂̄⋆a2 ∂̄⋆b1 = ∂⋆b2
...

∂⋆ar−2 = ∂̄⋆ar−1, ∂̄⋆br−2 = ∂⋆br−1.

That this notion is indeed dual to the ErEr-closedness via the Hodge star operator ⋆ = ⋆ω
associated with the metric ω is the content of the following analogue of Corollary 3.2.9.

Lemma 3.4.7. In the setting of Definition 3.4.6, the following equivalence holds for every form
α ∈ C∞

p, q(X):

α is ErEr-closed ⇐⇒ ⋆ᾱ is E⋆
rE

⋆

r-closed.
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Proof. Thanks to conjugations, to the fact that ⋆⋆ = ± Id (with the sign depending on the parity
of the total degree of the forms involved) and to ⋆ being an isomorphism, the two towers of r − 1
equations that express the ErEr-closedness of α (cf. (i) of Definition 3.4.1) translate to

(− ⋆ ∂̄⋆)(⋆ᾱ) = (− ⋆ ∂⋆)(⋆η̄1) (− ⋆ ∂⋆)(⋆ᾱ) = (− ⋆ ∂̄⋆)(⋆ρ̄1)
(− ⋆ ∂̄⋆)(⋆η̄1) = (− ⋆ ∂⋆)(⋆η̄2) (− ⋆ ∂⋆)(⋆ρ̄1) = (− ⋆ ∂̄⋆)(⋆ρ̄2)

...

(− ⋆ ∂̄⋆)(⋆η̄r−2) = (− ⋆ ∂⋆)(⋆η̄r−1), (− ⋆ ∂⋆)(⋆ρ̄r−2) = (− ⋆ ∂̄⋆)(⋆ρ̄r−1).

Now, put aj := ⋆η̄j and bj := ⋆ρ̄j for all j ∈ {1, . . . , r− 1}. Since − ⋆ ∂̄⋆ = ∂⋆ and − ⋆ ∂⋆ = ∂̄⋆, these

two towers amount to ⋆ᾱ being E⋆
rE

⋆

r-closed. (See Definition 3.4.6). □

We now come to two crucial lemmas from which Hodge isomorphisms for the Er-Bott-Chern and
the Er-Aeppli cohomologies will follow. Based on the terminology introduced in (ii) of Definition
3.4.1, we define the vector spaces:

Fp, q∂, r := {α ∈ C∞
p, q(X) | ∂α runs at least r times},

Fp, q
∂̄, r

:= {β ∈ C∞
p, q(X) | ∂̄β runs at least r times}

and their analogues Fp, q∂⋆, r and Fp, q
∂̄⋆, r

when ∂ is replaced by ∂⋆ and ∂̄ is replaced by ∂̄⋆. Note

that the space of E⋆
rE

⋆

r-closed (p, q)-forms defined in Definition 3.4.6 is precisely the intersection
Fp, q∂⋆, r−1 ∩ F

p, q

∂̄⋆, r−1
.

Lemma 3.4.8. Let (X, ω) be a compact complex Hermitian manifold. Fix an integer r ≥ 2, a
bidegree (p, q) and a form α ∈ C∞

p, q(X).

The following two statements are equivalent.

(i) α is E⋆
rE

⋆

r-closed (w.r.t. ω);

(ii) α is L2
ω-orthogonal to the space of smooth ErEr-exact (p, q)-forms.

Proof. “(i) =⇒ (ii)” Suppose that α is E⋆
rE

⋆

r-closed. This means that α satisfies the two towers of
(r− 1) equations in Definition 3.4.6. Let β = ∂ζ +∂∂̄ξ+ ∂̄η be an arbitrary ErEr-exact (p, q)-form.
So, ζ and η satisfy the respective towers of r − 1 equations under (ii) of Definition 3.4.1. For the
L2
ω-inner product of α and β, we get:

⟨⟨α, β⟩⟩ = ⟨⟨∂⋆α, ζ⟩⟩+ ⟨⟨∂̄⋆∂⋆α, ξ⟩⟩+ ⟨⟨∂̄⋆α, η⟩⟩. (3.37)

Since ∂̄⋆∂⋆α = ∂̄⋆∂̄⋆a1 = 0, the middle term on the r.h.s. of (3.37) vanishes.
For the first term on the r.h.s. of (3.37), we use the towers of equations satisfied by α and ζ to

get:

⟨⟨∂⋆α, ζ⟩⟩ = ⟨⟨∂̄⋆a1, ζ⟩⟩ = ⟨⟨a1, ∂̄ζ⟩⟩ = ⟨⟨a1, ∂vr−3⟩⟩ = ⟨⟨∂⋆a1, vr−3⟩⟩ = ⟨⟨∂̄⋆a2, vr−3⟩⟩
= ⟨⟨a2, ∂̄vr−3⟩⟩ = ⟨⟨a2, ∂vr−4⟩⟩
...

= ⟨⟨ar−1, ∂̄v0⟩⟩ = 0,

where the last identity followed from the property ∂̄v0 = 0.
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For the last term on the r.h.s. of (3.37), we use the towers of equations satisfied by α and η to
get:

⟨⟨∂̄⋆α, η⟩⟩ = ⟨⟨∂⋆b1, η⟩⟩ = ⟨⟨b1, ∂η⟩⟩ = ⟨⟨b1, ∂̄ur−3⟩⟩ = ⟨⟨∂̄⋆b1, ur−3⟩⟩ = ⟨⟨∂⋆b2, ur−3⟩⟩
= ⟨⟨b2, ∂ur−3⟩⟩ = ⟨⟨b2, ∂̄ur−4⟩⟩
...

= ⟨⟨br−1, ∂u0⟩⟩ = 0,

where the last identity followed from the property ∂u0 = 0.
“(ii) =⇒ (i)” Suppose that α is orthogonal to all the smooth ErEr-exact (p, q)-forms β. These

forms are of the shape β = ∂ζ + ∂∂̄ξ + ∂̄η, where ξ is subject to no condition, while ζ ∈ Ep−1, q

∂̄, r−1
and

η ∈ Ep, q−1
∂, r−1. (See notation introduced in the proof of Lemma 3.4.3).

The orthogonality condition is equivalent to the following three identities:

(a) ⟨⟨∂̄⋆∂⋆α, ξ⟩⟩ = 0, (b) ⟨⟨∂⋆α, ζ⟩⟩ = 0, (c) ⟨⟨∂̄⋆α, η⟩⟩ = 0

holding for all the forms ζ, ξ, η satisfying the above conditions.
Since ξ is subject to no condition, (a) amounts to ∂̄⋆∂⋆α = 0. This means that ∂⋆α ∈ ker ∂̄⋆ and

∂̄⋆α ker ∂⋆. Condition (b) requires ∂⋆α ⊥ Ep−1, q

∂̄, r−1
, while (c) requires ∂̄⋆α ⊥ Ep, q−1

∂, r−1.

• Unravelling condition (b). The forms ζ ∈ Ep−1, q

∂̄, r−1
are characterised by the existence of forms

vr−3, . . . , v0 satisfying the first tower of (r − 1) equations in (iii) of Definition 3.4.1. That tower
imposes the condition vr−j ∈ E∂̄, r−j+1 ∩ F∂, j−2 for every j ∈ {3, . . . , j}. (We have dropped the
superscripts to lighten the notation.)

Now, every form ζ ∈ ker∆′′ satisfies the condition ∂̄ζ = 0, hence ζ ∈ E∂̄, 1 ⊂ E∂̄, r−1. From
condition (b), we get ∂⋆α ⊥ ker∆′′. Since ker ∂̄⋆ (to which ∂⋆α belongs by condition (a)) is the
orthogonal direct sum between ker∆′′ and Im ∂̄⋆, we get ∂⋆α ∈ Im ∂̄⋆, so

∂⋆α = ∂̄⋆a1 (3.38)

for some form a1. Condition (b) becomes:

0 = ⟨⟨∂⋆α, ζ⟩⟩ = ⟨⟨a1, ∂̄ζ⟩⟩ = ⟨⟨a1, ∂vr−3⟩⟩ = ⟨⟨∂⋆a1, vr−3⟩⟩ for all vr−3 ∈ E∂̄, r−2 ∩ F∂, 1.

In other words, ∂⋆a1 ⊥ (E∂̄, r−2 ∩ F∂, 1).
We will now use the 3-space decomposition (3.28) of C∞

p, q(X) for the case r = 2. (See Proposition
3.2.12 in Appendix one.) It is immediate to check the inclusion E∂̄, r−2 ∩ F∂, 1 ⊃ H2 ⊕ (Im ∂̄ +
∂(E∂̄, 1)). Therefore, condition (b) implies that ∂⋆a1 ⊥ (H2⊕ (Im ∂̄+ ∂(E∂̄, 1))). Since the orthogonal
complement of H2 ⊕ (Im ∂̄ + ∂(E∂̄, 1)) is ∂⋆(E∂̄⋆, 1) + Im ∂̄⋆ by the 3-space decomposition (3.28) for
r = 2, we infer that ∂⋆a1 ∈ ∂⋆(E∂̄⋆, 1) + Im ∂̄⋆. Therefore, there exist forms b1 ∈ ker ∂̄⋆ and a2 such
that

∂⋆a1 = ∂⋆b1 + ∂̄⋆a2. (3.39)

Since ∂̄⋆b1 = 0, equations (3.38) and (3.39) yield:

∂⋆α = ∂̄⋆(a1 − b1)
∂⋆(a1 − b1) = ∂̄⋆a2.

(3.40)

Thus, condition (b) becomes:

0 = ⟨⟨∂⋆α, ζ⟩⟩ = ⟨⟨∂̄⋆(a1 − b1), ζ⟩⟩ = ⟨⟨a1 − b1, ∂vr−3⟩⟩ = ⟨⟨∂⋆(a1 − b1), vr−3⟩⟩
= ⟨⟨∂̄⋆a2, vr−3⟩⟩ = ⟨⟨a2, ∂vr−4⟩⟩ = ⟨⟨∂⋆a2, vr−4⟩⟩ for all vr−4 ∈ E∂̄, r−3 ∩ F∂, 2.
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In other words, ∂⋆a2 ⊥ (E∂̄, r−3 ∩ F∂, 2).
Now, it is immediate to check the inclusion E∂̄, r−3 ∩ F∂, 2 ⊃ H3 ⊕ (Im ∂̄ + ∂(E∂̄, 2)). Since the

orthogonal complement of H3 ⊕ (Im ∂̄ + ∂(E∂̄, 2)) is ∂⋆(E∂̄⋆, 2) + Im ∂̄⋆ by the 3-space decomposition
(3.28) for r = 3, we infer that ∂⋆a2 ∈ ∂⋆(E∂̄⋆, 1) + Im ∂̄⋆. Therefore, there exist forms b2 ∈ E∂̄⋆, 2 and
a3 such that

∂⋆a2 = ∂⋆b2 + ∂̄⋆a3. (3.41)

Since the condition b2 ∈ E∂̄⋆, 2 translates to the equations

∂̄⋆b2 = ∂⋆c1 and ∂̄⋆c1 = 0, (3.42)

for some form c1, equations (3.40) and (3.41) yield:

∂⋆α = ∂̄⋆(a1 − b1 − c1)
∂⋆(a1 − b1 − c1) = ∂̄⋆(a2 − b2)
∂⋆(a2 − b2) = ∂̄⋆a3.

Continuing in this way, we inductively get the following tower of (r − 1) equations:

∂⋆α = ∂̄⋆(a1 − b1 − c1 − c(3)1 − · · · − c
(r−2)
1 )

∂⋆(a1 − b1 − c1 − c(3)1 − · · · − c
(r−2)
1 ) = ∂̄⋆(a2 − b2 − c(3)2 − · · · − c

(r−2)
2 )

...
∂⋆(ar−2 − br−2) = ∂̄⋆ar−1,

(3.43)

where bj ∈ E∂̄⋆, j for all j ∈ {1, . . . , r − 2}, so bj satisfies the following tower of j equations:

∂̄⋆bj = ∂⋆c
(j)
j−1

∂̄⋆c
(j)
j−1 = ∂⋆c

(j)
j−2

...

∂̄⋆c
(j)
2 = ∂⋆c

(j)
1

∂̄⋆c
(j)
1 = 0,

for some forms c
(j)
l .

Consequently, conditions (a) and (b) to which α is subject imply that α ∈ F∂⋆, r−1 (cf. tower

(3.43)), which is the first of the two conditions required for α to be E⋆
rE

⋆

r-closed under Definition
3.4.6.

• Unravelling condition (c). Proceeding in a similar fashion, with ∂⋆ and ∂̄⋆ permuted, we infer
that conditions (a) and (c) to which α is subject imply that α ∈ F∂̄⋆, r−1, which is the second of the

two conditions required for α to be E⋆
rE

⋆

r-closed under Definition 3.4.6.
• We conclude that α is indeed E⋆

rE
⋆

r-closed. □

The immediate consequence of Lemma 3.4.8 is the following Hodge isomorphism for the Er-Bott-
Chern cohomology.

Corollary and Definition 3.4.9. Let (X, ω) be a compact complex Hermitian manifold. For every
bidegree (p, q) and every r ∈ N⋆, every Er-Bott-Chern cohomology class {α}Er, BC

∈ Ep, q
r, BC(X) can

be represented by a unique form α ∈ C∞
p, q(X) satisfying the following three conditions:
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α is ∂-closed, ∂̄-closed and E⋆
rE

⋆

r-closed.

Any such form α is called Er-Bott-Chern harmonic with respect to the metric ω.
There is a vector-space isomorphism depending on the metric ω:

Ep, q
r, BC(X) ≃ Hp, q

r, BC(X),

where Hp, q
r, BC(X) ⊂ C∞

p, q(X) is the space of Er-Bott-Chern harmonic (p, q)-forms associated with ω.

Of course, the above isomorphism maps every class {α}Er, BC
∈ Ep, q

r,BC(X) to its unique Er-Bott-
Chern harmonic representative.

The analogous statement for the Er-Aeppli cohomology follows at once from standard material.
Indeed, it is classical that the L2

ω-orthogonal complement of Im ∂ (resp. Im ∂̄) in C∞
p, q(X) is ker ∂⋆

(resp. ker ∂̄⋆). The immediate consequence of this is the following Hodge isomorphism for the
Er-Aeppli cohomology.

Corollary and Definition 3.4.10. Let (X, ω) be a compact complex Hermitian manifold. For
every bidegree (p, q), every Er-Aeppli cohomology class {α}E2, A

∈ Ep, q
r, A(X) can be represented by a

unique form α ∈ C∞
p, q(X) satisfying the following three conditions:

α is ErEr-closed, ∂
⋆-closed and ∂̄⋆-closed.

Any such form α is called Er-Aeppli harmonic with respect to the metric ω.
There is a vector-space isomorphism depending on the metric ω:

Ep, q
r, A(X) ≃ Hp, q

r, A(X),

where Hp, q
r, A(X) ⊂ C∞

p, q(X) is the space of Er-Aeppli harmonic (p, q)-forms associated with ω.

Of course, the above isomorphism maps every class {α}Er, A
∈ Ep, q

r, A(X) to its unique Er-Aeppli
harmonic representative.

We can now conclude from the above results that there is a Serre-type canonical duality
between the Er-Bott-Chern cohomology and the Er-Aeppli cohomology of complementary bidegrees.

Theorem 3.4.11. Let X be a compact complex manifold with dimCX = n. For all p, q ∈ {0, . . . , n},
the following bilinear pairing is well defined and non-degenerate:

Ep, q
r, BC(X)× En−p, n−q

r, A (X) −→ C,
(
{α}Er, BC

, {β}Er, A

)
7→
∫
X

α ∧ β.

Proof. The well-definedness was proved in Proposition 3.4.5. The non-degeneracy is proved in the
usual way on the back of the above preliminary results, as follows.

Let {α}Er, BC
∈ Ep, q

r, BC(X) be an arbitrary non-zero class. Fix an arbitrary Hermitian metric ω on
X and let α be the unique Er-Bott-Chern harmonic representative (w.r.t. ω) of the class {α}Er, BC

(whose existence and uniqueness are guaranteed by Corollary and Definition 3.4.9). In particular,
α ̸= 0.

Based on the characterisations of the Er-Bott-Chern and Er-Aeppli harmonicities given in Corol-
laries and Definitions 3.4.9 and 3.4.10, Lemma 3.4.7 and the standard equivalences (α ∈ ker ∂ ⇐⇒
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⋆ᾱ ∈ ker ∂⋆) and (α ∈ ker ∂̄ ⇐⇒ ⋆ᾱ ∈ ker ∂̄⋆) ensure that ⋆ᾱ is Er-Aeppli harmonic. In partic-
ular, ⋆ᾱ represents an Er-Aeppli class {⋆ᾱ}Er, A

∈ En−p, n−q
r, A (X). Moreover, pairing {α}Er, BC

with
{⋆ᾱ}Er, A

yields
∫
X
α ∧ ⋆ᾱ = ||α||2 ̸= 0, where || || stands for the L2

ω-norm.

Similarly, starting off with a non-zero class {β}Er, A
∈ En−p, n−q

r,A (X) and selecting its unique

Er-Aeppli harmonic representative β, we get that β ̸= 0, ⋆β̄ is Er-Bott-Chern harmonic (hence it
represents a class in Ep, q

r, BC(X)) and the classes {⋆β̄}Er, BC
and {β}Er, A

pair to ± ||β||2 ̸= 0. □

3.4.3 Characterisation in terms of exactness properties

We now state and prove the following higher-page analogue of Proposition 3.3.22.

Theorem 3.4.12. Let X be a compact complex manifold with dimCX = n. Fix an arbitrary integer
r ≥ 1. The properties (A) and (B) below are equivalent.

(A) X is a page-(r − 1)-∂∂̄-manifold.

(B) For all p, q ∈ {0, . . . , n} and for every form α ∈ C∞
p, q(X) such that dα = 0, the following

equivalences hold:

α ∈ Im d ⇐⇒ α is Er-exact ⇐⇒ α is Er-exact ⇐⇒ α is ErEr-exact. (3.44)

Except for one step, the proof is purely algebraic, so let us first do the algebra in the following

Lemma 3.4.13. Let (A, ∂1, ∂2) be a bounded double complex of vector spaces. Then, property (B)
in Theorem 3.4.12 (with ∂1 in place of ∂ and ∂2 in place of ∂̄) is equivalent to A being isomorphic
to a direct sum of squares, even-length zigzags of length < 2r and odd-length zigzags of length
2l + 1 ≤ 2r − 1 and type M .

Proof. Since (A, ∂1, ∂2) is always isomorphic to a sum of indecomposable complexes, it suffices to
check each possible indecomposable summand separately. We refer to Theorem 3.3.8 for diagrams
of all possibilities and will use the same notation as the one introduced there.

• Case of squares
Every d-closed pure-type form is a multiple of ∂2∂1a = −∂1∂2a and the latter form is easily seen

to be exact in all four ways appearing in (B), so the properties are equivalent in this case.

• Case of even-length zigzags
In the type 1 case, every d-closed pure-type form is a multiple of some ∂1ai, so we have to

investigate these forms more closely. They have the following properties.

1. All the ∂1ai’s are d-exact (indeed, ∂1ai = d(a1 + · · ·+ ai)) and ∂1-(hence Ēr-)exact.

2. Using the tower of equations in the definition of Er-exactness, one sees that ∂1ai is Er-exact if
and only if i+ 1 ≤ r.

3. Since for this double complex ∂1∂2 = 0 and a nontrivial tower of equations for Ēr-exactness
can never be found, ∂1ai is Er-exact if and only if it is ErĒr-exact.

Hence, one sees that for even-length zigzags, all four properties are equivalent if and only if l < r.
The type 2 case is handled analogously.
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• Case of odd-length zigzags
For type M , the pure-type d-closed forms are again the ∂1ai’s. Their exactness properties are as

follows.

1. Each ∂1ai is d-, ∂1- and ∂2-exact, so in particular also Er- and Ēr-exact.

2. Using the towers of equations in the definition of ErEr-exactness, we see that ∂1ai is ErEr-
exact if and only if i < r or l − i+ 1 < r.

Indeed, if ∂1ai is viewed as ∂1-exact with potential ai, it is ErEr-exact if and only if ∂2ai reaches
0 in at most r − 1 steps. Since ∂2ai = −∂1ai−1, ∂2ai−1 = −∂1ai−2, . . . , ∂2a2 = −∂1a1, ∂2a1 = 0, this
is the case if and only if i ≤ r − 1.

Meanwhile, if ∂1ai = −∂2ai+1 is viewed as ∂2-exact with potential ai+1, it is ErEr-exact if and only
if ∂1ai+1 reaches 0 in at most r − 1 steps. Since ∂1ai+1 = −∂2ai+2, ∂1ai+2 = −∂2ai+3, . . . ∂1al+1 = 0,
this is the case if and only if l − i+ 1 ≤ r − 1.

Hence, one sees that in this type of zigzags the exactness properties are equivalent for all the
bidegrees if and only if l + 1 < r. (In particular, this is always true for l = 0).

It is left to check type L: the d-closed pure forms are the ∂1ai. None of these is d-exact, but all
except ∂1al are ∂2-exact, hence Er-exact and all but ∂2a1 are ∂1-exact, so Ēr-exact. In particular,
the exactness properties under (B) are never equivalent.

Proof of Theorem 3.4.12. The symmetry of occuring zigzags along the antidiagonal p+q = n stated
in Lemma 3.3.15 exchanges, among the odd-length zigzags of length > 1, those of type M with
those of type L. It also and sends dots to dots. Thus, by Lemma 3.4.13, in the case of A = AX =
(C∞·,·(X,C), ∂, ∂̄) for a compact connected complex manifold X, Property (B) in Theorem 3.4.12
is equivalent to the existence of a decomposition of AX into squares, odd-length zigzags of length
one (giving rise to pure De Rham classes) and even-length zigzags of length < 2r (responsible for
possible differentials in early pages). This, in turn, has already been seen to be equivalent to the
page-(r − 1)-∂∂̄-property of X.

3.4.4 Characterisation in terms of maps to and from higher-page Bott-
Chern and Aeppli cohomology groups

Let X be an n-dimensional compact complex manifold. Fix r ∈ N⋆ and a bidegree (p, q). Recall
that Zp, qr and Cp, qr stand for the space of Er-closed, resp. Er-exact, smooth (p, q)-forms on X. (See
section 3.2.2.) Let Dp, qr stand for the space of ErEr-exact smooth (p, q)-forms on X.

Lemma 3.4.14. (i) The following inclusions of vector subspaces of C∞
p+1, q(X) hold:

Im (∂∂̄) ⊂ ∂(Zp, qr ) ⊂ Dp+1, q
r ⊂ Cp+1, q

r ∩ ker d
∩

Im d
(3.45)

(ii) Every Er-class {α}Er ∈ Ep, q
r (X) can be represented by a d-closed form if and only if

∂(Zp, qr ) ⊂ Im (∂∂̄). In other words, this happens if and only if the first inclusion in (3.45) is
an equality.

Proof. (i) To prove the first inclusion, it suffices to show that every ∂̄-exact (p, q)-form is Er-closed.
Let α = ∂̄β be a (p, q)-form. Then, ∂̄α = 0 and ∂α = ∂̄(−∂β). Putting u1 := −∂β, we have ∂u1 = 0,
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so we can choose u2 = 0, . . . , ur−1 = 0 to satisfy the tower of equations under (i) of Proposition
3.2.4. This shows that α is Er-closed.

To prove the second inclusion, let α ∈ Zp, qr . By (i) of Proposition 3.2.4, this implies that ∂̄α = 0,
so if we write ∂α = ∂ζ + ∂∂̄ξ + ∂̄η with ζ = α, ξ = 0 and η = 0, we satisfy the conditions under
(ii) of Definition 3.4.1 with vj = 0 and uj = 0 for all j ∈ {0, . . . , r − 3}. This proves that ∂α is
ErEr-exact.

The third inclusion on the first row is a consequence of (iii) and (iv) of Lemma 3.4.2, while the
“vertical” inclusion is a translation of (iv) of the same lemma.

(ii) Let {α}Er ∈ Ep, q
r (X) be an arbitrary class and let α be an arbitrary representative of it.

Then, {α}Er ∈ Ep, q
r (X) can be represented by a d-closed form if and only if there exists an Er-exact

form ρ = ∂a + ∂̄b, with a satisfying the conditions ∂̄a = ∂cr−3, ∂̄cr−3 = ∂cr−4, . . . ∂̄c0 = 0 for some
forms cj, such that ∂(α− ρ) = 0. This last identity is equivalent to

∂∂̄b = ∂α.

Thus, the class {α}Er contains a d-closed form if and only if the form ∂α, which already lies in
∂(Zp, qr ), is ∂∂̄-exact.

This proves the contention. □

Theorem 3.4.15. Let X be a compact complex manifold with dimCX = n. Fix an arbitrary integer
r ≥ 2. The following properties are equivalent.

(A) X is a page-(r − 1)-∂∂̄-manifold.

(C) For all p, q ∈ {0, . . . , n}, the following identities of vector subspaces of C∞
p+1, q(X) hold:

(i) Im (∂∂̄) = ∂(Zp, qr ) and (ii) Cp, qr ∩ ker d = Im d. (3.46)

Proof. By (ii) of Lemma 3.4.14, identity (i) in (C) is equivalent to every Er-class of type (p, q) being
representable by a d-closed form. On the other hand, if this is the case, then identity (ii) in (C) is
equivalent to the map Ep, q

r (X) ∋ {α}Er 7→ {α}DR ∈ H
p+q
DR (X, C) (with α ∈ ker d) being well defined

and injective.
The contention follows from Theorem and Definition 3.3.3. □

As an aside, note that identity (ii) in (C) of Theorem 3.4.15 is a reformulation of the first
equivalence in (B) of Theorem 3.4.12.

We will now relate the page-(r − 1)-∂∂̄-property of compact complex manifolds to the Er-Bott-
Chern and Er-Aeppli cohomologies introduced in §.3.4.1. The study will reveal an analogy with the
standard ∂∂̄-property in relation to the standard Bott-Chern and Aeppli cohomologies (correspond-
ing to the case r = 1).

Lemma 3.4.16. Let X be a compact complex manifold with dimCX = n. Fix any integer r ≥ 2.

(i) There are well-defined canonical linear maps induced by the identity:

Ep, q
r, BC(X)

T p, q
r−→ Ep, q

r (X)
Sp, q
r−→ Ep, q

r, A(X) and Ep, q
r, BC(X) −→ Hp, q

DR(X) −→ Ep, q
r, A(X)

{α}Er, BC
7→ {α}Er 7→ {α}Er, A

{α}Er, BC
7→ {α}DR 7→ {α}Er, A

.
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(ii) The following equivalences hold:

T p, qr is injective ⇐⇒ Dp, qr ⊃ Cp, qr ∩ ker d ⇐⇒ Dp, qr = Cp, qr ∩ ker d

T p, qr is surjective ⇐⇒ Im (∂∂̄) ⊃ ∂(Zp, qr ) ⇐⇒ Im (∂∂̄) = ∂(Zp, qr )

Sp, qr is injective ⇐⇒ Cp, qr ∩ ker d ⊂ Cp, qr

Sp, qr is surjective ⇐⇒ Im (∂∂̄) ⊃ ∂̄(Zp, qrr̄ ) ⇐⇒ Im (∂∂̄) = ∂̄(Zp, qrr̄ ),

where Zp, qrr̄ stands for the space of smooth ErEr-closed (p, q)-forms.

(iii) If the map T p, qr is bijective, the identity induces a well-defined surjection

Ep, q
r (X) −→ Hp, q

DR(X),

in the sense that every class {α}Er ∈ Ep, q
r (X) contains a d-closed representative and the linear map

Ep, q
r (X) ∋ {α}Er 7→ {α}DR ∈ H

p, q
DR(X) is independent of the choice of d-closed representative α of

the class {α}Er ∈ Ep, q
r (X).

Proof. It consists of immediate verifications based on the definitions and is left to the reader. □

We now come to the main result of this subsection.

Theorem 3.4.17. Let X be a compact complex manifold with dimCX = n. Fix an arbitrary integer
r ≥ 1. The following statements are equivalent.

(A) X is a page-(r − 1)-∂∂̄-manifold.

(D) For all p, q ∈ {0, . . . , n}, the canonical linear maps T p, qr : Ep, q
r, BC(X) −→ Ep, q

r (X) and
Sp, qr : Ep, q

r (X) −→ Ep, q
r, A(X) are isomorphisms.

(E) For all p, q ∈ {0, . . . , n}, the canonical linear map Sp, qr ◦ T p, qr : Ep, q
r, BC(X) −→ Ep, q

r, A(X) is
injective.

Proof. “(A) =⇒ (D)” Suppose that X is a page-(r − 1)-∂∂̄-manifold. Thanks to Theorem 3.4.15,
the page-(r − 1)-∂∂̄-property of X is equivalent to the first inclusion on the left in (3.45) being an
identity (which is further equivalent to T p, qr being surjective) and to the last space on the right in
(3.45) being equal to Im d (which, after conjugation of its occurence in bidegree (q, p), implies that
Sp, qr is injective).

On the other hand, the equivalence “α is Er-exact ⇐⇒ α is ErEr-exact“, ensured for d-closed
forms α by characterisation (B) of the page-(r−1)-∂∂̄-property given in Theorem 3.4.12, is equivalent
to the third inclusion on the first row in (3.45) being an identity. Thanks to (ii) of Lemma 3.4.16,
this is further equivalent to T p, qr being injective. Thus, T p, qr is bijective.

It remains to show that Sp, qr is surjective. The duality results of Corollary 3.2.10 and Theorem
3.4.11 ensure that the dual map of Sp, qr : Ep, q

r (X)→ Ep, q
r, A(X) is the map T n−p, n−qr : En−p, n−q

r,BC (X)→
En−p, n−q
r (X). Meanwhile, T n−p, n−qr has been proved above to be injective in all bidegrees. This is

equivalent to its dual map Sp, qr being surjective, as desired.

“(D) =⇒ (E)” This implication is trivial.

“(E) =⇒ (A)” Suppose that Sp, qr ◦ T p, qr is injective, hence T p, qr is injective, for every (p, q). By
(ii) of Lemma 3.4.16, the injectivity of T p, qr translates to the following equivalence for all d-closed
(p, q)-forms α:

α is Er-exact ⇐⇒ α is ErEr-exact.
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Since this holds in every bidegree (p, q), taking conjugates we get the following equivalence for
d-closed forms α of every bidegree:

α is Er-exact ⇐⇒ α is ErEr-exact.

Thanks to characterisation (B) of the page-(r−1)-∂∂̄-property given in Theorem 3.4.12, it remains
to prove the implication

α is d-exact =⇒ α is ErEr-exact

for every d-closed form α of every bidegree (p, q). (Recall that the implication “α is ErEr-exact =⇒
α is d-exact” always holds by (iii) of Lemma 3.4.2.) Therefore, let α = dv = ∂vp−1, q + ∂̄vp, q−1 ∈
C∞
p, q(X) be d-exact. Then, α ∈ Im ∂ + Im ∂̄, hence {α}Er, A

= 0 ∈ Ep, q
r, A(X). Since Sp, qr ◦ T p, qr :

Ep, q
r, BC(X) −→ Ep, q

r, A(X) is injective, we get {α}Er, BC
= 0 ∈ Ep, q

r, BC(X), which translates to α being

ErEr-exact. □

3.4.5 The role of the dimensions of E•, •r,BC(X) and E•, •r,A(X)

Many of the results in sections §.3.3 and §.3.4 can be summed up as follows. As we have seen,
requiring the existence of d-closed pure-type representatives for the Er-classes in (1) of the next
statement is a key condition.

Conclusion 3.4.18. Let X be a compact complex manifold with dimCX = n. Fix an arbitrary
r ∈ N⋆. The following statements are equivalent.

(1) For every bidegree (p, q), every class {αp, q}Er ∈ Ep, q
r (X) can be represented by a d-closed

(p, q)-form and for every k, the linear map⊕
p+q=k

Ep, q
r (X) ∋

∑
p+q=k

{αp, q}Er 7→
{ ∑
p+q=k

αp, q
}
DR

∈ Hk
DR(X, C)

is well-defined by means of d-closed pure-type representatives and bijective.

In this case, X is said to have the Er-Hodge Decomposition property.

(2) The Frölicher spectral sequence of X degenerates at Er and the De Rham cohomology of
X is pure.

(3) For all p, q ∈ {0, . . . , n} and for every form α ∈ C∞
p, q(X) such that dα = 0, the following

equivalences hold:

α ∈ Im d ⇐⇒ α is Er-exact ⇐⇒ α is Er-exact ⇐⇒ α is ErEr-exact.

(4) For all p, q ∈ {0, . . . , n}, the canonical linear maps

Ep, q
r, BC(X) −→ Ep, q

r (X) and Ep, q
r (X) −→ Ep, q

r, A(X)

are isomorphisms, where Ep, q
r, BC(X) and Ep, q

r, A(X) are the Er-Bott-Chern, respectively the Er-
Aeppli, cohomology groups of bidegree (p, q) introduced in Definition 3.4.4.

(5) For all p, q ∈ {0, . . . , n}, the canonical linear map Ep, q
r, BC(X) −→ Ep, q

r, A(X) is injective.

(6) We have: dimEk
r,BC(X) = dimEk

r,A(X) for all k ∈ {0, ..., 2n}.
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A compact complex manifold X that satisfies any of the equivalent conditions (1)–(6) is said to
be a page-(r − 1)-∂∂̄-manifold.

Only the equivalence of (6) with the other conditions still needs a proof. We will use the language
of abstract double complexes, including squares and zigzags, of §.3.3.2 in the proof that we now spell
out and that reproves other equivalences of Conclusion 3.4.18.

(Alternative) proof of Conclusion 3.4.18

In order to compute Er,BC and Er, A on abstract double complexes, first recall that Er,BC is a
quotient of HBC and Er, A is a subspace of HA. In particular, if HBC or HA are zero on some double
complex, so are their lower dimensional counterparts. Further note that ∂1∂2 = 0 on zigzags and we
even have ∂1 = ∂2 = 0 on dots. These observations yield

Observation 3.4.19. For a square S we have Er, A(S) = Er,BC(S) = 0, while for a dot D = ⟨a⟩ we
have Er,BC(D) = Er, A(D) = ⟨a⟩ for all r ≥ 1.

For higher length zigzags Z, generated by a1, ..., al, we get that HA(Z) = ⟨a1, ..., al⟩ keeps the
lower antidiagonal, while HBC(Z) = ⟨∂2a1, ...., ∂2al, ∂1al⟩ remembers the higher antidiagonal. To
describe their higher-page analogues, it suffices to understand the kernel, resp. cokernel, of the
projection HBC(Z) ↠ Er,BC(Z), resp. the inclusion Er, A(Z) ↪→ HA(Z). These are described as
follows.

Lemma 3.4.20. Let Z be a zigzag of length at least two, generated by a1, ..., al. For any i ̸∈ {1, ..., l},
set ai := 0. Then, for any r ≥ 2:

1. Even length type I: If ∂2a1 = 0 and ∂1al ̸= 0, one has:

ker (HBC(Z)→ Er,BC(Z)) = ⟨∂1a1, ..., ∂1ar−1⟩
coker (Er, A(Z)→ HA(Z)) = ⟨al−r+2, ..., al⟩.

2. Even length type II: If ∂2a1 ̸= 0 and ∂1al = 0, one has:

ker (HBC(Z)→ Er,BC(Z)) = ⟨∂1al−r+2, ..., ∂1al⟩
coker (Er, A(Z)→ HA(Z)) = ⟨a1, ..., ar−1⟩.

3. Odd length type M : If ∂2a1 = 0 = ∂2al, one has Er, A(Z) = HA(Z) and

ker (HBC(Z)→ Er,BC(Z)) = ⟨∂1a1, ..., ∂1ar−1, ∂2al−r+2, ..., ∂2al⟩.

4. Odd length type L: If ∂2a1 ̸= 0 ̸= ∂2al, one has HBC(Z) = Er,BC(Z) and

coker (Er, A(Z)→ HA(Z)) = ⟨a1, ..., ar−1, al−r+2, ..., al⟩.

Note that for large r, some of the written generators could be zero or there could be some overlap in
the last two cases.
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Proof. Let us only do the computation for Er,BC . The elements that get modded out here in addition
to the ∂1∂2-exact ones are the Er-exact ones and the Ēr-exact ones. By the definition of Er-exactness,
this means that, whenever a zigzag has top left corner generated by a1 with ∂2a1 = 0, i.e.:

⟨a1⟩ ⟨∂1a1⟩

⟨a2⟩ ⟨∂1a2⟩

. . .

the classes of ∂1a1, ..., ∂1ar−1 are zero in Er,BC(Z). Along the same lines, if a zigzag has bottom
right corner generated by a1 with ∂2a1 = 0, i.e.:

. . .

⟨a2⟩ ⟨∂2a1⟩

⟨a1⟩

the classes of ∂2a1, ..., ∂2ar−1 are zero in Er,BC(Z). This yields the result for Er,BC . The calculation
for HA is analogous.

Let us also record what this yields for the dimensions of the new cohomology groups.

Corollary 3.4.21. Let Z be an indecomposable bounded double complex and let r ≥ 2.

1. If Z is a square, then er,BC(Z) = 0 = er, A(Z).

2. If Z is a dot, then er,BC(Z) = 1 = er, A(Z).

3. If Z is a zigzag of odd length 2l + 1 ≥ 3 of type L, one has er,BC(Z) = hBC(Z) = l + 1 and
er, A(Z) = max{l − 2(r − 1), 0}.

4. If Z is a zigzag of odd length 2l + 1 ≥ 3 of type M , one has er,BC(Z) = max{l − 2(r − 1), 0}
and er, A(Z) = hA(Z) = l + 1.

5. If Z is a zigzag of even length 2l, one has er,BC(Z) = er, A(Z) = max{l − r + 1, 0}.

Recall ([KQ20], [PSU20], [Ste20]) that any bounded double complex A can be written as a direct
sum of indecomposable ones, all indecomposable ones are either squares or zigzags and A has the
page-r-∂1∂2-property if and only if in any decomposition into indecomposables, there are no odd
length zigzags other than dots (length one) and no even length zigzags of length greater than 2r.
Thus, we get

Corollary 3.4.22. For any bounded double complex A such that all the numerical quantities involved
are finite, there is an inequality:

er, A(A) + er,BC(A) ≥ er(A) + ēr(A) ≥ 2b(A).

Equality holds if A satisfies the page-(r − 1)-∂1∂2-property
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Proof. Since all the quantities involved are additive under direct sums, it suffices to show this for
indecomposable double complexes Z. The middle and right hand side were computed in [Ste20]:
er(Z) + er(Z) equals 0 for a square and for a zigzag of length 2l ≤ 2(r − 1), while it equals 2 for
all other zigzags. Also, b(Z) = 1 for odd length zigzags and b(Z) = 0 otherwise. In particular, for
an arbitrary double complex, the middle quantity is just twice the number of all zigzags which have
odd length or even length at least 2r. By the previous Corollary 3.4.21, er, A(Z) + er,BC(Z) = 0
for squares and even length zigzags of length 2l ≤ 2(r − 1), while it equals 2 for dots and zigags of
length 2r and is greater than or equal to 2 for all other zigzags.

Remark 3.4.23. Somewhat unexpectedly, the equality er, A(A) + er,BC(A) = 2b(A) does not imply
the page-(r − 1)-∂1∂2-property for r ≥ 2, contrary to the case r = 1 ([AT13]). For example, both
sides are equal to 2 for r ≥ 2 and A a zigzag of length 3. As one may see, for example from a Hopf
surface, this behaviour really occurs in geometric situations. A different generalisation of the case
r = 1 has been obtained in [PSU20].

Corollary 3.4.24. Let A be a bounded double complex such that ekr,BC(A) and ekr,A(A) are finite.
The following properties are equivalent:

(A’) A has the page-(r − 1)-∂1∂2-property.

(B’) The map Er,BC(A)→ Er, A(A) is an isomorphism.

(C’) One has ekr,BC(A) = ekr,A(A) for all k ∈ Z.

Proof. Note that property (B’) implies property (C’). Thus, it suffices to show that property (B’) is
satisfied for squares, dots and even length zigzags of length ≤ 2(r− 1) and property (C’) is violated
for all other zigzags. This is a direct consequence of Lemma 3.4.20 and Corollary 3.4.21.

3.5 Adiabatic limit for complex structures

This section, taken from [Pop17], should be compared with §.3.1 and §.3.2. Indeed, we now give
an alternative analytic approach to the Frölicher Spectral Sequence (FSS) by means of a rescaled
Laplacian, a differential operator that can be seen as complementary to the pseudo-differential
Laplacians of §.3.1 and §.3.2.

The main result of this section (see Theorem 3.5.13) is a general formula for the dimensions of the
vector spaces featuring in the Frölicher spectral sequence in terms of the asymptotics, as a positive
constant h decreases to zero, of the small eigenvalues of the rescaled Laplacian ∆h, introduced in
[Pop17] in the present form, that we adapt to the context of a complex structure from the well-
known construction of the adiabatic limit and from the analogous result for Riemannian foliations
of Álvarez López and Kordyukov in [ALK00].

3.5.1 Rescaled Laplacians

Let X be a compact complex manifold with dimCX = n. We fix a Hermitian metric ω on X.

(I) Rescaling the metric

The first operation we will consider is a partial rescaling of ω in a way that depends solely on the
holomorphic degree of forms.
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Definition 3.5.1. For all p, q ∈ {0, . . . , n}, all (p, q)-forms u, v and every constant h > 0, we define
the following pointwise inner product

⟨u, v⟩ωh
:= h2p ⟨u, v⟩ω

where ⟨, ⟩ω stands for the pointwise inner product defined by the original Hermitian metric ω.

Note that, for every h > 0, we obtain in this way a Hermitian metric ωh on every vector bundle
Λp, qT ⋆X of (p, q)-forms on X. The maps

θh : Λ
p, qT ⋆X −→ Λp, qT ⋆X, u 7→ θhu := hpu,

induce an isometry of Hermitian vector bundles θh : (ΛT
⋆X, ωh) −→ (ΛT ⋆X, ω) since

⟨u, v⟩ωh
= ⟨hpu, hpv⟩ω = ⟨θhu, θhv⟩ω for all u, v ∈ Λp, qT ⋆X.

In particular, we have defined a Hermitian metric

ωh =
1

h2
ω, h > 0,

on the holomorphic tangent bundle T 1, 0X of vector fields of type (1, 0), or equivalently, a rescaled
C∞ positive-definite (1, 1)-form ωh = h−2 ω on X. This induces a C∞ positive volume form

dVωh
:=

ωnh
n!

=
1

h2n
ωn

n!
=

1

h2n
dVω

on X, which in turn gives rise, in conjunction with the above pointwise inner product ⟨ , ⟩ωh
, to the

following L2 inner product

⟨⟨u, v⟩⟩ωh
:=

∫
X

⟨u, v⟩ωh
dVωh

=
1

h2n

∫
X

⟨θhu, θhv⟩ω dVω =
1

h2n
⟨⟨θhu, θhv⟩⟩ω

for all forms u, v ∈ C∞
p, q(X, C) and all bidegrees (p, q).

Formula 3.5.2. For all (p, q)-forms u, v, we have

⟨⟨u, v⟩⟩ωh
=

1

h2(n−p)
⟨⟨u, v⟩⟩ω, hence ||u||ωh

= h−(n−p) ||u||ω.

Proof. The formula follows at once from the last identity and from the fact that θhu = hpu for all
(p, q)-forms u. □

Definition 3.5.3. Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every k =
0, . . . , 2n and every constant h > 0, we consider the d-Laplacian w.r.t. the rescaled metric ωh
acting on C∞ k-forms on X:

∆ωh
: C∞

k (X, C) −→ C∞
k (X, C), ∆ωh

:= dd⋆ωh
+ d⋆ωh

d,

where d⋆ωh
is the formal adjoint of d w.r.t. ⟨⟨ , ⟩⟩ωh

and ⟨⟨ , ⟩⟩ωh
has been extended from the spaces

C∞
p, q(X, C) to C∞

k (X, C) = ⊕p+q=kC∞
p, q(X, C) by sesquilinearity and by imposing that ⟨⟨u, v⟩⟩ωh

= 0
whenever u ∈ C∞

p, q(X, C) and v ∈ C∞
r, s(X, C) with (p, q) ̸= (r, s).
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(II) Rescaling the differential

The second operation we will consider is a partial rescaling of d = ∂ + ∂̄ that applies solely to its
component of type (1, 0).

Definition 3.5.4. Let X be a compact complex manifold, dimCX = n. For every constant h > 0,
let

dh := h∂ + ∂̄ : C∞
k (X, C) −→ C∞

k+1(X, C), k ∈ {0, . . . , 2n}.

Some basic properties of the rescaled differential dh are summed up in the following

Lemma 3.5.5. (i) The operators d and dh are related by the identity

dh = θhdθ
−1
h .

(ii) d2h = 0 and the d- and dh-cohomologies are related by the isomorphism

Hk
d (X, C)

≃−→ Hk
dh
(X, C), {u}d 7→ {θhu}dh

where Hk
d (X, C) = Hk

DR(X, C) are the usual De Rham cohomology groups, while Hk
dh
(X, C) :=

ker(dh : C∞
k (X, C) −→ C∞

k+1(X, C))/Im (dh : C∞
k−1(X, C) −→ C∞

k (X, C)) are the dh-cohomology
groups.

Proof. (i) If u is a (p, q)-form, we have

(θhdθ
−1
h )(u) = θhd(h

−pu) = h−pθh(∂u) + h−pθh(∂̄u) = h−php+1∂u+ h−php∂̄u = h∂u+ ∂̄u = dhu.

Thus, dh = θhdθ
−1
h on pure-type forms, so this identity extends to arbitrary forms by linearity.

(ii) On the one hand, d2h = θhd
2θ−1
h = 0; on the other hand,

dh(θhu) = θhdu, so we have the equivalence: θhu ∈ ker(dh) ⇐⇒ u ∈ ker d;

θhu = dhv iff u = d(θ−1
h v), so we have the equivalence: θhu ∈ Im (dh) ⇐⇒ u ∈ Im d.

These equivalences show that the linear map Hk
d (X, C) ∋ {u}d 7→ {θhu}dh ∈ Hk

dh
(X, C) is well

defined and bijective. □

In particular, the spectral sequences induced by the pairs of differentials (∂, ∂̄) and (h∂, ∂̄) are
isomorphic, so degenerate at the same page. The first of them is the Frölicher spectral sequence of
X.

Definition 3.5.6. Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every constant
h > 0 and every degree k ∈ {0, . . . , 2n}, we consider the dh-Laplacian w.r.t. the given metric
ω acting on C∞ k-forms on X:

∆h : C
∞
k (X, C) −→ C∞

k (X, C), ∆h := dhd
⋆
h + d⋆hdh,

where d⋆h is the formal adjoint of dh w.r.t. the L2 inner product induced by ω.
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(III) Comparison of the two rescaled Laplacians

We now bring together the above two operations by comparing the corresponding Laplace-type
operators. Note that ∆ωh

was defined by the rescaled differential dh and the original metric ω, while
∆h was induced by the rescaled metric ωh and the original differential d.

Lemma 3.5.7. (i) If θ⋆h and d⋆h stand for the formal adjoints of θh, resp. dh, w.r.t. the pointwise,
resp. L2, inner product induced by ω, we have

θ⋆h = θh and d⋆h = θ−1
h d⋆θh.

(ii) The adjoints ∂⋆ωh
, ∂̄⋆ωh

w.r.t. to the metric ωh, as well as the adjoints ∂⋆ω = ∂⋆, ∂̄⋆ω = ∂̄⋆ w.r.t. to
the metric ω, of ∂, resp. ∂̄ are related by the formulae:

∂⋆ωh
= h2∂⋆ and ∂̄⋆ωh

= ∂̄⋆.

Consequently, we get

∆ωh
= h2∆′ +∆′′ + [∂, ∂̄⋆] + h2[∂̄, ∂⋆]

= h2∆′ +∆′′ − [∂, τ̄ ⋆]− h2[τ̄ , ∂⋆] = h2∆′ +∆′′ − [τ, ∂̄⋆]− h2[∂̄, τ ⋆],

and

∆h = h2∆′ +∆′′ + h[∂, ∂̄⋆] + h[∂̄, ∂⋆]

= h2∆′ +∆′′ − h[∂, τ̄ ⋆]− h[τ̄ , ∂⋆] = h2∆′ +∆′′ − h[τ, ∂̄⋆]− h[∂̄, τ ⋆],

where the adjoints ∂⋆, ∂̄⋆, τ ⋆, τ̄ ⋆ and the Laplacians ∆′,∆′′ are computed w.r.t. the metric ω, while

τ = τω := [Λω, ∂ω ∧ ·] : C∞
p, q(X, C) −→ C∞

p+1, q(X, C)

is the torsion operator (of type (1, 0) and order zero, acting on smooth forms of any bidegree
(p, q), where Λω is the adjoint of the multiplication operator ω ∧ ·) associated with the metric ω as
defined in [Dem84] (see also [Dem97, V II, §.1]).

In particular, the second-order Laplacians ∆ωh
and ∆h are elliptic since the second-order Lapla-

cians ∆′ and ∆′′ are and the deviation terms −[∂, τ̄ ⋆]− h2[τ̄ , ∂⋆] and −h[∂, τ̄ ⋆]− h[τ̄ , ∂⋆] are only
of order 1.

Note that ⟨⟨[∂, ∂̄⋆]u, u⟩⟩ = ⟨⟨[∂̄, ∂⋆]u, u⟩⟩ = 0 whenever the form u is of pure type and whatever
metric is used to define ⟨⟨ , ⟩⟩ (because pure-type forms of different bidegrees are orthogonal w.r.t.
any metric), so

⟨⟨∆ωh
u, u⟩⟩ = ⟨⟨∆hu, u⟩⟩ = h2 ⟨⟨∆′u, u⟩⟩+ ⟨⟨∆′′u, u⟩⟩ for every pure-type form u. (3.47)

(This fails, in general, if u is not of pure type, unless the metric ω is Kähler.)

(iii) The rescaled Laplacians ∆ωh
and ∆h are related by the formula

∆h = θh∆ωh
θ−1
h . (3.48)

Proof. (i) For any k-forms u =
∑

p+q=k

up, q and v =
∑

p+q=k

vp, q, we have

⟨θhu, v⟩ω =
∑

p+q=k

⟨hpup, q, vp, q⟩ω =
∑

p+q=k

⟨up, q, hpvp, q⟩ω = ⟨u, θhv⟩ω, so θ⋆h = θh.
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The second identity in (i) follows by taking conjugates in dh = θhdθ
−1
h .

(ii) For any forms α ∈ C∞
p−1, q(X, C) and β ∈ C∞

p, q(X, C), we have

⟨⟨α, ∂⋆ωβ⟩⟩ω = ⟨⟨∂α, β⟩⟩ω =

∫
X

⟨∂α, β⟩ω dVω =

∫
X

1

h2p
⟨∂α, β⟩ωh

h2ndVωh
= h2(n−p) ⟨⟨∂α, β⟩⟩ωh

= h2(n−p) ⟨⟨α, ∂⋆ωh
β⟩⟩ωh

= h2(n−p)
∫
X

h2(p−1) ⟨α, ∂⋆ωh
β⟩ω

1

h2n
dVω =

1

h2
⟨⟨α, ∂⋆ωh

β⟩⟩ω.

We get ∂⋆ω = h−2 ∂⋆ωh
, which is the first identity under (ii).

The identity ∂̄⋆ωh
= ∂̄⋆ω is proved in the same way by using the fact that ∂̄ acts only on the

anti-holomorphic degree of forms which is unaffected by the change of metric from ω to ωh.
Using these formulae, we get

∆ωh
= [∂ + ∂̄, ∂⋆ωh

+ ∂̄⋆ωh
] = [∂, h2∂⋆] + [∂̄, ∂̄⋆] + [∂, ∂̄⋆] + [∂̄, h2∂⋆]

= h2∆′ +∆′′ + [∂, ∂̄⋆] + h2[∂̄, ∂⋆]

and

∆h = [h∂ + ∂̄, h∂⋆ + ∂̄⋆] = h2[∂, ∂⋆] + [∂̄, ∂̄⋆] + h[∂, ∂̄⋆] + h[∂̄, ∂⋆]

= h2∆′ +∆′′ + h[∂, ∂̄⋆] + h[∂̄, ∂⋆].

On the other hand, we know from [Dem84] (or [Dem97, VII, §.1]) that

[∂, ∂̄⋆] = −[∂, τ̄ ⋆] = −[τ, ∂̄⋆] and, by conjugation, we get [∂̄, ∂⋆] = −[∂̄, τ ⋆] = −[τ̄ , ∂⋆].

So, the terms measuring the deviations of ∆ωh
and ∆h from h2∆′ + ∆′′ are of order 1 and we get

the alternative formulae for ∆ωh
and ∆h spelt out in the statement.

(iii) For any smooth (p, q)-form α, we have

(θh∆ωh
θ−1
h )α =

1

hp
θh∆ωh

α =
1

hp
θh(h

2∆′α) +
1

hp
θh(∆

′′α) +
1

hp
θh([∂, ∂̄

⋆]α) +
1

hp
θh(h

2[∂̄, ∂⋆]α)

=
h2hp

hp
∆′α +

hp

hp
∆′′α +

hp+1

hp
[∂, ∂̄⋆]α +

h2hp−1

hp
[∂̄, ∂⋆]α

= h2∆′α +∆′′α + h[∂, ∂̄⋆]α + h[∂̄, ∂⋆]α = ∆hα.

Thus, θh∆ωh
θ−1
h = ∆h on pure-type forms and this identity extends to arbitrary forms by linearity.

□

Corollary 3.5.8. Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every con-
stant h > 0 and every degree k ∈ {0, . . . , 2n}, the spectra of the rescaled Laplacians ∆h,∆ωh

:
C∞
k (X, C) −→ C∞

k (X, C) coincide, i.e.

Spec(∆h) = Spec(∆ωh
), (3.49)

and their respective eigenspaces are obtained from each other via the rescaling isometry θh:

θh(E∆ωh
(λ)) = E∆h

(λ) for every λ ∈ Spec(∆h) = Spec(∆ωh
), (3.50)

where E∆ωh
(λ), resp. E∆h

(λ), stands for the eigenspace corresponding to the eigenvalue λ of the
operator ∆ωh

, resp. ∆h.
Thus, ∆h and ∆ωh

have the same eigenvalues with the same multiplicities.
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Proof. Let λ ∈ Spec(∆ωh
) and let α ∈ E∆ωh

(λ) ⊂ C∞
k (X, C). So ∆ωh

α = λα, hence

∆h(θhα) = (θh∆ωh
θ−1
h )(θhα) = θh(λα) = λ(θhα).

Thus, λ ∈ Spec(∆h) and θhα ∈ E∆h
(λ). These implications also hold in reverse order, so we get the

equivalences:

λ ∈ Spec(∆h) ⇐⇒ λ ∈ Spec(∆ωh
) and α ∈ E∆ωh

(λ) ⇐⇒ θhα ∈ E∆h
(λ).

These equivalences amount to (3.49) and (3.50). □

Another consequence of the above discussion is a Hodge Theory for the dh-cohomology and the
resulting equidimensionality of the kernels of ∆ and ∆h in every degree.

Corollary 3.5.9. Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every constant
h > 0 and every degree k ∈ {0, . . . , 2n}, the operator dh : C∞

k (X, C) −→ C∞
k (X, C) induces the

following L2
ω-orthogonal direct-sum decomposition:

C∞
k (X, C) = Hk

∆h
(X, C)⊕ Im dh ⊕ Im d⋆h,

where Hk
∆h

(X, C) is the kernel of ∆h : C
∞
k (X, C) −→ C∞

k (X, C) and ker dh = Hk
∆h

(X, C)⊕ Im dh.
The vector space Hk

∆h
(X, C) is finite-dimensional, while Im dh and Im d⋆h are closed subspaces of

C∞
k (X, C).
This, in turn, induces the Hodge isomorphism

Hk
∆h

(X, C) ≃ Hk
dh
(X, C), α 7→ {α}dh .

Since Hk
d (X, C) and Hk

dh
(X, C) are isomorphic (via θh, see Lemma 3.5.5) and Hk

∆(X, C) ≃
Hk
d (X, C) (by standard Hodge theory), we infer that Hk

∆(X, C) and Hk
∆h

(X, C) are isomorphic
(although the isomorphism need not be defined by θh). In particular,

dimHk
∆h

(X, C) = dimHk
∆(X, C) for all h > 0.

Proof. Since X is compact and ∆h is elliptic and self-adjoint, a standard consequence of Gårding’s
inequality (see e.g. [Dem97, VI]) yields the two-space orthogonal decomposition C∞

k (X, C) =
Hk

∆h
(X, C) ⊕ Im∆h, while this, together with the integrability property d2h = 0, further induces

the orthogonal splitting Im∆h = Im dh ⊕ Im d⋆h. The same consequence of Gårding’s inequality
ensures that ker∆h is finite-dimensional and that the images in C∞

k (X, C) of dh and d⋆h are closed.
□

3.5.2 The differentials in the Frölicher spectral sequence

Let X be a compact complex manifold with dimCX = n. Recall the construction of the Frölicher
spectral sequence and the notation in §.1.2. For the sake of simplicity, we will write Ep, q

r instead of
Ep, q
r (X). On the 0-th page, we have the Dolbeault complex:

. . .
d0−→ Ep, q−1

0
d0−→ Ep, q

0
d0−→ Ep, q+1

0
d0−→ . . . .

Thus, in every bidegree (p, q), the inclusions Im dp, q−1
0 ⊂ ker dp, q0 ⊂ Ep, q

0 induce (infinitely many,
non-canonical) isomorphisms:
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C∞
p, q(X, C) ≃ Im dp, q−1

0 ⊕ Ep, q
1 ⊕ (Ep, q

0 / ker dp, q0 ), (3.51)

where d0 = dp, q0 : Ep, q
0 −→ Ep, q+1

0 is the differential d0 acting in bidegree (p, q) and the Ep, q
1 :=

ker dp, q0 /Im dp, q−1
0 = Hp, q

∂̄
(X, C) are the Dolbeault cohomology groups of X.

On the first page E1 of the FSS, we have the type-(1, 0) differentials d1:

. . .
d1−→ Ep−1, q

1
d1−→ Ep, q

1
d1−→ Ep+1, q

1
d1−→ . . . .

induced in cohomology by ∂ (i.e. d1({α}∂̄) := {∂α}∂̄). Thus, in every bidegree (p, q), the inclusions
Im dp−1, q

1 ⊂ ker dp, q1 ⊂ Ep, q
1 induce (infinitely many, non-canonical) isomorphisms:

Ep, q
1 ≃ Im dp−1, q

1 ⊕ Ep, q
2 ⊕ (Ep, q

1 / ker dp, q1 ), (3.52)

where dp, q1 is d1 acting in bidegree (p, q), while the spaces Ep, q
2 := ker dp, q1 /Im dp−1, q

1 form the
cohomology of the page E1.

The remaining pages are constructed inductively: the differentials dr = dp, qr : Ep, q
r −→ Ep+r, q−r+1

r

are of type (r, −r + 1) for every r, while the spaces Ep, q
r := ker dp, qr−1/Im dp−r+1, q+r−2

r−1 on the rth

page are defined as the cohomology of the previous page Er−1. On every page Er and in every
bidegree (p, q), the inclusions Im dp−r, q+r−1

r ⊂ ker dp, qr ⊂ Ep, q
r induce (infinitely many, non-canonical)

isomorphisms:

Ep, q
r ≃ Im dp−r, q+r−1

r ⊕ Ep, q
r+1 ⊕ (Ep, q

r / ker dp, qr ), (3.53)

where Ep, q
r+1 := ker dp, qr /Im dp−r, q+r−1

r .
It is worth stressing that (3.51), (3.52) and (3.53) only assert that the vector spaces on either

side of ≃ are isomorphic, but no choice of preferred isomorphism is possible at this stage.

(I) Identification of the dr’s with restrictions of d

Summing up (3.51), (3.52), (3.53) over r = 0, . . . , N − 1, we get (infinitely many, non-canonical)
isomorphisms

C∞
p, q(X, C) ≃

N−1⊕
r=0

Im dp−r, q+r−1
r ⊕ Ep, q

∞ ⊕
N−1⊕
r=0

(Ep, q
r / ker dp, qr )

for every bidegree (p, q). Note that the isomorphisms (3.51), (3.52), (3.53) identify the spaces
Im dp−r, q+r−1

r , Ep, q
r (including for r = ∞) and Ep, q

r / ker dp, qr with certain subspaces of C∞
p, q(X, C).

However, these subspaces have not been specified yet since multiple choices (and no canonical choice)
are possible for the isomorphisms (3.51), (3.52), (3.53). These choices can only be made unique once
a Hermitian metric has been fixed on X. (See (II) below.)

Now, since C∞
k (X, C) = ⊕p+q=kC∞

p, q(X, C) for all k = 0, . . . , 2n, we get

C∞
k (X, C) ≃

d

��

⊕
0≤r≤N−1
p+q=k

Im dp−r, q+r−1
r ⊕

⊕
p+q=k

Ep, q
∞ ⊕

⊕
0≤r≤N−1
p+q=k

(Ep, q
r / ker dp, qr )

C∞
k+1(X, C) ≃

⊕
0≤r≤N−1
p+q=k

Im dp, qr ⊕
⊕

p′+q′=k+1

Ep′, q′
∞ ⊕

⊕
0≤r≤N−1
p+q=k

(Ep+r, q−r+1
r / ker dp+r, q−r+1

r ).
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Thus, under these isomorphisms, the operator d = d(k) : C∞
k (X, C) −→ C∞

k+1(X, C) identifies as

d(k) ≃
⊕

0≤r≤N−1
p+q=k

dp, qr , (3.54)

where the isomorphism dp, qr : Ep, q
r / ker dp, qr −→ Im dp, qr is the restriction of dr = dp, qr : Ep, q

r −→
Ep+r, q−r+1
r to the third piece on the r.h.s. of (3.53). The fact that dr is of type (r, −r+ 1) will play

a key role in the sequel.
On the other hand, summing up the splittings of C∞

p, q(X, C) over p ≥ s for any given s, we get

Aks :=
⊕
p≥s

p+q=k

C∞
p, q(X, C) ≃

⊕
p≥s

p+q=k

[N−1⊕
r=0

Im dp−r, q+r−1
r ⊕ Ep, q

∞ ⊕
N−1⊕
r=0

(Ep, q
r / ker dp, qr )

]
.

Lemma 3.5.10. (i) For every r and every k, let Ek
r :=

⊕
p+q=k

Ep, q
r . Then

dimEk
r =

∑
p+q=k

dimEp, q
r = bk +mk−1

r +mk
r , 0 ≤ r ≤ N, 0 ≤ k ≤ 2n, (3.55)

where we set mk
r :=

∑
l≥r

∑
p+q=k

dim (Ep, q
l / ker dp, ql ).

(ii) For every r and every k, let Lp, qr :=
⊕
l≥r

(Ep, q
l / ker dp, ql ) and Lkr :=

⊕
p+q=k

Lp, qr . Then, dimLkr =

mk
r (obvious) and, under the identifications defined by the isomorphisms (3.51), (3.52), (3.53), the

following inclusions hold:

d(Lp, qr ) ⊂ Ap+q+1
p+r , 0 ≤ r ≤ N, 0 ≤ p, q ≤ n, (3.56)

where d(Lp, qr ) := ⊕l≥rdp, ql (Ep, q
l / ker dp, ql ) in keeping with identification (3.54).

Proof. (i) For every fixed r, summing up the splittings (3.53) with l in place of r over l ≥ r and
then summing up over p+ q = k for every fixed k, we get

Ek
r ≃

⊕
p+q=k

Ep, q
∞ ⊕

⊕
l≥r

⊕
p+q=k

Im dp−l, q+l−1
l ⊕

⊕
l≥r

⊕
p+q=k

(Ep, q
l / ker dp, ql ).

Since Im dp−l, q+l−1
l ≃ Ep−l, q+l−1

l / ker dp−l, q+l−1
l for all p, q, l, if we set p′ := p− l and q′ := q + l − 1,

we have p′ + q′ = k − 1 when p+ q = k and the above isomorphism translates to

Ek
r ≃

⊕
p+q=k

Ep, q
∞ ⊕

⊕
l≥r

⊕
p′+q′=k−1

(Ep′, q′

l / ker dp
′, q′

l )⊕
⊕
l≥r

⊕
p+q=k

(Ep, q
l / ker dp, ql )

for every k. Now, dim ⊕p+q=k Ep, q
∞ = bk (the kth Betti number of X) thanks to (1.16), so taking

dimensions in the above isomorphism, we get (3.55).

(ii) Since dp, ql : Ep, q
l / ker dp, ql −→ Im dp, ql is an isomorphism of type (l, −l + 1) for all l, p, q, we

get for all l ≥ r:

d(Lp, qr ) =
⊕
l≥r

dp, ql (Ep, q
l / ker dp, ql ) and dp, ql (Ep, q

l / ker dp, ql ) ⊂ Ep+l, q−l+1
l ⊂ C∞

p+l, q−l+1 ⊂ A
p+q+1
p+r

under the identification of each space Ep+l, q−l+1
l with a subspace of C∞

p+l, q−l+1 defined by the iso-
morphisms (3.51), (3.52), (3.53). This proves (3.56). □



CHAPTER 3. HIGHER-PAGE HODGE THEORY OF COMPACT COMPLEX MANIFOLDS198

(II) Explicit description of the above identifications

We take this opportunity to point out an explicit description of the differentials dr in cohomology
and of their unique realisations induced by a given Hermitian metric on X. Recall that d acts as dr
on representatives of Er-classes (cf. (3.54)).

Every fixed Hermitian metric ω on X selects a unique realisation of each of the isomorphisms
(3.51), (3.52) and (3.53) and, implicitly, identifies each space Ep, q

r with a precise subspace Hp, q
r

(depending on ω) of C∞
p, q(X, C) via an isomorphism Ep, q

r ≃ Hp, q
r depending on ω. These harmonic

subspaces Hp, q
r ⊂ C∞

p, q(X, C) are constructed by induction on r ≥ 1 as follows.

Definition 3.5.11. Let Hp, q
1 ⊂ C∞

p, q(X, C) be the orthogonal complement for the L2
ω-norm of

Im dp, q−1
0 in ker dp, q0 . Due to (3.51), Hp, q

1 is isomorphic to Ep, q
1 . In every bidegree (p, q), the linear

map dp, q1 : Ep, q
1 −→ Ep+1, q

1 induces a linear map (denoted by the same symbol) dp, q1 : Hp, q
1 −→ Hp+1, q

1

via the isomorphisms Hp, q
1 ≃ Ep, q

1 and Hp+1, q
1 ≃ Ep+1, q

1 . Let Hp, q
2 ⊂ Hp, q

1 ⊂ C∞
p, q(X, C) be the or-

thogonal complement for the L2
ω-norm of Im dp−1, q

1 in ker dp, q1 (viewed as subspaces of Hp, q
1 ). Due to

(3.52), Hp, q
2 is isomorphic to Ep, q

2 . Continuing inductively, when the linear maps dp, qr : Ep, q
r −→

Ep+r, q−r+1
r have induced counterparts (denoted by the same symbol) dp, qr : Hp, q

r −→ Hp+r, q−r+1
r be-

tween the already constructed subspaces Hp, q
r ⊂ C∞

p, q(X, C) and Hp+r, q−r+1
r ⊂ C∞

p+r, q−r+1(X, C), we
let Hp, q

r+1 ⊂ Hp, q
r ⊂ C∞

p, q(X, C) be the orthogonal complement for the L2
ω-norm of Im dp−r, q+r−1

r in
ker dp, qr (viewed as subspaces of Hp, q

r ). Due to (3.53), Hp, q
r+1 is isomorphic to Ep, q

r+1.

Note that we have

Hp, q
1 = ker (∆′′ : C∞

p, q(X, C) −→ C∞
p, q(X, C)) = {u ∈ C∞

p, q(X, C) | ∂̄u = 0 and ∂̄⋆u = 0},
Hp, q

2 = ker (∆̃ : C∞
p, q(X, C) −→ C∞

p, q(X, C))
= {u ∈ C∞

p, q(X, C) | ∂̄u = 0, ∂̄⋆u = 0, p′′(∂u) = 0 and p′′∂⋆u = 0}, (3.57)

where ∆̃ = ∂p′′∂⋆ + ∂⋆p′′∂ +∆′′ is the pseudo-differential Laplacian of Definition 3.1.2.
Also note that standard Hodge theory (for the elliptic differential operator ∆′′) is used to ensure

that Im dp, q−1
0 is closed in C∞

p, q(X, C) and that Hp, q
1 is finite-dimensional. However, all the other

images Im dp−r, q+r−1
r are automatically closed since they are (necessarily finite-dimensional) vector

subspaces of a finite-dimensional vector space.
When the vector space C∞

p, q(X, C) is endowed with the L2-norm induced by ω, every subspace
Hp, q
r inherits the restricted norm. On the other hand, every space Ep, q

r has a quotient norm induced
by the L2

ω-norm. The isomorphisms Ep, q
r ≃ Hp, q

r constructed above are isometries when Ep, q
r and

Hp, q
r are endowed with the quotient, resp. L2 norms.

Conclusion 3.5.12. Let X be a compact complex manifold and let ω be any Hermitian metric on
X. Let · · · ⊂ Hp, q

r+1 ⊂ Hp, q
r ⊂ · · · ⊂ H

p, q
1 ⊂ C∞

p, q(X, C) be the subspaces of Definition 3.5.11 induced
by ω.

For every r and every bidegree (p, q), each class {α}Er ∈ Ep, q
r contains a unique representative

α ∈ Hp, q
r (necessarily satisfying condition (Pr)). For l ∈ {1, . . . , r − 1}, let ul ∈ C∞

p+l, q−l(X, C) be
the unique solutions with minimal L2

ω-norms of the equations:

∂̄α = 0, ∂α = ∂̄u1, ∂u1 = ∂̄u2, . . . , ∂ur−2 = ∂̄ur−1

constructed inductively from one another. The well-known Neumann formula yields:

u1 = ∆
′′−1∂̄⋆(∂α) and ul = ∆

′′−1∂̄⋆(∂ul−1) for l ∈ {2, . . . , r − 1}.
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In particular, the maps α 7→ u1 and ul−1 7→ ul are linear.
For all r, p, q, we define the linear operator

Tr = T p, qr : Hp, q
r −→ C∞

p+r, q−r+1(X, C), α 7→ Tr(α) := ∂ur−1.

Since Hp, q
r is finite-dimensional, Tr is bounded, so there exists a constant Cp, q

r > 0 such that

||Tr(α)|| = ||∂ur−1|| ≤ Cp, q
r ||α|| for all α ∈ Hp, q

r .

It is easy to see that Tr(α) need not belong to Hp+r, q−r+1
r when α ∈ Hp, q

r . If we let P p, q
r :

C∞
p, q(X, C) −→ Hp, q

r be the Lω-orthogonal projection onto Hp, q
r , we get

||(P p, q
r ◦ Tr)(α)|| = ||P p, q

r (∂ur−1)|| ≤ ||∂ur−1|| ≤ Cp, q
r ||α|| for all α ∈ Hp, q

r .

3.5.3 Use of the rescaled Laplacians in the study of the Frölicher spec-
tral sequence

In this subsection, we prove the main result of this section, namely

Theorem 3.5.13. Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every r ∈ N⋆
and every k = 0, . . . , 2n, the following identity holds:

dimCE
k
r = ♯{i | λki (h) ∈ O(h2r) as h ↓ 0}, (3.58)

where Ek
r := ⊕p+q=kEp, q

r is the direct sum of the spaces of total degree k on the rth page of the
Frölicher spectral sequence of X, while 0 ≤ λk1(h) ≤ λk2(h) ≤ · · · ≤ λki (h) ≤ . . . are the eigenvalues,
counted with multiplicities, of the rescaled Laplacian ∆h : C∞

k (X, C) −→ C∞
k (X, C) (= those of

∆ωh
: C∞

k (X, C) −→ C∞
k (X, C)) acting on k-forms. As usual, ♯ stands for the cardinal of a set.

This result and its proof are strongly inspired by the analogous result for foliations proved by
Álvarez López and Kordyukov in [ALK00]. However, to our knowledge, this particular form of the
result in the context of the Frölicher spectral sequence did not appear anywhere before [Pop17] and
is of independent interest.

As in [ES89], [GS91], [ALK00], we consider the spectrum distribution function associated with any
of the rescaled Laplacians ∆h, ∆ωh

in our context. Its definition and its study are made far simpler
in this setting than in those references by the manifold X being compact and by the Laplacians ∆′,
∆′′ being elliptic.

Notation 3.5.14. Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every k ∈
{0, . . . , n} and every constant λ ≥ 0, let Nk

h (λ) stand for the number of eigenvalues (counted with
multiplicities) of ∆h that are ≤ λ.

Replacing ∆h with ∆ωh
does not change the spectrum distribution function Nk

h : [0, +∞) −→ N
since ∆h and ∆ωh

have the same eigenvalues with the same multiplicities (cf. Corollary 3.5.8).
Theorem 3.5.13 can be reworded as ensuring the existence of a constant C > 0 independent of h
such that, for all r and k, we have

dimEk
r = Nk

h (Ch
2r) when 0 < h≪ 1. (3.59)
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(I) The Efremov-Shubin variational principle

The main technical ingredient we will need is the following variant of the variational principle proved
in a more general context in [ES89] and used extensively thereafter (e.g. [GS91], [ALK00]) in settings
different from ours. We adapt to our situation the result of [ES89].

Proposition 3.5.15. (see e.g. Efremov-Shubin [ES89]) Let (X, ω) be a compact Hermitian manifold
with dimCX = n. For every k = 0, . . . , 2n and every λ ≥ 0, the following identity holds

Nk
h (λ) = F k−1

h (λ) + bk + F k
h (λ), (3.60)

where bk is the kth Betti number of X and the function F k
h : [0, +∞) −→ N is defined by

F k
h (λ) = sup

L
dimL, (3.61)

where L ranges over the closed vector subspaces of the quotient space C∞
k (X, C)/ ker d on which the

operator d : C∞
k (X, C)/ ker d −→ C∞

k+1(X, C) induced by d : C∞
k (X, C) −→ C∞

k+1(X, C) satisfies
the following L2

ωh
-norm estimate:

||dζ||ωh
≤
√
λ ||ζ||ωh

, for every ζ ∈ L. (3.62)

(The understanding is that ||dζ||ωh
stands for the usual L2-norm induced by the metric ωh, while

||ζ||ωh
stands for the quotient norm induced on C∞

k (X, C)/ ker d by the L2
ωh
-norm.)

We will present a detailed proof of this statement along the lines of [ES89] with a few minor
simplifications afforded by our special setting where the manifold X is compact and the operator
∆h is elliptic. While a more general version for unbounded operators on L2 spaces was needed in
[ALK00], we stress that, in this context, we can confine ourselves to the case of operators on spaces
of C∞ differential forms.

The main step is the following statement (a version of the classical Min-Max Principle) that was
proved in a more general setting in [ES89].

Proposition 3.5.16. Let (X, ω) be a compact Hermitian manifold with dimCX = n. For an
arbitrary k ∈ {0, . . . , 2n}, let P : C∞

k (X, C) −→ C∞
k (X, C) be an elliptic, self-adjoint and non-

negative differential operator of order ≥ 1.
Then, for every λ ≥ 0, the spectrum distribution function Nk of P (i.e. Nk(λ) is defined to

be the number of eigenvalues of P , counted with multiplicities, that are ≤ λ) is given by the following
identities (in which the suprema are actually maxima):

Nk(λ) = sup
L∈L(k)

λ

dimL = sup
E∈P(k)

λ

TrE, (3.63)

where L(k)
λ stands for the set of closed vector subspaces L ⊂ C∞

k (X, C) such that

⟨⟨Pu, u⟩⟩ ≤ λ||u||2 for all u ∈ L,

while P(k)
λ stands for the set of all bounded linear operators E : C∞

k (X, C) −→ C∞
k (X, C) satisfying

the conditions:

(i) E2 = E = E⋆ (i.e. E is an orthogonal projection w.r.t. the L2
ω inner product);

(ii) ⟨⟨Pu, u⟩⟩ ≤ λ||u||2 for all u ∈ ImE.
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(In other words, E is the orthogonal projection onto one of the subspaces L ∈ L(k)
λ , so L = ImE for

some L ∈ L(k)
λ .)

Proof. The second identity in (3.63) follows at once from the fact that the dimension of any closed
subspace L ⊂ C∞

k (X, C) equals the trace of the orthogonal projection onto L. So, we only have to
prove the first identity in (3.63).

Since X is compact and P is elliptic, self-adjoint and non-negative, the spectrum of P is discrete
and consists of non-negative eigenvalues, while there exists a countable orthonormal (w.r.t. the
L2
ω-inner product) basis of C

∞
k (X, C) (and of the Hilbert space L2

k(X, C) of L2 k-forms) consisting
of eigenvectors of P . For every µ ≥ 0, let EP (µ) ⊂ C∞

k (X, C) be the eigenspace of P corresponding
to the eigenvalue µ (with the understanding that EP (µ) = {0} if µ is not an actual eigenvalue). The
spaces EP (µ) are finite-dimensional and consist of C∞ forms since P is assumed to be elliptic (hence
also hypoelliptic) and X is compact.

For every λ ≥ 0, let Lλ :=
⊕

0≤µ≤λ
EP (µ) ⊂ C∞

k (X, C). Thus, Lλ is finite-dimensional and

dimLλ = Nk(λ), while ⟨⟨Pu, u⟩⟩ ≤ λ ||u||2 for all u ∈ Lλ. Hence Lλ ∈ L(k)
λ , so Nk(λ) ≤ sup

L∈L(k)
λ

dimL.

To prove the reverse inequality, let λ ≥ 0 and let L ∈ L(k)
λ . The existence of an orthonormal

basis of eigenvectors implies the orthogonal direct-sum decomposition

C∞
k (X, C) =

⊕
0≤µ≤λ

EP (µ)⊕
⊕
µ>λ

EP (µ).

In particular, ⊕µ>λEP (µ) = kerEλ, where Eλ is the orthogonal projection onto ⊕0≤µ≤λEP (µ).
Now, ⟨⟨Pu, u⟩⟩ > λ||u||2 for all u ∈ ⊕µ>λEP (µ) \ {0}, while ⟨⟨Pu, u⟩⟩ ≤ λ||u||2 for all u ∈ L.

So, L ∩ kerEλ = L ∩ ⊕µ>λEP (µ) = {0}. This implies that the restriction

Eλ|L : L −→ ImEλ =
⊕

0≤µ≤λ

EP (µ)

is injective. In particular, dimL ≤ dim ⊕0≤µ≤λEP (µ) = Nk(λ). Since L has been chosen arbitrarily

in L(k)
λ , we conclude that sup

L∈L(k)
λ

dimL ≤ Nk(λ) and we are done. □

The second step towards proving Proposition 3.5.15 is the standard 3-space decomposition used
in Hodge theory. For every k = 0, . . . , 2n, the operator ∆ωh

: C∞
k (X, C) −→ C∞

k (X, C) is elliptic
and since the manifold X is compact and d2 = 0, we have the L2

ωh
-orthogonal decomposition:

C∞
k (X, C) = Hk

∆ωh
(X, C)⊕ Ek(X, C)⊕ E⋆

k(X, C), where ker d = Hk
∆ωh

(X, C)⊕ Ek(X, C),
(3.64)

and where Hk
∆ωh

(X, C) is the kernel of ∆ωh
: C∞

k (X, C) −→ C∞
k (X, C), Ek(X, C) := Im (d :

C∞
k−1(X, C) −→ C∞

k (X, C)) and E⋆
k(X, C) := Im (d⋆ωh

: C∞
k+1(X, C) −→ C∞

k (X, C)) .
Moreover, each of the three subspaces into which C∞

k (X, C) splits in (3.64) is ∆ωh
-invariant,

i.e.

∆ωh
(Hk

∆ωh
(X, C)) ⊂ Hk

∆ωh
(X, C), ∆ωh

(Ek(X, C)) ⊂ Ek(X, C), ∆ωh
(E⋆

k(X, C)) ⊂ E⋆
k(X, C)

because ∆ωh
commutes with d and with d⋆ωh

. The invariance implies that an L2
ωh
-orthonormal

basis {eki (h)}i∈N⋆ of C∞
k (X, C) consisting of eigenvectors for ∆ωh

(whose existence follows from
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the standard elliptic theory) can be chosen such that each eki (h) belongs to one and only one of
the subspaces Hk

∆ωh
(X, C), Ek(X, C) and E⋆

k(X, C). Let 0 ≤ λk1(h) ≤ · · · ≤ λki (h) ≤ . . . be the

corresponding eigenvalues, counted with multiplicities, of the rescaled Laplacian ∆h : C
∞
k (X, C) −→

C∞
k (X, C) (= those of ∆ωh

: C∞
k (X, C) −→ C∞

k (X, C)). Thus, ∆ωh
eki (h) = λki (h) e

k
i (h) for all i.

Consequently, we can define functions F k
h : [0, +∞) −→ N and Gk

h : [0, +∞) −→ N by

F k
h (λ) := ♯{i | eki (h) ∈ E⋆

k(X, C) and λki (h) ≤ λ}

and
Gk
h(λ) := ♯{i | eki (h) ∈ Ek(X, C) and λki (h) ≤ λ}.

These definitions of F k
h and Gk

h(λ) are independent of the choice of orthonormal basis {eki (h)}i∈N⋆ of
C∞
k (X, C) satisfying the above properties.

Lemma 3.5.17. The functions F k
h and Gk

h are the spectrum distribution functions of the restrictions
∆ωh|E⋆

k(X,C) : E
⋆
k(X, C) −→ E⋆

k(X, C), resp. ∆ωh|Ek(X,C) : Ek(X, C) −→ Ek(X, C).
In other words, they are described as follows:

F k
h (λ) = sup

L∈L
′′(k)
λ

dimL, (3.65)

Gk
h(λ) = sup

L∈L
′(k)
λ

dimL

where L
′′(k)
λ stands for the set of closed vector subspaces L ⊂ E⋆

k(X, C) such that

||du||2ωh
≤ λ||u||2ωh

for all u ∈ L, (3.66)

and L
′(k)
λ stands for the set of closed vector subspaces L ⊂ Ek(X, C) such that

||d⋆ωh
u||2ωh

≤ λ||u||2ωh
for all u ∈ L. (3.67)

Proof. This is an immediate application of the variational principle of Proposition 3.5.16 to the
restrictions ∆ωh|E⋆

k(X,C) : E⋆
k(X, C)) −→ E⋆

k(X, C) and ∆ωh|Ek(X,C) : Ek(X, C)) −→ Ek(X, C).
Estimates (3.66) and (3.67) are consequences of the identity ⟨⟨∆ωh

u, u⟩⟩ωh
= ||du||2ωh

+ ||d⋆ωh
u||2ωh

and of the fact that d⋆ωh
u = 0 whenever u ∈ E⋆

k(X, C) (since Im d⋆ωh
⊂ ker d⋆ωh

) and that du = 0
whenever u ∈ Ek(X, C) (since Im d ⊂ ker d). □

The last ingredient we need is the following very simple observation.

Lemma 3.5.18. For every λ ≥ 0 and every k ∈ {−1, 0, . . . , 2n}, we have

F k
h (λ) = Gk+1

h (λ) with the understanding that F−1
h (λ) = G2n+1

h (λ) = 0.

Proof. We know from the orthogonal decompositions (3.64) that the restriction of d to E⋆
k(X, C) is

injective, so
d|E⋆

k(X,C) : E
⋆
k(X, C) −→ Ek+1(X, C)

is an isomorphism. Moreover, d∆ωh
= ∆ωh

d, so whenever ∆ωh
ui = λki (h)ui, we get ∆ωh

(dui) =
λki (h) (dui). Combined with the above isomorphism, with the invariance of E⋆

k(X, C) under ∆ωh
and

with the definitions of F h
k (λ) and G

h
k+1(λ), this implies the contention. □.
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Proof of Proposition 3.5.15. Putting together (3.64), the definitions of F k
h (λ) and Gk

h(λ) and the
fact that the Hodge isomorphism Hk

∆ωh
≃ Hk

DR(X, C) (which follows at once from (3.64)) implies

bk = dimHk
∆ωh

, we get

Nk
h (λ) = bk +Gk

h(λ) + F k
h (λ)

for all k and all λ ≥ 0. Using Lemma 3.5.18, this is equivalent to (3.60).
On the other hand, the descriptions (3.65) and (3.66) of F k

h (λ) coincide with the descriptions
(3.61) and (3.62) thanks to the isomorphism E⋆

k(X, C) ≃ C∞
k (X, C)/ ker d, which is another conse-

quence of the decompositions (3.64). □

(II) Metric independence of asymptotics

Although the following statement has no impact on either the statement of Theorem 3.5.13 or its
proof, we pause briefly to show, exactly as in the foliated case of [ALK00], that the asymptotics of
the eigenvalues λki (h) and of the spectrum distribution function Nk

h as h ↓ 0 depend only on the
complex structure of X. The proof is an easy application of the Variational Principle of Proposition
3.5.15.

Proposition 3.5.19. The asymptotics of the λki (h)’s and of Nk
h as h ↓ 0 are independent of the

choice of Hermitian metric ω.

Proof. We adapt to our setting the proof of the corresponding result in [ALK00]. Let ω and ω′ be
two Hermitian metrics on X. They induce, respectively, rescaled metrics (ωh)h>0 and (ω′

h)h>0. Let
N

′k
h (λ) = F

′k−1
h (λ) + bk + F

′k
h (λ) be the spectrum distribution function associated with the rescaled

Laplacian ∆ω′
h
: C∞

k (X, C) −→ C∞
k (X, C), written as in (3.60).

Since X is compact, there exists a constant C > 0 such that the respective L2-norms satisfy the
following inequalities in every bidegree (p, q):

1

C
|| ||ω ≤ || ||ω′ ≤ C || ||ω, hence

1

C
|| ||ωh

≤ || ||ω′
h
≤ C || ||ωh

on L2
p, q(X, C) for every h > 0.

The constant C is independent of h > 0 thanks to Formula 3.5.2.
Hence, for every ζ ∈ C∞

k (X, C)/ ker d such that ||dζ||ωh
≤
√
λ ||ζ||ωh

, we get ||dζ||ω′
h
≤
√
C4λ |ζ||ω′

h
.

Thanks to Proposition 3.5.15, this implies that

F k
h (λ) ≤ F

′k
h (C4λ), λ ≥ 0, h > 0.

By symmetry, we also get F
′k
h (λ) ≤ F k

h (C
4λ), so putting the last two inequalities together, we get

F
′k
h (C−4λ) ≤ F k

h (λ) ≤ F
′k
h (C4λ), λ ≥ 0, h > 0.

The proof is complete. □

(III) Proof of the inequality “≤” in Theorem 3.5.13

We are now in a position to prove the following

Theorem 3.5.20. Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every r and
every k = 0, . . . , 2n, the following inequality holds:

dimEk
r ≤ ♯{i | λki (h) ∈ O(h2r) as h ↓ 0}. (3.68)
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Proof. We have to prove the existence of a uniform constant C > 0 such that dimEk
r ≤ Nk

h (Ch
2r)

for all r, k and all 0 < h≪ 1. Recall the following facts:

(i) dimEk
r = bk+m

k−1
r +mk

r , where m
k
r := dimLkr and L

k
r :=

⊕
p+q=k

Lp, qr =
⊕

p+q=k

⊕
l≥r

(Ep, q
l / ker dp, ql )

(proved in (3.55) of Lemma 3.5.10);

(ii) Nk
h (λ) = bk + F k−1

h (λ) + F k
h (λ) for all λ ≥ 0

(cf. (3.60) of Proposition 3.5.15).
Thus, it suffices to prove that

mk
r ≤ F k

h (Ch
2r) for all 0 < h≪ 1, (3.69)

for a uniform constant C > 0 and for all r and k.
Now, thanks to the definition (3.61) of F k

h , to prove (3.69) it suffices to prove that Lkr is one
of the subspaces of C∞

k (X, C)/ ker d contributing to the definition of F k
h (Ch

2r) for some uniform
constant C > 0. In other words, it suffices to prove that there exists C > 0 such that

||dζ||ωh
≤
√
C hr ||ζ||ωh

, for all ζ ∈ Lkr and all 0 < h≪ 1. (3.70)

Meanwhile, every ζ ∈ Lkr =
⊕

p+q=k

Lp, qr splits uniquely as ζ =
∑

p+q=k ζ
p, q with ζp, q ∈ Lp, qr for all p, q.

Thus, it suffices to prove that, for a uniform constant C > 0, we have

||dζp, q||ωh
≤
√
C hr ||ζp, q||ωh

, for all p, q, all ζp, q ∈ Lp, qr and all 0 < h≪ 1. (3.71)

This holds mainly because dr is of type (r, −r + 1), so dr increases the holomorphic degree by
r and thus the norm | |ωh

brings out an extra factor hr. Specifically, for every ζp, q ∈ Lp, qr , (3.56)
of Lemma 3.5.10 yields dζp, q ∈ d(Lp, qr ) ⊂ Ap+q−1

p+r . Therefore, the holomorphic degree of dζp, q is
≥ p+ r, so from Formula 3.5.2 we get

||dζp, q||ωh
≤ hp+r

hn
||dζp, q||ω for all p, q, all ζp, q ∈ Lp, qr and all 0 < h < 1.

Now, Lp, qr is a finite-dimensional vector subspace of C∞
k (X, C)/ ker d, so there exists a constant Cr >

0 (depending on r, p, q, but independent of h) such that ||dζp, q||ω ≤ Cr ||ζp, q||ω for all ζp, q ∈ Lp, qr .
Meanwhile, Formula 3.5.2 tells us again that ||ζp, q||ω = (hn/hp) ||ζp, q||ωh

, so putting the last three
relations together, we get

||dζp, q||ωh
≤ Cr h

r ||ζp, q||ωh
for all p, q, all ζp, q ∈ Lp, qr and all 0 < h < 1.

This proves (3.71) after setting C := max 0≤r≤N
0≤p,q≤n

C2
r > 0.

The proof is complete. □

Note that Lkr is a vector space of classes of cohomology classes, rather than of differential forms,
so what is meant by Lkr in the above proof is its image in C∞

k (X, C)/ ker d under the isometries
explained in (II) of §.3.5.2. We can use these isometries, the identification of d acting on Hp, q

r with
dr and Conclusion 3.5.12 in the following way to make the above proof even more explicit. If we
choose ζp, q to be the ωh-harmonic representative of its class (also denoted by ζp, q) and to play the
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role of α of Conclusion 3.5.12, we can re-write the above inequalities in a more detailed form as
follows:

||dζp, q||ωh
= ||(P (∂ur−1)||ωh

≤ hp+r

hn
||(P ◦ T )(ζp, q)||ω

≤ hp+r

hn
Cr ||ζp, q||ω = Cr h

r||α||ωh
,

where P and T are the linear maps P p, q
r and T p, qr (with indices removed) of Conclusion 3.5.12 that

was used above, while || ||ωh
stands for the L2

ωh
-norm when applied to a form and for the induced

quotient norm when applied to a class.

(IV) Preliminaries to the proof of the inequality “≥” in Theorem 3.5.13

We will need a few simple observations.

Lemma 3.5.21. Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every bidegree
(p, q) and every (p, q)-form u on X, the following identities hold:

⟨⟨∆hu, u⟩⟩ω = h2(n−p) ⟨⟨∆ωh
u, u⟩⟩ωh

= h2(n−p) (||du||2ωh
+ ||d⋆ωh

u||2ωh
). (3.72)

Proof. The latter identity is obvious, so we will only prove the former one. Since u is of pure type,
(3.47) yields the first identity below, while the second identity follows from Formula 3.5.2:

⟨⟨∆hu, u⟩⟩ω = h2 ⟨⟨∆′u, u⟩⟩ω + ⟨⟨∆′′u, u⟩⟩ω = h2 h2(n−p) ⟨⟨∆′u, u⟩⟩ωh
+ h2(n−p) ⟨⟨∆′′u, u⟩⟩ωh

= h2(n−p) ⟨⟨∆ωh
u, u⟩⟩ωh

.

The last identity followed again from (3.47). □

Lemma 3.5.22. Let u ∈ C∞
p, q(X, C) be an arbitrary form. Considering the splitting d = d(k) =⊕

0≤r≤N−1
p+q=k

dp, qr : C∞
k (X, C) −→ C∞

k+1(X, C) of the operator d (see (3.54)) and the splitting

u =
N−1∑
r=0

ur + ker d, implying du =
N−1∑
r=0

drur,

with ur ∈ Ep, q
r / ker dp, qr (see §.3.5.2 and recall that dr : E

p, q
r / ker dp, qr −→ Im dp, qr ⊂ C∞

p+r, q−r+1(X, C)
is an isomorphism), the following identity holds:

h2(n−p) ||du||2ωh
=

N−1∑
r=0

h2r ||drur||2ω for all h > 0. (3.73)

Proof. Since dr is of type (r, −r + 1), drur is of type (p + r, q − r + 1), so the drur’s are mutually
orthogonal (w.r.t. any metric) when r varies. We get

||du||2ωh
=

N−1∑
r=0

||drur||2ωh
=

N−1∑
r=0

h2(p+r)

h2n
||drur||2ω,

where for the last identity we used Formula 3.5.2. □
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Lemma 3.5.23. For every r and every bidegree (p, q), the formal adjoints of dr w.r.t. the metrics
ωh and ω compare as follows:

(dr)
⋆
ωh

= h2r (dr)
⋆
ω. (3.74)

Consequently, for every form u ∈ C∞
p, q(X, C), the following counterpart of Lemma 3.5.22 for the

adjoints holds. Considering the splitting (d(k))⋆ωh
=

⊕
0≤r≤N−1
p+q=k

(dp, qr )⋆ωh
: C∞

k+1(X, C) −→ C∞
k (X, C) of

the operator d⋆ and the splitting

u =
N−1∑
r=0

vr + ker d⋆ωh
, implying d⋆ωh

u =
N−1∑
r=0

(dr)
⋆
ωh
vr,

with vr ∈ Im dp−r, q+r−1
r (see (I) of §.3.5.2), the following identity holds:

h2(n−p) ||d⋆ωh
u||2ωh

=
N−1∑
r=0

h2r ||(dr)⋆ωvr||2ω for all h > 0. (3.75)

Proof. For every (p, q)-form v and every (p− r, q + r − 1)-form u, we have

h2(p−r)

h2n
⟨⟨(dr)⋆ωh

v, u⟩⟩ω = ⟨⟨(dr)⋆ωh
v, u⟩⟩ωh

= ⟨⟨v, dru⟩⟩ωh
=
h2p

h2n
⟨⟨v, dru⟩⟩ω =

h2p

h2n
⟨⟨(dr)⋆ωv, u⟩⟩ω.

This proves (3.74). Using the mutual orthogonality of the (dr)
⋆
ωh
vr’s (due to bidegree reasons) and

Formula 3.5.2, we get

||d⋆ωh
u||2ωh

=
N−1∑
r=0

||(dr)⋆ωh
vr||2ωh

=
N−1∑
r=0

h2(p−r)

h2n
||(dr)⋆ωh

vr||2ω =
N−1∑
r=0

h2(p−r)

h2n
h4r ||(dr)⋆ωvr||2ω.

This proves (3.75). □

Putting together (3.72), (3.73) and (3.75), we get

Corollary 3.5.24. Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every bidegree
(p, q) and every (p, q)-form u on X, the following identity holds:

⟨⟨∆hu, u⟩⟩ω =
N−1∑
r′=0

h2r
′ ||dr′ur′||2ω +

N−1∑
r′=0

h2r
′ ||(dr′)⋆ωvr′ ||2ω,

where u splits uniquely (cf. (I) of §.3.5.2) as

u =
N−1∑
r′=0

ur′ + ker d =
N−1∑
r′=0

vr′ + ker d⋆ =
N−1∑
r′=0

ur′ +
N−1∑
r′=0

vr′ + w

with ur′ ∈ Ep, q
r′ / ker d

p, q
r′ , vr′ ∈ Im dp−r

′, q+r′−1
r′ and w ∈ Ep, q

∞ .
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(V) Proof of the inequality “≥” in Theorem 3.5.13

Following again the analogy with the foliated case of [ALK00], we will actually prove a stronger
statement from which the following result will follow as a corollary.

Theorem 3.5.25. Let (X, ω) be a compact Hermitian manifold with dimCX = n. For every r and
every k = 0, . . . , 2n, the following inequality holds:

dimEk
r ≥ ♯{i | λki (h) ∈ O(h2r) as h ↓ 0}. (3.76)

The first main ingredient we will use is the pseudo-differential Laplacian

∆̃ = ∂p′′∂⋆ + ∂⋆p′′∂ +∆′′ : C∞
p, q(X, C) −→ C∞

p, q(X, C)
defined in arbitrary bidegree (p, q) and introduced in Definition 3.1.2, where p′′ : C∞

p, q(X, C) −→
ker∆′′ is the orthogonal projection (w.r.t. the L2

ω-norm) onto the ∆′′-harmonic subspace of C∞
p, q(X, C).

The pseudo-differential Laplacian ∆̃ gives a Hodge theory for the second page of the Frölicher spec-
tral sequence in the sense that there is a Hodge isomorphism

Ep, q
2

≃−→ Hp, q

∆̃
(X, C) := ker(∆̃ : C∞

p, q(X, C) −→ C∞
p, q(X, C)) for all p, q = 0, . . . , n. (3.77)

Note that (p′′)2 = p′′ = (p′′)⋆, so ∂p′′∂⋆ = (p′′∂⋆)⋆(p′′∂⋆) and ∂⋆p′′∂ = (p′′∂)⋆(p′′∂). Thus, ∆̃ is
a sum of non-negative operators, so its kernel is the intersection of the respective kernels. Since
ker(A⋆A) = kerA for any operator A, we get

ker ∆̃ = ker(p′′∂) ∩ ker(p′′∂⋆) ∩ ker ∂̄ ∩ ker ∂̄⋆.

The second main ingredient we will use is the following lower estimate of the rescaled Laplacian
∆h. It is the analogue in our context of a result in [ALK00].

Lemma 3.5.26. Let (X, ω) be a compact Hermitian manifold with dimCX = n. There exists a
constant C > 0 such that the following inequality of linear operators holds on differential forms of
any degree k = 0, . . . , 2n:

∆h ≥
3

4
∆′′ + h2∆′ − Ch2 for all h > 0,

where ∆′′ = ∂̄∂̄⋆ + ∂̄⋆∂̄ and ∆′ = ∂∂⋆ + ∂⋆∂ are the usual ∂̄- and ∂-Laplacians.

The coefficients 3/4 and 1 are not optimal, but they suffice for our purposes and the proof
provided below shows that they can be made optimal if this is desired.

Proof of Lemma 3.5.26. We know from (ii) of Lemma 3.5.7 that

∆h = ∆′′ + h2∆′ − h([τ, ∂̄⋆] + [τ ⋆, ∂̄]), (3.78)

where τ = τω := [Λ, ∂ω ∧ ·] is the zero-th order torsion operator of type (1, 0) associated with ω.
For any form u, the first-order terms on the r.h.s. of (3.78) are easily estimated using the

Cauchy-Schwarz inequality as follows:

h |⟨⟨[τ, ∂̄⋆]u+ [τ ⋆, ∂̄]u, u⟩⟩| = h |⟨⟨∂̄⋆u, τ ⋆u⟩⟩+ ⟨⟨τu, ∂̄u⟩⟩+ ⟨⟨∂̄u, τu⟩⟩+ ⟨⟨τ ⋆u, ∂̄⋆u⟩⟩|
≤ 2h||τu|| ||∂̄u||+ 2h||τ ⋆u|| ||∂̄⋆u||

≤ 1

4
(||∂̄u||2 + ||∂̄⋆u||2) + 4h2 (||τu||2 + ||τ ⋆u||2)

≤ 1

4
⟨⟨∆′′u, u⟩⟩+ Ch2 ||u||2,
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where the constant C > 0 exists because the linear operators τ and τ ⋆ are of order zero, hence
bounded. In particular, we get the operator inequality −h([τ, ∂̄⋆] + [τ ⋆, ∂̄]) ≥ −1

4
∆′′ − Ch2 which,

alongside (3.78), proves the contention. □

We are now ready to state and prove a general result that will imply Theorem 3.5.25.

Theorem 3.5.27. Let (X, ω) be a compact Hermitian manifold with dimCX = n. Let k ∈
{0, . . . , 2n} and r ≥ 1 be fixed integers. Suppose there exist a sequence (hi)i∈N of constants hi > 0
such that hi ↓ 0 and a sequence (ui)i∈N of k-forms ui ∈ C∞

k (X, C) such that ||ui||ω = 1 for every i
and

⟨⟨∆hiui, ui⟩⟩ω ∈ o(h
2(r−1)
i ) as i→ +∞. (3.79)

Then, there exists a subsequence (uil)l∈N of (ui)i∈N such that (uil)l∈N converges in the L2
ω-topology to

some k-form u ∈ Hk
r := ⊕p+q=kHp, q

r ≃ Ek
r , where the Hp, q

r ⊂ C∞
p, q(X, C) are the “harmonic” vector

subspaces of Definition 3.5.11 induced by the metric ω.

Proof. • Case r = 1. In this case, Hypothesis (3.79) means that ⟨⟨∆hiui, ui⟩⟩ω −→ 0 as i → +∞.
Then also ⟨⟨∆hiui, ui⟩⟩ω + Ch2i −→ 0 as i→ +∞. Since, by Lemma 3.5.26, we have

⟨⟨∆hiui, ui⟩⟩ω + Ch2i ≥
3

4
⟨⟨∆′′ui, ui⟩⟩ω + h2i ⟨⟨∆′ui, ui⟩⟩ω ≥ 0 for all i ∈ N,

we get

(i) ⟨⟨∆′′ui, ui⟩⟩ω −→ 0 as i→ +∞ and (ii) h2i ⟨⟨∆′ui, ui⟩⟩ω −→ 0 as i→ +∞. (3.80)

Meanwhile, the ∂̄-Laplacian ∆′′ is elliptic and the manifold X is compact, so the Gårding in-
equality yields constants δ1, δ2 > 0 such that the first inequality below holds:

δ2 ||ui||W 1 ≤ ⟨⟨∆′′ui, ui⟩⟩ω + δ1 ||ui||ω ≤ C1, for all i ∈ N,

where || ||W 1 stands for the Sobolev normW 1 induced by the metric ω. The second inequality above
holds for some constant C1 > 0 since the quantity ⟨⟨∆′′ui, ui⟩⟩ω converges to zero (cf. (3.80)), hence
is bounded, and ||ui||ω = 1 by the hypothesis of Theorem 3.5.27.

Consequently, the sequence (ui)i∈N is bounded in the Sobolev space W 1 (a Hilbert space), so by
the Banach-Alaoglu Theorem there exists a subsequence (uil)l∈N that converges in the weak topology
of W 1 to some k-form u ∈ W 1. In particular, the following convergences hold in the weak topology
of distributions:

∂̄uil −→ ∂̄u and ∂̄⋆uil −→ ∂̄⋆u as l→ +∞.

On the other hand, ||∂̄ui||2+ ||∂̄⋆ui||2 = ⟨⟨∆′′ui, ui⟩⟩ω −→ 0 as i→ +∞, so ∂̄ui −→ 0 and ∂̄⋆ui −→ 0
in the L2-topology as i→ +∞. Comparing this with the above convergences in the weak topology
of distributions, we get

∂̄u = 0 and ∂̄⋆u = 0,

which, by (3.57), is equivalent to u ∈ ker (∆′′ : C∞
k (X, C) −→ C∞

k (X, C)) = Hk
1 ≃ Ek

1 .
Note that by the Rellich Lemma (asserting the compactness of the inclusion W 1 ↪→ L2), the

convergence of (uil)l∈N to u in the weak topology of W 1 implies that (uil)l∈N also converges in the
L2-topology to u. Moreover, the ellipticity of ∆′′ and the relation u ∈ ker∆′′ imply that u is C∞.
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• Case r = 2. In this case, Hypothesis (3.79) means that ⟨⟨∆hiui, ui⟩⟩ω ∈ o(h2i ) as i → +∞.
Since ⟨⟨∆hiui, ui⟩⟩ω = ||dhiui||2 + ||d⋆hiui||

2 = ||hi∂ui + ∂̄ui||2 + ||hi∂⋆ui + ∂̄⋆ui||2, this implies that

∂ui +
1

hi
∂̄ui −→ 0 and ∂⋆ui +

1

hi
∂̄⋆ui −→ 0 in the L2-topology, as i→ +∞. (3.81)

Since the orthogonal projection p′′ onto ker∆′′ is continuous w.r.t. the L2-topology and since p′′∂̄ = 0
and p′′∂̄⋆ = 0 (because Im ∂̄ ⊥ ker∆′′ and Im ∂̄⋆ ⊥ ker∆′′), an application of p′′ to (3.81) yields

p′′∂ui −→ 0 and p′′∂⋆ui −→ 0 in the L2-topology, as i→ +∞. (3.82)

On the other hand, we know from the discussion of the case r = 1 (whose weaker assumption
is still valid in the case r = 2) that there exists a subsequence (uil)l∈N that converges in the weak
topology of W 1 to some k-form u ∈ W 1. Thus, ∂uil −→ ∂u ∈ L2 in the weak topology of L2 as
l→ +∞. This means that

⟨⟨∂uil , v⟩⟩ω −→ ⟨⟨∂u, v⟩⟩ω for all v ∈ L2, hence ⟨⟨∂uil , p′′v⟩⟩ω −→ ⟨⟨∂u, p′′v⟩⟩ω for all v ∈ L2,

as l → +∞. (The second convergence follows from the first since ||p′′v|| ≤ ||v|| for all v ∈ L2, so
p′′(L2) ⊂ L2.) Now, p′′ is self-adjoint, so the last convergence translates to

⟨⟨p′′∂uil , v⟩⟩ω −→ ⟨⟨p′′∂u, v⟩⟩ω as l→ +∞, for all v ∈ L2.

This means that p′′∂uil converges to p′′∂u in the weak topology of L2 as l → +∞. However,
we know from (3.82) that p′′∂uil converges to 0 in the L2-topology. Hence p′′∂u = 0. The same
argument run with ∂⋆ in place of ∂ yields that p′′∂⋆u = 0. On the other hand, we know from the
discussion of the case r = 1 that u ∈ ker ∂̄ ∩ ker ∂̄⋆ = ker∆′′, so we get

u ∈ ker(p′′∂) ∩ ker(p′′∂⋆) ∩ ker ∂̄ ∩ ker ∂̄⋆ = Hk
2 ≃ Ek

2

after remembering the description (3.57) of the spaces Hp, q
2 and that Hk

2 = ⊕p+q=kHp, q
2 .

• Case r ≥ 3. Using the information from the first two cases and from subsection §.??, this last
case can easily be dealt with as follows.

For each of the k-forms ui given by the hypotheses of Theorem 3.5.27, we consider the splitting

ui =
N−1∑
r′=0

u
(i)
r′ +

N−1∑
r′=0

v
(i)
r′ + wi,

with u
(i)
r′ ∈ E

p, q
r′ / ker d

p, q
r′ , v

(i)
r′ ∈ Im dp−r

′, q+r′−1
r′ and wi ∈ Ep, q

∞ , and the corresponding splitting

⟨⟨∆hiui, ui⟩⟩ω =
N−1∑
r′=0

h2r
′

i ||dr′u
(i)
r′ ||

2
ω +

N−1∑
r′=0

h2r
′

i ||(dr′)⋆ωv
(i)
r′ ||

2
ω

obtained in Corollary 3.5.24
On the other hand, (3.79) ensures that ⟨⟨∆hiui, ui⟩⟩ω ∈ o(h

2(r−1)
i ) as i → +∞. Together with

the above identity, this implies the following convergences in the L2
ω-norm as i→ +∞:

dr′u
(i)
r′ −→ 0 and (dr′)

⋆
ωv

(i)
r′ −→ 0 for every r′ ∈ {0, . . . , r − 1}.
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We even get

1

hr−r
′−1

i

dr′u
(i)
r′ −→ 0 and

1

hr−r
′−1

i

(dr′)
⋆
ωv

(i)
r′ −→ 0 for every r′ ∈ {0, . . . , r − 1}.

Defining in an ad hoc way a “formal” Laplacian by ∆formal
r′ := dr′(dr′)

⋆
ω + (dr′)

⋆
ωdr′ , we get that the

limit u of a subsequence of (ui)i∈N lies in

ker

(
∆formal
r−1 :

⊕
p+q=k

Ep, q
r−1 −→

⊕
p+q=k

Ep, q
r−1

)
≃ Hk

r ≃ Ek
r

and we are done. □

Proof of Theorem 3.5.25. It is an immediate consequence of Theorem 3.5.27. Indeed, fix any r ∈ N⋆
and k ∈ {0, . . . , 2n} and suppose that inequality (3.76) does not hold. Then, the reverse strict
inequality holds, so there exists a sequence (hi)i∈N of positive constants such that hi ↓ 0 when
i→ +∞ and a sequence (ui)i∈N of eigenvectors for the Laplacians ∆hi acting on k-forms such that

||ui||ω = 1, ui ⊥ Hk
r for all i and ⟨⟨∆hiui, ui⟩⟩ ∈ o(h

2(r−1)
i ) as i→ +∞.

Thanks to Theorem 3.5.27, there exists a subsequence (uil)l∈N of (ui)i∈N such that (uil)l∈N con-
verges in the L2

ω-topology to some k-form u ∈ Hk
r ≃ Ek

r . However, the form u is orthogonal to Hk
r

since ui ⊥ Hk
r for all i and the orthogonality property is preserved in the limit. Since ||u||ω = 1

(because ||ui||ω = 1 for all i), u ̸= 0, so u cannot be at once orthogonal to and a member of Hk
r .

This is a contradiction. □



Chapter 4

Special Hermitian Metrics on Compact
Complex Manifolds

Let X be a compact complex manifold with dimCX = n. As already stated in §.1.1.1, a Hermitian
metric on X identifies with a C∞ positive definite (1, 1)-form ω on X. Hermitian metrics exist
on every X. However, if an extra (closedness or exactness) condition is imposed on ω, metrics of
the resulting nature may not exist. When they do, they impose a certain kind of geometry on the
underlying manifold X. The purpose of this chapter is to study the geometry of compact complex
manifolds X that admit one of a series of special Hermitian metrics that will be specified.

Three different kinds of metrics ω satisfying a condition in bidegree (1, 1), resp. in bidegree
(n − 1, n − 1), are given on the first, resp. second, line in the following picture. The implications
among these conditions are also indicated. These metrics will be analysed one by one in separate
sections of this chapter.

dω = 0 =⇒ ∃ ρ0, 2 ∈ C∞
0, 2(X, C) s.t. =⇒ ∂∂̄ω = 0

d(ρ0, 2 + ω + ρ0, 2) = 0
(ω is Kähler) (ω is Hermitian-symplectic) (ω is SKT)

=⇒

(P )

dωn−1 = 0 =⇒ ∃ Ωn−2, n ∈ C∞
n−2, n(X, C) s.t. =⇒ ∂∂̄ωn−1 = 0

d(Ωn−2, n + ωn−1 + Ωn−2, n) = 0
(ω is balanced) (ω is strongly Gauduchon (sG)) (ω is Gauduchon).

The manifoldX is called Kähler, Hermitian-symplectic (H-S), SKT, balanced, strongly Gauduchon
(sG) if it carries a Hermitian metric ω of the corresponding type. Meanwhile, Gauduchon metrics
always exist on any X by [Gau77a] (see Theorems 4.1.2 and 4.1.7).

The classical Serre duality between the Dolbeault cohomology groupsH1, 1

∂̄
(X, C) andHn−1, n−1

∂̄
(X, C),

as well as its analogues between:

(i) H1, 1
BC(X, C) and H

n−1, n−1
A (X, C) (see Theorem 1.1.15);

(ii) E1, 1
r (X) and En−1, n−1

r (X) for every r ≥ 2 (see Theorems 3.2.1 and 3.2.3);

(iii) E1, 1
r,BC(X) and En−1, n−1

r, A (X) (see Theorem 3.4.11);

suggest an interplay between the bidegrees (1, 1) and (n − 1, n − 1) at the level of the special

211
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Hermitian metrics featuring in picture (P). This duality interplay will be investigated in the course
of this chapter.

The relationship between the bidegrees (1, 1) and (n−1, n−1) is also expressed by the following
simple observation of Michelsohn’s in linear algebra asserting that every positive definite (n−1, n−1)-
form admits a unique positive definite (n− 1)-st root. This is a purely pointwise statement, so any
closedness or exactness properties the (n − 1, n − 1)-form may have are not inherited by its root.
The proof will show that the positive definiteness assumption cannot be relaxed to semi-positivity.

Lemma 4.0.1. ([Mic82, p.279-280]) Let X be a complex n-dimensional manifold. For every positive
definite form Ω ∈ C∞

n−1, n−1(X, C) there exists a unique positive definite form ω ∈ C∞
1, 1(X, C) such

that
ωn−1 = Ω.

Proof. The result being pointwise, we fix an arbitrary point x0 ∈ X and choose local holomorphic
coordinates z1, . . . , zn about x0 such that

Ω =
n∑
j=1

Ωj
̂idzj ∧ dz̄j at x0,

where ̂idzj ∧ dz̄j stands for the product of all the (1, 1)-forms idzk∧dz̄k except the one corresponding
to k = j. The positive definiteness of Ω is equivalent to Ωj > 0 for every j = 1, . . . , n.

We wish to find a positive definite (1, 1)-form

ρ =
n∑
j=1

λj idzj ∧ dz̄j at x0,

such that (1/(n − 1)!) ρn−1 = Ω at x0. The positive definiteness of ρ amounts to λj > 0 for every
j = 1, . . . , n. Since

ρn−1

(n− 1)!
=

n∑
j=1

λ1 . . . λn
λj

̂idzj ∧ dz̄j at x0,

the condition (1/(n− 1)!) ρn−1 = Ω at x0 is equivalent to the system of equations:

λ1 . . . λn
λj

= Ωj, j ∈ {1, . . . , n},

whose unique solution is

λj =
(Ω1 . . .Ωn)

1/(n−1)

Ωj

, j ∈ {1, . . . , n}.

□

Thanks to Lemma 4.0.1, we will sometimes identify an (n − 1, n − 1)-form Ω > 0 with the
(1, 1)-form ω > 0 that is its (n− 1)-st root.

4.1 Gauduchon metrics

These metrics were introduced in [Gau77a] under the name of metrics with vanishing excentricity.



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS213

Definition 4.1.1. Let X be a compact complex manifold with dimCX = n. A C∞ positive definite
(1, 1)-form ω on X is said to be a Gauduchon metric if ∂∂̄ωn−1 = 0.

We will present two points of view on the existence of these metrics. The weaker statement
of §.4.1.1 suffices in many applications, but Gauduchon’s stronger theorem of §.4.1.2 is of vital
importance in understanding the pervasiveness of Gauduchon metrics.

4.1.1 Existence of Gauduchon metrics on manifolds

The fundamental fact of life about Gauduchon metrics is the following statement that is a special
case of Gauduchon’s main result in [Gau77a] presented as Theorem 4.1.7 below.

Theorem 4.1.2. Every compact complex manifold carries Gauduchon metrics.

This result follows at once from the following

Lemma 4.1.3. Let X be a compact complex manifold. Then, X carries a Gauduchon metric if and
only if there is no non-zero ∂∂̄-exact positive current T of bidegree (1, 1) on X.

Proof of Theorem 4.1.2 granted that Lemma 4.1.3 has been proved. We will show that a current as
in Lemma 4.1.3 never exists. Suppose there exists a non-zero positive (1, 1)-current T = i∂∂̄φ ≥ 0
on X, where φ is a distribution. Since X is compact, the maximum principle implies that φ is a
constant function on X, hence T = 0, a contradiction. □

Proof of Lemma 4.1.3. Let n := dimCX.

• We will first prove that a Gauduchon metric ω and a non-zero ∂∂̄-exact positive (1, 1)-current
T = i∂∂̄φ ≥ 0 cannot simultaneously exist on X, where φ is a distribution. This will prove one of
the implications in the equivalence stated in Lemma 4.1.3. Indeed, if both ω and T existed, then∫

X

ωn−1 ∧ T =

∫
X

iφ ∂∂̄ωn−1 = 0, (4.1)

since ∂∂̄ωn−1 = 0 by the Gauduchon property of ω. On the other hand, ω > 0 and T ≥ 0, so
ωn−1 ∧ T is a positive (i.e. non-negative) (n, n)-current on X. Therefore, property (4.1) forces it to
be the zero current, hence T = 0, a contradiction.

• To prove the reverse implication in the equivalence stated in Lemma 4.1.3, suppose there exists
no non-zero ∂∂̄-exact positive (1, 1)-current T on X. We will prove the existence of a Gauduchon
metric under this assumption.

The idea goes back to [Sul76] and it has been used in various contexts and with different details
by different authors, such as [HL83], [Mic83], [Pop09a]. It relies on a classical result in Functional

Analysis: the Hahn-Banach Separation Theorem. Consider the locally convex space D
′(1, 1)
R (X) of

real bidegree (1, 1) currents on X. On the one hand, the real ∂∂̄-exact currents of bidegree (1, 1)
form a closed vector subspace

A ⊂ D
′(1, 1)
R (X).

Meanwhile, if we fix a smooth, strictly positive (n − 1, n − 1)-form Θ > 0 on X, positive non-zero
(1, 1)-currents T on X can be normalised such that

∫
X

T ∧Θ = 1. These normalised positive (1, 1)-

currents form a compact (in the locally convex topology of weak convergence of currents) convex
subset

B ⊂ D
′(1, 1)
R (X).
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Now, the Hahn-Banach separation theorem for locally convex spaces guarantees the existence of

a linear functional F : D
′(1, 1)
R (X) → R vanishing identically on a given closed subset (hence F ≡ 0

on A) and assuming only positive values on a given compact subset (hence F > 0 on B) if the two
subsets are convex and do not intersect. In our case, A ∩ B = ∅, by assumption. Moreover, F > 0
on B if and only if F (T ) > 0 for every (not necessarily normalised) positive non-zero (1, 1)-current
T on X.

Meanwhile, the duality between (strictly positive), smooth (n − 1, n − 1)-forms and non-zero

(positive, i.e. non-negative) (1, 1)-currents on X entails that the linear functional F : D
′(1, 1)
R (X)→

R is defined by integration over X of the wedge product against a strictly positive form Ω ∈
C∞
n−1, n−1(X, R), namely F (T ) =

∫
X
T ∧ Ω for every T ∈ D

′(1, 1)
R (X). Moreover, by Lemma 4.0.1,

there is a unique positive definite smooth form ω of type (1, 1) on X such that Ω = ωn−1. Hence,
the property F = 0 on A translates to: ∫

X

ωn−1 ∧ i∂∂̄φ = 0

for every distribution φ on X. This further translates to ∂∂̄ωn−1 = 0. Therefore, ω is a Gauduchon
metric on X. □

4.1.2 Existence of Gauduchon metrics in conformal classes

The starting point of this discussion is the following simple notion.

Definition 4.1.4. Let ω be a Hermitian metric on a complex manifold X. The conformal class
of ω is the set of all Hermitian metrics of the form ω′ = φω, where φ : X −→ (0, +∞) is a
positive-valued C∞ function on X.

Two Hermitian metrics lying in the same conformal class are said to be conformally equiva-
lent.

We will need two versions of the maximum principle that are two facets of a same result. The
version for open subsets in Rm reads as follows.

Lemma 4.1.5. (see e.g. [LT95,7.2.8.]) Let U ⊂ Rm be an open connected subset, let aij, bi : U −→ R
be C∞ functions for i, j = 1, . . . ,m such that the matrix (aij(x))i, j is positive definite and symmetric
at every point x ∈ U .

If a C∞ function f : U −→ R satisfies the condition:

m∑
i,j=1

aij
∂2f

∂xi∂xj
+

m∑
i=1

bi
∂f

∂xi
≥ 0 on U

and if f has a relative maximum at some point x0 ∈ U , then f is constant in a neighbourhood of
x0. In particular, if f has an absolute maximum at some point x0 ∈ U , then f is constant on U .

The version for compact manifolds reads as follows. As usual, C∞(M) stands for the vector
space of smooth functions on a given manifold M .

Lemma 4.1.6. (see e.g. [Gau77a, II]) Let M be a compact connected manifold and let L :
C∞(M) −→ C∞(M) be a real elliptic differential operator of order two with C∞ coefficients and
with no zero-th order terms (i.e. L(1) = 0).

If, for a function f ∈ C∞(M), L(f) ≥ 0 at every point of M or L(f) ≤ 0 at every point of M ,
then L(f) ≡ 0 and f is constant on M .
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The main result of this subsection is the following fundamental theorem of Gauduchon’s. It
strengthens Theorem 4.1.2 by showing that not only does a Gauduchon metric exist on the am-
bient compact complex manifold, but that every Hermitian metric is conformally equivalent to a
Gauduchon metric.

Theorem 4.1.7. ([Gau77a, Théorème 1]) Let X be a compact complex manifold. Every conformal
class of Hermitian metrics on X contains a unique (up to multiplications by positive constants)
Gauduchon metric.

Proof. Let n = dimCX and fix an arbitrary Hermitian metric ω on X. We wish to prove the existence
of a unique (up to multiplications by positive constants) C∞ function ψ : X −→ (0, +∞) such that
the Hermitian metric ψω is Gauduchon (i.e. ∂∂̄(ψn−1ωn−1) = 0).

Consider the Laplace-type operator:

Pω := iΛω∂̄∂ : C∞(X, C) −→ C∞(X, C).

Its adjoint is the operator P ⋆
ω : C∞(X, C) −→ C∞(X, C) given by

P ⋆
ω(f) = i ⋆ω ∂̄∂

(
f

ωn−1

(n− 1)!

)
,

where ⋆ = ⋆ω is the Hodge star operator induced by ω. This follows at once from the formulae:
∂⋆ = − ⋆ ∂̄⋆, ∂̄⋆ = − ⋆ ∂⋆ and ⋆ω = ωn−1/(n− 1)!.

Our goal is to prove the existence of a unique (up to multiplications by positive constants) C∞

function φ : X −→ (0, +∞) such that φ ∈ kerP ⋆
ω . The Hermitian metric φ

1
n−1ω will then be

Gauduchon.
The operators Pω and P ⋆

ω are elliptic, ≥ 0, and of vanishing index (as the principal symbols
are self-adjoint). Moreover, kerPω = C (i.e. the constant functions) by the obvious inclusion
C ⊂ kerPω and the maximum principle of Lemma 4.1.6. Hence, by ellipticity and vanishing index,
dim kerP ⋆

ω = 1.

We will now give a sequence of lemmas describing the kernel of P ⋆
ω .

Lemma 4.1.8. ([Gau77a, (5)]) Let f0 : X −→ R be a C∞ function. The following implication
holds:

f0 ∈ kerP ⋆
ω and f0 ̸≡ 0 =⇒ ⟨⟨f0, 1⟩⟩ω ̸= 0,

where ⟨⟨ , ⟩⟩ω is the L2
ω inner product on functions.

Proof. If ⟨⟨f0, 1⟩⟩ω = 0, then the constant function 1 is orthogonal to kerP ⋆
ω because dim kerP ⋆

ω = 1,
f0 ∈ kerP ⋆

ω and f0, being non-identically zero, must be a generator of kerP ⋆
ω . Therefore, the L2

ω-
orthogonal two-space decomposition:

C∞(X, C) = kerP ⋆
ω ⊕ ImPω, (4.2)

which follows from the ellipticity of Pω via the standard elliptic a priori estimate (cf. e.g. (2) of
Theorem 1.1.6), implies that 1 ∈ ImPω.

Thus, there exists a C∞ function g : X −→ C such that Pω(g) = 1 > 0 on X. The maximum
principle of Lemma 4.1.6 implies that g must be constant, hence Pω(g) = 0 ̸= 1, a contradiction. □
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Lemma 4.1.9. ([Gau77a, (8)]) For all C∞ functions f : X −→ R and φ : X −→ (0, +∞), the
following identity and equivalence hold:

(1) ⟨⟨φ1−nf, 1⟩⟩φω = ⟨⟨φf, 1⟩⟩ω;

(2) f ∈ kerP ⋆
ω ⇐⇒ φ1−nf ∈ kerP ⋆

φω.

Proof. (1) follows from the identities:

⟨⟨φ1−nf, 1⟩⟩φω =

∫
X

φ1−nf
φnωn

n!
=

∫
X

φf
ωn

n!
= ⟨⟨φf, 1⟩⟩ω.

(2) follows from the equivalences:

φ1−nf ∈ ker(P ⋆
φω) ⇐⇒ ∂̄∂

(
φ1−nf

φn−1ωn−1

(n− 1)!

)
= 0 ⇐⇒ ∂̄∂

(
f

ωn−1

(n− 1)!

)
= 0 ⇐⇒ f ∈ ker(P ⋆

ω).

□

Lemma 4.1.10. ([Gau77a, Lemme 1]) Let f0 : X −→ R be a C∞ function. If f0 is a generator
of kerP ⋆

ω , then
f0 ≥ 0 on X or f0 ≤ 0 on X.

Proof. Since f0 generates kerP ⋆
ω , we have f0 ̸≡ 0. Thus, Lemma 4.1.8 tells us that ⟨⟨f0, 1⟩⟩ω ̸= 0.

To make a choice, let us suppose that ⟨⟨f0, 1⟩⟩ω > 0. We will show that f0 ≥ 0 on X.
Suppose there exists a point x0 ∈ X such that f0(x0) < 0. By continuity of f , there exists an

open neighbourhood U of x0 in X such that f|U < 0. Consider the open subset

V :=

{
x ∈ X | f0(x) < 0

}
⊂ X.

Obviously, U ⊂ V . It is easy to construct a C∞ function φ : X −→ (0, +∞) such that∫
V

φf0 dVω +

∫
X\V

φf0 dVω =

∫
X

φf0 dVω = 0,

by adjusting it so that the negative values of f0 on V get compensated for on average by the positive
values of f0 on X \ V .

Thus, ⟨⟨φf0, 1⟩⟩ω = 0. Thanks to (1) of Lemma 4.1.9, this amounts to ⟨⟨φ1−nf0, 1⟩⟩φω = 0.
On the other hand, (2) of Lemma 4.1.9 tells us that φ1−nf0 ∈ kerP ⋆

φω because we already have
f0 ∈ kerP ⋆

ω by hypothesis. Moreover, φ1−nf0 ̸≡ 0 because f0 ̸≡ 0 and φ > 0. Summing up, we have:

φ1−nf0 ∈ kerP ⋆
φω, φ1−nf0 ̸≡ 0 and ⟨⟨φ1−nf0, 1⟩⟩φω = 0.

This contradicts Lemma 4.1.8. □

The following lemma is a general result that is a useful complement to the maximum principle
of Lemma 4.1.5. It applies to second-order elliptic operators that may have zero-th order terms.
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Lemma 4.1.11. ([Gau77a, Lemme 2]) Let X be a (not necessarily compact) connected differentiable
manifold and let Q : C∞(X, R) −→ C∞(X, R) be an elliptic differential operator of order two
with real C∞ coefficients.

For every C∞ function f0 : X −→ R such that Q(f0) = 0 and f0 ≥ 0 on X, we have:

f0 > 0 on X or f0 ≡ 0.

Proof. We will reproduce part of the proof of Theorem 1.2.4 in [LT95]. Suppose there exists a point
x0 ∈ X such that f0(x0) = 0. In an open neighbourhood U of x0, the operator Q has the shape:

Q(f) =
∑
i, j

aij
∂2f

∂xi∂xj
+
∑
i

bi
∂f

∂xi
+ cf,

where aij, bi, c are C
∞ functions of the real coordinates x1, . . . , xm on U ⊂ X and, to make a choice,

the matrix (aij(x))i, j is positive definite and symmetric at every point x ∈ U .
After possibly shrinking U about x0, we may assume that aij, bi, c are bounded on U and

a11 ≥ ε > 0 on U

for some constant ε > 0.
Meanwhile, for a constant a > 0 that will be specified later, we consider the C∞ function

g0 : U −→ R defined as
g0(x) := e−ax1 f0(x).

The hypothesis Q(f0) = 0 translates as follows:

Q(f0) = 0 ⇐⇒ Q(g0) + 2a
∑
i

a1i
∂g0
∂xi

+ a2a11 g0 + ab1 g0 = 0

⇐⇒
∑
i, j

aij
∂2g0
∂xi∂xj

+
∑
i

(bi + 2a a1i)
∂g0
∂xi

= −(a2a11 + ab1 + c) g0. (4.3)

Now, if we choose a > 0 large enough, we have a2a11 + ab1 + c > 0 at every point of U . Since g0 ≥ 0
on U (because f0 ≥ 0 on X), we get −(a2a11 + ab1 + c) g0 ≤ 0 on U . Meanwhile, g0(x) ≥ g0(x0) = 0
for every x ∈ U , so x0 is a minimum for g in U .

From these pieces of information, including (4.3), and from the maximum principle of Lemma
4.1.5 we conclude that g0(x) = 0 for all x ∈ U . Equivalently, f0(x) = 0 for all x ∈ U .

The proof so far implies that the zero locus of f0 is open in X. On the other hand, it is also
closed by continuity of f0. Since X is connected, we get f−1

0 (0) = X since x0 ∈ f−1
0 (0). This means

that f0 ≡ 0 on X. □

As a consequence of Lemmas 4.1.10 and 4.1.11, we get the following

Corollary 4.1.12. Let f0 : X −→ R be a C∞ function such that f0 ∈ kerP ⋆
ω . Then

f0 > 0 on X or f0 < 0 on X or f0 ≡ 0.

Proof. Since dim kerP ⋆
ω = 1, f0 generates kerP ⋆

ω if f0 ̸≡ 0. In this case, Lemma 4.1.10 tells us that
either f0 ≥ 0 on X or f0 ≤ 0 on X. To make a choice, let us suppose that f0 ≥ 0 on X. Choosing
Q = P ⋆

ω , Lemma 4.1.11 tells us that f0 > 0 on X since we are in the case where f0 ̸≡ 0. □
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End of proof of Theorem 4.1.7. Recall that proving Theorem 4.1.7 amounts to proving the existence
of a unique (up to multiplications by positive constants) C∞ function φ : X −→ (0, +∞) such that
φ ∈ kerP ⋆

ω .
The fact that dim kerP ⋆

ω = 1 proves the uniqueness of φ up to positive multiplicative constants.
Let φ : X −→ R be a generator of kerP ⋆

ω . Then φ ̸≡ 0, so by Corollary 4.1.12 we either have
φ > 0 on X or φ < 0 on X. To make a choice, we may assume that φ > 0 on X and we are done. □

The proof of Gauduchon’s Theorem 4.1.7 shows that any Gauduchon metric on some fibre X0 of
a holomorphic family deforms in a C∞ way to Gauduchon metrics on the nearby fibres Xt.

Proposition 4.1.13. Let π : X −→ B be a holomorphic family of compact complex manifolds,
where B ⊂ Cm is an open ball about 0 for some m ∈ N⋆. Put Xt := π−1(t) for t ∈ B.

Let ω0 be a Gauduchon metric on X0. After possibly shrinking B about 0, there exists a C∞

family (ωt)t∈B of 2-forms on the fibres (Xt)t∈B whose member for t = 0 is ω0 and such that ωt is a
Gauduchon metric on Xt for every t ∈ B.

Proof. Let (γt)t∈B be any family of Hermitian metrics varying in a C∞ way with t on (Xt)t∈∆ such
that γ0 = ω0. We will prove a slightly stronger statement in the sense that we need not assume γ0
to be Gauduchon from the start.

The family (P ⋆
γt)t∈B is a C∞ family of elliptic differential operators on the fibres Xt with kernels

of equal dimensions (= 1). By the Kodaira-Spencer Theorem C reproduced in §.2.5.1, the kernels
define a C∞ vector bundle B ∋ t 7→ ker(P ⋆

ω′
t
). Meanwhile, by Corollary 4.1.12, there exists f0 ∈

ker(P ⋆
γ0|C∞(X,R)) such that f0 > 0. Then, it suffices to extend f0 to a local C∞ section B ∋ t 7→ ft of

the C∞ real vector bundle B ∋ t 7→ ker(P ⋆
γt|C∞(X,R)) which is a trivial bundle if B has been shrunk

sufficiently about 0. By continuity, ft > 0 on Xt for all t sufficiently close to 0 ∈ B. Indeed, by
Corollary 4.1.12, ft > 0 on Xt or ft < 0 on Xt or ft ≡ 0, but the last two possibilities are ruled out
by the continuous dependence of ft on t and by f0 > 0.

Thus, we get a family ωt := f
1

n−1

t γt, t ∈ B, of Gauduchon metrics varying in a C∞ way with t
on the fibres Xt. If γ0 = ω0 is already Gauduchon, we may choose f0 ≡ 1. □

4.1.3 The Gauduchon cone

Recall a classical notion: the Kähler cone KX of a compact complex manifold X is the set of all
Bott-Chern cohomology classes of Kähler metrics on X. As such, it is an open convex cone in
H1, 1
BC(X, R). Moreover, KX = ∅ if X is not Kähler.
We start by introducing the following analogue of the Kähler cone in bidegree (n − 1, n − 1).

(For this analogy, see the new approach to Mirror Symmetry described in chapter 6.) It is never
empty, it generalises the Kähler cone and it has come to play a key role in various aspects of both
Kähler and non-Kähler geometry, some of which will be described further down.

Definition 4.1.14. ([Pop15a, Definition 5.1]) Let X be a compact complex manifold with dimCX =
n. The Gauduchon cone of X is the set

GX :=

{
[ωn−1]A ∈ Hn−1, n−1

A (X, R) | ω is a Gauduchon metric on X

}
⊂ Hn−1, n−1

A (X, R).

Any element [ωn−1]A of the Gauduchon cone GX is called an Aeppli-Gauduchon class.
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In chapter 6, the Gauduchon cone will be seen to also offer an analogue of the various cones of
cohomology classes of curves when the given manifold supports no curves.

Since ∂∂̄ωn−1 = 0 for every Gauduchon metric ω, the (n− 1, n− 1)-form ∂∂̄ωn−1 does define a
real Aeppli cohomology class [ωn−1]A of bidegree (n− 1, n− 1). Moreover, we have

Proposition 4.1.15. The Gauduchon cone GX is an open convex cone in Hn−1, n−1
A (X, R).

Proof. • If [ωn−1]A ∈ GX and λ > 0 is a constant, then λ [ωn−1]A ∈ GX , so GX is indeed a cone.

• To show convexity, let [ωn−1
1 ]A, [ω

n−1
2 ]A ∈ GX and let λ, µ > 0 be constants such that λ+µ = 1.

Then, λ [ωn−1
1 ]A+µ [ω

n−1
2 ]A = [ωn−1]A ∈ GX where ω > 0 is the (n−1)st root of λωn−1

1 +µωn−1
2 > 0.

(See Lemma 4.0.1 for the existence of the root.)

• To show openness, let us equip the finite-dimensional vector space Hn−1, n−1
A (X, R) with an

arbitrary norm || || (e.g. the Euclidian norm after we have fixed a basis; at any rate, all the norms
are equivalent). Let [ωn−1]A ∈ GX be an arbitrary element, where ω > 0 is some Gauduchon metric
on X. Let α ∈ Hn−1, n−1

A (X, R) be a class such that ||α − [ωn−1]A|| < ε for some small ε > 0.
Fix any Hermitian metric ω0 on X and consider the Aeppli Laplacian ∆A defined by ω0 inducing
the Hodge isomorphism Hn−1, n−1

A (X, R) ≃ Hn−1, n−1
∆A

(X, R). (See (2) of Corollary 1.1.13.) Let

Ωα ∈ Hn−1, n−1
∆A

(X, R) be the ∆A-harmonic representative of the class α. Since ωn−1 ∈ ker(∂∂̄), (2)
of Corollary 1.1.13 gives a unique decomposition:

ωn−1 = Ω+ (∂u+ ∂̄v) with ∆AΩ = 0.

If we set Γ := Ωα + (∂u + ∂̄v) (with the same forms u, v as for ωn−1), then ∂∂̄Γ = 0, Γ represents
the Aeppli class α and we have

||Γ− ωn−1||C0 = ||Ωα − Ω||C0 ≤ C ||α− [ωn−1]A|| < Cε,

for some constant C > 0 induced by the Hodge isomorphism. (We have chosen the C0 norm on
Hn−1, n−1

∆A
(X, R) only for the sake of convenience.) Thus, if ε > 0 is chosen sufficiently small, the

(n−1, n−1)-form Γ must be positive definite since ωn−1 is, so there exists a unique positive definite
(1, 1)-form γ such that γn−1 = Γ. Thus γ is a Gauduchon metric and γn−1 represents the original
Aeppli class α, so α ∈ GX . □

So, Definition 4.1.14 is meaningful. Moreover, thanks to Theorem 4.1.2, GX ̸= ∅ for every
compact complex manifold X. Intuitively, Gauduchon’s Theorem 4.1.7 shows that the Gauduchon
cone is fairly large. We will see later that the smaller GX , the better the properties of X.

We will now discuss the link between the Gauduchon cone and the cone of Bott-Chern cohomology
classes of d-closed semi-positive (1, 1)-currents introduced by Demailly. By a semi-positive current
we mean what is called a positive current in the French terminology, where the notion originated,
and in the terminology employed by many authors. (See [Dem97, chapter III].) This property of
currents is denoted by ≥. We may also refer to such a current as positive, so, when applied to
currents, the terms semi-positive and positive will be interchangeable in this book.

Definition 4.1.16. ([Dem92, Definition 1.3]) Let X be a compact complex manifold. The pseudo-
effective cone of X is the set

EX :=

{
[T ]BC ∈ H1, 1

BC(X, R) / T ≥ 0 d-closed (1, 1)-current on X

}
.

Any element [T ]BC of the pseudo-effective cone EX is called a pseudo-effective class.
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Like the De Rham, Dolbeault and Aeppli cohomologies, Bott-Cern cohomology can be computed
using either smooth differential forms or currents. The latter point of view on the cohomology
defined in §.1.1 is taken in the above definition.

Proposition 4.1.17. ([Dem92, Proposition 6.1]) The pseudo-effective cone EX is a closed convex
cone in H1, 1

BC(X, R).

Proof. If T1 and T2 are d-closed semi-positive (1, 1)-currents on X, so is any linear combination
λT1 + µT2 with λ, µ non-negative reals. Therefore, EX is a convex cone.

To show that EX is closed in H1, 1
BC(X, R), fix an arbitrary Gauduchon metric ω on X (which exists

thanks to Theorem 4.1.2) and let (Tk)k∈N be a sequence of d-closed semi-positive (1, 1)-currents on
X such that their classes [Tk]BC converge to a limit c1, 1BC ∈ H

1, 1
BC(X, R). We will show that c1, 1BC ∈ EX .

By continuity of the evaluation map

H1, 1
BC(X, R) ∋ b1, 1BC 7→ b1, 1BC · [ω

n−1]A ∈ R,

[Tk]BC · [ωn−1]A =
∫
X
Tk ∧ ωn−1 converges to c1, 1BC · [ωn−1]A as k → +∞. In particular, the sequence

(
∫
X
Tk ∧ ωn−1)k∈N is bounded in R. This means that the sequence of currents (Tk)k∈N is bounded in

mass. Since the Tk’s are semi-positive currents, this implies that the sequence (Tk)k∈N is compact in
the weak topology of currents. Therefore, there exists a weakly convergent subsequence Tkν −→ T .

The limit T must be a d-closed semi-positive (1, 1)-current onX and, since taking the cohomology
class [ ]BC is a continuous operation w.r.t. the weak topology of currents, we get [T ]BC = c1, 1BC .
Therefore, c1, 1BC ∈ EX . □

The main link between the cones GX and EX is provided by the following reformulation of a result
of Lamari’s from [Lam99].

Theorem 4.1.18. Let X be a compact complex manifold with dimCX = n. The pseudo-effective
cone EX ⊂ H1, 1

BC(X, R) and the closure of the Gauduchon cone GX ⊂ Hn−1, n−1
A (X, R) are dual to

each other under the duality:

H1, 1
BC(X, C)×H

n−1, n−1
A (X, C)→ C, ([α]BC , [β]A) 7→

∫
X

α ∧ β,

of Theorem 1.1.15.

The meaning of the above duality of cones is that the following two statements hold.

(1) Given any class c1, 1BC ∈ H
1, 1
BC(X, R), the following equivalence holds:

c1, 1BC ∈ EX ⇐⇒ c1, 1BC .c
n−1, n−1
A ≥ 0 for every class cn−1, n−1

A ∈ GX .

(2) Given any class cn−1, n−1
A ∈ Hn−1, n−1

A (X, R), the following equivalence holds:

cn−1, n−1
A ∈ GX ⇐⇒ c1, 1BC .c

n−1, n−1
A ≥ 0 for every class c1, 1BC ∈ EX .

In a similar vein, the various dualities between smooth forms and currents on an n-dimensional
complex manifold X run along the following general principles (cf. e.g. [Dem97, chapter III]) that
we will be using throughout this book:
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(a) smooth objects (i.e. C∞ differential forms) of any bidegree (p, q) are dual to singular objects
(i.e. currents) of the complementary bidegree (n− p, n− q);

(b) semi-positive objects are dual to strictly positive objects of the complementary bidegree;

(c) strongly positive objects are dual to weakly positive objects of the complementary bidegree.
For example, combining (b) and (c) for a given current T ∈ D′p, p(X) of bidegree (p, p), we get

the equivalence:

T ≥ 0 weakly ⇐⇒
∫
X

T ∧ α ≥ 0 for every strongly strictly positive form α ∈ C∞
n−p, n−p(X, C).

(d) closed objects (w.r.t. any of the operators d, ∂, ∂̄, ∂∂̄) are dual to exact objects of the
complementary bidegree (w.r.t. the same operator) when X is compact.

For example, for a given form α ∈ C∞
p, q(X, C), we have the equivalence:

∂̄α = 0 ⇐⇒
∫
X

α ∧ ∂̄S = 0 for every current S ∈ D′n−p, n−q−1(X, C).

Theorem 4.1.18 follows by applying the following result of Lamari’s to d-closed forms α.

Lemma 4.1.19. (Lamari’s duality lemma, [Lam99, Lemme 3.3]) Let X be a compact complex
manifold with dimCX = n and let α be a C∞ real (1, 1)-form on X. The following two statements
are equivalent.

(i) There exists a distribution ψ on X such that α+ i∂∂̄ψ ≥ 0 in the sense of (1, 1)-currents on
X.

(ii)
∫
X
α ∧ ωn−1 ≥ 0 for any Gauduchon metric ω on X.

Proof. (i) =⇒ (ii). This implication is obvious. Indeed,
∫
X
α ∧ ωn−1 =

∫
X
(α + i∂∂̄ψ) ∧ ωn−1 for

every Gauduchon metric ω, by Stokes and ∂∂̄ωn−1 = 0, while the latter integral is non-negative if
α + i∂∂̄ψ ≥ 0.

(ii) =⇒ (i). Let us consider the following:

• vector subspace E := C∞
n−1, n−1(X, R) ∩ ker(∂∂̄) ⊂ C∞

n−1, n−1(X, R);

• open convex subset U :=

{
Ω ∈ C∞

n−1, n−1(X, R) | Ω > 0

}
⊂ C∞

n−1, n−1(X, R);

• open convex subset V := U ∩ E ⊂ E. So, thanks to the existence and uniqueness of the
(n− 1)-st root (see Lemma 4.0.1), V identifies with the set of Gauduchon metrics on X.

Meanwhile, the given form α ∈ C∞
1, 1(X, R) defines an R-linear evaluation map:

α : E −→ R, Ω 7−→ α(Ω) :=

∫
X

α ∧ Ω,

that we denote by the same symbol. Property (ii) in the statement, serving as our current hypothesis,
translates to

α|V ≥ 0. (4.4)
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Given hypothesis (4.4), there are two cases.

Case 1. Suppose there exists a Gauduchon metric ω0 (i.e. ω
n−1
0 ∈ V ) such that

∫
X
α∧ωn−1

0 = 0.
We will prove that α|E ≡ 0 in this case.
Let Ω ∈ E. For every t ∈ R, let

Ωt := (1− t)ωn−1
0 + tΩ.

Meanwhile, consider the affine function

f : R −→ R, f(t) :=

∫
X

α ∧ Ωt = α(Ωt).

Since Ωt ∈ E for every t ∈ R, Ωt depends continuously on t, Ω0 = ωn−1
0 ∈ V and V is open in

E, there exists ε > 0 such that Ωt ∈ V for all t ∈ [−ε, ε]. Since α|V ≥ 0, we get f(t) ≥ 0 for all
t ∈ [−ε, ε]. Moreover, f(0) = 0 by the assumption of Case 1 and f is affine. We infer that f is the
identically zero function on R. In particular, f(1) =

∫
X
α ∧ Ω = 0, namely α(Ω) = 0.

Case 2. Suppose that α|V > 0. Since V is non-empty (thanks to the existence of Gauduchon
metrics on X), this implies that

F := ker(α : E → R)

is a closed hyperplane of E and U ∩ F = ∅.
Therefore, by the Hahn-Banach Separation Theorem, we can separate U and F by an element T

of the dual space of C∞
n−1, n−1(X, R) (equivalently, by a real (1, 1)-current T on X) such that

(i) T|U > 0 and (ii) T|F = 0. (4.5)

By the duality principles (b) and (c), property (i) of (4.5) translates to T ≥ 0 and T ̸= 0 as a
(1, 1)-current on X.

Now, fix an arbitrary Gauduchon metric ω1 on X. So, ωn−1
1 ∈ V . Since α|V > 0 and T|U > 0

while U ⊃ V , we get: ∫
X

α ∧ ωn−1
1 > 0 and

∫
X

T ∧ ωn−1
1 > 0.

Therefore, there exists a real λ > 0 such that
∫
X
α ∧ ωn−1

1 = λ
∫
X
T ∧ ωn−1

1 . This means that∫
X

(α− λT ) ∧ ωn−1
1 = 0,

or equivalently that (α− λT )|Rωn−1
1
≡ 0.

On the other hand, (α− λT )|F ≡ 0 because T|F ≡ 0 by (ii) of (4.5) and α|F ≡ 0 since F = kerα.
Since the codimension of F in E is 1 and the vector line Rωn−1

1 of E meets F only at 0, we infer
from the above properties that (α−λT )|E ≡ 0. Since E = ker(∂∂̄), the duality principle (d) ensures
the existence of a distribution ψ on X such that α−λT = −i∂∂̄ψ. In other words, the (1, 1)-current

α + i∂∂̄ψ = λT ≥ 0

is semi-positive on X and lies in the Bott-Chern cohomology class of α. □
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4.1.4 The nef and big cones

Besides the Kähler, pseudo-effective and Gauduchon cones discussed in §.4.1.3, we now present
two more positivity cones that have played major parts in algebraic and transcendental aspects of
compact complex manifolds. Gauduchon metrics will again prove critical to certain proofs.

(A) The nef cone

The starting point of this discussion is the following definition of Demailly’s.

Definition 4.1.20. ([Dem92, Definition 1.3]) Let X be a compact complex manifold. A cohomology
class [α]BC ∈ H1, 1

BC(X, R) is said to be nef if for some fixed Hermitian metric ω on X and for every
constant ε > 0 there exists a C∞ form αε ∈ [α]BC such that αε ≥ −εω.

The nef cone of X is the set

NX :=

{
[α]BC ∈ H1, 1

BC(X, R) / [α]BC is nef

}
.

Since X is compact, any two Hermitian metrics ω1 and ω2 on X are comparable, namely there
exists a constant c > 0 such that (1/c)ω1 ≤ ω2 ≤ c ω1 on X. Thus, the choice of background
Hermitian metric ω on X is irrelevant in the Definition 4.1.20 which requires a nef class to be
representable by smooth forms of arbitrarily small negative part (if any). Of course, any class [α]BC ∈
H1, 1
BC(X, R) that can be represented by a semi-positive C∞ (1, 1)-form α ≥ 0 is nef, but there are

examples of nef classes [α]BC that do not contain semi-positive representatives.
Moreover, the above transcendental definition of nefness generalises the analogous classical def-

inition for integral cohomology classes (i.e. first Chern classes c1(L) ∈ H1, 1
BC(X, R) of holomor-

phic line bundles L −→ X) on projective manifolds. Specifically, if X is projective and [α] ∈
H1, 1(X, R) ∩ H2

DR(X, Z), then it is standard (see e.g. [Dem90, Proposition 4.2]) that [α] is nef
if and only if [α].C :=

∫
C
α ≥ 0 for every curve C ⊂ X. Since any projective manifold is a ∂∂̄-

manifold, the Bott-Chern, Dolbeault and Aeppli cohomologies are canonically isomorphic (cf. §.1.3),
accounting for the dropping of the subscript BC from H1, 1(X, R) above.

Proposition 4.1.21. ([Dem92, Proposition 6.1]) The nef cone NX of any compact complex manifold
X is a closed convex cone in H1, 1

BC(X, R). Moreover,

KX ⊂ NX ⊂ EX ,

where KX is the Kähler cone of X.
If X is Kähler, the nef cone is the closure of the Kähler cone. If X is non-Kähler, its Kähler

cone is empty.

Proof. • If [α1]BC , [α2]BC ∈ NX and λ, µ are non-negative reals, then λ [α1]BC + µ [α2]BC ∈ NX ,
proving that NX is a convex cone. Indeed, fix any Hermitian metric ω on X and any constant ε > 0.
Then, there exist C∞ forms α1(ε) ∈ [α1]BC and α2(ε) ∈ [α2]BC such that α1(ε) ≥ −(ε/2λ)ω and
α2(ε) ≥ −(ε/2µ)ω. Hence, λα1(ε) + µα2(ε) ∈ C∞

1, 1(X, R) represents the class λ [α1]BC + µ [α2]BC
and λα1(ε) + µα2(ε) ≥ −ε ω.

To show that NX is closed in H1, 1
BC(X, R), let ([αk]BC)k∈N be a sequence of classes converging

to [α]BC in H1, 1
BC(X, R) as k → +∞. Then, the class [α − αk]BC converges to the zero class in

H1, 1
BC(X, R). From the definition of the quotient topology on H1, 1

BC(X, R) we infer the existence of
C∞ representatives βk ∈ [α− αk]BC converging to 0 in the C∞ topology.
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Now, fix ε > 0. If the classes [αk]BC are nef, then for each k, there exists a C∞ representative
αk(ε) ∈ [αk]BC such that αk(ε) ≥ (−ε/2)ω. Meanwhile, since βk converges to 0 in the C0 topology,
βk ≥ (−ε/2)ω whenever k is large enough. Therefore, αk(ε) + βk ≥ −ε ω for all k ≫ 1 and
αk(ε) + βk ∈ [α]BC . Hence, [α]BC is nef, proving that NX is closed in H1, 1

BC(X, R).
• The inclusion KX ⊂ NX is obvious. The inclusion NX ⊂ EX is a consequence of the existence

of Gauduchon metrics. (See Theorem 4.1.2.) Indeed, fix an arbitrary Gauduchon metric ω on X.
Let [α]BC ∈ NX . We wish to prove the existence of a semi-positive current T in the class [α]BC .

For every ε > 0, we know that there exists a C∞ form αε ∈ [α]BC such that αε ≥ −εω. Thus,
αε + εω ≥ 0 and the ω-mass of this semi-positive form satisfies:∫

X

(αε + εω) ∧ ωn−1 =

∫
X

α ∧ ωn−1 + ε

∫
X

ωn, ε > 0,

thanks to αε = α + i∂∂̄φε, to Stokes’s Theorem and to the Gauduchon property ∂∂̄ωn−1 = 0.
We infer that the family (αε+ εω)ε>0 of semi-positive forms is uniformly bounded in mass, hence

relatively weakly compact. Thus, there exists a subsequence (αεk + εkω)k∈N, with εk ↓ 0, converging
in the weak topology of currents to some current T . This limit current T is necessarily d-closed
(since all the αεk ’s are), semi-positive (since all the (αεk + εkω)’s are) and lies in the cohomology
class [α]BC (since αεk ∈ [α]BC for every k and taking the class is a continuous operation w.r.t. the
weak topology of currents).

We conclude that [α]BC ∈ EX .
• If X is non-Kähler, there are no Kähler metrics on X, so KX = ∅.
Suppose that X is Kähler and fix an arbitrary Kähler metric ω on X. Since KX ⊂ NX and NX

is closed, we have KX ⊂ NX . Conversely, let [α]BC ∈ NX . Then, there exist C∞ forms αε ∈ [α]BC
such that αε ≥ −εω. Hence, αε + 2εω ≥ εω is a Kähler metric and

[αε + 2εω]BC = [α]BC + 2ε [ω]BC ∈ KX

converges to [α]BC when ε ↓ 0. Therefore, [α]BC ∈ KX . □

(B) The big cone

The starting point of this discussion is the following definition of Demailly’s.

Definition 4.1.22. ([Dem90]) Let X be a compact complex manifold. A Kähler current on X is
a d-closed current T of bidegree (1, 1) such that T ≥ εω on X for some constant ε > 0 and some
Hermitian metric ω on X.

When L −→ X is a holomorphic line bundle on a projective n-dimensional manifold X, L is
big (in the sense that dimCH

0(X, Lk) has the maximal growth order of O(kn) when k → +∞) if
and only if its first Chern class c1(L) can be represented by a Kähler current. (See e.g. [Dem90,
Proposition 4.2].)

The main appeal of Kähler currents stems from the following result of Demailly and Paun.

Theorem 4.1.23. ([DP04, Theorem 3.4]) A compact complex manifold X carries a Kähler current
if and only if X is a class C manifold.
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Proof. • Suppose that X is a class C manifold. Then, there exists a modification µ : X̃ −→ X
from a compact Kähler manifold X̃. Let ω̃ be a Kähler metric on X̃.

Fix an arbitrary Hermitian metric ω on X. Since X̃ is compact, ω̃ > 0 and ω̃ and µ⋆ω are C∞

(hence continuous) forms on X̃, there exists a constant C > 0 such that

ω̃ ≥ Cµ⋆ω on X̃.

Taking pushforwards under µ, we get

µ⋆ω̃ ≥ Cω on X.

Meanwhile, d(µ⋆ω̃) = µ⋆(dω̃) = 0, so we conclude that µ⋆ω̃ is a Kähler current on X. (Recall that
the pushforward of a smooth form is, in general, only a current.)

• Conversely, suppose that there exists a Kähler current T ≥ εω on X, where ω is an arbitrary
Hermitian metric and ε > 0 is a constant. Demailly’s Regularisation-of-Currents Theorem 1.1. in
[Dem92] implies that T is the weak limit of a sequence (Tm)m∈N of Kähler currents with analytic
singularities lying in the Bott-Chern cohomology class of T . In particular, for every m, the analytic
singularities of Tm can be resolved in the sense that there exists a modification µm : X̃m −→ X from
some compact complex manifold X̃m such that

µ⋆mTm = λm[D̃m] + α̃m on X̃m, (4.6)

where D̃m is a normal crossing divisor and α̃m is a C∞ d-closed (1, 1)-form on X̃m, while λm > 0 is
a constant.

A few explanations are in order.
(i) What is meant by the singularities of Tm being analytic is the fact that, once we have

selected a C∞ representative α of [T ]BC and written T = α+ i∂∂̄ψ on X for some quasi-psh function
ψ : X −→ R ∪ {−∞}, we can choose the approximating currents Tm such that Tm = α+ i∂∂̄ψm on
X for quasi-psh functions ψm : X −→ R∪{−∞} whose only singularities are logarithmic poles. This
means that each ψm is C∞ on X \Zm for some analytic subset Zm ⊂ X and that in a neighbourhhod
of every point of Zm the function ψm is of the shape

ψm(z) = cm log
∑
l

|gm, l|2 + C∞,

where the gm, l’s are locally defined holomorphic functions and the cm’s are positive constants. The
singularities (= the logarithmic poles) of ψm are the points of Zm; they arise locally as the common
zeros of the gm, l’s when l varies.

(ii) The regularisation process introduces a loss of positivity which can be made arbitrarily small
provided that m is chosen big enough. Thus, Tm is slightly less positive than T in the sense that
Tm ≥ (ε − εm)ω on X for some sequence of constants εm ↓ 0 as m → +∞. However, we still have
ε− εm > 0, so Tm is still a Kähler current, if m≫ 1.

(iii) By [Meo96], the pullback of a d-closed semipositive (1, 1)-current T (in particular of Tm)
under a holomorphic map µis always well-defined. Indeed, we can write locally T = i∂∂̄φ for a
locally defined psh function φ and we put µ⋆T = i∂∂̄(φ ◦µ) locally. It can then be shown that these
local pieces glue together into a globally defined d-closed semipositive (1, 1)-current µ⋆T and that
the operation µ⋆ is continuous w.r.t. the weak topology of currents.
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Going back to (4.6), we see that α̃m ≥ εµ⋆mω ≥ 0. So, in particular, α̃m is a smooth d-closed

semi-positive (1, 1)-form on X̃m. It remains to correct α̃m to a strictly positive d-closed form (i.e. to

a Kähler metric) on X̃m.

To this end, fix an m so large that Tm is a Kähler current on X. Let X̃ := X̃m, µ := µm, α̃ := α̃m
and T ′ := Tm. We may suppose that µ : X̃ −→ X is obtained as a composition of finitely many
blow-ups:

X̃ = XN
µN−1−→ XN−1

µN−2−→ · · · −→ X1
µ0−→ X0 = X,

where each µj : Xj+1 −→ Xj is the blow-up of Xj along a (smooth) submanifold Yj ⊂ Xj. We
denote the exceptional divisor of each µj by Ej+1 ⊂ Xj+1.

It is standard (see e.g. [Dem97, VII, §.12.4.]) that, for every j, O(−Ej+1)|Ej+1
≃ OP (Nj)(1),

where P (Nj) is the projectivised normal bundle of Yj in Xj. Pick an arbitrary C∞ Hermitian metric
on each Nj, consider the induced Fubini-Study metric on OP (Nj)(1) and then extend the latter as a
C∞ Hermitian fibre metric on the line bundle O(−Ej+1) −→ Xj+1. The curvature of the last fibre
metric is positive on those tangent vectors to Xj+1 that are also tangent to the fibres of the line
bundle Ej+1 −→ Xj+1 (i.e. transversal to the divisor Ej+1 ⊂ Xj+1).

Starting from the Kähler current T ′ with analytic singularities on X, we can construct by induc-
tion on j, by means of a resolution of the singularities of the Kähler current involved that produces
at every inductive step a decomposition of the shape (4.6), a Kähler current Tj+1 on Xj+1 with the
following property. Once the Kähler current Tj has been constructed on Xj, we notice that there
exists a constant εj+1 > 0 and a C∞ (1, 1)-form uj+1 on Xj+1 lying in the Bott-Chern cohomology
class of the current of integration [Ej+1] on the divisor Ej+1 such that

Tj+1 = µ⋆jTj − εj+1uj+1

is a Kähler current on Xj+1. This is possible thanks to the positivity property of O(−Ej+1)|Ej+1
−→

Xj+1.
So, essentially, we correct the semi-positive form α̃ by exploiting the positivity of the line bundles

O(−Ej+1) −→ Xj+1 in the directions transversal to the exceptional divisors Ej+1. Specifically, if for

every j we let ũj be the pullback of uj to the final blown-up manifold X̃, we get that the d-closed
C∞ (1, 1)-form

ω̃ := α̃−
∑
j

εjũj

is positive definite, hence a Kähler metric, on X̃. □

The natural generalisation of the algebraic situation described just after Definition 4.1.22 to
possibly non-Kähler compact complex manifolds and possibly non-integral cohomology classes is the
following

Definition 4.1.24. ([Bou02]) Let X be a compact complex manifold. A cohomology class c ∈
H1, 1
BC(X, R) is said to be big if it can be represented by a Kähler current.

In a slightly non-standard way, we propose the following

Definition 4.1.25. Let X be a compact complex manifold. The big cone of X is the set

BIGX :=

{
[T ]BC ∈ H1, 1

BC(X, R) / T is a Kähler current on X

}
.
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In other words, BIGX is the set of all big classes on X. Identity (4.7) below accounts for the
fact that many authors call the interior E̊X of the pseudo-effective cone EX the big cone of X when
X is Kähler.

Proposition 4.1.26. The big cone BIGX of any compact complex manifold X is an open convex
cone in H1, 1

BC(X, R). Moreover,
KX ⊂ BIGX ⊂ EX .

If X is a class C manifold, the big cone of X is the interior of its pseudo-effective cone:

BIGX = E̊X . (4.7)

Proof. Any convex combination of Kähler currents is a Kähler current, so BIGX is a convex cone.
To show that BIGX is open in H1, 1

BC(X, R), fix a class [T ]BC ∈ BIGX and represent it by a
Kähler current T ≥ εω, where ω is an arbitrary Hermitian metric on X and ε > 0 is a constant.
Then, for any d-closed form α ∈ C∞

1, 1(X, R) and for any constant 0 < ε0 < ε, we get

T + δα ≥ εω + δα ≥ ε0ω

whenever δ > 0 is small enough. Thus, T + δα is a Kähler current, hence [T ]BC + δ[α]BC ∈ BIGX ,
for all 0 < δ ≪ 1. We conclude that BIGX is open in H1, 1

BC(X, R).
The inclusion KX ⊂ BIGX holds because any Kähler metric is a Kähler current, while the

inclusion BIGX ⊂ EX holds because any Kähler current is a semi-positive current. Moreover, the
latter inclusion and the openness of BIGX imply that BIGX ⊂ E̊X .

Now, suppose that X is of class C. By Theorem 4.1.23, a Kähler current R ≥ δω exists on X,
where ω is a Hermitian metric and δ > 0 is a constant. To prove the inclusion E̊X ⊂ BIGX , fix a
class [T ]BC ∈ E̊X and represent it by a semi-positive current T ≥ 0. Since [T ]BC is an interior point
of EX and [R]BC ∈ H1, 1

BC(X, R), [T ]BC− ε[R]BC ∈ EX for every ε > 0 small enough. This means that
T − εR is Bott-Chern cohomologous to a semi-positive current S ≥ 0. Equivalently, there exists a
distribution ψ on X such that

T + i∂∂̄ψ = S + εR ≥ εδω.

Thus, T + i∂∂̄ψ is a Kähler current lying in the Bott-Chern class of T . Hence, [T ]BC ∈ BIGX .
This proves identity (4.7) when X is of class C. □

An immediate consequence of Theorem 4.1.23 is the following

Corollary 4.1.27. A compact complex manifold X is a class C manifold if and only if its big cone
BIGX is non-empty.

We will see later that there exist (necessarily non-class C) compact complex manifolds X such
that BIGX = ∅ but E̊X ̸= ∅. This is why we defined the big cone as in Definition 4.1.25 for arbitrary
compact complex manifolds X, rather than as E̊X as many authors do in the Kähler case (a case in
which the two definitions coincide thanks to (4.7)).

On the other hand, let us also notice that the big cone BIGX of a compact complex manifold X
never contains the zero class. Since BIGX is an open convex cone in H1, 1

BC(X, R), this is equivalent to
the inclusion BIGX ⊂ H1, 1

BC(X, R) being always strict. We will see in §.4.5.6 that, in stark contrast
with the big cone, the Gauduchon cone GX may equal the whole vector space Hn−1, n−1

A (X, R) in
which it is contained.
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Corollary 4.1.28. Let X be a compact complex manifold X. No Kähler current T (if any) on X
can be either d-exact or ∂∂̄-exact.

In particular, if the second Betti number b2 of X vanishes, X is not a class C manifold.

Proof. If T = i∂∂̄ψ ≥ 0 on X for some distribution ψ, the compactness of X and the maximum
principle imply that ψ must be a constant function on each connected component of X, hence T = 0
on X. This would contradict the strict positivity of the Kähler current T .

If T = dS ≥ 0 on X for some 1-current S, then Proposition 4.2.5 in the next section and the fact
that T ̸= 0 (which follows from T being a Kähler current) imply that X is not a strongly Gauduchon
manifold. (See terminology in the next section.)

On the other hand, the existence of the Kähler current T on X implies that X is a class C
manifold. (See Theorem 4.1.23.) Finally, Corollary 4.2.12 in the next section implies that X is then
also a strongly Gauduchon manifold, contradicting the previous conclusion.

As for the last statement, if X is a class C manifold, there exists a Kähler current T on X by
the easy implication in Theorem 4.1.23. However, if b2(X) = 0, T must be d-exact, contradicting
the first statement. □

4.1.5 Qualitative part of Demailly’s Transcendental Morse Inequalities
Conjecture for a difference of two nef classes

We now present an application of the duality between the pseudo-effective cone and the closure of
the Gauduchon cone established in Theorem 4.1.18.

Let X be a compact complex manifold with dimCX = n. We make the following assumption:

(H) there exists a Hermitian metric ω on X such that

∂∂̄ωk = 0 for all k = 1, 2, . . . , n− 1.

It is clear that (H) holds if X is a Kähler manifold. It is also standard (see e.g. [GL10]) and easy
to check that condition (H) is equivalent to either of the following two equivalent conditions:

∂∂̄ω = 0 and ∂∂̄ω2 = 0 ⇐⇒ ∂∂̄ω = 0 and ∂ω ∧ ∂̄ω = 0.

Following the method of Chiose [Chi13] and Xiao [Xia15], itself inspired by earlier authors, we
prove the following statement.

Theorem 4.1.29. ([Pop15b, Theorem 1.1]) Let X be a compact complex manifold with dimCX =
n satisfying the assumption (H). Then, for any nef Bott-Chern cohomology classes {α}, {β} ∈
H1, 1
BC(X, R), the following implication holds:

{α}n − n {α}n−1. {β} > 0 =⇒ the class {α− β} contains a Kähler current.

In other words, the difference of two nef cohomology classes for which a certain intersection
number is positive is a big class. (See Definition 4.1.24.)

Terminology and preliminary comments on Theorem 4.1.29.

(a) For the sake of convenience, Bott-Chern cohomology classes in the statement and the proof
of Theorem 4.1.29 are denoted by { } rather than [ ]BC . The intersection numbers featuring in the
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statement are defined as

{α}n =

∫
X

αn and {α}n−1. {β} =
∫
X

αn−1 ∧ β.

They are independent of the choices of representatives α and β of the classes {α}, {β} ∈ H1, 1
BC(X, R).

(b) Theorem 4.1.29 answers affirmatively the qualitative part of a special version (i.e. the one
for a difference of two nef classes) of Demailly’s transcendental Morse inequalities conjecture (see
[BDPP13, Conjecture 10.1, (ii)]) and will be crucial to the eventual extension of the duality theorem
proved in [BDPP13, Theorem 2.2] to transcendental classes in the fairly general context of compact
Kähler (not necessarily projective) manifolds. Although the method we propose here also produces
a lower bound for the volume of the difference class {α − β}, this bound (that we will not present
here) is weaker than the lower bound {α}n − n {α}n−1. {β} predicted in the quantitative part of
Conjecture 10.1, (ii) in [BDPP13].

Xiao proves in [Xia15] the existence of a Kähler current in the class {α− β} under the stronger
assumption {α}n− 4n {α}n−1. {β} > 0 and the same assumption (H) on X. The two ingredients he
uses are Lamari’s duality lemma 4.1.19 and the following

Theorem 4.1.30. (the Tosatti-Weinkove resolution of Hermitian Monge-Ampère equations, [TW10])
Let X be a compact complex manifold with dimCX = n and let ω be a Hermitian metric on X.

Then, for any C∞ function F : X → R, there exist a unique constant C > 0 and a unique C∞

function φ : X → R such that

(ω + i∂∂̄φ)n = CeFωn, ω + i∂∂̄φ > 0 and sup
X
φ = 0.

As a matter of fact, Yau’s classical theorem that solved the Calabi Conjecture, of which Theorem
4.1.30 is a generalisation to the possibly non-Kähler context, suffices for the proof of Theorem 4.1.29
whose assumptions imply that X must be Kähler (as already pointed out by Xiao in his situation
based on [Chi13, Theorem 0.2]) although this is not used either here or in Xiao’s work.

Proof of Theorem 4.1.29

We first reproduce Xiao’s arguments (themselves inspired by earlier authors such as Chiose) up to
the point where we will branch off in a different direction to handle certain estimates.

(I) Xiao’s approach in [Xia15]

Let us fix a Hermitian metric ω on X such that ∂∂̄ωk = 0 for all k. We also fix nef Bott-
Chern (1, 1)-classes {α}, {β}. By the nef assumption, for every ε > 0, there exist C∞ functions
φε, ψε : X → R such that

αε := α + ε ω + i∂∂̄φε > 0 and βε := β + ε ω + i∂∂̄ψε > 0 on X. (4.8)

Note that αε and βε need not be d-closed, but the property ∂∂̄ωk = 0 yields:

∂∂̄αkε = ∂∂̄βkε = 0 and ∂∂̄(α + ε ω)k = ∂∂̄(β + ε ω)k = 0 (4.9)

for all k = 1, 2, . . . , n− 1. We normalise sup
X
φε = sup

X
ψε = 0 for every ε > 0.
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Let us fix ε > 0. The existence of a Kähler current in the class {α−β} = {αε−βε} is equivalent
to

∃ δ > 0, ∃ a distribution θδ onX such that αε − βε + i∂∂̄θδ ≥ δ αε,

which, in view of Lamari’s duality lemma 4.1.19, is equivalent to

∃δ > 0 such that

∫
X

(αε − βε) ∧ γn−1 ≥ δ

∫
X

αε ∧ γn−1

for every Gauduchon metric γ on X. This is, of course, equivalent to

∃δ > 0 such that (1− δ)
∫
X

αε ∧ γn−1 ≥
∫
X

βε ∧ γn−1

for every Gauduchon metric γ on X.
Xiao’s approach is to prove the existence of a Kähler current in the class {α − β} = {αε − βε}

by contradiction. Suppose that no such current exists. Then, for every ε > 0 and every sequence of
positive reals δm ↓ 0, there exist Gauduchon metrics γm, ε on X such that

(1− δm)
∫
X

αε ∧ γn−1
m, ε <

∫
X

βε ∧ γn−1
m, ε = 1 for all m ∈ N⋆, ε > 0. (4.10)

The last identity is a normalisation of the Gauduchon metrics γm, ε which is clearly always possible
by rescaling γm, ε by a positive factor. This normalisation implies that for every ε > 0, the positive
definite (n−1, n−1)-forms (γn−1

m, ε )m are uniformly bounded in mass, hence after possibly extracting
a subsequence we can assume the convergence γn−1

m, ε → Γ∞, ε in the weak topology of currents as
m→ +∞, where Γ∞, ε ≥ 0 is an (n− 1, n− 1)-current on X. Taking limits as m→ +∞ in (4.10),
we get ∫

X

αε ∧ Γ∞, ε ≤ 1 for all ε > 0. (4.11)

Note that the l.h.s. of (4.10) does not change if αε is replaced with any αε + i∂∂̄u (thanks to
γm, ε being Gauduchon), while αε∧γn−1

m, ε is (after division by γnm, ε) the trace of αε w.r.t. γm, ε divided
by n (i.e. the arithmetic mean of the eigenvalues). To find a lower bound for the trace that would
contradict (4.10), it is natural to prescribe the volume form (i.e. the product of the eigenvalues) of
some αε + i∂∂̄um, ε by imposing that it be, up to a constant factor, the strictly positive (n, n)-form
featuring in the r.h.s. of (4.10). More precisely, the Tosatti-Weinkove theorem 4.1.30 allows us to
solve the Monge-Ampère equation

(⋆)m, ε (αε + i∂∂̄um, ε)
n = cε βε ∧ γn−1

m, ε

for any ε > 0 and any m ∈ N⋆ by ensuring the existence of a unique constant cε > 0 and of a unique
C∞ function um, ε : X → R satisfying (⋆)m, ε so that

α̃m, ε := αε + i∂∂̄um, ε > 0, sup
X

(φε + um, ε) = 0.

Note that cε is independent of m since we must have
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cε =

∫
X

α̃nm, ε =

∫
X

(α + εω)n ↓
∫
X

αn := c0 > 0, (4.12)

where the non-increasing convergence is relative to ε ↓ 0. Indeed, the second identity in (4.12)
follows from ∂∂̄(α + εω)k = 0 for all k = 1, 2, . . . , n − 1 (cf. (4.9)). Thus, it is significant that cε
does not change if we add any i∂∂̄u to α, i.e. cε depends only on the Bott-Chern class {α}, on ω
and on ε. Analogously, one defines

Mε :=

∫
X

α̃n−1
m, ε ∧ βε =

∫
X

(α + εω)n−1 ∧ (β + εω) ↓
∫
X

αn−1 ∧ β :=M0 ≥ 0, (4.13)

where the non-increasing convergence is relative to ε ↓ 0. Clearly, Mε is independent of m and
depends only on the Bott-Chern classes {α}, {β}, on ω and on ε. Note that the second integral in
(4.13) equals

∫
X
(α+ εω + i∂∂̄φε)

n−1 ∧ (β + εω + i∂∂̄ψε) which is positive since αε, βε > 0 by (4.8).
Since M0 ≥ 0, the hypothesis c0 − nM0 > 0 made in Theorem 4.1.29 implies c0 > 0. This justifies
the final claim in (4.12).

(II) The arguments introduced in [Pop15b]

The handling of the estimates in the Monge-Ampère equation in [Pop15b], that we now proceed to
present, was different from Xiao’s in [Xia15]. The starting point is the following simple, elementary
observation.

Lemma 4.1.31. ([Pop15b, Lemma 3.1]) For any Hermitian metrics α, β, γ on a complex manifold,
the following inequality holds at every point:

(Λαβ) · (Λβγ) ≥ Λαγ. (4.14)

Proof. Since (4.14) is a pointwise inequality, we fix an arbitrary point x and choose local coordinates
about x such that

β(x) =
∑
j

idzj ∧ dz̄j, α(x) =
∑
j

αj idzj ∧ dz̄j and γ(x) =
∑
j, k

γjk̄ idzj ∧ dz̄k.

Then αj > 0 and γjj̄ > 0 for every j. If we denote by the same symbol any (1, 1)-form and its
coefficient matrix in the chosen coordinates, we have

α−1 γ = ( 1
αj
γjk̄)j, k, hence Tr(α−1 γ) =

∑
j

1
αj
γjj̄.

Thus (4.14) translates to (
∑
j

1
αj
)
∑
k

γkk̄ ≥
∑
j

1
αj
γjj̄ which clearly holds since

∑
j ̸=k

1
αj
γkk̄ > 0 because

all the αj and all the γkk̄ are positive. □

The main observation in [Pop15b] was the following statement.

Lemma 4.1.32. ([Pop15b, Lemma 3.2]) For every m ∈ N⋆ and every ε > 0, we have:(∫
X

α̃m, ε ∧ γn−1
m, ε

)
·
(∫
X

α̃n−1
m, ε ∧ βε

)
≥ 1

n

∫
X

α̃nm, ε =
cε
n
. (4.15)
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Proof. Let 0 < λ1 ≤ λ2 ≤ · · · ≤ λn, resp. 0 < µ1 ≤ µ2 ≤ · · · ≤ µn, be the eigenvalues of α̃m, ε, resp.
βε, w.r.t. γm, ε. We have:

α̃nm, ε = λ1 . . . λn γ
n
m, ε and α̃m, ε ∧ γn−1

m, ε =
1

n
(Λγm, εα̃m, ε) γ

n
m, ε =

λ1 + · · ·+ λn
n

γnm, ε.

Similarly, βε ∧ γn−1
m, ε =

1

n
(Λγm, εβε) γ

n
m, ε =

µ1 + · · ·+ µn
n

γnm, ε.

Thus, the Monge-Ampère equation (⋆)m, ε translates to

λ1 . . . λn = cε
µ1 + · · ·+ µn

n
. (4.16)

In particular, the normalisation
∫
X
βε ∧ γn−1

m, ε = 1 reads

1

cε

∫
X

λ1 . . . λn γ
n
m, ε =

∫
X

µ1 + · · ·+ µn
n

γnm, ε = 1. (4.17)

Note that we also have

α̃n−1
m, ε ∧ βε =

1

n
(Λα̃m, εβε) α̃

n
m, ε =

1

n
(Λα̃m, εβε)λ1 . . . λn γ

n
m, ε. (4.18)

Putting all of the above together, we get:

(∫
X

α̃m, ε ∧ γn−1
m, ε

)
·
(∫
X

α̃n−1
m, ε ∧ βε

)

=

(∫
X

1

n
(Λγm, εα̃m, ε) γ

n
m, ε

)
·
(∫
X

1

n
(Λα̃m, εβε)λ1 . . . λn γ

n
m, ε

)
(a)

≥ 1

n2

(∫
X

[
(Λγm, εα̃m, ε) (Λα̃m, εβε)

] 1
2

(λ1 . . . λn)
1
2 γnm, ε

)2

(b)

≥ 1

n2

(∫
X

(Λγm, εβε)
1
2 (λ1 . . . λn)

1
2 γnm, ε

)2
(c)
=

1

n2

(∫
X

√
n
√
cε
λ1 . . . λn γ

n
m, ε

)2

=
1

n cε

(∫
X

α̃nm, ε

)2
(d)
=

1

n cε

(∫
X

cε βε ∧ γn−1
m, ε

)2
(e)
=
cε
n
.

This proves (4.15). Inequality (a) is an application of the Cauchy-Schwarz inequality, inequality
(b) has followed from (4.14), identity (c) has followed from (4.16), identity (d) has followed from
α̃nm, ε = cε βε ∧ γn−1

m, ε (which is nothing but the Monge-Ampère equation (⋆)m, ε), while identity (e)
has followed from the normalisation

∫
X
βε ∧ γn−1

m, ε = 1 (cf. (4.10)). The proof of Lemma 4.1.32 is
complete. □

End of proof of Theorem 4.1.29. Now, α̃m, ε = αε + i∂∂̄um, ε and ∂∂̄γ
n−1
m, ε = 0, so∫

X

α̃m, ε ∧ γn−1
m, ε =

∫
X

αε ∧ γn−1
m, ε −→

∫
X

αε ∧ Γ∞, ε ≤ 1 for all ε > 0, (4.19)
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where the above arrow stands for convergence as m → +∞ and the last inequality is nothing but
(4.11) (which, recall, is a consequence of the assumption that no Kähler current exists in {α−β}—
an assumption that we are going to contradict). On the other hand, the second factor on the l.h.s.
of (4.15) is precisely Mε defined in (4.13), so in particular it is independent of m. Fixing any ε > 0,
taking limits as m→ +∞ in (4.15) and using (4.19), we get

Mε ≥
cε
n

for every ε > 0. (4.20)

Taking now limits as ε ↓ 0 and using (4.13) and (4.12), we get

M0 ≥
c0
n
, i.e. {α}n−1. {β} ≥ {α}

n

n
.

The last identity means that {α}n − n {α}n−1. {β} ≤ 0 which is impossible if we suppose that
{α}n − n {α}n−1. {β} > 0. This is the desired contradiction proving the existence of a Kähler
current in the class {α− β} under the assumption {α}n − n {α}n−1. {β} > 0. □

4.1.6 The Demailly-Paun numerical characterisation of the Kähler cone
of a compact Kähler manifold

As an application of Theorem 4.1.29, we now present a proof of an important result of Demailly
and Paun characterising Kähler classes on a compact Kähler manifold. Since the proof of Theorem
4.1.29 based on a use of the Gauduchon cone and spelt out above in §.4.1.5 is far simpler than
the proof of a special case of it that featured as Theorem 2.12 in [DP04] and constituted the main
ingredient in the proof of the main result of [DP04], this approach will implicitly underscore the key
role played by the Gauduchon cone even in the Kähler context. The historical order of events is, of
course, different from the one presented here since Theorem 4.1.29 and the Gauduchon cone were
unavailable at the time of the Demailly-Paun work [DP04].

As in §.4.1.5, Bott-Chern cohomology classes will be denoted by { } rather than [ ]BC , while the
subscript BC will be removed from H1, 1(X, R) since X is assumed Kähler. As usual, by a Kähler
class we mean a cohomology class in H1, 1(X, R) that can be represented by a Kähler metric.

Theorem 4.1.33. ([DP04, Main Theorem 0.1 and Theorem 4.2]) Let X be a compact Kähler
manifold with dimCX = n.

(a) The Kähler cone KX of X is one of the connected components of the set:

PX :=

{
{α} ∈ H1, 1(X, R) |

∫
Y

αp > 0 for all p = 0, . . . , n and all Y ⊂ X with dimCY = p

}
,

where Y runs through the irreducible analytic subsets of X.

(b) Let {ω} ∈ H1, 1(X, R) be an arbitrary Kähler class on X. For every {α} ∈ H1, 1(X, R) the
following properties are equivalent:

(i) the class {α} is Kähler;

(ii)
∫
Y

(α+ tω)p > 0 for all p ∈ {0, . . . , n}, all irreducible analytic subsets Y ⊂ X with dimCY = p

and all t ≥ 0;

(iii)
∫
Y

αk ∧ωp−k > 0 for all p ∈ {0, . . . , n}, all k ∈ {1, . . . , p} and all irreducible analytic subsets

Y ⊂ X with dimCY = p.
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As already mentioned, Theorem 4.1.33 will follow easily from the next statement that is obtained
by taking {β} = 0 in Theorem 4.1.29.

Theorem 4.1.34. ([DP04, Theorem 2.12]) Let (X,ω) be a compact Kähler manifold with dimCX =
n. Suppose that {α} ∈ H1, 1

BC(X, R) is a nef Bott-Chern cohomology class such that {α}n > 0. Then,
{α} contains a Kähler current.

Another ingredient needed in the proof of Theorem 4.1.33 will be the following result of Paun’s.
Recall that for a current T on a complex space X and for an arbitrary real c > 0, the Lelong
upper-level set Ec(T ) consists of the points x ∈ X at which the Lelong number ν(T, x) of T is ≥ c.
By an important theorem of Siu’s from [Siu74], Ec(T ) is an analytic subset of X.

Proposition 4.1.35. ([Pau98]) Let X be a compact complex space and let {α} ∈ H1, 1
BC(X, R).

If the class {α} contains a Kähler current T and its restriction {α}|Y is a Kähler class on Y
for every constant c > 0 and every irreducible component Y of Ec(T ), then {α} is a Kähler class
on X.

Proof. See [Pau98]. □

Proof of Theorem 4.1.33. (a) It is obvious that KX is an open convex cone and that KX ⊂ PX . It
remains to prove that KX is closed in PX , or equivalently that KX ∩ PX = KX .

The inclusion KX ⊂ KX ∩ PX being obvious, it remains to prove the reverse inclusion. Let
{α} ∈ KX ∩ PX . This means that {α} is nef (see Proposition 4.1.21) and

∫
Y
αp > 0 for all

p ∈ {0, . . . , n} and all irreducible analytic subsets Y ⊂ X with dimCY = p.
We now prove that, for every irreducible analytic subset Y ⊂ X, the restriction {α}|Y is a Kähler

class on Y . This is done by induction on dimCY . We will take Y = X in the end to conclude that
{α} is a Kähler class on X.

Fix an arbitrary such Y ⊂ X with dimCY = p and let µ : Ỹ −→ Y be a desingularisation of Y
obtained as a finite sequence of blow-ups with smooth centres in Y . Then, {α}|Y is a nef class on

Y , hence µ⋆({α}|Y ) is a nef class on Ỹ . Moreover, we have:(
µ⋆({α}|Y )

)p
=

∫
Ỹ

(µ⋆α)p =

∫
Y

αp > 0,

the last inequality holding by assumption.
From Theorem 4.1.34 we get the existence of a Kähler current T̃ ∈ µ⋆({α}|Y on Ỹ . Then,

T := µ⋆T̃ is a Kähler current on Y and T ∈ {α}|Y = µ⋆µ
⋆{α}|Y .

On the other hand, the induction hypothesis ensures that the class {α}|Z is Kähler for every
constant c > 0 and every irreducible component Z ⊂ Ec(T ) of the Lelong upper-level subset Ec(T ) ⊂
Y of T . Moreover, we necessarily have dimEc(T ) ≤ p− 1 for all c > 0, so the induction hypothesis
applies.

Using Paun’s Proposition 4.1.35, we infer that {α}|Y is a Kähler class on Y . This completes the
induction argument and the proof of (a).

(b) The implications (i) =⇒ (iii) =⇒ (ii) are trivial. To prove the implication (ii) =⇒ (i),
start by noticing that, if (ii) holds, the half-line

[0, +∞) ∋ t 7−→ {α + tω} ∈ H1, 1(X, R)
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is contained in PX , hence in one of the connected components of PX .
Meanwhile, α + tω > 0, hence {α + tω} is a Kähler class, for all t large enough (since X is

compact, so smooth forms on X are bounded). Since KX is one of the connected components of
PX by (a), we infer that the half line [0, +∞) ∋ t 7−→ {α + tω} ∈ PX must be contained in the
connected component of PX that is KX . □

4.1.7 Variation of the Kähler cone under deformations of compact Kähler
manifolds

The material in this subsection is taken from [DP04, §.5] where Demailly and Paun apply their main
result Theorem 4.1.33 to obtain the following

Theorem 4.1.36. ([DP04, Theorem 0.9]) Let π : X −→ B be a proper analytic map between reduced
complex spaces such that B is irreducible. Suppose that π is a locally C∞ trivial fibration whose fibres
Xt := π−1(t) are (smooth) Kähler manifolds for all t ∈ B.

Then, there exists a countable union B′ = ∪ν∈ZΣν of analytic subsets Σν ⊊ B such that the
Kähler cones Kt := KXt ⊂ H1, 1(Xt, R) are invariant over B \ B′ under parallel transport with
respect to the (1, 1)-projection ∇1, 1 of the Gauss-Manin connection ∇.

The base B of the family in Theorem 4.1.36 is not assumed to be smooth. Since π is locally
C∞ trivial, for every k the C∞ vector bundle B ∋ t 7−→ Hk(Xt, C) is locally constant and carries a
natural flat connection ∇ known as the Gauss-Manin connection.

On the other hand, for every p, let Cp(X/B) ⊂ Cp(X ) be the relative Barlet space of p-dimensional
cycles contained in the fibres Xt. It is a subspace of the Barlet cycle space Cp(X ) of all p-dimensional
cycles in X and is equipped with a canonical holomorphic projection

σp : Cp(X/B) −→ B

mapping every relative cycle Z ⊂ Xt to the point t ∈ B above which the fibre that contains it lives.
Now, for every bidegree (p, q), the Dolbeault cohomology groups Hp, q(Xt, C) of the fibres form

a real analytic vector subbundle B ∋ t 7−→ Hp, q(Xt, C) of the locally constant vector bundle
B ∋ t 7−→ Hp+q(Xt, C). Since Xt is Kähler, there is a canonical Hodge decomposition:

H2(Xt, C) ≃ H2, 0(Xt, C)⊕H1, 1(Xt, C)⊕H0, 2(Xt, C), t ∈ B,

which, together with the Gauss-Manin connection ∇ of the vector bundle B ∋ t 7−→ H2(Xt, C),
induces a real analytic, not necessarily flat, connection ∇p, q on the vector subbundle B ∋ t 7−→
Hp, q(Xt, C). It is this connection ∇1, 1 obtained when (p, q) = (1, 1) that is involved in Theorem
4.1.36.

Proof of Theorem 4.1.36. The statement being local over B, we can shrink B about an arbitrary
pregiven point to ensure that the locally constant vector bundles B ∋ t 7−→ Hk(Xt, C) are constant.

On the other hand, the fibres Xt being Kähler, it is standard that, for every p, the restrictions of
the canonical holomorphic projection σp : Cp(X/B) −→ B to the connected components of Cp(X/B)
are proper maps. We define the subsets Σν ⊊ B as the images in B under the maps σp of those
connected components of the relative cycle spaces Cp(X/B) that do not surject onto B. Since the σp’s
are proper on each such connected component, each Σν is an analytic subset of B. Moreover, from
the definition of the Σν ’s we infer that the cohomology classes {[Z]} of the (currents of integration
over the) analytic cycles Z ⊂ Xt remain constant as t varies in B \ B′ and Z varies in a given
connected component of the relative cycle space Cp(X/B).
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Moreover, B \B′ is arcwise connected by piecewise smooth arcs since B is irreducible and B′ is
a countable union of proper analytic subsets of B. We fix such a smooth arc

γ : [0, 1] −→ B \B′

and we let α(u) ∈ H1, 1(Xγ(u), R), with u ∈ [0, 1], be a family of cohomology classes that is constant
by parallel transport under ∇1, 1. This constancy property amounts to

∇(α(u)) ∈ H2, 0(Xγ(u), C)⊕H0, 2(Xγ(u), C), u ∈ [0, 1]. (4.21)

•We first prove that the cones Pt := PXt ⊂ H1, 1(Xt, R) are invariant over B \B′ under parallel
transport with respect to the (1, 1)-projection ∇1, 1 of the Gauss-Manin connection ∇.

To this end, let us suppose that α(0) ∈ P0 := PX0 . This means that

α(0)p.{[Z]} :=
∫
Z

α(0)p > 0 (4.22)

for all p and all p-dimensional analytic cycles Z in Xγ(0). Let us fix such a cycle Z ⊂ Xγ(0) and
let us transport its cohomology class {[Z]} along the arc γ such that it remains constant with
respect to the Gauss-Manin connection ∇. We get a family (ζZ(γ(u)))u∈[0, 1] of cohomology classes
ζZ(γ(u)) ∈ H2q(Xγ(u), Z), where q = dimCXt−p, whose member for γ(0) is {[Z]} and which satisfies
the ∇-parallelism condition:

∇ζZ(γ(u)) = 0, u ∈ [0, 1]. (4.23)

By the choices of γ and B′, ζZ(γ(u)) is of type (q, q) for every u ∈ [0, 1] and the cohomology class of
(the current of integration on) every analytic cycle in any fibre Xγ(u) with u ∈ [0, 1] can be realised
as a ζZ(γ(u)) for some originally given Z ⊂ Xγ(0) and some p.

Using (4.21) and (4.23), we get:

d

du

(
α(u)p.ζZ(γ(u))

)
= pα(u)p−1 · ∇α(u) · ζZ(γ(u)) = 0,

where the last identity is the consequence of the bidegrees of the classes involved. Hence, the map

[0, 1] ∋ u 7−→ α(u)p.ζZ(γ(u)) ∈ R

is constant. Since its value at u = 0 is positive (see (4.22)), we infer that α(u)p.ζZ(γ(u)) > 0 for all
u ∈ [0, 1] (and, of course, all p and all classes ζZ(γ(u)) of analytic p-cycles in Xγ(u)).

By the definition of Pγ(u) := PXγ(u)
, the last fact amounts to α(u) ∈ Pγ(u) for all u ∈ [0, 1].

• To conclude the proof of Theorem 4.1.36, we apply part (b) of the Kodaira-Spencer Theorem
2.6.6. It ensures that, for every t0 ∈ B, every Kähler class on Xt0 can be deformed in a C∞ way to
Kähler classes on the nearby fibres Xt. Together with what was proved above about the variation of
the cone Pt, this implies that the connected component of Pt which constitutes the Kähler cone Kt
(cf. (a) of Theorem 4.1.33) must remain constant as specified in the statement of Theorem 4.1.36.
□
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4.2 Strongly Gauduchon metrics and manifolds

The material in this section is taken from [Pop09a] and [Pop14]. The starting point is the following
notion that was introduced for the purpose of controlling masses of metrics or currents and volumes
of divisors in families of compact complex manifolds.

Definition 4.2.1. ([Pop09a, Definition 4.1]) Let X be a compact complex manifold, dimCX = n.

(i) A C∞ positive definite (1, 1)-form ω on X is said to be a strongly Gauduchon (sG)
metric if the (n, n− 1)-form ∂ωn−1 is ∂̄-exact on X.

(ii) If X carries such a metric, X is said to be a strongly Gauduchon (sG) manifold.

Notice that the Gauduchon condition only requires ∂ωn−1 to be ∂̄-closed on X. Hence, every
strongly Gauduchon metric is a Gauduchon metric. Conversely, we have

Proposition 4.2.2. Let X be a compact ∂∂̄-manifold. Every Gauduchon metric on X is strongly
Gauduchon.

Proof. Let n := dimCX and let ω be a Gauduchon metric on X. Then ∂ωn−1 is ∂̄-closed and
∂-closed, hence also d-closed. Since ∂ωn−1 is both d-closed and ∂-exact, the ∂∂̄ hypothesis on X
implies that ∂ωn−1 is also ∂̄-exact. Hence, ω is a strongly Gauduchon metric. □

Thus, the Gauduchon and strongly Gauduchon notions coincide on ∂∂̄-manifolds. However, we
will see that the strongly Gauduchon condition is strictly stronger than the Gauduchon condition
in general. Furthermore, unlike Gauduchon metrics which exist on any compact complex manifold,
sG metrics need not exist in general, as hinted in (ii) of Definition 4.2.1.

4.2.1 Intrinsic characterisations of strongly Gauduchon manifolds

We will give two necessary and sufficient conditions for the manifold X to carry an sG metric.

(I) The first intrinsic characterisation of sG manifolds that we give is the following

Lemma 4.2.3. ([Pop09a, Lemma 4.2]) Let X be a compact complex manifold of complex dimension
n. Then, X carries an sG metric if and only if there exists a C∞ (2n− 2)-form Ω on X satisfying
the following three conditions:

(a) Ω = Ω (i.e. Ω is real);
(b) dΩ = 0;
(c) Ωn−1, n−1 > 0 on X (i.e. the component of type (n− 1, n− 1) of Ω w.r.t. the complex structure
of X is positive definite).

Note that conditions (a) and (b) are independent of the complex structure of X, while a change of
complex structure changes the (n− 1, n− 1)-component of a given (2n− 2)-form Ω. Thus condition
(c) is the only one to be dependent on the complex structure of X.

Proof of Lemma 4.2.3. The vanishing of the (2n− 1)-form dΩ (cf. (b)) amounts to the simultaneous
vanishing of its components ∂Ωn−1, n−1 + ∂̄Ωn, n−2 (of type (n, n− 1)) and ∂Ωn−2, n + ∂̄Ωn−1, n−1 (of
type (n − 1, n)). These two components are conjugate to each other if Ω satisfies (a). Thus, if (a)
holds, (b) is equivalent to ∂Ωn−1, n−1 + ∂̄Ωn, n−2 = 0.

Suppose there exists an sG metric ω on X. Then, the (n − 1, n − 1)-form Ωn−1, n−1 := ωn−1 is
positive definite on X and there exists a C∞ (n, n − 2)-form Ωn, n−2 on X satisfying ∂Ωn−1, n−1 =
−∂̄Ωn, n−2. Considering the (n− 2, n)-form Ωn−2, n := Ωn, n−2, we see that the C∞ (2n− 2)-form
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Ω := Ωn, n−2 + Ωn−1, n−1 + Ωn−2, n

satisfies conditions (a), (b), (c).
Conversely, suppose there exists a C∞ (2n − 2)-form Ω on X satisfying conditions (a), (b), (c).

By Lemma 4.0.1, the form Ωn−1, n−1 > 0 has a unique (n − 1)st root, namely there exists a unique
C∞ positive definite (1, 1)-form ω > 0 on X such that

ωn−1 = Ωn−1, n−1.

By condition (b) satisfied by Ω, we see that ∂ωn−1 is ∂̄-exact, which means that the Hermitian metric
ω of X is strongly Gauduchon. □

An immediate consequence of Lemma 4.2.3 is that the sG property of compact complex man-
ifolds is open under holomorphic deformations of the complex structure. (See Definition 2.6.1 for
this last piece of terminology.)

Theorem 4.2.4. ([Pop10a, Conclusion 2.4.]) Let π : X −→ B be a holomorphic family of compact
complex manifolds. Fix a point 0 ∈ B and suppose that the fibre X0 := π−1(0) is a strongly
Gauduchon manifold. Then, Xt := π−1(t) is a strongly Gauduchon manifold for every t ∈ B
sufficiently close to 0.

Proof. Let n := dimCXt for t ∈ B. As usual, we denote by X the C∞ manifold underlying the fibres
Xt and by Jt the complex structure of Xt for all t ∈ B. If we have a C∞ (2n − 2)-form Ω on X,
its components Ωn−1, n−1

t of type (n − 1, n − 1) w.r.t. the complex structures Jt vary in a C∞ way
with t ∈ B. Consequently, if Ωn−1, n−1

0 > 0 then Ωn−1, n−1
t > 0 for t ∈ B sufficiently close to 0 ∈ B.

Thus condition (c) of Lemma 4.2.3 is preserved under small deformations by mere continuity. Since
conditions (a) and (b) of Lemma 4.2.3 are independent of the complex structure of X, it follows
that any C∞ (2n − 2)-form Ω on X satisfying conditions (a), (b) and (c) of Lemma 4.2.3 w.r.t. J0
also satisfies these conditions w.r.t. Jt for all t sufficiently near 0. The proof of Theorem 4.2.4 is
complete. □

(II) The second intrinsic characterisation of sG manifolds that we give is the following

Proposition 4.2.5. ([Pop09a, Proposition 4.3.]) Let X be a compact complex manifold with
dimCX = n. Then, X carries a strongly Gauduchon metric ω if and only if there is no non-zero
current T of bidegree (1, 1) on X such that T ≥ 0 and T is d-exact on X.

Proof. We shall use Sullivan’s technique of [Sul76] based on the elementary Hahn-Banach theorem,
as we did to prove Theorem 4.1.2 and Lemma 4.1.3 and as had been done earlier in e.g. [HL83] and
[Mic83].

We start by determining when a (2n− 2)-form as in Lemma 4.2.3 exists. Let Ω be any real C∞

form of degree 2n− 2 on X.
The condition dΩ = 0 is equivalent, by the duality between d-closed smooth real (2n− 2)-forms

and real exact 2-currents T = dS on X, to the property:∫
X

Ω ∧ dS = 0 for every real 1-current S on X. (4.24)

On the other hand, the duality between strictly positive, smooth (n−1, n−1)-forms and non-zero
positive (1, 1)-currents on X shows that the condition Ωn−1,n−1 > 0 is equivalent to the property:
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∫
X

Ωn−1,n−1 ∧ T > 0 for every non-zero (1, 1)-current T ≥ 0 on X. (4.25)

Now, if T is of type (1, 1), we clearly have
∫
X
Ωn−1,n−1 ∧ T =

∫
X
Ω ∧ T . Furthermore, real

d-exact 2-currents T = dS form a closed vector subspace A of the locally convex space D′
R(X) of

real 2-currents on X. Meanwhile, if we fix a smooth, strictly positive (n − 1, n − 1)-form Θ on X,
positive non-zero (1, 1)-currents T on X can be normalised such that

∫
X
T ∧Θ = 1 and it suffices to

guarantee property (4.25) for normalised currents. Clearly, these normalised positive (1, 1)-currents
form a compact (in the locally convex topology of weak convergence of currents) convex subset B of
the locally convex space D′

R(X) of real 2-currents on X.
The Hahn-Banach Separation Theorem for locally convex spaces guarantees the existence of a

linear functional vanishing identically on a given closed subset and assuming only positive values on
a given compact subset if the two subsets are convex and do not intersect. Hence, in our case, there
exists a real smooth (2n− 2)-form Ω on X satisfying both conditions (4.24) and (4.25) if and only
if A ∩ B = ∅. This amounts to there existing no non-trivial exact (1, 1)-current T = dS such that
T ≥ 0 on X. □

4.2.2 Examples of non-sG compact complex manifolds

In this subsection we provide two groups of such examples according to whether the complex dimen-
sion is 2 or ≥ 3.

(I) Surface examples

We show that no non-Kähler compact complex surface is strongly Gauduchon.

Theorem 4.2.6. Let X be a compact complex surface. The following equivalence holds:

X is Kähler ⇐⇒ X is strongly Gauduchon.

Proof. The implication “ =⇒ ” is obvious and holds in every dimension.
It is well-known that a compact complex surface is Kähler if and only if its first Betti number b1

is even. (See Kodaira’s classification of surfaces, Miyaoka’s result [Miy74] asserting that an elliptic
surface is Kähler if and only if its first Betti number is even and Siu’s result [Siu83] asserting that
every K3 surface is Kähler. Alternatively, see [Buc99] and [Lam99] for independent direct proofs.).

Now, it can be easily shown by the same duality method of Sullivan’s (see, e.g. [Lam99, Théorème
6.1]) as the one employed in the proof of Proposition 4.2.5 that a non-zero d-exact semipositive (1, 1)-
current always exists on any compact complex surface with b1 odd. Threfore, by Proposition 4.2.5,
no compact complex surface with b1 odd can be strongly Gauduchon. □

(II) Examples of dimension ≥ 3

The sG property of compact complex manifolds X with dimCX ≥ 3 is tremendously weaker than
the Kähler property, in stark contrast with the case of complex surfaces. To exemplify this fact, we
prove the following

Theorem 4.2.7. ([Pop14, Theorem 1.9.]) The Calabi-Eckmann manifolds [CE53], the Hopf
manifolds [Hop48] and Tsuji’s manifolds [Tsu84] are not strongly Gauduchon.
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This will be proved by analysing the three well-known classes of compact complex manifolds
mentioned in the statement. The underlying C∞ manifold of all these complex manifolds is a
product X := S2p+1 × S2q+1 of two real odd-dimensional spheres, so they all share the property
H2
DR(X, R) = 0 for the second De Rham cohomology group. This implies that any d-closed positive

current T of bidegree (1, 1) on X, should it exist, must be d-exact since the associated De Rham
cohomology 2-class {T} ∈ H2

DR(X, R) must vanish. However, we know from Proposition 4.2.5 that
the existence of a non-trivial (1, 1)-current T on X that is both positive and d-exact amounts to X
being non-sG.

We shall briefly review the three classes of compact complex manifolds mentioned above and no-
tice that every such manifold X possesses complex hypersurfaces Y ⊂ X. Thus, since H2

DR(X, R) =
0, the current of integration on any of these complex hypersurfaces Y is a current as in Proposition
4.2.5, ruling out the possibility that any manifold X in one of these classes be sG.

(a) Calabi-Eckmann manifolds. For all p, q ∈ N, Calabi and Eckmann [CE53] constructed a
complex structure on the Cartesian product S2p+1 × S2q+1 of odd-dimensional spheres. The case
p = q = 0 being equivalent to a closed Riemann surface of genus 1 and periods 1, τ , they assume
p > 0. In the case q = 0, the Calabi-Eckmann complex structure on S2p+1×S1, although constructed
by a different method, coincides with the complex structure constructed earlier by Hopf in [Hop48]
starting from the universal covering space of S2p+1 × S1 equipped with the complex structure of
Cp+1 \ {0}. The simply connected manifolds S2p+1 × S2q+1 (p, q > 0) are given in [CE53] complex
structures making them into compact, simply connected, non-Kähler complex manifolds Mp, q of
complex dimension p + q + 1 enjoying, among other things, the following properties (for all p, q,
including q = 0):

(i) there exists a complex analytic fibring σ : Mp, q → Pp × Pq over the product of complex
projective spaces Pp and Pq whose fibres are tori of real dimension 2 (or algebraic curves of genus 1)
(cf. [CE56, Theorem II]);

(ii) every compact complex subvariety of Mp, q is the set of all points that are mapped by σ onto
an algebraic subvariety of Pp × Pq; it is therefore also fibred by tori (cf. [CE56, Theorem IV]).

It is clear that the inverse image under σ of any complex hypersurface of Pp × Pq defines a
complex hypersurface of the Calabi-Eckmann manifold Mp, q. Thus no Calabi-Eckmann manifold
Mp, q (p > 0) can be an sG manifold.1

(b) Hopf manifolds. As mentioned above (and proved in §.3 of [CE56]), the Hopf manifolds
S2p+1 × S1 (p > 0) endowed with the complex structure constructed in [Hop48] can be seen in
retrospect as special cases for q = 0 of Calabi-Eckmann manifolds. Thus they contain complex
hypersurfaces and are not sG manifolds by the above arguments.

(c) Tsuji’s manifolds. Generalising the Calabi-Eckmann complex structures, Tsuji constructed in
[Tsu84] complex structures on S3×S3 in the following way. Starting from an arbitrary (α1, α2, α3) ∈
C3 satisfying

0 < |α1| ≤ |α2| < 1 and 0 < |α3| < 1,

the author of [Tsu84] considers the primary Hopf manifold

1This same argument was invoked in [Mic82, p.263] to show that Calabi-Eckmann manifolds are not balanced.
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H(α) := C3 \ {0}/⟨h⟩

of complex dimension 3, where the automorphism h : C3 → C3 is defined by h(z1, z2, z3) :=
(α1 z1, α2 z2, α3 z3) for all (z1, z2, z3) ∈ C3 and ⟨h⟩ ⊂ Aut(C3) denotes the automorphism group
generated by h. He then goes on to consider

C := {[z1, z2, z3] ∈ H(α) ; z1 = z2 = 0} ⊂ H(α),

an elliptic curve contained in H(α) and

S0 := {[z1, z2, z3] ∈ H(α) ; z3 = 0} ⊂ H(α),

a primary Hopf surface which is a complex hypersurface of H(α). For every

A =

(
a b
c d

)
∈ SL(2, Z) and m = (m1, m2) ∈ Z2,m1,m2 ≫ 1,

he shows the existence of β = (β1, β2, β3) ∈ C3 defining biholomorphisms

L⋆(β)
Φ±

≃ L⋆(α),

where L⋆(α) and L⋆(β) are obtained from L(α) and L(β) by removing the respective zero section,
while L(α) and L(β) are holomorphic line bundles over the respective primary Hopf surfaces

Sα1, α2, 0 := C2 \ {0}/⟨gα⟩ and Sβ1, β2, 0 := C2 \ {0}/⟨gβ⟩

associated with automorphisms of C2

gα(z1, z2) := (α1 z1, α2 z2) and gβ(z1, z2) := (β1 z1, β2 z2)

defined by

L(α) := C2 \ {0} × C/⟨hα⟩ and L(β) := C2 \ {0} × C/⟨hβ⟩,

where the automorphisms hα and hβ of C3 are defined by

hα(z1, z2, z3) := (α1 z1, α2 z2, α3 z3) and hβ(z1, z2, z3) := (β1 z1, β2 z2, β3 z3).

Considering a compactification of L(β) as a P1-bundle P(β) → Sβ1, β2, 0, the infinity section of
P(β) is denoted S∞, while U(S∞) denotes a tubular neighbourhood of S∞ in P(β). The author
defines compact complex manifolds

M±(α,A,m)

by identifying

L⋆(β) ⊂ P(β) \ (zero section)

with

L⋆(α) ≃ H(α) \ (S0 ∪ C) ⊂ H(α)

using Φ±. These compact complex manifolds are seen to arise as
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M±(α,A,m) = (H(α) \ C) ∪ U(S∞), (4.26)

or equivalently, M±(α,A,m) are obtained from H(α) by a surgery which replaces C with U(S∞).

Theorem 4.2.8. ([Tsu84, Theorem 1.13]) M±(α,A,m) is diffeomorphic to S3 × S3 if and only if

A is of the form A =

(
a b
±1 d

)
.

Consequently, if A has the above shape, M±(α,A,m) is diffeomorphic to an S3-bundle over a
lens space, hence M±(α,A,m) has a complex structure.

With this outline of Tsuji’s construction understood, we see that the complex hypersurface
S0 ⊂ H(α) satisfies S0 ∩ C = ∅. Thus, in view of the description (4.26) of M±(α,A,m), we get a
complex hypersurface

S0 ⊂M±(α,A,m)

whose existence, along with the property H2
DR(M

±(α,A,m), R) = 0, shows that Tsuji’s compact
complex manifolds M±(α,A,m) are not sG for any α ∈ C3, A ∈ SL(2, Z),m = (m1, m2) ∈ Z2 as
above.

4.2.3 Stability of strongly Gauduchon manifolds under modifications

In this subsection we show that the strongly Gauduchon property of compact complex manifolds
is stable under modifications (i.e. proper, holomorphic, bimeromorphic maps). This provides a
sharp contrast to the Kähler property of these manifolds which is only preserved under blowing up
(smooth) submanifolds ([Bla58]).

Theorem 4.2.9. ([Pop10b, Theorem 1.3.]) Let µ : X̃ → X be a modification of compact com-

plex manifolds. Then, X̃ is a strongly Gauduchon manifold if and only if X is a strongly
Gauduchon manifold.

This result parallels the main result of Alessandrini and Bassanelli in [AB95] (see also [AB91b]
and [AB93]) which asserts that balanced manifolds (to be defined and studied in the next section)
enjoy the same stability property under modifications as above. The proof of Theorem 4.2.9 will draw
on some of the results in [AB91b], [AB93] and [AB95], but with certain arguments handled slightly
differently while others are considerably simplified by the fact that d-closed positive (1, 1)-currents
always admit unambiguously defined inverse images constructed from their local potentials, unlike
the much more delicate-to-handle ∂∂̄-closed positive (1, 1)-currents that were relevant to the case of
balanced manifolds. Inverse images for this latter class of currents were painstakingly constructed in
[AB93] and a unique choice was shown to enjoy the necessary cohomological properties, rendering
the case treated in [AB93] and [AB95] conspicuously more involved than ours.

Proof of Theorem 4.2.9

Let µ : X̃ → X be a modification of compact complex manifolds and let n = dimCX̃ = dimCX. Let
E be the exceptional divisor of µ on X̃ and let Σ ⊂ X be the analytic subset of codimension ≥ 2
such that the restriction µ|X̃\E : X̃ \ E −→ X \ Σ is a biholomorphism. Theorem 4.2.9 comprises
two parts.

(I) One implication of the equivalence in Theorem 4.2.9 is dealt with in the following
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Theorem 4.2.10. ([Pop10b, Theorem 2.1.]) If µ : X̃ → X is a modification of compact complex

manifolds and X is strongly Gauduchon, then X̃ is again strongly Gauduchon.

Proof. We proceed by contradiction. Suppose that X̃ is not strongly Gauduchon. Then, by Propo-
sition 4.2.5, there exists a current T ̸= 0 of type (1, 1) on X̃ such that

T ≥ 0 and T ∈ Im d on X̃.

By compactness of X̃, the map µ is proper and therefore the direct image under µ of any current
on X̃ is well-defined. Thus µ⋆T is a well-defined current of type (1, 1) on X. It is clear that

µ⋆T ≥ 0 and µ⋆T ∈ Im d on X.

Indeed, for every C∞ (1, 1)-form ω > 0 on X, we have∫
X

µ⋆T ∧ ωn−1 =

∫
X̃

T ∧ (µ⋆ω)n−1 ≥ 0,

a fact that proves the positivity of µ⋆T , while the d-exactness follows from µ⋆ commuting with d.
Now we have the following dichotomy.

If µ⋆T is non-zero, we get a contradiction to the strongly Gauduchon assumption on X thanks
to Proposition 4.2.5.

If µ⋆T = 0 on X, we show that T = 0 on X̃, contradicting the choice of T . Indeed, if µ⋆T = 0,
the support of T must be contained in the support of E. Since T is a closed positive current of
bidegree (1, 1) and the irreducible components Ej of E are all of codimension 1 in X̃, a classical
theorem of support (see e.g. [Dem97, Chapter III, Corollary 2.14]) forces T to have the shape

T =
∑
j∈J

λj [Ej], with coefficients λj ≥ 0 and some index set J.

Since all the irreducible components of S are of codimension≥ 2 inX, codimXµ(Ej) ≥ 2 for every
j ∈ J . All we have to do is repeat the argument of [AB91b, p. 5] that we now recall for the reader’s
convenience. By [GR70, p. 286], for every i ≥ 0, there exists a vector subspace H⋆

i (E) ⊂ Hi(E) and
a commutative diagram whose rows are short exact sequences featuring the homology groups Hi of
the various spaces involved:

0 −→ H⋆
i (E) ↪→ Hi(E)

βi−→ Hi(S) → 0
∥ ↓ ↓

0 −→ H⋆
i (E) −→ Hi(X̃)

αi−→ Hi(X) → 0,

where ↪→ stands for inclusion. If we denote by { }E (respectively { }X̃) the homology class of a

subvariety of real dimension 2(n− 1) in the ambient space SuppE (respectively X̃), we see that

β2(n−1){T}E =
∑
j

λj β2(n−1){Ej}E = 0

since µ(Ej) ⊂ S for all j and dimCS ≤ n − 2. Thus, from the top exact sequence, we get that
{T}E belongs to H⋆

2(n−1)(E). The diagram being commutative, the image of {T}E ∈ H⋆
2(n−1)(E) in

H2(n−1)(X̃) under the injective arrow of the bottom exact sequence is {T}X̃ . Meanwhile {T}X̃ = 0

since T is d-exact on X̃. We get that {T}E = 0, namely
s∑
j=1

λj {Ej}E = 0. This implies that
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λj = 0 for every j. (See e.g. [BH61, Theorem 3.2] for the existence and uniqueness of the integral
fundamental class of a complex analytic space inducing the natural orientation at every simple
point.) Hence T = 0 as a current on X̃, a contradiction.

The proof is complete. □

(II) The other implication of the equivalence in Theorem 4.2.9 is dealt with in the following

Theorem 4.2.11. ([Pop10b, Theorem 2.2.]) If µ : X̃ → X is a modification of compact complex

manifolds and X̃ is strongly Gauduchon, then X is again strongly Gauduchon.

Proof. We proceed once more by contradiction. Suppose that X is not strongly Gauduchon. Then,
in view of Proposition 4.2.5, there exists a current T ̸= 0 of type (1, 1) on X such that

T ≥ 0 and T = dS for some real 1−current S on X.

We shall show that the inverse image current µ⋆T is a well-defined (1, 1)-current on X̃ enjoying

the same properties as T on X, thus contradicting the strongly Gauduchon assumption on X̃ in view
of Proposition 4.2.5.

Although the inverse image of an arbitrary current is not defined in general, the inverse image
of a d-closed positive (1, 1)-current is well-defined under µ by the inverse images of its local ∂∂̄-
potentials (see e.g. [Meo96]). Indeed, following [Meo96], for every open subset U ⊂ X such that
T|U = i∂∂̄φ for a psh function φ on U , one defines (µ⋆T )|µ−1(U) := i∂∂̄(φ◦µ). The psh function φ◦µ
is ̸≡ −∞ on every connected component of µ−1(U) since µ has generically maximal rank and the
local pieces (µ⋆T )|µ−1(U) glue together into a globally defined d-closed positive (1, 1)-current µ⋆T on

X̃ that is independent of the choice of open subsets U ⊂ X and local potentials φ.
It is clear that µ⋆T is not the zero current on X̃. Indeed, if we had µ⋆T = 0, the support of T

would be contained in S. If all the irreducible components of S were of codimension ≥ 2 in X, a
classical theorem of support (see e.g. [Dem97, Chapter III, Corollary 2.11]) would guarantee that
the closed positive (1, 1)-current T must be the zero current on X, a contradiction. If S had certain
global irreducible components Sj of codimension 1 in X, another theorem of support (cf. [Dem97,
Chapter III, Corollary 2.14]) would ensure that T has the shape T =

∑
λj [Sj] for some constants

λj ≥ 0. Then µ⋆[Sj] would be the current of integration on the inverse-image divisor µ−1(Sj) ⊂ X̃
and µ⋆T cannot be the zero current unless λj = 0 for all j. However, in this event T = 0 on X, a
contradiction.

The only thing that has yet to be checked before reaching the desired contradiction is that the
non-trivial d-closed positive (1, 1)-current µ⋆T is d-exact on X̃. Since the 1-current S cannot be

pulled back to X̃ (the local potential technique is no longer available), we shall use Demailly’s
regularisation-of-currents theorem [Dem92, Main Theorem 1.1] to get a sequence (vj)j∈N of C∞

(1, 1)-forms on X such that every vj lies in the same Bott-Chern (hence also De Rham) cohomology
class as T with convergence

vj −→ T weakly as j → +∞, while vj ≥ −Cω, j ∈ N,

where ω is any Hermitian metric on X fixed beforehand and C > 0 is a constant independent of
j ∈ N.

Since T is d-exact and cohomologous to each vj, every form vj is d-exact. Thus, for all j ∈ N,
vj = duj for some C∞ 1-form uj on X. Unlike S, the C∞ forms uj have inverse images under µ and
we get



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS245

µ⋆vj = d(µ⋆uj) −→ µ⋆T weakly as j → +∞, (4.27)

after possibly extracting a subsequence. Indeed, it was shown in [Meo96, Proposition 1] that for
every sequence of d-closed positive (1, 1)-currents Tj converging weakly to T , the sequence of inverse-
image currents µ⋆Tj converges weakly to µ⋆T . In our case, the (1, 1)-forms vj are not necesarily
positive but only almost positive (the negative part being uniformly bounded by Cω). We now spell
out the reason why µ⋆vj converges weakly to the current µ⋆T in this slightly more general context.
The argument is virtually the same as that of [Meo96].

Pick any C∞ (1, 1)-form α in the Bott-Chern class of the forms vj (= the class of T ). Then, for
every j ∈ N, we have

vj = α + i∂∂̄ψj ≥ −Cω on X,

with C∞ functions ψj : X → R that we normalise such that
∫
X

ψj ω
n = 0 for every j. This

normalisation makes ψj unique. Applying the trace w.r.t. ω and using the corresponding Lapacian
∆ω(·) = Traceω(i∂∂̄(·)), we get

∆ωψj = Traceω(vj − α), j ∈ N.
Applying now the Green operator G of ∆ω and using the normalisation of ψj, we get

ψj = GTraceω(vj − α), j ∈ N.
Since G is a compact operator from the Banach space of bounded Borel measures on X to L1(X)

and since the forms vj converge weakly to T , we infer that some subsequence (ψjk)k converges to a
limit ψ ∈ L1(X) in L1(X)-topology. Thus the weak continuity of ∂∂̄ gives

T = lim
k
(α + i∂∂̄ψjk) = α + i∂∂̄ψ on X.

Now the sequence (ψj)j is uniformly bounded above on X by some constant C1 > 0 thanks to the
normalisation imposed on ψj and the Green-Riesz representation formula for ψj, ∆ω and G. Hence

the sequence (ψj ◦ µ)j is uniformly bounded above on X̃ by C1 > 0. On the other hand, ψjk ◦ µ
converges almost everywhere to ψ ◦ µ on X̃. Since the forms i∂∂̄(ψjk ◦ µ) are uniformly bounded

below on X̃ by −(µ⋆α + Cµ⋆ω), the almost psh functions ψjk ◦ µ can be simultaneously made psh

on small open subsets of X̃ by the addition of a same locally defined smooth psh function. We can
thus apply the classical result stating that a sequence of psh functions that are locally uniformly
bounded above either converges locally uniformly to −∞ (a case that is ruled out in our present
situation), or has a subsequence that converges in L1

loc topology (see e.g. [Hor94, Theorem 3.2.12.,

p. 149]). We infer that the almost psh functions ψjk ◦µ actually converge in L1(X̃)-topology (hence
also in the weak topology of distributions) and implicitly the forms

µ⋆vjk = µ⋆α + i∂∂̄(ψjk ◦ µ)
converge weakly to the current µ⋆T = µ⋆α + i∂∂̄(ψ ◦ µ). Thus the convergence statement (4.27) is
proved.

Since the De Rham class is continuous w.r.t. the weak topology of currents and since each form
µ⋆vj = d(µ⋆uj) has vanishing De Rham class, the limit current µ⋆T must have vanishing De Rham
class. Equivalently, µ⋆T is d-exact, providing a contradiction to the strongly Gauduchon assumption
on X̃ in view of Proposition 4.2.5. The proof is complete. □



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS246

An immediate consequence of Theorem 4.2.9 is the following

Corollary 4.2.12. Every class C manifold is a strongly Gauduchon manifold.

Proof. If X is of class C, there exists a modification µ : X̃ −→ X such that X̃ is compact Kähler.
Then X̃ is also sG, hence X is sG by Theorem 4.2.9. □

4.3 The class of sGG manifolds

We saw in Proposition 4.2.2 that on compact ∂∂̄-manifolds, every Gauduchon metric onX is strongly
Gauduchon. However, we will see in this section, whose material is mostly taken from [PU18],
that the class of compact complex manifolds on which the notions of Gauduchon and strongly
Gauduchon metrics coincide is strictly larger than the class of ∂∂̄-manifolds. The manifolds in this
larger class will be called sGG.

4.3.1 Original motivation for the introduction of sGG manifolds

It has long been conjectured that the deformation limit of any holomorphic family of class C manifolds
ought to be a class C manifold (cf. Conjecture 7.0.5).

A two-step strategy for tackling this conjecture was briefly outlined in [Pop15a]:

Step 1: prove that a compact complex manifold X belongs to the class C if and only if there are
“many” closed positive (1, 1)-currents on X.

Step 2: prove that there can only be “more” closed positive (1, 1)-currents on X0 than on the
generic fibre Xt.

A key tool in this section will be the following

Definition 4.3.1. ([Pop15a, §.5) Let X be a compact complex manifold with dimCX = n. The sG
cone of X is the set

SGX = GX ∩ kerT ⊂ GX ⊂ Hn−1, n−1
A (X, R),

namely the intersection of the Gauduchon cone with the kernel of the canonical linear map:

T : Hn−1, n−1
A (X, C) −→ Hn, n−1

∂̄
(X, C), T ([Ω]A) := [∂Ω]∂̄. (4.28)

Note that the map T is well defined (i.e. independent of the choice of representative Ω of the
Aeppli class [Ω]A) and it shows that the sG property is cohomological: either all the Gauduchon
metrics ω for which ωn−1 belongs to a given Aeppli-Gauduchon class [ωn−1]A ∈ GX are strongly
Gauduchon (in which case we say that [ωn−1]A is an sG class), or none of them is. In other words,
the sG cone SGX is the set of all sG classes on X. It is empty if X does not support any sG metric.

Here is the meaning of the two-step approach to the conjecture mentioned above.

Step 1 would be the transcendental analogue of the following well-known fact: a compact complex
manifold X is Moishezon (= bimeromorphically equivalent to a projective manifold) if and only if
there are “many” divisors on X (in the sense that the algebraic dimension of X is maximal, i.e.
equal to the dimension of X as a complex manifold).
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The meaning of “many” in connection with closed positive (1, 1)-currents has yet to be probed,
but we suspect that it will mean that the pseudo-effective cone EX of X is “maximal” at least in the
following sense:

(i) E̊X ̸= ∅ and (ii) SGX = GX , (⋆)

where˚stands for “interior”, while SGX and GX are respectively the sG cone and the Gauduchon
cone of X. Property (i) uses the non-emptiness of the interior as a way of requiring EX to be fairly
large, while property (ii) requires GX to be fairly small, hence by duality EX to be again fairly large
by a different criterion.

Each of the two properties in (⋆) is necessary for X to be of class C, but none of them is sufficient
on its own (see Proposition 4.5.66 for examples of manifolds not in the class C whose pseudo-effective
cone has non-empty interior). However, together they may become sufficient, or should condition
(⋆) turn out to be insufficient for X to be in the class C, it will have to be reinforced.

Step 2 means that the pseudo-effective cone EXt can only increase in the limit as t → 0 (i.e.
it behaves upper-semicontinuously under deformations of the complex structure of Xt), while its
dual, the (closure of the) Gauduchon cone GXt , can only decrease in the limit (i.e. it behaves
lower-semicontinuously).

In this section, we begin the implementation of this two-step strategy by studying the manifolds
defined by property (ii) in (⋆) and by giving a complete affirmative answer to the problem raised at
Step 2 of this line of argument for deformations of such manifolds.

4.3.2 Definition and first properties of sGG manifolds

In line with the goals in the first step of the approach to the conjecture mentioned in §.4.3.1, we will
investigate the following class of manifolds.

Definition 4.3.2. ([Pop15a] and [PU18, Definition 1.2.]) Let X be a compact complex manifold.
We say that X is an sGG manifold if the sG cone of X coincides with the Gauduchon cone of X,
i.e. if SGX = GX .

We have the following equivalent descriptions of the sGG property. (See [Pop15a, section §.5] for
(i)− (iii)).

Lemma 4.3.3. The following statements are equivalent:

(i) X is an sGG manifold;

(ii) the map T defined in (4.28) vanishes identically;

(iii) the following special case of the ∂∂̄-property holds: for every d-closed (n, n− 1)-form Γ on X,
if Γ is ∂-exact, then Γ is also ∂̄-exact;

(iv) every Gauduchon metric ω on X is strongly Gauduchon.

Proof. Since the kernel of the linear map T is a vector subspace of Hn−1, n−1
A (X, C), its inter-

section with the open convex Gauduchon cone leaves the latter unchanged if and only if kerT =
Hn−1, n−1
A (X, C), i.e. if and only if T vanishes identically. This proves the equivalence of (i) and (ii).
The equivalence of (ii) and (iii) is an immediate consequence of the definition (4.28) of T .
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If T vanishes identically, then for every Gauduchon metric ω, T ([ωn−1]A) = [∂ωn−1]∂̄ = 0,
so ∂ωn−1 is ∂̄-exact, which means that ω is strongly Gauduchon. This proves the implication
“(ii) =⇒ (iv) “.

Now, suppose that (iv) holds. If [ωn−1]A ∈ GX with ω a Gauduchon metric, then ω is sG by (iv),
hence [ωn−1]A ∈ SGX . Thus, GX = SGX . This proves the implication “(iv) =⇒ (i) “. □

An obvious consequence of Lemma 4.3.3 is that the first of the following two implications holds
for every compact complex manifold X:

X is a ∂∂̄-manifold =⇒ X is an sGG manifold =⇒ X is an sG manifold, (4.29)

while the second implication follows from the existence of Gauduchon metrics (i.e. GX ̸= ∅). We
shall see later that both converses fail. In other words, the sGG class of compact complex manifolds
strictly contains the ∂∂̄ class and is strictly contained in the sG class.

4.3.3 First numerical characterisation of sGG manifolds

We will first give a numerical characterisation in terms of the Bott-Chern number h0, 1BC := dimCH
0, 1
BC(X, C)

and the Hodge number h0, 1
∂̄

:= dimCH
0, 1

∂̄
(X, C).

Theorem 4.3.4. ([PU18, Theorem 1.4]) On any compact complex manifold X we have h0, 1BC ≤ h0, 1
∂̄

.

Moreover, X is an sGG manifold if and only if h0, 1BC = h0, 1
∂̄

.

An immediate consequence is the following

Corollary 4.3.5. ([PU18, Corollary 1.5]) The Iwasawa manifold and all its small deformations in
its Kuranishi family are sGG manifolds (but, of course, not ∂∂̄-manifolds).

Thanks to Corollary 4.3.5, the Iwasawa manifold is our main example of sGG manifold that is
not ∂∂̄. Its Kuranishi family was explicitly computed by Nakamura in [Nak75].

We will actually prove the following more precise version of Theorem 4.3.4.

Theorem 4.3.6. ([PU18, Theorem 2.1]) Let X be any compact complex manifold, dimCX = n.

(i) There is a well-defined canonical C-linear map

S : Hn, n−1

∂̄
(X, C) −→ Hn, n−1

A (X, C), S([Γ]∂̄) := [Γ]A.

Moreover, the map S is surjective, and we have an exact sequence

Hn−1, n−1
A (X, C) T−→ Hn, n−1

∂̄
(X, C) S−→ Hn, n−1

A (X, C) −→ 0,

i.e. ImT = kerS, where T is the map defined in (4.28). In particular, X is an sGG manifold if and
only if S is injective (i.e. if and only if S is bijective).

(ii) There are well-defined canonical C-linear maps and an exact sequence

0 −→ H0, 1
BC(X, C)

S⋆

−→ H0, 1

∂̄
(X, C) T ⋆

−→ H1, 1
BC(X, C)

defined by S⋆([u]BC) := [u]∂̄ for any d-closed (0, 1)-form u and T ⋆([v]∂̄) := [∂v]BC for any ∂̄-closed
(0, 1)-form v. Thus ImS⋆ = kerT ⋆.
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Moreover, the maps S⋆ and T ⋆ are dual to S and respectively T . Thus S⋆ is injective, hence
h0, 1BC ≤ h0, 1

∂̄
.

(iii) It follows that X is an sGG manifold if and only if S⋆ is surjective (i.e. if and only if S⋆ is
bijective) if and only if h0, 1BC = h0, 1

∂̄
.

Proof. By S being well defined, we mean that S([Γ]∂̄) (i.e. [Γ]A) is meaningful and does not depend
on the choice of representative Γ of the class [Γ]∂̄. The immediate verification of this fact is left to
the reader.

It is clear that ImT ⊂ kerS since Im ∂ ⊂ Im ∂ + Im ∂̄. To show the reverse inclusion, let
[Γ]∂̄ ∈ Hn, n−1

∂̄
(X, C) such that S([Γ]∂̄) = 0. Then there are forms Ω,Λ of respective bidegrees

(n−1, n−1) and (n, n−2) such that Γ = ∂Ω+∂̄Λ, i.e. Γ−∂̄Λ = ∂Ω. Hence ∂∂̄Ω = 0, [Γ]∂̄ = [Γ−∂̄Λ]∂̄
and T ([Ω]A) = [∂Ω]∂̄ = [Γ]∂̄. Thus [Γ]∂̄ ∈ ImT . This proves the identity ImT = kerS.

The surjectivity of S will follow from the injectivity of its dual map S⋆ that will be proved below.
The well-definedness of S⋆ and T ⋆ are proved in a similar way. The identity ImS⋆ = kerT ⋆

follows by duality from ImT = kerS or directly in the following way. Let [u]BC ∈ H0, 1
BC(X, C), i.e.

u is a d-closed (0, 1)-form. Then ∂u = 0 and ∂̄u = 0, hence T ⋆(S⋆[u]BC) = T ⋆([u]∂̄) = [∂u]BC = 0.
Thus ImS⋆ ⊂ kerT ⋆. To show the reverse inclusion, let [v]∂̄ ∈ kerT ⋆, i.e. v is a ∂̄-closed (0, 1)-
form such that ∂v = ∂∂̄f for some function f . Then ∂(v − ∂̄f) = 0, hence d(v − ∂̄f) = 0 and
[v]∂̄ = [v − ∂̄f ]∂̄ = S⋆([v − ∂̄f ]BC), so [v]∂̄ ∈ ImS⋆.

Let us now show that S⋆ is injective. Let [u]BC ∈ kerS⋆, i.e. u is a d-closed (0, 1)-form such
that u = ∂̄f for some function f . Since du = 0, we also have ∂u = 0, hence ∂∂̄f = 0 on X. Because
X is compact, the function f must be constant, hence u = ∂̄f = 0. In particular, [u]BC = 0.

Let us now check that the maps T and T ⋆ are dual to each other under the duality (??) and
under the Serre duality

H0, 1

∂̄
(X, C)×Hn, n−1

∂̄
(X, C) −→ C, ([v]∂̄, [Γ]∂̄) 7→

∫
X

v ∧ Γ,

the latter being defined for every ∂̄-closed forms v and Γ of respective bidegrees (0, 1) and (n, n−1).
We have to check that for every [v]∂̄ ∈ H

0, 1

∂̄
(X, C) ≃ (Hn, n−1

∂̄
(X, C))⋆, if we denote by

σv : Hn, n−1

∂̄
(X, C) −→ C

the linear map induced by [v]∂̄ under duality, then the linear map

τ∂v : Hn−1, n−1
A (X, C) −→ C

induced by T ⋆([v]∂̄) = [∂v]BC ∈ H1, 1
BC(X, C) ≃ (Hn−1, n−1

A (X, C))⋆ under duality is σv ◦ T . This is
indeed the case since, for every [Ω]A ∈ Hn−1, n−1

A (X, C), we have

(σv ◦ T )([Ω]A) = σv([∂Ω]∂̄) =

∫
X

v ∧ ∂Ω =

∫
X

∂v ∧ Ω = τ∂v([Ω]A),

having used the Stokes formula
∫
X
∂(v ∧ Ω) = 0 and ∂(v ∧ Ω) = ∂v ∧ Ω− v ∧ ∂Ω.

We can now check the equivalence:

T vanishes identically ⇐⇒ T ⋆ vanishes identically.

Indeed, T vanishes identically if and only if for every [Ω]A ∈ Hn−1, n−1
A (X, C) and every [v]∂̄ ∈

H0, 1

∂̄
(X, C) we have

∫
X
∂Ω ∧ v = 0. Since

∫
X
∂Ω ∧ v =

∫
X
Ω ∧ ∂v by the Stokes formula, this is

equivalent to the map τ∂v : Hn−1, n−1
A (X, C) → C vanishing identically, i.e. to [∂v]BC = 0, for

every [v]∂̄ ∈ H
0, 1

∂̄
(X, C). Since [∂v]BC = T ⋆([v]∂̄), this is still equivalent to the map T ⋆ vanishing

identically.
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Thus, if we put the various bits together, we get the equivalences:

X is an sGG manifold ⇐⇒ ImT = 0 ⇐⇒ kerS = 0 ⇐⇒ S is injective

⇐⇒ kerT ⋆ = H0, 1

∂̄
(X, C) ⇐⇒ ImS⋆ = H0, 1

∂̄
(X, C)

⇐⇒ S⋆ is surjective.

It can be checked that the maps S and S⋆ are dual to each other in the same way as the duality
between T and T ⋆ has been checked. □

Proof of Corollary 4.3.5. Reading the dimension tables for the Hodge and Bott-Chern numbers
given in [Nak75, p.96] and resp. [Ang11, Theorem 5.1], we gather that

h0, 1BC = h0, 1
∂̄

= 2

for the Iwasawa manifold and all its small deformations. Thus, the conclusion follows from Theorem
4.3.4. □

Remark 4.3.7. In the context of solvmanifolds some examples of sGG manifolds can be obtained.
For instance, for the completely-solvable Nakamura manifold, studied first by Nakamura in [Nak75],
it is shown by Angella and Kasuya that the corresponding Lie group G admits lattices Γ (see cases
(i)–(iii) in [AK12, Example 2.17]) for which the Bott-Chern cohomology of the compact solvmanifolds
G/Γ can be determined. For the lattices Γ in cases (ii) and (iii) the solvmanifolds satisfy h0, 1BC(G/Γ) =
1 = h0, 1

∂̄
(G/Γ) (see [AK12, Table 6]), so by Theorem 4.3.4 they are sGG. Note that in [AK12, Remark

2.19] it is proved that G/Γ is not a ∂∂̄-manifold only for Γ in case (ii).

4.3.4 Second numerical characterisation of sGG manifolds

We will now give a numerical characterisation in terms of the first Betti number b1 := dimCH
1
DR(X, C)

and the Hodge number h0, 1
∂̄

.

Theorem 4.3.8. ([PU18, Theorem 1.6]) On any compact complex manifold X we have b1 ≤ 2h0, 1
∂̄

.

Moreover, X is an sGG manifold if and only if b1 = 2h0, 1
∂̄

.

This makes sGG manifolds reminiscent of compact Kähler surfaces. (See proof of Theorem 4.2.6.)

We will actually prove the following more precise version of Theorem 4.3.8. For any form α, we
denote by αp, q its component of bidegree (p, q).

Theorem 4.3.9. ([PU18, Theorem 3.1]) Let X be any compact complex manifold, dimCX = n.

(i) There is a well-defined canonical C-linear map

F : H1
DR(X, C) −→ H0, 1

∂̄
(X, C)⊕H0, 1

∂̄
(X, C),

F ({α}DR) := ([α0, 1]∂̄, [α
1, 0]∂̄). (4.30)

Moreover, the map F is injective. Consequently, the following inequality holds on any compact
complex manifold:

b1 ≤ 2h0, 1
∂̄
.
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(ii) There is a well-defined canonical C-linear map:

F ⋆ : Hn, n−1

∂̄
(X, C)⊕Hn, n−1

∂̄
(X, C) −→ H2n−1

DR (X, C),
F ⋆([β]∂̄, [γ]∂̄) := {β + γ̄}DR. (4.31)

Moreover, the map F ⋆ is dual to the map F . Hence F ⋆ is surjective.

(iii) The following equivalence holds:

X is an sGG manifold ⇐⇒ F ⋆ is injective.

Since F is always injective by (i), this means that X is an sGG manifold if and only if the linear
map F is bijective. In other words, the following equivalence holds:

X is an sGG manifold ⇐⇒ b1 = 2h0, 1
∂̄
.

Proof. (i) For any 1-form α, the condition dα = 0 is equivalent to

∂̄α0, 1 = 0, ∂α1, 0 = 0 (⇔ ∂̄α1, 0 = 0), ∂α0, 1 + ∂̄α1, 0 = 0.

Thus, if dα = 0, α0, 1 and α1, 0 define Dolbeault cohomology classes of type (0, 1). To show that the
map F is independent of the choice of representative in a given De Rham class {α}DR, let α be any
d-exact 1-form on X. Then, there exists a function f on X such that α = df = ∂f + ∂̄f . Hence
α0, 1 = ∂̄f and α1, 0 = ∂̄f̄ , so [α0, 1]∂̄ = [α1, 0]∂̄ = 0. This proves the well-definedness of the map F .

To prove that F is injective, let α be a d-closed 1-form such that F ({α}DR) = 0, i.e. α0, 1 = ∂̄f
and α1, 0 = ∂̄g (i.e. α1, 0 = ∂ḡ) for some functions f, g on X. Then

0 = ∂α0, 1 + ∂̄α1, 0 = ∂∂̄(f − ḡ) on X,

where the first identity follows from ∂α0, 1+ ∂̄α1, 0 being the component of bidegree (1, 1) of dα = 0.
Since X is compact, f − ḡ must be constant on X, hence ∂ḡ = ∂f , so we get

α = α1, 0 + α0, 1 = ∂f + ∂̄f = df.

Thus {α}DR = 0. Consequently, F is injective.

(ii) For any ∂̄-closed (n, n − 1)-forms β, γ, we have ∂β = ∂γ = 0 for bidegree reasons, hence
dβ = dγ = 0, so β + γ̄ is d-closed and therefore it defines a De Rham class. To show that F ⋆ is
independent of the choice of representatives of the classes [β]∂̄, [γ]∂̄, suppose that β = ∂̄u and γ = ∂̄v
for some (n, n − 2)-forms u, v. Since ∂u = ∂v = 0 for bidegree reasons, we see that β = du and
γ = dv, hence β + γ̄ = d(u+ v̄), so {β + γ̄}DR = 0. We conclude that F ⋆ is well defined.

We now prove that the maps F and F ⋆ are dual to each other. Under the Serre duality

Hn, n−1

∂̄
(X, C) ≃ (H0, 1

∂̄
(X, C))⋆, every pair ([β]∂̄, [γ]∂̄) ∈ Hn, n−1

∂̄
(X, C) ⊕ Hn, n−1

∂̄
(X, C) can be

identified with the pair (u, v̄) in which u, v : H0, 1

∂̄
(X, C)→ C are the C-linear maps acting as

u([α0, 1]∂̄) =

∫
X

β ∧ α0, 1 and v([α0, 1]∂̄) =

∫
X

γ ∧ α0, 1

for every class [α0, 1]∂̄ ∈ H0, 1

∂̄
(X, C) and v̄ : H0, 1

∂̄
(X, C) → C is the C-linear map defined by

v̄([α0, 1]∂̄) := v([α0, 1]∂̄). Proving the duality between F and F ⋆ amounts to proving that
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σβ+γ̄ = (u+ v̄) ◦ F (4.32)

for any [β]∂̄, [γ]∂̄ ∈ H
n, n−1

∂̄
(X, C), where σβ+γ̄ : H1

DR(X, C) → C is the C-linear map representing
the De Rham class

F ⋆([β]∂̄, [γ]∂̄) = {β + γ̄}DR ∈ H2n−1
DR (X, C) ≃ (H1

DR(X, C))⋆

under Poincaré duality. By definition, this means that for every {α}DR ∈ H1
DR(X, C) we have

σβ+γ̄({α}DR) =
∫
X

(β + γ̄) ∧ α =

∫
X

β ∧ α0, 1 +

∫
X

γ̄ ∧ α1, 0 =

(
(u+ v̄) ◦ F

)
({α}DR).

This proves (4.32). We conclude that F and F ⋆ are dual to each other.

(iii) Let us first prove the implication “ =⇒ ”. Suppose that X is an sGG manifold. Let [β]∂̄, [γ]∂̄ ∈
Hn, n−1

∂̄
(X, C) such that β + γ̄ = d(Ωn, n−2 +Ωn−1, n−1 +Ωn−2, n) for some forms Ωp, q of the specified

bidegrees. This amounts to having

β = ∂̄Ωn, n−2 + ∂Ωn−1, n−1 and γ̄ = ∂̄Ωn−1, n−1 + ∂Ωn−2, n,

therefore to having

β − ∂̄Ωn, n−2 = ∂Ωn−1, n−1 and γ − ∂̄Ωn−2, n = ∂Ωn−1, n−1.

Now, β − ∂̄Ωn, n−2 ∈ [β]∂̄ and γ − ∂̄Ωn−2, n ∈ [γ]∂̄. On the other hand, ∂Ωn−1, n−1 and ∂Ωn−1, n−1 are
d-closed and ∂-exact (n, n− 1)-forms on X, so the sGG assumption on X implies (thanks to (iii) of
Lemma 4.3.3) that they are both ∂̄-exact, i.e. [β]∂̄ = [γ]∂̄ = 0 in Hn, n−1

∂̄
(X, C). We conclude that

F ⋆ is injective if X is sGG.
We now prove the reverse implication “⇐=”. Suppose that F ⋆ is injective. We will show that

every Gauduchon metric on X is actually strongly Gauduchon. This will imply that X is an sGG
manifold thanks to (iv) of Lemma 4.3.3.

Let ω be any Gauduchon metric on X. Then ∂ωn−1 ∈ ker ∂̄, so we have a Dolbeault class
[∂ωn−1]∂̄ ∈ H

n, n−1

∂̄
(X, C). Now, ∂ωn−1 + ∂ωn−1 = dωn−1 and, moreover,

F ⋆([∂ωn−1]∂̄, [∂ω
n−1]∂̄) = {∂ωn−1 + ∂ωn−1}DR = {dωn−1}DR = 0.

Since F ⋆ is supposed injective, we infer that [∂ωn−1]∂̄ = 0, i.e. ω is strongly Gauduchon. □

As a consequence of Theorem 4.3.8, we get the following

Corollary 4.3.10. ([PU18, Corollary 1.7]) Let (Xt)t∈∆ be any holomorphic family of compact com-
plex manifolds. Fix an arbitrary t0 ∈ ∆. If Xt0 is an sGG manifold, then:

(i) Xt is an sGG manifold for all t ∈ ∆ close enough to t0;

(ii) h0, 1
∂̄

(t) = h0, 1
∂̄

(t0) and h
0, 1
BC(t) = h0, 1BC(t0) for all t ∈ ∆ close enough to t0.

Proof. We will use the (local) invariance of the Betti numbers of the fibres in a C∞ family of compact
complex manifolds and the upper-semicontinuity of the Hodge numbers hp, q(t) as t varies in ∆ (cf.
[KS60, Theorem 4]). Indeed, if Xt0 is an sGG manifold, we have:
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b1 = 2h0, 1
∂̄

(t0) ≥ 2h0, 1
∂̄

(t) ≥ b1 for all t sufficiently close to t0.

Thus, we must have equalities b1 = 2h0, 1
∂̄

(t0) = 2h0, 1
∂̄

(t) for all t close to t0. In particular, by Theorem

4.3.8, Xt must be an sGG manifold for all t close to t0. Then Theorem 4.3.4 implies h0, 1BC(t0) = h0, 1BC(t)
for t close to t0. □

Another consequence of Theorem 4.3.8 is the following

Corollary 4.3.11. ([PU18, Corollary 1.8]) Let µ : X̃ → X be a holomorphic bimeromorphic map

between compact complex manifolds X̃ and X. The following equivalence holds:

X̃ is an sGG manifold ⇐⇒ X is an sGG manifold.

Proof. Thanks to the characterisation of sGG manifolds given in Theorem 4.3.8, it suffices to
ensure the invariance of b1 and of h0, 1

∂̄
under modifications, both of which are standard. Indeed, the

fundamental group is known to be a bimeromorphic invariant of complex manifolds, hence so is its
abelianisation H1, so also b1.

We recall for the reader’s convenience the well-known argument showing the modification in-
variance of every h0, k

∂̄
for any compact complex manifold (not necessarily satisfying the Hodge

symmetry)2. This invariance follows from the combination of two things. The first thing is the
following standard fact (cf. e.g. [Har77]) giving the vanishing of the higher direct image sheaves of
the structural sheaf under modifications:

Let f : X → Y be a bimeromorphic morphism between (smooth) compact complex manifolds.
Then:

(i) f⋆OX = OY ;
(ii)Rif⋆OX = 0 for all i > 0.

The second thing is the Leray spectral sequence associated with f and OX . Recall that this is the
spectral sequence starting at Ep, q

2 := Hp(Y, Rqf⋆OX) and converging to Hp+q(X, OX). The shape
of the direct image sheaves of OX under f implies at once that

Ep, 0
2 = Hp(Y, OY ) ≃ H0, p(Y, C) and Ep, q

2 = 0, q ≥ 1.

It follows that the Leray spectral sequence degenerates at E2 and we have

H0, k(X, C) = Hk(X, OX) ≃
⊕
p+q=k

Ep, q
2 = Ek, 0

2 ≃ H0, k(Y, C) for all k.

□

4.3.5 The cones GX and EX under deformations of sGG manifolds

In connection with the conjecture mentioned at the beginning of §.4.3.1 and the second step of
the approach to it outlined there, we prove the following semi-continuity properties of the pseudo-
effective and Gauduchon cones in families of sGG manifolds.

2This simple argument was pointed out to the author by A. Fujiki and F. Campana.
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Theorem 4.3.12. ([PU18, Theorem 1.9]) Let (Xt)t∈∆ be any holomorphic family of sGG com-
pact complex manifolds. Then GXt behaves lower-semicontinuously, while EXt behaves upper-
semicontinuously w.r.t. the usual topology of ∆ as t ∈ ∆ varies.

More precise statements will be given in Theorems 4.3.19 and 4.3.26.

As usual, for any differential form Ω of any degree k and for any (p, q) such that p + q = k, we
denote by Ωp, q the component of Ω of bidegree (p, q). Thus Ω =

∑
p+q=k Ω

p, q.
It will be seen in (II) below that the discussion of the variation of the cones GX and EX under

deformations of the complex structure of a compact sGG manifold X would be greatly simplified
if the Bott-Chern number h1, 1BC(X) were locally deformation constant. Unfortunately, this is not
the case as Proposition 4.3.32 will show, rendering indispensable the introduction of some technical
work in (II).

(I) Fake Hodge-Aeppli decomposition of H2n−2
DR (X, R) when X is sGG

If our n-dimensional compact complex manifold X were supposed to be a ∂∂̄-manifold, there would
exist a canonical isomorphism H2n−2

DR (X, C) ≃ Hn, n−2
A (X, C) ⊕ Hn−1, n−1

A (X, C) ⊕ Hn−2, n
A (X, C)

(cf. [Pop13b] where this splitting was called a Hodge-Aeppli decomposition), hence in particular a
canonical surjection H2n−2

DR (X, C) ↠ Hn−1, n−1
A (X, C) and a canonical injection Hn−1, n−1

A (X, C) ↪→
H2n−2
DR (X, C) which is a section of the surjection. However, under the weaker sGG assumption on

X, a complete Hodge-Aeppli decomposition in degree 2n− 2 need not exist, but we will show that
a weaker substitute thereof (that will prove sufficient for our purposes later on) exists: a canonical
surjection and a non-canonical but naturally-associated-with-any-given-metric injection as above
exist if we restrict attention to the real cohomologies.

We start by noticing the existence of the canonical surjection.

Proposition 4.3.13. ([PU18, Proposition 5.1]) Let X be an arbitrary compact complex manifold,
dimCX = n. The following canonical linear map

P : H2n−2
DR (X, R)→ Hn−1, n−1

A (X, R), {Ω}DR 7→ [Ωn−1, n−1]A, (4.33)

is well defined. Furthermore, if X is an sGG manifold, P is surjective.

Proof. Let Ω = Ωn, n−2+Ωn−1, n−1+Ωn−2, n be any d-closed (not necessarily real) C∞ form of degree
2n− 2. We have:

dΩ = 0 ⇐⇒ ∂Ωn−1, n−1 + ∂̄Ωn, n−2 = 0 and ∂Ωn−2, n + ∂̄Ωn−1, n−1 = 0

=⇒ ∂∂̄Ωn−1, n−1 = 0. (4.34)

The last identity shows that Ωn−1, n−1 defines indeed an Aeppli cohomology class of bidegree (n −
1, n − 1). To show well-definedness for P , we still have to show that the definition is independent
of the choice of representative of the De Rham class {Ω}DR. Let Ω1,Ω2 represent the same De
Rham class, i.e. Ω := Ω1 − Ω2 is d-exact. Then there exists a (2n − 3)-form Γ such that Ω =
d(Γn, n−3 + Γn−1, n−2 + Γn−2, n−1 + Γn−3, n). Thus, the d-exactness of a (2n− 2)-form Ω is equivalent
to the existence of Γ ∈ C∞

2n−3(X, C) such that

Ωn, n−2 (i)
= ∂Γn−1, n−2 + ∂̄Γn, n−3

Ωn−1, n−1 (ii)
= ∂Γn−2, n−1 + ∂̄Γn−1, n−2

Ωn−2, n (iii)
= ∂Γn−3, n + ∂̄Γn−2, n−1. (4.35)
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Identity (ii) above means that [Ωn−1, n−1]A = 0, i.e. [Ωn−1, n−1
1 ]A = [Ωn−1, n−1

2 ]A.
Let us now suppose that X is an sGG manifold. Pick any class [Ωn−1, n−1]A ∈ Hn−1, n−1

A (X, R)
with Ωn−1, n−1 real. Then ∂∂̄Ωn−1, n−1 = 0, hence d(∂Ωn−1, n−1) = 0. Since ∂Ωn−1, n−1 is a ∂-exact
d-closed (n, n− 1)-form, the sGG assumption on X implies that ∂Ωn−1, n−1 is ∂̄-exact (see Lemma
4.3.3). Thus, there exists an (n, n− 2)-form Ωn, n−2 such that

∂Ωn−1, n−1 = −∂̄Ωn, n−2.

Hence, since Ωn−1, n−1 is real, ∂̄Ωn−1, n−1 = −∂Ωn, n−2. Therefore, the (2n − 2)-form Ω := Ωn, n−2 +
Ωn−1, n−1 + Ωn, n−2 is real and dΩ = 0 (cf. (4.34)). It is clear that P ({Ω}DR) = [Ωn−1, n−1]A. This
proves that P is surjective. □

Corollary 4.3.14. ([PU18, Corollary 5.2]) If X is an sGG compact complex manifold with dimCX =
n, the dual map of P :

P ⋆ : H1, 1
BC(X, R)→ H2

DR(X, R), [α]BC 7→ {α}DR, (4.36)

is injective. (Of course, P ⋆ is canonically well defined for any X but it need not be injective if X is
not sGG.)

That P ⋆ is indeed the dual map of P follows immediately from the identity
∫
X
α ∧ Ω =

∫
X
α ∧

Ωn−1, n−1 which holds for bidegree reasons for any class [α]BC ∈ H1, 1
BC(X, R)) and any class {Ω}DR ∈

H2n−2
DR (X, R).
No canonical right inverse of P need exist when X is only an sGG manifold, but for any given

Hermitian metric on X we will now construct a right inverse of P depending on the chosen metric.

Definition 4.3.15. ([PU18, Definition 5.3]) Let X be an sGG compact complex manifold with
dimCX = n and let ω be an arbitrary Hermitian metric on X. With ω we associate the following
injective linear map

Qω : Hn−1, n−1
A (X, R)→ H2n−2

DR (X, R), [Ωn−1, n−1]A 7→ {Ω}DR, (4.37)

where the real d-closed (2n− 2)-form Ω on X is determined by a given real ∂∂̄-closed (n− 1, n− 1)-
form Ωn−1, n−1 and by the metric ω in the following way.

(i) If ∆A denotes the Aeppli Laplacian associated with ω, we have an orthogonal (w.r.t. the L2 inner
product defined by ω) splitting

ker(∂∂̄) = ker∆A ⊕ (Im ∂ + Im ∂̄) (see e.g. [Pop13, §.2]),
which induces a splitting of Ωn−1, n−1 ∈ ker(∂∂̄) as

Ωn−1, n−1 = Ωn−1, n−1
A + ∂Γn−2, n−1 + ∂̄Γn−1, n−2, (4.38)

where ∆AΩ
n−1, n−1
A = 0. The forms Γn−2, n−1, Γn−1, n−2 are of the shown bidegrees and are not

uniquely determined, but we will see that the definition of Qω does not depend on their choices.
(Since Ωn−1, n−1 is real, we can always choose Γn−2, n−1 = Γn−1, n−2.)

(ii) Since ∂̄(∂Ωn−1, n−1
A ) = 0, we also have d(∂Ωn−1, n−1

A ) = 0. Thus the sGG assumption on X and
Lemma 4.3.3 ensure that ∂Ωn−1, n−1

A is ∂̄-exact, i.e. there exists a smooth (n, n − 2)-form Ωn, n−2
A

such that

∂Ωn−1, n−1
A = ∂̄(−Ωn, n−2

A ). (4.39)
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We choose Ωn, n−2
A to be the solution of equation (4.39) of minimal L2-norm (defined by ω). Thus,

Ωn, n−2
A is uniquely determined by the formula

Ωn, n−2
A = −∂̄⋆∆′′−1(∂Ωn−1, n−1

A ), (4.40)

where ∆′′ = ∂̄∂̄⋆ + ∂̄⋆∂̄ is the ∂̄-Laplacian associated with the given metric ω and ∆
′′−1 is its Green

operator (i.e. the inverse of its restriction to the orthogonal complement of its kernel).

(iii) Taking ∂ in (4.38) and using (4.39), we get:

∂Ωn−1, n−1 = ∂Ωn−1, n−1
A + ∂∂̄Γn−1, n−2 = ∂̄(−Ωn, n−2

A − ∂Γn−1, n−2).

We set Ωn, n−2 := Ωn, n−2
A + ∂Γn−1, n−2. Thus we get:

∂Ωn−1, n−1 = ∂̄(−Ωn, n−2), hende also ∂̄Ωn−1, n−1 = ∂(−Ωn, n−2), (4.41)

where the latter identity follows from the former by taking conjugates and using the fact that Ωn−1, n−1

is real.

(iv) We set Ω := Ωn, n−2 +Ωn−1, n−1 +Ωn, n−2. It is clear that Ω is a real (2n− 2)-form on X and
dΩ = 0 (compare (4.41) with (4.34)).

We now make the trivial observation that Definition 4.3.15 is correct.

Lemma 4.3.16. ([PU18, Lemma 5.4]) The map Qω is well defined and injective. Moreover, the com-
posed linear map P ◦Qω : Hn−1, n−1

A (X, R)→ Hn−1, n−1
A (X, R) is the identity map of Hn−1, n−1

A (X, R)
(so Qω is a section of P ).

Proof. For well-definedness, we need to show that Qω([Ω
n−1, n−1]A) does not depend either on the

choice of representative of the Aeppli class [Ωn−1, n−1]A or on the choice of the forms Γn−2, n−1,Γn−1, n−2

in (4.38). Let us consider two real representatives of a same real Aeppli class:

[Ωn−1, n−1
1 ]A = [Ωn−1, n−1

2 ]A.

Let Ωj = Ωn, n−2
j +Ωn−1, n−1

j +Ωn, n−2
j (j = 1, 2) be the real d-closed (2n− 2)-forms on X determined

by Ωn−1, n−1
j and ω as described in Definition 4.3.15.

Since the ∆A-harmonic representative of a given Aeppli class is unique, we infer that Ωn−1, n−1
1, A =

Ωn−1, n−1
2, A (i.e. Ωn−1, n−1

1 and Ωn−1, n−1
2 have the same ∆A-harmonic projection). This implies that

Ωn, n−2
1, A = Ωn, n−2

2, A since the solution of minimal L2-norm of a ∂̄-equation (equation (4.39) here) is
unique. This further implies that

Ωn, n−2
1 − Ωn, n−2

2 = ∂(Γn−1, n−2
1 − Γn−1, n−2

2 ). (4.42)

On the other hand, (4.38) spells

Ωn−1, n−1
j = Ωn−1, n−1

j, A + ∂Γn−2, n−1
j + ∂̄Γn−1, n−2

j , j = 1, 2,

which gives, since Ωn−1, n−1
1, A = Ωn−1, n−1

2, A , the identity

Ωn−1, n−1
1 − Ωn−1, n−1

2 = ∂(Γn−2, n−1
1 − Γn−2, n−1

2 ) + ∂̄(Γn−1, n−2
1 − Γn−1, n−2

2 ). (4.43)

We see that (4.42) and (4.43) amount to the d-exactness condition (4.35) for the real (2n − 2)-
form Ω := Ω1 − Ω2 (where we choose Γn, n−3 = 0 and Γn−3, n = 0). Thus Ω1 − Ω2 is d-exact, i.e.
{Ω1}DR = {Ω2}DR, so Qω([Ω

n−1, n−1
1 ]A) = Qω([Ω

n−1, n−1
2 ]A).
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To show that Qω is injective, let Qω([Ω
n−1, n−1]A) = 0, i.e. {Ω}DR = 0. This means that Ω is

d-exact, which in turn means that the identities (4.35) hold. It is clear that (ii) of (4.35) expresses
the fact that [Ωn−1, n−1]A = 0.

The fact that P ◦ Qω([Ω
n−1, n−1]A) = [Ωn−1, n−1]A for any class [Ωn−1, n−1]A ∈ Hn−1, n−1

A (X, R)
follows immediately from the definitions of P and Qω: the original (n − 1, n − 1)-form Ωn−1, n−1 is
indeed the (n − 1, n − 1)-component of the (2n − 2)-form constructed from Ωn−1, n−1 in Definition
4.3.15. □

Putting these pieces of information together, we immediately get the

Corollary 4.3.17. ([PU18, Corollary 5.5]) Let X be an sGG compact complex manifold, dimCX =
n. For any Hermitian metric ω on X, the dual map of Qω:

Q⋆
ω : H2

DR(X, R)→ H1, 1
BC(X, R) (4.44)

is surjective. Moreover, the composition Q⋆
ω ◦ P ⋆ : H1, 1

BC(X, R)→ H1, 1
BC(X, R) is the identity map.

Note that the dual map Q⋆
ω has the following explicit form∫

X

Q⋆
ω({α}DR) ∧ [Ωn−1, n−1]A =

∫
X

{α}DR ∧Qω([Ω
n−1, n−1]A) (4.45)

for any classes {α}DR ∈ H2
DR(X, R) and [Ωn−1, n−1]A ∈ Hn−1, n−1

A (X, R). (The meaning of cohomol-
ogy classes in (4.45) is that the integrals do not depend on the choice of representatives in those
classes.)

We can well call the pair of maps (P, Qω) a fake Hodge-Aeppli decomposition of H2n−2
DR (X, R)

and the dual pair of maps (P ⋆, Q⋆
ω) the dual fake Hodge-Bott-Chern decomposition of H2

DR(X, R).

(II) Deformation semicontinuity of GX and EX when X is sGG

We now use the fake Hodge decomposition of the previous subsection in the context of small defor-
mations of an sGG complex structure.

Let π : X → ∆ be a holomorphic family of compact complex manifolds. Without loss of
generality, we may suppose that ∆ ⊂ C is an open disc about the origin. The fibresXt := π−1(t) ⊂ X
(t ∈ ∆) are thus compact complex manifolds of equal dimension n and the family is C∞ locally trivial,
hence the De Rham cohomology groups of the fibres can be identified with a fixed space Hk(X, C)
for every k = 0, 1, . . . , 2n. As the complex structure of Xt varies with t ∈ ∆, the Bott-Chern,
Dolbeault and Aeppli cohomologies of the fibres depend on t.

Suppose moreover that X0 is an sGG manifold. Then Xt is an sGG manifold for all t ∈ ∆
sufficiently close to 0 by our Corollary 4.3.10. After shrinking ∆ about 0, we can assume that Xt is
an sGG manifold for all t ∈ ∆. We fix any C∞ family (ωt)t∈∆ of Hermitian metrics on the respective
fibres (Xt)t∈∆. Let t0 ∈ ∆ be an arbitrary point (e.g. we take t0 = 0).

(1) Variation of the Gauduchon cone

The fake Hodge-Aeppli decomposition constructed in the previous subsection on each fibre Xt

gives us maps as follows:
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Hn−1, n−1
A (X0, R)

Qω0
↪→ H2n−2

DR (X, R)
Pt

↠ Hn−1, n−1
A (Xt, R), t ∈ ∆.⋃ ⋃

GX0 GXt

Thus the image of the Gauduchon cone GX0 ofX0 under the composition Pt◦Qω0 : Hn−1, n−1
A (X0, R)→

Hn−1, n−1
A (Xt, R) can be compared to GXt as subsets of Hn−1, n−1

A (Xt, R). Note that P0 ◦ Qω0 =
IdHn−1, n−1

A (X0,R) and it follows from [KS60, Theorem 5] that the surjections (Pt)t∈∆ vary in a C∞

way with t (hence the maps Pt◦Qω0 are isomorphisms) if the dimension ofHn−1, n−1
A (Xt, R) (= h1, 1BC(t)

by duality) is independent of t. However, if h1, 1BC(0) > h1, 1BC(t) for t ̸= 0 close to 0, the Gauduchon
cone GX0 of X0 has more dimensions than its counterparts GXt on the nearby fibres, but the projec-
tions Pt for t ̸= 0 eliminate the extra dimensions of (Pt ◦Qω0)(GX0). It seems sensible to introduce
the following definition.

Definition 4.3.18. ([PU18, DEfinition 5.6]) If (Xt)t∈∆ is a holomorphic family of sGG compact
complex n-dimensional manifolds, the limit as t→ t0 of the Gauduchon cones GXt of the fibres
Xt for t ̸= t0 is defined as the following subset of Hn−1, n−1

A (Xt0 , R):

lim
t→t0
GXt :=

{
[Ωn−1, n−1]A ∈ Hn−1, n−1

A (Xt0 , R) | (Pt ◦Qωt0
)([Ωn−1, n−1]A) ∈ GXt ∀t ∼ t0

}
,

where “ ∀t ∼ t0” means “for all t sufficiently close to t0”.

Note that lim
t→t0
GXt depends on the metric ωt0 (since Qωt0

depends thereon) but does not depend

on the way in which ωt0 has been extended in a C∞ fashion to metrics ωt on the nearby fibres (since
the maps Pt are canonical).

We can now prove that the Gauduchon cone GXt of the sGG fibreXt behaves lower-semicontinuously
w.r.t. t ∈ ∆ in the usual topology of ∆ much as it did in the special case of families of ∂∂̄-manifolds
treated in [Pop13b].

Theorem 4.3.19. ([PU18, Theorem 5.7]) Let (Xt)t∈∆ be any holomorphic family of sGG compact
complex manifolds endowed with any C∞ family (ωt)t∈∆ of Hermitian metrics.

Then, for all t0 ∈ ∆, the following inclusion holds:

GXt0
⊂ lim

t→t0
GXt .

Proof. We may assume that t0 = 0. Denote by n the complex dimension of the fibres and let
[γn−1

0 ]A ∈ GX0 for some Gauduchon metric γ0 > 0 on X0. Let Ω be the C∞ real d-closed (2n − 2)-
form determined by γn−1

0 and by the Hermitian metric ω0 as in Definition 4.3.15. For every t ∈ ∆,
the splitting of Ω into pure-type forms reads:

Ω = Ωn, n−2
t + Ωn−1, n−1

t + Ωn−2, n
t , t ∈ ∆,

where Ωn−1, n−1
0 = γn−1

0 . Then (Pt ◦ Qω0)([γ
n−1
0 ]A) = Pt({Ω}DR) = [Ωn−1, n−1

t ]A ∈ Hn−1, n−1
A (Xt, R)

for all t ∈ ∆. Since Ωn−1, n−1
0 > 0 and the Ωn−1, n−1

t vary in a C∞ way with t ∈ ∆ (as components of
the fixed form Ω), we get

Ωn−1, n−1
t > 0 for all t sufficiently close to 0,
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hence there exists a unique Gauduchon metric γt on Xt such that γn−1
t = Ωn−1, n−1

t , so [Ωn−1, n−1
t ]A ∈

GXt for all t close to 0. Thus [γn−1
0 ]A ∈ lim

t→t0
GXt .

□

(2) Dual situation: variation of the pseudo-effective cone

The dual of the fake Hodge-Aeppli decomposition constructed in the previous subsection on each
fibre Xt gives us maps as follows:

H1, 1
BC(X0, R)

P ⋆
0
↪→ H2

DR(X, R)
Q⋆

ωt

↠ H1, 1
BC(Xt, R), t ∈ ∆.⋃ ⋃

EX0 EXt

Clearly, Q⋆
ω0
◦P ⋆

0 = IdH1, 1
BC(X0,R) and it follows from [KS60, Theorem 5] that the surjections (Q⋆

ωt
)t∈∆

vary in a C∞ way with t (hence the maps Q⋆
ωt
◦P ⋆

0 are isomorphisms) if the dimension of H1, 1
BC(Xt, R)

(= h1, 1BC(t)) is independent of t. However, if h1, 1BC(0) > h1, 1BC(t) for t ̸= 0 close to 0, the pseudo-
effective cone EX0 of X0 lies in a space which has a higher dimension than the ambient spaces of its
counterparts EXt on the nearby fibres.
• We shall now define a complex vector subspace

H
′1, 1
BC (X0, C) ⊂ H1, 1

BC(X0, C) (4.46)

depending on the chosen family of Hermitian metrics (ωt)t∈∆ such that:

· dimH
′1, 1
BC (X0, C) = dimH1, 1

BC(Xt, C) for all t ∈ ∆ close to 0;

· H
′1, 1
BC (X0, C) = H1, 1

BC(X0, C) when h1, 1BC(0) = h1, 1BC(t) for t close to 0.

• We will need a general fact, which is essentially known but may not be written as such in the
literature as far as we are aware, that will prove useful in other similar situations. We now proceed
to explain it.

The starting point is the following classical result of Grauert’s.

Theorem 4.3.20. ([Gra58])3 Let E −→ X be a real-analytic vector bundle over a real-analytic
manifold X. Then, the space of real-analytic sections of E is dense in the space of C∞ sections
of E.

Grauert proved this using the technique of Stein tubular neighbourhoods in the complexified
manifold X̃. As a consequence, we get the following

Corollary 4.3.21. Let π : X −→ B be a holomorphic family of compact complex manifolds Xt :=
π−1(t), with t ∈ B, over an open ball B ⊂ CN about the origin for some N ∈ N⋆.

(1) There exists a real-analytic family (ωt)t∈B of Hermitian metrics on the respective fibres Xt.

(2) Taking adjoints and Laplacians w.r.t. to the ωt’s, the familiar differential operators:

∂⋆t , ∂̄
⋆
t , ,∆t, ,∆

′
t, ,∆

′′
t , ,∆BC, t, ,∆A, t,

vary in a real-analytic way with t ∈ B.

3The author is grateful to J.-P. Demailly for pointing out to him this result of Grauert’s and for confirming that
Corollary 4.3.21 holds as a consequence thereof.
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(3) For any bidegree (p, q), any real-analytic family (Pt)t∈B of elliptic differential operators
Pt : C

∞
p, q(Xt, C) −→ C∞

p, q(Xt, C) and for any Jordan curve C ⊂ C that contains 0 ∈ C in its
interior and does not meet the spectrum of P0, there exists a small neighbourhood ∆ ⊂ B of 0 in
C such that C does not meet the spectrum of Pt for any t ∈ ∆ and the vector bundle given by the
Kodaira-Spencer theory presented in §.2.5.2:

∆ ∋ t 7→
⊕

λ(t)∈int (C)

Eλ(t)(Pt)

is real-analytic, where Eλ(t)(Pt) is the λ(t)-eigenspace of Pt.

Sketch of proof. Part (1) follows at once from Grauert’s Theorem 4.3.20 and immediately implies
part (2). Part (3) follows from parts (1) and (2) and from the Cauchy integral formula given in the
Kodaira-Spencer Lemma 2.5.18, by integrating w.r.t. λ the Green operators (Pt − λ Id)−1 on the
Jordan curve. □

The problem we will now address is the following.

Question 4.3.22. Let V −→ D ⊂ C be a C∞ vector bundle over an open disc about 0 in the complex
plane. Suppose V is equipped with a C∞ fibre metric and that H : V −→ V is a C∞ self-adjoint
endomorphism of V (i.e. a C∞ family of self-adjoint operators Ht : Vt −→ Vt) such that Ht ≥ 0 for
all t ∈ D.

Suppose that H0 = 0 (so, kerH0 = V0) and that dim kerHt < dimVt for all t ∈ D \ {0}.
Does kerHt have a limiting position when D \ {0} ∋ t −→ 0?

By kerHt having a limiting position as t ∈ D \ {0} converges to 0 we mean that there exists a
C∞ vector bundle over an open subset Ω of D containing 0 whose fibre at every t ∈ Ω\{0} is kerHt.

The answer to Question 4.3.22 is negative in general.

Counter-example 4.3.23. 4 Let V = C −→ D ⊂ C be the constant real vector bundle of rank 2
and let

Ht : C −→ C, z 7−→ Re (t̄z) z, t ∈ D.

Then,
kerHt = {z = x+ iy ∈ C | ux+ vy = 0}, t = u+ iv ∈ D \ {0},

with x, y, u, v ∈ R.
Consequently, if we fix λ ∈ R and choose t = u+ iv = (λ+ i) v ∈ D \ {0}, with v ∈ R \ {0}, then

kerHt is a real line dλ depending only on λ for all v ̸= 0, namely

kerHt = {z = x+ iy ∈ C | λx+ y = 0} := dλ, t = (λ+ i)R ∩ (D \ {0}).

Hence, when t ∈ D \ {0} approaches 0 along the real line (λ + i)R, kerHt remains constant, equal
to dλ, so the limiting position of kerHt is the line dλ. However, dλ changes into the different line dµ
when µ ̸= λ, so the limiting position of kerHt is the different line dµ when t ∈ D \ {0} approaches
0 along the real line (µ+ i)R.

Consequently, kerHt has no limiting position when t ∈ D \ {0} approaches 0 from all possible
real directions.

4The author is very grateful to P. Deligne for pointing out to him this counter-example and the proof of the next
Proposition 4.3.24.
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What we can now show using Corollary 4.3.21 is that the answer to Question 4.3.22 becomes
affirmative if the regularity of the vector bundle V −→ D ⊂ C, of the fibre metric thereon and of
the self-adjoint endomorphism H : V −→ V is real-analytic and if the disc D is replaced by any
path Γ ⊂ D.

Proposition 4.3.24. Let V −→ D ⊂ C be a real-analytic C-vector bundle over an open disc
about 0 in the complex plane. Suppose V is equipped with a real-analytic fibre metric and that
H : V −→ V is a real-analytic Hermitian endomorphism of V (i.e. a real-analytic family of
self-adjoint operators Ht : Vt −→ Vt) such that Ht ≥ 0 for all t ∈ D.

Suppose that H0 = 0 (so, kerH0 = V0) and that dim kerHt < dimVt for all t ∈ D \ {0}.
Then, for any real curve Γ ⊂ D ending at 0, kerHt has a limiting position when Γ\{0} ∋ t→ 0.

Proof. Restrict V to Γ and complexify to get a holomorphic vector bundle Ṽ −→ U ∩ D, where
U is a neighbourhood of Γ in C. Similarly, restrict H to Γ and complexify to get a holomorphic
endomorphism H̃ : Ṽ −→ Ṽ . In particular,

Ṽ|Γ = V|Γ and H̃|Γ = H|Γ.

Then, ker H̃ is a coherent subsheaf of the locally free sheaf O(Ṽ ) (because the kernel of a mor-

phism of coherent sheaves is coherent). Hence, ker H̃ is also torsion-free (because any coherent

subsheaf of a torsion-free sheaf is torsion-free). Similarly, Ṽ / ker H̃ is a torsion-free coherent sheaf
on U ∩D.

Now, every torsion-free coherent sheaf is locally free outside an analytic subset of codimension
≥ 2. (See e.g. [Kob87, V].) Since the complex dimension of U ∩ D is 1, we get that ker H̃ and

Ṽ / ker H̃ are locally free on U ∩D and Ṽ / ker H̃ is locally a direct factor.

Moreover, the fibre at t of the holomorphic vector bundle ker H̃ is kerHt for all t ∈ U ∩D except,
possibly, on a discrete subset. We conclude that the fibre at t = 0 of ker H̃ is a limiting position for
kerHt when t ∈ Γ approaches 0. □

• Using Proposition 4.3.24, we define a complex vector subspace H
′1, 1
BC (X0, C) ⊂ H1, 1

BC(X0, C)
with the above-mentioned properties by taking V to be the real-analytic vector bundle

∆ ∋ t 7→
⊕

0≤λ<ε

E1, 1
∆BC, t

(λ)

and Ht := ∆BC, t (the Bott-Chern Laplacians induced by a real-analytic family of Hermitian metrics
on the respective fibres Xt), where ∆ ⊂ C is a sufficiently small open disc about 0 and ε > 0 is so
small that:

· 0 is the only eigenvalue of ∆BC, 0 in the interval [0, ε);

· the boundary of the open disc ∆ε ⊂ C of radius ε about 0 does not meet the spectrum of any
∆BC, t with t ∈ ∆;

· the number of eigenvalues (counted with multiplicities) of ∆BC, t lying inside the disc ∆ε is
independent of t ∈ ∆.

We then pick an arbitrary path Γ ⊂ ∆ ending at 0 and we use Proposition 4.3.24 to define
H

′1, 1
BC (X0, C) as the limiting position of kerHt = ker∆BC, t as t ∈ Γ approaches 0.
To lighten the exposition, we will henceforth assume, including in Definition 4.3.25 and in The-

orem 4.3.26, that a limiting position of ker∆BC, t exists as t ∈ ∆ approaches 0. (Otherwise, replace
∆ by a path Γ ⊂ ∆.)
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• Continuing the work in our situation, for every t ∈ ∆, let ∆A, t : C∞
n−1, n−1(Xt, C) →

C∞
n−1, n−1(Xt, C) be the Aeppli Laplacian in bidegree (n− 1, n− 1) defined by the Hermitian metric

ωt on Xt. Since ∆A, t is a non-negative self-adjoint elliptic operator (of order 4), it has a discrete spec-
trum 0 ≤ λ1(t) ≤ λ2(t) ≤ . . . with +∞ as sole accumulation point and the space C∞

n−1, n−1(Xt, C)
has an orthonormal basis (ej(t))j≥1 consisting of eigenvectors such that

∆A, tej(t) = λj(t) ej(t), j ≥ 1, t ∈ ∆.

Let N := h1, 1BC(0) and p := h1, 1BC(t) for t close to 0. Thus N ≥ p by the Kodaira-Spencer upper-
semicontinuity property [KS60, Theorem 4]. Let

0 < ε < min

(
Spec∆A, 0 ∩ (0, +∞)

)
such that ε /∈ Spec∆A, t ∀t ∼ 0.

Then, thanks to fundamental Kodaira-Spencer theorems on smooth families of elliptic operators
[KS60, Theorems 1-5], we have the following picture:

0 = λ1(0) = · · · = λN(0) < ε < λN+1(0), while for all t ∼ 0, t ̸= 0, we have:
0 = λ1(t) = · · · = λp(t) < λp+1(t) ≤ · · · ≤ λN(t) < ε < λN+1(t),

i.e. the number of eigenvalues (counted with multiplicities) of ∆A, t lying in the open interval (−1, ε)
is independent of t if t ∈ ∆ is sufficiently close to 0. Moreover, if E∆A, t

(λ) denotes the eigenspace
of ∆A, t corresponding to the eigenvalue λ, the Kodaira-Spencer theorems further ensure that

∆ ∋ t 7→
⊕

0≤λ<ε

E∆A, t
(λ) := En−1, n−1

A, ε (t)

is a C∞ vector bundle of finite rank (equal to N here) after possibly shrinking ∆ about 0 and that
the orthogonal projections

C∞
n−1, n−1(Xt, C)

σt−→ En−1, n−1
A, ε (t) (4.47)

vary in a C∞ way with t ∈ ∆.
Thus {e1(t), . . . , eN(t)} is a local frame for the vector bundle En−1, n−1

A, ε and we have:

ker∆A, 0 = ⟨e1(0), . . . , ep(0), . . . , eN(0)⟩ = En−1, n−1
A, ε (0),

ker∆A, t = ⟨e1(t), . . . , ep(t)⟩ ⊂ ⟨e1(t), . . . , eN(t)⟩ = En−1, n−1
A, ε (t), t ̸= 0.

Thus we have an orthogonal splitting

ker∆A, 0 = ⟨e1(0), . . . , ep(0)⟩ ⊕ ⟨ep+1(0), . . . , eN(0)⟩
which induces under the Hodge isomorphism ker∆A, 0 ≃ Hn−1, n−1

A (X0, C) a splitting

Hn−1, n−1
A (X0, C) = H

′n−1, n−1
A (X0, C)⊕H

′′n−1, n−1
A (X0, C) (4.48)

where H
′n−1, n−1
A (X0, C) ≃ ⟨e1(0), . . . , ep(0)⟩ and

H
′′n−1, n−1
A (X0, C) ≃ ⟨ep+1(0), . . . , eN(0)⟩. Now, H1, 1

BC(X0, C) and Hn−1, n−1
A (X0, C) are dual to each

other, so identifying H1, 1
BC(X0, C) with Hn−1, n−1

A (X0, C)⋆ we define

H
′1, 1
BC (X0, C) :=

{
[α]BC ∈ H1, 1

BC(X0, C) | [α]BC|H
′′n−1, n−1
A (X0,C)

= 0

}
. (4.49)
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Thus,H
′1, 1
BC (X0, C) consists of the linear maps [α]BC : Hn−1, n−1

A (X0, C)→ C vanishing onH
′′n−1, n−1
A (X0, C),

i.e. identifies with the dual of H
′n−1, n−1
A (X0, C).

It is clear that H
′1, 1
BC (X0, C) coincides with H1, 1

BC(X0, C) if h1, 1BC(0) = h1, 1BC(t) for t ∼ 0, but it
depends on the choice of the C∞ family of metrics (ωt)t∈∆, so it is not canonical, if h1, 1BC(0) > h1, 1BC(t).
The same construction can, of course, be run for any t0 ∈ ∆ in place of 0.

Definition 4.3.25. ([PU18, Definition 5.8] Let (Xt)t∈∆ be a holomorphic family of sGG compact
complex manifolds equipped with a C∞ family of Hermitian metrics (ωt)t∈∆.

For any t0 ∈ ∆, the limit as t → t0 of the pseudo-effective cones EXt of the fibres Xt for
t ̸= t0 is defined as the following subset of H1, 1

BC(Xt0 , R):

lim
t→t0
EXt :=

{
[α]BC ∈ H1, 1

BC(Xt0 , R) ∩H
′1, 1
BC (Xt0 , C) | (Q⋆

ωt
◦ P ⋆

t0
)([α]BC) ∈ EXt ∀t ∼ t0

}
,

where “ ∀t ∼ t0” means “for all t sufficiently close to t0”.

Note that we restrict from the start to classes in the subspace H
′1, 1
BC (Xt0 , C) ⊂ H1, 1

BC(Xt0 , C) to
trim off the extra dimensions that the limit may acquire if the dimension of H1, 1

BC(Xt, C) increases
in the limit. Note also that, unlike its Gauduchon-cone counterpart, lim

t→t0
EXt depends not only on

the metric ωt0 but on the whole family of metrics (ωt)t∈∆ for t ∼ 0.
We can now prove that the pseudo-effective cone EXt behaves upper-semicontinuously in families

of sGG manifolds.

Theorem 4.3.26. ([PU18, Theorem 5.9]) Let (Xt)t∈∆ be any holomorphic family of sGG compact
complex manifolds endowed with any C∞ family (ωt)t∈∆ of Hermitian metrics.

Then, for all t0 ∈ ∆, the following inclusion holds:

EXt0
⊃ lim

t→t0
EXt .

Proof. Without loss of generality, we may suppose that t0 = 0. Let [T ]BC ∈ lim
t→0
EXt , where T is

a d-closed real (1, 1)-current on X0. (We implicitly use the fact that the Bott-Chern cohomology
can be computed using either smooth forms or currents.) Since EXt is the dual of GXt by Lamari’s
duality lemma, for all t ̸= 0 with t ∼ 0 and for any Gauduchon metric γt on Xt, we have

∫
Xt

(Q⋆
ωt
◦ P ⋆

0 )([T ]BC) ∧ [γn−1
t ]A =

∫
Xt

{T}DR ∧Qωt([γ
n−1
t ]A) (4.50)

=

∫
Xt

T ∧ (Ωn, n−2
t + γn−1

t + Ωn, n−2
t ) ≥ 0.

Indeed, the first identity in (4.50) is (4.45), while the second identity holds for the (n, n − 2)-form
Ωn, n−2
t on Xt determined as described in Definition 4.3.15 by γn−1

t and the Hermitian metric ωt of
Xt.

We will show that [T ]BC ∈ EX0 . Since EX0 is the dual of GX0 by Theorem 4.1.18, this amounts
to showing that ∫

X0

T ∧ γn−1
0 ≥ 0 (4.51)
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for any Gauduchon metric γ0 on X0.
Let us fix an arbitrary Gauduchon metric γ0 onX0. Pick any C∞ deformation of γ0 to Gauduchon

metrics (γt)t∈∆ on the fibres (Xt)t∈∆. (This is always possible as the proof of Gauduchon’s theorem
shows – see e.g. [Pop13a, §.3]). Since (γn−1

t )t∈∆ is a C∞ family of (n − 1, n − 1)-forms and since
(σt)t∈∆ is a C∞ family of orthogonal projections (defined in (4.47)), (σtγ

n−1
t )t∈∆ is a C∞ family of

(n− 1, n− 1)-forms.
We use the notation of Definition 4.3.15 with Ωn−1, n−1 replaced with γn−1

t on each fibre Xt. Thus
Ωn−1, n−1
A, t stands for the ∆A, t-harmonic component of γn−1

t , so for every t ∈ ∆ we have:

γn−1
t = Ωn−1, n−1

A, t + ∂tΓ
n−2, n−1
t + ∂̄tΓ

n−2, n−1
t ,

Ωn, n−2
A, t := −∂̄⋆t∆

′′−1
t (∂tΩ

n−1, n−1
A, t ) and Ωn, n−2

t := Ωn, n−2
A, t + ∂tΓ

n−2, n−1
t

On the other hand, we have:

σ0γ
n−1
0 = Ωn−1, n−1

A, 0 =
p∑
j=1

cj(0) ej(0) +
N∑

j=p+1

cj(0) ej(0) := Ω′
A, 0 + Ω′′

A, 0,

σtγ
n−1
t =

p∑
j=1

cj(t) ej(t) +
N∑

j=p+1

cj(t) ej(t) = Ωn−1, n−1
A, t +

N∑
j=p+1

cj(t) ej(t),

for t ∼ 0, t ̸= 0. Thus Ω′
A, 0,Ω

′′
A, 0 ∈ ker∆A, 0 and [Ω′

A, 0]A ∈ H
′n−1, n−1
A (X0, C) while [Ω′′

A, 0]A ∈
H

′′n−1, n−1
A (X0, C). The coefficients cj(t) ∈ C vary continuously with t ∈ ∆, so cj(t) → cj(0) as

t→ 0 for every j. We get:

Ωn−1, n−1
A, t =

p∑
j=1

cj(t) ej(t) −→
p∑
j=1

cj(0) ej(0) = Ω′
A, 0 ∈ ker∆A, 0 as t→ 0, (4.52)

hence, from ∂t varying in a C∞ way with t up to t = 0, we infer

∂tΩ
n−1, n−1
A, t −→ ∂0Ω

′
A, 0 as t→ 0.

Now comes a crucial argument. The forms ∂tΩ
n−1, n−1
A, t and ∂0Ω

′
A, 0 are of bidegree (n, n−1) for their

respective complex structures. On the other hand, by Serre duality we have hn, n−1

∂̄
(t) = h0, 1

∂̄
(t),

hence part (ii) of our Corollary 4.3.10 and the sGG assumption ensure that

hn, n−1

∂̄
(0) = hn, n−1

∂̄
(t) for all t ∼ 0.

Therefore, the Green operators (∆
′′−1
t )t∈∆ vary in a C∞ way with t (up to t = 0) by the Kodaira-

Spencer theorem [KS60, Theorem 5] which applies when the relevant Hodge numbers (hn, n−1

∂̄
(t)

here) do not jump. Thus,

∆
′′−1
t (∂tΩ

n−1, n−1
A, t ) −→ ∆

′′−1
0 (∂0Ω

′
A, 0) as t→ 0

and since ∂̄⋆t varies in a C∞ way with t up to t = 0, we infer

Ωn, n−2
A, t = −∂̄⋆t∆

′′−1
t (∂tΩ

n−1, n−1
A, t ) −→ −∂̄⋆0∆

′′−1
0 (∂0Ω

′
A, 0) := Ω

′n, n−2
A, 0 (4.53)

as t→ 0. It is clear that the form Ω
′n, n−2
A, 0 is of bidegree (n, n− 2) on X0.

We can now finish the proof of the theorem. Recall that we have to prove inequality (4.51). With
the above preparations, we have:
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∫
X0

T ∧ γn−1
0 =

∫
X0

T ∧ (Ωn−1, n−1
A, 0 + ∂0Γ

n−2, n−1
0 + ∂̄0Γ

n−2, n−1
0 )

(a)
=

∫
X0

T ∧ Ωn−1, n−1
A, 0

=

∫
X0

T ∧ Ω′
A, 0 +

∫
X0

T ∧ Ω′′
A, 0

(b)
=

∫
X0

T ∧ Ω′
A, 0, (4.54)

where identity (a) follows by Stokes’ theorem from ∂0T = 0 and ∂̄0T = 0 (due to dT = 0),

while identity (b) follows from the definition of H
′1, 1
BC (X0, C), from [T ]BC ∈ H

′1, 1
BC (X0, C) and from

[Ω′′
A, 0]A ∈ H

′′n−1, n−1
A (X0, C).

On the other hand, the last integral in (4.50), which is non-negative for all t ∼ 0 and t ̸= 0,
transforms as follows:

∫
Xt

T ∧ (Ωn, n−2
t + γn−1

t + Ωn, n−2
t ) =

∫
Xt

T ∧ γn−1
t (4.55)

+

∫
Xt

T ∧ Ωn, n−2
A, t +

∫
Xt

T ∧ ∂tΓn−1, n−2
t

+

∫
Xt

T ∧ Ωn, n−2
A, t +

∫
Xt

T ∧ ∂̄tΓn−2, n−1
t .

Now,
∫
Xt
T ∧γn−1

t converges to
∫
X0
T ∧γn−1

0 , while
∫
Xt
T ∧Ωn, n−2

A, t converges to
∫
X0
T ∧Ω

′n, n−2
A, 0 = 0 by

the crucial convergence (4.53). The last identity follows from T being of bidegree (1, 1) and Ω
′n, n−2
A, 0

being of bidegree (n, n− 2), hence T ∧Ω
′n, n−2
A, 0 = 0 as an (n+1, n− 1)-current. By conjugation, we

infer that
∫
Xt
T ∧ Ωn, n−2

A, t converges to
∫
X0
T ∧ Ω

′n, n−2
A, 0 = 0. Furthermore, we have:∫

Xt

T ∧ ∂tΓn−2, n−1
t =

∫
Xt

T ∧ dΓn−2, n−1
t −

∫
Xt

T ∧ ∂̄tΓn−2, n−1
t = −

∫
Xt

T ∧ ∂̄tΓn−2, n−1
t ,

the last identity following from Stokes’ theorem and dT = 0. We also have the conjugate identity:∫
Xt
T ∧ ∂̄tΓn−2, n−1

t = −
∫
Xt
T ∧ ∂tΓn−2, n−1

t , hence:

∫
Xt

T ∧ ∂tΓn−2, n−1
t +

∫
Xt

T ∧ ∂̄tΓn−2, n−1
t = −

∫
Xt

T ∧ (∂̄tΓ
n−2, n−1
t + ∂tΓ

n−2, n−1
t )

= −
∫
Xt

T ∧ (γn−1
t − Ωn−1, n−1

A, t ). (4.56)

Now,
∫
Xt
T ∧ γn−1

t converges to
∫
X0
T ∧ γn−1

0 and, by (4.52),
∫
Xt
T ∧ Ωn−1, n−1

A, t converges to
∫
X0
T ∧

Ω′
A, 0 as t → 0. Putting together (4.55), (4.56) and all the pieces of convergence information just

mentioned, we get the convergence:∫
Xt

T ∧ (Ωn, n−2
t + γn−1

t + Ωn, n−2
t ) −→

∫
X0

T ∧ Ω′
A, 0 =

∫
X0

T ∧ γn−1
0 as t→ 0, (4.57)
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where the last identity is nothing but (4.54).

Recall that
∫
Xt
T ∧ (Ωn, n−2

t + γn−1
t +Ωn, n−2

t ) ≥ 0 for all t ∼ 0 with t ̸= 0 by (4.50). Hence (4.57)

implies
∫
X0

T ∧ γn−1
0 ≥ 0 and we are done. □

4.3.6 Relations between the sGG class and other classes of compact
complex manifolds

In this section we show that sGG manifolds are unrelated to balanced manifolds and to those whose
Frölicher spectral sequence degenerates at E1. Examples of compact complex manifolds X with
SGX ̸= GX but admitting strongly Gauduchon metrics are also given. To construct appropriate
examples we will consider the class of nilmanifolds endowed with an invariant complex structure.

(I) Generalities on nilmanifolds

Recall that a nilmanifold N = G/Γ is a compact quotient of a connected and simply-connected
nilpotent real Lie group G by a lattice Γ of maximal rank in G. Let g be the Lie algebra of
the group G. We will say that “N has underlying Lie algebra g” or that “g is the Lie algebra
underlying N”. We will denote 6-dimensional real Lie algebras in the usual abbreviated form; for
instance, (04, 12, 34) denotes the Lie algebra g with generators {ei}6i=1 satisfying the bracket relations
[e1, e2] = −e5, [e3, e4] = −e6, or equivalently there exists a basis {αi}6i=1 of the dual g∗ such that
dα1 = dα2 = dα3 = dα4 = 0, dα5 = α1 ∧ α2, dα6 = α3 ∧ α4.

Notice that by Nomizu’s theorem [Nom54], the integer k appearing in 0k in the notation above
is precisely the first Betti number of N , i.e. b1(N) = k.

The complex structures that we will consider on N are invariant in the sense that they stem
naturally from “complex” structures J on the Lie algebra g of G. For any such J , the i-eigenspace
g1,0 of J in gC = g ⊗R C is a complex subalgebra. When g1,0 is abelian we will refer to J as an
abelian complex structure.

The following result identifies the compact complex nilmanifolds of complex dimension 3 that
are sGG.

Theorem 4.3.27. ([PU18, Theorem 6.1]) Let N be a nilmanifold of (real) dimension six not iso-
morphic to a torus and let J be an invariant complex structure on N . Then, the compact complex
manifold X = (N, J) is sGG if and only if the Lie algebra underlying N is isomorphic to

(04, 12, 34), (04, 12, 14 + 23), (04, 13 + 42, 14 + 23) or (04, 12, 13)

and the complex structure J is not abelian.

Proof. By Theorem 4.3.8, if N admits an invariant complex structure J such that X = (N, J) is
sGG then the first Betti number is even. From the classification of nilpotent Lie algebras admitting
a complex structure [Sal01], this condition implies that the Lie algebra underlying N belongs to
the following list: (04, 12, 34), (04, 12, 14 + 23), (04, 13 + 42, 14 + 23), (04, 12, 13), (04, 12, 14 + 25),
(02, 12, 13, 23, 14 + 25).

We first rule out the last two cases. It was proved in [UV14, Proposition 2.4] that for any
invariant complex structure J on a nilmanifold N with underlying Lie algebra (02, 12, 13, 23, 14+25)
there is a global basis {η1, η2, η3} of forms of bidegree (1,0), with respect to J , satisfying complex
equations of the shape:

dη1 = 0, dη2 = η13 + η13̄, dη3 = iη11̄ ± i(η12̄ − η21̄),
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(where we use the standard notation: ηjk := ηj ∧ ηk, ηjk̄ := ηj ∧ ηk.)
That is to say, up to equivalence there exist exactly two invariant complex structures on N depending
on the choice of sign in the third equation. Hence, H0, 1

∂̄
(N, J) = ⟨[η1̄]∂̄, [η3̄]∂̄⟩ by a result in [Rol09,

Section 4.2], and we get b1(N) = 2 < 4 = 2h0, 1
∂̄

(N, J). It follows from Theorem 4.3.8 that there is
no invariant complex structure on N satisfying the sGG property.

By [COUV11], for any invariant complex structure J on a nilmanifold N with underlying Lie
algebra (04, 12, 14 + 25) there is a global basis {η1, η2, η3} of (1,0)-forms satisfying

dη1 = 0, dη2 = η11̄, dη3 = η12̄ + η21̄,

which implies that h0, 1
∂̄

(N, J) = 3. Therefore, b1(N) = 4 < 6 = 2h0, 1
∂̄

(N, J), so there is no invariant
complex structure on N satisfying the sGG property.

It is well known that on 6-dimensional nilmanifolds different from the complex tori there exists (up
to equivalence) only one complex-parallelisable complex structure given by the complex equations

dη1 = dη2 = 0, dη3 = η12.

This corresponds to the Iwasawa manifold (which is an sGG manifold by e.g. Corollary 4.3.5) whose
underlying Lie algebra is precisely (04, 13+ 42, 14+ 23). Now, for any other complex structure J on
a nilmanifold N with underlying Lie algebra (04, 12, 34), (04, 12, 14 + 23), (04, 13 + 42, 14 + 23) or
(04, 12, 13), it is proved in [COUV11] that there is a (1,0)-basis satisfying

dη1 = dη2 = 0, dη3 = ρ η12 + η11̄ + λ η12̄ +Dη22̄, (4.58)

where ρ ∈ {0, 1}, λ ∈ R≥0 and D = x + iy ∈ C with y ≥ 0. Notice that J is abelian if and only if
ρ = 0.

To complete the proof we must show that for any complex structure J given by (4.58) the compact
complex manifold (N, J) satisfies b1(N) = 4 = 2h0, 1

∂̄
(N, J) if and only if ρ = 1. But this is clear

because H0, 1

∂̄
(N, J) = ⟨[η1̄]∂̄, [η2̄]∂̄, [η3̄]∂̄⟩ when ρ = 0, and H0, 1

∂̄
(N, J) = ⟨[η1̄]∂̄, [η2̄]∂̄⟩ for ρ = 1. □

(II) sG vs. sGG manifolds

For any compact complex manifold X, it is immediate that if X is sGG then X has an sG metric.
The following example shows that the converse does not hold in general even if the sG hypothesis is
reinforced to the balanced hypothesis and even with an extra property.

Proposition 4.3.28. ([PU18, Proposition 6.2]) There exists a compact complex manifold X having
a balanced metric, with Frölicher spectral sequence degenerating at the first step and with first Betti
number b1(X) odd. Thus, X is not sGG.

Proof. Let N be a nilmanifold with underlying Lie algebra isomorphic to (05, 12 + 34). Then, the
first Betti number of N is 5. We consider on N the complex structure J defined by the complex
equations

dη1 = dη2 = 0, dη3 = η11̄ − η22̄.
By Theorem 4.3.8 we know thatX = (N, J) is not sGG because b1(N) = 5. It is proved in [COUV11]
that E1(X) ∼= E∞(X). Moreover, X is balanced; for instance, ω = i

2
(η11̄+η22̄+η33̄) satisfies dω2 = 0,

that is, ω is a balanced metric on X. □

Proposition 4.3.29. ([PU18, Proposition 6.3]) The balanced property and the sGG property are
unrelated. Moreover, the Frölicher spectral sequence degenerating at E1 and the sGG property are
also unrelated.
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Proof. In Proposition 4.3.28 we proved that “balanced” does not imply “sGG”, and that E1(X) ∼=
E∞(X) does not imply X to be sGG. We now show that there exists an sGG compact complex
manifold X that is not balanced and whose Frölicher spectral sequence does not degenerate at E1.

Let N be a nilmanifold with underlying Lie algebra isomorphic to (04, 13 + 42, 14 + 23), that is,
N is the (real) manifold underlying the Iwasawa manifold. We consider on N the complex structure
J defined by the complex equations

dη1 = dη2 = 0, dη3 = η12 + η11̄. (4.59)

By Theorem 4.3.27 the compact complex manifold X = (N, J) is sGG because the complex structure
J is not abelian. However, from the general study in [COUV11] one has that E1(X) ̸∼= E2(X) ∼=
E∞(X) and X does not admit any balanced metric. □

(III) Superstrong Gauduchon vs. sGG manifolds

We now briefly discuss a class of manifolds resembling sGG manifolds. Then term in the follow-
ing definition was coined by M. Verbitsky in a private communication with the author who was
simultaneously contemplating the same notion.

Definition 4.3.30. Let X be a complex manifold with dimCX = n. A Hermitian metric ω on X is
said to be superstrong Gauduchon (super sG) if ∂ωn−1 is ∂∂̄-exact.

The manifold X is said to be a superstrong Gauduchon manifold (super sG manifold) if
it supports such a metric.

Any superstrong Gauduchon metric is trivially strongly Gauduchon and the two notions are
equivalent if X is a ∂∂̄-manifold.

Proposition 4.3.31. ([PU18, Proposition 6.4]) The superstrong Gauduchon property and the sGG
property are unrelated.

Proof. Let us show first that there exists an sGG compact complex manifold X that does not admit
any superstrong Gauduchon metric. Consider X = (N, J) a (real) 2n-dimensional nilmanifold N
endowed with an invariant complex structure J . By the usual symmetrisation process, if ω is a
superstrong Gauduchon metric on X, then there also exists an invariant superstrong Gauduchon
metric ω̂ on X. Indeed, if Ω = ωn−1 satisfies ∂Ω = ∂∂̄α for some (n − 1, n − 2)-form α, then by

symmetrisation we get that the positive definite invariant (n− 1, n− 1)-form Ω̃ (obtained from Ω)

satisfies ∂Ω̃ = ∂∂̄α̃ for an invariant (n − 1, n − 2)-form α̃. Now, since Ω̃ > 0, it is well known that

there exists an invariant Hermitian metric ω̂ such that Ω̃ = ω̂n−1. Thus ω̂ is necessarily an invariant
superstrong Gauduchon metric on X.

Now, let us consider X = (N, J) defined by (4.59), which by Theorem 4.3.27 is sGG. A direct
calculation shows that ∂∂̄Λ2,1(g∗) ≡ 0. Therefore, if a superstrong Gauduchon metric existed on
X, it would have to be an invariant balanced metric. However, we pointed out in the proof of
Proposition 4.3.29 that X is not balanced. Thus, X is sGG but does not admit any superstrong
Gauduchon metric.

Conversely, we notice that the superstrong Gauduchon property does not imply the sGG property
because, thanks to Proposition 4.3.28, there exists a balanced manifold which is not sGG. □
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4.3.7 Examples of deformation limits of sGG manifolds

The following result shows that the sGG hypothesis on X does not ensure the Bott-Chern number
h1, 1BC(X) to be locally deformation constant.

Proposition 4.3.32. ([PU18, Proposition 7.1]) There exists a holomorphic family of compact com-
plex sGG manifolds (Xt)t∈∆ such that h1, 1BC(0) > h1, 1BC(t) for all t ∈ ∆ \ C, where ∆ ⊂ C is a small
open disc about 0 and C is a real curve through 0.

Proof. Let X0 = (N, J0) be a complex nilmanifold of real dimension 6 defined by the equations

dη1 = dη2 = 0, dη3 = η12 + η11̄ + η12̄ − 2 η22̄. (4.60)

By [COUV11, Table 1] the Lie algebra g underlying N is isomorphic to (04, 12, 14 + 23). Since the
complex structure J0 is not abelian, Theorem 4.3.27 implies that X0 is sGG.

By [Ang11, Theorem 2.7], the Bott-Chern cohomology groups of X0 can be calculated at the
level of the Lie algebra underlying N , in particular, H1, 1

BC(X0) ∼= H1, 1
BC(g, J0) = ker{d : Λ1,1(g∗) −→

Λ3(g∗C)}. From the equations (4.60) we get

H1, 1
BC(X0) ∼= ⟨[η11̄]BC , [η12̄]BC , [η21̄]BC , [η22̄]BC , [η13̄+2 η23̄+η31̄+2 η32̄]BC⟩,

therefore h1, 1BC(X0) = 5.
Now we consider a small deformation Jt given by

t
∂

∂z2
⊗ dz̄2 ∈ H0, 1(X0, T

1,0X0),

where z2 is a complex coordinate such that η2 = dz2. By Corollary 4.3.10 we know that the compact
complex manifold Xt = (N, Jt) is sGG for all t ∈ C close enough to 0. In fact, for t ∈ C with |t| < 1,
if we consider the basis {ν1t = η1, ν2t =

1−t̄
1−|t|2 (η

2 + t η2̄), ν3t = η3} of complex forms of type (1,0) with
respect to Jt, then the complex structure equations along the deformation are:

dν1t = dν2t = 0, dν3t = ν12t + ν11̄t + ν12̄t − 2
1− |t|2

|1− t|2
ν22̄t . (4.61)

Next we compute the dimension of the Bott-Chern cohomology group H1, 1
BC(Xt) of Xt. Since the

complex structure Jt is invariant, we can use again [Ang11, Theorem 2.7] to reduce the calculation
to the invariant forms. By (4.61) it is clear that ν11̄t , ν12̄t , ν21̄t and ν22̄t define Bott-Chern classes
in H1, 1

BC(Xt). To see if there are some other classes, we need to compute the differentials of the

remaining basic (1,1)-forms νjk̄t . From the equations (4.61) we get:

dν13̄t = ν121̄t − 2 1−|t|2
|1−t|2ν

122̄
t − ν11̄2̄t ,

dν23̄t = −ν121̄t − ν21̄2̄t ,

dν31̄t = ν121̄t − ν11̄2̄t + 2 1−|t|2
|1−t|2ν

21̄2̄
t ,

dν32̄t = ν122̄t + ν11̄2̄t ,

dν33̄t = ν123̄t − ν131̄t − ν231̄t + 2 1−|t|2
|1−t|2ν

232̄
t + ν11̄3̄t + ν12̄3̄t − 2 1−|t|2

|1−t|2ν
22̄3̄
t − ν31̄2̄t .
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From these expressions, it is easy to check that there exists at most one more closed (1,1)-form, and
that such a form exists if and only if 1− |t|2 = |1− t|2.

Let C = {t ∈ C | |t|2 + |1− t|2 = 1}. Note that C is a circle centered at t = 1/2 passing through
t = 0. Our discussion above shows that h1, 1BC(Xt) = 4 for all t ∈ ∆⋆ \ C, where ∆ = {t ∈ C | |t| <
1} ⊂ C, that is, the Bott-Chern number h1, 1BC is not locally deformation constant. □

In the following result we show by means of three examples that the sGG property of compact
complex manifolds is not closed under holomorphic deformations. The behaviour of the holomorphic
families in the three examples is different and illustrate several possibilities for the limiting fibre.

Proposition 4.3.33. ([PU18, Proposition 7.2]) There exist holomorphic families of compact com-
plex manifolds (Xt)t∈∆ over an open disc ∆ ⊂ C about 0 such that Xt is sGG for all t ∈ ∆ \ {0},
but X0 is not sGG.

Proof. We will describe three examples in succession.
First example. Let us consider the compact complex manifold X0 = (N, J0), where N is the nilman-
ifold with underlying Lie algebra (04, 13+42, 14+23) and J0 is the abelian structure defined by the
complex structure equations

dη1 = dη2 = 0, dη3 = η11̄ + η12̄.

Since J0 is abelian, the manifoldX0 is not sGG (by Theorem 4.3.27), andH0,1

∂̄
(X0,C) = ⟨[η1̄]∂̄, [η2̄]∂̄, [η3̄]∂̄⟩.

Consider a small deformation Jt given by

t
∂

∂z2
⊗ dz̄2 ∈ H0, 1(X0, T

1,0X0),

where z2 is a complex coordinate such that η2 = dz2. Let us consider the basis {τ 1t = η1, τ 2t =
η2 + t η2̄, τ 3t = η3} of complex forms of type (1,0) with respect to Jt. Then, for t ∈ C with |t| < 1,
the complex structure equations of the deformation are:

dτ 1t = dτ 2t = 0, dτ 3t = − t̄

1− |t|2
τ 12t + τ 11̄t +

1

1− |t|2
τ 12̄t .

For any t ̸= 0, the complex structure is not abelian because the differential of the (1,0)-form τ 3t has
a non-zero component of bidegree (2,0), so the compact complex manifold Xt = (N, Jt) is sGG for
any t ̸= 0 by Theorem 4.3.27.

Note that X0 admits a balanced metric by [COUV11, Proposition 7.7], hence also an sG metric,
so SGX0 ̸= ∅.

Second example. In [COUV11, Theorem 7.9] it is constructed a holomorphic family of compact
complex (nil)manifolds (Xt)t∈∆ over an open disc ∆ ⊂ C about 0, where Xt is balanced for any
t ̸= 0 and such that the central limit X0 is a complex nilmanifold with underlying Lie algebra
(04, 12, 14 + 23) endowed with an abelian complex structure J0. The complex structure on Xt is
invariant and non-abelian for any t ̸= 0, so by Theorem 4.3.27 the compact complex manifold Xt is
sGG, but the central limit X0 is not sGG. Moreover, it is proved in [COUV11, Proposition 7.7] that
X0 is not sG, so SGX0 = ∅.

Third example. Angella and Kasuya obtain in [AK14, Proposition 4.1 (i)] a holomorphic family of
compact complex manifolds Xt over an open disc in C about 0, satisfying the ∂∂̄-lemma for any
t ̸= 0 and such that the central limit X0 is the complex-parallelisable Nakamura manifold [Nak75].
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By Theorem 4.3.8 we conclude that X0 is not sGG because b1(X0) = 2 < 6 = 2h0, 1
∂̄

(X0) (see [AK14,
Table 10]). Note however that the central limit X0 is balanced. □

In [Pop09, Proposition 4.1] it is proved that given a holomorphic family of compact complex
manifolds (Xt)t∈∆ over an open disc ∆ ⊂ C about 0, if Xt satisfies the ∂∂̄-lemma for all t ∈ ∆ \ {0}
then X0 is sG. However, the central limit X0 may be neither sGG (see Third example in the proof
of Proposition 4.3.33) nor balanced (see [FOU14, Theorem 5.2]). Furthermore, in the following
proposition we show that in general X0 does not admit superstrong Gauduchon metrics.

Proposition 4.3.34. ([PU18, Proposition 7.3]) There exists a holomorphic family of compact com-
plex manifolds (Xt)t∈∆ over an open disc ∆ ⊂ C about 0 such that Xt satisfies the ∂∂̄-lemma for all
t ∈ ∆ \ {0}, but X0 is not superstrong Gauduchon.

Proof. We consider the holomorphic family of compact complex manifolds (Xt)t∈∆ constructed in
[FOU14, Theorem 5.2], which satisfies the ∂∂̄-lemma for all t ∈ ∆ \ {0}. The central limit of that
family is X0 = (G/Γ, J0), where G/Γ is a solvmanifold (i.e. a compact quotient of a connected
and simply-connected solvable real Lie group G by a lattice Γ of maximal rank in G) and J0 is the
invariant complex structure defined by the complex structure equations

dη1 = 2i η13 + η33̄, dη2 = −2i η23, dη3 = 0,

where {η1, η2, η3} is a (1,0)-basis. Thus, we can apply the symmetrisation process and proceed as in
the proof of Proposition 4.3.31. So it suffices to show that there do not exist superstrong Gauduchon
metrics on the underlying solvable Lie algebra g. From the complex structure equations above, it is
easy to check that ∂∂̄Λ2,1(g∗) ≡ 0, which implies that any invariant superstrong Gauduchon metric
must be balanced. But this is not possible by [FOU14, Theorem 5.2], so we conclude that X0 is not
superstrong Gauduchon. (However, X0 is sG as pointed out in [FOU14].) □

4.4 Er-sG metrics and manifolds

In this section, we generalise the notion of strongly Gauduchon (sG) metric described in §.4.2.
The starting point is the observation that, for any Gauduchon metric ω on a compact complex
n-dimensional manifold X, the (n, n − 1)-form ∂ωn−1 is Er-closed for every r ∈ N⋆. Indeed, in (i)
of Definition 1.2.9 we can choose u1 = · · · = ur−1 = 0.

Definition 4.4.1. ([Pop19, Definition 3.2.]) Let ω be a Gauduchon metric on a compact complex
manifold X with dimCX = n. Fix an arbitrary integer r ≥ 1.

(i) We say that ω is an Er-sG metric if ∂ωn−1 is Er-exact.
(ii) A compact complex manifold X is said to be an Er-sG manifold if an Er-sG metric exists

on X.
(iii) A compact complex manifold X is said to be an Er-sGG manifold if every Gauduchon

metric on X is an Er-sG metric.

The term chosen in the last definition is a nod to the notion of sGG manifold introduced in
[PU14] as any compact complex manifold on which every Gauduchon metric is strongly Gauduchon.
(See §.4.3.) It follows from the above definitions that the E1-sG property is equivalent to the sG
property and that the following implications hold for any Hermitian metric γ and every r ∈ N⋆:

γ is E1-sG =⇒ γ is E2-sG =⇒ · · · =⇒ γ is Er-sG =⇒ γ is Er+1-sG =⇒ . . . .
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Actually, for bidegree reasons, if a Hermitian metric γ is Er-sG for some integer r ≥ 1, then
r ≤ 3. Indeed, if (p, q) = (n, n− 1), the tower of relations (1.29) reduces to its first two lines since

ζr−2 is of bidegree (n−1, n−1), hence v
(r−2)
r−3 is of bidegree (n−2, n), hence ∂̄v

(r−2)
r−3 = 0 for bidegree

reasons, so v
(r−2)
r−4 , . . . , v

(r−2)
0 can all be chosen to be zero.

We now notice that the Er-sG property is open under deformations of the complex structure.

Lemma 4.4.2. ([Pop19, Lemma 3.3]) Let π : X −→ B be a C∞ family of compact complex n-
dimensional manifolds over an open ball B ⊂ CN about the origin. Fix an integer r ≥ 1.

If γ0 is an Er-sG metric on X0 := π−1(0), after possibly shrinking B about 0 there exists a C∞

family (γt)t∈B of Er-sG metrics on the respective fibres Xt := π−1(t) whose element for t = 0 is the
original γ0.

Moreover, this family can be chosen such that ∂tγ
n−1
t = ∂̄tΓ

n, n−2
t + ∂tζr−2, t for all t, with Jt-type

(n, n− 2)-forms Γn, n−2
t and Jt-type (n− 1, n− 1)-forms ζr−2, t depending in a C∞ way on t.

The forms Γn, n−2
t , ζr−2, t and the induced v

(r−2)
k, t (with 0 ≤ k ≤ r − 3) satisfying the tower of

relations (1.29) that are (non-uniquely) associated with an Er-sG metric γt will be called potentials
of γt. So, the above lemma says that not only can any Er-sG metric γ0 on X0 be deformed in a
smooth way to Er-sG metrics γt on the nearby fibres Xt, but so can its potentials.

Proof of Lemma 4.4.2. By (ii) of Proposition 3.2.4, the Er-sG assumption on γ0 implies the existence
of a J0-type (n, n− 2)-form Γn, n−2

0 and of a J0-type (n− 1, n− 1)-form ζr−2, 0 such that ∂0γ
n−1
0 =

∂̄0Γ
n, n−2
0 + ∂0ζr−2, 0 and such that

∂̄0ζr−2, 0 = ∂0v
(r−2)
r−3, 0, and ∂̄0v

(r−2)
r−3, 0 = 0, (4.62)

for some J0-type (n − 2, n)-form v
(r−2)
r−3, 0. (As already pointed out, for bidegree reasons, the general

tower (1.29) reduces to (4.62) in this case.)

We get ∂0(γ
n−1
0 − ζr−2, 0 − ζr−2, 0) = ∂̄0(Γ

n, n−2
0 − v(r−2)

r−3, 0), so the (2n− 2)-form

Ω := −(Γn, n−2
0 − v(r−2)

r−3, 0) + (γn−1
0 − ζr−2, 0 − ζr−2, 0)− (Γn, n−2

0 − v(r−2)
r−3, 0)

is real and d-closed and its J0-pure-type components Ωn, n−2
0 ,Ωn−1, n−1

0 ,Ωn−2, n
0 are given by the re-

spective paratheses, with their respective signs, on the right of the above identity defining Ω.
If Ωn, n−2

t ,Ωn−1, n−1
t ,Ωn−2, n

t stand for the Jt-pure-type components of Ω for any t ∈ B, they all
depend in a C∞ way on t. On the other hand, deforming identities (4.62) in a C∞ way when the
complex structure J0 deforms to Jt, we find (non-unique) C∞ families of Jt-type (n−1, n−1)-forms

(ζr−2, t)t∈B and Jt-type (n− 2, n)-forms (v
(r−2)
r−3, t)t∈B, whose elements for t = 0 are ζr−2, 0, respectively

v
(r−2)
r−3, 0, such that ∂̄tζr−2, t = ∂tv

(r−2)
r−3, t and ∂̄tv

(r−2)
r−3, t = 0 for t ∈ B. Then, the Jt-type (n−1, n−1)-form

Ωn−1, n−1
t +ζr−2, t+ζr−2, t depends in a C∞ way on t ∈ B. When t = 0, it equals γn−1

0 , so it is positive
definite. By continuity, it remains positive definite for all t ∈ B sufficiently close to 0 ∈ B, so it has
a unique (n− 1)-st root and the root is positive definite. In other words, there exists a unique C∞

positive definite Jt-type (1, 1)-form γt such that

γn−1
t = Ωn−1, n−1

t + ζr−2, t + ζr−2, t > 0, t ∈ B,

after possibly shrinking B about 0. By construction, γt depends in a C∞ way on t.
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If we set Γn, n−2
t := −Ωn, n−2

t + v
(r−2)
r−3, t for all t ∈ B close to 0, we get ∂tγ

n−1
t = ∂̄tΓ

n, n−2
t + ∂tζr−2, t.

Since ∂̄tζr−2, t = ∂tv
(r−2)
r−3, t and ∂̄tv

(r−2)
r−3, t = 0, we conclude that γt is an Er-sG metric for the complex

structure Jt for all t ∈ B close to 0. □

The link between the page-(r − 1)-∂∂̄ and the Er-sG properties is spelt out in the following

Proposition 4.4.3. ([PSU20b, Proposition 5.2.]) Let r ∈ N⋆ and let X be a page-(r − 1)-∂∂̄-
manifold. Then, every Gauduchon metric on X is Er-sG. In particular, X is an Er-sG manifold.

Proof. Let ω be a Gauduchon metric on X. Then, ∂ωn−1 is ∂̄-closed and ∂-closed, hence d-closed.
It is also ∂-exact, or equivalently, E1-exact, hence also Er-exact.

Now, thanks to Theorem 3.4.12, the page-(r − 1)-∂∂̄-property of X implies the equivalence
between Er-exactness and Er-exactness for d-closed pure-type forms. Consequently, ∂ωn−1 must be
Er-exact, so ω is an Er-sG metric. □

Let Xu,v be a Calabi-Eckmann manifold, i.e. any of the complex manifolds C∞-diffeomorphic to
S2u+1 × S2v+1 constructed by Calabi and Eckmann in [CE53] (see §.4.2.2). Recall that the X0,v’s
and the Xu,0’s are Hopf manifolds. By Theorem 4.2.7, Xu,v does not admit any sG metric. However,
we now prove the existence of E2-sG metrics when uv > 0.

Proposition 4.4.4. ([PSU20b, Proposition 5.3.]) Let Xu,v be a Calabi-Eckmann manifold of
complex dimension ≥ 2. Let u ≤ v.

(i) If u > 0, then Xu,v does not admit sG metrics, but it is an E2-sG manifold.

(ii) If u = 0, Xu,v does not admit Er-sG metrics for any r.

Proof. By Borel’s result in [Hir78, Appendix Two by A. Borel], we have

H•,•
∂̄

(Xu,v) ∼=
C[x1,1]
(xu+1

1,1 )
⊗
∧

(xv+1,v, x0,1).

In other words, a model for the Dolbeault cohomology of the Calabi-Eckmann manifold Xu,v is
provided by the CDGA (see [NT78])

(V ⟨x0,1, x1,1, yu+1,u, xv+1,v⟩, ∂̄),

with differential
∂̄x0,1 = 0, ∂̄x1,1 = 0, ∂̄yu+1,u = xu+1

1,1 , ∂̄xv+1,v = 0.

Thus, if u > 0, we have a minimal model. (For u = 0 we have only a cofibrant model in the sense
of [NT78].)

Moreover, ∂ acts on generators as follows [NT78]:

∂x0,1 = x1,1 (hence ∂x1,1 = 0), ∂yu+1,u = 0, ∂xv+1,v = 0.

Next we determine the spaces En, n−1
r , for any r ≥ 1, where n = u+ v + 1.

Let us first focus on the case (i), i.e. u > 0. We need to consider the Dolbeault cohomology
groups Hn−1, n−1

∂̄
(Xu,v) and H

n, n−1

∂̄
(Xu,v). They are given by

Hu+v, u+v

∂̄
(Xu,v) = ⟨x0,1 · xu−1

1,1 · xv+1,v⟩, Hu+v+1, u+v

∂̄
(Xu,v) = ⟨xu1,1 · xv+1,v⟩.
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Now we consider
Hu+v, u+v

∂̄
(Xu,v)

∂−→ Hu+v+1, u+v

∂̄
(Xu,v) −→ 0.

Since ∂(x0,1· xu−1
1,1 · xv+1,v) = ∂(x0,1)· xu−1

1,1 · xv+1,v = xu1,1· xv+1,v, the first map is surjective. Therefore,

En, n−1
2 (Xu,v) = 0. Thus, any Gauduchon metric on Xu,v is an E2-sG metric.
Next we focus on the case (ii), i.e. u = 0, so v ≥ 1. In this case Hv+1,v

∂̄
(X0,v) = ⟨xv+1,v⟩. Notice

that the Dolbeault cohomology groups Hv−r+1,v+r−1

∂̄
(X0,v) are all zero for every r ≥ 1. Therefore,

Ev−r+1,v+r−1
r (X0,v) = {0} for every r ≥ 1. Meanwhile, from

{0} = Ev−r+1,v+r−1
r (X0,v)

dr−→ Ev+1,v
r (X0,v) −→ 0,

we get Ev+1,v
r (X0,v) = Hv+1,v

∂̄
(X0,v) for every r ≥ 2. So, the existence of an Er-sG metric on X0,v

would imply the existence of an sG metric, which would contradict Theorem 4.2.7.

As a by-product of Borel’s description of the Dolbeault cohomology of the Calabi-Eckmann
manifolds Xu,v used in the above proof, one gets that the Frölicher spectral sequence of Xu,v satisfies
E1 ̸= E2 = E∞ when u > 0, whereas it degenerates at E1 when u = 0. This latter fact implies that
no Hopf manifold X0,v can have a pure De Rham cohomology, hence cannot be a page-r-∂∂̄-manifold
for any r. Indeed, if the De Rham cohomology were pure, then X0,v would be a ∂∂̄-manifold, a fact
that is trivial to contradict.

By the previous result, all the Calabi-Eckmann manifolds that are not Hopf manifolds are E2-
sG manifolds. However, the next observation shows that they are not page-r-∂∂̄-manifolds for any
r ∈ N.

Lemma 4.4.5. ([PSU20b, Lemma 5.4.]) Let u, v ≥ 0 and let X = S2u+1 × S2v+1 be equipped with
any of the Calabi-Eckmann complex structures. Assume that either u ̸= v or u = v = 1.

Then, the De Rham cohomology of X is not pure.

Proof. When u ̸= v, this was proved in [Ste18, p.29ff] as a consequence of the computation of the
Hodge numbers of X by Borel in [Hir78, Appendix Two by A. Borel]. As explained in [Ste18], when
u = v, the only consequence that one can draw from the numerical information given by Borel is
that the only possible zigzags passing through the middle degree 2u + 1 are either two dots or two
length-three zigzags situated in the following bidegrees:

u u+1

u

u+1 •

•
or

u u+1

u

u+1

•

•

• •

• •

In the first case, the De Rham cohomology is pure, while in the second one it is not. They cannot
be distinguished by the Hodge numbers. However, they may be distinguished by the Bott-Chern
numbers. Specifically, hu+1,u+1

BC = 0 in the former case and hu+1,u+1
BC = 1 in the latter. (Recall that

hp,qBC counts ‘top right’ corners of zigzags in bidegree (p, q), i.e. those which have no outgoing edges).
A calculation in [TT17] shows that the latter case occurs when u = v = 1.

Remark 4.4.6. It appears to be very likely that this Lemma also holds for arbitrary u = v > 1.
To settle this issue, it suffices to determine whether hv+1,u+1

BC = 1 for the higher-dimensional Calabi-
Eckmann manifolds with u = v.
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4.5 Balanced metrics and manifolds

The notion that will be discussed in this section was introduced by Gauduchon in [Gau77b] under
the name of semi-Kähler metric. These metrics were renamed balanced by Michelsohn in [Mic83]
and this latter terminology is now widely used in the literature.

Definition 4.5.1. ([Gau77b, Définition 2], [Mic83]) Let X be a complex manifold with dimCX =
n ≥ 2.

(i) A C∞ positive definite (1, 1)-form ω on X is said to be a balanced metric if dωn−1 = 0.

(ii) If X carries such a metric, X is said to be a balanced manifold.

Obviously, when n = 2, balanced metrics coincide with Kähler metrics, but we will see that in
dimension n ≥ 3, there exist many non-Kähler balanced manifolds.

4.5.1 Basic properties of balanced metrics

Since the form ωn−1 is real whenever ω is a positive definite (1, 1)-form, the balanced condition
dωn−1 = 0 is trivially equivalent to either of the following two equivalent conditions:

∂ωn−1 = 0 ⇐⇒ ∂̄ωn−1 = 0.

Part (ii) of the next result shows that the balanced condition is a kind of dual to the Kähler
condition. This accounts for the balanced metrics being sometimes called co-Kähler.

Lemma 4.5.2. Let ω be a Hermitian metric on a complex manifold X with dimCX = n ≥ 2.

(i) If ω is Kähler, then ω is balanced.

(ii) The metric ω is balanced if and only if it is co-closed.

Specifically, the following equivalences hold:

ω is balanced ⇐⇒ d⋆ω = 0 ⇐⇒ ∂⋆ω = 0 ⇐⇒ ∂̄⋆ω = 0,

where d⋆ = d⋆ω, ∂
⋆ = ∂⋆ω and ∂̄⋆ = ∂̄⋆ω are the formal adjoints of d : C∞

1 (X, C) −→ C∞
2 (X, C),

∂ : C∞
0, 1(X, C) −→ C∞

1, 1(X, C), resp. ∂̄ : C∞
1, 0(X, C) −→ C∞

1, 1(X, C) w.r.t. the L2 inner product
⟨⟨ , ⟩⟩ = ⟨⟨ , ⟩⟩ω induced by ω.

(iii) The metric ω is balanced if and only if dω (or ∂ω or ∂̄ω) is ω-primitive.

Specifically, the following equivalences hold:

ω is balanced ⇐⇒ Λω(dω) = 0 ⇐⇒ Λω(∂ω) = 0 ⇐⇒ Λω(∂̄ω) = 0

⇐⇒ ωn−2 ∧ dω = 0 ⇐⇒ ωn−2 ∧ ∂ω = 0 ⇐⇒ ωn−2 ∧ ∂̄ω = 0,

where Λω is the adjoint of the Lefschetz operator Lω := ω ∧ · w.r.t. the pointwise inner product
⟨ , ⟩ = ⟨ , ⟩ω induced by ω.

Proof. (i) The Leibniz rule gives dωn−1 = (n− 1)ωn−2 ∧ dω, so dωn−1 = 0 if dω = 0.
(ii) The equivalences follow at once from the Hodge star operator ⋆ = ⋆ω : Λp, qT ⋆X −→

Λn−q, n−pT ⋆X induced by ω being an isomorphism and from the standard formulae:

d⋆ = − ⋆ d⋆, ∂⋆ = − ⋆ ∂̄⋆, ∂̄⋆ = − ⋆ ∂⋆, ⋆ω =
ωn−1

(n− 1)!
.
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(iii) The equivalences follow at once from the obvious identities:

dωn−1 = (n− 1)ωn−2 ∧ dω, ∂ωn−1 = (n− 1)ωn−2 ∧ ∂ω, ∂̄ωn−1 = (n− 1)ωn−2 ∧ ∂̄ω

and from the following standard pointwise characterisation of ω-primitive k-forms u on an n-
dimensional complex manifold with n ≥ k:

u is ω-primitive
def⇐⇒ ωn−k+1 ∧ u = 0 ⇐⇒ Λωu = 0. (4.63)

In our case, u ∈ {dω, ∂ω, ∂̄ω}, so k = 3. □

(I) Balanced vs. locally conformally Kähler (lck) metrics

Picking up on (iii) of Lemma 4.5.2, we now point out the fact that balanced metrics are, in a certain
sense, quite the opposite of another heavily studied class of metrics that will only be mentioned in
passing in this book.

• Preliminaries on primitivity and the Hodge ⋆ operator

We start by recalling the following standard result for a complete proof of which the reader may
consult e.g. [Dem96] or [Voi02].

Theorem 4.5.3. (Lefschetz decomposition of differential forms) Let ω be a Hermitian metric
on a complex manifold X with dimCX = n ≥ 2. For every k ∈ {0, . . . , 2n} and for every form
α ∈ ΛkT ⋆X, there exists a unique decomposition of α as

α = α0 +
∑

1≤r≤Nn, k

ωr ∧ αr, (4.64)

where every form αr ∈ Λk−2rT ⋆X is ω-primitive and Nn, k is the maximum value of r ≥ 0 such
that 2r ≤ k.

Moreover, the Lefschetz decompostion (4.64) of α is pointwise and its terms are mutually or-
thogonal w.r.t. the pointwise inner product induced by ω.

Sketch of proof. The statement is a consequence of the fact that, for any k ≤ n and any Hermitian
metric ω on X, the multiplication map

Llω = ωl ∧ · : ΛkT ⋆X −→ Λk+2lT ⋆X

defined at every point ofX is an isomorphism if l = n−k, is injective (but in general not surjective)
for every l < n− k and is surjective (but in general not injective) for every l > n− k. A k-form is
said to be ω-primitive if it lies in the kernel of the multiplication map Ln−k+1

ω . Equivalently, the
ω-primitive k-forms are precisely those that lie in the kernel of Λω : ΛkT ⋆X −→ Λk−2T ⋆X. Thus,
for every k ≤ n and every form α ∈ ΛkT ⋆X, we have:

α is ω-primitive
def⇐⇒ ωn−k+1 ∧ α = 0 ⇐⇒ Λωα = 0. (4.65)

These facts follow from the formula:

[Lrω, Λω] = r(k − n+ r − 1)Lr−1
ω on k-forms, r ≥ 1, (4.66)
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which, in turn, can be proved by induction on r ≥ 1 starting from its well-known version for r = 1:

[Lω, Λω] = (k − n) Id on k-forms, (4.67)

where Id is the identity operator on forms. □

We now recall the following standard formula (cf. e.g. [Voi02, Proposition 6.29, p. 150]) for
images of primitive forms v of arbitrary bidegree (p, q) under the Hodge ⋆ operator ⋆ = ⋆ω associated
with an arbitrary Hermitian metric ω:

⋆ v = (−1)k(k+1)/2 ip−q
ωn−p−q ∧ v
(n− p− q)!

, where k := p+ q, (4.68)

We now use formula (4.68) to derive the following result that will come in handy later on.

Lemma 4.5.4. Let (X, ω) be a complex Hermitian manifold with dimCX = n and let ⋆ = ⋆ω be the
Hodge ⋆ operator associated with the metric ω. For any (2, 1)-form α, we have:

⋆

(
α ∧ ωn−2

(n− 2)!

)
= −iΛωα. (4.69)

Proof. Let α be a (2, 1)-form and let α = αprim+ω ∧ u be its Lefschetz decomposition, where αprim
is a primitive (w.r.t. ω) (2, 1)-form and u is a (1, 0)-form. We can compute u by applying Λω to the
above identity: since Λωαprim = 0, we get Λωα = Λω(ω ∧ u) = [Λω, Lω]u = (n− 1)u (since Λωu = 0
and [Λω, Lω] = −(p+ q − n) Id on (p, q)-forms – see e.g. [Dem97, Chapter VI, §.5.2]). Thus,

u =
1

n− 1
Λωα, hence α = αprim +

1

n− 1
Λωα ∧ ω.

Now, multiplying the last identity by ωn−2/(n − 2)! and because αprim ∧ ωn−2 = 0 (due to αprim
being a primitive 3-form), we get

α ∧ ωn−2

(n− 2)!
= Λωα ∧

ωn−1

(n− 1)!
, hence ⋆

(
α ∧ ωn−2

(n− 2)!

)
= ⋆

(
Λωα ∧

ωn−1

(n− 1)!

)
= −iΛωα.

This proves (4.69). To see the last identity, recall that Λωα is a (1, 0)-form, hence primitive (for
bidegree reasons), hence the general formula (4.68) applied with v = Λωα reads

⋆Λωα = −iΛωα ∧
ωn−1

(n− 1)!
.

It remains to apply ⋆ on either side of the last identity and to use the fact that ⋆ ⋆Λωα = −Λωα. □

• Locally conformally Kähler (lck) metrics

On the other hand, let us recall the following standard

Definition 4.5.5. A C∞ positive definite (1, 1)-form (i.e. a Hermitian metric) ω on a complex
manifold X is said to be locally conformally Kähler (lck) if

dω = ω ∧ θ for some C∞ 1-form θ satisfying dθ = 0. (4.70)

The 1-form θ is uniquely determined, real and called the Lee form of ω, often denoted by θω.

Lemma 4.5.6. An lck metric ω on a complex manifold X with dimCX = n ≥ 2 is Kähler if and
only if its Lee form θω vanishes.
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Proof. Since 1 ≤ n− 1, we saw above that the Lefschetz linear map Lω : C∞
1 (X, C) −→ C∞

3 (X, C)
of multiplication by ω is injective. Hence, for any 1-form θ on X, ω ∧ θ = 0 if and only if θ = 0. □

The obstruction to a given Hermitian metric ω being lck depends on whether n = 2 or n ≥ 3.

Lemma 4.5.7. Let X be a complex manifold with dimCX = n.

(i) If n = 2, for any Hermitian metric ω there exists a unique, possibly non-closed, C∞ 1-form
θ = θω, that we still call the Lee form of ω, such that dω = ω ∧ θ. Therefore,

ω is lck ⇐⇒ dθω = 0. (4.71)

Moreover, for any Hermitian metric ω, the 2-form dθω is ω-primitive, i.e. Λω(dθω) = 0, or
equivalently, ω ∧ dθω = 0, while the Lee form is real and is explicitly given by the formula

θω = Λω(dω). (4.72)

Alternatively, if θω = θ1, 0ω + θ0, 1ω is the splitting of θω into components of pure types, we have

θ1, 0ω = Λω(∂ω) = −i∂̄⋆ω (4.73)

and the analogous formulae for θ0, 1ω = θ1, 0ω obtained by taking conjugates.

(ii) If n ≥ 3, for any Hermitian metric ω there exists a unique ω-primitive C∞ 3-form (dω)prim and
a unique C∞ 1-form θ = θω, that we still call the Lee form of ω, such that

dω = (dω)prim + ω ∧ θ.

The Lee form is real and is explicitly given by the formula

θω =
1

n− 1
Λω(dω). (4.74)

Moreover,
ω is lck ⇐⇒ (dω)prim = 0. (4.75)

If ω is lck, the component of type (1, 0) of its Lee form is given by

θ1, 0ω =
1

n− 1
Λω(∂ω) = −

i

n− 1
∂̄⋆ω (4.76)

and the analogous formulae obtained by taking conjugates hold for the (0, 1)-component θ0, 1ω = θ1, 0ω

of θω.

Proof. Recall the torsion operator τ = τω := [Λω, ∂ω ∧ ·] : C∞
p, q(X, C) −→ C∞

p+1, q(X, C) of order 0
and bidegree (1, 0) associated with ω in every bidegree (p, q). (See [Dem84], [Dem97, VII, §.1] and
Proposition 4.5.11 below for further details.) This definition of τω yields:

τ̄ ⋆ωω = [(∂̄ω ∧ ·)⋆, Lω](ω) = (∂̄ω ∧ ·)⋆(ω2).

On the other hand, if α1, 0 is any (1, 0)-form on X, let ξ̄α be the (0, 1)-vector field defined by
the requirement ξ̄α⌟ω = α1, 0. It is easily checked in local coordinates chosen about a given point x
such that the metric ω is defined by the identity matrix at x, that the adjoint w.r.t. ⟨ , ⟩ω of the
contraction operator by ξ̄α is given by the formula
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(ξ̄α⌟·)⋆ = −iα0, 1 ∧ ·, or equivalently − iξ̄α⌟· = (α0, 1 ∧ ·)⋆,
where α0, 1 = α1, 0. Explicitly, if α0, 1 =

∑
k

ākdz̄k on a neighbourhood of x, then −iξ̄α⌟· = (α0, 1∧·)⋆ =∑
k

ak
∂
∂z̄k

⌟· at x. Hence, −iξ̄α⌟α0, 1 =
∑
k

|ak|2 = |α0, 1|2ω at x. We have just got the pointwise formula

−iξ̄α⌟α0, 1 = |α0, 1|2ω = |α1, 0|2ω (4.77)

at every point of X.
Now, suppose that dω = ω ∧ θω for some (necessarily real) 1-form θω. Then, ∂̄ω = ω ∧ θ0, 1ω , so

(∂̄ω ∧ ·)⋆ = −iΛω(ξ̄θ⌟·), where ξ̄θ := ξ̄α with α1, 0 = θ1, 0ω . The above formula for τ̄ ⋆ωω translates to

τ̄ ⋆ωω = −iΛω(ξ̄θ⌟ω2) = −2iΛω(ω ∧ (ξ̄θ⌟ω)) = −2i[Λω, Lω](ξ̄θ⌟ω) = −2i(n− 1)θ1, 0ω

The conclusion of this discussion is that, when dω = ω ∧ θω, formula (4.74) translates to

θ1, 0ω =
1

n− 1
Λω(∂ω) =

1

n− 1
[Λω, ∂](ω) =

1

n− 1
i∂̄⋆ωω +

1

n− 1
iτ̄ ⋆ωω =

1

n− 1
i∂̄⋆ωω + 2θ1, 0ω ,

which amounts to θ1, 0ω = − 1
n−1

i∂̄⋆ωω. This proves (4.76) for an arbitrary n, hence also (4.73) when
n = 2, if the other statements in Lemma 4.5.7 have been proved. We now proceed to prove them.

(i) When n = 2, the map ω ∧ · : Λ1T ⋆X −→ Λ3T ⋆X is an isomorphism at every point of X. In
particular, the 3-form dω is the image of a unique 1-form θ under this map.

To see that dθ is primitive, we apply d to the identity dω = ω ∧ θ to get

0 = d2ω = dω ∧ θ + ω ∧ dθ.
Meanwhile, multiplying the same identity by θ, we get dω ∧ θ = ω ∧ θ ∧ θ = 0 since θ ∧ θ = 0 due
to the degree of θ being 1. Therefore, ω ∧ dθ = 0, which means that the 2-form dθ is ω-primitive.

To prove formula (4.72), we apply Λω to the identity dω = ω ∧ θ to get

Λω(dω) = [Λω, Lω](θ) = −[Lω, Λω](θ) = −(1− 2) θ = θ,

where we used the identities Λω(θ) = 0 (for bidegree reasons) and [Lω, Λω] = (k − n) Id on k-forms
(while here k = 1 and n = 2).

(ii) The splitting dω = (dω)prim+ω∧θ is the Lefschetz decomposition of dω w.r.t. the metric ω.
Applying Λω, we get Λω(dω) = [Λω, Lω](θ) = −[Lω, Λω](θ) = −(1 − n) θ = (n − 1) θ, which proves
(4.74).

The implication “ω lck =⇒ (dω)prim = 0“ follows at once from the definitions. To prove the
reverse implication, suppose that (dω)prim = 0. We have to show that θ is d-closed. The assumption
means that dω = ω ∧ θ, so dω ∧ θ = ω ∧ θ ∧ θ = 0 and 0 = d2ω = dω ∧ θ + ω ∧ dθ. Consequently,
ω ∧ dθ = 0. Now, the multiplication of k-forms by ωl is injective whenever l ≤ n− k. When n ≥ 3,
if we choose l = 1 and k = 2 we get that the multiplication of 2-forms by ω is injective. Hence, the
identity ω ∧ dθ = 0 implies dθ = 0, so ω is lck. □

Note that, among other things, Lemma 4.5.7 proposes a generalisation of the Lee form to arbitrary
(i.e. not necessarily lck) Hermitian metrics in a departure from the standard terminology.

Another standard observation is that the Lefschetz decomposition transforms nicely, hence the
lck property is preserved, under conformal rescaling.
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Lemma 4.5.8. Let ω be an arbitrary Hermitian metric and let f be any smooth real-valued function
on a compact complex n-dimensional manifold X. If dω = (dω)prim + ω ∧ θω is the Lefschetz
decomposition of dω w.r.t. the metric ω (with the understanding that (dω)prim = 0 when n = 2),
then

d(efω) = ef (dω)prim + efω ∧ (θω + df) (4.78)

is the Lefschetz decomposition of d(efω) w.r.t. the metric ω̃ := efω.
Consequently, ω is lck if and only if any conformal rescaling efω of ω is lck, while the Lee form

transforms as θefω = θω + df . In particular, when the lck metric ω varies in a fixed conformal class,
the Lee form θω varies in a fixed De Rham 1-class {θω}DR ∈ H1(X, R) called the Lee De Rham
class associated with the given conformal class. Moreover, the map ω 7→ θω defines a bijection from
the set of lck metrics in a given conformal class to the set of elements of the corresponding Lee De
Rham 1-class.

Proof. Differentiating, we get d(efω) = efdω+ efω ∧ df = ef (dω)prim+ efω ∧ (θω + df). Meanwhile,
it can immediately be checked that

Λefω = e−fΛω,

so ker Λefω = kerΛω. Thus, the ω-primitive forms coincide with the ω̃-primitive forms. Since Λω̃
commutes with the multiplication by any real-valued function, ef (dω)prim is ω̃-primitive, so (4.78)
is the Lefschetz decompostion of dω̃ w.r.t. ω̃. □

The point we will make is that the balanced and the lck conditions are opposite to each other
and can only coexist in the Kähler case.

Lemma 4.5.9. Let ω be a Hermitian metric on a complex manifold X with dimCX = n ≥ 2.
Then, ω is both balanced and lck if and only if ω is Kähler.

Proof. Let dω = (dω)prim + ω ∧ θ be the Lefschetz decomposition of the 3-form dω, where (dω)prim
is an ω-primitive 3-form on X (the primitive part of dω) and θ is a smooth 1-form on X.

We know from (iii) of Lemma 4.5.2 that ω is balanced if and only if dω = (dω)prim (i.e. dω is
reduced to its primitive part), while Definition 4.5.5 tells us that ω is lck if and only if dω = ω ∧ θ
(i.e. dω is reduced to its anti-primitive part).

We infer that ω is both balanced and lck if and only if (dω)prim = ω∧θ = 0. Since (dω)prim ⊥ ω∧θ,
this is equivalent to dω = 0, namely to ω being Kähler. □

Based on the above statement at the level of metrics and on other reasons, we conjecture that the
analogous statement at the level of compact manifolds ought to be true. (Cf. the similar Conjecture
4.5.10 in the balanced/skt case.)

Conjecture 4.5.10. Let X be a compact complex manifold with dimCX = n ≥ 2.
Then, X carries both a balanced metric and a (possibly different) lck metric if and only if X

carries a Kähler metric.

(II) Michelsohn’s torsion (1, 0)-form

We start by briefly recalling some standard commutation formulae that will be used further down.
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Proposition 4.5.11. ([Dem84], see also [Dem97, VII, §.1]) Let (X, ω) be a complex Hermitian
manifold with dimCX = n. Consider the torsion operator (of order zero and type (1, 0)) associated
with the metric ω:

τ = τω := [Λ, ∂ω ∧ ·] : C∞
p, q(X, C) −→ C∞

p+1, q(X, C), p, q ∈ {0, . . . , n}.

The following Hermitian commutation relations hold on differential forms on X:

(i) (∂ + τ)⋆ = i [Λ, ∂̄]; (ii) (∂̄ + τ̄)⋆ = −i [Λ, ∂];
(iii) ∂ + τ = −i [∂̄⋆, L]; (iv) ∂̄ + τ̄ = i [∂⋆, L], (4.79)

where the upper symbol ⋆ stands for the formal adjoint w.r.t. the L2 inner product induced by ω,
L = Lω := ω ∧ · is the Lefschetz operator of multiplication by ω and Λ = Λω := L⋆.

Again following [Dem97, VII, §.1], recall that the commutation relations (4.79) immediately
induce, via the Jacobi identity, the Bochner-Kodaira-Nakano-type identity:

∆′′ = ∆′ + [∂, τ ⋆]− [∂̄, τ̄ ⋆] (4.80)

relating the ∂̄-Laplacian ∆′′ = [∂̄, ∂̄⋆] = ∂̄∂̄⋆ + ∂̄⋆∂̄ and the ∂-Laplacian ∆′ = [∂, ∂⋆] = ∂∂⋆ + ∂⋆∂.
This, in turn, induces the following Bochner-Kodaira-Nakano-type identity (cf. [Dem84])
in which the first-order terms have been absorbed in the twisted Laplace-type operator ∆′

τ :=
[∂ + τ, (∂ + τ)⋆]:

∆′′ = ∆′
τ + Tω, (4.81)

where Tω :=

[
Λ, [Λ, i

2
∂∂̄ω]

]
− [∂ω ∧ ·, (∂ω ∧ ·)⋆] is a zeroth order operator of type (0, 0) associated

with the torsion of ω. Formula (4.81) is obtained from (4.80) via the following identities (cf. [Dem84]
or [Dem97, VII, §.1]) which have an interest of their own:

(i) [L, τ ] = 3 ∂ω ∧ ·, (ii) [Λ, τ ] = −2i τ̄ ⋆,
(iii) [∂, τ̄ ⋆] = −[∂, ∂̄⋆] = [τ, ∂̄⋆], (iv) − [∂̄, τ̄ ⋆] = [τ, (∂ + τ)⋆] + Tω. (4.82)

Note that (iii) yields, in particular, that ∂ and ∂̄⋆ + τ̄ ⋆ anti-commute, hence by conjugation, ∂̄ and
∂⋆ + τ ⋆ anti-commute, i.e.

[∂, ∂̄⋆ + τ̄ ⋆] = 0 and [∂̄, ∂⋆ + τ ⋆] = 0. (4.83)

With these commutation relations understood, we can prove the following addition to Lemma
4.5.2.

Lemma 4.5.12. Let (X, ω) be a compact complex Hermitian manifold with dimCX = n. The
following identities hold:

−1

2
τ̄ ⋆ωω

(i)
= ∂̄⋆ωω

(ii)
= iΛω(∂ω). (4.84)

In particular, ω is balanced if and only if τ̄ ⋆ωω = 0.
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Proof. • To prove identity (i) in (4.84), we will show that the multiplication operators by the
(1, 0)-forms τ̄ ⋆ω and −2∂̄⋆ω acting on functions, namely

τ̄ ⋆ω ∧ ·, −2∂̄⋆ω ∧ · : C∞
0, 0(X, C) −→ C∞

1, 0(X, C),

coincide by showing that their adjoints

(τ̄ ⋆ω ∧ ·)⋆, (−2∂̄⋆ω ∧ ·)⋆ : C∞
1, 0(X, C) −→ C∞

0, 0(X, C)

coincide.
Let α ∈ C∞

1, 0(X, C) and g ∈ C∞
0, 0(X, C) be arbitrary. We have:

⟨⟨(∂̄⋆ω ∧ ·)⋆α, g⟩⟩ = ⟨⟨ḡα, ∂̄⋆ω⟩⟩ = ⟨⟨∂̄(ḡα), ω⟩⟩ =
∫
X

∂̄(ḡα) ∧ ⋆ω =

∫
X

ḡα ∧ ∂̄ωn−1, (4.85)

where we put ωn−1 := ωn−1/(n− 1)! and we used the standard identity ⋆ω = ωn−1.
Meanwhile, we have:

⟨⟨(τ̄ ⋆ω ∧ ·)⋆α, g⟩⟩ = ⟨⟨ḡα, τ̄ ⋆ω⟩⟩ = ⟨⟨ḡ τ̄(α), ω⟩⟩ = ⟨⟨ḡΛ(∂̄ω ∧ α), ω⟩⟩

= ⟨⟨∂̄ω ∧ α, g ω2⟩⟩ =
∫
X

∂̄ω ∧ α ∧ ⋆(ḡω2) = −2
∫
X

ḡα ∧ ∂̄ω ∧ ωn−2

= −2
∫
X

ḡα ∧ ∂̄ωn−1, (4.86)

where for the third identity on the first line we used the definition τ̄ = [Λ, ∂̄ω ∧ ·] of τ̄ and the
fact that Λ(α) = 0 for bidegree reasons, while for the third identity on the second line we used the
standard identity ⋆ω2 = ωn−2, where ω2 := ω2/2!.

Comparing (4.85) and (4.86), we get ⟨⟨(τ̄ ⋆ω ∧ ·)⋆α, g⟩⟩ = −2 ⟨⟨(∂̄⋆ω ∧ ·)⋆α, g⟩⟩ for all α and g.
Hence (τ̄ ⋆ω ∧ ·)⋆ = −2 (∂̄⋆ω ∧ ·)⋆, which proves (i) of (4.84).

• To prove identity (ii) in (4.84), we start from the Hermitian commutation relation (ii) in (4.79):

[Λ, ∂] = i (∂̄⋆ + τ̄ ⋆)

that we apply to ω. We get the equivalent identities:

[Λ, ∂]ω = i∂̄⋆ω + iτ̄ ⋆ω ⇐⇒ Λ(∂ω)− ∂(Λω) = −i∂̄⋆ω ⇐⇒ Λ(∂ω) = −i∂̄⋆ω,

the last of which is (ii) of (4.84), where for the first equivalence we used the identity τ̄ ⋆ω = −2 ∂̄⋆ω
proved above as (i) in (4.84), while for the second equivalence we used the fact that Λω = n, hence
∂(Λω) = 0. □

• Alternative proof of identity (ii) in (4.84). From ∂̄⋆ = − ⋆ ∂⋆ and ⋆ω = ωn−1/(n − 1)!
we get the first identity below:

∂̄⋆ω = − ⋆ ∂ ωn−1

(n− 1)!
= − ⋆

(
∂ω ∧ ωn−2

(n− 2)!

)
= iΛ(∂ω),

where the last identity follows from the general formula (4.69) applied to α = ∂ω.
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Definition 4.5.13. Let X be a compact complex manifold. For any Hermitian metric ω on X,
Michelsohn’s torsion (1, 0)-form of ω is the (1, 0)-form

ρ = ρω := Λω(∂ω) = −i∂̄⋆ωω.

The two definitions of ρω as either of the forms Λ(∂ω) and −i∂̄⋆ω coincide thanks to (ii) of (4.84).
Moreover, Lemma 4.5.7 shows that the (1, 0)-component θ1, 0ω of the Lee form θω is proportional to
Michelsohn’s torsion (1, 0)-form ρω for every Hermitian metric ω on X:

θ1, 0ω =
1

n− 1
ρω. (4.87)

We conclude that much of Lemma 4.5.2 can be reworded as

Corollary 4.5.14. Let X be a compact complex manifold. A Hermitian metric ω on X is balanced
if and only if its Michelsohn’s torsion (1, 0)-form ρω vanishes.

This is still equivalent to the vanishing of the Lee form θω of ω.

The order of events in Michelsohn’s paper was different. The torsion (1, 0)-form was defined in
a different way (using the torsion tensor) in [Mic83, Definition 1.3] and one of the two alternative
definitions of what we call Michelsohn’s torsion (1, 0)-form in the above Definition 4.5.13 was proved
as a formula in [Mic83, Proposition 1.5].

(III) Link between the torsion tensor and Michelsohn’s torsion (1, 0)-form

We start by recalling some well-known definitions. Let (X, ω) be a compact complex Hermitian
manifold with dimCX = n. Let

D : C∞(X, TX) −→ C∞(X, T ⋆X ⊗ TX)

be the Chern connection of the Hermitian holomorphic vector bundle (T 1, 0X, ω).
The torsion tensor TD ∈ C∞(X, Λ2T ⋆X ⊗ TX) of D is defined as

TD(V, W ) := DVW −DWV − [V, W ] ∈ C∞(X, TX), V,W ∈ C∞(X, TX). (4.88)

Meanwhile, the splitting
C⊗ TX = T 1, 0X ⊕ T 0, 1X

of the complexified tangent bundle of X induces, for every vector field V ∈ C∞(X, C ⊗ TX), a
splitting V = V 1, 0 + V 0, 1, where

V 1, 0 :=
1

2
(V − iJV ) and V 0, 1 :=

1

2
(V + iJV ).

The fact that a connection D is the Chern connection of (T 1, 0X, ω) is equivalent to the following
three properties holding simultaneously:

(a) D(ω) = 0

(
def⇐⇒ U · ω(V, W ) = ω(DUV, W ) + ω(V, DUW ) ∀ U, V,W ∈ C∞(X, TX)

)
;

(b) D(J) = 0

(
def⇐⇒ DV (J W ) = J(DVW ) ∀ V,W ∈ C∞(X, TX)

)
;

(c) TD(J V, J W ) = TD(V, W ) ∀ V,W ∈ C∞(X, TX), (4.89)
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where J is the complex structure of X. Property (c) means that the (1, 1)-part of the torsion
vanishes in the sense that (c) is equivalent to any of the following equivalent properties holding on
every coordinate open subset U ⊂ X:

DV 0, 1φ = 0 ∀V 0, 1 ∈ C∞(U, T 1, 0U), ∀φ =
n∑
j=1

φj
∂

∂zj
∈ H0(U, T 1, 0U)

⇐⇒ DJV φ = iDV φ ∀φ ∈ H0(U, T 1, 0U), ∀V ∈ C∞(U, RTU) such that V = V,

where RTU is the real tangent bundle restricted to U .

• Computation of the torsion in local coordinates

Let ω = i
n∑

i, j=1

ωij̄ dzi ∧ dz̄j be the expression of the Hermitian metric ω in local holomorphic

coordinates z1, . . . , zn on some open subset U ⊂ X. So, ωij̄ = ω(∂/∂zi, ∂/∂zj) on U for all i, j. If
we denote by a = (ajk)1≤j,k≤n the matrix of (1, 0)-forms on U that expresses the connection D in
the local coordinates (z1, . . . , zn), we have

D

(
∂

∂zj

)
=

n∑
k=1

ajk
∂

∂zk
, j ∈ {1, . . . , n}. (4.90)

For all i, j, we get:

dωij̄ = d

(
ω

(
∂

∂zi
,
∂

∂zj

))
= ω

(
D

∂

∂zi
,
∂

∂zj

)
+ ω

(
∂

∂zi
, D

∂

∂zj

)
=

n∑
k=1

ωkj̄ aik +
n∑
k=1

ωik̄ ājk,

where the second identity on the first line follows from (a) of (4.89) and the last identity follows
from (4.90). In particular, we get ∂ωij̄ =

∑n
k=1 aik ωkj̄ for all i, j. In matrix form, this reads:

a = (∂ω)ω−1, (4.91)

where we have put ω := (ωij̄)1≤i, j≤n (a matrix of functions) and ∂ω := (∂ωij̄)1≤i, j≤n (a matrix of
(1, 0)-forms).

Recall that the torsion TD is a real TX-valued 2-form with no (1, 1)-component (by (c) of (4.89)),
so if T p, qD stands for the component of type (p, q) of TD, we have:

TD = T 2, 0
D + T 0, 2

D and T 2, 0
D = T 0, 2

D .

Proposition 4.5.15. The expression in local coordinates (z1, . . . , zn) of the TX-valued (2, 0)-form
T 2, 0
D (the (2, 0)-component of the torsion form TD ∈ C∞(X, Λ2T ⋆X ⊗ TX)) is

T 2, 0
D =

∑
1≤j<k≤n
1≤l≤n

T ljk dzj ∧ dzk ⊗
∂

∂zl
,

where

T ljk =
∑
α

(
∂ωkᾱ
∂zj

ωᾱ l − ∂ωjᾱ
∂zk

ωᾱ l
)

= Γljk − Γlkj, 1 ≤ j, k, l ≤ n, (4.92)

and the matrix (ωj̄ k)j, k is the inverse of the matrix (ωj k̄)j, k, while the Γljk’s are the Christoffel
coefficients.
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Proof. By the definition of TD, we have

T 2, 0
D

(
∂

∂zj
,
∂

∂zk

)
= D ∂

∂zj

∂

∂zk
−D ∂

∂zk

∂

∂zj
, 1 ≤ j, k ≤ n.

On the other hand, (4.90) yields: D ∂
∂zj

∂
∂zk

=
n∑
l=1

akl(
∂
∂zj

) ∂
∂zl

=
n∑
l=1

Γljk
∂
∂zl

for all j, k. Meanwhile,

(4.91) yields: akl =
∑
α

∂ωkᾱ · ωᾱ l, hence Γljk = akl(
∂
∂zj

) =
∑
α

∂ωkᾱ

∂zj
ωᾱ l.

Putting together the last identities, we get:

D ∂
∂zj

∂

∂zk
=

n∑
α, l=1

∂ωkᾱ
∂zj

ωᾱ l
∂

∂zl
and, permuting j and k, D ∂

∂zk

∂

∂zj
=

n∑
α, l=1

∂ωjᾱ
∂zk

ωᾱ l
∂

∂zl
.

Subtracting the last identity from the previous one, we get:

T 2, 0
D

(
∂

∂zj
,
∂

∂zk

)
=

n∑
l=1

T ljk
∂

∂zl
, 1 ≤ j, k ≤ n,

with the T ljk’s given by formula (4.92). □

As an immediate consequence of Proposition 4.5.15, we get the first explicit link between the
torsion and the metric ω at the level of differential forms.

Corollary 4.5.16. The scalar-valued (2, 1)-form T = Tω := T 2, 0
D ⌟ω ∈ C∞

2, 1(X, C) (obtained by

contracting ω with the T 1, 0X-components of T 2, 0
D and then multiplying the result by the scalar-valued

(2, 0)-form components of T 2, 0
D ) is given by the explicit formula:

Tω = ∂ω.

Proof. In local coordinates, we have:

T =
∑
j<k
l

Tjkl̄ dzj ∧ dzk ∧ dz̄l, where Tjkl̄ = i
∑
α

Tαjk ωαl̄ for all j, k, l.

From this and from (4.92), for all j, k, l we get:

Tjkl̄ = i
∑
α, β

(
∂ωkβ̄
∂zj

ωβ̄α −
∂ωjβ̄
∂zk

ωβ̄α
)
ωαl̄ = i

∑
β

(
∂ωkβ̄
∂zj

δlβ −
∂ωjβ̄
∂zk

δlβ

)
= i

(
∂ωkl̄
∂zj
−
∂ωjl̄
∂zk

)
. (4.93)

On the other hand, we have

∂ω = i
∑
j, k, l

∂ωkl̄
∂zj

dzj ∧ dzk ∧ dz̄l = i
∑
j<k
l

(
∂ωkl̄
∂zj
−
∂ωjl̄
∂zk

)
dzj ∧ dzk ∧ dz̄l

=
∑
j<k
l

Tjkl̄ dzj ∧ dzk ∧ dz̄l = T ,
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where the last but one identity follows from (4.93). □

As a result of Lemma 4.5.12 and of Corollary 4.5.16, we get that Michelsohn’s torsion (1, 0)-form
ρω introduced in Definition 4.5.13 for any Hermitian metric ω arises as the trace of the torsion
(2, 1)-form Tω.

Corollary 4.5.17. Let X be a compact complex manifold. For any Hermitian metric ω on X, we
have:

ρω = Λω(Tω) = Λω(T
2, 0
D ⌟ω). (4.94)

In particular, we see that a Hermitian metric ω is Kähler if and only if its torsion vanishes (i.e.
Tω = 0), while ω is balanced if and only if the trace of its torsion vanishes (i.e. Λω(Tω) = 0).

• Definition of Michelsohn’s torsion (1, 0)-form in terms of T 2, 0
D in local coordinates

The following definition is Michelsohn’s original definition of the torsion (1, 0)-form.

Definition 4.5.18. ([Mic83, Definition 1.3]) Let X be a compact complex manifold. For any Hermi-
tian metric ω on X, Michelsohn’s torsion (1, 0)-form of ω is the global scalar-valued (1, 0)-form

ρ = ρω ∈ C∞
1, 0(X, C) defined in local coordinates as ρ =

n∑
k=1

ρk dzk, where

ρk :=
n∑
j=1

T jkj, k ∈ {1, . . . , n},

and where the T ljk’s are defined in (4.92).

The following result shows that ρω is indeed globally defined on X and that it coincides with the
differential form introduced in Definition 4.5.13.

Lemma 4.5.19. ([Mic83, Proposition 1.5]) Let X be a compact complex manifold with dimCX = n.
For any Hermitian metric ω on X, the following identity holds:

iρω = ∂̄⋆ω, (4.95)

where ρω is Michelsohn’s torsion (1, 0)-form of ω from Definition 4.5.18.

Proof. We have iρω = i
∑

k ρk dzk, where

ρk =
∑
j, α

(
∂ωjᾱ
∂zk

ωᾱ j − ∂ωkᾱ
∂zj

ωᾱ j
)
, k ∈ {1, . . . , n}, (4.96)

as we see by permuting j and k and taking l = j in formula (4.92) for the T ljk’s.

On the other hand, we know from (ii) of (4.84) that ∂̄⋆ω = iΛω(∂ω). It follows from this and
from (4.96) that proving (4.95) is equivalent to proving the following formula in local coordinates:

Λω(∂ω) =
∑
k

ρk dzk. (4.97)
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Since this is a pointwise formula, proving it amounts to proving that

⟨Λω(∂ω), u⟩ω = ⟨
∑
k

ρk dzk, u⟩ω (4.98)

at every point for every (1, 0)-form u =
∑

r ur dzr. Thus, we can fix an arbitrary point x0 and choose
the coordinates z1, . . . , zn about it such that ω is given by the identity matrix at x0 (i.e. ωij̄(x0) = δij
for all i, j). It suffices to prove (4.98) at x0 for every (1, 0)-form u =

∑
r ur dzr.

Meanwhile, in local coordinates, we get:

∂ω = i
∑
i, j, k

∂ωij̄
∂zk

dzk ∧ dzi ∧ dz̄j = i
∑
i<k
j

(
∂ωkj̄
∂zi
−
∂ωij̄
∂zk

)
dzi ∧ dzk ∧ dz̄j :=

∑
i<k
j

Γikj̄ dzi ∧ dzk ∧ dz̄j,

where in the last identity we denoted by Γikj̄ the coefficients of ∂ω. Hence, for every u =
∑

r ur dzr,
the l.h.s. term of (4.98) reads:

⟨Λω(∂ω), u⟩ω = ⟨∂ω, ω ∧ u⟩ω = −i
∑
i<k
j

Γikj̄ (ωkj̄ ui − ωij̄ uk)

= −i
∑
i<k

Γikk̄ ūi + i
∑
i<k

Γikī ūk

=
∑
i<k

(
∂ωkk̄
∂zi
− ∂ωik̄

∂zk

)
ūi −

∑
i<k

(
∂ωkī
∂zi
− ∂ωīi
∂zk

)
ūk

=
∑
i, k

∂ωkk̄
∂zi

ūi −
∑
i, k

∂ωik̄
∂zk

ūi, (4.99)

where the last three identities hold only at x0 and the last but one follows from the explicit expression
of the Γikj̄’s.

On the other hand, for every u =
∑

r ur dzr, the r.h.s. term of (4.98) at x0 reads:

⟨
∑
k

ρk dzk, u⟩ω =
∑
r

ρrūr =
∑
r, j, α

(
∂ωjᾱ
∂zr

ωᾱ j − ∂ωrᾱ
∂zj

ωᾱ j
)
ūr

=
∑
r, j

∂ωjj̄
∂zr

ūr −
∑
r, j

∂ωrj̄
∂zj

ūr. (4.100)

A comparison of (4.99) and (4.100) proves (4.98) at x0. □

(IV) Equality of the Laplacians ∆′
ω and ∆′′

ω on functions when ω is balanced

We will prove the following general formula.

Lemma 4.5.20. Let X be a compact complex manifold with dimCX = n. For any Hermitian metric
ω on X, the ∂̄-Laplacian ∆′′ = ∆′′

ω and the ∂-Laplacian ∆′ = ∆′
ω are connected in the following way

on smooth functions f : X → C:

(∆′′ −∆′) f = ⋆

(
i∂f ∧ ∂̄ωn−1 + i∂̄f ∧ ∂ωn−1

)
, (4.101)

where ωn−1 := ωn−1/(n− 1)!.
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Proof. When applied to functions f ∈ C∞
0, 0(X, C), the Hermitian Bochner-Kodaira-Nakano-type

formula (4.80) reads:

(∆′′ −∆′) f = τ ⋆(∂f)− τ̄ ⋆(∂̄f). (4.102)

Now, the definition of τ implies that it is given by the multiplication by the (1, 0)-form Λ(∂ω) =
−i∂̄⋆ω (see (4.84) for this equality of forms) on functions:

C∞
0, 0(X, C) ∋ f

τ7−→ (−i∂̄⋆ω) f ∈ C∞
1, 0(X, C).

Hence, its adjoint is τ ⋆ = (−i∂̄⋆ω ∧ ·)⋆ : C∞
1, 0(X, C) −→ C∞

0, 0(X, C). Therefore, (4.102) transforms
to

(∆′′ −∆′) f = i (∂̄⋆ω ∧ ·)⋆(∂f) + i (∂⋆ω ∧ ·)⋆(∂̄f). (4.103)

On the other hand, to compute (∂̄⋆ω ∧ ·)⋆(∂f), notice that, when α = ∂f for some C∞ function
f : X → C, the equality of the first and last terms in (4.85) reads:∫

X

ḡ (∂̄⋆ω ∧ ·)⋆(∂f) dVω =

∫
X

ḡ ∂f ∧ ∂̄ωn−1

for every function g : X → C. Hence,

(∂̄⋆ω ∧ ·)⋆(∂f) = ⋆(∂f ∧ ∂̄ωn−1) (4.104)

for every function f .
We see that (4.101) follows by putting (4.103) and (4.104) together. □

Corollary 4.5.21. ([Gau77b, Proposition 1.]) Suppose there exists a balanced metric ω on a
compact complex manifold X. Then

∆′′
ω f = ∆′

ω f (4.105)

for any C∞ function f : X → C.

Recall that ∆′′
ω = ∆′

ω in every bidegree when ω is Kähler.

4.5.2 Basic properties of balanced manifolds

On a given complex manifold X, we will deal with semi-positive bidegree (1, 1)-currents T that are
the (1, 1)-components of d-exact currents of degree 2. Specifically, they are of the shape T = (dS)1, 1,
where S is a current of degree 1. Since T is real, S can be chosen to be real as well and will henceforth
be supposed to be real. If S = S1, 0 + S0, 1 is the decomposition of S into pure-type currents, then
S0, 1 = S1, 0 and T = ∂S0, 1 + ∂̄S1, 0. For bidegree reasons, we also have: ∂S1, 0 = 0 (the vanishing
(2, 0)-component of T ) and ∂̄S0, 1 = 0 (the vanishing (0, 2)-component of T ). In particular, T need
not be d-closed, but ∂∂̄T = 0 and T ∈ Im ∂ + Im ∂̄. In other words, T is Aeppli cohomologous to 0,
namely {T}A = 0 ∈ H1, 1

A (X, R).

Definition 4.5.22. A ∂∂̄-closed form α or current T that represents the zero Aeppli cohomology
class is called Aeppli-exact.



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS289

If T is a real Aeppli-exact bidegree (1, 1)-current, there exist (1, 0), resp. (0, 1)-currents S1, 0

and S0, 1 such that S0, 1 = S1, 0 and T = ∂S0, 1+ ∂̄S1, 0. (Indeed, if T = ∂S1+ ∂̄S2 with S1 of bidegree
(1, 0) and S2 of bidegree (0, 1), we can take S1, 0 := (S1+S2)/2 and S0, 1 := (S2+S1)/2.) Moreover,
T is the (1, 1)-component of the d-exact current dS of degree 2, where S := S1, 0 + S0, 1.

We have thus noticed the following fact.

Lemma 4.5.23. Let T be a real current or form of bidegree (1, 1) on a complex manifold X. Then,
T is Aeppli-exact if and only if T is the (1, 1)-component of a d-exact current dS of degree 2.

In this case, the current S of degree 1 can be chosen to be real.

Michelsohn’s following intrinsic characterisation of balanced manifolds says that a compact com-
plex manifold X is balanced if and only if any semi-positive Aeppli-exact current T of bidegree (1, 1)
on X is zero.

Proposition 4.5.24. ([Mic83, Theorem 4.7.]) Let X be a compact complex manifold. Then, X
carries a balanced metric ω if and only if there is no non-zero current T of bidegree (1, 1) on X
such that T ≥ 0 and T is the (1, 1)-component of some d-exact current of degree 2 on X.

Proof. Let dimCX = n.
• To prove the trivial implication, suppose the existence of a balanced metric ω on X. If a

non-zero (1, 1)-current T = (dS)1, 1 ≥ 0 existed on X for some current S of degree 1 (where the
superscript (1, 1) stands for the component of bidegree (1, 1) of the 2-current dS), then on the one
hand we would have: ∫

X

T ∧ ωn−1 > 0

since T ∧ ωn−1 ≥ 0 as a non-zero (n, n)-current on X, while on the other hand we would have:∫
X

T ∧ ωn−1 =

∫
X

dS ∧ ωn−1 =

∫
X

S ∧ dωn−1 = 0

by Stokes and the balanced property dωn−1 = 0 of ω. This would be a contradiction.

• To prove the reverse implication, we use Sullivan’s technique of [Sul76] based on the elementary
Hahn-Banach theorem. The proof is very similar to that of Proposition 4.2.5, but needs the following
extra ingredient that uses the following pieces of notation on a given n-dimensional compact complex
manifold X:

· E ′p(X) stands for the space of currents of dimension p (= of degree 2n−p) on X. By definition,
this is the topological dual of the space C∞

p (X, C) of C∞ C-valued p-forms on X equipped with the
C∞ topology. Moreover, E ′p(X)R is the subspace of E ′p(X) consisting of real currents.

· E ′r, s(X) stands for the space of currents of bidimension (r, s) (= of degree (n − r, n − s)) on
X. By definition, this is the topological dual of the space C∞

r, s(X, C) of C∞ C-valued (r, s)-forms
on X equipped with the C∞ topology. Moreover, E ′r, r(X)R is the subspace of E ′r, r(X) consisting of
real currents.

· πr, r :
⊕
r′, s′
E ′r′, s′(X) −→ E ′r, r(X) is the projection and dr, r := πr, r ◦ d.

· a superscript (r, s) stands for the component of bidegree (r, s) of the form or current to
which it is attached.
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Lemma 4.5.25. ([Mic83, Lemma 4.8]) Let X be a compact complex manifold with dimCX = n.
The vector space

dn−1, n−1E ′2n−1(X)R :=

{
(dS)1, 1 | S is a real current of degree 1 on X

}
is closed in E ′n−1, n−1(X)R with respect to the weak topology of currents.

Proof. The linear map dn−1, n−1 : E ′2n−1(X)R −→ E ′n−1, n−1(X)R is the dual of the linear map d :
C∞
n−1, n−1(X, R) −→ C∞

2n−1(X, R). By a standard fact in functional analysis, any of these two maps
has closed image if and only if the other does. We will prove that the latter map has closed image.

Another standard fact in functional analysis stipulates that if a continuous linear operator T has
a finite codimensional image ImT , then this image is closed.

Now, fix an arbitrary Hermitian metric γ on X. We know from standard Hodge theory (ellipticity
of the d-Laplacian ∆ induced by γ, compactness of X and the standard elliptic theory) that there
is an L2

γ-orthogonal 3-space decomposition:

C∞
p (X, R) = ker∆⊕ Im d⊕ Im d⋆

in which ker d = ker∆⊕ Im d, Hp
∆(X, C) := ker∆ is finite-dimensional and the subspaces Im d and

Im d⋆ are closed. In particular, the subspace:

B := d(C∞
2n−2(X, R)) ⊂ C∞

2n−1(X, R)

is closed in C∞
2n−1(X, R) because it is closed in C∞

2n−1(X, R)∩ker d (thanks to dimRHp
∆(X, R) < +∞)

and ker d is closed in C∞
2n−1(X, R).

Thus, it suffices to prove that
codimBB0 < +∞, (4.106)

where B0 := d(C∞
n−1, n−1(X, R)) ⊂ B = d(C∞

2n−2(X, R)). Indeed, (4.106) will imply that B0 is closed
in B, hence B0 will be closed in C∞

2n−1(X, R) since we already know that B is closed in C∞
2n−1(X, R).

To prove (4.106), for every form α ∈ C∞
2n−2(X, R) consider its decomposition α = αn, n−2 +

αn−1, n−1 + αn, n−2 into pure-type forms, where αn−1, n−1 is real. Now, for bidegree reasons we have
∂̄αn, n−2 = 0 and since ker ∂̄ = Hn−2, n

∆′′ (X, C)⊕ Im∂̄, we get a unique splitting:

αn, n−2 = αn−2, n
h + ∂̄an−2, n−1

for some ∆′′
γ-harmonic (n− 2, n)-form αn−2, n

h and some (n− 2, n− 1)-form an−2, n−1.
Thus, for every form α ∈ C∞

2n−2(X, R), we get:

α =

(
αn−2, n
h + ∂an−2, n−1

)
+ αn−1, n−1 +

(
αn−2, n
h + ∂̄an−2, n−1

)
= αn−2, n

h + dan−2, n−1 + (αn−1, n−1 − ∂an−2, n−1 − ∂̄an−2, n−1) + αn−2, n
h + dan−2, n−1.

Taking d, we further get:

dα = dβn−1, n−1 + d(αn−2, n
h + αn−2, n

h ),

where βn−1, n−1 := αn−1, n−1 − ∂an−2, n−1 − ∂̄an−2, n−1 ∈ C∞
n−1, n−1(X, R).

We conclude that B = B0+ dV , where V := {αn−2, n
h +αn−2, n

h | αn−2, n
h ∈ Hn−2, n

∆′′ (X, C)}. Hence

dimR(B/B0) ≤ dimRV < +∞,
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where the last inequality follows from dimHn−2, n
∆′′ (X, C) < +∞. This proves (4.106) and we are

done. □

End of proof of Proposition 4.5.24. By Lemma 4.5.25, the vector subspace A := dn−1, n−1E ′2n−1(X)R
of the locally convex space E ′n−1, n−1(X)R is closed.

Meanwhile, if we fix an arbitrary Hermitian metric γ on X, the subset

B :=

{
T ∈ E ′n−1, n−1(X)R | T ≥ 0 and

∫
X

T ∧ γn−1 = 1

}
⊂ E ′n−1, n−1(X)R

is compact and convex.
If we assume that there exists no non-zero current T of bidegree (1, 1) (equivalently, of bidimen-

sion (n− 1, n− 1), i.e. lying in E ′n−1, n−1(X)) on X such that T ≥ 0 and T is the (1, 1)-component
of some d-exact current of degree 2 on X, we have:

A ∩ B = ∅.

By the Hahn-Banach Separation Theorem for locally convex spaces, there exists a real C∞ (n−
1, n− 1) form Ω on X such that:

(a) Ω|A ≡ 0, which is equivalent to
∫
X

dS∧Ω = 0 for every real 1-current S on X. This is further

equivalent to dΩ = 0.

(b) Ω|B > 0, which is equivalent to
∫
X

T ∧ Ω > 0 for every non-zero (1, 1)-current T ≥ 0 on X.

This is further equivalent to Ω > 0 on X.

Using Lemma 4.0.1, we conclude from (a) and (b) that there is a unique C∞ (1, 1)-form ω > 0
on X such that ωn−1 = Ω > 0 and dωn−1 = 0 on X. This means that ω is a balanced metric on X.
□

Next, we give two functorial properties of balanced manifolds.

Proposition 4.5.26. ([Mic83, Proposition 1.9.]) Let X and Y be complex manifolds.

(i) If X and Y are balanced, the product manifold X × Y is balanced.

(ii) If X is balanced and if there exists a surjective proper holomorphic submersion π : X −→ Y ,
then Y is balanced.

Proof. (i) Let n = dimCX and m = dimCY . Let ωX , resp. ωY , be a balanced metric on X, resp.
Y . Finally, let πX and πY be the projections of X ×Y onto X, resp. Y . Since d commutes with the
inverse image maps, we get: dπ⋆Xω

n−1
X = 0 and dπ⋆Y ω

m−1
Y = 0.

The induced product metric on X × Y is ω = π⋆XωX + π⋆Y ωY . We have:

ωn+m−1 =

(
n+m− 1

n− 1

)
π⋆Xω

n−1
X ∧ π⋆Y ωmY +

(
n+m− 1

n

)
π⋆Xω

n
X ∧ π⋆Y ωm−1

Y .

Since each of the forms ωn−1
X , ωnX , ω

m−1
Y , ωmY is d-closed on its respective manifold (either thanks to

the balanced hypothesis or for bidegree reasons), we infer that dωn+m−1 = 0 on X × Y . Thus, ω is
a balanced metric on X × Y .
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(ii) Let n := dimCX ≥ m := dimCY and let ωX be a balanced metric on X. Let

ΩY := π⋆(ω
n−1
X )

be the direct image (i.e. the push-forward) of ωn−1
X to Y under π. Since π is proper and holomorphic,

ΩY is a well-defined current on Y of the same bidimension (= (1, 1)) as ωn−1
X . Equivalently, ΩY is

a current of bidegree (m− 1, m− 1) on Y . Moreover, since π is a submersion, ΩY is actually a C∞

form on Y obtained by integrating ωn−1
X on the fibres (π−1(y))y∈Y of π. (See [Dem97, I, §.2.C.1] for

the basics of direct images of forms and currents.)
On the one hand, d commutes with the map π⋆. Hence, dΩY = π⋆(dω

n−1
X ) = 0 on Y .

On the other hand, direct images of positive forms are positive. (See e.g. [Dem97, III, §.1].) In
our case where π is a submersion, this is equivalent to saying that, in local coordinates, the matrix
formed by the coefficients of ΩY , which are obtained by integrating over the fibres of π the entries
of the positive definite matrix formed by the coefficients of ωn−1

X , is positive definite. Thus, ΩY > 0
on Y . By Lemma 4.0.1, there exists a unique C∞ positive definite (1, 1)-form ωY > 0 on Y such
that ωm−1

Y = ΩY .
Summing up, ωY ∈ C∞

1, 1(Y, R), ωY > 0 and dωm−1
Y = 0 on Y , so ωY is a balanced metric on Y .

□

4.5.3 The Iwasawa manifold revisited and deformations of balanced
manifolds

In this subsection, we show that the Iwasawa manifold I(3) discussed in §.1.3.3 is balanced. Actually,
all the manifolds in a class containing the Iwasawa manifold will be seen to be balanced. Thus, we
get a large class of examples of balanced non-Kähler manifolds.

We will also include a general discussion of some related issues. The point of view presented here
is mostly that of [AB91a].

(I) Complex parallelisable manifolds

We start with the simple observation that any holomorphic (n−1)-form on an n-dimensional compact
complex manifold is d-closed.

Observation 4.5.27. ([Nak75, Lemma 1.2.] or [AB91a, Remark 3.1.]) Let X be any compact
complex manifold with dimCX = n. Then, for every form u ∈ C∞(X, Λn−1, 0T ⋆X) such that ∂̄u = 0,
we have du = 0.

Proof. Let u ∈ C∞(X, Λn−1, 0T ⋆X) such that ∂̄u = 0. Then du = ∂u is of type (n, 0) and
dū = du = ∂u is of type (0, n).

On the one hand, in
2
du∧dū ≥ 0 as an (n, n)-form onX. Indeed, in local holomorphic coordinates

z1, . . . , zn we can write:

du = f dz1 ∧ . . . dzn, hence in
2

du ∧ dū = |f |2 idz1 ∧ dz̄1 . . . idzn ∧ dz̄n ≥ 0,

for some smooth function f . Thus, in
2
du ∧ dū = 0 if and only if f ≡ 0 if and only if du = 0.

Meanwhile, Stokes gives: ∫
X

in
2

du ∧ dū = in
2

∫
X

d(u ∧ dū) = 0.

Hence, in
2
du ∧ dū = 0 everywhere on X, hence du = 0 everywhere on X. □
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Corollary 4.5.28. Let X be a compact complex manifold, dimCX = n. Suppose there is a form
u ∈ C∞(X, Λn−1, 0T ⋆X) such that ∂̄u = 0. Then, the (n− 1, n− 1)-form i(n−1)2u ∧ ū satisfies:

i(n−1)2u ∧ ū ≥ 0 and d
(
i(n−1)2u ∧ ū

)
= 0 on X.

Proof. The pointwise inequality can be checked for any (n− 1, 0)-form u by a trivial calculation. If
∂̄u = 0, then du = 0 by Observation 4.5.27. Then dū = 0 and the second part follows. □

Now recall the following standard notion.

Definition 4.5.29. ([Wan54]) A compact complex manifold X is said to be complex parallelisable
if its holomorphic tangent bundle T 1, 0X is trivial.

This condition is, of course, equivalent to the sheaf of germs of holomorphic 1-forms Ω1
X being

trivial. If n = dimCX, the complex parallelisable condition is equivalent to the existence of n
holomorphic vector fields θ1, . . . , θn ∈ H0(X, T 1, 0X) that are linearly independent at every point of
X. It is again equivalent to the existence of n holomorphic 1-forms φ1, . . . , φn ∈ H0(X, Ω1

X) that
are linearly independent at every point of X.

Theorem 4.5.30. ([Wan54]) A compact complex manifold X is complex parallelisable if and
only if X is the compact quotient X = G/Γ of a simply connected, connected complex Lie group G
by a discrete subgroup Γ ⊂ G.

Proof. See [Wan54]. □

In particular, for any compact complex parallelisable manifold X, H0(X, T 1, 0X) ≃ g where g is
the Lie algebra of G.

Definition 4.5.31. A nilmanifold (resp. solvmanifold) X is a compact complex manifold X =
G/Γ that can be realised as a compact quotient of a simply connected, connected nilpotent (resp.
solvable) real Lie group G by a lattice Γ of maximal rank in G.

Note that although a nilmanifold or a solvmanifold X carries a complex structure, the Lie group
G need not be a complex Lie group unlessX is complex parallelisable. There exist many non-complex
parallelisable nilmanifolds and solvmanifolds. The Heisenberg group defining the Iwasawa manifold
being a nilpotent complex Lie group, we have

Corollary 4.5.32. The Iwasawa manifold is a complex parallelisable nilmanifold.

The main result of this subsection is

Corollary 4.5.33. ([AB91a, Remark 3.1.]) Every compact complex parallelisable manifold is
balanced. In particular, the Iwasawa manifold is balanced.

Proof. Let X be an arbitrary compact complex parallelisable manifold, dimCX = n. Let φ1, . . . , φn ∈
H0(X, Ω1

X) be n holomorphic 1-forms that are linearly independent at every point of X. Consider
the (n− 1, n− 1)-form on X:

Ω := i(n−1)2
n∑
i=1

φ1 ∧ · · · ∧ φ̂i ∧ · · · ∧ φn ∧ φ̄1 ∧ · · · ∧ ̂̄φi ∧ · · · ∧ φ̄n =
n∑
i=1

i(n−1)2ui ∧ ūi,



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS294

where ui := φ1 ∧ · · · ∧ φ̂i ∧ · · · ∧ φn ∈ C∞(X, Λn−1, 0T ⋆X) and ̂ indicates a missing factor. Since
∂̄φk = 0 for all k = 1, . . . , n, we see that ∂̄ui = 0 for all i = 1, . . . , n. Then, Observation 4.5.27 gives
dui = 0 for all i = 1, . . . , n, while Corollary 4.5.28 gives:

Ω ≥ 0 and dΩ = 0 on X.

Furthermore, since φ1, . . . , φn are linearly independent at every point of X, we must even have
Ω > 0. Thus Ω is a C∞ (n− 1, n− 1)-form on X satisfying:

Ω > 0 and dΩ = 0 on X.

Applying Lemma 4.0.1, there exists a unique C∞ positive-definite (1, 1)-form ω > 0 on X such
that ωn−1 = Ω. From d(ωn−1) = dΩ = 0, we infer that ω is a balanced metric on X. □

Note, however, that very few compact complex parallelisable manifolds are Kähler thanks to a
result of Wang.

Remark 4.5.34. ([Wan54]) Let X = G/Γ be a compact complex parallelisable manifold. Then:

X is Kähler ⇐⇒ G is abelian ⇐⇒ X is a complex torus.

Proof. See Corollary 2, p. 776 in [Wan54]. □

Let X be a compact complex manifold, dimCX = n. Since there are no non-zero ∂̄-exact (1, 0)-
forms on X (for obvious bidegree reasons), we have

H1, 0(X, C) = {u ∈ C∞(X, Λ1, 0T ⋆X) ; ∂̄u = 0},

i.e. H1, 0(X, C) consists of holomorphic 1-forms on X. Denoting h1, 0(X) its dimension, we have

Observation 4.5.35. If X is complex parallelisable, then h1, 0(X) = n.

Proof. By the complex parallelisable hypothesis on X, the rank-n analytic sheaf Ω1
X is trivial, hence

it is generated by n holomorphic 1-forms φ1, . . . , φn ∈ H1, 0(X, C) that are linearly independent at
every point of X. In particular, {φ1, . . . , φn} is a basis of H1, 0(X, C) ≃ H0(X, Ω1

X). □

Suppose now that X is compact complex parallelisable. Let θ1, . . . , θn ∈ H0(X, T 1, 0X) be n
holomorphic vector fields that are linearly independent at every point of X, chosen to be dual to the
holomorphic (1, 0)-forms φ1, . . . , φn ∈ H1, 0(X, C) considered in the above proof. For every smooth
function g : X → C, we have

∂g =
n∑
λ=1

(θλg)φλ, ∂̄g =
n∑
λ=1

(θ̄λg)φλ, (4.107)

i.e. the familiar formalism induced by local holomorphic coordinates finds a global analogue on a
compact complex parallelisable manifold in a formalism where θλ replaces ∂/∂zλ and φλ replaces dzλ.
Thus any (0, 1)-form φ on X has a unique decomposition

φ =
n∑
λ=1

fλφλ



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS295

with f1, . . . , fn : X → C functions onX. Thus there is an implicit L2 inner product on C∞(X, Λ0, 1T ⋆X)

defined as follows (no Hermitian metric is needed on X): for any φ =
n∑
λ=1

fλφλ, ψ =
n∑
λ=1

gλφλ ∈

C∞(X, Λ0, 1T ⋆X), set

⟨⟨φ, ψ⟩⟩ :=
∫
X

( n∑
λ=1

fλ ḡλ

)
in

2

φ1 ∧ · · · ∧ φn ∧ φ1 ∧ · · · ∧ φn. (4.108)

It is clear that dV := in
2
φ1 ∧ · · · ∧φn ∧φ1 ∧ · · · ∧φn > 0 is a global volume form on X and that the

above L2 inner product is independent of the choices made. We can define the formal adjoint ∂̄⋆ of
∂̄ w.r.t. this L2 inner product in the usual way: for any smooth (0, 1)-form φ, define ∂̄⋆φ to be the
unique smooth function on X satisfying

⟨⟨∂̄⋆φ, g⟩⟩ = ⟨⟨φ, ∂̄g⟩⟩

for any smooth function g on X. A trivial calculation using Stokes’s theorem gives

∂̄⋆φ = −
n∑
λ=1

θλfλ (4.109)

for any smooth (0, 1)-form φ =
n∑
λ=1

fλφλ on X. Thus we see that

∂̄⋆φν = 0, ν = 1, . . . , n, (4.110)

because φν =
n∑
λ=1

δνλφλ and θλδνλ = 0 (since the δνλ are constants).

Now denote by r ∈ {0, 1, . . . , n} the number of d-closed forms among φ1, . . . , φn. After a possible
reordering, we can suppose that φ1, . . . , φr are d-closed and φr+1, . . . , φn are not d-closed. Then we
have

∂φ1 = · · · = ∂φr = 0 or equivalently ∂̄φ1 = · · · = ∂̄φr = 0. (4.111)

Thus the ∂̄-closed (0, 1)-forms φ1, . . . , φr define Dolbeault (0, 1)-cohomology classes in H0, 1(X, C).
We can define the ∂̄-Laplacian on forms of X in the usual way:

∆′′ := ∂̄∂̄⋆ + ∂̄⋆∂̄.

The corresponding harmonic space of (0, 1)-forms H0, 1
∆′′ (X, C) := ker∆′′ = ker ∂̄∩ker ∂̄⋆ satisfies the

Hodge isomorphism H0, 1
∆′′ (X, C) ≃ H0, 1(X, C). Notice that (4.110) and (4.111) give

∆′′φν = 0, ν = 1, . . . , r, (4.112)

i.e. the forms φ1, . . . , φr are ∆′′-harmonic. On the other hand, φr+1, . . . , φn are not ∆′′-harmonic.
Thus the number r of linearly independent d-closed holomorphic 1-forms of X (independent of the
choice of φ1, . . . , φn) satisfies:

r ≤ h0, 1(X). (4.113)

Suppose now that the compact complex parallelisable X is nilpotent.
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Fact 4.5.36. (see e.g. [Nak75] or [CFGU00, p.5405-5406]) If X is a compact complex paral-
lelisable nilmanifold, the holomorphic 1-forms φ1, . . . , φn that form a basis of H1, 0(X, C) can be
chosen such that

dφµ =
∑

1≤λ<ν≤n

cµλν φλ ∧ φν , 1 ≤ µ ≤ n, (4.114)

with constant coefficients cµλν ∈ C satisfying

cµλν = 0 whenever µ ≤ λ or µ ≤ ν.

Taking this standard fact (which in [Nak75] follows from the existence of a Chevalley decompo-
sition of the nilpotent Lie algebra g) for granted, we now spell out the details of the proof of the
following result of Kodaira along the lines of [Nak75, Theorem 3, p. 100].

Theorem 4.5.37. (Kodaira) If X is a compact complex parallelisable nilmanifold, then h0, 1(X) =
r.

Moreover, the ∆′′-harmonic (0, 1)-forms φ1, . . . , φr form a basis of the harmonic spaceH0, 1
∆′′ (X, C).

Equivalently, the Dolbeault (0, 1)-cohomology classes {φ1}, . . . , {φr} form a basis of H0, 1(X, C).

Proof. The only thing that needs proving is that the linearly independent forms φ1, . . . , φr ∈
H0, 1

∆′′ (X, C) generate H0, 1
∆′′ (X, C). Pick an arbitrary C∞ (0, 1)-form φ on X and write

φ =
n∑
λ=1

fλ φλ

with C∞ functions f1, . . . , fn on X. Using formula (4.107) for ∂̄ and the obvious identities ∂̄ φλ =
dφλ, λ = 1, . . . , n, due to φλ being holomorphic, we get:

∂̄φ =
n∑

λ, ν=1

(θ̄νfλ)φν ∧ φλ +
n∑
µ=1

fµ dφµ

=
n∑

λ, ν=1

(θ̄νfλ)φν ∧ φλ +
n∑
µ=1

fµ
∑

1≤ν<λ≤n

cµνλ φν ∧ φλ

=
∑

1≤ν<λ≤n

(
θ̄νfλ − θ̄λfν +

n∑
µ=1

cµνλ fµ

)
φν ∧ φλ, (4.115)

where the second line above follows from the conjugate of (4.114).
Now φ is ∆′′-harmonic if and only if

(i) ∂̄φ = 0⇐⇒ θ̄νfλ − θ̄λfν +
n∑
µ=1

cµνλ fµ = 0 for 1 ≤ ν < λ ≤ n (cf. (4.115));

and

(ii) ∂̄⋆φ = 0⇐⇒
n∑
λ=1

θλ fλ = 0 (cf. (4.109)).

Suppose that φ is ∆′′-harmonic. Then the above (i) reads:
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θ̄λfν =
n∑
µ=1

cµνλ fµ + θ̄νfλ, 1 ≤ ν < λ ≤ n.

Summing over λ = 1, . . . , n and using formula (4.107) for ∂̄, we get:

∂̄fν =
n∑
λ=1

(θ̄λfν)φλ =
n∑

λ, µ=1

cµνλ fµφλ +
n∑
λ=1

(θ̄νfλ)φλ, ν = 1, . . . , n,

with the understanding that cµνλ = 0 if ν ≥ λ. Now ∆′′fν = ∂̄⋆∂̄fν since fν is a function. Taking ∂̄⋆

on either side above and using formula (4.109) for ∂̄⋆, we get:

∆′′fν = −
n∑

λ, µ=1

θλ (cµνλ fµ)−
n∑
λ=1

θλ (θ̄νfλ)

= −
n∑

λ, µ=1

cµνλ θλfµ, for all ν = 1, . . . , n, (4.116)

because θλ (cµνλfµ) = cµνλ θλfµ due to cµνλ being constant, while
n∑
λ=1

θλfλ = 0 due to φ being

∆′′-harmonic (cf. (ii) or (4.109)).
Taking now ν = n in (4.116), we get ∆′′fn = 0 since cµnλ = 0 for all µ, λ by Fact 4.5.36 and the

obvious inequality µ ≤ ν = n. Thus the compactness of X and the ellipticity of ∆′′ yield:

fn is constant on X if ∆′′φ = 0. (4.117)

Taking now ν = n− 1 in (4.116) and using the fact that θλfn = 0 for all λ (since fn is constant
by (4.117)), we get

∆′′fn−1 = −
n∑
λ=1

( n−1∑
µ=1

cµn−1λ θλfµ

)
= 0 on X,

since cµn−1λ = 0 for all µ = 1, . . . , n− 1 and λ = 1, . . . , n by Fact 4.5.36 and the obvious inequality
µ ≤ ν = n− 1. Hence we get:

fn−1 is constant on X if ∆′′φ = 0. (4.118)

We can now continue by decreasing induction on ν. Taking ν = n − 2 in (4.116) and using the
fact that θλfn = θλfn−1 = 0 for all λ (since fn is constant by (4.117) and fn−1 is constant by (4.118)),
we get:

∆′′fn−2 = −
n∑
λ=1

( n−2∑
µ=1

cµn−2λ θλfµ

)
= 0 on X,

since cµn−2λ = 0 for all µ = 1, . . . , n− 2 and λ = 1, . . . , n by Fact 4.5.36 and the obvious inequality
µ ≤ ν = n− 2. Hence we get:

fn−2 is constant on X if ∆′′φ = 0. (4.119)

Running a decreasing induction on ν, we get:

fν := Cν is constant on X for all ν = 1, . . . , n if ∆′′φ = 0. (4.120)
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We conclude that whenever ∆′′φ = 0 we have:

φ =
n∑
ν=1

Cν φν with Cν constant for all ν = 1, . . . , n.

On the other hand, since ∆′′φ = 0, we must have ∂̄φ = 0 which amounts to
n∑
ν=1

Cν ∂̄φν = 0.

However, we know that ∂̄φν = 0 for all ν ∈ {1, . . . , r} (cf. (4.111)), hence
n∑

ν=r+1

Cν ∂̄φν = 0. Now

the forms
∂̄φν = dφν =

∑
λ,µ

cνλµ φλ ∧ φµ, ν = 1, . . . , n,

are linearly independent because φ1, . . . , φn are linearly independent at every point of X. Hence
Cν = 0 for all ν = r + 1, . . . , n. We get:

φ =
r∑

ν=1

Cν φν with Cν constant for all ν = 1, . . . , r.

Since φ has been chosen arbitrary in H0, 1
∆′′ (X, C), we have proved that the linearly independent

forms φ1, . . . , φr ∈ H
0, 1
∆′′ (X, C) generate H0, 1

∆′′ (X, C). The proof of Kodaira’s theorem 4.5.37 is
complete. □

When applying Observation 4.5.35 and Kodaira’s Theorem 4.5.37 to the Iwasawa manifold (a
compact complex parallelisable nilmanifold of dimension n = 3 having r = 2), we get the following
classical fact.

Observation 4.5.38. For the Iwasawa manifold, we have:

h1, 0 = 3 and h0, 1 = 2.

Since, on the other hand, the first Betti number is b1 = 4 (see e.g. (1.56) in §.1.3.3), we see that
b1 < h1, 0 + h0, 1. Thus, we infer again the non-degeneration at E1 of the Frölicher spectral sequence
of the Iwasawa manifold (cf. Proposition 1.3.22).

(II) The Kuranishi family of the Iwasawa manifold (after Nakamura [Nak75])

Let X be the Iwasawa manifold. In particular, X is a compact complex parallelisable nilmanifold of
complex dimension 3. Let φ1 = dz1, φ2 = dz2, φ3 = dz3 − z1dz2 be the holomrophic 1-forms on X
defined in (1.54); they are linearly independent at every point of X. Since φ1 and φ2 are d-closed
while φ3 is not d-closed, r = 2 for the Iwasawa manifold. By Kodaira’s theorem 4.5.37, the C-vector
space H0, 1(X, C) has complex dimension 2 and is spanned by the Dolbeault cohomology classes
{φ1} and {φ2}. Let θ1, θ2, θ3 ∈ H0(X, Ω1

X) be the holomorphic vector fields dual to φ1, φ2, φ3. They
are given by

θ1 =
∂

∂z1
, θ2 =

∂

∂z2
+ z1

∂

∂z3
, θ3 =

∂

∂z3
(4.121)

and satisfy the relations

[θ1, θ2] = −[θ2, θ1] = θ3, [θ1, θ3] = [θ2, θ3] = 0, (4.122)



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS299

i.e. [θi, θj] = 0 whenever {i, j} ≠ {1, 2}. In particular, we get:

[θiφλ, θkφν ] = [θi, θk]φλ ∧ φν , i, k, λ, ν = 1, 2, 3, (4.123)

Since the holomorphic tangent bundle T 1, 0X is trivial and spanned by θ1, θ2, θ3, the cohomology
group H0, 1(X, T 1, 0X) of T 1, 0X-valued (0, 1)-forms on X is a C-vector space of dimension 6 spanned
by the classes of θi φλ :

H0, 1(X, T 1, 0X) =
⊕

1≤i≤3, 1≤λ≤2

C{θi φλ}, dimCH
0, 1(X, T 1, 0X) = 6. (4.124)

Consequently the Kuranishi family of X can be described by 6 parameters t = (tiλ)1≤i≤3, 1≤λ≤2.
By (4.112), the T 1, 0X-valued (0, 1)-forms θi φλ are ∆′′-harmonic when 1 ≤ λ ≤ 2. In order

to construct the vector (0, 1)-forms ψ(t) ∈ C∞(X, Λ0, 1T ⋆X ⊗ T 1, 0X) that describe the Kuranishi
family of X = C3/Γ, the general theory presented in §.2.3.1 prescribes to start off by setting

ψ1(t) :=
3∑
i=1

2∑
λ=1

tiλθiφλ, t = (tiλ)1≤i≤3, 1≤λ≤2, (4.125)

for which we see that

1

2
[ψ1(t), ψ1(t)] =

1

2

∑
i,j=1,2,3

∑
λ,µ=1,2

tiλtjµ[θi, θj]φλ ∧ φµ.

By (4.122), this translates to

1

2
[ψ1(t), ψ1(t)] =

1

2
(t11t22θ3 φ1 ∧ φ2 + t12t21θ3 φ2 ∧ φ1

− t21t12θ3 φ1 ∧ φ2 − t22t11θ3 φ2 ∧ φ1).

Since φ1 ∧ φ2 = −φ2 ∧ φ1, we get

1

2
[ψ1(t), ψ1(t)] = (t11t22 − t12t21) θ3 φ1 ∧ φ2. (4.126)

On the other hand, for the choice (4.125) we see that

∂̄ψ1(t) = dψ1(t) =
3∑
i=1

2∑
λ=1

tiλ θi dφλ = 0 (4.127)

since dφ1 = dφ2 = 0. Now setting

ψ2(t) := −(t11t22 − t12t21) θ3φ3 (4.128)

and using (1.55) and (4.126), we find:

∂̄ψ2(t) = dψ2(t) = (t11t22 − t12t21) θ3 (−dφ3)

= (t11t22 − t12t21) θ3 φ1 ∧ φ2 =
1

2
[ψ1(t), ψ1(t)]. (4.129)
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In particular, [ψ1(t), ψ1(t)] is seen to be ∂̄-exact here (although it need not be so in the case of an
arbitrary manifold). This readily yields the desired ψ(t) by setting:

ψ(t) := ψ1(t) + ψ2(t) =
3∑
i=1

2∑
λ=1

tiλ θi φλ − (t11t22 − t12t21) θ3 φ3, (4.130)

for which we find
1

2
[ψ(t), ψ(t)] =

2∑
j,,k=1

1

2
[ψj(t), ψk(t)] =

1

2
[ψ1(t), ψ1(t)]. (4.131)

Indeed, [ψj(t), ψk(t)] = 0 for all (i, j) ̸= (1, 1) since these terms involve only brackets of the shape
[θ3, θi] = 0 and [θi, θ3] = 0 which vanish by (4.122).

On the other hand, combining (4.127) and (4.129), we get:

∂̄ψ(t) = ∂̄ψ1(t) + ∂̄ψ2(t) = ∂̄ψ2(t) =
1

2
[ψ1(t), ψ1(t)]. (4.132)

Then (4.131) and (4.132) yield:

∂̄ψ(t) =
1

2
[ψ(t), ψ(t)], (4.133)

showing that ψ(t) defined in (4.130) satisfies the integrability condition (2.16) of §.2.2.2.
Note that the above argument shows that such a ψ(t) can be constructed from any ψ1(t) as in

(4.125), namely for any coefficients t = (tiλ)1≤i≤3, 1≤λ≤2 ∈ C6 with |t| small enough.

By the general theory presented in §.2.3.1, we obtain the following description of the Kuranishi
family of the Iwasawa manifold.

Theorem 4.5.39. The Kuranishi family of the Iwasawa manifold is unobstructed.
Specifically, the T 1, 0X-valued (0, 1)-forms ψ(t) of (4.130) define a locally complete complex an-

alytic family (the Kuranishi family) of deformations Xt of the Iwasawa manifold depending on 6
effective parameters t = (tiλ)1≤i≤3, 1≤λ≤2 such that the complex structure of each fibre Xt is defined
by ∂̄t := ∂̄ − ψ(t) and X0 = X = C3/Γ is the Iwasawa manifold.

It is noteworthy that in the special case of the Iwasawa manifold, the power series (2.21) of
§.2.3.1 can be built with only two terms (ψ1(t) and ψ2(t)) and the above simple calculations show
ψ(t) = ψ1(t)+ψ2(t) to satisfy the integrability condition (2.16) for all t = (tiλ)1≤i≤3, 1≤λ≤2 ∈ Bε ⊂ C6

if ε > 0 is small, where Bε is the ball of radius ε centred at 0 ∈ C6.

Nakamura goes on to calculate holomorphic coordinates ζ1 = ζ1(t), ζ2 = ζ2(t), ζ3 = ζ3(t) on Xt

such that ζν(0) = zν for ν = 1, 2, 3 starting from arbitrary holomorphic coordinates z1, z2, z3 given
beforehand on the Iwasawa manifold X0 = X = C3/Γ. Here is the way he proceeds.

We are looking for C∞ functions ζν(t), ν = 1, 2, 3, on X satisfying the holomorphicity condition:

∂̄tζν(t) = 0 ⇐⇒ ∂̄ζν(t)− ψ(t)ζν(t) = 0, ν = 1, 2, 3. (4.134)

Given the definition (4.130) of ψ(t) and the formulae (4.121) for θ1, θ2, θ3, condition (4.134) reads
for ν = 1, 2, 3:

∂̄ζν −
2∑

λ=1

t1λ
∂ζν
∂z1

dz̄λ −
2∑

λ=1

t2λ

(
∂ζν
∂z2

+ z1
∂ζν
∂z3

)
dz̄λ

−
2∑

λ=1

t3λ
∂ζν
∂z3

dz̄λ + (t11t22 − t12t21)
∂ζν
∂z3

(dz̄3 − z̄1dz̄2) = 0. (4.135)
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For ν = 1, we arrange to have ∂ζ1
∂z1

= 1 (in order to get ζ1(t) = z1+(terms depending only on z̄λ))

and ∂ζ1
∂z2

= ∂ζ1
∂z3

= 0. With these choices, condition (4.135) for ν = 1 becomes:

∂̄ζ1 −
2∑

λ=1

t1λ∂̄z̄λ = 0 ⇐⇒ ∂̄ζ1(t) = ∂̄

( 2∑
λ=1

t1λz̄λ

)
.

Thus we can take:

ζ1(t) = z1 +
2∑

λ=1

t1λz̄λ. (4.136)

For ν = 2, we similarly require ∂ζ2
∂z2

= 1 and ∂ζ2
∂z1

= ∂ζ2
∂z3

= 0 and condition (4.135) for ν = 2
similarly yields:

ζ2(t) = z2 +
2∑

λ=1

t2λz̄λ. (4.137)

For ν = 3, we require ∂ζ3
∂z3

= 1, ∂ζ3
∂z2

= 0 and ∂ζ3
∂z1

=
2∑

λ=1

t2λz̄λ. With these choices, (4.135) for ν = 3

reads:

∂̄ζ3 −
( 2∑

λ=1

t1λdz̄λ

)( 2∑
λ=1

t2λz̄λ

)
− z1

2∑
λ=1

t2λdz̄λ

−
2∑

λ=1

t3λdz̄λ + (t11t22 − t12t21)(dz̄3 − z̄1dz̄2) = 0.

We thus get:

ζ3(t) = z3 +
2∑

λ=1

(t3λ + t2λz1)z̄λ + A(t, z̄)−D(t)z̄3, (4.138)

where we have denoted A(t, z̄) := 1
2
(t11t21z̄

2
1 + 2t11t22z̄1z̄2 + t12t22z̄

2
2) and D(t) := (t11t22 − t12t21).

We clearly have

dζ1(t) ∧ dζ2(t) ∧ dζ3(t) = C(t) dz1 ∧ dz2 ∧ dz3
for a constant C(t) depending in a C∞ way on t such that C(0) = 1. Hence ζ1(t), ζ2(t), ζ3(t) define
holomorphic coordinates on Xt for all t = (tiλ)1≤i≤3, 1≤λ≤2 such that

∑
i=1,2,3

∑
λ=1,2

|tiλ| < ε if ε > 0 is

small enough.

The conclusions of these computations are summed up in the following further description of the
Kuranishi family of the Iwasawa manifold I(3) constructed in Theorem 4.5.39.

Theorem and Definition 4.5.40. ([Nak75, p. 96]) The 6-parameter space (Xt)t=(tiλ)1≤i≤3, 1≤λ≤2

consisting of the small deformations of the Iwasawa manifold I(3) is divided in the following three
classes that will be called Nakamura classes:

(i) t11 = t12 = t21 = t22 = 0. All the manifolds Xt in this class are complex parallelisable.

(ii) (t11, t12, t21, t22) ̸= (0, 0, 0, 0) and D(t) = 0. No manifold Xt in this class is complex
parallelisable.
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(iii) D(t) ̸= 0. No manifold Xt in this class is complex parallelisable.

The Iwasawa manifold X0 = I(3) belongs to the Nakamura class (i).

Finally, we reproduce Nakamura’s table ([Nak75, p. 96]) summing up the Betti and Hodge
numbers of the Iwasawa manifold X0 = I(3) and of its small deformations Xt according to their
respective Nakamura class. They are easily obtained from the computations performed above.

h1, 0 h0, 1 b1 h2, 0 h1, 1 h0, 2 b2 h3, 0 h2, 1 h1, 2 h0, 3 b3
(i) 3 2 4 3 6 2 8 1 6 6 1 10
(ii) 2 2 4 2 5 2 8 1 5 5 1 10
(iii) 2 2 4 1 5 2 8 1 4 4 1 10

By Poincaré duality we have: b5 = b1, b4 = b2, while by Serre duality we have: hp, q = h3−p, 3−q

for all p, q ∈ {0, . . . , 3}. Using Corollary 1.2.6 of §.1.2.1, an immediate consequence of the above
table is the following

Corollary 4.5.41. Let Xt be a small deformation of the Iwasawa manifold X0 = I(3).

(i) If Xt lies in one of the Nakamura classes (i) and (ii), the Frölicher spectral sequence of Xt

does not degenerate at E1.

(ii) If Xt lies in the Nakamura class (iii), the Frölicher spectral sequence of Xt degenerates at
E1.

Proof. If Xt is in class (i), b1 = 4 < 5 = h1, 0 + h0, 1. Hence, E1(Xt) ̸= E∞(Xt).
If Xt is in class (ii), b2 = 8 < 9 = h2, 0 + h1, 1 + h0, 2. Hence, E1(Xt) ̸= E∞(Xt).
If Xt is in class (iii), b1 = 4 = h1, 0 + h0, 1, b2 = 8 = h2, 0 + h1, 1 + h0, 2, b3 = 10 = h3, 0 + h2, 1 +

h1, 2 + h0, 3. Hence, E1(Xt) = E∞(Xt). □

We will see later that the Frölicher spectral sequence of any small deformation Xt of the Iwasawa
manifold X0 = I(3) degenerates at E2 at the latest.

(III) Non-deformation openness of the balanced property

We now point out a fundamental difference between balanced and sG manifolds that we shall later
exploit to get examples of non-balanced sG manifolds. Unlike sG manifolds, balanced manifolds are
not stable under small deformations. This result was first observed by Alessandrini and Bassanelli
[AB90] and should be compared to Theorem 4.2.4.

Theorem 4.5.42. ([AB90]) The balanced property of compact complex manifolds is not open
under holomorphic deformations.

Proof. In the 6-parameter Kuranishi family (Xt)t∈B, t = (tiλ)1≤i≤3, 1≤λ≤2, of the Iwasawa manifold
X0 = X = C3/Γ, Alessandrini and Bassanelli [AB90] single out the direction corresponding to
parameters t such that

t12 ̸= 0, tij = 0 for all (i, j) ̸= (1, 2). (4.139)

With this choice of t, they have
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A(t, z̄) = 0 and D(t) = 0.

Thus, denoting t := t12, the holomorphic coordinates of Xt computed in (4.136), (4.137) and (4.138)
reduce to

ζ1(t) = z1 + tz̄2, ζ2(t) = z2, ζ3(t) = z3. (4.140)

Implicitly z1 = ζ1(t)− tζ2(t), which yields:

φ3(t) : = dz3 − z1dz2 = dζ3(t) + (tζ2(t)− ζ1(t)) dζ2(t),
φ2(t) : = dz2 = dζ2(t), φ̃1(t) := dz1 = dζ1(t)− tdζ2(t). (4.141)

Set
φ1(t) := dζ1(t). (4.142)

The above 1-forms φ1(t), φ2(t), φ3(t) are all of Jt-type (1, 0) since ζ1(t), ζ2(t), ζ3(t) are holomorphic
coordinates for the complex structure Jt of Xt.

The following result proves Theorem 4.5.42 by means of a counter-example which has an interest
of its own.

Proposition 4.5.43. (Alessandrini-Bassanelli [AB90, p. 1062]) Let (Xt)t be the Kuranishi family
of the Iwasawa manifold X = X0, t = (tiλ)1≤i≤3, 1≤λ≤2.

Then, for parameters such that tiλ = 0 for all (i, λ) ̸= (1, 2), Xt is not balanced for any
t := t12 ̸= 0 satisfying |t12| < ε if ε > 0 is small enough.

Proof. For the forms defined in (4.141) and (4.142), an immediate calculation shows

dφ3(t) = (t dζ̄2(t)− dζ1(t)) ∧ dζ2(t) = −t φ2(t) ∧ φ2(t)− φ1(t) ∧ φ2(t). (4.143)

Thus the 2-form dφ3(t) has two components: −t φ2(t)∧φ2(t) is of Jt-type (1, 1), while −φ1(t)∧φ2(t)
is of Jt-type (2, 0).

Recall that dimCXt = 3 for all t. Suppose that Xt were balanced for some t = t12 ̸= 0 satisfying
|t12| < ε with ε > 0 small. Then, there would exist a balanced metric ωt > 0 on Xt. Thus, Ωt := ω2

t

would be a C∞ (2, 2)-form on Xt satisfying:

Ωt > 0 and dΩt = 0.

In this case we would have:

0 =

∫
Xt

dΩt ∧ it̄φ3(t) = −
∫
Xt

Ωt ∧ it̄ dφ3(t) = |t|2
∫
Xt

Ωt ∧ iφ2(t) ∧ φ2(t). (4.144)

Indeed, the first identity above follows from dΩt = 0, the second identity follows from Stokes’s
theorem, while the third identity follows from formula (4.143) for dφ3(t) and the fact that the
(2, 0)-component −φ1(t) ∧ φ2(t) is annihilated when wedged with the (2, 2)-form Ωt.

Now Ωt > 0 and iφ2(t) ∧ φ2(t) ≥ 0, hence Ωt ∧ iφ2(t) ∧ φ2(t) ≥ 0 at every point of Xt. It
follows that the right-hand term in (4.144) is non-negative. However, since it must vanish by the
first identity in (4.144), the (3, 3)-form Ωt ∧ iφ2(t) ∧ φ2(t) must vanish identically on Xt. This is
equivalent to the vanishing of the trace of the semi-positive (1, 1)-form iφ2(t)∧φ2(t) w.r.t. the root
of the positive definite Ωt. Hence, the (1, 1)-form iφ2(t) ∧ φ2(t) too must vanish identically on Xt.
This can only happen if φ2(t) vanishes identically on Xt, which is impossible since φ2(t) = dζ2(t) and
ζ2(t) is a holomorphic coordinate on Xt if ε is small enough. This provides the desired contradiction.
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Therefore Xt cannot be balanced for any t = t12 ̸= 0 if tiλ = 0 for all (i, λ) ̸= (1, 2) and ε > 0 is
small. The proofs of Proposition 4.5.43 and of Theorem 4.5.42 are complete. □

We now make the following

Observation 4.5.44. (implicit in [Nak75]) In the Kuranishi family of the Iwasawa manifold, the
Frölicher spectral sequence does not degenerate at E1 on any fibre Xt corresponding to parameters
such that tiλ = 0 for all (i, λ) ̸= (1, 2) and t := t12 satisfies |t12| < ε with ε > 0 small enough.

Proof. These fibres lie in the Nakamura class (ii), so it suffices to apply Corollary 4.5.41. □

(IV) Examples of non-balanced sG manifolds

We now show that, for compact complex manifolds X, the implication:

X is balanced =⇒ X is strongly Gauduchon

is strict. The counter-examples to the reverse implication are obtained by putting together Theorems
4.2.4 and 4.5.42 and Observation 4.5.44.

Theorem 4.5.45. Let (Xt)t be the Kuranishi family of the Iwasawa manifold X = X0, where
t = (tiλ)1≤i≤3, 1≤λ≤2.

Then, for parameters t such that tiλ = 0 for all (i, λ) ̸= (1, 2), Xt is a strongly Gauduchon
manifold that is not balanced and whose Frölicher spectral sequence does not degenerate
at E1 for any t = t12 ̸= 0 satisfying |t12| < ε if ε > 0 is small enough.

Proof. Since the Iwasawa manifold is balanced (cf. Corollary 4.5.33), it is also an sG manifold. Since
the sG property is open under holomorphic deformations (cf. Theorem 4.2.4), all sufficiently nearby
fibres Xt in the Kuranishi family of the Iwasawa manifold X0 are again sG manifolds.

However, by Proposition 4.5.43, the fibres Xt corresponding to parameters t for which tiλ = 0 for
all (i, λ) ̸= (1, 2) are not balanced if t12 ̸= 0 and t is sufficiently close to 0. By Observation 4.5.44,
the Frölicher spectral sequence does not degenerate at E1 on any of these fibres. □

The analogue in bidegree (1, 1) of the existence of non-balanced sG manifolds proved in Theorem
4.5.45 is still an open problem. See the Streets-Tian Question 4.6.9.

(V) Deformation openness of the combined ∂∂̄ and balanced properties

We saw in Theorem 2.6.4 that the ∂∂̄-property of compact complex manifolds is open under holo-
morphic deformations of complex structures. This was Wu’s first main result in [Wu06]. By contrast,
the balanced property is not open under holomorphic deformations, as seen in the Alessandrini-
Bassanelli Theorem 4.5.42 from [AB90].

We will now see that the simultaneous occurrence of these two properties is open. This was
Wu’s second main result in [Wu06].

Theorem 4.5.46. ([Wu06]) Let (Xt)t∈B be a holomorphic family of compact complex manifolds over
an open ball B containing the origin in some CN .

If the fibre X0 is a balanced ∂∂̄-manifold, the fibre Xt is again a balanced ∂∂̄-manifold for
every t ∈ B sufficiently close to 0.

Moreover, if X0 is a ∂∂̄-manifold, any balanced metric ω0 on X0 deforms to a family of
balanced metrics ωt on Xt varying in a C∞ way with t for t in a small enough neighbourhood of 0.
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Proof. We reproduce Wu’s arguments in a slightly different notation. Let (γt)t∈B be an arbitrary C∞

family of Hermitian metrics on the fibres (Xt)t∈B. If ∆BC(t) denotes the Bott-Chern Laplacian (cf.
[KS60, §.6], see Definition 1.1.8) induced by the metric γt, we recall the following 3-space orthogonal
decomposition of Corollary 1.1.10 in every bidegree (p, q):

C∞
p, q(Xt, C) = ker∆BC(t)⊕ Im (∂t∂̄t)⊕ (Im ∂⋆t + Im ∂̄⋆t ), t ∈ B,

where

ker ∂t ∩ ker ∂̄t = ker∆BC(t)⊕ Im (∂t∂̄t) and Im∆BC(t) = Im (∂t∂̄t)⊕ (Im ∂⋆t + Im ∂̄⋆t ), t ∈ B.

All the adjoints are w.r.t. γt.
Let Ft stand for the orthogonal projection onto ker∆BC(t) w.r.t. the L2

γt-inner product and let

∆−1
BC(t) stand for the Green operator of the elliptic operator ∆BC(t). By the above decompositions,

every form αt ∈ C∞
p, q(Xt, C) splits uniquely as αt = Ftαt + ∆BC(t)∆

−1
BC(t)αt. Moreover, if αt ∈

ker ∂t ∩ ker ∂̄t, this splitting reduces to

αt = Ftαt + ∂t∂̄t(∂t∂̄t)
⋆∆−1

BC(t)αt

since αt − Ftαt ∈ Im (∂t∂̄t) and the minimal L2
γt-norm solution of the equation

∂t∂̄tut = αt − Ftαt

is ut = (∂t∂̄t)
⋆∆−1

BC(t) (αt−Ftαt) = (∂t∂̄t)
⋆∆−1

BC(t)αt. (See Wu’s original argument or Theorem 4.5.47
below.)

Let ω0 be a balanced metric on X0 and n the complex dimension of Xt. Then ωn−1
0 ∈ ker ∂0 ∩

ker ∂̄0, so
ωn−1
0 = F0 ω

n−1
0 + ∂0∂̄0(∂0∂̄0)

⋆∆−1
BC(0)ω

n−1
0 .

Extend ω0 in an arbitrary way to Hermitian metrics ω̃t varying in a C∞ way with t on the nearby
fibres Xt such that ω̃0 = ω0. Put

Ωt := Re (Ft ω̃
n−1
t + ∂t∂̄t(∂t∂̄t)

⋆∆−1
BC(t) ω̃

n−1
t ), t ∈ B.

By construction, every Ωt is a C∞, real, Jt-type (n − 1, n − 1)-form on Xt such that dΩt = 0 for
every t. Moreover, Ω0 = ωn−1

0 .
Now, since X0 is a ∂∂̄-manifold, Theorem 2.6.4 ensures that the fibres Xt are again ∂∂̄-manifolds

for every t close to 0 and the dimensions hp, qBC(t) of the Bott-Chern cohomology spaces Hp, q
BC(t) are

independent of t close to 0. Thanks to the Hodge isomorphism Hp, q
BC(t) ≃ ker∆BC(t) (see Corollary

1.1.10) and to the Kodaira-Spencer theory for smooth families of elliptic operators (see Theorems
C and D in §.2.5.1), this implies that the operators Ft and ∆BC(t)

−1 vary in a C∞ way with t.
Therefore, the real differential forms Ωt vary in a C∞ way with t. Since Ω0 = ωn−1

0 > 0, we get by
continuity that Ωt > 0 for every t sufficiently close to 0.

Taking the (unique) (n − 1)st root ωt > 0 of Ωt > 0 for t close to 0 (see Michelsohn’s Lemma
4.0.1), we get a C∞ family of balanced metrics ωt on the fibres Xt whose member corresponding to
t = 0 coincides with the original ω0. □

It remains to prove the following general fact, part of which was used in the above proof.
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Theorem 4.5.47. ([Pop15a, Theorem 4.1]) Fix a compact Hermitian manifold (X, ω). For any
C∞ (p, q)-form v ∈ Im (∂∂̄), the (unique) minimal L2-norm solution of the equation

∂∂̄u = v (4.145)

is given by the Neumann-type formula:

u = (∂∂̄)⋆∆−1
BCv, (4.146)

while its L2-norm satisfies the estimate:

||u||2 ≤ 1

λ
||v||2, (4.147)

where ∆−1
BC denotes the Green operator of ∆BC and λ > 0 is the smallest positive eigenvalue of ∆BC.

Furthermore, we have

∂∆−1
BCv = 0 and ∂̄∆−1

BCv = 0. (4.148)

Proof. Let w := ∆−1
BCv, i.e. w is the unique (p, q)-form characterised by the following two properties:

∆BCw = v and w ⊥ ker∆BC . (4.149)

By the definition (1.2) of ∆BC , the identity ∆BCw = v = ∂∂̄u is equivalent to

A1 + (A2 + A3) = 0, where:

A1 := ∂∂̄

(
(∂∂̄)⋆w − u

)
∈ Im ∂ ∩ Im ∂̄,

A2 := ∂⋆∂w + (∂⋆∂̄)(∂⋆∂̄)⋆w ∈ Im ∂⋆,

A3 := ∂̄⋆∂̄w + (∂∂̄)⋆(∂∂̄)w + (∂⋆∂̄)⋆(∂⋆∂̄) ∈ Im ∂̄⋆.

Since Im ∂ ⊥ Im ∂⋆ and Im ∂̄ ⊥ Im ∂̄⋆, we infer that A1 ⊥ A2 and A1 ⊥ A3, hence A1 ⊥ (A2 + A3).
It follows that the identity ∆BCw = v = ∂∂̄u is equivalent to A1 = 0 and A2 + A3 = 0. Note that
A1 = 0 amounts to

(∂∂̄)⋆w − u ∈ ker(∂∂̄). (4.150)

Meanwhile, the solutions of equation (4.145) are unique up to ker(∂∂̄), so if u is the minimal L2-norm
solution, then u ∈ ker(∂∂̄)⊥ = Im (∂∂̄)⋆. Thus

(∂∂̄)⋆w − u ∈ Im (∂∂̄)⋆. (4.151)

Now, ker(∂∂̄) and Im (∂∂̄)⋆ are mutually orthogonal, so thanks to (4.150) and (4.151), the identity
A1 = 0 is equivalent to (∂∂̄)⋆w−u = 0. This proves formula (4.146). On the other hand, the identity
A2 + A3 = 0 implies ⟨⟨A2 + A3, w⟩⟩ = 0 which translates to

||∂w||2 + ||∂̄⋆∂w||2 + ||∂̄w||2 + ||∂∂̄w||2 + ||∂⋆∂̄w||2 = 0.

This amounts to ∂w = 0 and ∂̄w = 0, proving (4.148).
Let us now estimate the L2 norm of u = (∂∂̄)⋆∆−1

BCv. We have:

||u||2 = ⟨⟨(∂∂̄)(∂∂̄)⋆∆−1
BCv, ∆

−1
BCv⟩⟩

(a)
= ⟨⟨∆BC∆

−1
BCv, ∆

−1
BCv⟩⟩

= ⟨⟨v, ∆−1
BCv⟩⟩

(b)

≤ 1

λ
||v||2,
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where identity (a) follows from (1.2) and from the identities:

∂⋆∂∆−1
BCv = 0, (∂⋆∂̄)(∂⋆∂̄)⋆∆−1

BCv = 0,

∂̄⋆∂̄∆−1
BCv = 0, (∂∂̄)⋆(∂∂̄)∆−1

BCv = 0, (∂⋆∂̄)⋆(∂⋆∂̄)∆−1
BCv = 0,

all of which are consequences of ∂∆−1
BCv = 0 and of ∂̄∆−1

BCv = 0 already proved as (4.148). Inequality
(b) follows from v ⊥ ker∆BC since v ∈ Im (∂∂̄) ⊂ Im∆BC (see (1.10)). Estimate (4.147) is proved.
□

4.5.4 Stability of balanced manifolds under modifications

In this subsection, we present the work of Alessandrini and Bassanelli in [AB91b], [AB93] and [AB95]
proving that the balanced property of compact complex manifolds is stable under modifications (i.e.
proper, holomorphic, bimeromorphic maps). We saw in §.4.2.3 that the analogous property holds
for strongly Gauduchon manifolds.

Theorem 4.5.48. ([AB95]) Let µ : X̃ → X be a modification of compact complex manifolds. Then,

X̃ is a balanced manifold if and only if X is a balanced manifold.

An immediate consequence is the following

Corollary 4.5.49. Every class C manifold is balanced.

Proof. If X is a class C manifold, there exists a modification µ : X̃ → X with X̃ compact Kähler.
Then X̃ is also balanced, hence X is balanced by Theorem 4.5.48. □

Proof of Theorem 4.5.48

Let µ : X̃ → X be a modification of compact complex manifolds and let n = dimCX̃ = dimCX. Let
E be the exceptional divisor of µ on X̃ and let Σ ⊂ X be the analytic subset of codimension ≥ 2
such that the restriction µ|X̃\E : X̃ \ E −→ X \ Σ is a biholomorphism.

Due to Proposition 4.5.24, we will have to deal with semi-positive Aeppli-exact bidegree (1, 1)-
currents T . Alessandrini and Bassanelli obtained the following key result on ∂∂̄-closed semi-positive
bidegree (1, 1)-currents.

Theorem 4.5.50. (Theorem 5 in [AB91b]) Let M be an n-dimensional complex manifold and let
E ⊂M be a compact analytic subset of pure complex dimension n− 1 whose irreducible components
are denoted by (Ej)j=1,...,s. If T ≥ 0 is a semi-positive bidegree (1, 1)-current on M such that

∂∂̄T = 0 and SuppT ⊂ E,

there exist constants λj ≥ 0 such that T =
s∑
j=1

λj [Ej]. In particular, T is d-closed.

Theorem 4.5.48 comprises two parts.

(I) One implication of the equivalence in Theorem 4.5.48 is dealt with in the following

Theorem 4.5.51. ([AB91b]) If µ : X̃ → X is a modification of compact complex manifolds and X

is balanced, then X̃ is again balanced.
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Proof. The approach is very similar to the one in the proof of Theorem 4.2.10. The only difference
is that we will have to deal with a ∂∂̄-closed current rather than a d-closed current at some point.

We proceed by contradiction. Suppose that X̃ is not balanced. Then, by Proposition 4.5.24,
there is a non-zero current T = (dS)1, 1 ̸= 0 of bidegree (1, 1) on X̃ such that T ≥ 0 and T is the

(1, 1)-component of some d-exact current dS of degree 2 on X̃, with S a real current of degree 1.
For the direct image current µ⋆T , a well-defined current of bidegree (1, 1) on X, we have:

µ⋆T ≥ 0 and µ⋆T = (dµ⋆S)
1, 1 on X.

Now, we have the following dichotomy.
If µ⋆T is non-zero, we get a contradiction with the balanced assumption on X thanks to Propo-

sition 4.5.24.
If µ⋆T = 0 on X, we show that T = 0 on X̃, contradicting the choice of T . Since µ⋆T = 0, the

support of T must be contained in the support of E. By Theorem 4.5.50, T is of the shape:

T =
s∑
j=1

λj [Ej],

with constant coefficients λj ≥ 0, where the (Ej)1≤j≤s are the irreducible components of E.
In particular, T is d-closed. We will now see that T is even d-exact.

Lemma 4.5.52. ([AB91b, Lemma 8]) Let µ : X̃ → X be a modification between n-dimensional

compact complex manifolds. Let T be a real d-closed current of bidegree (1, 1) on X̃ such that

T = (dS)1, 1 for some real current S of degree 1 on X̃ and µ⋆T = 0 on X.

Then, there exists a current Q such that T = dQ on X̃.

Proof of Lemma 4.5.52. We have S0, 1 = S1, 0, T = ∂S0, 1 + ∂̄S1, 0 and 0 = ∂T = ∂∂̄S1, 0 on X̃.
Hence ∂∂̄µ⋆S

1, 0 = 0 on X, so the (1, 0)-current µ⋆S
1, 0 represents an Aeppli cohomology class on X.

Since the Aeppli cohomology can be computed using either currents or smooth forms, we can find
a smooth representative φ1, 0 ∈ ker(∂∂̄) of the Aeppli cohomology class of µ⋆S

1, 0. In other words,
there exists a ∂∂̄-closed form φ1, 0 ∈ C∞

1, 0(X, C) such that:

µ⋆S
1, 0 = φ1, 0 + ∂θ on X,

for some distribution θ on X. (Note that the only ∂̄-exact (1, 0)-current is 0, so there is no Im ∂̄-term
on the r.h.s. of the above identity.) Let θ := a+ ib with real distributions a and b on X.

Since µ⋆T = 0, we get

0 = µ⋆T = ∂µ⋆S
0, 1 + ∂̄µ⋆S

1, 0 = ∂φ0, 1 + ∂̄φ1, 0 − 2i∂∂̄b on X,

where φ0, 1 := φ1, 0. In particular, 2i∂∂̄b = ∂φ0, 1+ ∂̄φ1, 0 is C∞, hence b is a C∞ real-valued function
on X. Since C∞ forms always have well-defined pull-backs under C∞ maps, so does the C∞ form
φ1, 0 + i∂b under the holomorphic map µ. Therefore, we get a well-defined (1, 0)-current on X̃ by
putting:

S
′1, 0 = S1, 0 − µ⋆(φ1, 0 + i∂b), on X̃.

Next, we put S
′0, 1 = S ′1, 0 and we get:

∂S
′0, 1 + ∂̄S

′1, 0 = ∂S0, 1 + ∂̄S1, 0 − µ⋆(∂φ0, 1 − i∂∂̄b)− µ⋆(∂̄φ1, 0 + i∂̄∂b)

= ∂S0, 1 + ∂̄S1, 0 − µ⋆(∂φ0, 1 + ∂̄φ1, 0 − 2i∂∂̄b)

= ∂S0, 1 + ∂̄S1, 0 − µ⋆(µ⋆T ) = ∂S0, 1 + ∂̄S1, 0 = T.
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We now put Q := S
′1, 0 + S

′0, 1 on X̃. We will have T = dQ once we have shown that ∂S
′1, 0 = 0

on X̃. Indeed, we will then also have ∂̄S
′0 1 = 0 by conjugation.

We have

∂S
′1, 0 = ∂S1, 0 − µ⋆(∂φ1, 0) = ∂S1, 0 − µ⋆µ⋆(∂S1, 0) on X̃.

Now, ∂̄(∂S
′1, 0) = ∂̄∂S1, 0 − µ⋆(∂̄∂φ1, 0) = 0 (recall that ∂̄∂S1, 0 = −∂T = 0), so ∂S

′1, 0 is a ∂̄-closed

(2, 0)-form on X̃. Since the Laplacian ∆′′ is hypoelliptic in bidegree (p, 0), ∂S
′1, 0 is therefore a

holomorphic 2-form on X̃. Moreover, the restriction of µ to the complement of the support of the
exceptional divisor E is a biholomorphism onto its image, so µ⋆µ⋆(∂S

1, 0) = ∂S1, 0 on X̃ \ SuppE.
We conclude that ∂S

′1, 0 is a holomorphic 2-form on X̃ that vanishes identically on X̃ \ SuppE.
Therefore, ∂S

′1, 0 = 0 on X̃. □

End of proof of Theorem 4.5.51. Since codimXµ(Ej) ≥ 2 for every j = 1, . . . , s and T is d-exact on

X̃ by Lemma 4.5.52, the situation is now identical to the one at the end of the proof of Theorem
4.2.10. Repeating those arguments, we conclude that T = 0 as a current on X̃, a contradiction.

The proof is complete. □

(II) The other implication of the equivalence in Theorem 4.5.48 is dealt with in the following

Theorem 4.5.53. ([AB95]) If µ : X̃ → X is a modification of compact complex manifolds and X̃
is balanced, then X is again balanced.

The main ingredient in the proof of Theorem 4.5.53 is the following

Theorem 4.5.54. ([AB95, Theorem 3]) Let µ : X̃ → X be a proper modification between complex
manifolds and let T ≥ 0 be a semi-positive (1, 1)-current on X such that ∂∂̄T = 0. Then, there

exists a unique semi-positive (1, 1)-current T̃ ≥ 0 on X̃ such that

µ⋆T̃ = T and T̃ ∈ µ⋆{T}A,

where {T}A ∈ H1, 1
A (X, R) is the Aeppli cohomology class represented by T on X.

In other words, T can be pulled back in a unique way to the pullback to X̃ of the Aeppli
cohomology class of T . Note that cohomology classes can always be unambiguously pulled back
under holomorphic maps by pulling back their smooth representatives. Smooth forms have unique
pullbacks as smooth forms of the same bidegree under holomorphic maps µ and the closedness and
exactness conditions are preserved since µ commutes with ∂, ∂̄ and d.

Proof of Theorem 4.5.53 assuming Theorem 4.5.54 has been proved.

We proceed by contradiction. Suppose that X is not balanced. Then, by Proposition 4.5.24 and
Lemma 4.5.23 there exists a non-zero semi-positive Aeppli-exact bidegree (1, 1)-current T ≥ 0 on X.
Then, by Theorem 4.5.54, there exists a unique semi-positive Aeppli-exact bidegree (1, 1)-current

T̃ ≥ 0 on X̃ such that µ⋆T̃ = T .
However, X̃ being balanced, we must have T̃ = 0 on X̃ by Proposition 4.5.24 and Lemma 4.5.23.

Then, 0 = µ⋆T̃ = T on X, contradicting the assumption T ̸= 0. □

Sketch of proof of Theorem 4.5.54.
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We will only sketch the existence part since it is the only one needed for the proof of Theorem
4.5.54. Recall that µ|X̃\E : X̃ \E −→ X \Σ is a biholomorphism, so we can define the semi-positive

bidegree (1, 1)-current

R :=

(
(µ|X̃\E)

−1

)
⋆

(T|X\Σ) ≥ 0

on X̃ \ E as the direct image under the inverse of the restriction of µ to X̃ \ E of the restriction of

T to X \ Σ. Any current T̃ as in the statement must be an extension of R to X̃.
Now, suppose that µ is a blow-up with a smooth centre and fix an arbitrray point x ∈ Σ. By

smoothing T through convolutions with regularising kernels ρε in a neighbourhood U ⊂ X of x, we
get C∞ semi-positive (1, 1)-forms Tε in U such that ∂∂̄Tε = 0 for all ε > 0 and Tε −→ T in the
weak topology of currents as ε ↓ 0. Moreover, since ∂∂̄T = 0, there exists a possibly smaller open
neighbourhood W ⊂ U of x such that T is Aeppli-exact in W . Therefore, the smooth forms Tε are
also Aeppli-exact in W . Since the Tε’s are C∞, they have well-defined pullbacks µ⋆Tε ≥ 0 (which

are again C∞ semi-positive (1, 1)-forms) to µ−1(U) ⊂ X̃ under µ.
After possibly shrinking W further about x, Alessandrini and Bassanelli showed in [AB93] that

the masses of the C∞ semi-positive (1, 1)-forms (µ⋆Tε)|µ−1(W ) are uniformly bounded. This implies

the existence of a weakly convergent subsequence µ⋆Tεν −→ T̃ ≥ 0 in µ−1(W ) as ν → +∞. The

authors of [AB93] go on to prove that the limiting current T̃ , a priori defined only in µ−1(W ),
is independent of the subsequence (µ⋆Tεν )ν . This yields a globally defined ∂∂̄-closed semi-positive

(1, 1)-current T̃ ≥ 0 on X̃ such that µ⋆T̃ = T even in the general case where µ is an arbitrary
modification.

It remains to prove that T̃ ∈ µ⋆{T}A. Recall that µ : X̃ → X is a proper modification. Hence, it
is locally dominated by a blow-up in the following sense. For every point x ∈ X, there exists an open
neighbourhood V of x, a complex manifold Z and holomorphic maps g : Z → µ−1(V ), q : Z → V
such that g is a blow-up and

q = µ ◦ g = q1 ◦ · · · ◦ qs
is the composition of finitely many blow-ups qj : Vj → Vj−1 with smooth centres, where V0 = V and
Vs = Z.

For a fixed x ∈ X, we may assume that V is contained in a coordinate chart and, as seen above,
that T|V is Aeppli-exact and a weak limit in V of a sequence of C∞ semi-positive Aeppli-exact
(1, 1)-forms Tε. We put

T j := lim
ε→0

(q⋆j ◦ · · · ◦ q⋆1)(Tε) in Vj, j ∈ {1, . . . , s}.

In particular, T s = lim
ε→0

q⋆Tε and T̃|µ−1(V ) = g⋆T
s.

Now, T 1 is a ∂∂̄-closed semi-positive (1, 1)-current on V1 and has the property that every y ∈
V = V0 has an open neighbourhood W such that T 1

|q−1
1 (W )

is a weak limit of Aeppli-exact currents.

Alessandrini and Bassanelli prove that, in this case, for every y ∈ V = V0, W can be chosen
such that T 1

|q−1
1 (W )

is Aeppli-exact. Moreover, (q1)⋆T
1 = T|V is Aeppli-exact because V has trivial

Aeppli cohomology. Another general result of Alessandrini-Bassanelli shows that T 1 is Aeppli-exact
globally on V1 because (q1)⋆T

1 = T|V is Aeppli-exact globally on V and every y ∈ V = V0 has an
open neighbourhood W such that T 1

|q−1
1 (W )

is Aeppli-exact.

Since T 1 = (q2)⋆T
2, we can continue inductively to conclude that T s is Aeppli-exact globally on

Vs = Z. This implies that T̃|µ−1(V ) = g⋆T
s is Aeppli-exact globally on µ−1(V ).



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS311

Finally, let α be a C∞ representative of the Aeppli class {T}A ∈ H1, 1
A (X, R). Then, α|V is Aeppli

exact (because V has trivial Aeppli cohomology), hence (µ⋆α)|µ−1(V ) is Aeppli exact. Applying the

last general result of Alessandrini-Bassanelli used above to the current T̃ − µ⋆α on X̃, we get

{T̃}A = {µ⋆α}A = µ⋆{T}A ∈ H1, 1
A (X̃, R)

because T̃ − µ⋆α has the properties:

(i) µ⋆(T̃ − µ⋆α) = T − α is Aeppli-exact on X;

(ii) every x ∈ X has an open neighbourhood V such that (T̃ − µ⋆α)|µ−1(V ) is Aeppli-exact;

hence T̃ − µ⋆α is Aeppli-exact on X̃. □

4.5.5 Balanced and ∂∂̄-manifolds

Corollary 4.5.49 was the last piece of information leading to the following

Conclusion 4.5.55. The relations among various properties of a compact complex manifold X are
summed up in the following diagram (skew arrows indicate implications):

(⋆)
X is Kähler X is balanced

=⇒ =⇒
=⇒ =⇒

X is projective X is class C X is sG

=⇒
=⇒ =⇒

=⇒

X isMoishezon X is ∂∂̄

=⇒

E1(X) = E∞(X)

The above diagram simplifies dramatically, with many implications becoming equivalences, when
dimCX = 2:

X projective ⇐⇒ X Moishezon =⇒ X Kähler ⇐⇒ X class C ⇐⇒ X balanced ⇐⇒ X satisfies the
∂∂̄-lemma ⇐⇒ X sG

and we always have E1(X) = E∞(X) for surfaces.

Whether there is any relation between compact ∂∂̄-manifolds and balanced manifolds is still an
open problem, but the following fact was conjectured in [Pop15c, §.6].

Conjecture 4.5.56. Every compact ∂∂̄-manifold is balanced.
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This is part of a wider problem that we now briefly explain (and refer the reader to [Pop15c, §.6]
for further details). Let X be a compact complex manifold with dimCX = n. It is standard that
the canonical linear map induced in cohomology by the identity:

In−1 : H
n−1, n−1
BC (X, C)→ Hn−1, n−1

A (X, C), [Ω]BC 7→ [Ω]A, (4.152)

is well defined on every X, but it is neither injective, nor surjective in general. Moreover, the
balanced cone BX of X, consisting of the Bott-Chern cohomology classes of bidegree (n− 1, n− 1)
representable by balanced metrics ωn−1, namely:

BX = {[ωn−1]BC / ω > 0, C∞ (1, 1)-form such that dωn−1 = 0 on X} ⊂ Hn−1, n−1
BC (X, R),

maps under In−1 to a subset of the Gauduchon cone GX of X.
The inclusion In−1(BX) ⊂ GX is strict in general. So is the inclusion In−1(BX) ⊂ GX involving

the closures of these two open convex cones. When X is a ∂∂̄-manifold, In−1 is an isomorphism of
the vector spaces Hn−1, n−1

BC (X, C) and Hn−1, n−1
A (X, C).

Since the Gauduchon cone GX is never empty, Conjecture 4.5.56 is a special case of the following

Conjecture 4.5.57. ([Pop15c, Conjecture 6.1]) If X is a compact ∂∂̄-manifold of dimension n,
then In−1(BX) = GX .

The reason for conjecturing this goes back to the quantitative part of Demailly’s Transcendental
Morse Inequalities Conjecture for differences of two nef classes:

Conjecture 4.5.58. ([BDPP13, Conjecture 10.1, (ii)]) Let X be a compact Kähler manifold with
dimCX = n and let {α}, {β} ∈ H1, 1

BC(X, R) be nef cohomology classes such that

{α}n − n {α}n−1. {β} > 0.

Then, the volume of the difference class {α− β} ∈ H1, 1
BC(X, R) satisfies the lower bound:

Vol ({α− β}) ≥ {α}n − n {α}n−1. {β}. (4.153)

This is stated for arbitrary (i.e. possibly non-Kähler) compact complex manifolds in [BDPP13],
but the volume is currently only known to be meaningful when X is of class C, a case reducible to
the Kähler case by modifications. Thus, we may assume without loss of generality that X is Kähler.

Recall that the volume is a way of gauging the “amount” of positivity of a class {γ} ∈ H1, 1
BC(X, R)

when X is Kähler (or merely of class C) and was introduced in [Bou02, Definition 1.3] as

Vol ({γ}) := sup
T∈{γ}, T≥0

∫
X

T nac

if {γ} is pseudo-effective (psef), i.e. if {γ} contains a positive (1, 1)-current T ≥ 0, where Tac
denotes the absolutely continuous part of T in the Lebesgue decomposition of its coefficients (which
are complex measures when T ≥ 0). If the class {γ} is not psef, then its volume is set to be zero. It
was proved in [Bou02, Theorem 1.2] that this volume (which is always a finite non-negative quantity
thanks to the Kähler, or more generally class C, assumption on X) coincides with the standard
volume of a holomorphic line bundle L if the class {γ} is integral (i.e. the first Chern class of some
L). Moreover, the class {γ} is big (i.e. contains a Kähler current) if and only if its volume is positive,
by [Bou02, Theorem 4.7].
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Theorem 4.1.29 proves the qualitative part of Conjecture 4.5.58. Its conclusion is equivalent to
the fact that Vol ({α − β}) > 0. The method of proof for Theorem 4.1.29 presented in §.4.1.5 also
produces various lower bounds for Vol ({α − β}), but they are weaker than the conjectured lower
bound (4.153). (See [Pop15c] for quantitative results.)

One piece of evidence supporting Conjecture 4.5.57 is that it holds on every class C manifold X
if Conjecture 4.5.58 is confirmed when X is Kähler. This is the gist of the observations made in
[Tom10] and in [CRS14]. Indeed, if X is of class C, we may assume without loss of generality that
X is actually compact Kähler. As proved in [BDPP13], a complete positive answer to Conjecture
4.5.58 would imply that the pseudo-effective cone EX ⊂ H1, 1(X,R) of classes of d-closed positive
(1, 1)-currents T is the dual of the coneMX ⊂ Hn−1, n−1(X,R) of movable classes (i.e. the closure

of the cone generated by classes of currents of the shape µ⋆(ω̃1 ∧ · · · ∧ ω̃n−1), where µ : X̃ → X

is any modification of compact Kähler manifolds and the ω̃j are any Kähler metrics on X̃ – see
[BDPP13, Definition 1.3]). Since on ∂∂̄-manifolds (hence, in particular, on compact Kähler ones)
the Bott-Chern, Dolbeault and Aeppli cohomologies are canonically equivalent, it is irrelevant in
which of these cohomologies the groups H1, 1(X,R) and Hn−1, n−1(X,R) are considered.

The closure GX ⊂ Hn−1, n−1(X,R) of the Gauduchon cone is dual to the pseudo-effective cone
EX ⊂ H1, 1(X,R) by Theorem 4.1.18, while the same kind of argument (i.e. duality and Hahn-
Banach) going back to Sullivan shows that the closure BX ⊂ Hn−1, n−1(X,R) of the balanced cone
is dual to the cone

SX = {[T ]A / T ≥ 0, T is a (1, 1)− current such that ∂∂̄T = 0 on X} ⊂ H1, 1
A (X, R).

Note that SX is closed if X admits a balanced metric ωn−1 (against which the masses of positive
∂∂̄-closed (1, 1)-currents T can be considered), hence so is it when X is Kähler. Thus, by duality,
the identity In−1(BX) = GX is equivalent to I1(EX) = SX , where I1 is the canonical linear map
induced in cohomology by the identity:

I1 : H
1, 1
BC(X, C)→ H1, 1

A (X, C), [γ]BC 7→ [γ]A.

In general, I1 is neither injective, nor surjective, but it is an isomorphism when X is a ∂∂̄-manifold.
With these facts understood, the identity I1(EX) = SX can be proved whenX is Kähler (provided

that Conjecture 4.5.58 can be solved in the affirmative) as explained in [CRS14, Proposition 2.5] by
an argument generalising to transcendental classes an earlier argument from [Tom10] that we now
recall for the reader’s convenience.

The inclusion I1(EX) ⊂ SX is obvious. To prove the reverse inclusion, let [T ]A ∈ SX , i.e. T ≥ 0
is a (1, 1)-current such that ∂∂̄T = 0. Since I1 is an isomorphism, there exists a unique class
[γ]BC ∈ H1, 1

BC(X, R) such that I1([γ]BC) = [T ]A. This means that [γ]A = [T ]A. We will show that
[γ]BC ∈ EX . If the [BDPP13] conjecture (predicated on Conjecture 4.5.58) predicting that EX is
dual toMX is confirmed, showing that [γ]BC ∈ EX amounts to showing that

[γ]BC . [µ⋆(ω̃1 ∧ · · · ∧ ω̃n−1)]A ≥ 0 (4.154)

for all modifications µ : X̃ → X and all Kähler metrics ω̃j on X̃.
On the other hand, using the key Alessandrini-Bassanelli Theorem 4.5.54, we get:
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[γ]BC . [µ⋆(ω̃1 ∧ · · · ∧ ω̃n−1)]A =

∫
X

γ ∧ µ⋆(ω̃1 ∧ · · · ∧ ω̃n−1) =

∫
X̃

(µ⋆γ) ∧ (ω̃1 ∧ · · · ∧ ω̃n−1)

= [µ⋆γ]A . [ω̃1 ∧ · · · ∧ ω̃n−1]BC =

∫
X̃

(µ⋆T ) ∧ (ω̃1 ∧ · · · ∧ ω̃n−1) ≥ 0,

which proves (4.154). Note that γ and µ⋆γ have no sign, so the key point has been the replacement

in the integral over X̃ of µ⋆γ by µ⋆T ≥ 0 which was made possible by ω̃1 ∧ · · · ∧ ω̃n−1 being d-closed
(so we could switch the roles of the Bott-Chern and the Aeppli cohomologies) and by the identity
[µ⋆γ]A = [µ⋆T ]A following from [γ]A = [T ]A (see above) and from [µ⋆T ]A = µ⋆([T ]A).

The techniques employed in this section do not seem to be using the full force of the Kähler
assumption on X and many of the arguments are valid in a more general context. This is part of
the justification for proposing Conjecture 4.5.57.

4.5.6 Degenerate balanced structures

It is well known that no Kähler metric ω on a compact complex manifold X can be d-exact. Indeed,
if n = dimCX, then on the one hand we have

∫
X
ωn > 0 (since ω > 0 implies ωn > 0 everywhere on

X), while if ω = dα for some 1-form α on X, then ωn = d(α∧ (dα)n−1), hence
∫
X
ωn = 0 by Stokes.

We will now see that, unlike Kähler metrics, balanced metrics ω may have the property that
ωn−1 is d-exact.

Definition 4.5.59. Let X be a compact complex manifold with dimCX = n. A degenerate bal-
anced metric on X is a C∞ positive definite (1, 1)-form ω on X such that ωn−1 is d-exact.

We say that X is a degenerate balanced manifold if it carries a degenerate balanced metric.

On the other hand, recall that the Gauduchon cone GX ⊂ Hn−1, n−1
A (X, R) of an n-dimensional

compact complex manifoldX is never empty (since Gauduchon metrics always exist onX). However,
it may be the whole ambient space Hn−1, n−1

A (X, R), as we will see.

Definition 4.5.60. Let X be a compact complex manifold with dimCX = n. We say that the
Gauduchon cone GX of X degenerates if GX = Hn−1, n−1

A (X, R).

Before pointing out examples of (fairly exotic) manifolds X where the above two phenomena
occur, we notice that they are equivalent. We will often denote De Rham cohomology groups
Hk
DR(X, C) simply by Hk(X, C).

Proposition 4.5.61. ([Pop15a, Proposition 5.4]) Let X be a compact complex manifold.

(a)The following three statements are equivalent.

(i) X is a degenerate balanced manifold.

(ii) There exists no nonzero d-closed bidegree (1, 1)-current T ≥ 0 on X.

(iii) The Gauduchon cone of X degenerates.

Furthermore, if any of the above three equivalent properties holds, X cannot be a class C manifold.
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(b) If H2(X, C) = 0, the following equivalence holds:

X is an sG manifold ⇐⇒ X is a balanced manifold

and each of these two equivalent properties implies that X is a degenerate balanced manifold.

Proof. Let dimCX = n.
(a) The equivalence (i) ⇔ (ii) follows by the standard duality and Hahn-Banach argument

introduced in [Sul76] and already used in various situations in this book. Let Ω be a real C∞ form
of bidegree (n− 1, n− 1) on X. Then Ω is d-exact if and only if∫

X

Ω ∧ T = 0 for every real d-closed (1, 1)-current T on X,

while Ω is positive definite if and only if∫
X

Ω ∧ T > 0 for every nonzero (1, 1)-current T ≥ 0 on X.

It is thus clear that a form Ω as in (i) and a current T as in (ii) cannot simultaneously exist. Thus
(i) ⇒ (ii). Conversely, if there is no T as in (ii), the set E of real d-closed (1, 1)-currents T on X
is disjoint from the set C of (1, 1)-currents T ≥ 0 on X such that

∫
X
T ∧ γn−1 = 1 (where we have

fixed an arbitrary smooth (1, 1)-form γ > 0 on X). Since E is a closed, convex subset of the locally
convex space D′

R of real (1, 1)-currents on X, while C is a compact, convex subset of D′
R, by the

Hahn-Banach separation theorem for locally convex spaces there must exist a linear functional on
D′
R that vanishes identically on E and is positive on C if E ∩ C = ∅. This amounts to the existence

of Ω as in (i). The implication (ii)⇒ (i) is proved.
We will now prove the equivalence “not (ii)⇔ not (iii)”.
Suppose there exists a non-trivial closed positive (1, 1)-current T on X. If GX degenerates, it

contains the zero Aeppli (n− 1, n− 1)-class, so there exists a C∞ (1, 1)-form ω > 0 on X such that
ωn−1 = ∂u + ∂̄v for some forms u, v of types (n− 2, n− 1), resp. (n− 1, n− 2). Thus, on the one
hand,

∫
X
T ∧ ωn−1 > 0, while on the other hand Stokes’s theorem would imply∫

X

T ∧ ωn−1 =

∫
X

T ∧ (∂u+ ∂̄v) = −
∫
X

∂T ∧ u−
∫
X

∂̄T ∧ v = 0

since ∂T = 0 and ∂̄T = 0 by the closedness assumption on T . This is a contradiction, so GX cannot
degenerate. We have thus proved the implication “not (ii)⇒ not (iii)”.

Conversely, suppose that GX ⊊ Hn−1, n−1
A (X, R). If no non-trivial closed positive (1, 1)-current

existed on X, then by the implication (ii) ⇒ (i) proved above, there would exist a d-exact C∞

(n − 1, n − 1)-form Ω > 0 on X. Taking the (n − 1)st root, there would exist a C∞ (1, 1)-form
ω > 0 on X such that ωn−1 = Ω. Then ωn−1 ∈ Im d ⊂ Im ∂ + Im ∂̄, hence [ωn−1]A = 0. However,
ω is a Gauduchon (even a balanced) metric, so [ωn−1]A ∈ GX . We would thus have 0 ∈ GX , hence
GX = Hn−1, n−1

A (X, R), contradicting the assumption. This completes the proof of the implication
“not (iii)⇒ not (ii)”.

The last statement in (a) can be proved by contradiction. If X were of class C, then by the
easy implication in Theorem 4.1.23 of Demailly and Paun there would exist a Kähler current T on
X. However, any Kähler current is, in particular, a nonzero d-closed positive (1, 1)-current whose
existence would violate (ii).

To prove (b), let us suppose that H2(X, C) = 0. Then H2n−2(X, C) = 0 by Poincaré duality, so
for every balanced metric (if any) ω on X, ωn−1 must be d-exact, hence it must define a degenerate
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balanced structure on X. Thus, thanks to part (a), X is balanced if and only if there exists no
nonzero d-closed (1, 1)-current T ≥ 0 on X. However, the assumption H2(X, C) = 0 ensures that
any d-closed current of degree 2 is d-exact, so in this case the balanced condition onX is characterised
by the same property as the one given in Proposition 4.2.5 to characterise the sG property of an
arbitrary X. This proves the equivalence in (b).

The implication in (b) follows from the above discussion: the assumption H2(X, C) = 0 ensures
that any balanced structure on X is degenerate, while the existence of a degenerate balanced struc-
ture implies that the Gauduchon cone contains the zero Aeppli class, hence it must be the whole
space Hn−1, n−1

A (X, R). □

We notice that the Gauduchon cone GX and the sG cone SGX (see Definition 4.3.1 for the latter)
cannot be simultaneously trivial, i.e. the following implication holds:

GX = Hn−1, n−1
A (X, R) =⇒ SGX ̸= ∅.

Indeed, if GX = Hn−1, n−1
A (X, R), then SGX = kerT ∩ Hn−1, n−1

A (X, R) is an R-vector subspace of
Hn−1, n−1
A (X, R), hence it contains at least the origin.

An immediate consequence of this and of Proposition 4.5.61 is the following.

Corollary 4.5.62. If the Gauduchon cone GX of a compact complex manifold X degenerates, then
X is a strongly Gauduchon manifold but is not of class C.

Examples of degenerate balanced manifolds

We are aware of only two classes of such manifolds.

• First class of examples

We refer to [Fri91] and [Rei86] for the details of what follows.
A (−1, −1)-curve C in a smooth compact complex manifold Y with dimCY = 3 is a rational

curve C ≃ P1 such that NY |C ≃ O(−1)⊕O(−1). By a contractibility criterion of Grauert and Artin,
C can be contracted to a node by a morphism f : Y −→ X ′ in the category of complex analytic
varieties. Now, if Y contains a number of disjoint (−1, −1)-curves C1, . . . , Cm, we can contract
them by some f : Y −→ X ′. By [Fri91], X ′ has smooth small deformations X. So, the nodes of X ′

disappear in X.
If, moreover, we can choose the (−1, −1)-curves C1, . . . , Cm in Y such that they span H2(Y, Z),

then H2(X, C) = {0}. In particular, X is not a class C manifold. (See e.g. Corollary 4.1.28.) This
construction of the 3-dimensional compact complex manifolds X by contractions of (−1, −1)-curves
followed by small deformations are called conifold transitions.

Moreover, by surgery results of C. T. C. Wall, a 2-connected 6-manifold is a connected sum
♯k(S

3 × S3) of finitely many copies of S3 × S3.

Example 4.5.63. Let k ≥ 2 be an integer and let Xk := ♯k(S
3 × S3) be the connected sum of k

copies of S3 × S3 endowed with a complex structure Jk induced by conifold transitions.
Then, (Xk, Jk) is a degenerate balanced manifold.

Proof. It was shown in [FLY12, Corollary 1.3] that the complex structure constructed on X := Xk

in [Fri91] and [LT96] by conifold transitions admits a balanced metric ω. Since dimCX = 3, ω2

defines a De Rham cohomology class in H4(X, C). However, H4(X, C) = 0 for this particular X,
so ω2 must be d-exact. In particular, ω2 ∈ Im ∂ + Im ∂̄, hence [ω2]A = 0. Since ω is necessarily
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a Gauduchon metric on X, it follows that GX contains the origin. Hence, due to it being open,
GX must contain a neighbourhood of 0 in H2, 2

A (X, R). Then GX = H2, 2
A (X, R) by the convex cone

property of GX . By Proposition 4.5.61, this is equivalent to (Xk, Jk) being a degenerate balanced
manifold. □

It would be interesting to know whether the identity GX = Hn−1, n−1
A (X, R) (which is equivalent

to 0 ∈ GX by the above arguments) can hold when H2(X, C) ̸= 0 or Hn−1, n−1
A (X, R) ̸= 0.

• Second class of examples

We refer to [Yac98] for the details of what follows. LetG be a simply connected connected complex
Lie group and let Γ ⊂ G be a discrete co-compact subgroup. We saw in Theorem 4.5.30 that the
quotient X = G/Γ is a complex parallelisable compact complex manifold. Hence, by Corollary 4.5.33,
X = G/Γ is balanced. Actually, by [Yac98, Proposition 17], every left-invariant Hermitian metric ω̃
on G projects onto a balanced metric ω on X = G/Γ.

Example 4.5.64. ([Yac98, Proposition 18]) Let G be a semi-simple complex Lie group and let
Γ ⊂ G be a discrete co-compact subgroup.

Then, every left-invariant Hermitian metric ω̃ on G projects onto a degenerate balanced
metric ω on X = G/Γ.

Sketch of proof. We already know that ω is a balanced metric on X = G/Γ. It remains to prove
that ωn−1 is d-exact on X, where n := dimCX.

Let g be the (real) Lie algebra of G and denote by J : g→ g the endomorphism induced by the
complex structure of the Lie group G. Then J2 = −Id and [Jx, y] = [x, Jy] = J [x, y] for all x, y ∈ g.
Thus, J makes g into a complex Lie algebra.

Since g is a semi-simple complex Lie algebra with dimCg = n, Hn−1(g, C) = 0. (Indeed, for any
complex Lie algebra g, the first cohomology group H1(g, C) is isomorphic to the quotient g/[g, g].
Since g is semi-simple, we have [g, g] = g, hence H1(g, C) = 0. By duality, we get Hn−1(g, C) = 0,
where n is the complex dimension of g.) This further implies that

Hn−1(H0(X, Ω•), ∂) = 0 (4.155)

thanks to the isomorphism of complexes (C(•, 0)(g, C), δ′) ≃ (H0(X, Ω•), ∂), where δ : Cn(g, C) −→
Cn+1(g, C) is the differential in the Koszul complex and δ = δ′ + δ′′ is its splitting into a (1, 0) part
δ′ : Cp, q(g, C) −→ Cp+1, q(g, C), resp. a (0, 1) part δ′′ : Cp, q(g, C) −→ Cp, q+1(g, C). As usual,
Cp, q(g, C) := (Λpg⋆) ∧ (Λqg⋆) ⊂ Cp+q(g, C) := Λp+q(g⊕ g) for all p, q.

Now, (4.155) means that every form Γ ∈ C∞
n−1, 0(X, C) with the property ∂̄Γ = 0 is ∂-exact and

d-exact. Indeed, by Observation 4.5.27, we have ∂Γ = 0 for any such Γ. Therefore, (4.155) implies
that Γ = ∂α for some α ∈ H0(X, Ωn−2). This means that α ∈ C∞

n−2, 0(X, C) and ∂̄α = 0. Hence,
dα = ∂α = Γ.

Now, let {Γ1, . . . ,Γn} be a C-basis forH0(X, Ωn−1) ≃ Hn−1, 0(X, C). Since ωn−1 is the projection
onto X of a left-invariant form on G, we have

ωn−1 = i(n−1)2
∑

1≤k, l≤n

akl̄ Γk ∧ Γl,

where the coefficients akl̄ ∈ C are constant (and the matrix (akl̄)1≤k, l≤n is positive definite because
ωn−1 > 0, but this last point is irrelevant to us). Thus, we get the d-exactness of ωn−1 from the
d-exactness of the Γk’s. □
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The interior of the pseudo-effective cone

Starting from a handful of trivial observations, we now exhibit a few examples of compact complex
manifolds which are not in the class C but whose pseudo-effective cone has non-empty interior.
They motivate, in part, the two-step strategy for tackling the conjecture mentioned in §.4.3.1, the
introduction of sGG manifolds and the distinction we made between the big cone introduced in
Definition 4.1.25 and the interior of the pseudo-effective cone on arbitrary, possibly non-class C,
manifolds.

Proposition 4.5.65. (I) Let X be a compact complex surface. Then:

(i) there exists a non-zero d-closed (1, 1)-current T ≥ 0 on X;

(ii)h1, 1BC(X, C) ≥ 1;

(iii) if h1, 1BC(X, C) = 1, then E̊X ̸= ∅.
(II) Let X be a compact complex manifold of any dimension. If h1, 1BC(X, C) = 1 and if there

exists a non-zero d-closed (1, 1)-current T ≥ 0 on X, then E̊X ̸= ∅.

Proof. (I)(i) Suppose that such a current did not exist. Then, by (a) of Proposition 4.5.61, there
would exist a degenerate balanced structure ω on X. Since n − 1 = 1 on a surface, ω would be
a Kähler metric, contradicting the supposed non-existence of a non-zero d-closed positive (1, 1)-
current.

(ii) Let T ≥ 0 be a non-zero d-closed (1, 1)-current on X (which exists by (i)). Then [T ]BC ∈
H1, 1
BC(X, C) cannot be the zero Bott-Chern class since, otherwise, T = i∂∂̄φ ≥ 0 on X for some L1

loc

function φ, so φ would be a global psh function on the compact manifold X. Hence, φ would be
constant and T = i∂∂̄φ = 0, a contradiction.

(iii) For any non-zero d-closed (1, 1)-current T ≥ 0 on X, we have 0 ̸= [T ]BC ∈ EX ⊂
H1, 1
BC(X, R). Since EX is a convex cone, it must contain the whole ray R+· [T ]BC , so it has non-

empty interior in the ambient 1-dimensional real vector space.

(II) The proof of this statement is identical to that of (I)(iii). It has been necessary to suppose
the existence of a non-zero d-closed positive (1, 1)-current since, unlike compact complex surfaces,
arbitrary compact complex manifolds of dimension ≥ 3 need not possess such a current (see e.g.
Example 4.5.63). □

We now notice a few examples showing that the property E̊X ̸= ∅ does not imply that X is a
class C manifold.

Proposition 4.5.66. Let X be either a Hopf surface, or an Inoue SM surface, or an Inoue S±
surface, or a secondary Kodaira surface.

Then, X is not in the class C but E̊X ̸= ∅.

Proof. All the surfaces of the above types are non-Kähler, hence not in the class C (since the Kähler
class coincides with the class C in the case of surfaces). Now, thanks to [ADT14, Theorem 2.2,
Tables 1 and 2, p.8-9]5, h1, 1BC(X, C) = 1 for each of these surfaces. We get E̊X ̸= ∅ from part (I)(iii)
of our Proposition 4.5.65. □

5The author is grateful to F. Campana for pointing out this reference to him.
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4.5.7 The Laplacian ∆ω = Λω(i∂∂̄) on functions when ω is Gauduchon or
balanced

Let (X, ω) be a compact complex Hermitian manifold with dimCX = n ≥ 2. We denote by
∆ωφ = Λω(i∂∂̄φ) the Laplace-type operator associated with ω acting on smooth complex-valued
functions φ on X. Clearly, ∆ω = −Pω, where

Pω := iΛω∂̄∂ : C∞(X, C) −→ C∞(X, C)

is the operator considered in §.4.1.2. Let ∆⋆
ω be the formal adjoint of ∆ω.

By expanding the formula given for P ⋆
ω in the proof of Theorem 4.1.7, one easily gets the following

Proposition 4.5.67. (a) If ω is balanced, ∆ω is self-adjoint, namely ∆⋆
ω = ∆ω.

(b) If ω is Gauduchon, ∆⋆
ω −∆ω is a first-order operator with no zero-th order terms. In

particular, ∆⋆
ω is elliptic of order two with no zero-th order terms.

By a differential operator having no zero-th order terms we mean that it vanishes on constants.
An immediate consequence of (b) of Proposition 4.5.67 is a key property of Gauduchon metrics:
when ω is Gauduchon, ∆⋆

ω satisfies the maximum principle which implies that ker∆⋆
ω = C.

Proposition 4.5.67 will follow from the next result that subsumes it.

Lemma 4.5.68. Let (X, ω) be a compact Hermitian manifold, dimCX = n ≥ 2.

(i) For any smooth function φ : X −→ C, we have:

⟨⟨∆ωφ, φ⟩⟩ = −||∂̄φ||2 − i
〈〈
∂̄φ, φ ⋆

(
∂̄ωn−1

(n− 1)!

)〉〉
. (4.156)

In particular, ⟨⟨∆ωφ, φ⟩⟩ = −||∂̄φ||2 if the metric ω is balanced.

(ii) If the metric ω is Gauduchon and the function φ is real-valued, then

⟨⟨∆ωφ, φ⟩⟩ = −||∂̄φ||2. (4.157)

(iii) Suppose that ω is a Gauduchon metric. Then ∆⋆
ω = ∆ω + Lω, where Lω is the first-order

operator with no zero-th order terms defined by

Lωφ = ⋆

(
i∂φ ∧ ∂̄ωn−1

(n− 1)!
− i∂̄φ ∧ ∂ωn−1

(n− 1)!

)
(4.158)

for all smooth complex-valued functions φ on X.
In particular, ∆⋆

ω is elliptic of order two with no zero-th order terms. If ω is balanced,
Lω = 0 and ∆⋆

ω is self-adjoint.
Moreover, for any real-valued function φ on X, we have:

⟨⟨Lωφ, φ⟩⟩ = 0. (4.159)

Proof. (i) Since ∂⋆ = − ⋆ ∂̄⋆, we get:

⟨⟨∆ωφ, φ⟩⟩ = ⟨⟨Λω(i∂∂̄φ), φ⟩⟩ = ⟨⟨i∂̄φ, ∂⋆(φω)⟩⟩ = −i
〈〈
∂̄φ, ⋆ ∂̄

(
φ

ωn−1

(n− 1)!

)〉〉
= −i

〈〈
∂̄φ, φ ⋆

(
∂̄ωn−1

(n− 1)!

)〉〉
− i
〈〈
∂̄φ, ⋆

(
∂̄φ ∧ ωn−1

(n− 1)!

)〉〉
. (4.160)
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Since the form ∂̄φ is of bidegree (0, 1), it is primitive, so the standard formula (4.68) yields:

⋆(i∂̄φ) = −∂̄φ ∧ ωn−1

(n− 1)!
, or equivalently ⋆

(
∂̄φ ∧ ωn−1

(n− 1)!

)
= i∂̄φ,

since ⋆⋆ = −Id on forms of odd degree. Combined with the last identity in (4.160), this proves
(4.156).

(ii) We now transform the first term on the r.h.s. of the last identity in (4.160). Since ∂̄⋆ = − ⋆ ∂⋆,
we get:

⟨⟨∂̄φ, φ ⋆ ∂̄ωn−1⟩⟩ = ⟨⟨φ, − ⋆ ∂ ⋆ (φ ⋆ (∂̄ωn−1))⟩⟩ (a)= ⟨⟨φ, ⋆ ∂(φ ∂̄ωn−1)⟩⟩
= (n− 1) ⟨⟨φ, ⋆(∂φ ∧ ∂̄ω ∧ ωn−2)⟩⟩+ ⟨⟨φ, ⋆(φ∂∂̄ωn−1)⟩⟩, (4.161)

where (a) follows from the commutation of ⋆ with the function φ and from ⋆⋆ = −Id on forms of
odd degree. If ω is Gauduchon, then ∂∂̄ωn−1 = 0, so the last term above vanishes. To transform the
previous term, we can use the Lefschetz decomposition of the (2, 2)-form ∂φ∧ ∂̄ω to write uniquely:

∂φ ∧ ∂̄ω = (∂φ ∧ ∂̄ω)prim + α ∧ ω + f ω2,

where (∂φ ∧ ∂̄ω)prim is a primitive (2, 2)-form, α is a primitive (1, 1)-form and f is a function.
Multiplying by ωn−2, we get:

∂φ ∧ ∂̄ω ∧ ωn−2 = (∂φ ∧ ∂̄ω)prim ∧ ωn−3 ∧ ω + α ∧ ωn−1 + f ωn = f ωn, (4.162)

where the last identity follows from (∂φ ∧ ∂̄ω)prim ∧ ωn−3 = 0 and α ∧ ωn−1 = 0 which reflect the
definition of primitiveness for (∂φ∧ ∂̄ω)prim and α. Taking ⋆, we get ⋆(∂φ∧ ∂̄ω ∧ωn−2) = n! f since
⋆(ωn/n!) = 1.

Thus, when ω is Gauduchon, (4.156) and (4.161) read:

⟨⟨∆ωφ, φ⟩⟩ = −||∂̄φ||2 − (n− 1)n i ⟨⟨φ, f⟩⟩ = −||∂̄φ||2 − i

(n− 2)!

∫
X

φ f̄ ωn.

Now, suppose that φ is real-valued. Taking conjugates in (4.162), we get

f̄ ωn = ∂̄φ ∧ ∂ω ∧ ωn−2 = 1
n−1

∂̄φ ∧ ∂ωn−1,

which translates the previous identity to

⟨⟨∆ωφ, φ⟩⟩ = −||∂̄φ||2 − i

(n− 1)(n− 2)!

∫
X

φ ∂̄φ ∧ ∂ωn−1

= −||∂̄φ||2 − i

2(n− 1)(n− 2)!

∫
X

∂̄(φ2) ∧ ∂ωn−1

(a)
= −||∂̄φ||2 − i

2(n− 1)(n− 2)!

∫
X

∂̄(φ2 ∧ ∂ωn−1)

(b)
= −||∂̄φ||2,

where identity (a) follows from ∂∂̄ωn−1 = 0 (the Gauduchon assumption on ω) and (b) follows from
Stokes’s theorem. This proves (4.157).
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(iii) From the standard formulae ∂⋆ = −⋆∂̄⋆ and ∂̄⋆ = −⋆∂⋆, we get ∆⋆
ω = (−i) (−⋆∂⋆) (−⋆∂̄⋆)(ω∧·).

Since ⋆ commutes with multiplication by functions, ⋆ω = ωn−1/(n − 1)! and ⋆⋆ = −Id on forms of
odd degree, we get the first of the following identities:

∆⋆
ωφ = ⋆ i∂∂̄

(
φ

ωn−1

(n− 1)!

)
= ⋆

(
i∂∂̄φ ∧ ωn−1

(n− 1)!

)
+ Lω + ⋆

(
φ
i∂∂̄ωn−1

(n− 1)!

)
= ⋆

(
Λω(i∂∂̄φ)

ωn

n!

)
+ Lω + ⋆

(
φ
i∂∂̄ωn−1

(n− 1)!

)
= ∆ωφ+ Lω + ⋆

(
φ
i∂∂̄ωn−1

(n− 1)!

)
.

The last term vanishes when ω is a Gauduchon metric, so we get the first statement in (iii).
To prove (4.159), we start by using the fact that the adjoint of ⋆ is ⋆ when acting on forms of

even degree. This implies the first identity below:

⟨⟨Lωφ, φ⟩⟩ =

〈〈
i∂φ ∧ ∂̄ωn−1

(n− 1)!
− i∂̄φ ∧ ∂ωn−1

(n− 1)!
, φ

ωn

n!

〉〉
(a)
= i

〈〈
φ∂φ ∧ ∂̄ωn−1

(n− 1)!
− φ ∂̄φ ∧ ∂ωn−1

(n− 1)!
,
ωn

n!

〉〉
=

i

2

〈〈
∂(φ2) ∧ ∂̄ωn−1

(n− 1)!
− ∂̄(φ2) ∧ ∂ωn−1

(n− 1)!
,
ωn

n!

〉〉
(b)
=

i

2

∫
X

〈
∂

(
φ2 ∧ ∂̄ωn−1

(n− 1)!

)
− ∂̄
(
φ2 ∧ ∂ωn−1

(n− 1)!

)
,
ωn

n!

〉
ωn

n!

(c)
=

i

2

∫
X

∂

(
φ2 ∧ ∂̄ωn−1

(n− 1)!

)
− i

2

∫
X

∂̄

(
φ2 ∧ ∂ωn−1

(n− 1)!

)
(d)
= 0− 0 = 0.

Identity (a) above follows from φ being real-valued (otherwise, the r.h.s. φ would have become φ̄ on
the l.h.s.), while identity (b) is a consequence of the Gauduchon assumption on ω. To see (c), pick
any point x ∈ X and local coordinates z1, . . . , zn about x such that

ω(x) =
n∑
j=1

i dzj ∧ dz̄j, hence ⟨ωn(x), ωn(x)⟩ = 1, where ωn := ωn/n!.

Now, for every (n, n)-form u, we have u = f ωn for some function f , hence ⟨u, ωn⟩ωn = f ωn = u at
(any) x. This gives (c). Identity (d) follows from Stokes’s theorem. The proof (4.159) is complete.
□

4.6 SKT and Hermitian-symplectic metrics and manifolds

The analogue in bidegree (1, 1) of Gauduchon metrics is the following notion.

Definition 4.6.1. Let X be a complex manifold.

(i) A C∞ positive definite (1, 1)-form ω on X is said to be an SKT (strong Kähler with
torsion) metric6 if ∂∂̄ω = 0.

6SKT metrics are also called pluriclosed metrics, a term used e.g. in [Egi01] and in [ST10].
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(ii) If X carries such a metric, X is said to be an SKT manifold.

Meanwhile, thanks to Lemma 4.2.3, the analogue in bidegree (1, 1) of strongly Gauduchon metrics
is the following notion.

Definition 4.6.2. ([ST10, Definition 1.5]) Let X be a complex manifold.

(i) A C∞ positive definite (1, 1)-form ω on X is said to be a Hermitian-symplectic (H-S)
metric if ω is the component of bidegree (1, 1) of a real C∞ d-closed 2-form ω̃ on X.

(ii) If X carries such a metric, X is said to be a Hermitian-symplectic manifold.

The Hermitian-symplectic condition can be expressed as follows.

Lemma 4.6.3. Let ω be a Hermitian metric on a compact complex manifold X.

(I) The following statements are equivalent.

(a) ω is Hermitian-symplectic.

(b) There exists a form ρ2, 0 ∈ C∞
2, 0(X, C) satisfying the equations:

(i) ∂ρ2, 0 = 0 and (ii) ∂̄ρ2, 0 + ∂ω = 0. (4.163)

(c) There exists a form ρ0, 2 ∈ C∞
0, 2(X, C) satisfying the equations:

(iii) ∂̄ρ0, 2 = 0 and (iv) ∂ρ0, 2 + ∂̄ω = 0. (4.164)

(II) If dimCX = 3, the equivalences under (I) simplify to:

ω is Hermitian-symplectic ⇐⇒ ∂ω ∈ Im ∂̄ ⇐⇒ ∂̄ω ∈ Im ∂.

Proof. (I) (b) and (c) are equivalent by conjugation.
To prove the equivalence of (a) and (b), note that ω is H-S if and only if there exists a form

ρ2, 0 ∈ C∞
2, 0(X, C) such that ω̃ = ρ2, 0 + ω + ρ0, 2 is d-closed, where ρ0, 2 = ρ2, 0. Meanwhile, the

condition dω̃ = 0 is equivalent to the four identities (i)-(iv) in (4.163) and (4.164). Since the pair
of identities (4.163) is equivalent to the pair of identities (4.164), by conjugation, it follows that the
condition dω̃ = 0 is equivalent to either of these pairs.

(II) Let dimCX = 3. Thanks to (I), it suffices to prove that ω is Hermitian-symplectic whenever
∂ω ∈ Im ∂̄. If ∂ω is supposed ∂̄-exact, there exists ρ2, 0 ∈ C∞

2, 0(X, C) such that ∂̄ρ2, 0 + ∂ω = 0.
Thanks to the equivalence between (a) and (b) proved under (I), it suffices to show that ∂ρ2, 0 = 0.

Let ρ0, 2 := ρ2, 0 and consider the (3, 3)-form i∂ρ2, 0∧ ∂̄ρ0, 2. Since dimCX = 3, the general formula
(4.68) applied to the (0, 3)-form ∂̄ρ0, 2 (which is necessarily primitive, for bidegree reasons) yields
⋆∂̄ρ0, 2 = i∂̄ρ0, 2. Hence

i∂ρ2, 0 ∧ ∂̄ρ0, 2 = ∂ρ2, 0 ∧ ⋆∂ρ2, 0 = |∂ρ2, 0|2ω dVω ≥ 0 (4.165)

at every point of X. Meanwhile, it follows from ∂̄ρ2, 0 + ∂ω = 0 that ∂̄∂ρ2, 0 = 0. This implies the
first identity below: ∫

X

i∂ρ2, 0 ∧ ∂̄ρ0, 2 = −
∫
X

∂̄(i∂ρ2, 0 ∧ ρ0, 2) = 0, (4.166)

where the last identity follows from Stokes. (We used again the fact that dimCX = 3 in order to be
able to integrate (3, 3)-forms on X.)

From (4.165) and (4.166), we infer that |∂ρ2, 0|2ω = 0, hence ∂ρ2, 0 = 0, at every point of X. □

An immediate consequence is the following.
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Corollary 4.6.4. Let ω be a Hermitian metric on a compact complex manifold X.

(i) If ω is Hermitian-symplectic, then ω is also SKT.

(ii) If X is a ∂∂̄-manifold and ω is SKT, then ω is also Hermitian-symplectic.

Proof. (i) If ω is H-S, by taking ∂̄ in (ii) of (4.163) we get ∂̄∂ω = 0, so ω is SKT.
(ii) Suppose that X is a ∂∂̄-manifold. If ∂∂̄ω = 0, the (2, 1)-form ∂ω is ∂̄-closed. Thus, ∂ω is

∂-exact and d-closed. By the ∂∂̄-property of X, ∂ω must also be ∂̄-exact. Therefore, there exists a
form ρ2, 0 ∈ C∞

2, 0(X, C) such that ∂ω = −∂̄ρ2, 0. Thus, ρ2, 0 satisfies condition (ii) in (4.163).
It remains to show that ρ2, 0 also satisfies condition (i) in (4.163). The (3, 0)-form ∂ρ2, 0 is ∂̄-

closed (as we see by taking ∂ in ∂ω = −∂̄ρ2, 0) and ∂-exact. Hence, it is d-closed and ∂-exact, so
it is also ∂̄-exact by the ∂∂̄-property of X. This means that ∂ρ2, 0 = ∂̄α3,−1 for some (3, −1)-form
α3,−1. For bidegree reasons, we must have α3,−1 = 0. We conclude that ∂ρ2, 0 = 0.

Thus, ω is H-S by (b) of Lemma 4.6.3. □

4.6.1 Basic properties of Hermitian-symplectic metrics and manifolds

(I) We first prove the implication:

X is a Hermitian-symplectic manifold =⇒ X is a strongly Gauduchon manifold.

Note that the analogous implication at the level of metrics ω does not hold.

Proposition 4.6.5. ([YZZ19, Lemma 1], [DP20, Proposition 2.1]) Every compact complex manifold
X that admits a Hermitian-symplectic metric also admits a strongly Gauduchon (sG) metric.

Proof. Let n = dimCX. By Lemma 4.2.3, a strongly Gauduchon (sG) structure onX can be regarded
as a real C∞ d-closed (2n − 2)-form Ω on X such that its (n − 1, n − 1)-component Ωn−1, n−1 is
positive definite.

Now, suppose that an H-S structure ω̃ exists on X. This means that ω̃ = ρ2, 0+ω+ ρ0, 2 is a real
C∞ d-closed 2-form on X such that its (1, 1)-component ω is positive definite. Thus, dω̃n−1 = 0 and

ω̃n−1 = [ω + (ρ2, 0 + ρ0, 2)]n−1 =
n−1∑
k=0

k∑
l=0

(
n− 1

k

)(
k

l

)
(ρ2, 0)l ∧ (ρ0, 2)k−l ∧ ωn−k−1.

In particular, the (n − 1, n − 1)-component of ω̃n−1 is the sum of the terms for which l = k − l in
the above expression, i.e.

Ωn−1, n−1 = ωn−1 +

[n−1
2

]∑
l=1

(
n− 1

2l

)(
2l

l

)
(ρ2, 0)l ∧ (ρ0, 2)l ∧ ωn−2l−1.

Thus, to prove the existence of an sG structure on X, it suffices to prove that the (n− 1, n− 1)-
form Ωn−1, n−1 is positive definite. Its (n−1)-st root will then be an sG metric on X, by construction.

To show that Ωn−1, n−1 > 0, it suffices to check that the real form (ρ2, 0)l ∧ (ρ0, 2)l ∧ ωn−2l−1 is
weakly (semi)-positive at every point of X. (Recall that ρ0, 2 is the conjugate of ρ2, 0.) To this end,
note that the (2l, 2l)-form (ρ2, 0)l ∧ (ρ0, 2)l is weakly semi-positive as the wedge product of a (2l, 0)-
form and its conjugate (see [Dem97, Chapter III, Example 1.2]). Therefore, the (n− 1, n− 1)-form
(ρ2, 0)l ∧ (ρ0, 2)l ∧ ωn−2l−1 is (semi)-positive since the product of a weakly (semi)-positive form and
a strongly (semi)-positive form is weakly (semi)-positive and ω is strongly positive (see [Dem97,
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Chapter III, Proposition 1.11]). (Recall that in bidegrees (1, 1) and (n − 1, n − 1), the notions of
weak and strong positivity coincide.) □

In the case n = dimCX = 2, the notions of H-S and sG metrics coincide, as follows at once from
Definition 4.6.2 and Lemma 4.2.3. Thus, from Theorem 4.2.6, we get the following fact that has
been known for a while (cf. e.g. [LZ09] or [ST10, Proposition 1.6]).

Proposition 4.6.6. Let X be a compact complex surface. The following equivalence holds:

X is Kähler ⇐⇒ X is Hermitian-symplectic.

(II) We now notice that the existence of Hermitian-symplectic metrics on a compact complex
threefold implies a property that is well known to hold on compact complex manifolds whose Frölicher
spectral sequence degenerates at E1. (See Proposition 1.2.14 in the case p = 1.)

Proposition 4.6.7. Let X be a compact complex Hermitian-symplectic manifold with dimCX =
3. Then, every holomorphic 1-form (i.e. every smooth ∂̄-closed (1, 0)-form) on X is d-closed.

Proof. Let ω be an H-S metric on X. Then, ∂ω ∈ Im ∂̄ and ∂̄ω ∈ Im ∂ (see e.g. Lemma 4.6.3).
Choose any form ρ2, 0 ∈ C∞

2, 0(X, C) such that ∂ω = −∂̄ρ2, 0. Hence, ∂̄ω = −∂ρ0, 2, where ρ0, 2 := ρ2, 0.
Now, let ξ ∈ C∞

1, 0(X, C) such that ∂̄ξ = 0. We want to show that ∂ξ = 0.
On the one hand, if ⋆ = ⋆ω is the Hodge star operator induced by ω, the general formula (4.68)

applied to the (necessarily primitive) (0, 2)-form ∂̄ξ̄ yields: ⋆(∂̄ξ̄) = ∂̄ξ̄ ∧ ω. Hence,

∂ξ ∧ ∂̄ξ̄ ∧ ω = |∂ξ|2ω dVω ≥ 0 (4.167)

at every point of X.
Meanwhile, an immediate calculation and the use of the identities ∂̄ξ = 0 and ∂ξ̄ = 0 show that

∂ξ ∧ ∂̄ξ̄ ∧ ω = −∂∂̄(ξ ∧ ξ̄ ∧ ω) + ξ ∧ ∂̄ξ̄ ∧ ∂ω + ∂ξ ∧ ξ̄ ∧ ∂̄ω + ξ ∧ ξ̄ ∧ ∂∂̄ω
= −∂∂̄(ξ ∧ ξ̄ ∧ ω)− ξ ∧ ∂̄ξ̄ ∧ ∂̄ρ2, 0 − ∂ξ ∧ ξ̄ ∧ ∂ρ0, 2

= −∂∂̄(ξ ∧ ξ̄ ∧ ω) + ∂̄(ξ ∧ ∂̄ξ̄ ∧ ρ2, 0) + ∂(∂ξ ∧ ξ̄ ∧ ρ0, 2) ∈ Im ∂ + Im ∂̄,

where for the second identity we also used the property ∂∂̄ω = 0 of the H-S metric ω. Using Stokes’s
theorem, we infer: ∫

X

∂ξ ∧ ∂̄ξ̄ ∧ ω = 0. (4.168)

Putting together (4.167) and (4.168), we get ∂ξ = 0 on X and we are done. □

(III) Hermitian-symplectic manifolds, which constitute a natural generalisation of compact Kähler
manifolds, were given the following intrinsic characterisation by Sullivan.

Proposition 4.6.8. ([Sul76, Theorem III.2 and Remark III.11]) A compact complex manifold X is
Hermitian-symplectic if and only if X carries no non-zero current T of bidegree (n− 1, n− 1) such
that T ≥ 0 and T is d-exact.
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This can be proved using Sullivan’s duality technique and the Hahn-Banach Theorem in a way
similar to the proofs of Propositions 4.2.5 and 4.5.24. The details are left to the reader.

Nevertheless, Hermitian-symplectic manifolds remain poorly understood. As they lie at the inter-
face between symplectic and complex Hermitian geometries, they seem to warrant further probing.
It is an important open problem to find out whether or not the situation in complex dimension 2
described in Proposition 4.6.6 remains the same in higher dimensions. Streets and Tian asked the
following

Question 4.6.9. ([ST10, Question 1.7]) Do there exist non-Kähler Hermitian-symplectic complex
manifolds X with dimCX ≥ 3?

Note that, by Theorem 4.5.45, the bidegree (n − 1, n − 1) analogue of this question has an
affirmative answer: there exist non-balanced strongly Gauduchon manifolds X with dimCX =
n ≥ 3.

While the general case of Question 4.6.9 remains open, it has been answered negatively for a
handful of special classes of manifolds, including all nilmanifolds endowed with an invariant complex
structure by Enrietti, Fino and Vezzoni in [EFV12] and all twistor spaces by Verbitsky in [Ver14].

The Streets-Tian question is complementary to Donaldson’s earlier

Question 4.6.10. ([Don06, Question 2]) If J is an almost-complex structure on a compact 4-
manifold which is tamed by a symplectic form, is there a symplectic form compatible with J?

Indeed, when the almost-complex structure J is integrable, a symplectic form ω̃ is a taming
form for J if and only if the (1, 1)-component ω of ω̃ is a Hermitian-symplectic metric (i.e. positive
definite). While J is assumed integrable in Question 4.6.9, the dimension of the underlying manifold
is allowed to be arbitrary. Meanwhile, Question 4.6.10, that has come to be known in the literature
as Donaldson’s tamed-to-compatible conjecture, is peculiar to four real dimensions but J need not be
integrable. Thus, the only known case so far lies at the intersection of Questions 4.6.10 and 4.6.9.

4.6.2 Basic properties of SKT metrics and manifolds

Note that the SKT condition coincides with the Gauduchon condition in complex dimension n = 2.
Thus, thanks to Theorem 4.1.2, every compact complex surface is an SKT manifold. Higher-
dimensional examples of SKT manifolds will be given later on. (See e.g. §.4.6.4.)

(I) The following fact was first noticed in [IP13] and in some of the references therein as a
consequence of more general results. A quick proof appeared in [Pop15, Proposition 1.1].

Proposition 4.6.11. If a Hermitian metric ω on a compact complex manifold X is both SKT and
balanced, then ω is Kähler.

Proof. The SKT assumption on ω translates to any of the following equivalent properties:

∂∂̄ω = 0⇐⇒ ∂ω ∈ ker ∂̄ ⇐⇒ ⋆(∂ω) ∈ ker ∂⋆, (4.169)

where the last equivalence follows from the standard formula ∂⋆ = − ⋆ ∂̄⋆ involving the Hodge-star
isomorphism ⋆ = ⋆ω : Λp, qT ⋆X → Λn−q, n−pT ⋆X defined by ω for arbitrary p, q = 0, . . . , n.

Meanwhile, the balanced assumption on ω translates to any of the following equivalent properties:

dωn−1 = 0⇐⇒ ∂ωn−1 = 0⇐⇒ ωn−2 ∧ ∂ω = 0⇐⇒ ∂ω is primitive.
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Moreover, since ∂ω is primitive when ω is balanced, the general formula (4.68) yields:

⋆(∂ω) = i
ωn−3

(n− 3)!
∧ ∂ω =

i

(n− 2)!
∂ωn−2 ∈ Im ∂. (4.170)

Thus, if ω is both SKT and balanced, we get from (4.169) and (4.170) that

⋆(∂ω) ∈ ker ∂⋆ ∩ Im ∂ = {0},

where the last identity follows from the subspaces ker ∂⋆ and Im ∂ of C∞
n−1, n−2(X, C) being L2

ω-
orthogonal. We infer that ∂ω = 0, i.e. ω is Kähler. □

Based on the above statement at the level of metrics and on other reasons, we conjecture the
analogous statement at the level of compact complex manifolds (cf. the similar Conjecture 4.5.10 in
the balanced/lck case).

Conjecture 4.6.12. Let X be a compact complex manifold with dimCX = n ≥ 2.
Then, X carries both a balanced metric and a (possibly different) SKT metric if and only if

X carries a Kähler metric.

Moreover, if Conjecture 4.5.56 turns out to be true, the following conjecture is weaker than the
above Conjecture 4.6.12. It is also weaker than the Streets-Tian Question 4.6.9 thanks to Corollary
4.6.4.

Conjecture 4.6.13. Let X be a compact ∂∂̄-manifold with dimCX = n ≥ 2.
If X carries an SKT metric, then X also carries a Kähler metric.

(II) Recall that, for any Hermitian metric ω, ⋆ω = ωn−1/(n − 1)!, where ⋆ = ⋆ω is the Hodge
star operator induced by ω. Consequently, if ω is Kähler, ω is harmonic for each of the Laplacians
∆, ∆′, ∆′′, ∆BC and ∆A it induces.

We now observe a kind of converse, namely that for an SKT metric, the balanced condition is
equivalent to the Aeppli harmonicity.

Lemma 4.6.14. Let ω > 0 be a C∞ positive definite (1, 1)-form on X such that ∂∂̄ω = 0. The
following equivalence holds:

∆Aω = 0 ⇐⇒ dωn−1 = 0.

Proof. Since ⋆ω = ωn−1/(n − 1)! and d⋆ = − ⋆ d⋆, the balanced condition dωn−1 = 0 is equivalent
to d⋆ω = 0, hence to ∂⋆ω = 0 and ∂̄⋆ω = 0. The contention is thus seen to follow from the vector
space identity H1, 1

∆A
= ker(∂∂̄) ∩ ker ∂⋆ ∩ ker ∂̄⋆ (see part (3) of Corollary 1.1.13). □

Thus, Proposition 4.6.11 can be reworded in the following way.

Corollary 4.6.15. Let ω > 0 be a Hermitian metric on X. Then

ω is Kähler ⇐⇒ ∆Aω = 0.

(III) One has the following intrinsic characterisation of SKT manifolds.

Proposition 4.6.16. ([Egi01, 3. of Theorem 3.3.]) An n-dimensional compact complex manifold
X is SKT if and only if X carries no non-zero current T of bidegree (n− 1, n− 1) such that T ≥ 0
and T is (∂∂̄)-exact.
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Proof. “ =⇒ ” Suppose ω is an SKT metric X. If a current T = ∂∂̄S (for some current S of bidegree
(n − 2, n − 2)) as in the statement existed, the (n, n)-current ω ∧ T would be ≥ 0 and non-zero,
implying the first inequality below:

0 <

∫
X

ω ∧ T =

∫
X

∂∂̄ω ∧ S = 0,

a contradiction.

“⇐=” This can be proved using Sullivan’s duality technique and the Hahn-Banach Theorem in
a way similar to the proofs of Propositions 4.2.5, 4.5.24 and 4.6.8. The only extra thing one has to
ensure is that the operator

∂∂̄ : D′(n−2, n−2)(X, R) −→ D′(n−1, n−1)(X, R)

has a closed image, where D′(p, p)(X, R) = E ′(n−p, n−p)(X)R is the space of real currents of bidegree

(p, p) (equivalently, of bidimension (n− p, n− p)) on X.
As explained in the proof of Lemma 4.5.25, this is equivalent to the dual map

∂∂̄ : C∞
1, 1(X, R) −→ C∞

2, 2(X, R)

having a closed image. This follows from the Bott-Chern Laplacian ∆BC being elliptic and from
X being compact, leading to ker∆BC being finite-dimensional, to the image of ∂∂̄ being closed
and to the L2

ω-orthogonal three-space decomposition

C∞
p, q(X,C) = ker∆BC ⊕ Im ∂∂̄ ⊕ (Im ∂⋆ + Im ∂̄⋆).

(See (1) of Corollary 1.1.10.) □

4.6.3 Bismut’s holomorphic structure on Λ1, 0T ⋆X⊕T 1, 0X induced by an
SKT metric

Most of the material in this subsection is taken from [Bis89]. Let X be a compact complex manifold
with dimCX = n and let E be the holomorphic vector bundle

E := Λ1, 0T ⋆X ⊕ T 1, 0X.

We also consider the exact sequence of holomorphic vector bundles on X:

0 −→ Λ1, 0T ⋆X −→ Λ1, 0T ⋆X ⊕ T 1, 0X := E −→ T 1, 0X −→ 0. (4.171)

Now, let ω be a Hermitian metric on X. It defines a Hermitian fibre metric on the holomorphic
tangent bundle T 1, 0X of X and induces Hermitian fibre metrics on the holomorphic cotangent
bundle Λ1, 0T ⋆X and on E. On the other hand, the metric ω induces a vector-bundle-valued form
α ∈ C∞

0, 1(X, Hom (T 1, 0X, Λ1, 0T ⋆X)) in the following way:

(α(ξ)η)(ν) = (i∂ω)(ξ, η, ν), ξ ∈ C∞(X, T 0, 1X), η, ν ∈ C∞(X, T 1, 0X).

In particular, α(ξ) ∈ C∞(X, Hom (T 1, 0X, Λ1, 0T ⋆X)) for every ξ ∈ C∞(X, T 0, 1X).
Let ∂̄E be the ∂̄ operator that defines the natural holomorphic structure of E. The following

result shows that, if it is SKT, the metric ω induces a different holomorphic structure on E by
modifying ∂̄E.
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Theorem 4.6.17. ([Bis89, Theorem 2.7]) Suppose that ω is SKT. Then, ∂̄E + γ defines a holo-
morphic structure on E, namely (∂̄E + γ)2 = 0, where γ ∈ C∞

0, 1(X, End(E)) is defined by

γ(ξ) :=

(
0 0

α(ξ) 0

)
, ξ ∈ C∞(X, T 0, 1X).

Proof. Due to its particular form in terms of α, γ only acts non-trivially on T 1, 0X and assumes its val-
ues in Λ1, 0T ⋆X. So, we can identify γ with α and view it as an element of C∞

0, 1(X, Hom (T 1, 0X, Λ1, 0T ⋆X)),
in which case ∂̄End(E)γ ∈ C∞

0, 2(X, Hom (T 1, 0X, Λ1, 0T ⋆X)).
Since ∂̄2E = 0 and γ2 = 0, we have

(∂̄E + γ)2 = ∂̄E(γ ∧ ·) + γ ∧ ∂̄E = (∂̄End(E)γ) ∧ ·

So, we are left to prove that ∂̄End(E)γ = 0 in C∞
0, 2(X, Hom (T 1, 0X, Λ1, 0T ⋆X)).

Computing, we get:

(∂̄End(E)γ)(ξ1, ξ2)(η)(ν) = (i∂̄∂ω)(ξ1, ξ2, η, ν) = 0,

for all ξ1, ξ2 ∈ C∞(X, T 0, 1X) and all η, ν ∈ C∞(X, T 1, 0X). The last identity follows from the SKT
assumption ∂̄∂ω = 0 on ω. □

The phenomenon described above, in which a metric induces a holomorphic structure on a vector
bundle, lies at the heart of Mirror Symmetry that will be discussed in a later chapter of this book.

Another consequence of Theorem 4.6.17 is that, when ω is SKT, the form α is the second funda-
mental form (see terminology in [Dem97, V. §.14]) of the exact sequence

0 −→ Λ1, 0T ⋆X −→ (E, ∂̄E + γ) −→ T 1, 0X −→ 0 (4.172)

obtained from (4.171) by changing only the holomorphic structure on E from ∂̄E to ∂̄E + γ. This
means that the Chern connection DE, γ of E equipped with the holomorphic structure ∂̄E + γ can
be expressed in terms of the Chern connections DS of S := Λ1, 0T ⋆X and DQ of Q := T 1, 0X (all of
them corresponding to the fibre metrics induced by ω) as

DE, γ =

(
DS α⋆

−α DQ

)
.

The restriction to S := Λ1, 0T ⋆X of the new holomorphic structure ∂̄E + γ of E coincides with the
restriction of the original holomorphic structure ∂̄E, hence with the natural holomorphic structure
of S, since γ vanishes on S, by definition.

Moreover, we know from the general theory (see [Dem97, V. §.14]) that the ∂̄-cohomology class
{α} ∈ H0, 1(X, Hom (T 1, 0X, Λ1, 0T ⋆X)) characterises the isomorphism class of (E, ∂̄E + γ) among
all the extensions of S := Λ1, 0T ⋆X by Q := T 1, 0X. In particular, the exact sequence (4.172) splits
holomorphically if and only if {α} = 0 ∈ H0, 1(X, Hom (T 1, 0X, Λ1, 0T ⋆X)), which is equivalent to
∂ω being ∂̄-exact. When dimCX = 3, we know from (II) of Lemma 4.6.3 that ∂ω is ∂̄-exact if and
only if ω is Hermitian-symplectic.

We conclude that, when dimCX = 3, the exact sequence (4.172) splits holomorphically if and
only if ω is Hermitian-symplectic.
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4.6.4 An example of SKT manifold: S3 × S3 equipped with the Calabi-
Eckmann complex structure

Most of the material in this subsection is taken from [TT17]. Recall that the special unitary group
SU(2) is diffeomorphic to the 3-sphere S3 as a manifold, so SU(2) is simply connected and S3 has
the structure of a compact connected Lie group. This is because SU(2) = {A ∈ M(2, C) | A tĀ =
I2 and detA = 1}, so SU(2) consists of the matrices

A =

(
α γ
β δ

)
with α, β, γ, δ ∈ C satisfying the relations: |α|2+ |γ|2 = |β|2+ |δ|2 = 1, αβ̄+γδ̄ = 0 and αδ−βγ = 1.
Multiplying the equality αβ̄ + γδ̄ = 0 by β and using the other relations, we get:

α|β|2 + (αδ − 1) δ̄ = 0 ⇐⇒ α (|β|2 + |δ|2) = δ̄ ⇐⇒ α = δ̄,

while multiplying the equality αβ̄ + γδ̄ = 0 by δ and using the other relations, we get:

(1 + βγ) β̄ + γ|δ|2 = 0 ⇐⇒ β̄ + γ (|β|2 + |δ|2) = 0 ⇐⇒ γ = −β̄.

This leads to

SU(2) =

{(
α −β̄
β ᾱ

)
| α, β ∈ C such that |α|2 + |β|2 = 1

}
≃ S3.

As is also standard, this proves that every element in SU(2) maps isomorphically to the unit-norm
quaternion a1+ b i+ c j+ dk, where α := a+ ib and β := −c+ id with a, b, c, d ∈ R.

The Lie algebra of SU(2) is su(2) = {A ∈ M(2, C) | A +t Ā = O2 and TrA = 0}. Explicitly,
su(2) consists of the matrices

A =

(
iy −z̄
z −iy

)
with y ∈ R and z ∈ C. In particular, the Lie algebra su(2) is generated as an R-vector space by

e1 =

(
0 i
i 0

)
, e2 =

(
0 −1
1 0

)
, e3 =

(
i 0
0 −i

)
.

The basis {e1, e2, e3} of su(2) is easily seen to satisfy the quaternion relations:

e2 e3 = −e3 e2 = e1, e3 e1 = −e1 e3 = e2, e1 e2 = −e2 e1 = e3

and e21 = e22 = e23 = −I2. We infer that the Lie bracket of su(2) is specified by the relations:

[e1, e2] = 2e3, [e1, e3] = −2e2, [e2, e3] = 2e1. (4.173)

The well-known Cartan formula for arbitrary 1-forms α reads:

(dα)(ξ0, ξ1) = ξ0.α(ξ1)− ξ1.α(ξ0)− α([ξ0, ξ1])

for all vector fields ξ0, ξ1. Together with (4.173), it yields the following structure equations for the
dual co-frame {e1, e2, e3} associated with the basis {e1, e2, e3} of su(2):

de1 = −2e2 ∧ e3, de2 = 2e1 ∧ e3, de3 = −2e1 ∧ e2. (4.174)

Now, consider the differentiable manifold X = S3× S3 ≃ SU(2)× SU(2). Let {e1, e2, e3}, resp.
{f1, f2, f3}, be a basis of the first copy, resp. of the second copy, of su(2). Let {e1, e2, e3} and
{f 1, f 2, f 3} be the corresponding dual co-frames.
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Definition 4.6.18. One defines a complex structure J on X by setting:

Je1 = e2, Jf1 = f2, Je3 = f3.

It turns out (see [Par03]) that J coincides with the Calabi-Eckmann complex structure
(introduced in [CE53]) or its conjugate. Therefore, we denote J := JCE.

We now switch from vector fields to differential forms using the following action of J on 1-forms:
for every 1-form α, we define the 1-form Jα by requiring that, for every vector field ξ, we have:

(Jα)(ξ) = α(Jξ).

Thus, the action of J on vector fields described in Definition 4.6.18 translates to the following
relations at the level of 1-forms:

Je1 = −e2, Jf 1 = −f 2, Je3 = −f 3. (4.175)

A complex co-frame of (1, 0)-forms on (S3 × S3, JCE) is given by

φ1 := e1 + ie2, φ2 := f 1 + if 2, φ3 := e3 + if 3. (4.176)

(That φ1, φ2 and φ3 are indeed i-eigenvectors for J , hence 1-forms of bidegree (1, 0), follows at once
from (4.175). For example,

Jφ1 = Je1 + iJe2 = −e2 + ie1 = i (e1 + ie2) = i φ1.)

Taking d in (4.176) and using (4.174), we get the following complex structure equations for
(S3 × S3, JCE):

dφ1 = iφ1 ∧ φ3 + iφ1 ∧ φ3, dφ2 = φ2 ∧ φ3 − φ2 ∧ φ3, dφ3 = −iφ1 ∧ φ1 + φ2 ∧ φ2. (4.177)

These are equivalent to the following two groups of equations in bidegree (2, 0), resp. (1, 1):

∂φ1 = iφ1 ∧ φ3, ∂φ2 = φ2 ∧ φ3, ∂φ3 = 0, (4.178)

∂̄φ1 = iφ1 ∧ φ3, ∂̄φ2 = −φ2 ∧ φ3, ∂̄φ3 = −iφ1 ∧ φ1 + φ2 ∧ φ2. (4.179)

Definition 4.6.19. One defines a Hermitian metric ω on (S3 × S3, JCE) by setting:

ω :=
i

2

3∑
j=1

φj ∧ φj.

We now get our first example of a higher-dimensional compact non-Kähler SKT manifold.

Proposition 4.6.20. The Hermitian metric ω of Definition 4.6.19 has the property ∂∂̄ω = 0. Hence,
the Calabi-Eckmann manifold (S3 × S3, JCE) is an SKT manifold of complex dimension 3.

Proof. Straightforward computations yield:

∂̄ω =
i

2
(∂̄φ1 ∧ φ1 − φ1 ∧ ∂̄φ1 + ∂̄φ2 ∧ φ2 − φ2 ∧ ∂̄φ2 + ∂̄φ3 ∧ φ3 − φ3 ∧ ∂̄φ3)

=
1

2
φ1 ∧ φ1 ∧ φ3 +

i

2
φ2 ∧ φ2 ∧ φ3,
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where (4.178) and (4.179) were used to get the last identity from the previous one.
Taking ∂, we further get:

∂∂̄ω =
1

2
∂φ1 ∧ φ1 ∧ φ3 − 1

2
φ1 ∧ ∂φ1 ∧ φ3 +

1

2
φ1 ∧ φ1 ∧ ∂φ3

+
i

2
∂φ2 ∧ φ2 ∧ φ3 − i

2
φ2 ∧ ∂φ2 ∧ φ3 +

i

2
φ2 ∧ φ2 ∧ ∂φ3

= −1

2
φ1 ∧ φ1 ∧ φ2 ∧ φ2 +

1

2
φ1 ∧ φ1 ∧ φ2 ∧ φ2 = 0,

where (4.178) and (4.179) were used to get the first identity on the last line from the previous one.
□

Following [TT17], let us now consider the following holomorphic family of small deformations Jt
of the complex structure J0 := JCE defined as:

φ1
t := φ1, φ2

t := φ2, φ3
t := φ3 − tφ3, (4.180)

for t varying in a small disc D about 0 in C.
The last identity in (4.180) implies φ3

t = φ3 − t̄ φ3, so we get

φ3 = φ3
t + t (φ3

t + t̄ φ3) = φ3
t + t φ3

t + |t|2 φ3,

yielding

φ3 =
φ3
t + t φ3

t

1− |t|2
and φ3 =

φ3
t + t̄ φ3

t

1− |t|2
.

Using these identities, (4.180) and (4.177), straightforward computations yield:

dφ1
t =

i(t̄+ 1)

1− |t|2
φ1
t ∧ φ3

t +
i(t+ 1)

1− |t|2
φ1
t ∧ φ3

t

dφ2
t =

1− t̄
1− |t|2

φ2
t ∧ φ3

t +
t− 1

1− |t|2
φ2
t ∧ φ3

t

dφ3
t = i(t− 1)φ1

t ∧ φ1
t + (t+ 1)φ2

t ∧ φ2
t . (4.181)

For example, the last identity follows from:

dφ3
t = dφ3 − tdφ3 = −iφ1 ∧ φ1 + φ2 ∧ φ2 + itφ1 ∧ φ1 + tφ2 ∧ φ2.

Lemma 4.6.21. On the complex manifold (S3 × S3, Jt), the (1, 1)-form φ3
t ∧ φ3

t has the property:

∂t∂̄t(φ
3
t ∧ φ3

t ) = −4Im(t) iφ1
t ∧ φ1

t ∧ iφ2
t ∧ φ2

t , t ∈ D.

In particular, if Im(t) < 0, ∂t∂̄t(φ
3
t ∧ φ3

t ) ≥ 0 as a non-zero C∞ (2, 2)-form on (S3 × S3, Jt).

Proof. Straightforward computations yield:

∂t∂̄t(φ
3
t ∧ φ3

t ) = ∂t∂̄tφ
3
t ∧ φ3

t + ∂̄tφ
3
t ∧ ∂tφ3

t − ∂tφ3
t ∧ ∂̄tφ3

t + φ3
t ∧ ∂t∂̄tφ3

t = ∂̄tφ
3
t ∧ ∂tφ3

t ,

where the last identity follows from ∂tφ
3
t = 0 as a Jt-(2, 0)-form, itself a consequence of the formula

displaying dφ3
t as a Jt-(1, 1)-form in (4.181). Since ∂̄tφ

3
t = i(t− 1)φ1

t ∧ φ1
t + (t + 1)φ2

t ∧ φ2
t by the

same formula, we further get:

∂t∂̄t(φ
3
t ∧ φ3

t ) = [i(t− 1)φ1
t ∧ φ1

t + (t+ 1)φ2
t ∧ φ2

t ] ∧ [i(t̄− 1)φ1
t ∧ φ1

t − (t̄+ 1)φ2
t ∧ φ2

t ]

= −i(t− 1)(t̄+ 1)φ1
t ∧ φ1

t ∧ φ2
t ∧ φ2

t + i(t̄− 1)(t+ 1)φ1
t ∧ φ1

t ∧ φ2
t ∧ φ2

t

= 2i(t− t̄) iφ1
t ∧ φ1

t ∧ iφ2
t ∧ φ2

t = −4Im (t) iφ1
t ∧ φ1

t ∧ iφ2
t ∧ φ2

t .

□
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Corollary 4.6.22. The complex manifold (S3 × S3, Jt) is not SKT if Im(t) < 0 with t ∈ D close
enough to 0.

In particular, the SKT property of compact complex manifolds is not open under holomorphic
deformations of complex structures.

Proof. By Lemma 4.6.21, the non-zero C∞ (2, 2)-form ∂t∂̄t(φ
3
t ∧ φ3

t ) ≥ 0 is a non-zero (∂∂̄)-exact
semi-positive (n−1, n−1) = (2, 2)-current on (S3×S3, Jt) when Im(t) < 0. By Proposition 4.6.16,
the complex manifold (S3 × S3, Jt) is not SKT in this case.

Since, moreover, (S3 × S3, J0) = (S3 × S3, JCE) is an SKT manifold by Proposition 4.6.20, we
get the last conclusion of Corollary 4.6.22. □

4.6.5 Behaviour of the Frölicher spectral sequence on SKT manifolds

The material in this subsection is taken from [Pop16] where the following conjecture was proposed.

Conjecture 4.6.23. ([Pop16, Conjecture 1.3]) The Frölicher spectral sequence of an SKT compact
complex manifold X degenerates at E2.

If confirmed, this would be the first known non-Kähler metric hypothesis implying a degeneration
property of the Frölicher spectral sequence. It would thus provide a link between the analytic,
metrical side of the theory of compact complex manifolds and the algebraic, Hodge-theoretical side.
While the general case of Conjecture 4.6.23 is still open, it was proved to hold in [Pop16] under
two different and independent groups of extra assumptions on the metric that we shall now discuss
separately.

(I) First sufficient metric condition for Frölicher E2 degeneration

Conjecture 4.6.23 was proved to hold in [Pop16] when an SKT metric with small torsion exists in
the sense that we now describe. Let X be a compact complex manifold with dimCX = n. With every
Hermitian metric ω on X we associate the following zero-order operators of type (0, 0) depending
only on the torsion of ω: S̄ω := [∂̄ω ∧ ·, (∂̄ω ∧ ·)⋆] ≥ 0,

Zω := [τω, τ
⋆
ω] + [∂ω ∧ ·, (∂ω ∧ ·)⋆] ≥ 0 and R̄ω := [τ̄ω, τ̄

⋆
ω]− [∂̄ω ∧ ·, (∂̄ω ∧ ·)⋆], (4.182)

where the notation is the standard one: [A, B] := AB − (−1)a bBA denotes the graded commutator
of any pair of endomorphisms A,B of respective degrees a, b of the graded algebra C∞

•, •(X, C) of
smooth differential forms on X, while τ = τω := [Λ, ∂ω ∧ ·] is the torsion operator of order zero and
bidegree (1, 0) associated with ω (see Proposition 4.5.11) and Λ = Λω is the formal adjoint of the
Lefschetz operator L := ω ∧ · w.r.t. the L2 inner product induced by ω on differential forms.

By the torsion of a Hermitian metric ω being small we mean that the upper bound of the torsion
operator Zω (which is bounded) is dominated by a certain fixed multiple of the smallest positive
eigenvalue of the non-negative self-adjoint elliptic operator ∆′ +∆′′ in every bidegree (p, q).

Theorem 4.6.24. Let X be a compact complex n-dimensional manifold. If X carries an SKT
metric ω whose torsion satisfies the condition

sup
u∈C∞

p, q(X,C), ||u||=1

⟨⟨Zωu, u⟩⟩ ≤
1

3
min

(
Spec (∆′ +∆′′)p, q ∩ (0, +∞)

)
(4.183)

for all p, q ∈ {0, . . . , n}, then the Frölicher spectral sequence of X degenerates at E2.
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By (∆′ + ∆′′)p, q we mean the operator ∆′ + ∆′′ acting on (p, q)-forms, while Spec (∆′ + ∆′′)p, q

stands for its spectrum and || · ||, ⟨⟨·, ·⟩⟩ denote the L2-norm, resp. the L2-inner product induced
by ω on differential forms. Thus, the r.h.s. in (4.183) is a third of the size of the spectral gap of
∆′ +∆′′, an important quantity standardly associated with a given metric ω.

Proof of Theorem 4.6.24.

Two of the main tools are the pseudo-differential Laplacian ∆̃ and the Hodge isomorphism for the
spaces Ep, q

2 on the 2-nd page of the FSS of X it induces that were discussed in §.3.1.

Throughout this discussion, (X, ω) will be a compact Hermitian manifold with dimCX = n.
Recall that for every k ∈ {0, . . . , 2n}, the d-Laplacian ∆ : C∞

k (X, C) −→ C∞
k (X, C) is defined by

∆ = dd⋆ + d⋆d. If we denote by Hk
∆(X, C) ⊂ C∞

k (X, C) the kernel of ∆ acting on smooth forms of
degree k, we have the Hodge isomorphism Hk

∆(X, C) ≃ Hk
DR(X, C) with the De Rham cohomology

group of degree k.
We start with the following very simple observation.

Lemma 4.6.25. (a) If for every p, q ∈ {0, 1, . . . , n} the following map induced by the identity

Jp, q : H̃p, q

∆̃
(X, C) −→ Hp+q

∆ (X, C), γ 7−→ γ, (4.184)

is well defined, then the Frölicher spectral sequence of X degenerates at E2.
(b) A sufficient condition for the map Jp, q to be well defined is that the following inequality hold

∆′ −∆′
p′′ ≤ ∆′′ + (C∆′′ + (1− ε)∆′) on (p, q)-forms, (4.185)

for some constants C ≥ 0 and 0 < ε ≤ 1 depending only on X, ω and (p, q). (Recall that ∆′−∆′
p′′ =

∆′
p′′⊥
≥ 0.)

Thus, (4.185) implies the degeneration at E2 of the Frölicher spectral sequence of X.

Proof. (a) Well-definedness for Jp, q means that for every smooth (p, q)-form γ we have ∆γ = 0

whenever ∆̃γ = 0. It is clear that Jp, q is automatically injective if it is well defined, hence in that
case dim H̃p, q

∆̃
(X, C) ≤ dimHp+q

∆ (X, C). Therefore, if all the maps Jp, q are well defined, then∑
p+q=k

dimEp, q
2 ≤ bk := dimHk

DR(X, C) for all k ∈ {0, . . . , 2n} (4.186)

since dimEp, q
2 = dim H̃p, q

∆̃
(X, C) by the Hodge isomorphism (3.20) and the images Jp, q(H̃p, q

∆̃
(X, C))

inHk
∆(X, C) have pairwise intersections reduced to zero for p+q = k for bidegree reasons. Inequality

(4.186) is precisely the degeneration condition at E2.
(b) Clearly, a sufficient condition for Jp, q to be well defined is that the following inequality hold

⟨⟨∆γ, γ⟩⟩ ≤ C ⟨⟨∆̃γ, γ⟩⟩ for all γ ∈ C∞
p, q(X, C) (4.187)

since ∆, ∆̃ ≥ 0. Now, by definition of ∆̃ (cf. (3.9)), ⟨⟨∆̃γ, γ⟩⟩ = ⟨⟨∆′
p′′γ, γ⟩⟩ + ⟨⟨∆′′γ, γ⟩⟩. Mean-

while, for every (p, q)-form γ, we have ⟨⟨∆γ, γ⟩⟩ = ||∂γ+ ∂̄γ||2+ ||∂⋆γ+ ∂̄⋆γ||2 = ||∂γ||2+ ||∂⋆γ||2+
||∂̄γ||2 + ||∂̄⋆γ||2 = ⟨⟨∆′γ, γ⟩⟩ + ⟨⟨∆′′γ, γ⟩⟩ since ∂γ is orthogonal to ∂̄γ and ∂⋆γ is orthogonal to
∂̄⋆γ for bidegree reasons. (This argument breaks down if γ is not of pure type.) Thus

⟨⟨∆γ, γ⟩⟩ = ⟨⟨∆′γ, γ⟩⟩+ ⟨⟨∆′′γ, γ⟩⟩ for all γ ∈ C∞
p, q(X, C). (4.188)
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It is now clear that (4.185) implies (4.187) with a possibly different constant C, so (4.185) implies
the well-definedness of Jp, q. □

Concerning inequality (4.185), note that the stronger inequality ⟨⟨∆′γ, γ⟩⟩ ≤ C ⟨⟨∆′′γ, γ⟩⟩ for
all (p, q)-forms γ and all bidegrees (p, q) implies the degeneration at E1 of the Frölicher spectral
sequence, but we shall not pursue this here.

Use of (b) of Lemma 4.6.25

We shall now concentrate on proving inequality (4.185) under the SKT assumption coupled with
a torsion assumption on the metric ω.

Lemma 4.6.26. A sufficient condition for (4.185) to hold (hence for E2(X) = E∞(X)) is that there
exist constants 0 < δ < 1− ε < 1 and C ≥ 0 such that the following inequality holds

(1− ε− δ)
(
||p′′⊥∂u||2 + ||p′′⊥∂⋆u||2

)
+ (1− ε) (||p′′∂u||2 + ||p′′∂⋆u||2) + C ⟨⟨∆′′u, u⟩⟩ ≥(

1

δ
− 1

)(
||p′′⊥τu||2 + ||p′′⊥τ ⋆u||2

)
+ ⟨⟨[∂ω ∧ ·, (∂ω ∧ ·)⋆]u, u⟩⟩ − ⟨⟨[Λ, [Λ, i

2
∂∂̄ω]]u, u⟩⟩ (4.189)

for every form u ∈ C∞
p, q(X, C) and every bidegree (p, q). (Note that all the terms on the r.h.s. of

(4.189) are of order zero, hence bounded, while the last and only signless term vanishes if ω is SKT.)

Proof. By Demailly’s non-Kähler Bochner-Kodaira-Nakano identity ∆′′ = ∆′
τ + Tω (cf. (4.81)),

inequality (4.185) is equivalent to each of the following inequalities:

∆′ −∆′
p′′ ≤ ∆′ + [τ, ∂⋆] + [∂, τ ⋆] + [τ, τ ⋆] + C∆′′ + (1− ε)∆′ + Tω ⇐⇒

0 ≤
(
∆′
p′′ + (τp′′∂⋆ + ∂⋆p′′τ) + (∂p′′τ ⋆ + τ ⋆p′′∂) + (τp′′τ ⋆ + τ ⋆p′′τ)

)
(4.190)

+ (1− ε)∆′ + C∆′′ + (τp′′⊥∂
⋆ + ∂⋆p′′⊥τ) + (∂p′′⊥τ

⋆ + τ ⋆p′′⊥∂) + (τp′′⊥τ
⋆ + τ ⋆p′′⊥τ) + Tω.

Since ∆′
p′′ + (τp′′∂⋆ + ∂⋆p′′τ) + (∂p′′τ ⋆ + τ ⋆p′′∂) + (τp′′τ ⋆ + τ ⋆p′′τ) = (∂ + τ)p′′(∂⋆ + τ ⋆) + (∂⋆ +

τ ⋆)p′′(∂ + τ) ≥ 0, inequality (4.190) holds if the following inequality holds

(1− ε) ⟨⟨∆′u, u⟩⟩ + C ⟨⟨∆′′u, u⟩⟩+ ||p′′⊥τu||2 + ||p′′⊥τ ⋆u||2

≥ −2Re ⟨⟨p′′⊥∂⋆u, p′′⊥τ ⋆u⟩⟩ − 2Re ⟨⟨p′′⊥∂u, p′′⊥τu⟩⟩ − ⟨⟨Tωu, u⟩⟩. (4.191)

Now, suppose that 0 < ε < 1 and choose any 0 < δ < 1− ε. The Cauchy-Schwarz inequality gives

∣∣∣∣2Re ⟨⟨p′′⊥∂u, p′′⊥τu⟩⟩∣∣∣∣ ≤ δ ||p′′⊥∂u||2+
1

δ
||p′′⊥τu||2,

∣∣∣∣2Re ⟨⟨p′′⊥∂⋆u, p′′⊥τ ⋆u⟩⟩∣∣∣∣ ≤ δ ||p′′⊥∂⋆u||2+
1

δ
||p′′⊥τ ⋆u||2.

Thus, for (4.191) to hold, it suffices that the following inequality hold:

(1− ε) ⟨⟨∆′u, u⟩⟩+ C ⟨⟨∆′′u, u⟩⟩ ≥ δ (||p′′⊥∂u||2 + ||p′′⊥∂⋆u||2) +
(
1

δ
− 1

)
(||p′′⊥τu||2 + ||p′′⊥τ ⋆u||2)

+ ⟨⟨[∂ω ∧ ·, (∂ω ∧ ·)⋆]u, u⟩⟩ − ⟨⟨[Λ, [Λ, i
2
∂∂̄ω]]u, u⟩⟩. (4.192)



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS335

This is equivalent to (4.189) since

⟨⟨∆′u, u⟩⟩ = ||p′′∂u+p′′⊥∂u||2+ ||p′′∂⋆u+p′′⊥∂⋆u||2 = (||p′′∂u||2+ ||p′′∂⋆u||2)+ (||p′′⊥∂u||2+ ||p′′⊥∂⋆u||2)
thanks to the obvious orthogonality relations p′′∂u ⊥ p′′⊥∂u and p′′∂⋆u ⊥ p′′⊥∂

⋆u. □

To apply Lemma 4.6.26, we start with a very simple elementary observation.

Lemma 4.6.27. Let H be a Hilbert space and let A,B : H → H be closed linear operators such that
A,B ≥ 0, A = A⋆ and B = B⋆.

If kerA ⊂ kerB and if B ≤ A on (kerA)⊥, then B ≤ A.

Proof. We have to prove that ⟨Bu, u⟩ ≤ ⟨Au, u⟩ for all u. Since A is closed, kerA is closed in H, so
every u ∈ H splits uniquely as u = uA + u⊥A with uA ∈ kerA and u⊥A ∈ (kerA)⊥. Moreover,

A((kerA)⊥) ⊂ (kerA)⊥. (4.193)

Indeed, for every u⊥A ∈ (kerA)⊥ and every v ∈ kerA, we have: ⟨A(u⊥A), v⟩ = ⟨u⊥A, Av⟩ = 0 since
A⋆v = Av = 0. Therefore, for every u, we get:

⟨Au, u⟩ = ⟨Au⊥A, uA + u⊥A⟩ = ⟨Au⊥A, u⊥A⟩ ≥ ⟨Bu⊥A, u⊥A⟩ = ⟨Bu⊥A, u⟩ = ⟨Bu, u⟩.
The second identity above followed from (4.193), the inequality followed from the hypothesis and
the last two identities followed from the next relations:

(i) B((kerA)⊥) ⊂ (kerA)⊥ and (ii) B(kerA) = 0.
To prove (i), let u⊥A ∈ (kerA)⊥ and v ∈ kerA ⊂ kerB. We have: ⟨B(u⊥A), v⟩ = ⟨u⊥A, Bv⟩ = 0 since
B⋆v = Bv = 0. Identity (ii) follows from the hypothesis kerA ⊂ kerB. □

We shall now apply Lemma 4.6.27 to the non-negative self-adjoint operators

B := ∆′
p′′⊥

= ∆′ −∆′
p′′ ≥ 0 and A := (C + 1)∆′′ + (1− ε)∆′ ≥ 0

for which we obviously have kerB = ker∆′
p′′⊥
⊃ ker∆′ ⊃ ker∆′ ∩ ker∆′′ = kerA. The choice of

constants C > 0 and 0 < ε < 1 will be specified later on.
We know from (b) of Lemma 4.6.25 that a sufficient condition for E2(X) = E∞(X) in the Frölicher

spectral sequence is the validity of inequality (4.185), i.e. of the inequality B ≤ A. By Lemma 4.6.27,
this is equivalent to having B ≤ A on (kerA)⊥ = (ker∆′ ∩ ker∆′′)⊥. Now, the proof of Lemma
4.6.26 shows that for this to hold, it suffices for the inequality (4.192) to hold on (ker∆′ ∩ ker∆′′)⊥.
If we assume ∂∂̄ω = 0, after bounding above ||p′′⊥v|| by ||v|| for v ∈ {∂u, ∂⋆u, τu, τ ⋆u} in the r.h.s.
of (4.192), we see that it suffices to have

(1− ε− δ) ⟨⟨∆′u, u⟩⟩+ C ⟨⟨∆′′u, u⟩⟩ ≥
(
1

δ
− 1

)
⟨⟨[τ, τ ⋆]u, u⟩⟩+ ⟨⟨[∂ω ∧ ·, (∂ω ∧ ·)⋆]u, u⟩⟩.(4.194)

for all u ∈ (ker∆′ ∩ ker∆′′)⊥ and some fixed constants C > 0, 0 < δ < 1− ε < 1.
Now, we choose the constants such that δ = 1 − 2ε > 0 (so 0 < ε < 1

2
) and C = 1 − ε − δ = ε.

Thus, (1/δ) − 1 = 2ε/(1 − 2ε). If, moreover, we choose ε such that 2/(1 − 2ε) < 3 (i.e. such that
0 < ε < 1/6), (4.194) holds with these choices of constants whenever the following inequality holds:

⟨⟨(∆′ +∆′′)u, u⟩⟩ ≥ 3 ⟨⟨([τ, τ ⋆] + [∂ω ∧ ·, (∂ω ∧ ·)⋆])u, u⟩⟩ for all u ∈ (ker∆′ ∩ ker∆′′)⊥.(4.195)
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For all p, q ∈ {0, . . . , n}, the non-negative self-adjoint differential operator ∆′+∆′′ : C∞
p, q(X, C) −→

C∞
p, q(X, C) is elliptic. Therefore, since X is compact, it has a discrete spectrum contained in [0, +∞)

with +∞ as its only accumulation point. In particular, it has a smallest positive eigenvalue that we
denote by

ρp, qω := min

(
Spec (∆′ +∆′′)p, q ∩ (0, +∞)

)
> 0. (4.196)

Thus, ρp, qω is the size of the spectral gap of ∆′ +∆′′ acting on (p, q)-forms. We get

⟨⟨(∆′ +∆′′)u, u⟩⟩ ≥ ρp, qω ||u||2 for all u ∈ C∞
p, q(X, C) ∩ (ker∆′ ∩ ker∆′′)⊥, (4.197)

since ker(∆′+∆′′) = ker∆′∩ker∆′′. On the other hand, the non-negative torsion operator [τ, τ ⋆]+
[∂ω ∧ ·, (∂ω ∧ ·)⋆] is of order zero, hence bounded, hence

⟨⟨([τ, τ ⋆] + [∂ω ∧ ·, (∂ω ∧ ·)⋆])u, u⟩⟩ ≤ Cp, q
ω ||u||2 for all u ∈ C∞

p, q(X, C), (4.198)

where Cp, q
ω := sup

u∈C∞
p, q(X,C), ||u||=1

⟨⟨([τ, τ ⋆] + [∂ω ∧ ·, (∂ω ∧ ·)⋆])u, u⟩⟩.

We conclude from (4.197) and (4.198) that (4.195) holds if ρp, qω ≥ 3Cp, q
ω . We have thus proved

the following statement which is nothing but Theorem 4.6.24.

Theorem 4.6.28. Let X be a compact complex n-dimensional manifold. If X carries an SKT
metric ω whose torsion satisfies the condition

Cp, q
ω ≤ 1

3
ρp, qω (4.199)

for all p, q ∈ {0, . . . , n}, then the Frölicher spectral sequence of X degenerates at E2.

The proof of Theorem 4.6.24 is complete.

(II) Second group of sufficient metric conditions for Frölicher E2 degeneration

We shall now give a different kind of metric conditions ensuring that E2(X) = E∞(X) in the
Frölicher spectral sequence. To this end, we shall use (a) of Lemma 4.6.25.

Lemma 4.6.29. Let X be a compact complex manifold with dimCX = n. If X admits a Hermitian
metric ω whose induced operators ∆′,∆′′,∆′

p′′ : C
∞
p, q(X, C) −→ C∞

p, q(X, C) satisfy the condition

ker∆′
p′′ ∩ ker∆′′ ⊂ ker∆′ in every bidegree (p, q), (4.200)

the Frölicher spectral sequence of X degenerates at E2.

Proof. As noticed in (3.10), we always have ker∆′
p′′ ⊃ ker∆′. Recall that ker∆′

p′′ ∩ ker∆′′ = ker ∆̃

and that this space is denoted by H̃p, q

∆̃
(X, C) in bidegree (p, q). For every u ∈ H̃p, q

∆̃
(X, C), we have

∆′u = 0 thanks to (4.200), hence from (4.188) we get

⟨⟨∆u, u⟩⟩ = ⟨⟨∆′u, u⟩⟩+ ⟨⟨∆′′u, u⟩⟩ = 0 + 0 = 0.

This shows that the identity map induces a well-defined linear map H̃p, q

∆̃
(X, C) −→ Hp+q

∆ (X, C) for
all (p, q), hence E2(X) = E∞(X) by (a) of Lemma 4.6.25. □

We now use Lemma 4.6.29 to give two sufficient metric conditions ensuring that E2(X) = E∞(X)
in the Frölicher spectral sequence.
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Theorem 4.6.30. Let X be a compact complex manifold with dimCX = n.
(i) For any Hermitian metric ω on X, the following three conditions are equivalent:

(a) p′′∂ = ∂p′′ on all (p, q)-forms for all bidegrees (p, q);
(b) [∂, ∂̄⋆](ker∆′′) = 0 and [∂, ∂̄⋆](Im ∂̄ ⊕ Im ∂̄⋆) ⊂ Im ∂̄ ⊕ Im ∂̄⋆;
(c) [∂, τ̄ ⋆](ker∆′′) = 0 and [∂, τ̄ ⋆](Im ∂̄ ⊕ Im ∂̄⋆) ⊂ Im ∂̄ ⊕ Im ∂̄⋆.

Moreover, if X carries a Hermitian metric ω satisfying one of the equivalent conditions (a), (b), (c),
the Frölicher spectral sequence of X degenerates at E2.

(ii) If X carries an SKT metric ω (i.e. such that ∂∂̄ω = 0) which moreover satisfies the identity

⟨⟨[τ̄ , τ̄ ⋆]u, u⟩⟩ = ⟨⟨[∂̄ω ∧ ·, (∂̄ω ∧ ·)⋆]u, u⟩⟩ for all u ∈ ker∆′
p′′ ∩ ker∆′′, (4.201)

the Frölicher spectral sequence of X degenerates at E2.

Proof. (i) Let ω be any Hermitian metric on X and let u be any smooth (p, q)-form. Then
u = u0 + ∂̄v + ∂̄⋆w with u0 ∈ ker∆′′ and v, w smooth forms of bidegrees (p, q − 1), resp. (p, q + 1).
(Note that we can choose v ∈ Im ∂̄⋆ and w ∈ Im ∂̄ if these forms are chosen to have minimal L2

norms.) Thus p′′u = u0, so the following equivalences hold:

p′′∂u = ∂p′′u ⇐⇒ p′′∂u0 + p′′∂∂̄v + p′′∂∂̄⋆w = ∂u0 ⇐⇒ p′′∂∂̄⋆w = p′′⊥∂u0

⇐⇒ p′′∂∂̄⋆w = 0 and p′′⊥∂u0 = 0 ⇐⇒ ∂u0 ∈ ker∆′′ and ∂∂̄⋆w ∈ Im ∂̄ ⊕ Im ∂̄⋆

⇐⇒ ∂u0 ∈ ker ∂̄⋆ and ∂∂̄⋆w ∈ Im ∂̄ ⊕ Im ∂̄⋆. (4.202)

We have successively used the following facts: p′′∂∂̄v = −p′′∂̄∂v = 0 because ker∆′′ ⊥ Im ∂̄,
1 − p′′ = p′′⊥, Im p′′ = ker∆′′ ⊥ Im ∂̄ ⊕ Im ∂̄⋆ = Im p′′⊥, ∂u0 ∈ ker ∂̄ = ker∆′′ ⊕ Im ∂̄ (because
u0 ∈ ker∆′′ ⊂ ker ∂̄), hence the equivalence ∂u0 ∈ ker∆′′ ⇐⇒ ∂u0 ∈ ker ∂̄⋆.

Now, ∂̄⋆∂w ∈ Im ∂̄⋆ and ∂∂̄⋆u0 = 0 because u0 ∈ ker∆′′ = ker ∂̄ ∩ ker ∂̄⋆ ⊂ ker ∂̄⋆, so (4.202) is
equivalent to

[∂, ∂̄⋆]u0 = 0 and [∂, ∂̄⋆]w ∈ Im ∂̄ ⊕ Im ∂̄⋆.

On the other hand, [∂, ∂̄⋆] = −[∂, τ̄ ⋆] by (4.83). Since u0 ∈ ker∆′′ and w ∈ Im ∂̄ ⊕ Im ∂̄⋆ are
arbitrary, the equivalences stated under (i) are proved.

To prove the last statement of (i), let ω be a metric satisfying condition (a). We are going to
show that the inclusion (4.200) holds, hence by Lemma 4.6.29 we shall have E2(X) = E∞(X) in the
Frölicher spectral sequence of X. Let u ∈ ker∆′

p′′ ∩ ker∆′′ of an arbitrary bidegree (p, q). Then

0 = ⟨⟨∆′
p′′ u, u⟩⟩ = ⟨⟨∆′(p′′u), u⟩⟩ = ⟨⟨∆′ u, u⟩⟩,

where the second identity followed from p′′∂ = ∂p′′ (which also implies p′′∂⋆ = ∂⋆p′′) and the last
identity followed from u ∈ ker∆′′ (which amounts to p′′u = u). Thus ∆′u = 0, i.e. u ∈ ker∆′. This
proves (4.200), so Lemma 4.6.29 applies.

(ii) We prove that inclusion (4.200) holds under the assumptions made. Let u ∈ ker∆′
p′′∩ker∆′′.

Note that the conjugate of Demailly’s non-Kähler Bochner-Kodaira-Nakano identity ∆′′ = ∆′
τ +

Tω (cf. (4.81)) is

∆′ = ∆′′
τ + T ω, (4.203)
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where ∆′′
τ := [∂̄ + τ̄ , ∂̄⋆ + τ̄ ⋆] and T ω = [Λ, [Λ, i

2
∂∂̄ω ∧ ·]] − [∂̄ω ∧ ·, (∂̄ω ∧ ·)⋆]. Thanks to formula

(4.203), we have

⟨⟨∆′ u, u⟩⟩ = ⟨⟨(∆′′ + [∂̄, τ̄ ⋆] + [τ̄ , ∂̄⋆])u, u⟩⟩+ ⟨⟨[τ̄ , τ̄ ⋆]u, u⟩⟩ − ⟨⟨[∂̄ω ∧ ·, (∂̄ω ∧ ·)⋆]u, u⟩⟩
= ⟨⟨[τ̄ , τ̄ ⋆]u, u⟩⟩ − ⟨⟨[∂̄ω ∧ ·, (∂̄ω ∧ ·)⋆]u, u⟩⟩, (4.204)

where we have used the SKT assumption on ω to have T̄ω reduced to −[∂̄ω ∧ ·, (∂̄ω ∧ ·)⋆] in for-
mula (4.203) and the argument below to infer that ⟨⟨[∂̄, τ̄ ⋆]u, u⟩⟩ = ⟨⟨[τ̄ , ∂̄⋆]u, u⟩⟩ = 0 from the
assumption u ∈ ker∆′′ = ker ∂̄ ∩ ker ∂̄⋆:

⟨⟨[∂̄, τ̄ ⋆]u, u⟩⟩ = ⟨⟨τ̄ ⋆ u, ∂̄⋆u⟩⟩+ ⟨⟨∂̄u, τ̄u⟩⟩ = 0 + 0 = 0,

⟨⟨[τ̄ , ∂̄⋆]u, u⟩⟩ = ⟨⟨∂̄⋆ u, τ̄ ⋆u⟩⟩+ ⟨⟨τ̄u, ∂̄u⟩⟩ = 0 + 0 = 0. (4.205)

Now, ∆′ = ∆′
p′′ +∆′

p′′⊥
, so the assumption u ∈ ker∆′

p′′ reduces (4.204) to

⟨⟨∆′
p′′⊥
u, u⟩⟩ = ⟨⟨[τ̄ , τ̄ ⋆]u, u⟩⟩ − ⟨⟨[∂̄ω ∧ ·, (∂̄ω ∧ ·)⋆]u, u⟩⟩. (4.206)

The r.h.s. of (4.206) vanishes thanks to the hypothesis (4.201), so ∆′
p′′⊥
u = 0, hence also ∆′u = 0.

□

Remark 4.6.31. The proof of (ii) of the above Theorem 4.6.30 shows that if X carries an SKT
metric ω whose torsion satisfies the condition [τ, τ ⋆] = [∂ω∧ ·, (∂ω∧ ·)⋆], then the Frölicher spectral
sequence of X degenerates at E1.

Proof. To get E1 degeneration, it suffices for the inclusion Hp, q
∆′′(X, C) ⊂ Hp+q

∆ (X, C) of ∆′′-, resp.
∆-harmonic spaces to hold for all p, q. (The argument is analogous to the one for (a) of Lemma
4.6.25.) Now, (4.204) holds for all u ∈ Hp, q

∆′′(X, C) if ω is SKT, hence ∆′u = 0 whenever ∆′′u = 0
under the present assumptions. Then, by (4.188), we get ∆u = 0 for all (p, q)-forms u satisfying
∆′′u = 0 and for all p, q. This proves the above inclusion, hence the contention. □

Alternative expression for the torsion operator R̄ω

We shall now compute the operator R̄ω := [τ̄ , τ̄ ⋆] − [∂̄ω ∧ ·, (∂̄ω ∧ ·)⋆] featuring in (ii) of Theorem
4.6.30 in terms of the non-negative operator S̄ω (cf. (4.182)).

Lemma 4.6.32. Let (X, ω) be an arbitrary compact Hermitian manifold of dimension n. Put
S̄ω := [∂̄ω ∧ ·, (∂̄ω ∧ ·)⋆] ≥ 0. The following formula holds:

[τ̄ , τ̄ ⋆]− S̄ω = 2S̄ω + [[Λ, S̄ω], L], (4.207)

where, as usual, L = Lω := ω ∧ ·. Moreover, for any bidegree (p, q), [[Λ, S̄ω], L] is given by

⟨⟨[[Λ, S̄ω], L]u, u⟩⟩ = ⟨⟨S̄ω(ω ∧ u), ω ∧ u⟩⟩ + ⟨⟨S̄ω(Λu), Λu⟩⟩+ (p+ q − n) ⟨⟨S̄ωu, u⟩⟩
− 2Re ⟨⟨Λ(S̄ωu), Λu⟩⟩, u ∈ C∞

p, q(X, C).(4.208)

Proof. Since τ = [Λ, ∂ω ∧ ·], we get

[τ̄ , τ̄ ⋆] =

[
[Λ, ∂̄ω ∧ ·], [(∂̄ω ∧ ·)⋆, L]

]
=

[
[[(∂̄ω ∧ ·)⋆, L], Λ], ∂̄ω ∧ ·

]
−
[
[∂̄ω ∧ ·, [(∂̄ω ∧ ·)⋆, L]], Λ

]
,(4.209)



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS339

where the last identity followed from Jacobi’s identity applied to the operators [(∂̄ω ∧ ·)⋆, L], Λ and
∂̄ω ∧ ·.

To compute the first factor in the first term on the r.h.s. of (4.209), we apply again Jacobi’s
identity:

[
[(∂̄ω ∧ ·)⋆, L], Λ

]
= −

[
[L, Λ], (∂̄ω ∧ ·)⋆

]
−
[
[Λ, (∂̄ω ∧ ·)⋆], L

]
. (4.210)

Using the standard fact that [L, Λ] = (p+ q − n) Id on (p, q)-forms, for any (p, q)-form u we get

[
[L, Λ], (∂̄ω ∧ ·)⋆

]
u = [L, Λ]

(
(∂̄ω ∧ ·)⋆u

)
− (∂̄ω ∧ ·)⋆

(
[L, Λ], u

)
= (p+ q − 3− n) (∂̄ω ∧ ·)⋆u− (∂̄ω ∧ ·)⋆((p+ q − n)u) = −3(∂̄ω ∧ ·)⋆u.

Thus

[
[L, Λ], (∂̄ω ∧ ·)⋆

]
= −3(∂̄ω ∧ ·)⋆. On the other hand, [Λ, (∂̄ω ∧ ·)⋆] = [∂̄ω ∧ ·, L]⋆ = 0 since,

clearly, [∂̄ω ∧ ·, L]u = ∂̄ω ∧ ω ∧ u− ω ∧ ∂̄ω ∧ u = 0 for any u. Therefore, (4.210) reduces to

[
[(∂̄ω ∧ ·)⋆, L], Λ

]
= 3(∂̄ω ∧ ·)⋆. (4.211)

Similarly, to compute the first factor in the second term on the r.h.s. of (4.209), we start by
applying Jacobi’s identity:

[
∂̄ω ∧ ·, [(∂̄ω ∧ ·)⋆, L]

]
=

[
(∂̄ω ∧ ·)⋆, [L, ∂̄ω ∧ ·]

]
−
[
L, [∂̄ω ∧ ·, (∂̄ω ∧ ·)⋆]

]
=

[
[∂̄ω ∧ ·, (∂̄ω ∧ ·)⋆], L

]
= [S̄ω, L], (4.212)

where the last but one identity followed from [L, ∂̄ω ∧ ·] = 0 seen above.
Putting together (4.209), (4.211) and (4.212), we get:

[τ̄ , τ̄ ⋆] = 3S̄ω − [[S̄ω, L], Λ]. (4.213)

A new application of Jacobi’s identity spells

[[S̄ω, L], Λ] + [[L, Λ], S̄ω] + [[Λ, S̄ω], L] = 0, which gives − [[S̄ω, L], Λ] = [[Λ, S̄ω], L]. (4.214)

Indeed, since [L, Λ] = (p + q − n) Id on (p, q)-forms and S̄ω is an operator of type (0, 0), we get
[[L, Λ], S̄ω] = 0 which accounts for the last statement in (4.214).

It is now clear that the combined (4.213) and (4.214) prove (4.207).
To prove (4.208), we start by computing

⟨⟨[[Λ, S̄ω], L]u, u⟩⟩ = ⟨⟨[Λ, S̄ω] (ω ∧ u), u⟩⟩ − ⟨⟨ω ∧ [Λ, S̄ω]u, u⟩⟩
= ⟨⟨S̄ω(ω ∧ u), ω ∧ u⟩⟩ − ⟨⟨ω ∧ u, ω ∧ S̄ωu⟩⟩+ ⟨⟨S̄ω(Λu), Λu⟩⟩

− ⟨⟨Λ(S̄ωu), Λu⟩⟩. (4.215)
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Then we notice the general fact that for every (p, q)-forms u, v we have:

⟨⟨ω ∧ u, ω ∧ v⟩⟩ = ⟨⟨Λu, Λ v⟩⟩ − (p+ q − n) ⟨⟨u, v⟩⟩. (4.216)

Indeed, ⟨⟨ω ∧ u, ω ∧ v⟩⟩ = ⟨⟨Λ(ω ∧ u), v⟩⟩ and Λ(ω ∧ u) = ω ∧ Λu − (p + q − n)u. Now, applying
(4.216), we get

⟨⟨ω ∧ u, ω ∧ S̄ωu⟩⟩ = ⟨⟨Λu, Λ(S̄ωu)⟩⟩ − (p+ q − n) ⟨⟨u, S̄ωu⟩⟩. (4.217)

It is now clear that the combined (4.215) and (4.217) prove (4.208) because ⟨⟨Λu, Λ(S̄ωu)⟩⟩ is
the conjugate of ⟨⟨Λ(S̄ωu), Λu⟩⟩ and ⟨⟨u, S̄ωu⟩⟩ = ⟨⟨S̄ωu, u⟩⟩. □

Putting the hypothesis ∂p′′ = p′′∂ in context

We now reinterpret the commutation of ∂ with p′′ (the simplest sufficient condition for E2(X) =
E∞(X) found so far, cf. Theorem 4.6.30).

Lemma 4.6.33. Let (X, ω) be a compact Hermitian manifold. The following implication and equiv-
alence hold:

∂∆′′ = ∆′′∂ =⇒ ∂p′′ = p′′∂ ⇐⇒ ∂(ker∆′′) ⊂ ker∆′′ and ∂⋆(ker∆′′) ⊂ ker∆′′. (4.218)

Proof. Suppose that ∂∆′′ = ∆′′∂. Then, taking adjoints, we also have ∆′′∂⋆ = ∂⋆∆′′. These identities
immediately imply

∂(ker∆′′) ⊂ ker∆′′ and ∂⋆(ker∆′′) ⊂ ker∆′′. (4.219)

Now suppose that (4.219) holds. We shall prove that ∂p′′ = p′′∂. Let u be an arbitrary smooth
form. Then u splits as u = u0 + ∂̄v + ∂̄⋆w with u0 ∈ ker∆′′. Thus ∂p′′u = ∂u0 and

p′′∂u = p′′∂u0 + p′′∂∂̄v + p′′∂∂̄⋆w = ∂u0 + p′′∂∂̄⋆w

because ∂u0 ∈ ker∆′′ by (4.219) and p′′∂∂̄v = −p′′∂̄∂v = 0 since Im ∂̄ ⊥ ker∆′′. We now prove that
p′′∂∂̄⋆w = 0 and this will show that ∂p′′u = p′′∂u, as desired. Proving that p′′∂∂̄⋆w = 0 is equivalent
to proving that ∂∂̄⋆w ∈ (ker∆′′)⊥. Let ζ ∈ ker∆′′, arbitrary. We have

⟨⟨ζ, ∂∂̄⋆w⟩⟩ = ⟨⟨∂⋆ζ, ∂̄⋆w⟩⟩ = 0

because ∂⋆ζ ∈ ker∆′′ thanks to (4.219), ∂̄⋆w ∈ Im ∂̄⋆ and ker∆′′ ⊥ Im ∂̄⋆.
It remains to prove that if ∂p′′ = p′′∂, then (4.219) holds. Note the general fact that for any form

u, u ∈ ker∆′′ iff p′′u = u. Let us now suppose that ∂p′′ = p′′∂. Then, taking adjoints, we also have
∂⋆p′′ = p′′∂⋆, so (4.219) holds. □

4.6.6 A generalised volume invariant for Aeppli cohomology classes of
Hermitian-symplectic metrics

The material in this subsection is taken from [DP20]. Suppose X is a compact Hermitian-symplectic
manifold. We investigate Question 4.6.9 by introducing a functional F on the open convex subset
S{ω0} ⊂ {ω0}A ∩ C∞

1, 1(X, R) of all the Hermitian-symplectic metrics ω lying in the Aeppli coho-

mology class {ω0}A ∈ H1, 1
A (X, R) of a given Hermitian-symplectic metric ω0. We then go on to
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show that, when dimCX = 3, the critical points of this functional, if any, are precisely the Kähler
metrics in {ω0}A. We go on to exhibit these critical points as maximisers of the volume of the
metric in its Aeppli class and propose a Monge-Ampère-type equation to study their existence.
Our functional is further utilised to define a numerical invariant for any Aeppli cohomology class
of Hermitian-symplectic metrics that generalises the volume of a Kähler class. We obtain two co-
homological interpretations of this invariant. Meanwhile, we construct an invariant in the form of
an E2-cohomology class, that we call the E2-torsion class, associated with every Aeppli class of
Hermitian-symplectic metrics and show that its vanishing is a necessary condition for the existence
of a Kähler metric in the given Hermitian-symplectic Aeppli class.

• The energy functional: case of H-S metrics on compact complex manifolds

LetX be a compact complex manifold with dimCX = n such thatX admits Hermitian-symplectic
metrics.. Recall that these are C∞ positive definite (1, 1)-forms ω > 0 for which there exists
ρ2, 0 ∈ C∞

2, 0(X, C) such that

d(ρ2, 0 + ω + ρ0, 2) = 0, (4.220)

where ρ0, 2 := ρ2, 0. Alternatively, we say that ω̃ := ρ2, 0 + ω+ ρ0, 2 is a Hermitian-symplectic 2-form.

Lemma and Definition 4.6.34. For every Hermitian-symplectic metric ω on X, there exists a
unique smooth (2, 0)-form ρ2, 0ω on X such that

(i) ∂ρ2, 0ω = 0 and (ii) ∂̄ρ2, 0ω = −∂ω and (iii) ρ2, 0ω ∈ Im ∂⋆ω + Im ∂̄⋆ω. (4.221)

Moreover, property (iii) ensures that ρ2, 0ω has minimal L2
ω norm among all the (2, 0)-forms satis-

fying properties (i) and (ii).
We call ρ2, 0ω the (2, 0)-torsion form and its conjugate ρ0, 2ω the (0, 2)-torsion form of the

Hermitian-symplectic metric ω. One has the explicit Neumann-type formula:

ρ2, 0ω = −∆−1
BC [∂̄

⋆∂ω + ∂̄⋆∂∂⋆∂ω], (4.222)

where ∆−1
BC is the Green operator of the Bott-Chern Laplacian ∆BC induced by ω, while ∂⋆ = ∂⋆ω and

∂̄⋆ = ∂̄⋆ω are the formal adjoints of ∂, resp. ∂̄, w.r.t. the L2 inner product defined by ω.

Proof. Condition (4.220) is equivalent to the vanishing of each of the components of pure types (3, 0),
(2, 1), (1, 2) and (0, 3) of the real 3-form d(ρ2, 0+ω+ ρ0, 2). Since the (3, 0)- and (2, 1)-components
are the conjugates of the (0, 3)- and resp. (1, 2)-components, these vanishings are equivalent to
conditions (i) and (ii) of (4.221) being satisfied by ρ2, 0 in place of ρ2, 0ω .

Now, the forms ρ2, 0 satisfying equations (i) and (ii) of (4.221) are unique modulo ker ∂ ∩ ker ∂̄.
On the other hand, considering the 3-space decomposition (1.10) of C∞

2, 0(X,C) induced by the Bott-
Chern Laplacian ∆BC : C∞

2, 0(X, C)→ C∞
2, 0(X, C) associated with the metric ω, we see that the form

ρ2, 0 with minimal L2
ω norm satisfying equations (i) and (ii) of (4.221) is the unique such form lying in

the orthogonal complement of ker ∂∩ker ∂̄ = ker∆BC⊕ Im ∂∂̄ in C∞
2, 0(X,C), which is Im ∂⋆ω+Im ∂̄⋆ω.

For the proof of formula (4.222), see Lemma 4.6.35 below with v = −∂ω. □

The following result gives a Neumann-type formula for the minimal L2
ω-norm solution of a ∂̄-

equation with an extra constraint.
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Lemma 4.6.35. Let (X, ω) be a compact Hermitian manifold. For every p, q = 0, . . . , n = dimCX
and every form v ∈ C∞

p, q(X, C), consider the following ∂̄-equation problem:

∂̄u = v subject to the condition ∂u = 0. (4.223)

If problem (4.223) is solvable for u, the solution of minimal L2
ω-norm is given by the Neumann-type

formula:
u = ∆−1

BC [∂̄
⋆v + ∂̄⋆∂∂⋆v]. (4.224)

Proof. The solution u of problem (4.223) is unique up to ker ∂ ∩ ker ∂̄ = ker∆BC ⊕ Im ∂∂̄. Thanks
to (1.10), the minimal L2

ω-norm solution of problem (4.223) is uniquely determined by the condition
u ∈ Im ∂⋆ + Im ∂̄⋆. In other words, there exist forms ξ and η such that

u = ∂⋆ξ + ∂̄⋆η, hence ∂⋆u = −∂̄⋆∂⋆η, ∂̄⋆u = −∂⋆∂̄⋆ξ and (∂∂̄)⋆u = 0.

Applying ∆BC , we get

∆BCu = ∂̄⋆(∂̄u) + ∂̄⋆∂∂⋆(∂̄u),

since the first, third (after writing ∂∂̄ = −∂̄∂) and sixth (after writing (∂⋆∂̄)⋆ = ∂̄⋆∂) terms in ∆BC

end with ∂ and ∂u = 0, while the fourth term in ∆BC ends with (∂∂̄)⋆ and (∂∂̄)⋆u = 0.
Now, the restriction of ∆BC to the orthogonal complement of ker∆BC is an isomorphism onto

this same orthogonal complement, so using the inverse ∆−1
BC of this restriction (= the Green operator

of ∆BC), we get

u = ∆−1
BC [∂

⋆(∂u) + ∂⋆∂̄∂̄⋆(∂u)],

since both u and ∂⋆(∂u) + ∂⋆∂̄∂̄⋆(∂u) lie in (ker∆BC)
⊥.

Since ∂u = v, the last formula for u is precisely (4.224). □

Going back to the (2, 0)-torsion form, we notice a simplification in dimension 3.

Observation 4.6.36. When dimCX = 3, formula (4.222) for the (2, 0)-torsion form ρ2, 0ω of any
Hermitian-symplectic metric ω simplifies to

ρ2, 0ω = −∆′′−1∂̄⋆(∂ω), (4.225)

where ∆
′′−1 = ∆

′′−1
ω is the Green operator of the ∂̄-Laplacian ∆′′ = ∆′′

ω := ∂̄∂̄⋆ + ∂̄⋆∂̄ induced by ω
via ∂̄⋆ = ∂̄⋆ω.

Proof. It is a standard and easily-verified fact that on any compact complex n-dimensional manifold,
any ∂̄-closed (n− 1, 0)-form is ∂-closed. Now, the (2, 0)-form ρ2, 0 satisfying ∂ρ2, 0 = 0 and ∂̄ρ2, 0 =
−∂ω (cf. (4.221)) is unique up to the addition of an arbitrary (2, 0)-form ζ ∈ ker ∂ ∩ ker ∂̄. When
n = 3, n− 1 = 2, so ker ∂ ∩ ker ∂̄ = ker ∂̄ in bidegree (2, 0). Therefore, ρ2, 0ω ∈ Im ∂̄⋆ω, i.e. ρ

2, 0
ω = ∂̄⋆ξ

for some (2, 1)-form ξ. We get ∆′′ρ2, 0ω = ∂̄⋆∂̄(∂̄⋆ξ) = −∂̄⋆(∂ω). This is equivalent to (4.225). □

If ω0 is a Hermitian-symplectic metric on X, any C∞ positive definite (1, 1)-form ω lying in the
Aeppli cohomology class of ω0 is a Hermitian-symplectic metric. Indeed, by (i) and (ii) of (4.221),
∂ω0 = −∂̄ρ2, 00 for some ∂-closed (2, 0)-form ρ2, 00 on X. Meanwhile, ω = ω0 + ∂ū + ∂̄u for some
(1, 0)-form u, so ∂ω = ∂ω0 + ∂∂̄u = −∂̄(ρ2, 00 + ∂u). Meanwhile, ρ2, 00 + ∂u is ∂-closed since ρ2, 00
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is. Therefore, ω is Hermitian-symplectic (cf. (i) and (ii) of (4.221) which characterise the H-S
property).

By a Hermitian-symplectic (H-S) Aeppli class {ω}A ∈ H1, 1
A (X, R) we shall mean a real Aeppli

cohomology class of bidegree (1, 1) that contains an H-S metric ω. The set of all H-S classes

HSX :=

{
{ω}A ∈ H1, 1

A (X, R) | ω is an H-S metric on X

}
⊂ H1, 1

A (X, R)

is an open convex cone. Moreover, for every Hermitian-symplectic Aeppli class {ω}A, we denote by

S{ω} :=
{
ω + ∂ū+ ∂̄u | u ∈ C∞

1, 0(X, C) such that ω + ∂ū+ ∂̄u > 0

}
⊂ {ω}A ∩ C∞

1, 1(X, R)

the set of all (necessarily H-S) metrics in {ω}A. It is an open convex subset of the real affine space
{ω}A ∩ C∞

1, 1(X, R) = {ω + ∂ū+ ∂̄u | u ∈ C∞
1, 0(X, C)}.

Definition 4.6.37. Let X be a compact complex Hermitian-symplectic manifold with dimCX = n.
For the Aeppli cohomology class {ω0}A ∈ HSX of any Hermitian-symplectic metric ω0, we define
the following energy functional:

F : S{ω0} → [0, +∞), F (ω) =

∫
X

|ρ2, 0ω |2ω dVω = ||ρ2, 0ω ||2ω, (4.226)

where ρ2, 0ω is the (2, 0)-torsion form of the Hermitian-symplectic metric ω ∈ S{ω0} defined in Lemma
and Definition 4.6.34, while | |ω is the pointwise norm and || ||ω is the L2 norm induced by ω.

The first trivial observation that justifies the introduction of the functional F is the following.

Lemma 4.6.38. Let {ω0}A ∈ SX and ω ∈ S{ω0}. Then, the following equivalence holds:

ω is Kähler ⇐⇒ F (ω) = 0. (4.227)

Proof. If ω is Kähler, ∂ω = 0 and the minimal L2-norm solution of the equation ∂̄ρ = 0 vanishes.
Thus ρ2, 0ω = 0, hence F (ω) = 0. Conversely, if F (ω) = 0, then ρ2, 0ω vanishes identically on X, hence
∂ω = −∂̄ρ2, 0ω = 0, so ω is Kähler. □

We now compute the critical points of the energy functional F .
Note that definition (4.248) of F translates to

F (ω) =

∫
X

ρ2, 0ω ∧ ⋆ρ
2, 0
ω =

∫
X

ρ2, 0ω ∧ ρ0, 2ω ∧
ωn−2

(n− 2)!
. (4.228)

Indeed, ρ2, 0ω = ρ0, 2ω is primitive since it is of bidegree (0, 2), so ⋆ρ2, 0ω = ρ2, 0ω ∧ωn−2/(n−2)! by (4.68).
We now fix a Hermitian-symplectic metric ω on X and we vary it in its Aeppli class along the

path ω + tγ, where γ = ∂ū + ∂̄u ∈ C∞
1, 1(X, R) is a fixed real (1, 1)-form chosen to be Aeppli

cohomologous to zero. Recall that the (2, 0)-torsion form ρ2, 0ω satisfies the condition ∂̄ρ2, 0ω = −∂ω
and has minimal L2

ω-norm with this property. We get

∂̄(ρ2, 0ω + t∂u) = −∂(ω + tγ), (4.229)
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although ρ2, 0ω + t∂u need not be of minimal L2
ω+tγ-norm with this property. For every t ∈ R close to

0, we define the new functional:

F̃t(ω) :=

∫
X

|ρ2, 0ω + t∂u|2ω+tγ
(ω + tγ)n

n!
=

∫
X

(ρ2, 0ω + t∂u) ∧ ⋆ω+tγ (ρ2, 0ω + t ∂̄ū)

=

∫
X

(ρ2, 0ω + t∂u) ∧ (ρ2, 0ω + t∂̄ū) ∧ (ω + tγ)n−2

(n− 2)!
. (4.230)

The properties of F̃t are summed up in the following statement.

Proposition 4.6.39. (i) The two energy functionals are related by the inequality:

F̃t(ω) ≥ F (ω + tγ) for all t ∈ R close to 0. (4.231)

(ii) The differential at ω of F is given by the formula:

(dωF )(γ) =
d

dt |t=0
F̃t(ω) = −2Re ⟨⟨u, ∂̄⋆ω⟩⟩ω + 2Re

∫
X

u ∧ ρ2, 0ω ∧ ρ
2, 0
ω ∧ ∂̄

(
ωn−3

(n− 3)!

)

= −⟨⟨γ , ω⟩⟩+ 2Re

∫
X

u ∧ ρ2, 0ω ∧ ρ
2, 0
ω ∧ ∂̄

(
ωn−3

(n− 3)!

)
, (4.232)

for every (1, 1)-form γ = ∂ū+ ∂̄u.

Proof. (i) If t is sufficiently close to 0, ω + tγ > 0, hence ω + tγ is a Hermitian-symplectic metric.
By (ii) in Lemma and Definition 4.6.34, we have ∂̄ρ2, 0ω+tγ = −∂(ω + tγ) and ρ2, 0ω+tγ has minimal

L2
ω+tγ-norm with this property. Since ρ2, 0ω + t∂u solves the same equation as ρ2, 0ω+tγ (cf. (4.229)), we

conclude that

F̃t(ω) ≥
∫
X

|ρ2, 0ω+tγ|2ω+tγ
(ω + tγ)n

n!
= F (ω + tγ), t ∈ R close to 0.

(ii) Since F̃t(ω) − F (ω + tγ) ≥ 0 for all t ∈ R close to 0 and since F̃0(ω) = F (ω), the smooth

function t 7→ F̃t(ω) − F (ω + tγ) achieves a minimum at t = 0. Hence, its derivative vanishes at
t = 0. We get:

d

dt |t=0
F̃t(ω) =

d

dt |t=0
F (ω + tγ) = (dωF )(γ),

which is precisely the first identity in (4.232).
We now prove the second identity in (4.232) starting from (4.230). For all t ∈ R close to 0, we

get:

d

dt |t=0
F̃t(ω) =

d

dt |t=0

∫
X

(ρ2, 0ω + t∂u) ∧ (ρ2, 0ω + t∂̄ū) ∧ (ω + tγ)n−2

(n− 2)!

=

∫
X

∂u ∧ ρ2, 0ω ∧
ωn−2

(n− 2)!
+

∫
X

∂̄ū ∧ ρ2, 0ω ∧
ωn−2

(n− 2)!

+

∫
X

ρ2, 0ω ∧ ρ
2, 0
ω ∧

ωn−3

(n− 3)!
∧ (∂ū+ ∂̄u).
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Applying Stokes’s theorem in each integral to remove the derivatives from u and ū, we get:

d

dt |t=0
F̃t(ω) =

∫
X

u ∧ ∂ρ2, 0ω ∧
ωn−2

(n− 2)!
+

∫
X

u ∧ ρ2, 0ω ∧ ∂
(

ωn−2

(n− 2)!

)

+

∫
X

ū ∧ ∂̄ρ2, 0ω ∧
ωn−2

(n− 2)!
+

∫
X

ū ∧ ρ2, 0ω ∧ ∂̄
(

ωn−2

(n− 2)!

)

+

∫
X

ū ∧ ∂ρ2, 0ω ∧ ρ
2, 0
ω ∧

ωn−3

(n− 3)!
+

∫
X

ū ∧ ρ2, 0ω ∧ ∂ρ
2, 0
ω ∧

ωn−3

(n− 3)!

+

∫
X

ū ∧ ρ2, 0ω ∧ ρ
2, 0
ω ∧ ∂

(
ωn−3

(n− 3)!

)
+

∫
X

u ∧ ρ2, 0ω ∧ ρ
2, 0
ω ∧ ∂̄

(
ωn−3

(n− 3)!

)

+

∫
X

u ∧ ∂̄ρ2, 0ω ∧ ρ
2, 0
ω ∧

ωn−3

(n− 3)!
+

∫
X

u ∧ ρ2, 0ω ∧ ∂̄ρ
2, 0
ω ∧

ωn−3

(n− 3)!
.

Grouping the terms on the r.h.s. according to whether the integrands are divisible by u or by ū and

using the identities ∂ρ2, 0ω = −∂̄ω and ∂̄ρ2, 0ω = −∂ω , we get:

d

dt |t=0
F̃t(ω) = −

∫
X

u ∧
[
∂̄ω ∧ ωn−2

(n− 2)!
+

(
− ρ2, 0ω ∧ ∂

ωn−2

(n− 2)!
+ ∂ω ∧ ρ2, 0ω ∧

ωn−3

(n− 3)!

)]

+

∫
X

u ∧
[
ρ2, 0ω ∧ ∂̄ρ

2, 0
ω ∧

ωn−3

(n− 3)!
+ ρ2, 0ω ∧ ρ

2, 0
ω ∧ ∂̄

ωn−3

(n− 3)!

]

−
∫
X

ū ∧
[
∂ω ∧ ωn−2

(n− 2)!
+

(
− ρ2, 0ω ∧ ∂̄

ωn−2

(n− 2)!
+ ∂̄ω ∧ ρ2, 0ω ∧

ωn−3

(n− 3)!

)]

+

∫
X

ū ∧
[
ρ2, 0ω ∧ ∂ρ2, 0ω ∧

ωn−3

(n− 3)!
+ ρ2, 0ω ∧ ρ

2, 0
ω ∧ ∂

ωn−3

(n− 3)!

]
.

Now, the terms on the first two lines on the r.h.s. above are respectively conjugated to the terms
on the third and fourth lines, while the two inner large paratheses on lines 1 and 3 vanish since
∂ωn−2/(n − 2)! = ∂ω ∧ ωn−3/(n − 3)!. On the other hand, we recall that ∂ρ2, 0ω = 0, hence also

∂̄ρ2, 0ω = 0. Thus, the two integrals containing these factors on the r.h.s. above vanish. We are
reduced to

d

dt |t=0
F̃t(ω) = −

∫
X

u ∧
[
∂̄

ωn−1

(n− 1)!
− ρ2, 0ω ∧ ρ

2, 0
ω ∧ ∂̄

ωn−3

(n− 3)!

]

−
∫
X

ū ∧
[
∂

ωn−1

(n− 1)!
− ρ2, 0ω ∧ ρ

2, 0
ω ∧ ∂

ωn−3

(n− 3)!

]
, (4.233)

or equivalently, to

d

dt |t=0
F̃t(ω) = −2Re

∫
X

u ∧ ∂̄
(

ωn−1

(n− 1)!

)
+ 2Re

∫
X

u ∧ ρ2, 0ω ∧ ρ
2, 0
ω ∧ ∂̄

(
ωn−3

(n− 3)!

)
. (4.234)
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Now, from ⋆ωω = ωn−1/(n− 1)! and ∂⋆ = − ⋆ ∂̄⋆, we get:

∂̄

(
ωn−1

(n− 1)!

)
= ∂̄ ⋆ ω = ⋆(− ⋆ ∂̄⋆)ω = ⋆∂⋆ω = ⋆ ∂̄⋆ω,

hence

u ∧ ∂̄
(

ωn−1

(n− 1)!

)
= ⟨u, ∂̄⋆ω⟩ω dVω. (4.235)

Thus, (4.234) and (4.235) prove the second identity in (4.232). The third identity in (4.232) is
obvious. □

Corollary 4.6.40. Suppose n = 3. Then a Hermitian-symplectic metric ω on a compact complex
manifold X of dimension 3 is a critical point of the energy functional F if and only if ω is
Kähler.

Proof. It is obvious that every Kähler metric ω is a critical point for F since ∂ω = 0, hence ρ2, 0ω = 0.
If n = 3, ∂̄ωn−3 = 0, so (4.232) reduces to (dωF )(γ) = −2Re ⟨⟨u, ∂̄⋆ω⟩⟩ω.
Now, a metric ω is a critical point of F if and only if (dωF )(γ) = 0 for every γ = ∂ū+ ∂̄u. By the

above discussion, this amounts to Re ⟨⟨u, ∂̄⋆ω⟩⟩ω = 0 for every (1, 0)-form u. Thus, if ω is a critical
point of F , by taking u = ∂̄⋆ω we get ∂̄⋆ω = 0. This is equivalent to ω being balanced. However, ω
is already SKT since it is Hermitian-symplectic, so ω must be Kähler by Proposition 4.6.11. □

Corollary 4.6.41. Let X be a compact complex manifold of dimension n = 3 admitting Hermitian-
symplectic metrics. Then, for every Aeppli-cohomologous Hermitian-symplectic metrics ω and ωη:

ωη = ω + ∂η̄ + ∂̄η > 0, with η ∈ C∞
1, 0(X, C), (4.236)

the respective (2, 0)-torsion forms ρ2, 0ω and ρ2, 0η := ρ2, 0ωη
satisfy the identity:

||ρ2, 0η ||2ωη
+

∫
X

ω3
η

3!
= ||ρ2, 0ω ||2ω +

∫
X

ω3

3!
(4.237)

and are related by
ρ2, 0η = ρ2, 0ω + ∂η. (4.238)

In particular, if ∂η = 0 (a condition that is equivalent to ωη − ω being d-exact), we are reduced
to ρ2, 0η = ρ2, 0ω and

||ρ2, 0ω ||2ωη
= ||ρ2, 0ω ||2ω +

∫
X

ρ2, 0ω ∧ ρ
2, 0
ω ∧ (ωη − ω). (4.239)

Proof. In arbitrary dimension n, we compute the differential of the map

S{ω0} ∋ ω 7→
∫
X

ωn

n!
:= Volω(X)
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when the metric ω varies in its Aeppli cohomology class {ω0}A. For any real, Aeppli null-cohomologous
(1, 1)-form γ = ∂ū+ ∂̄u (with u ∈ C∞

1, 0(X, C)), we have

d

dt |t=0

∫
X

(ω + tγ)n

n!
=

1

(n− 1)!

∫
X

ωn−1 ∧ γ = 2Re

∫
X

∂̄u ∧ ωn−1

(n− 1)!
= 2Re

∫
X

u ∧ ∂̄ ⋆ ω

= 2Re

∫
X

u ∧ ⋆
(
− ⋆∂̄ ⋆ ω

)
= 2Re

∫
X

u ∧ ⋆∂⋆ω = 2Re

∫
X

u ∧ ⋆∂̄⋆ω

= 2Re ⟨⟨u, ∂̄⋆ω⟩⟩.

Together with (4.232) (recall that n = 3 here), this identity shows that the differential at ω of the
map

S{ω0} ∋ ω 7→ ||ρ2, 0ω ||2ω +
∫
X

ω3

3!

vanishes identically. Therefore, this map is constant on the Hermitian-symplectic metrics lying in a
same Aeppli cohomology class {ω0}A. This proves (4.237).

To prove (4.238), recall that definition (4.221) of the (2, 0)-torsion forms implies the following
relations:

(i) ∂̄(ρ2, 0η − ∂η) = −∂ω and (ii) ||ρ2, 0η − ∂η||ω ≥ ||ρ2, 0ω ||ω, (4.240)

where (ii) follows from (i) and from the L2
ω-norm minimality of ρ2, 0ω among the (2, 0)-forms ρ solving

the equation ∂̄ρ = −∂ω.
Now, (4.237) gives the first of the following identities:

||ρ2, 0ω ||2ω +
∫
X

ω3

3!
= ||ρ2, 0η ||2ωη

+

∫
X

ω3
η

3!
=

∫
X

ρ2, 0η ∧ ρ
2, 0
η ∧ ωη +

∫
X

ω3
η

3!
. (4.241)

On the other hand, we have:

(ωη + ρ2, 0η + ρ2, 0η )3 = ω3
η + 3ω2

η ∧ (ρ2, 0η + ρ2, 0η ) + 3ωη ∧ (ρ2, 0η + ρ2, 0η )2 + (ρ2, 0η + ρ2, 0η )3

= ω3
η + 6ωη ∧ ρ2, 0η ∧ ρ

2, 0
η , (4.242)

where the last identity follows from the cancellation of several terms for bidegree reasons. Putting
(4.241) and (4.242) together, we get:

||ρ2, 0ω ||2ω +
1

3!

∫
X

ω3 =
1

3!

∫
X

(ωη + ρ2, 0η + ρ2, 0η )3 =
1

3!

∫
X

[ω + (ρ2, 0η − ∂η) + (ρ2, 0η − ∂̄η̄) + d(η + η̄)]3

(a)
=

1

3!

∫
X

[ω + (ρ2, 0η − ∂η) + (ρ2, 0η − ∂̄η̄)]3
(b)
=

1

3!

∫
X

ω3 +

∫
X

(ρ2, 0η − ∂η) ∧ (ρ2, 0η − ∂̄η) ∧ ω

= ||ρ2, 0η − ∂η||2ω +
1

3!

∫
X

ω3
(c)

≥ ||ρ2, 0ω ||2ω +
1

3!

∫
X

ω3. (4.243)

· Identity (a) followed from Stokes’s theorem and the d-closedness of the form ω + (ρ2, 0η − ∂η) +
(ρ2, 0η − ∂̄η̄) that is seen through the following very simple computation:

d[ω + (ρ2, 0η − ∂η) + (ρ2, 0η − ∂̄η̄)] = ∂ω + ∂̄ω + ∂̄ρ2, 0η − ∂̄∂η + ∂ρ2, 0η − ∂∂̄η̄
= ∂ω + ∂̄ω − ∂(ω + ∂η̄ + ∂̄η)− ∂̄∂η − ∂̄(ω + ∂̄η + ∂η̄)− ∂∂̄η̄
= −(∂∂̄η + ∂̄∂η)− (∂̄∂η̄ + ∂∂̄η̄) = 0,



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS348

where the second identity followed from ∂̄ρ2, 0η = −∂ωη = −∂(ω+ ∂̄η+ ∂η̄) and from the conjugated
expression.
· Identity (b) in (4.243) followed from the analogue of (4.242) in this context, while inequality

(c) in (4.243) followed from part (ii) of (4.240).
We see that the first and the last terms in (4.243) are equal. This forces (c) to be an equality,

hence part (ii) of (4.240) must be an equality. This means that ρ2, 0η −∂η and ρ2, 0ω are both solutions
of the equation ∂̄ρ2, 0 = −∂ω (see part (i) of (4.240) and part (ii) of (4.221)) and have equal L2

ω-
norms. Since ρ2, 0ω is the minimal L2

ω-norm solution, we infer that ρ2, 0η − ∂η = ρ2, 0ω by the uniqueness
of the minimal L2

ω-norm solution. This proves (4.238).
Finally, we write ωη = ω + (ωη − ω) and

||ρ2, 0ω ||2ωη
=

∫
X

ρ2, 0ω ∧ ρ
2, 0
ω ∧ ωη = ||ρ2, 0ω ||2ω +

∫
X

ρ2, 0ω ∧ ρ
2, 0
ω ∧ (ωη − ω).

This is (4.239). □

The main takeaway from Corollary 4.6.41 is that the sum F (ω) + Volω(X) (where Volω(X) :=∫
X
ω3/3!) remains constant when ω ranges over the (necessarily Hermitian-symplectic) metrics in

the Aeppli cohomology class of a fixed Hermitian-symplectic metric ω0. This invariant attached to
any Aeppli class of Hermitian-symplectic metrics generalises the classical volume of a Kähler class
and constitutes one of our main findings in this work.

Definition 4.6.42. Let X be a 3-dimensional compact complex manifold supposed to carry Hermitian-
symplectic metrics. For any such metric ω on X, the constant

A = A{ω}A := F (ω) + Volω(X) > 0 (4.244)

depending only on {ω}A is called the generalised volume of the Hermitian-symplectic Aeppli class
{ω}A.

• The energy functional: case of SKT metrics on compact ∂∂̄-manifolds

We now discuss an analogous functional in a special case.

Lemma 4.6.43. For every SKT metric ω on a compact ∂∂̄-manifold X, there exists a unique smooth
(2, 0)-form Γω on X such that

(i) ∂̄Γω = −∂ω and (ii) Γω ∈ Im ∂̄⋆ω, (4.245)

where the subscript ω indicates that the formal adjoint is computed w.r.t. the L2 inner product
defined by ω.

The form Γω will be called the (2, 0)-torsion form of the SKT metric ω. It is given by the von
Neumann-type formula:

Γω = −∆′′−1∂̄⋆(∂ω), (4.246)

where ∆
′′−1 is the Green operator of the Laplacian ∆′′ = ∂̄∂̄⋆ + ∂̄⋆∂̄ induced by the metric ω.

Proof. The (2, 1)-form ∂ω is d-closed (thanks to the SKT assumption on ω) and ∂-exact, hence by
the ∂∂̄-assumption on X it is also ∂̄-exact. This means that the equation ∂̄Γ = −∂ω is solvable. Its
solutions Γ are unique up to the addition of any element in ker ∂̄, so the minimal L2

ω-norm solution is
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the unique solution lying in the orthogonal complement of ker ∂̄, which is Im ∂̄⋆ω. The von Neumann
formula is well known and can be easily proved: ∂̄(−∆′′−1∂̄⋆(∂ω)) = −∂ω (immediate verification)
and ∆

′′−1∂̄⋆(∂ω) = ∂̄⋆∆
′′−1(∂ω) ∈ Im ∂̄⋆. □

The following is a very simple observation.

Lemma 4.6.44. The (2, 0)-torsion form Γω of any SKT metric ω on a compact ∂∂̄-manifold X has
the property:

∂Γω = 0. (4.247)

Proof. The (3, 0)-form ∂Γω is ∂-exact (obviously) and d-closed (since ∂̄(∂Γω) = −∂(∂̄Γω) = ∂2ω =
0), hence it must be ∂∂̄-exact thanks to the ∂∂̄ assumption on X. This means that there exists a
(2, −1)-form ζ (which must vanish for bidegree reasons) such that ∂∂̄ζ = ∂Γω. Then ∂Γω vanishes
since ζ = 0. □

We now define a new energy functional by the L2-norm of the (2, 0)-torsion form Γω.

Definition 4.6.45. Let X be a compact SKT ∂∂̄-manifold with dimCX = n. For every Aeppli
cohomology class {ω0}A representable by an SKT metric, we define the following energy functional:

F : S{ω0} → [0, +∞), F (ω) =

∫
X

|Γω|2ω dVω = ||Γω||2ω, (4.248)

where Γω is the (2, 0)-torsion form of the SKT metric ω ∈ S{ω0} defined in Lemma 4.6.43.

The remaining arguments are identical to those given in the H-S case if we replace ρ2, 0ω with Γω.
Recall that by (4.247) we have ∂Γω = 0 (cf. (i) of (4.221)).

The first variation of F can be computed as in the H-S case discussed above. We get

Proposition 4.6.46. The differential of F at any SKT metric ω is given by the formula:

(dωF )(γ) = −2Re ⟨⟨u, ∂̄⋆ω⟩⟩ω + 2Re

∫
X

u ∧ Γω ∧ Γω ∧ ∂̄
(

ωn−3

(n− 3)!

)

= −⟨⟨γ , ω⟩⟩+ 2Re

∫
X

u ∧ Γω ∧ Γω ∧ ∂̄
(

ωn−3

(n− 3)!

)
(4.249)

for every (1, 1)-form γ = ∂ū+ ∂̄u.
In particular, if n = 3, an SKT metric ω on X is a critical point of the energy functional F if

and only if ω is Kähler.

• Variation of the (2, 0)-torsion form for ∂∂̄-cohomologous metrics

We first show that the (2, 0)-torsion form of a Hermitian-symplectic metric does not change
when the metric changes only by an element in Im ∂∂̄. The next statement can be compared with
Corollary 4.6.41: it supposes more and achieves more.

Proposition 4.6.47. Let X be a compact complex manifold with dimCX = 3. Suppose that ω > 0
and ω̃ = ω + i∂∂̄φ > 0 are SKT metrics on X.
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(i) For every form ρ2, 0 ∈ C∞
2, 0(X, C) such that ∂ρ2, 0 = 0 and ∂̄ρ2, 0 = −∂ω, the L2-norms of

ρ2, 0 w.r.t. ω̃ and ω are related in the following way:

||ρ2, 0||2ω̃ = ||ρ2, 0||2ω −
1

2

∫
X

(ω̃ − ω) ∧ ω2. (4.250)

This relation is equivalent to

||ρ2, 0||2ω̃ +
∫
X

ω̃3

3!
= ||ρ2, 0||2ω +

∫
X

ω3

3!
. (4.251)

(ii) If ω > 0 and ω̃ = ω + i∂∂̄φ > 0 are Hermitian-symplectic metrics, their (2, 0)-torsion
forms coincide, i.e.

ρ2, 0ω̃ = ρ2, 0ω . (4.252)

Proof. (i) From the assumptions, we get the following identities:

||ρ2, 0||2ω̃ =

∫
X

ρ2, 0 ∧ ρ2, 0 ∧ ω̃ =

∫
X

ρ2, 0 ∧ ρ2, 0 ∧ ω +

∫
X

ρ2, 0 ∧ ρ2, 0 ∧ i∂∂̄φ

(a)
= ||ρ2, 0||2ω − i

∫
X

ρ2, 0 ∧ ∂ρ2, 0 ∧ ∂̄φ

(b)
= ||ρ2, 0||2ω − i

∫
X

φ ∂̄ρ2, 0 ∧ ∂ρ2, 0 (c)
= ||ρ2, 0||2ω − i

∫
X

φ∂ω ∧ ∂̄ω, (4.253)

where (a) and (b) follow from Stokes combined with the identity ∂ρ2, 0 = 0 and its conjugate ∂̄ρ2, 0 =
0, while (c) follows from the identity ∂̄ρ2, 0 = −∂ω and its conjugate ∂ρ2, 0 = −∂̄ω.

Now, the SKT property of ω implies that ∂ω ∧ ∂̄ω = ∂(ω ∧ ∂̄ω) = (1/2) ∂∂̄ω2, so two further
applications of Stokes yield the second identity below:

i

∫
X

φ∂ω ∧ ∂̄ω =
i

2

∫
X

φ∂∂̄ω2 =
1

2

∫
X

i∂∂̄φ ∧ ω2 =
1

2

∫
X

(ω̃ − ω) ∧ ω2. (4.254)

We now see that (4.253) and (4.254) prove (4.250) between them.
To prove the equivalence of (4.251) and (4.250), we have to show that

(1/6)

∫
X

(ω̃3 − ω3) = (1/2)

∫
X

(ω̃ − ω) ∧ ω2.

Now, since ω̃2 = ω2 + 2 i∂∂̄φ ∧ ω + (i∂∂̄φ)2, we get:

1

6

∫
X

(ω̃3 − ω3) =
1

6

∫
X

(ω̃ − ω) ∧ (ω̃2 + ω̃ ∧ ω + ω2)

=
1

6

∫
X

(ω̃ − ω) ∧ ω2 +
1

3

∫
X

(ω̃ − ω) ∧ i∂∂̄φ ∧ ω +
1

6

∫
X

(ω̃ − ω) ∧ (i∂∂̄φ)2

+
1

6

∫
X

(ω̃ − ω) ∧ ω2 +
1

6

∫
X

(ω̃ − ω) ∧ i∂∂̄φ ∧ ω +
1

6

∫
X

(ω̃ − ω) ∧ ω2

= 3 · 1
6

∫
X

(ω̃ − ω) ∧ ω2,
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since all the other terms vanish by Stokes, the identities ∂(ω̃ − ω) = 0 and ∂̄(ω̃ − ω) = 0 and the
SKT assumption on ω.

(ii) The stronger H-S assumption on ω̃ and ω is only made to ensure the existence of the (2, 0)-
torsion forms ρ2, 0ω̃ and ρ2, 0ω . The assumption ω̃ = ω+ i∂∂̄φ implies ∂ω̃ = ∂ω, so ρ2, 0ω̃ and ρ2, 0ω are the
minimal L2

ω̃-norm solution, resp. the minimal L2
ω-norm solution, of the same equation ∂̄ρ2, 0 = −∂ω.

However, (4.250) shows that when ρ2, 0 ranges over the set of smooth (2, 0)-forms ρ2, 0 satisfying
the conditions ∂ρ2, 0 = 0 and ∂̄ρ2, 0 = −∂ω (both of which are satisfied by both ρ2, 0ω̃ and ρ2, 0ω ), ||ρ2, 0||ω̃
is minimal if and only if ||ρ2, 0||ω is minimal since the discrepancy term

−1

2

∫
X

(ω̃ − ω) ∧ ω2

is independent of ρ2, 0 (depending only on the given metrics ω̃ and ω). This means that the same ρ2, 0

achieves the minimal L2 norm w.r.t. either of the metrics ω̃ and ω. By uniqueness of the minimal
L2-norm solution of the ∂̄ equation, we get ρ2, 0ω̃ = ρ2, 0ω . □

• Volume form and Monge-Ampère-type equation associated with an H-S metric

We now digress briefly to point out another possible future use of the new invariant defined by
the generalised volume. In fact, a new volume form that seems better suited to featuring in the right-
hand term of complex Monge-Ampère equations can be associated with every Hermitian-symplectic
metric on a 3-dimensional compact complex manifold.

Definition 4.6.48. If ω is a Hermitian-symplectic metric on a compact complex manifold X with
dimCX = 3 and ρ2, 0ω is the (2, 0)-torsion form of ω, we define the following volume form on X:

dṼω := (1 + |ρ2, 0ω |2ω) dVω.

The main interest in this volume form stems from the fact that its volume is independent of the
choice of metric in a given Hermitian-symplectic Aeppli class, as follows from Corollary 4.6.41:∫

X

dṼω1 =

∫
X

dṼω2 = A, for all metrics ω1, ω2 ∈ {ω}A,

where A = A{ω}A > 0 is the generalised volume of the H-S Aeppli class {ω}A.
Now, if ω is a Hermitian-symplectic metric on a manifold X as above, it seems natural to consider

the Monge-Ampère equation
(ω + i∂∂̄φ)3

3!
= b dṼω,

subject to the condition ω + i∂∂̄φ > 0, where b > 0 is a given constant. By [TW10, Corollary
1], there exists a unique b such that this equation is solvable. Moreover, for that b, the solution
ω + i∂∂̄φ > 0 is unique. Note that

b =
Volω+i∂∂̄φ(X)

A{ω}A
∈ (0, 1]

since A{ω}A = F (ω+ i∂∂̄φ) +Volω+i∂∂̄φ(X) ≥ Volω+i∂∂̄φ(X). We hope that this can shed some light
on the mysterious constant b in this context.

• The E2-torsion class

We now point out an obstruction to the Aeppli cohomology class of a given Hermitian-symplectic
metric containing a Kähler metric.



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS352

Lemma and Definition 4.6.49. Suppose that ω is a Hermitian-symplectic metric on a compact
complex n-dimensional manifold X.

(i) The (0, 2)-torsion form ρ0, 2ω ∈ C∞
0, 2(X, C) of ω represents an E2-cohomology class {ρ0, 2ω }E2 ∈

E0, 2
2 (X). Moreover, {ρ0, 2ω }E2 ∈ ker(d2 : E

0, 2
2 (X)→ E2, 1

2 (X)).

(ii) Suppose that n = 3. Then, the class {ρ0, 2ω }E2 ∈ E
0, 2
2 (X) is constant when the Hermitian-

symplectic metric ω varies in a fixed Aeppli cohomology class.
The class {ρ0, 2ω }E2 ∈ E0, 2

2 (X) will be called the E2-torsion class of the Hermitian-symplectic
Aeppli class {ω}A.

Proof. (i) By construction, the (0, 2)-torsion form ρ0, 2ω has the properties:

∂̄ρ0, 2ω = 0 and ∂ρ0, 2ω ∈ Im ∂̄ (since ∂ρ0, 2ω = −∂̄ω),

which translate precisely to ρ0, 2ω being E2-closed (see terminology in [Pop19, Proposition 3.1]),
namely to ρ0, 2ω representing an E2-cohomology class.

Moreover, the class d2({ρ0, 2ω }E2) ∈ E
2, 1
2 (X) is represented by −∂ω since −ω is such that ∂̄(−ω) =

∂ρ0, 2ω . (See Definition 1.2.9 and Theorem 1.2.10.) However, ∂ω is ∂̄-exact, so, in particular, {∂ω}E2 =
0. We get

d2({ρ0, 2ω }E2) = −{∂ω}E2 = 0 ∈ E2, 1
2 (X).

(ii) When n = 3, Corollary 4.6.41 tells us that the respective (2, 0)-torsion forms ρ2, 0ω and ρ2, 0η :=
ρ2, 0ωη

of any two Aeppli-cohomologous Hermitian-symplectic metrics ω and ωη = ω + ∂η̄ + ∂̄η > 0,

with η ∈ C∞
1, 0(X, C), are related by ρ2, 0η = ρ2, 0ω + ∂η. Hence, for their conjugates, we get:

ρ0, 2η = ρ0, 2ω + ∂̄η̄, so {ρ0, 2η }∂̄ = {ρ0, 2ω }∂̄, hence also {ρ0, 2η }E2 = {ρ0, 2ω }E2 ∈ E
0, 2
2 (X).

□

Since ω is Kähler if and only if ρ0, 2ω = 0, we get the following necessary condition for a given
Hermitian-symplectic Aeppli class {ω}A to contain a Kähler metric.

Corollary 4.6.50. Suppose that n = 3. If a given Hermitian-symplectic Aeppli class {ω}A contains
a Kähler metric, then its E2-torsion class {ρ0, 2ω }E2 ∈ E

0, 2
2 (X) vanishes.

Moreover, the condition {ρ0, 2ω }E2 = 0 in E0, 2
2 (X) is equivalent to ρ0, 2ω ∈ Im ∂̄ for some (hence

every) metric ω lying in {ω}A.

Proof. Only the latter statement still needs a proof. The E2-exactness condition on ρ0, 2ω is equivalent
to the existence of a (0, 1)-form ξ and of a (−1, 2)-form ζ such that ρ0, 2ω = ∂ζ+ ∂̄ξ and ∂̄ζ = 0. (See
Definition 1.2.9.) However, for bidegree reasons, every (−1, 2)-form ζ is trivially the zero form, so
the E2-exactness condition on (0, 2)-forms is equivalent to the ∂̄-exactness condition. □

Therefore, we are led to restricting attention to Hermitian-symplectic Aeppli classes of vanishing
torsion class on 3-dimensional manifolds. In this case, ρ0, 2ω is ∂̄-exact and we let

ξ0, 1ω = ∆
′′−1∂̄⋆ρ0, 2ω ∈ Im ∂̄⋆ ⊂ C∞

0, 1(X, C) (4.255)

be the minimal L2
ω-norm solution of the equation ∂̄ξ = ρ0, 2ω . Our functional F : S{ω0} → [0, +∞) of

Definition 4.6.37 takes the form:

F (ω) =

∫
X

|ρ2, 0ω |2ω dVω =

∫
X

ρ2, 0ω ∧ ρ0, 2ω ∧ ω =

∫
X

∂ξ1, 0ω ∧ ∂̄ξ0, 1ω ∧ ω, (4.256)
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where ξ1, 0ω is the conjugate of ξ0, 1ω .

• Approach via a Monge-Ampère-type equation

Ideally, if a Monge-Ampère-type equation with solutions in a given H-S Aeppli class could be
solved, its solutions would be Kähler metrics. Specifically, we get the following result.

Proposition 4.6.51. Let X be a compact complex Hermitian-symplectic manifold with dimCX = 3.
Fix an arbitrary Hermitian metric γ and an H-S metric ω on X. Let A = A{ω}A > 0 be the
generalised volume of the class {ω}A and let c = cω, γ > 0 be the constant defined by the requirement

(
∫
X

ω ∧ γ2/2!)3

(
∫
X

γ3/3!)2
=

6A

c
.

If there exists a solution η ∈ C∞
1, 0(X, C) of the Monge-Ampère-type equation

(ω + ∂η̄ + ∂̄η)3 = c (Λγω)
3 γ

3

3!
(⋆)

such that ωη := ω + ∂η̄ + ∂̄η > 0, then ωη is a Kähler metric lying in the Aeppli cohomology class
{ω}A of ω.

Proof. As usual, let A = A{ω}A := F (ω) + Volω(X) > 0 be the generalised volume of the Aeppli

cohomology class {ω}A ∈ H1, 1
A (X, R). Let c > 0 be the constant defined by(∫

X

ω ∧ γ
2

2!

)3/(∫
X

γ3

3!

)2

= 6A/c. (4.257)

Now, for any η such that ω+ ∂η̄+ ∂̄η > 0, the Hölder inequality with conjugate exponents p = 3
and q = 3/2 gives:

∫
X

3

√
(ω + ∂η̄ + ∂̄η)3

γ3
γ3

3!
≤
(∫
X

(ω + ∂η̄ + ∂̄η)3

3!

) 1
3
(∫
X

γ3

3!

) 2
3

. (4.258)

On the other hand, if the form η solves equation (⋆), we have

∫
X

3

√
(ω + ∂η̄ + ∂̄η)3

γ3
γ3

3!
= (c/3!)

1
3

∫
X

Λγω
γ3

3!
= (c/3!)

1
3

∫
X

ω ∧ γ
2

2!
. (4.259)

Putting together (4.257), (4.258) and (4.259), we get, whenever η solves equation (⋆):

A ≥
∫
X

(ω + ∂η̄ + ∂̄η)3

3!
≥ 1

(Volγ(X))2

(∫
X

3

√
(ω + ∂η̄ + ∂̄η)3

γ3
γ3

3!

)3

=
c

3!

(∫
X

ω ∧ γ2

2!

)3

(Volγ(X))2

=
c

3!

6A

c
= A,
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where Volγ(X) :=
∫
X
γ3/3!. This implies, thanks to (4.244), that F (ωη) = 0 in this case, which is

equivalent to ωη being a Kähler metric. □

• Stratification of the Aeppli class

Unfortunately, little is known about the solvability of Monge-Ampère-type equations like (⋆).
Therefore, we now consider the special case of equation (⋆) where the solution η is of the shape
η = −(i/2) ∂φ, with φ : X → R a C∞ function. Equation (⋆) becomes:

(ω + i∂∂̄φ)3 = c (Λγω)
3 γ

3

3!
, (⋆⋆)

subject to the condition ω + i∂∂̄φ > 0, where γ is an arbitrary Hermitian metric fixed on X, A is
the generalised volume of {ω}A defined in (4.244) and the constant c > 0 is defined in (4.257). The
advantage is that we are now dealing with a scalar equation and the existence theory is much more
developed in this set-up (c.f. [Che87], [GL09], [TW10]). The drawback is that the perturbation of
ω by i∂∂̄φ is non-generic within its Aeppli class and this forces us to break {ω}A into subclasses (to
be defined below) and study equation (⋆⋆) in each subclass.

A conformal rescaling of γ by a C∞ function f : X → (0, +∞) will change the constant c > 0
to some constant cf > 0 defined by the analogue of (4.257):

6A

cf
=

(∫
X

f 2 ω ∧ γ2

2!

)3

(∫
X

f3 γ3

3!

)2 =

(∫
X

f 2 (Λγω) dVγ

)3

(∫
X

f 3 dVγ

)2 ≤
∫
X

(Λγω)
3 dVγ,

where the last inequality is Hölder’s inequality applied to the functions f 2 and Λγω with the conjugate
exponents p = 3/2 and q = 3. This translates to the following eligibility condition for cf :

cf ≥
6A∫

X

(Λγω)3 dVγ
.

Now, Hölder’s inequality is an equality if f = Λγω. In particular, if the metric γ > 0 is chosen such
that Λγω ≡ 1, no conformal rescaling of γ is necessary (i.e. we can choose f ≡ 1) to get the minimal
constant

c =
6A∫

X

dVγ
.

Definition 4.6.52. Let ω be a fixed Hermitian metric on a compact complex manifold X. A Her-
mitian metric γ on X is said to be ω-normalised if Λγω = 1 at every point of X.

The following observation is trivial.

Lemma 4.6.53. Every conformal class of Hermitian metrics on X contains a unique ω-normalised
representative.

Proof. Let γ be an arbitrary Hermitian metric on X. We are looking for C∞ functions f : X →
(0, +∞) such that Λfγω = 1 on X. Since Λfγω = (1/f) Λγω, the only possible choice for f is
f = Λγω. □



CHAPTER 4. SPECIAL HERMITIAN METRICS ON COMPACT COMPLEX MANIFOLDS355

We saw above that if equality is achieved in Hölder’s inequality (i.e. if the constant c > 0 assumes
its minimal value computed above) and if equation (⋆⋆) is solvable with this minimal constant c on
the right, then its solution is a Kähler metric. In other words, Proposition 4.6.51 and the above
considerations lead to

Conclusion 4.6.54. Let X be a compact complex manifold with dimCX = 3. Suppose there exists
a Hermitian-symplectic metric ω on X and fix an arbitrary ω-normalised Hermitian metric γ
on X. Let A > 0 be the generalised volume of {ω}A defined in (4.244).

If there exists a C∞ solution φ : X → R of the equation

(ω + i∂∂̄φ)3

3!
= A

dVγ∫
X

dVγ
(⋆⋆)

such that ωφ := ω+ i∂∂̄φ > 0, then ωφ is a Kähler metric lying in the Aeppli cohomology class {ω}A.

(1) The strata

A Hermitian-symplectic metric ω need not be d-closed, but let us still call the affine space
{ω}BC := {ω + i∂∂̄φ | φ ∈ C∞(X, R)} the Bott-Chern subclass (or stratum) of ω. It is a
subspace of the Aeppli class {ω}A of ω. Similarly, by analogy with the open convex subset

S{ω} := {ω′ > 0 | ω′ ∈ {ω}A} ⊂ {ω}A ∩ C∞
1, 1(X, R)

of metrics in the Aeppli class of a given H-S metric ω, we define the open convex subset

D[ω′] := {ω′′ > 0 | ω′′ ∈ {ω′}BC} ⊂ {ω′}BC

of metrics in the Bott-Chern subclass of a given H-S metric ω′.
If we fix a Hermitian-symplectic metric ω, we can partition S{ω} as

S{ω} =
⋃
j∈J

D[ωj ], (4.260)

where (ωj)j∈J is a system of representatives of the Bott-Chern subclasses D[ω′] when ω
′ ranges over

S{ω}. Moreover, for every j ∈ J , let γj be an ωj-normalised Hermitian metric on X and let us
consider the equation:

(ωj + i∂∂̄φ)3

3!
= A

dVγj∫
X

dVγj
(⋆⋆j)

such that ωj + i∂∂̄φ > 0. (No other condition is imposed at this point on γj.)
By the Tosatti-Weinkove theorem [TW10, Corollary 1], there exists a unique constant bj > 0

such that the equation
(ωj + i∂∂̄φ)3

3!
= bjA

dVγj∫
X

dVγj
(⋆ ⋆ ⋆j),

subject to the extra condition ωj + i∂∂̄φ > 0, is solvable. Integrating and using the inequality∫
X
(ωj + i∂∂̄φ)3/3! ≤ A, which follows from (4.244), we get:

bj ≤ 1, j ∈ J.
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From this and from Conclusion 4.6.54, we infer Proposition ?? stated in the Introduction.

The next observation is that, within Bott-Chern subclasses of Hermitian-symplectic metrics that
contain a Gauduchon metric, the volume remains constant and all the metrics are Gauduchon. These
Bott-Chern subclasses will be called Gauduchon strata.

Lemma 4.6.55. Let dimCX = 3. Suppose that a metric ω on X is both SKT and Gauduchon.
Then, for every φ : X −→ R, we have

(a)

∫
X

(ω + i∂∂̄φ)3 =

∫
X

ω3 and (b) ∂∂̄(ω + i∂∂̄φ)2 = 0.

Proof. (a) Straightforward calculations give:∫
X

(ω + i∂∂̄φ)3 =

∫
X

ω3 + 3

∫
X

ω2 ∧ i∂∂̄φ+ 3

∫
X

ω ∧ (i∂∂̄φ)2 +

∫
X

(i∂∂̄φ)3

=

∫
X

ω3 + 3i

∫
X

φ∂∂̄ω2 − 3

∫
X

φ∂∂̄ω ∧ ∂∂̄φ+

∫
X

∂(i∂̄φ ∧ (i∂∂̄φ)2) =

∫
X

ω3,

where ∂∂̄ω = 0 since ω is SKT, while ∂∂̄ω2 = 0 since ω is Gauduchon.

(b) Straightforward calculations give:

∂∂̄(ω + i∂∂̄φ)2 = ∂∂̄ω2 + 2 ∂∂̄ω ∧ (i∂∂̄φ) + ∂∂̄(i∂∂̄φ)2 = 0,

since ∂∂̄ω = 0 and ∂∂̄ω2 = 0 for the same reasons as in (a). □

(2) Volume comparison within a Bott-Chern stratum

We have seen that for any SKT metric ω on a 3-dimensional compact complex manifold X, we
have: ∫

X

(ω + i∂∂̄φ)3

3!
=

∫
X

ω3

3!
+

∫
X

ω2 ∧ i

2
∂∂̄φ =

∫
X

ω3

3!
+

∫
X

φ
i

2
∂∂̄ω2

=

∫
X

ω3

3!
+

∫
X

φ i∂ω ∧ ∂̄ω, (4.261)

where the SKT hypothesis on ω is used only to get the last identity. Thus, to understand the
variation of Volωφ(X) =

∫
X
(ω + i∂∂̄φ)3/3! when φ ranges over the C∞ real-valued functions on X

such that ω + i∂∂̄φ > 0, the following observation will come in handy.

Lemma 4.6.56. Let X be a 3-dimensional complex manifold and let ω be an arbitrary Hermitian
metric on X. If

∂ω = (∂ω)prim + α1, 0 ∧ ω

is the Lefschetz decomposition of ∂ω into a primitive part (w.r.t. ω) and a part divisible by ω, with
α1, 0 ∈ C∞

1, 0(X, C), then

i∂ω ∧ ∂̄ω =

(
|α1, 0 ∧ ω|2ω − |(∂ω)prim|2ω

)
dVω. (4.262)
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Proof. From the Lefschetz decomposition, we get:

i∂ω ∧ ∂̄ω = i(∂ω)prim ∧ (∂̄ω)prim + iα1, 0 ∧ α0, 1 ∧ ω2,

where α0, 1 = α1, 0. This is because (∂ω)prim ∧ ω = 0 and (∂̄ω)prim ∧ ω = 0. Indeed, (∂ω)prim and
(∂̄ω)prim are primitive 3-forms on a 3-dimensional complex manifold, so they lie in the kernel of ω∧·.

From the general formula (4.68), we get:

(∂̄ω)prim = i ⋆ (∂̄ω)prim and α0, 1 ∧ ω
2

2!
= −i ⋆ α0, 1,

where ⋆ is the Hodge star operator induced by ω. Hence,

i(∂ω)prim ∧ (∂̄ω)prim = −(∂ω)prim ∧ ⋆(∂̄ω)prim = −|(∂ω)prim|2 dVω
iα1, 0 ∧ α0, 1 ∧ ω2 = 2α1, 0 ∧ ⋆α0, 1 = 2 |α1, 0|2ω dVω.

Formula (4.262) follows from these computations after further noticing that

|α1, 0 ∧ ω|2ω = ⟨α1, 0 ∧ ω, α1, 0 ∧ ω⟩ω = ⟨Λω(α1, 0 ∧ ω), α1, 0⟩ω
= ⟨[Λω, ω ∧ ·](α1, 0), α1, 0⟩ω = 2 |α1, 0|2ω,

where the last identity follows from the well-known formula [Λω, ω ∧ ·] = (n − k) Id on k-forms on
an n-dimensional complex manifold. (In our case, k = 1 and n = 3.) □

Notice that, in the setting of Lemma 4.6.56, ω is balanced if and only if ∂ω = (∂ω)prim, while ω is
lck (i.e. locally conformally Kähler) if and only if ∂ω = α1, 0 ∧ ω. This accounts for the terminology
used in the next

Corollary 4.6.57. Let X be a 3-dimensional compact complex manifold equipped with an SKT
metric ω.

(a) If |α1, 0 ∧ ω|ω ≥ |(∂ω)prim|ω at every point of X (we will say in this case that ω is almost
lck), then ω is Gauduchon and |α1, 0 ∧ ω|ω = |(∂ω)prim|ω at every point of X.

(b) If |(∂ω)prim|ω ≥ |α1, 0 ∧ ω|ω at every point of X (we will say in this case that ω is almost
balanced), then ω is Gauduchon and |α1, 0 ∧ ω|ω = |(∂ω)prim|ω at every point of X.

(c) ω is almost lck ⇐⇒ ω is almost balanced ⇐⇒ ω is Gauduchon ⇐⇒ |α1, 0 ∧ ω|ω =
|(∂ω)prim|ω at every point of X.

Proof. The SKT assumption on ω implies that i∂ω ∧ ∂̄ω = i
2
∂∂̄ω2. Integrating this identity and

using the Stokes theorem and formula (4.262), we get:∫
X

|α1, 0 ∧ ω|2ω dVω =

∫
X

|(∂ω)prim|2ω dVω. (4.263)

Therefore, if |(∂ω)prim|2ω − |α1, 0 ∧ ω|2ω has constant sign on X, it must vanish identically. This is
equivalent to i

2
∂∂̄ω2 vanishing identically, hence to ω being Gauduchon. □

Based on these observations, let us introduce the following
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Notation 4.6.58. For any SKT metric ω on a 3-dimensional compact complex manifold X, we put:

Uω : =

{
x ∈ X

∣∣ |α1, 0 ∧ ω|ω(x) < |(∂ω)prim|ω(x)
}
,

Vω : =

{
x ∈ X

∣∣ |α1, 0 ∧ ω|ω(x) > |(∂ω)prim|ω(x)
}
,

Zω : =

{
x ∈ X

∣∣ |α1, 0 ∧ ω|ω(x) = |(∂ω)prim|ω(x)
}
.

Clearly, Uω and Vω are open subsets of X, while Zω is closed. The three of them form a partition
of X. Moreover, Corollary 4.6.57 ensures that ω is Gauduchon if and only if Uω = Vω = ∅. This
happens if and only if either Uω = ∅ or Vω = ∅.

Returning to the variation of the volume of ωφ := ω + i∂∂̄φ, we now observe a stark contrast
between the non-Gauduchon strata dealt with below and the Gauduchon ones treated in Lemma
4.6.55.

Lemma 4.6.59. Let X be a 3-dimensional compact complex manifold. Suppose that ω is an SKT
non-Gauduchon metric on X. Then, the map{

φ ∈ C∞(X)
∣∣ω + i∂∂̄φ > 0

}
∋ φ 7−→

∫
X

(ω + i∂∂̄φ)3

3!
:= V olωφ(X) ∈ (0, +∞)

does not achieve any local extremum.

Proof. Suppose this map achieves, say, a local maximum at some metric ω0 = ω + i∂∂̄φ0 > 0.
Without loss of generality, we may assume that ω0 = ω (and φ0 ≡ 1). Since ω is not Gauduchon,
both Uω and Vω are not empty. Thanks to (4.261) and (4.262), the local maximality of ω translates
to ∫

X

φ |α1, 0 ∧ ω|2ω dVω ≤
∫
X

φ |(∂ω)prim|2ω dVω (4.264)

for every φ ∈ C∞(X, R) such that ω + i∂∂̄φ > 0 and φ is close enough to φ0 ≡ 1 in C2 norm.
Now, (4.263) translates to∫

Uω

(|α1, 0 ∧ ω|2ω − |(∂ω)prim|2ω) dVω +

∫
Vω

(|α1, 0 ∧ ω|2ω − |(∂ω)prim|2ω) dVω

+

∫
Zω

(|α1, 0 ∧ ω|2ω − |(∂ω)prim|2ω) dVω = 0. (4.265)

Thus, if we can find a φ ∈ C∞(X, R) sufficiently close to φ0 ≡ 1 in C2 norm (this will also imply
that ω + i∂∂̄φ > 0) such that

φ ≡ 1 on Uω ∪ Zω, φ ≡ 1 + ε on V ′
ω ⋐ Vω, and 1 ≤ φ ≤ 1 + ε on Vω \ V ′

ω,

for some constant ε > 0, where V ′
ω is a pregiven relatively compact open subset of Vω, we will have∫

Vω

(φ− 1) (|α1, 0 ∧ ω|2ω − |(∂ω)prim|2ω) dVω > 0.
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Thanks to (4.265), this will imply that∫
X

φ |α1, 0 ∧ ω|2ω dVω >
∫
X

φ |(∂ω)prim|2ω dVω,

which will contradict (4.264).
Now, if ε > 0 is chosen small enough, it is obvious that a function φ ∈ C∞(X, R) with the above

properties exists. □

Summing up, the volume of ωφ := ω + i∂∂̄φ is constant on the Gauduchon strata (if any), while
it achieves no local extremum on the non-Gauduchon strata.

• Cohomological interpretations of the generalised volume

Before turning to cohomological interpretations of the invariant A in (2) and (3) below, we first
display A in the context of Hermitian-symplectic and strongly Gauduchon metrics in (1).

(1) sG metrics induced by H-S metrics

From Proposition 4.6.5, we infer the following construction. Let dimCX = 3. With any
Hermitian-symplectic metric ω on X, we uniquely associate the C∞ positive definite (2, 2)-form

Ωω := ω2 + 2ρ2, 0ω ∧ ρ0, 2ω , (4.266)

where ρ2, 0ω is the (2, 0)-torsion form of ω and ρ0, 2ω = ρ2, 0ω . As is well known (see e.g. [Mic83]), there
exists a unique positive definite (1, 1)-form γω such that

γ2ω = Ωω.

By construction and the proof of Proposition 4.6.5, γω is a strongly Gauduchon metric on X that
will be called the sG metric associated with ω. Of course, γω = ω if and only if ω is Kähler.
Since γ2ω and Ωω determine each other uniquely, we will often identify them. In particular, we will
also refer to Ωω as the sG metric associated with ω. We get:

1

3!
Ωω ∧ ω =

1

3!
ω3 +

1

3
|ρ2, 0ω |2ω dVω.

Hence,
1

6

∫
X

Ωω ∧ ω =
2

3
Volω(X) +

1

3
A, (4.267)

where A = Volω(X) + F (ω) > 0 is the generalised volume of the H-S Aeppli class {ω}A.
Thus, the problem of maximising Volω(X) when ω ranges over the metrics in {ω}A is equivalent

to maximising the quantity
∫
X
Ωω ∧ ω.

(2) The first cohomological interpretation of the generalised volume A

We first observe that the Aeppli cohomology class of Ωω depends only on the Aeppli class of ω.

Lemma 4.6.60. Suppose that dimCX = 3. For any Aeppli cohomologous Hermitian-symplectic
metrics ω and ωη = ω + ∂η̄ + ∂̄η on X, with η ∈ C∞

1, 0(X, C), the associated sG metrics Ωω and Ωωη

are again Aeppli cohomologous.
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Specifically, we have:

Ωωη − Ωω = ∂(η̄ ∧ ∂η̄) + ∂̄(η ∧ ∂̄η) + 2 ∂(η̄ ∧ ∂̄η) + 2 ∂̄(∂η ∧ η̄)
+ 2 ∂(η ∧ ρ0, 2ω ) + 2 ∂̄(η̄ ∧ ρ2, 0ω ) + 2 ∂(η̄ ∧ ω) + 2 ∂̄(η ∧ ω), (4.268)

so Ωωη − Ωω ∈ Im ∂ + Im ∂̄.

Proof. We know from Corollary 4.6.41 that the (2, 0)-torsion forms of ωη and ω are related by
ρ2, 0η = ρ2, 0ω + ∂η. We get:

Ωωη = ω2
η + 2 ρ2, 0ωη

∧ ρ0, 2ωη
= (ω + ∂η̄ + ∂̄η)2 + 2 (ρ2, 0ω + ∂η) ∧ (ρ0, 2ω + ∂̄η̄)

= ω2 + (∂η̄ + ∂̄η)2 + 2ω ∧ (∂η̄ + ∂̄η) + 2 ρ2, 0ω ∧ ρ0, 2ω + 2 ∂η ∧ ∂̄η̄ + 2 ρ2, 0ω ∧ ∂̄η̄ + 2 ∂η ∧ ρ0, 2ω

= Ωω + ∂(η̄ ∧ ∂η̄) + ∂̄(η ∧ ∂̄η) + 2 ∂(η̄ ∧ ∂̄η) + 2 η̄ ∧ ∂∂̄η
+ 2 ∂η̄ ∧ ω + 2 ∂̄η ∧ ω + 2 ∂̄(∂η ∧ η̄) + 2 ∂∂̄η ∧ η̄
+ 2 ∂̄(η̄ ∧ ρ2, 0ω ) + 2 ∂(η̄ ∧ ω)− 2 ∂η̄ ∧ ω + 2 ∂(η ∧ ρ0, 2ω ) + 2 ∂̄(η ∧ ω)− 2 ∂̄η ∧ ω.

This proves (4.268) since all the terms that are neither in Im ∂ nor in Im ∂̄ reoccur with the opposite
sign and cancel. □

We will need the following

Lemma 4.6.61. (Proposition 6.2 in [PSU20b]) Let X be a compact complex manifold with dimCX =
n and let ω be a Hermitian metric on X.

(i) The metric ω is strongly Gauduchon (sG) if and only if ωn−1 is E2E2-closed.

(ii) The metric ω is Hermitian-symplectic (H-S) if and only if ω is E3E3-closed.
If n = 3, ω is Hermitian-symplectic (H-S) if and only if ω is E2E2-closed.

Proof. (i) The sG condition on ω is defined by requiring ∂ωn−1 to be ∂̄-exact. By conjugation, this
is equivalent to ∂̄ωn−1 being ∂-exact. These conditions are equivalent to ωn−1 being E2E2-closed.

(ii) The H-S condition on ω is equivalent to the existence of a form ρ2, 0 ∈ C∞
2, 0(X, C) such that

∂ω = −∂̄ρ2, 0 and ∂ρ2, 0 = 0. By conjugation, these conditions are equivalent to the existence of a
form ρ0, 2 ∈ C∞

0, 2(X, C) such that ∂̄ω = −∂ρ0, 2 and ∂̄ρ0, 2 = 0. These four conditions express the
fact that ω satisfies the two towers of 2 equations in (i) of Definition 3.4.1, or equivalently that ω is
E3E3-closed.

When n = 3, the condition ∂ρ2, 0 = 0 is automatic since

i∂ρ2, 0∧ ∂̄ρ0, 2 = ∂ρ2, 0∧⋆∂̄ρ0, 2 = |∂ρ2, 0|2ω dVω ≥ 0 and

∫
X

i∂ρ2, 0∧ ∂̄ρ0, 2 =
∫
X

∂(iρ2, 0∧ ∂̄ρ0, 2) = 0,

where the primitivity (trivial for bidegree reasons) of the (0, 3)-form ∂̄ρ0, 2 was used to infer the
identity ⋆∂̄ρ0, 2 = i∂̄ρ0, 2 from the general formula (4.68). □

In our case, the consequence of Proposition 4.6.5 and of Lemmas 4.6.60 and 4.6.61 is the following

Lemma 4.6.62. Let X be a compact complex manifold with dimCX = 3. For any Aeppli coho-
mologous Hermitian-symplectic metrics ω and ωη = ω + ∂η̄ + ∂̄η on X, with η ∈ C∞

1, 0(X, C), the
corresponding sG metrics Ωω and Ωωη represent the same E2-Aeppli class:

{Ωωη}E2, A
= {Ωω}E2, A

∈ E2, 2
2, A(X).
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Proof. We know from Proposition 4.6.5 that Ωω and Ωωη are sG metrics, so by (i) of Lemma
4.6.61 they represent E2-Aeppli classes. Meanwhile, by Lemma 4.6.60, Ωω and Ωωη are Aeppli
cohomologous, hence also E2-Aeppli cohomologous. □

In our case, as a consequence of Theorem 3.4.17, we get a unique lift cω ∈ E2, 2
2, BC(X) of {Ωω}E2, A

∈
E2, 2

2, A(X) under the appropriate assumption on X.

Corollary 4.6.63. Let X be a page-1-∂∂̄-manifold with dimCX = 3. For any Aeppli cohomol-
ogous Hermitian-symplectic metrics ω and ωη = ω + ∂η̄ + ∂̄η on X, with η ∈ C∞

1, 0(X, C), there
exists a unique E2-Bott-Chern class cω ∈ E2, 2

2, BC(X) such that

(S2, 2
2 ◦ T 2, 2

2 )(cω) = {Ωωη}E2, A
= {Ωω}E2, A

∈ E2, 2
2, A(X),

where Ωω and Ωωη are the sG metrics associated with ω, resp. ωη.

In particular, the E2-Bott-Chern class cω ∈ E2, 2
2, BC(X) depends only on the E2-Aeppli class

{ω}E2, A ∈ E
1, 1
2, A(X).

We can now state and prove the main result of this discussion. It will use the duality be-
tween the Er-Bott-Chern cohomology of any bidegree (p, q) and the Er-Aeppli cohomology of the
complementary bidegree (n − p, n − q) proved in Theorem 3.4.11. In our case, n = 3, r = 2 and
(p, q) = (2, 2).

Theorem 4.6.64. Let X be a page-1-∂∂̄-manifold with dimCX = 3. Suppose there exists a
Hermitian-symplectic metric ω on X whose E2-torsion class vanishes (i.e. {ρ0, 2ω }E2 = 0 ∈
E0, 2

2 (X)).
Then, the generalised volume A = F (ω)+Volω(X) of {ω}A is given as the following intersection

number in cohomology:

A =
1

6
cω.{ω}E2, A. (4.269)

Proof. •We will first construct a smooth d-closed (2, 2)-form Ω̃ω that represents the E2-Bott-Chern
class cω ∈ E2, 2

2, BC(X) in the most economical way possible. We will proceed in two stages that

correspond to lifting the E2-Aeppli class {Ωω}E2, A ∈ E2, 2
2, A(X) to E2, 2

2 (X) under the isomorphism

S2, 2
2 : E2, 2

2 (X) −→ E2, 2
2, A(X) induced by the identity, respectively to lifting the resulting E2-class in

E2, 2
2 (X) to E2, 2

2, BC(X) under the isomorphism T 2, 2
2 : E2, 2

2, BC(X) −→ E2, 2
2 (X) induced by the identity.

Stage 1. To lift {Ωω}E2, A ∈ E2, 2
2, A(X) to E2, 2

2 (X) under the isomorphism S2, 2
2 : E2, 2

2 (X) −→
E2, 2

2, A(X), we need to find a (2, 2)-form Γ2, 2 such that Γ2, 2 ∈ Im ∂+Im ∂̄ (because we need Ωω+Γ2, 2

to represent the same E2, A-class as the original Ωω) and such that

∂̄(Ωω + Γ2, 2) = 0 and ∂(Ωω + Γ2, 2) ∈ Im ∂̄,

(because we need Ωω + Γ2, 2 to represent an E2-class). The last two conditions are equivalent to

∂̄Γ2, 2 = −∂̄Ωω and ∂Γ2, 2 ∈ Im ∂̄, (4.270)

because, for the last condition, we already have ∂Ωω ∈ Im ∂̄ by the sG property of Ωω.
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If we denote by Z2, 2
22̄

the space of smooth E2E2-closed (2, 2)-forms on X, we have Ωω ∈ Z2, 2
22̄

,

hence −∂̄Ωω ∈ ∂̄(Z2, 2
22̄

). On the other hand, Theorem 3.4.15 ensures that ∂̄(Z2, 2
22̄

) ⊂ Im (∂∂̄) because
X is a page-1-∂∂̄-manifold. (Actually, this inclusion is equivalent to the surjectivity of the map
S2, 2
2 .) We conclude that −∂̄Ωω ∈ Im (∂∂̄), so the equation

∂∂̄u1, 2 = ∂̄Ωω (4.271)

admits solutions u1, 2 ∈ C∞
1, 2(X, C). Let u1, 2ω be the minimal L2

ω-norm such solution and put Γ2, 2
ω :=

∂u1, 2ω .
Thus, Γ2, 2

ω = ∂u1, 2ω satisfies conditions (4.270) and Γ2, 2
ω ∈ Im ∂ ⊂ Im ∂ + Im ∂̄. So, we have got

the minimal lift {Ωω + ∂u1, 2ω }E2 of {Ωω}E2, A ∈ E
2, 2
2, A(X) to E2, 2

2 (X), i.e.

S2, 2
2 ({Ωω + ∂u1, 2ω }E2) = {Ωω}E2, A.

Stage 2. To lift {Ωω + ∂u1, 2ω }E2 ∈ E
2, 2
2 (X) to E2, 2

2, BC(X) under the isomorphism

T 2, 2
2 : E2, 2

2, BC(X) −→ E2, 2
2 (X), we need to find a (2, 2)-form V 2, 2 such that V 2, 2 ∈ ∂(ker ∂̄) + Im ∂̄

(because we need Ωω + ∂u1, 2ω + V 2, 2 to represent the same E2-class as Ωω + ∂u1, 2ω ) and such that

∂(Ωω + ∂u1, 2ω + V 2, 2) = 0 and ∂̄(Ωω + ∂u1, 2ω + V 2, 2) = 0,

(because we need Ωω + ∂u1, 2ω + V 2, 2 to represent an E2, BC-class). The last two conditions are
equivalent to

∂V 2, 2 = −∂(Ωω + ∂u1, 2ω ) and ∂̄V 2, 2 = 0, (4.272)

because, for the last condition, we already have ∂̄(Ωω + ∂u1, 2ω ) = 0.
Now, Ωω + ∂u1, 2ω ∈ Z2, 2

22̄
, hence −∂(Ωω + ∂u1, 2ω ) ∈ ∂(Z2, 2

22̄
) ⊂ Im (∂∂̄), the last inclusion being

a consequence of Theorem 3.4.15 and of X being a page-1-∂∂̄-manifold. (Actually, this inclusion is
equivalent to the surjectivity of the map T 2, 2

2 .)
We conclude that −∂(Ωω + ∂u1, 2ω ) ∈ Im (∂∂̄), so the equation

∂∂̄u2, 1 = −∂(Ωω + ∂u1, 2ω ) (4.273)

admits solutions u2, 1 ∈ C∞
2, 1(X, C). Let u2, 1ω be the minimal L2

ω-norm such solution and put

V 2, 2
ω := ∂̄u2, 1ω . Clearly, u2, 1ω = u1, 2ω since the equations whose minimal solutions are u2, 1ω and u1, 2ω are

conjugated to each other.
Thus, V 2, 2

ω = ∂̄u2, 1ω satisfies conditions (4.272) and V 2, 2
ω ∈ ∂(ker ∂̄) + Im ∂̄.

The upshot of the above construction is that the form

Ω̃ω := Ωω + ∂u1, 2ω + ∂̄u2, 1ω ∈ C∞
2, 2(X, C)

is the minimal completion of Ωω to a d-closed pure-type form of bidegree (2, 2). Moreover, the class

{Ω̃ω}E2, BC
∈ E2, 2

2, BC(X) has the property that

(S2, 2
2 ◦ T 2, 2

2 )({Ω̃ω}E2, BC
) = {Ωω}E2, A.

Hence, {Ω̃ω}E2, BC
= cω since the map S2, 2

2 ◦T
2, 2
2 : E2, 2

2, BC(X) −→ E2, 2
2, A(X) is bijective (thanks to the

page-1-∂∂̄-assumption on X).
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• We will now use the representative Ω̃ω of the class cω to relate the intersection number in
(4.269) to the generalised volume of {ω}A. We have:

cω.{ω}E2, A =

∫
X

Ω̃ω ∧ ω =

∫
X

Ωω ∧ ω +

∫
X

∂u1, 2ω ∧ ω +

∫
X

∂̄u2, 1ω ∧ ω.

Since ρ2, 0ω = ∂ξ1, 0ω thanks to the hypothesis {ρ0, 2ω }E2 = 0 ∈ E0, 2
2 (X) (see Corollary 4.6.50 and

the minimal choice (4.255) of ξ0, 1ω = ξ1, 0ω ), we get:∫
X

∂u1, 2ω ∧ ω =

∫
X

u1, 2ω ∧ ∂ω = −
∫
X

u1, 2ω ∧ ∂̄ρ2, 0ω =

∫
X

u1, 2ω ∧ ∂∂̄ξ1, 0ω

=

∫
X

∂∂̄u1, 2ω ∧ ξ1, 0ω

(a)
=

∫
X

∂̄Ωω ∧ ξ1, 0ω

(b)
= −2

∫
X

∂(ρ0, 2ω ∧ ω) ∧ ξ1, 0ω

= 2

∫
X

ρ0, 2ω ∧ ω ∧ ∂ξ1, 0ω = 2

∫
X

ρ2, 0ω ∧ ρ0, 2ω ∧ ω = 2 ||ρ2, 0ω ||2ω = 2F (ω),

where (a) follows from (4.271) and (b) follows from the formula

∂̄Ωω = −2 ∂(ρ0, 2ω ∧ ω) (4.274)

which in turn follows at once from (4.266).
By conjugation, we also have

∫
X
∂̄u2, 1ω ∧ ω = 2F (ω). Putting the various pieces of information

together, we get:

cω.{ω}E2, A =

∫
X

Ωω ∧ ω + 4F (ω) = 4Volω(X) + 2A+ 4F (ω) = 6A,

where the second identity follows from (4.267).
The proof of Theorem 4.6.64 is complete. □

(3) The second cohomological interpretation of the generalised volume A

We will now work in the general case (i.e. without the extra assumptions made in Theorem
4.6.64). The result will show, yet again, that the generalised volume A = A{ω}A > 0 of a Hermitian-
symplectic Aeppli class {ω}A is a natural analogue in this more general context of the volume of a
Kähler class.

Definition 4.6.65. Let X be a compact complex manifold with dimCX = 3. For any Hermitian-
symplectic metric ω on X, the d-closed real 2-form

ω̃ = ρ2, 0ω + ω + ρ0, 2ω

is called the minimal completion of ω, where ρ2, 0ω , resp. ρ0, 2ω , is the (2, 0)-torsion form, resp. the
(0, 2)-torsion form, of ω.

We will now notice the following consequence of Corollary 4.6.41 It gives a new cohomological
interpretation of the generalised volume A = A{ω}A > 0.
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Proposition 4.6.66. Let X be a compact complex Hermitian-symplectic manifold of dimension
n = 3.

(a) For any Hermitian-symplectic metric ω on X, its minimal completion 2-form ω̃ has
the property: ∫

X

ω̃3

3!
= Volω(X) + F (ω) = A{ω}A . (4.275)

(b) For any Aeppli-cohomologous Hermitian-symplectic metrics ω and ωη

ωη = ω + ∂η̄ + ∂̄η > 0 (where η ∈ C∞
1, 0(X, C)), (4.276)

the respective minimal completion 2-forms ω̃η and ω̃ lie in the same De Rham cohomology class.

Thus, A{ω}A = {ω̃}3DR/3!.

Proof. (a) Using (4.267) for identity (a) below and the above notation, we get:∫
X

ω̃3 =

∫
X

ω̃2 ∧ (ρ2, 0ω + ω + ρ0, 2ω ) =

∫
X

Ωω ∧ (ρ2, 0ω + ω + ρ0, 2ω )

+ 2

∫
X

ρ2, 0ω ∧ ω ∧ ρ0, 2ω + 2

∫
X

ρ0, 2ω ∧ ω ∧ ρ2, 0ω

=

∫
X

Ωω ∧ ω + 4F (ω)
(a)
= 4Volω(X) + 2Volω(X) + 2F (ω) + 4F (ω) = 6A.

(b) We know from Corollary 4.6.41 that the (2, 0)-torsion forms of ωη and ω are related by
ρ2, 0η = ρ2, 0ω + ∂η. We get:

ω̃η = ρ2, 0η + ωη + ρ0, 2η = ω̃ + d(η + η̄).

This proves the contention. □



Chapter 5

Co-polarised Deformations of Balanced
Calabi-Yau ∂∂̄-Manifolds

This chapter is taken from [Pop13] where the notion of co-polarisation by a balanced De Rham
cohomology class of some of the fibres of a holomorphic family of balanced Calabi-Yau ∂∂̄- manifolds
was introduced. It generalises the classical notion of polarisation by a Kähler class.

5.1 Small deformations of balanced ∂∂̄-manifolds

Recall that, by Definition 2.4.1, an n-dimensional compact complex manifold X is said to be a
Calabi-Yau manifold if its canonical bundle KX is trivial. This condition is deformation open when
the Hodge number hn, 0 does not jump in the neighbourhood of the given fibre.

Specifically, let π : X −→ B be a holomorphic family of compact complex manifolds Xt := π−1(t)
with dimCXt = n for all t ∈ B, where B ⊂ CN is a small open ball about the origin for some N ∈ N⋆.
If some fibre X0 is a Calabi-Yau manifold and if hn, 0

∂̄
(t) := dimCH

n, 0

∂̄
(Xt, C) is independent of t

varying in a small neighbourhood Bε of 0 in B, then the fibre Xt is again a Calabi-Yau manifold for
every t ∈ Bε.

We saw in Theorem 2.6.3 that, if X0 is supposed to be a ∂∂̄-manifold, all the Hodge numbers
hp, q
∂̄

(t) := dimCH
p, q

∂̄
(Xt, C) are independent of t varying in a small neighbourhood of 0 in B. In

particular, since the ∂∂̄-property of compact complex manifolds is open under holomorphic defor-
mations of complex structures by Theorem 2.6.4, we get that, if X0 is a Calabi-Yau ∂∂̄-manifold, all
the Xt’s with t sufficiently close to 0 are again Calabi-Yau ∂∂̄-manifolds. Moreover, when combined
with Wu’s Theorem 4.5.46, this fact implies the following

Corollary 5.1.1. Let (Xt)t∈B be a holomorphic family of compact complex manifolds over an open
ball B containing the origin in some CN .

If the fibre X0 is a balanced Calabi-Yau ∂∂̄-manifold, the fibre Xt is again a balanced
Calabi-Yau ∂∂̄-manifold for every t ∈ B sufficiently close to 0.

If Conjecture 4.5.56 turns out to be true, the balanced condition can be dropped from the above
statement, but in the current state of play, it has to be kept.

Since all the fibres Xt with t close enough to 0 are ∂∂̄-manifolds, the De Rham cohomology space
H2n−2
DR (X, C) (which is independent of the complex structure Jt) admits, for all t ∈ B close to 0, a

Hodge decomposition:

H2n−2
DR (X, C) = Hn, n−2

∂̄
(Xt, C)⊕Hn−1, n−1

∂̄
(Xt, C)⊕Hn−2, n

∂̄
(Xt, C) (5.1)

365
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depending on the complex structure Jt and satisfying the Hodge symmetry:

Hn, n−2

∂̄
(Xt, C) ≃ Hn−2, n

∂̄
(Xt, C).

Definition 5.1.2. A cohomology class {ωn−1}DR ∈ H2n−2
DR (X, C) is said to be of type (n− 1, n− 1)

for the complex structure Jt of Xt if its components of types (n, n− 2) and (n− 2, n) in the Hodge
decomposition (5.1) vanish.

If {ωn−1}DR ∈ H2n−2
DR (X, C) is a balanced class, it is real, so {ωn−1}DR is of Jt-type (n−1, n−1)

if and only if either of its components of Jt-types (n, n− 2) and (n− 2, n) vanishes. The condition
is still equivalent to the De Rham class {ωn−1}DR ∈ H2n−2

DR (X, C) being representable by a form of
Jt-pure type (n− 1, n− 1).

The starting point of the discussion in this chapter is the following observation. While inde-
pendent of Wu’s approach to Theorem 4.5.46, the proof uses similar techniques and, in particular,
reproves Theorem 4.5.46.

Observation 5.1.3. ([Pop13, Observation 7.2]) Let (Xt)t∈B be a holomorphic family of n-dimensional
compact complex manifolds such that the fibre X0 is a balanced ∂∂̄-manifold. We denote by X
the differentiable manifold underlying the fibres Xt (after possibly shrinking B about 0.)

Let ω0 be a balanced metric on X0 and suppose that the De Rham class {ωn−1
0 }DR ∈ H2n−2

DR (X, C)
is of type (n− 1, n− 1) for the complex structure Jt of Xt for all t close to zero and lying on a path
through 0 in B.

Then, the De Rham class {ωn−1
0 }DR contains a Jt-balanced metric for every t as above suffi-

ciently close to 0.

Proof. SinceXt is a ∂∂̄-manifold for every t close to 0, there are canonical isomorphismsHp, q
BC(Xt, C) ≃

Hp, q
A (Xt, C) (for every (p, q)) and

H2n−2
DR (X, C) ≃ Hn, n−2

BC (Xt, C)⊕Hn−1, n−1
BC (Xt, C)⊕Hn−2, n

BC (Xt, C)
≃ Hn, n−2

A (Xt, C)⊕Hn−1, n−1
A (Xt, C)⊕Hn−2, n

A (Xt, C).

Now, let ωn−1
0 = Ωn, n−2

t + Ωn−1, n−1
t + Ωn−2, n

t be the splitting of ωn−1
0 into components of pure

Jt-types. In particular, Ωn−1, n−1
t is a real Jt-type (n− 1, n− 1)-form that varies in a C∞ way with

t and is positive definite for every t sufficiently close to 0 since Ωn−1, n−1
0 = ωn−1

0 > 0.
Meanwhile, since dωn−1

0 = 0, it is easy to see (cf. e.g. [Pop15a]) that ∂t∂̄tΩ
n−1, n−1
t = 0

and that the Aeppli cohomology class [Ωn−1, n−1
t ]A is the image of {ωn−1

0 }DR under the projection
H2n−2
DR (X, C) −→ Hn−1, n−1

A (Xt, C) defined by the latter cohomology splitting above.
To construct the image of [Ωn−1, n−1

t ]A ∈ Hn−1, n−1
A (Xt, C) inHn−1, n−1

BC (Xt, C) under the canonical
isomorphism Hn−1, n−1

A (Xt, C) ≃ Hn−1, n−1
BC (Xt, C), we can proceed as in [Pop15a] and look for the

“most economic choice” of a Jt-(n− 2, n− 1)-form ut and a Jt-(n− 1, n− 2)-form vt such that the
Jt-(n− 1, n− 1)-form

Ω̃n−1, n−1
t := Ωn−1, n−1

t + ∂tut + ∂̄tvt

is d-closed. This amounts to ∂t∂̄tut = ∂̄tΩ
n−1, n−1
t and ∂t∂̄tvt = −∂tΩn−1, n−1

t . If we choose vt := ūt,
the latter equation becomes redundant, while the minimal L2

γt-norm solution of the former equation
(which is solvable since Xt is a ∂∂̄-manifold) is given by the following Neumann-type formula (see
Theorem 4.5.47):
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ut = (∂t∂̄t)
⋆∆−1

BC(t)∂̄tΩ
n−1, n−1
t , t ∈ B,

after possibly shrinking B about 0 to ensure that Xt is a ∂∂̄-manifold. (As usual, we have fixed an
arbitrary C∞ family (γt)t∈B of Hermitian metrics on the fibres (Xt)t∈B.)

Then, for all t close to 0, we get

Ω̃n−1, n−1
t := Ωn−1, n−1

t + ∂t(∂t∂̄t)
⋆∆−1

BC(t)∂̄tΩ
n−1, n−1
t + ∂̄t(∂̄t∂t)

⋆∆−1
BC(t)∂tΩ

n−1, n−1
t .

When t = 0, ∂0∂̄0u0 = ∂̄0Ω
n−1, n−1
0 = ∂̄0ω

n−1
0 = 0 (the last identity being a consequence of ω0 being

balanced), so the minimal L2-norm solution of this equation is u0 = 0. Note that ut, hence also

Ω̃n−1, n−1
t , depends in a C∞ way on t for the same reason as in the proof of Wu’s Theorem 4.5.46:

the ∂∂̄-assumption implies the invariance w.r.t. t of the Bott-Chern numbers hp, qBC(t), which implies
the smooth dependence on t of ∆−1

BC(t).

We have thus constructed a C∞ family of real d-closed Jt-(n−1, n−1)-forms Ω̃n−1, n−1
t such that

Ω̃n−1, n−1
0 = ωn−1

0 > 0. By continuity, we must have Ω̃n−1, n−1
t > 0, hence Ω̃n−1, n−1

t defines a balanced
metric on Xt, for all t close to 0. (In particular, this gives another proof of Wu’s Theorem 4.5.46.)

Moreover, [Ω̃n−1, n−1
t ]BC is the image in Hn−1, n−1

BC (Xt, C) of [Ωn−1, n−1
t ]A under the canonical iso-

morphism Hn−1, n−1
A (Xt, C) → Hn−1, n−1

BC (Xt, C). Since [Ωn−1, n−1
t ]A is the image of {ωn−1

0 }DR un-

der the canonical projection of H2n−2
DR (X, C) onto Hn−1, n−1

A (Xt, C), we infer that [Ω̃n−1, n−1
t ]BC is

the image in Hn−1, n−1
BC (Xt, C) of {ωn−1

0 }DR under the canonical projection of H2n−2
DR (X, C) onto

Hn−1, n−1
BC (Xt, C). Meanwhile, if the class {ωn−1

0 }DR ∈ H2n−2
DR (X, C) is supposed to be of Jt-type

(n−1, n−1), it coincides with its projection [Ω̃n−1, n−1
t ]BC (after the obvious canonical identification

of Hn−1, n−1
BC (Xt, C) with its image in H2n−2

DR (X, C)). This means that {ωn−1
0 }DR = {Ω̃n−1, n−1

t }DR for
all t sufficiently close to 0 and lying on the path through 0 in ∆ along which {ωn−1

0 }DR is assumed

to be of Jt-type (n− 1, n− 1). Thus, the class {ωn−1
0 }DR contains the Jt-balanced metric Ω̃n−1, n−1

t

for all these t’s. □

5.1.1 The balanced Ricci-flat Bochner principle

We collect here essentially known facts that will come in handy later on. A preliminary observation
is the following addition to Corollary 4.5.21.

Proposition 5.1.4. ([Gau77b, Proposition 1, p.120, Proposition 7, p.128]) Let (E, hE) → (X, ω)
be a complex Hermitian C∞ vector bundle of rank r ≥ 1 equipped with a Hermitian connection
DE = D′

E +D′′
E. If ω is balanced, then

∆′′
Eσ = ∆′

Eσ + [iΘ(E)1, 1, Λ](σ) for all sections σ ∈ C∞
0, 0(X, E), (5.2)

where ∆′′
E = D′′

E D
′′⋆
E +D

′′⋆
E D′′

E and ∆′
E = D′

E D
′⋆
E +D

′⋆
E D

′
E, while iΘ(E)1, 1 stands for the (multipli-

cation operator by the) component of type (1, 1) of the curvature form of E and Λ := Λω ⊗ IdE.

Proof. The proof is similar to that of Corollary 4.5.21. It involves using the Hermitian commutation
relations:

[Λ, D′
E] = i (D

′′⋆
E + τ̄ ⋆) and [Λ, D′′

E] = −i (D
′⋆
E + τ ⋆) (5.3)

and the fact that D′
ED

′′
Eσ +D′′

ED
′
Eσ = Θ(E)1, 1 ∧ σ. □

We go on to notice the following
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Proposition 5.1.5. Let X be a compact complex manifold (dimCX = n) endowed with an arbitrary
Hermitian metric ω. Let | · |ω denote the pointwise norm of sections of KX w.r.t. the metric induced
by ω.

(i) For every u ∈ C∞
n, 0(X, C) ≃ C∞(X, KX), we have

in
2

u ∧ ū = |u|2ω ωn. (5.4)

(ii) Equip KX with the metric induced by ω and denote by D = D′ + ∂̄ the corresponding Chern
connection of KX . If ω is balanced and Ric (ω) = 0, then every u ∈ C∞

n, 0(X, C) ≃ C∞(X, KX)
satisfies

||∂̄u||2 = ||D′u||2,

where || · || denotes the L2 norm of KX-valued forms w.r.t. the metric induced by ω. In particular,
every holomorphic n-form u on X (i.e. u ∈ H0(X, KX)) is parallel (i.e. Du = 0) and satisfies

|u|2ω = C (hence also in
2

u ∧ ū = C ωn) on X (5.5)

for some constant C ≥ 0.

Proof. (i) Fix an arbitrary point x0 ∈ X and choose local holomorphic coordinates z1, . . . , zn about
x0. If we write u = f dz1 ∧ · · · ∧ dzn on some open subset U ⊂ X, where f is a C∞ function on U ,
we have

in u ∧ ū = (−1)
n(n−1)

2 |f |2 i dz1 ∧ dz̄1 ∧ · · · ∧ i dzn ∧ dz̄n. (5.6)

On the other hand, if we write

ω = i
∑
α, β

ωαβ dzα ∧ dz̄β on U,

we have ωn = det(ωαβ) i dz1 ∧ dz̄1 ∧ · · · ∧ i dzn ∧ dz̄n on U . Thus, if h = exp(−φ) is the fibre metric
induced by ω on ΛnT 1, 0X = det(T 1, 0X) = −KX , we have

det(ωαβ) = e−φ on U.

If we regard u as a section of KX , we have

|u|2ω = |f |2 |dz1 ∧ · · · ∧ dzn|2ω = eφ |f |2 = |f |2

det(ωαβ)
on U.

Since ωn = det(ωαβ) i dz1 ∧ dz̄1 ∧ · · · ∧ i dzn ∧ dz̄n on U , we get

|u|2ω ωn = |f |2 i dz1 ∧ dz̄1 ∧ · · · ∧ i dzn ∧ dz̄n on U. (5.7)

Since (−1)
n(n−1)

2 in = in
2
, we see that (5.6) and (5.7) add up to (5.4).

(ii) If ω is balanced, (b) of Proposition 5.1.4 applied to E = KX reads:

∆′′
KX
u = ∆′

KX
u+ [iΘω(KX), Λ](u).

Now, iΘω(KX) = −Ric (ω) = 0, while
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⟨⟨∆′′
KX
u, u⟩⟩ = ||∂̄u||2 and ⟨⟨∆′

KX
u, u⟩⟩ = ||D′u||2.

Thus we get the former part of (ii). To get the latter part of (ii), it suffices to notice that if u is
holomorphic, then ∂̄u = 0, hence D′u = 0 by the above identity, hence Du = 0 at every point of X.
Meanwhile, for every holomorphic n-form u, we have

d |u|2ω = d ⟨u, u⟩ω = {Du, u}+ {u, Du} = 0

thanks to Du = 0, hence |u|2ω is constant on X. (Here { , } stands for the sesquilinear pairing of
KX-valued forms combining the exterior product of scalar-valued forms, conjugation in the second
factor and the pointwise scalar product ⟨ , ⟩ω induced by ω on the fibres of KX .) □

It turns out that the balanced assumption is unnecessary in the last statement of Proposition
5.1.5. Indeed, every holomorphic section of a flat line bundle is parallel. In particular, (5.5) holds
in Proposition 5.1.5 for any Hermitian metric ω such that Ric(ω) = 0.

Observation 5.1.6. 1 Let (L, h) → X be a Hermitian holomorphic line bundle over a compact
complex manifold such that the curvature form iΘh(L) vanishes identically on X. Then any global
holomorphic section σ ∈ H0(X, L) satisfies Dσ = 0, where D is the Chern connection of (L, h).

Proof. Let n := dimCX. Pick any Gauduchon metric ω on X. Thus ω is a C∞ positive definite
(1, 1)-form such that ∂∂̄ωn−1 = 0 on X (cf. [Gau77a]). If |σ|2h is the pointwise squared norm of σ
w.r.t. h, Stokes’ theorem implies

∫
X

i∂∂̄|σ|2h ∧ ωn−1 = 0. (5.8)

On the other hand, computing the real C∞ (1, 1)-form i∂∂̄|σ|2h, we get:

i∂∂̄|σ|2h = i∂∂̄⟨σ, σ⟩h = i∂ {σ, D′σ}h
= i {D′σ, D′σ}h + i {σ, ∂̄D′σ}h = i {D′σ, D′σ}h ≥ 0 (5.9)

at every point in X, where ⟨ , ⟩h stands for the pointwise scalar product defined by h on the fibres
of L and { , } denotes the sesquilinear pairing of L-valued forms combining the exterior product of
scalar-valued forms, conjugation in the second factor and ⟨ , ⟩h, while D = D′ + ∂̄ is the splitting
of D into components of respective types (1, 0) and (0, 1). Since σ is holomorphic, ∂̄σ = 0, while
the flatness assumption iΘh(L) = 0 translates to D′∂̄ + ∂̄D′ = 0. Hence ∂̄D′σ = 0, accounting for
the last identity in (5.9). To justify the nonnegativity inequality in (5.9), pick an arbitrary point
x ∈ X, a local holomorphic frame e of L and write D′σ = α⊗ e for a scalar-valued (1, 0)-form α in
a neighbourhood of x. Then

i {D′σ, D′σ}h = |e|2h · iα ∧ ᾱ ≥ 0, hence i∂∂̄|σ|2h ∧ ωn−1 ≥ 0, (5.10)

at every point near x since iα∧ᾱ is a semi-positive (1, 1)-form whenever α is a (1, 0)-form. Moreover,
iα ∧ ᾱ ∧ ωn−1 vanishes at a given point x if and only if α vanishes at x.

1Both the statement and the proof of this observation have been kindly pointed out to the author by J.-P. Demailly.
These facts are actually well known, cf. e.g. [KW70] and [Gau77b].
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By (5.8), (5.9) and (5.10), |D′σ|h = 0 at every point in X. Thus D′σ = 0, hence Dσ = 0 on X.
□

The following simple and well-known fact will be used further down.

Lemma 5.1.7. Let X be a compact complex manifold (dimCX = n) endowed with a Hermitian
metric ω such that Ric(ω) = 0. If KX is trivial and if u ∈ C∞

n, 0(X, C) such that ∂̄u = 0, u has no
zeroes and

in
2

∫
X

u ∧ ū =

∫
X

dVω, (where dVω :=
ωn

n!
) (5.11)

then the Calabi-Yau isomorphism Tu : C∞
0, 1(X, T

1, 0X) → C∞
n−1, 1(X, C) (see (2.46) with q = 1) is

an isometry w.r.t. the pointwise (hence also the L2) scalar products induced by ω on the vector
bundles involved.

Proof. Fix an arbitrary point x0 ∈ X and choose local holomorphic coordinates z1, . . . , zn about x0
such that

ω(x0) = i
n∑
j=1

λj dzj ∧ dz̄j and u(x0) = f dz1 ∧ · · · ∧ dzn.

A simple calculation shows that for any θ, η ∈ C∞
0, 1(X, T

1, 0X), the pointwise scalar products at x0
are related by

⟨θ, η⟩ = λ1 . . . λn
|f |2

⟨θ⌟u, η⌟u⟩.

Thus having ⟨θ, η⟩ = ⟨θ⌟u, η⌟u⟩ at x0 is equivalent to having |f |2 = λ1 . . . λn. On the other hand,
the identity in

2
u ∧ ū = |u|2ω ωn implies that

|f |2 = (n!) |u|2ω (λ1 . . . λn).
Thus Tu is an isometry w.r.t. the pointwise scalar products induced by ω if and only if

|u|2ω =
1

n!
at every point of X. (5.12)

Since we know from (5.5) of Proposition 5.1.5 and from Observation 5.1.6 that |u|2ω is constant on
X, we see from the identity in

2
u ∧ ū = |u|2ω ωn that the normalisation (5.11) of u is equivalent to

(5.12), i.e. to Tu being an isometry w.r.t. the pointwise scalar products induced by ω on the vector
bundles involved. □

Finally, let us mention the following addition to Lemma and Definition 2.4.4.

Lemma 5.1.8. Let X be a compact complex manifold with dimCX = n. Suppose that KX is trivial
and let u be a Calabi-Yau form on X.

If ω is any Hermitian metric on X such that Ric(ω) = 0, the isomorphism

Tu : C
∞
0, 1(X, T

1, 0X)
·⌟u−→ C∞

n−1, 1(X, T
1, 0X)

of (2.46) for q = 1 satisfies:

Tu(Im ∂̄⋆) = Im ∂̄⋆ and Tu(ker∆
′′) = ker∆′′. (5.13)
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Proof. We know from (5.5) of Proposition 5.1.5 and from Observation 5.1.6 that |u|2ω is constant on
X whenever Ric(ω) = 0. Then the proof of Lemma 5.1.7 shows that ⟨θ, η⟩ = Const · ⟨θ⌟u, η⌟u⟩ for
all θ, η ∈ C∞

0, 1(X, T
1, 0X), hence θ ⊥ η if and only if θ⌟u ⊥ η⌟u. (The notation is the obvious one.)

This fact suffices to deduce (5.13) from the pairwise orthogonality of ker∆′′, Im ∂̄ and Im ∂̄⋆ in the
three-space decompositions of C∞

0, 1(X, T
1, 0X) and C∞

n−1, 1(X, C) and from the identities (2.47). □

5.2 Examples of non-Kähler, balanced Calabi-Yau ∂∂̄-manifolds

We now pause to point out a few examples of manifolds of the above type in support of the theory
that will be developed in the next sections.

(1) We have seen that all class C manifolds are both balanced and ∂∂̄. However, the implications
are strict and even the simultaneous occurence of the balanced and ∂∂̄ conditions does not ensure
the class C property. The following observation is a reinforcement of Observation 2.6.15.

Observation 5.2.1. There exist compact balanced ∂∂̄-manifolds that are not of class C. In other
words, the class of compact balanced ∂∂̄-manifolds strictly contains Fujiki’s class C.

Proof. It suffices to put together the proofs of Theorem 2.6.13 and of Observation 2.6.15 and to
remember that, by a result of Gauduchon [Gau91], all twistor spaces are balanced. Indeed, [Cam91a]
and [LP92] exhibit holomorphic families of twistor spaces (Xt)t∈B in which the central fibre X0 is
Moishezon (hence is also a ∂∂̄-manifold), while, for every t ∈ B \ {0} sufficiently close to 0, the
fibre Xt has vanishing algebraic dimension (hence is non-Moishezon, hence is not of class C since,
by another result of Campana [Cam91b], the Moishezon and class C properties of twistor spaces are
equivalent). Thus, any of the fibres Xt with t ̸= 0 but t close to 0 provides an example as stated. □

Notice that the above examples are not Calabi-Yau manifolds since the restriction of the canonical
bundle of any twistor space to any twistor line is isomorphic to OP1(−4), hence it cannot be trivial.

(2) On the other hand, examples of compact non-Kähler, class C, holomorphic symplectic
manifolds were constructed by Yoshioka in [Yos01, section 4.4]. In particular, Yoshioka’s manifolds
are compact, non-Kähler, balanced Calabi-Yau ∂∂̄-manifolds. Thus they fall into the category of
manifolds that will be investigated in this chapter. While Yoshioka’s manifolds are of class C, parts
(3) and (4) below show that compact, non-class C, balanced Calabi-Yau ∂∂̄-manifolds (i.e. manifolds
as in Observation 5.2.1 having, in addition, a trivial canonical bundle) exist.

(3) We will now point out a first class of examples of compact balanced Calabi-Yau ∂∂̄-
manifolds that are not of class C. In [FOU14, Theorem 5.2] (see also [Kas13]), a (compact)
solvmanifold M of real dimension 6 and a holomorphic family of complex structures (Ja)a∈D on M
are constructed (where D := {a ∈ C ; |a| < 1}) such that Xa := (M, Ja) is a balanced Calabi-Yau
∂∂̄-manifold for every a ∈ D \ {0}. Furthermore, it can be easily checked that Xa = (M, Ja) is not
of class C for any a ∈ D by either of the next two arguments.

(a) A direct calculation shows the existence of a C∞ positive definite (1, 1)-form ω on Xa such
that i∂∂̄ω ≥ 0. Then, by Theorem 2.3 in [Chi14], if Xa were of class C, it would have to be Kähler.
However, a direct calculation shows that no Kähler metrics exist on any Xa. This argument has
kindly been communicated to the author by L. Ugarte.

(b) Since the fundamental group is a bimeromorphic invariant of compact complex manifolds, if
Xa were of class C, its fundamental group would also occur as the fundamental group of a compact
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Kähler manifold. However, this is impossible as follows from [Cam04] (where it is proved that
the Albanese morphism αX : X → Alb(X) of any Calabi-Yau class C manifold X is surjective)
combined with [Cam95] (where π1(X) is studied when αX is surjective). This argument has kindly
been communicated to the author by F. Campana.

(4) In [Fri17], a large class of compact, non-class C, balanced Calabi-Yau ∂∂̄-manifolds obtained
via a construction of Clemens’s (that was subsequently used by many authors, including Friedman
himself, [Rei86] and [FLY12]) was produced.

This construction, termed conifold transition and also outlined in §.4.5.6 just above Example
4.5.63, runs as follows. One starts off with a compact Kähler Calabi-Yau manifold X, contracts
X under a crepant map to some singular non-class C) variety Y and then smoothes Y by slightly
deforming it to some non-class C, but balanced, Calabi-Yau ∂∂̄) manifold Yt.

In [Fri17], the original compact 3-fold X with trivial KX is only assumed to be ∂∂̄ (so not nec-
essarily Kähler), to have h0, 1 = h0, 2 = 0 (hence also h1, 0 = h2, 0 = 0 thanks to the Hodge symmetry
that holds on any ∂∂̄-manifold) and to have disjoint smooth rational (−1, −1)-curves C1, . . . , Cr
whose classes [Ci] ∈ H4(X, C) satisfy a linear dependence relation but generate H4(X, C). Fried-
man shows in [Fri17] that the singular compact 3-fold Y obtained from any such X by contracting
the Ci’s has smooth small deformations that are ∂∂̄-manifolds, but are not of class C. They are not
even deformation equivalent to any class C manifold. Actually, all the small deformations lying in
an open dense subset of the moduli space are shown in [Fri17] to be ∂∂̄-manifolds, while all small
smoothings are conjectured to be. They are balanced by [FLY12].

5.3 Co-polarisations by balanced classes

In this section, we give the main new construction of this chapter.

5.3.1 Definitions

Let (X, ω) be a compact balanced Calabi-Yau ∂∂̄-manifold (n = dimCX). Denote by π : X → B
the Kuranishi family of X. Thus π is a proper holomorphic submersion from a complex manifold
X , while the fibres Xt with t ∈ B \ {0} can be seen as deformations of the given manifold X0 = X.
The base space B is smooth and can be viewed as an open subset of H0, 1(X, T 1, 0X) (or as a ball
containing the origin in CN , where N = dimCH

0, 1(X, T 1, 0X)) by Theorem 2.4.7. Hence the tangent
space at 0 is

T0B ≃ H0, 1(X, T 1, 0X).

By Corollary 5.1.1, Xt is a balanced Calabi-Yau ∂∂̄-manifold for all t ∈ B close to 0.
Recall that, by Ehresmann’s Theorem, for every degree k, the k-th De Rham cohomology space

Hk
DR(Xt, C) of Xt can be identified with a fixed C-vector space Hk

DR(X, C) for all t ∈ B. (We
also denote by X the C∞ manifold underlying all the fibres Xt.) By a balanced class [ωn−1

t ] ∈
Hn−1, n−1

∂̄
(Xt, C) ⊂ H2n−2

DR (X, C) on Xt we shall mean the Dolbeault cohomology class of type
(n − 1, n − 1) (or the De Rham cohomology class of degree 2n − 2 that is the image of the former
under the above canonical inclusion of vector spaces which holds thanks to the ∂∂̄-property of Xt

and (5.1)) of the (n− 1)st power of a balanced metric ωt on Xt.
Recall that in the special case where the metric ω is Kähler (and thus defines a Kähler class

[ω]∂̄ ∈ H
1, 1

∂̄
(X, C) ⊂ H2

DR(X, C) that is, furthermore, often required to be integral, but we deal with
arbitrary, possibly non-rational classes here), it is standard to define the deformations of X0 = X
polarised by [ω]∂̄ as those nearby fibres Xt on which the De Rham class {ω}DR ∈ H2

DR(X, C) is still
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a Kähler class (hence, in particular, of type (1, 1)) for the complex structure Jt of Xt. In the more
general balanced case treated here, ω need not define a class, but ωn−1 does. Taking our cue from
the standard Kähler case, we propose the following dual notion in the balanced context.

Definition 5.3.1. Having fixed a balanced class

[ωn−1]∂̄ ∈ H
n−1, n−1

∂̄
(X, C) ⊂ H2n−2

DR (X, C),

on X0 = X, we say that a fibre Xt is co-polarised by [ωn−1]∂̄ if the De Rham class

{ωn−1}DR ∈ H2n−2
DR (X, C)

is of type (n− 1, n− 1) for the complex structure Jt of Xt.
The restricted family π : X[ωn−1] → B[ωn−1] will be called the universal family of deformations of

X that are co-polarised by the balanced class [ωn−1]∂̄, where B[ωn−1] is the set of t ∈ B such that Xt

is co-polarised by [ωn−1]∂̄ and X[ωn−1] = π−1(B[ωn−1]) ⊂ X .

After possibly shrinking B[ωn−1] about 0, we may assume that {ωn−1}DR ∈ H2n−2
DR (X, C) is a

balanced class (i.e. contains the (n− 1)-st power of a balanced metric) for the complex structure Jt
of the fibre Xt for every t ∈ B[ωn−1] (cf. Observation 5.1.3).

Note that in the special case where ω is Kähler on X0 = X, the (2n − 2)-class {ωn−1}DR is a
balanced class for Jt whenever the 2-class {ω}DR is a Kähler class for Jt. We shall see further down
that the converse also holds, meaning that in the special Kähler case the notion of co-polarised
deformations of X coincides with that of polarised deformations.

When ω is Kähler, it is a standard fact that the deformations of X polarised by [ω]∂̄ are
parametrised by the following subspace of H0, 1(X, T 1, 0X):

H0, 1(X, T 1, 0X)[ω] :=

{
[θ] ∈ H0, 1(X, T 1, 0X) | [θ⌟ω] = 0 ∈ H0, 2

∂̄
(X, C)

}
(5.14)

which is isomorphic under T[u] (cf. (2.48)) to the space of primitiveDolbeault classes of type (n−1, 1):

H0, 1(X, T 1, 0X)[ω]
T[u]−→ Hn−1, 1

prim (X, C). (5.15)

We shall now see that the co-polarised deformations of X are parametrised by an analogous
subspace.

Lemma 5.3.2. For a given balanced class [ωn−1]∂̄ ∈ H
n−1, n−1

∂̄
(X, C), consider the following vector

subspace of H0, 1(X, T 1, 0X):

H0, 1(X, T 1, 0X)[ωn−1] :=

{
[θ] ∈ H0, 1(X, T 1, 0X) ; [θ⌟ωn−1] = 0 ∈ Hn−2, n

∂̄
(X, C)

}
. (5.16)

Then:
(a) the space H0, 1(X, T 1, 0X)[ωn−1] is well-defined (i.e. the class [θ⌟ωn−1]∂̄ ∈ Hn−2, n

∂̄
(X, C) is in-

dependent of the choice of representative θ in the class [θ] ∈ H0, 1(X, T 1, 0X) and of the choice of
representative ωn−1 in the class [ωn−1]∂̄ ∈ H

n−1, n−1

∂̄
(X, C)). We can therefore put:

[θ]⌟[ωn−1] := [θ⌟ωn−1]. (5.17)
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(b) the open subset B ⊂ H0, 1(X, T 1, 0X) relates to B[ωn−1] as follows:

B[ωn−1] = B ∩H0, 1(X, T 1, 0X)[ωn−1].

Implicitly, T0B[ωn−1] ≃ H0, 1(X, T 1, 0X)[ωn−1].

Proof. (a) follows from Lemma 5.3.3 below. Indeed, if θ + ∂̄ξ is another representative of the class
[θ] for some vector field ξ ∈ C∞(X, T 1, 0X), then

(θ + ∂̄ξ)⌟ωn−1 = θ⌟ωn−1 + ∂̄(ξ⌟ωn−1)

since ω is balanced. Hence [(θ + ∂̄ξ)⌟ωn−1]∂̄ = [θ⌟ωn−1]∂̄. Similarly, if ωn−1 + ∂̄λ is another repre-
sentative of the Dolbeault class [ωn−1] for some (n− 1, n− 2)-form λ, then

θ⌟(ωn−1 + ∂̄λ) = θ⌟ωn−1 + ∂̄(θ⌟λ)

since ∂̄θ = 0. Hence [θ⌟(ωn−1 + ∂̄λ)]∂̄ = [θ⌟ωn−1]∂̄.
(b) Since Xt is a ∂∂̄-manifold for every t close to 0, it admits a Hodge decomposition which in

degree 2n− 2 spells:

H2n−2
DR (X, C) = Hn, n−2

∂̄
(Xt, C)⊕Hn−1, n−1

∂̄
(Xt, C)⊕Hn−2, n

∂̄
(Xt, C),

withHn−2, n

∂̄
(Xt, C) ≃ Hn, n−2

∂̄
(Xt, C). In our case, the real De Rham class {ωn−1}DR ∈ H2n−2

DR (X, R)
splits accordingly as

{ωn−1}DR = {ωn−1}n, n−2
t + {ωn−1}n−1, n−1

t + {ωn−1}n−2, n
t ,

with {ωn−1}n−2, n
t = {ωn−1}n, n−2

t and {ωn−1}n−1, n−1
t real. Thus, the definition of B[ωn−1] translates

to

B[ωn−1] =

{
t ∈ B ; {ωn−1}n−2, n

t = 0 ∈ Hn−2, n

∂̄
(Xt, C)

}
.

Moreover, {ωn−1}DR is of type (n− 1, n− 1) for J0, so {ωn−1}n−2, n
0 = 0 and {ωn−1}n, n−2

0 = 0. Let
t1, . . . , tN be local holomorphic coordinates about 0 in ∆. So t = (t1, . . . , tN) ∈ B identifies with [θ]
varying in an open subset ofH0, 1(X, T 1, 0X). Let [θ] ∈ H0, 1(X, T 1, 0X) be the image of ∂

∂ti |ti=0
under

the Kodaira-Spencer map ρ : T0B
≃−→ H0, 1(X, T 1, 0X). Then, under the Gauss-Manin connection

on the Hodge bundle B ∋ t 7→ H2n−2
DR (Xt, C), the derivative of the class [ωn−1]n−2, n

t ∈ Hn−2, n

∂̄
(Xt, C)

in the direction of ti at ti = 0 is the class [θ⌟ωn−1] ∈ Hn−2, n

∂̄
(X, C). □

Here is the lemma that has been used in the proof of (a) above.

Lemma 5.3.3. Let X be a compact complex manifold (dimCX = n) equipped with an arbitrary
Hermitian metric ω. Then:

(i) ∂̄(ξ⌟ωn−1) = (∂̄ξ)⌟ωn−1 − ξ⌟∂̄ωn−1, for every ξ ∈ C∞(X, T 1, 0X).

Hence, if ω is balanced, we have ∂̄(ξ⌟ωn−1) = (∂̄ξ)⌟ωn−1.

(ii) ∂̄(θ⌟ω) = (∂̄θ)⌟ω + θ⌟∂̄ω, for every θ ∈ C∞
0, 1(X, T

1, 0X).
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Analogous identities hold for forms of any type in place of ω or ωn−1. However, the analogous
identities for ∂ in place of ∂̄ fail (intuitively because ∂ increases the holomorphic degree of forms,
while the contraction by a vector field of type (1, 0) decreases the same holomorphic degree).

Proof. Fix an arbitrary point x0 ∈ X and let z1, . . . , zn be local holomorphic coordinates about x0.
If we denote

ωn−1 = in−1
∑
α, β

γαβ ̂dzα ∧ dz̄β and ξ =
∑
j

ξj
∂

∂zj
,

where ̂dzα ∧ dz̄β := dz1 ∧ · · · ∧ d̂zα ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ d̂z̄β ∧ · · · ∧ dz̄n, we get:

ξ⌟ωn−1 = in−1
∑

β
j<α

(−1)j−1 ξjγαβ ̂(dzj ∧ dzα ∧ dz̄β) + in−1
∑

β
j>α

(−1)j ξjγαβ ̂(dzα ∧ dzj ∧ dz̄β)

= in−1
∑

β
j<α

(
(−1)j−1 ξjγαβ + (−1)α ξαγjβ

)
̂(dzj ∧ dzα ∧ dz̄β),

where we have used the notation:

̂(dzj ∧ dzα ∧ dz̄β) := dz1 ∧ · · · ∧ d̂zj ∧ · · · ∧ d̂zα ∧ · · · ∧ dzn ∧ dz̄1 ∧ · · · ∧ d̂z̄β ∧ · · · ∧ dz̄n.
Hence, by applying ∂̄, we get:

∂̄(ξ⌟ωn−1) = in−1
∑

β
j<α

(−1)n+β−1

[
(−1)j−1 ξj

∂γαβ
∂z̄β

+ (−1)j−1 ∂ξj
∂z̄β

γαβ + (−1)αξα
∂γjβ
∂z̄β

+ (−1)α∂ξα
∂z̄β

γjβ

]
̂dzj ∧ dzα. (5.18)

Similar calculations yield:

(∂̄ξ)⌟ωn−1 = (−1)nin−1
∑

β
j<α

(−1)β
(
(−1)j ∂ξj

∂z̄β
γαβ − (−1)α∂ξα

∂z̄β
γjβ

)
̂dzj ∧ dzα, (5.19)

showing that (∂̄ξ)⌟ωn−1 equals the sum of the second and fourth groups of terms in the expression
(5.18) for (∂̄ξ)⌟ωn−1. On the other hand, we get:

∂̄ωn−1 = (−1)nin−1
∑
α,β

(−1)β ∂γαβ
∂z̄β

d̂zα,

leading to

ξ⌟∂̄ωn−1 = (−1)nin−1
∑

β
j<α

(−1)j+β−1ξj
∂γαβ
∂z̄β

̂dzj ∧ dzα + (−1)nin−1
∑

β
j>α

(−1)j+βξj
∂γαβ
∂z̄β

̂dzα ∧ dzj

= (−1)nin−1
∑

β
j<α

(−1)β
(
(−1)j−1ξj

∂γαβ
∂z̄β

+ (−1)αξα
∂γjβ
∂z̄β

)
̂dzj ∧ dzα.

Thus ξ⌟∂̄ωn−1 equals the sum multiplied by (−1) of the first and third groups of terms in the
expression (5.18) for ∂̄(ξ⌟ωn−1). Combining with (5.18) and (5.19), we get the identity claimed in
(i). Similar calculations prove (ii). □
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5.3.2 Comparison to polarisations of the Kähler case

We now pause to observe that in the special case of a Kähler class [ω] ∈ H1, 1(X, C), co-polarised
deformations ofX coincide with polarised deformations. Thus, although the spaceH0, 1(X, T 1, 0X)[ω]
of (5.14) no longer makes sense for a non-Kähler ω, H0, 1(X, T 1, 0X)[ωn−1] defined in (5.16) naturally
extends its meaning to the case of a balanced class [ωn−1].

Proposition 5.3.4. Let (X, ω) be a compact Kähler manifold (n = dimCX) such that KX is trivial.
Then the following identity holds:

H0, 1(X, T 1, 0X)[ω] = H0, 1(X, T 1, 0X)[ωn−1]. (5.20)

Proof. We start by noticing that for any Hermitian metric ω (no assumption is necessary on ω here)
and any θ ∈ C∞

0, 1(X, T
1, 0X), we have

θ⌟ωk = k ωk−1 ∧ (θ⌟ω) for any k. (5.21)

This follows from the property θ⌟(ω ∧ ωk−1) = (θ⌟ω) ∧ ωk−1 + ω ∧ (θ⌟ωk−1).
Suppose now that ω is Kähler and let [θ] ∈ H0, 1(X, T 1, 0X)[ω], i.e. θ⌟ω is ∂̄-exact. Writing

θ⌟ω = ∂̄v for some (0, 1)-form v, from (5.21) we get:

θ⌟ωn−1 = (n− 1)ωn−2 ∧ ∂̄v = (n− 1) ∂̄(ωn−2 ∧ v)
since ∂̄ωn−2 = 0 by the Kähler assumption on ω. Thus θ⌟ωn−1 is ∂̄-exact, proving that [θ] ∈
H0, 1(X, T 1, 0X)[ωn−1]. This proves the inclusion “⊂”.

Proving the reverse inclusion “⊃” in (5.20) takes more work. Let us consider the Lefschetz
operator

Ln−2
ω : C∞

0, 2(X, C)→ C∞
n−2, n(X, C), α 7→ ωn−2 ∧ α, (5.22)

of multiplication by ωn−2 which is well known to be an isomorphism for any Hermitian (even non-
Kähler or non-balanced) metric ω (see e.g. [Voi02, lemma 6.20, p. 146]). We clearly have θ⌟ωn−1 =
(n− 1)Ln−2

ω (θ⌟ω) by (5.21).
The next lemma explains how the three-space decomposition (w.r.t. ω)

C∞
0, 2(X, C) = ker∆′′ ⊕ Im ∂̄ ⊕ Im ∂̄⋆

transforms under Ln−2
ω and compares to the analogous decomposition of C∞

n−2, n(X, C). Note that
in C∞

n−2, n(X, C) the subspace Im ∂̄⋆ is reduced to zero for bidegree reasons.

Lemma 5.3.5. If ω is a Kähler metric on a compact complex manifold X with n = dimCX, then
the operator (5.22) satisfies:

Ln−2
ω (ker∆′′) = ker∆′′ and Ln−2

ω (Im ∂̄ ⊕ Im ∂̄⋆) = Im ∂̄. (5.23)

This will follow from two formulae that have an interest of their own.

Lemma 5.3.6. If ω is Kähler, then for every α ∈ C∞
0, 2(X, C) we have:

∂̄⋆(ωn−2 ∧ α) = ωn−2 ∧ ∂̄⋆α + (n− 2)ωn−3 ∧ i∂α. (5.24)
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Proof. Using the Kähler commutation relation ∂̄⋆ = −i [Λ, ∂], we get:

∂̄⋆(ωn−2 ∧ α) = −iΛ(ωn−2 ∧ ∂α) + i ∂(Λ(ωn−2 ∧ α)). (5.25)

In the first term on the right-hand side of (5.25), we have:

Λ(ωn−2 ∧ ∂α) = [Λ, Ln−2](∂α) + ωn−2 ∧ Λ(∂α) = ωn−2 ∧ Λ(∂α). (5.26)

The last identity follows from the well-known formula (cf. [Voi02, p. 148]):

[Lr, Λ] = r(k − n+ r − 1)Lr−1 on k-forms, for every r, (5.27)

which, when applied with r = n− 2 to the 3-form ∂α, gives [Λ, Ln−2](∂α) = 0.
In the second term on the right-hand side of (5.25), we have:

Λ(ωn−2 ∧ α) = [Λ, Ln−2](α) + ωn−2 ∧ Λ(α) = (n− 2)ωn−3 ∧ α + ωn−2 ∧ Λ(α),

where the last identity follows again from (5.27) applied with r = n− 2 to the 2-form α. (Note that
Λα = 0, but we ignore this here.) Taking ∂ on either side of the above identity and using the Kähler
assumption on ω, we get:

∂(Λ(ωn−2 ∧ α)) = (n− 2)ωn−3 ∧ ∂α + ωn−2 ∧ ∂Λ(α), (5.28)

Thus, putting (5.26) and (5.28) together, we see that (5.25) transforms to

∂̄⋆(ωn−2 ∧ α) = −i ωn−2 ∧ Λ(∂α) + (n− 2)ωn−3 ∧ i∂α + ωn−2 ∧ i∂Λ(α)
= ωn−2 ∧ i [∂, Λ](α) + (n− 2)ωn−3 ∧ i∂α
= ωn−2 ∧ ∂̄⋆α + (n− 2)ωn−3 ∧ i∂α.

This is what we had set out to prove. Note that we have used again the Kähler commutation relation
i [∂, Λ] = −i [Λ, ∂] = ∂̄⋆. □

The next formula we need is the following.

Lemma 5.3.7. If ω is Kähler, then for every α ∈ C∞
0, 2(X, C) we have:

∆′′
ω(ω

n−2 ∧ α) = ωn−2 ∧∆′′
ωα. (5.29)

Proof. This is an immediate consequence of the commutation property

[Lω, ∆
′′
ω] = 0, hence [Lkω, ∆

′′
ω] = 0 for all k,

which in turn follows from the Kähler identities. Alternatively, we can use Lemma 5.3.6 and the
Kähler identities to give a direct proof as follows. Since ∂̄(ωn−2 ∧ α) = 0 for bidegree reasons,
∆′′
ω(ω

n−2 ∧ α) reduces to its first term, so using (5.24) we get:

∆′′
ω(ω

n−2 ∧ α) = ∂̄∂̄⋆(ωn−2 ∧ α) = ∂̄(ωn−2 ∧ ∂̄⋆α + (n− 2)ωn−3 ∧ i∂α)
= ωn−2 ∧ ∂̄∂̄⋆α + (n− 2)ωn−3 ∧ i∂̄∂α. (5.30)

Now, using the Kähler identity ∂̄⋆ = −i [Λ, ∂], we get:

ωn−2 ∧ ∂̄⋆∂̄α = −i ωn−2 ∧ [Λ, ∂]∂̄α = −i ωn−2 ∧ Λ(∂∂̄α) + i ωn−2 ∧ ∂Λ(∂̄α)
= −i ωn−2 ∧ Λ(∂∂̄α) (5.31)
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because ∂̄α is of type (0, 3), so Λ(∂̄α) = 0 for bidegree reasons. Meanwhile,

ωn−2 ∧ Λ(∂∂̄α) = [Ln−2, Λ](∂∂̄α) + Λ(ωn−2 ∧ ∂∂̄α) = [Ln−2, Λ](∂∂̄α)

= (n− 2)ωn−3 ∧ ∂∂̄α. (5.32)

The second identity on the top line above follows from ωn−2 ∧ ∂∂̄α = 0 for bidegree reasons (since
ωn−2 ∧ ∂∂̄α is of type (n − 1, n + 1), hence vanishes), while the last identity follows from formula
(5.27) with r = n− 2 and k = 4.

The combined identities (5.31) and (5.32) yield:

ωn−2 ∧ ∂̄⋆∂̄α = −(n− 2)ωn−3 ∧ i∂∂̄α = (n− 2)ωn−3 ∧ i∂̄∂α.

This last identity combines with (5.30) to prove the claim. □

We need yet another observation.

Lemma 5.3.8. For any Hermitian metric ω on X, the normalised Lefschetz operator

1

(n− 2)!
Ln−2
ω : C∞

0, 2(X, C)→ C∞
n−2, n(X, C)

is an isometry w.r.t. the L2 scalar product induced by ω on scalar-valued forms.

Proof. We will show that for every l = 3, . . . , n, the following formula holds:

⟨⟨ωn−2 ∧ α, ωn−2 ∧ β⟩⟩ = (n− 2)!
(l − 2)!

(n− l)!
⟨⟨ωn−l ∧ α, ωn−l ∧ β⟩⟩ (5.33)

for all forms α, β ∈ C∞
0, 2(X, C). We have:

⟨⟨ωn−2 ∧ α, ωn−2 ∧ β⟩⟩ = ⟨⟨Λ(ωn−2 ∧ α), ωn−3 ∧ β⟩⟩
= ⟨⟨[Λ, Ln−2]α, ωn−3 ∧ β⟩⟩
= (n− 2) ⟨⟨ωn−3 ∧ α, ωn−3 ∧ β⟩⟩,

where in going from the first to the second line, we have used the identities [Λ, Ln−2]α = Λ(ωn−2 ∧
α) − ωn−2 ∧ Λα = Λ(ωn−2 ∧ α) since Λα = 0 for bidegree reasons, while in going from the second
to the third line we have used formula (5.27) with r = n− 2 and the anti-commutation [Λ, Ln−2] =
−[Ln−2, Λ]. This proves (5.33) for l = 3. We can now continue by induction on l. Suppose that
(5.33) has been proved for l. We have:

⟨⟨ωn−l ∧ α, ωn−l ∧ β⟩⟩ = ⟨⟨Λ(ωn−l ∧ α), ωn−l−1 ∧ β⟩⟩
= ⟨⟨[Λ, Ln−l]α, ωn−l−1 ∧ β⟩⟩
= (n− l)(l − 1) ⟨⟨ωn−l−1 ∧ α, ωn−l−1 ∧ β⟩⟩

by arguments similar to those above, where formula (5.27) has been used with r = n − l. We thus
obtain (5.33) with l + 1 in place of l.

It is now clear that (5.33) for l = n proves the contention. □

End of proof of Lemma 5.3.5. Since the map Ln−2
ω of (5.22) is an isomorphism, it follows from Lemma

5.3.7 that Ln−2
ω (ker∆′′

ω) = ker∆′′
ω. Since L

n−2
ω maps any pair of orthogonal forms in C∞

0, 2(X, C) to a
pair of orthogonal forms in C∞

n−2, n(X, C) by Lemma 5.3.8, it follows that the orthogonal complement
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of ker∆′′
ω in C∞

0, 2(X, C) (i.e. Im ∂̄ ⊕ Im ∂̄⋆) is isomorphic under Ln−2
ω to the orthogonal complement

of ker∆′′
ω in C∞

n−2, n(X, C) (i.e. Im ∂̄). Note that Im ∂̄⋆ = 0 in C∞
n−2, n(X, C) for type reasons. The

proof is complete. □

End of proof of Proposition 5.3.4. Recall that we have yet to prove the inclusion “⊃” in (5.20).
Let [θ] ∈ H0, 1(X, T 1, 0X)[ωn−1]. This means that θ⌟ωn−1 ∈ Im ∂̄ ⊂ C∞

n−2, n(X, C) (cf. (5.16)). Since
θ⌟ωn−1 = (n− 1)Ln−2

ω (θ⌟ω) (cf. (5.21)) and θ⌟ω is of type (0, 2), we get from Lemma 5.3.5 that

θ⌟ω ∈ Im ∂̄ ⊕ Im ∂̄⋆ ⊂ C∞
0, 2(X, C). (5.34)

On the other hand, ∂̄θ = 0 (since θ represents a class [θ] ∈ H0, 1(X, T 1, 0X)) and ∂̄ω = 0 (since
ω is assumed Kähler). Hence (ii) of Lemma 5.3.3 gives:

∂̄(θ⌟ω) = 0, i.e. θ⌟ω ∈ ker ∂̄ = ker∆′′
ω ⊕ Im ∂̄ ⊂ C∞

0, 2(X, C). (5.35)

Since the three subspaces in the decomposition C∞
0, 2(X, C) = ker∆′′

ω⊕ Im ∂̄⊕ Im ∂̄⋆ are mutually
orthogonal, (5.34) and (5.35) imply that θ⌟ω ∈ Im ∂̄, i.e. [θ] ∈ H0, 1(X, T 1, 0X)[ω] (cf. (5.14)). □

5.3.3 Primitive (n− 1, 1)-classes on balanced manifolds

In the case of a Kähler class [ω], primitive Dolbeault cohomology classes of type (n − 1, 1) (for
[ω]) play a pivotal role in the theory of deformations of X that are polarised by [ω] thanks to
the isomorphism (5.15) induced by the Calabi-Yau isomorphism. However, if [ω] is replaced by a
balanced class [ωn−1], primitive classes can no longer be defined in the standard way except in the
case of (1, 1)-classes or, more generally, in that of De Rham 2-classes (since the definition uses then
the (n − 1)st power of ω that is closed by the balanced assumption). In particular, defining an
(n− 1, 1)-class [α] as primitive by requiring that ω ∧ α be ∂̄-exact would be meaningless if ω is not
closed since this definition would depend on the choice of representative α of the class [α]. However,
since the space H0, 1(X, T 1, 0X)[ωn−1] carries over the meaning of H0, 1(X, T 1, 0X)[ω] to the balanced
case, it is natural to make the following ad hoc definition in the balanced case.

Definition 5.3.9. Let X be a compact balanced Calabi-Yau ∂∂̄-manifold (n := dimCX). Fix a
non-vanishing holomorphic (n, 0)-form u and a balanced class [ωn−1] on X. The space of primitive
classes of type (n− 1, 1) (for [ωn−1]) is defined as the image under the Calabi-Yau isomorphism

T[u] : H
0, 1(X, T 1, 0X)

·⌟[u]−→ Hn−1, 1(X, C)

in (2.48) of the subspace H0, 1(X, T 1, 0X)[ωn−1] ⊂ H0, 1(X, T 1, 0X), i.e.

Hn−1, 1
prim (X, C) := T[u]

(
H0, 1(X, T 1, 0X)[ωn−1]

)
⊂ Hn−1, 1(X, C).

Explicitly, given the definition (5.16) of H0, 1(X, T 1, 0X)[ωn−1], this means:

[θ⌟u] ∈ Hn−1, 1
prim (X, C) iff [θ⌟ωn−1] = 0 ∈ Hn−2, n(X, C) (5.36)

for any class [θ] ∈ H0, 1(X, T 1, 0X).

It is clear that Hn−1, 1
prim (X, C) does not depend on the choice of u (which is unique up to a constant

factor), but depends on the choice of balanced class [ωn−1]. When ω is Kähler, the ad hoc definition
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of Hn−1, 1
prim (X, C) coincides with the standard definition thanks to the isomorphism (5.15) and to

Proposition 5.3.4.
Recall that unlike cohomology classes, primitive forms can be defined in the standard way for

any Hermitian metric ω: for any k ≤ n, a k-form α on X is primitive for ω if ωn−k+1 ∧ α = 0. This
condition is well known to be equivalent to Λωα = 0. No closedness assumption on ω is needed.

In the rest of this subsection we shall investigate the extent to which the ad hoc primitive
(n − 1, 1)-classes defined by a balanced class retain the properties of primitive classes standardly
defined by a Kähler class. We start with the form analogue of (5.36). By the Calabi-Yau isomorphism
(2.46), all (n− 1, 1)-forms are of the shape θ⌟u for some θ ∈ C∞

0, 1(X, T
1, 0X).

Lemma 5.3.10. Let (X, ω) be an arbitrary Hermitian compact complex manifold (n := dimCX)
with KX trivial. Fix a non-vanishing holomorphic (n, 0)-form u. Then for any θ ∈ C∞

0, 1(X, T
1, 0X),

the following equivalences hold:

θ⌟u is primitive for ω ⇐⇒ θ⌟ω = 0 ⇐⇒ θ⌟ωn−1 = 0. (5.37)

Proof. By the definition of primitiveness, the (n − 1, 1)-form θ⌟u is primitive for ω if and only if
ω ∧ (θ⌟u) = 0. Meanwhile,

0 = θ⌟(ω ∧ u) = (θ⌟ω) ∧ u+ ω ∧ (θ⌟u),

where the first identity holds for type reasons since the form ω ∧ u is of type (n + 1, 1), hence
vanishes. Thus the vanishing of ω ∧ (θ⌟u) is equivalent to the vanishing of (θ⌟ω)∧ u which, in turn,
is equivalent to the vanishing of θ⌟ω as can be easily checked using the property u ̸= 0 at every
point of X. This proves the first equivalence in (5.37). The second equivalence follows from

θ⌟ωn−1 = (n− 1)ωn−2 ∧ (θ⌟ω)

(cf. (5.21)) and from the map (5.22) being an isomorphism. □

We saw in (a) of Theorem 1.3.2 that every Dolbeault cohomology class on a ∂∂̄-manifold can be
represented by a d-closed form (which is, of course, not unique). The question we will now address
is the following.

Question 5.3.11. Is it true that on a balanced Calabi-Yau ∂∂̄-manifold, every primitive (n−1, 1)-
class (in the sense of the ad hoc Definition 5.3.9) can be represented by a form that is both primitive
and d-closed?

Should the answer to this question be affirmative, it would bear significantly on the discussion
of Weil-Petersson metrics in §.5.4.2. It is clear that in the Kähler case the answer is affirmative:
the ∆′′-harmonic representative of any primitive (in the standard sense defined by the Kähler class
= the ad hoc sense in the case of (n− 1, 1)-classes) (p, q)-class is both primitive and d-closed. We
shall now see that the balanced case is far more complicated.

Lemma 5.3.12. Let (X, ω) be a compact Hermitian manifold (n := dimCX) and let v be an arbitrary
primitive form of type (n− 1, 1) on X. Then, the following equivalences hold:

∂̄⋆v = 0⇐⇒ ∂v = 0 and ∂⋆v = 0⇐⇒ ∂̄v = 0. (5.38)
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Proof. It is well-known (cf. e.g. [Dem97, VI, §. 5.1]) that ∂̄⋆ = − ⋆ ∂⋆ and ∂⋆ = − ⋆ ∂̄⋆, where
⋆ : Λp, qT ⋆X −→ Λn−q,n−pT ⋆X is the Hodge star operator associated with ω. On the other hand,
the standard formula (4.68) yields:

⋆ v = in
2+2n−2 v for all v ∈ C∞

n−1, 1(X, C)prim. (5.39)

Since ⋆ is an isomorphism, we see that the identity ∂̄⋆v = 0 is equivalent to ∂(⋆ v) = 0, hence to
∂v = 0 by (5.39). The equivalence for ∂⋆v = 0 is inferred similarly. □

Corollary 5.3.13. Under the assumptions of Lemma 5.3.12, we have:

(i) if v ∈ C∞
n−1, 1(X, C)prim and ∂̄v = 0, then

dv = 0⇐⇒ ∆′′v = 0.

(ii) if v ∈ C∞
n−1, 1(X, C)prim and ∂v = 0, then

dv = 0⇐⇒ ∆′v = 0.

(iii) if v ∈ C∞
n−1, 1(X, C)prim and dv = 0, then

∆′v = 0, ∆′′v = 0 and ∆v = 0.

Proof. Since X is compact, we have ker∆′′ = ker ∂̄ ∩ ker ∂̄⋆ and ker∆′ = ker ∂ ∩ ker ∂⋆. Since for
any pure-type form v, the equivalence

dv = 0⇐⇒ ∂v = 0 and ∂̄v = 0

holds, (i) and (ii) follow immediately from the two equivalences in (5.38). Now (i) and (ii) obviously
give ∆′v = 0 and ∆′′v = 0 under the assumptions of (iii). To infer that ∆v = 0, it suffices to notice
that for any pure-type form v on a compact Hermitian manifold (X, ω), we have:

⟨⟨∆v, v⟩⟩ = ⟨⟨∆′v, v⟩⟩+ ⟨⟨∆′′v, v⟩⟩ (5.40)

since ⟨⟨∆v, v⟩⟩ = ||d v||2 + ||d⋆v||2, ⟨⟨∆′v, v⟩⟩ = ||∂v||2 + ||∂⋆v||2 and ⟨⟨∆′′v, v⟩⟩ = ||∂̄v||2 + ||∂̄⋆v||2,
while ||dv||2 = ||∂v||2 + ||∂̄v||2 (because ∂v and ∂̄v are pure-type forms of different types, hence
orthogonal) and similarly ||d⋆v||2 = ||∂⋆v||2 + ||∂̄⋆v||2 (because ∂⋆v and ∂̄⋆v are orthogonal for the
same reason). Since ∆′v = 0 and ∆′′v = 0, from (5.40) we get ⟨⟨∆v, v⟩⟩ = 0 which amounts to
dv = 0 and d⋆v = 0, hence to ∆v = 0. □

The conclusion (iii) of the above Corollary 5.3.13 is that if an (n−1, 1)-form is both primitive and
d-closed, it must be harmonic for each of the Laplacians ∆′, ∆′′ and ∆. Thus, if a representative that
is both primitive and d-closed of a primitive (n− 1, 1)-class exists, it can only be the ∆′′-harmonic
representative. Fortunately we have

Lemma 5.3.14. Let (X, ω) be a compact Hermitian manifold (n := dimCX). Suppose v is a
primitive (n− 1, 1)-form such that ∆′′v = 0. Then ∆′v = 0 and ∆v = 0. In particular, dv = 0.

Proof. The assumption ∆′′v = 0 means that ∂̄v = 0 and ∂̄⋆v = 0. Then (i) of Corollary 5.3.13
implies that dv = 0, i.e. ∂v = 0. Then (ii) of Corollary 5.3.13 ensures that ∆′v = 0. Then (5.40)
ensures that ∆v = 0. □
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Thus Question 5.3.11 reduces to whether on a balanced Calabi-Yau ∂∂̄-manifold (X,ω), the
∆′′-harmonic representative of any primitive (n − 1, 1)-class (in the sense of the ad hoc Definition
5.3.9) is a primitive form. It will then also be d-closed by Lemma 5.3.14. Fix therefore a primitive
(n− 1, 1)-class [θ⌟u] on X, where [θ] ∈ H0, 1(X, T 1, 0X). By (5.36), this means that

θ⌟ωn−1 ∈ Im ∂̄. (5.41)

Suppose, furthermore, that ∆′′(θ⌟u) = 0. The question is whether θ⌟u is primitive, or equiv-
alently (cf. (5.37)) whether θ⌟ωn−1 = 0. Since ker∆′′ and Im ∂̄ are orthogonal subspaces of
C∞
n−2, n(X, C), (5.41) reduces the question to determining whether

∆′′(θ⌟ωn−1) = 0, or equivalently whether ∂̄⋆(θ⌟ωn−1) = 0, (5.42)

since ∂̄(θ⌟ωn−1) = 0 (trivially since θ⌟ωn−1 is of type (n− 2, n)).
The next lemma transforms identity (5.42) whose validity we are trying to determine.

Lemma 5.3.15. Let X be a compact complex manifold (dimCX = n) equipped with an arbitrary
Hermitian metric ω. Fix any θ ∈ C∞

0, 1(X, T
1, 0X). The following equivalence holds:

∂̄⋆(θ⌟ωn−1) = 0⇐⇒ ∂(θ⌟ω) = 0.

Proof. Formula (4.68) applied to the (primitive) (0, 2)-form v := θ⌟ω reads:

⋆(θ⌟ω) =
ωn−2

(n− 2)!
∧ (θ⌟ω) = θ⌟

ωn−1

(n− 1)!
, i.e. ⋆

(
θ⌟

ωn−1

(n− 1)!

)
= θ⌟ω, (5.43)

having also used the property ⋆2 = Id on 2-forms. Now, ∂̄⋆ = − ⋆ ∂⋆, hence the condition
∂̄⋆(θ⌟ωn−1) = 0 is equivalent to ∂(⋆(θ⌟ωn−1)) = 0 which in turn is equivalent to ∂(θ⌟ω) = 0 by
(5.43). This proves the contention. □

However, we can see no reason why the desired condition ∂(θ⌟ω) = 0 should hold even if we
exploit the assumption ∆′′(θ⌟u) = 0. Note that if Ric(ω) = 0, by (5.13) this assumption means that
∆′′θ = 0, i.e. ∂̄⋆θ = 0 since we always have ∂̄θ = 0. The most we can make of the property ∂̄⋆θ = 0
is expressed in part (ii) of the following lemma. Parts (i) and (iii) show that more can be said
about scalar-valued (0, 1)-forms v, although even if that information applied to the T 1, 0X-valued
(0, 1)-form θ, it would not suffice to deduce that ∂(θ⌟ω) = 0.

Lemma 5.3.16. Let X be a compact complex manifold (dimCX = n) supposed to carry a balanced
metric ω.

(i) For every v ∈ C∞
0, 1(X, C), the following equivalence holds:

∂̄⋆v = 0⇐⇒ ∂v is primitive.

(ii) For every θ ∈ C∞
0, 1(X, T

1, 0X), the following equivalence holds:

∂̄⋆θ = 0⇐⇒ (D′θ) ∧ ωn−1 = 0 ∈ C∞
n, n(X, T

1, 0X).

(iii) Suppose, furthermore, that X is a ∂∂̄-manifold. Then, for every v ∈ C∞
0, 1(X, C) ∩ ker ∂̄,

the following equivalence holds:

∆′′v = 0⇐⇒ ∂v = 0 (⇐⇒ ∆′v = 0).
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Proof. Since any (0, 1)-form is primitive, for ⋆ : C∞
0, 1(X, C)→ C∞

n−1, n(X, C) formula (4.68) reads

⋆ v = i v ∧ ωn−1

(n− 1)!
, v ∈ C∞

0, 1(X, C). (5.44)

Since ∂̄⋆ = − ⋆ ∂⋆, we see that the condition ∂̄⋆v = 0 is equivalent to ∂(v ∧ ωn−1) = 0. Since
∂ωn−1 = 0 (by the balanced assumption), the last identity is equivalent to (∂v) ∧ ωn−1 = 0, which
is precisely the condition that the (1, 1)-form ∂v be primitive. This proves (i).

The proof of (ii) runs along the same lines as that of (i) using the formula ∂̄⋆ = − ⋆D′⋆ when ∂̄⋆

acts on T 1, 0X-valued forms and D′ is the (1, 0)-component of the Chern connection D of (T 1, 0X, ω).
Indeed, formula (5.44) still holds for T 1, 0X-valued (0, 1)-forms θ in place of v and

D′(θ ∧ ωn−1) = (D′θ) ∧ ωn−1 − θ ∧ ∂ωn−1 = (D′θ) ∧ ωn−1,

where the last identity follows from ω being balanced.
To prove (iii), fix an arbitrary form v ∈ C∞

0, 1(X, C) ∩ ker ∂̄. Since ker∆′′ = ker ∂̄ ∩ ker ∂̄⋆, the
condition ∆′′v = 0 is equivalent for this v to ∂̄⋆v = 0, which is equivalent to ∂v being primitive by
(i). We are thus reduced to proving for this v the equivalence: ∂v is primitive ⇐⇒ ∂v = 0.

Notice that ∂̄(∂v) = 0 thanks to the assumption ∂̄v = 0. Hence the pure-type form ∂v is d-closed
and ∂-exact, so by the ∂∂̄-lemma it must be ∂∂̄-exact:

∂v = i∂∂̄φ for some C∞ function φ : X → C.
Then we have the equivalences:

∂v is primitive⇐⇒ Λω(i∂∂̄φ) = 0⇐⇒ ∆ωφ = 0⇐⇒ φ is constant ,

where the last equivalence follows by the maximum principle from X being compact. Meanwhile, φ
being constant is equivalent to the vanishing of i∂∂̄φ, hence to the vanishing of ∂v. □

The conclusion of these considerations is that Question 5.3.11 may have a negative answer in
general in the balanced case. Let us now notice that even the answer to the following weaker question
may be negative in the balanced case.

Question 5.3.17. Is it true that on a balanced Calabi-Yau ∂∂̄-manifold, every primitive (n−1, 1)-
class (in the sense of the ad hoc Definition 5.3.9) can be represented by a primitive form?

Let [θ⌟u] ∈ Hn−1, 1
prim (X, C) be a primitive class in the ad hoc sense. This means that θ⌟ωn−1 is

∂̄-exact (for any representative θ of the class [θ] ∈ H0, 1(X, T 1, 0X)[ωn−1]). Pick any representative θ
and any ∂̄-potential w ∈ C∞

n−2, n−1(X, C) of θ⌟ωn−1, i.e. ∂̄w = θ⌟ωn−1. Since

Ln−3
ω : C∞

1, 2(X, C)→ C∞
n−2, n−1(X, C), α 7→ ωn−3 ∧ α,

is an isomorphism (see e.g. [Voi02, lemma 6.20, p. 146]), since there is a Lefschetz decomposition
(cf. [Voi02, proposition 6.22, p. 147])

Λ1, 2 = Λ1, 2
prim ⊕

(
ω ∧ Λ0, 1

)
and since every C∞ (0, 1)-form can be written as (n−1) ξ⌟ω for a unique vector field ξ ∈ C∞(X, T 1, 0X)
(because ω is non-degenerate), we see that there is a unique primitive C∞ form α0 of type (1, 2)
and a unique C∞ vector field ξ of type (1, 0) such that
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w = ωn−3 ∧
(
α0 + (n− 1)ω ∧ (ξ⌟ω)

)
= ωn−3 ∧ α0 + ξ⌟ωn−1. (5.45)

Consequently, θ⌟ωn−1 = ∂̄w = ∂̄(ωn−3 ∧ α0) + (∂̄ξ)⌟ωn−1 since ∂̄(ξ⌟ωn−1) = (∂̄ξ)⌟ωn−1 − ξ⌟(∂̄ωn−1)
(cf. (i) of Lemma 5.3.3) and here ∂̄ωn−1 = 0 by the balanced assumption on ω. Thus we get

(θ − ∂̄ξ)⌟ωn−1 = ∂̄(ωn−3 ∧ α0).

We see that θ − ∂̄ξ represents the class [θ] ∈ H0, 1(X, T 1, 0X)[ωn−1], so (θ − ∂̄ξ)⌟u represents the

class [θ⌟u] ∈ Hn−1, 1
prim (X, C). We know from Lemma 5.3.10 that the primitivity condition on the

form (θ − ∂̄ξ)⌟u is equivalent to (θ − ∂̄ξ)⌟ωn−1 = 0, i.e. to ∂̄(ωn−3 ∧ α0) = 0 in this case. However,
we can see no reason why this vanishing should occur, part of the obstruction being the primitive
(1, 2)-form α0.

Thus in the balanced, non-Kähler case, the answer to Question 5.3.17 may be negative in general.

5.4 Period map and Weil-Petersson metrics

We now fix an arbitrary balanced Calabi-Yau ∂∂̄-manifold X, dimCX = n. All the fibres (Xt)t∈B
in the Kuranishi family of X = X0 are again balanced Calabi-Yau ∂∂̄-manifolds if t is sufficiently
close to 0 ∈ B. This follows from Wu’s theorem in [Wu06] and from the deformation openness of
the triviality of the canonical bundle KXt when the dimension of Hn, 0(Xt, C) is locally independent
of t (as the ∂∂̄ assumption ensures this to be the case here). Thus Hn, 0(Xt, C) is a complex line
varying holomorphically with t inside the fixed complex vector space Hn(X, C). The canonical
injection Hn, 0(Xt, C) ⊂ Hn(X, C) is induced by the ∂∂̄-lemma property of Xt (cf. Lemma 1.3.2
and comments thereafter). The associated period map B ∋ t 7→ Hn, 0(Xt, C) takes values in the
complex projective space PHn(X, C) after identifying each complex line Hn, 0(Xt, C) with the point
it defines therein.

5.4.1 Period domain and the local Torelli theorem

Most of the material in this subsection before Theorem 5.4.4 is essentially known, but we take this
oportunity to stress that only minimal assumptions are needed and to fix the notation for the rest
of the paper.

Let ω be a Hermitian metric on X. All the formal adjoint operators and Laplacians will be
calculated w.r.t. ω. The Hodge ⋆-operator defined by ω on n-forms

⋆ : C∞
n (X, C) −→ C∞

n (X, C)

satisfies ⋆2 = (−1)n, so it induces a decomposition

C∞
n (X, C) = Λn+ ⊕ Λn−, (5.46)

where Λn± stand for the eigenspaces of ⋆ corresponding to the eigenvalues ±1 (if n is even), ±i (if n is
odd). This decomposition is easily seen to be orthogonal for the L2 scalar product induced by ω: for
any u ∈ Λn+ and any v ∈ Λn−, one easily checks that ⟨⟨u, v⟩⟩ = −⟨⟨u, v⟩⟩ by writing u = ⋆u (if n is
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even) and u = −i (⋆u) (if n is odd) and using the easy-to-check identity ⟨⟨⋆u, v⟩⟩ = (−1)n ⟨⟨u, ⋆v⟩⟩
for any n-forms u, v.

When ⋆ is restricted to ∆-harmonic forms, it assumes ∆-harmonic values:

⋆ : Hn
∆(X, C) −→ Hn

∆(X, C)
since ∆ := dd⋆ + d⋆d commutes with ⋆ as is well known to follow from the standard formula
d⋆ = − ⋆ d ⋆. Thus the Hodge isomorphism Hn(X, C) ≃ Hn

∆(X, C) mapping any De Rham class to
its ∆-harmonic representative extends the definition of ⋆ to the De Rham cohomology of degree n:

⋆ : Hn(X, C) −→ Hn(X, C) (5.47)

and we get a decomposition in cohomology analogous to (5.46):

Hn(X, C) = Hn
+(X, C)⊕Hn

−(X, C), (5.48)

where Hn
±(X, C) are the eigenspaces of ⋆ corresponding to the eigenvalues ±1 (if n is even), ±i (if n

is odd). Thus Hn
+(X, C) (resp. Hn

−(X, C)) consists of the De Rham classes {α} of degree n whose
∆-harmonic representative α lies in Λn+ (resp. Λn−). Note that no assumption whatsoever (either
Kähler or balanced) is needed on the Hermitian metric ω.

On the other hand, the Hodge-Riemann bilinear form can always be defined on the De Rham
cohomology of degree n:

Q : Hn(X, C)×Hn(X, C) −→ C,

({α}, {β}) 7−→ (−1)
n(n−1)

2

∫
X

α ∧ β := Q({α}, {β}). (5.49)

It is clear that Q(·, ·) is independent of the choice of representatives α and β of the respective De
Rham classes of degree n since no power of ω is involved in the definition of Q, so no Kähler or
balanced or any other assumption is needed on ω unlike the case of the De Rham cohomology in
degree k < n. Thus Q is independent of ω and of the complex structure of X, depending only on
the differential structure of X. It is also clear that Q is non-degenerate since for any ∆-harmonic
n-form α, ⋆ᾱ is again ∆-harmonic and

Q({α}, {⋆ᾱ}) = (−1)
n(n−1)

2

∫
X

α ∧ ⋆ᾱ = (−1)
n(n−1)

2

∫
X

⟨α, α⟩ω dVω

= (−1)
n(n−1)

2 ||α||2ω ̸= 0 if α ̸= 0.

Hence the associated sesquilinear form

H : Hn(X, C)×Hn(X, C) −→ C,

({α}, {β}) 7−→ (−1)
n(n+1)

2 in
∫
X

α ∧ β̄ = (−i)nQ({α}, {β̄}) (5.50)

is non-degenerate.
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Lemma 5.4.1. (a) H({α}, {α}) > 0 for every class {α} ∈ Hn
+(X, C) \ {0}. Hence H defines a

positive definite sesquilinear form (i.e. a Hermitian metric) on Hn
+(X, C).

(b) H({α}, {α}) < 0 for every class {α} ∈ Hn
−(X, C) \ {0}.

(c) H({α}, {β}) = 0 for every class {α} ∈ Hn
+(X, C) and every class {β} ∈ Hn

−(X, C). Hence the
decomposition (5.48) is orthogonal for H.

Proof. (a) Let α be a ∆-harmonic n-form such that the class {α} ∈ Hn
+(X, C).

If n is even, ⋆ α = α, hence taking conjugates we get ⋆ ᾱ = ᾱ. Thus

H({α}, {α}) = (−1)
n(n+1)

2 in
∫
X

α ∧ ⋆ᾱ =

∫
X

|α|2ω dVω = ||α||2ω > 0

if α ̸= 0, since (−1)
n(n+1)

2 in = in
2+2n = 1 when n is even. (Indeed, n2 + 2n ∈ 4Z when n is even.)

If n is odd, ⋆ α = i α, hence taking conjugates we get ⋆ ᾱ = −i ᾱ. Equivalently, ᾱ = i ⋆ ᾱ. On the

other hand, (−1)
n(n+1)

2 in = in
2+2n = −i when n is odd since n2 + 2n ∈ 4Z+ 3 in this case. We then

get as above that again H({α}, {α}) = ||α||2ω > 0 if α ̸= 0. This proves (a). The proof of (b) is very
similar and is left to the reader.

(c) Let α and β be ∆-harmonic n-forms such that {α} ∈ Hn
+(X, C) and {β} ∈ Hn

−(X, C). If n
is even, this means that ⋆ α = α and ⋆ β = −β. Using the property ⋆ β = −β, we get

H({α}, {β}) = −(−1)
n(n+1)

2 in
∫
X

α ∧ ⋆β̄ = −(−1)
n(n+1)

2 in ⟨⟨α, β⟩⟩ω, (5.51)

while using the property ⋆ α = α, we get

H({α}, {β}) = (−1)
n(n+1)

2 in
∫
X

⋆ α ∧ β̄ = (−1)n2

(−1)
n(n+1)

2 in
∫
X

β̄ ∧ ⋆ α

= (−1)
n(n+1)

2 in
∫
X

⟨β, α⟩ω dVω = (−1)
n(n+1)

2 in ⟨⟨α, β⟩⟩ω, (5.52)

having used the fact (−1)n2
= 1 since n is even and the identity ⟨β, α⟩ω = ⟨α, β⟩ω. The expressions

(5.51) and (5.52) for H({α}, {β}) are now seen to differ only by a sign, hence H({α}, {β}) = 0.
When n is odd, we have ⋆ α = i α (hence α = −i ⋆ α) and ⋆ β = −i β (hence β̄ = −i ⋆ β̄). Using the
former and then the latter of these two pieces of information, we get as above two expressions for
H({α}, {β}) that differ only by a sign. Hence H({α}, {β}) = 0. □

We now bring in the complex structure of X (that is supposed to have the ∂∂̄ property which
induces the inclusion Hn, 0(X, C) ⊂ Hn(X, C)).

Lemma 5.4.2. Let X be a compact complex ∂∂̄-manifold (dimCX = n). Then the following inclu-
sions hold:

Hn, 0(X, C) ⊂ Hn
+(X, C) if n is even, Hn, 0(X, C) ⊂ Hn

−(X, C) if n is odd.

In particular, the restriction H : Hn, 0(X, C) × Hn, 0(X, C) → C of H to Hn, 0(X, C) is positive
definite if n is even and is negative definite if n is odd thanks to Lemma 5.4.1 (hence we get
a Hermitian metric on Hn, 0(X, C) defined by the scalar product induced by H when n is even and
by −H when n is odd).
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Before proving this statement, we make a trivial but useful observation.

Lemma 5.4.3. Let (X, ω) be any compact complex Hermitian manifold (dimCX = n). For every
(n, 0)-form α, the following equivalence and implication hold:

∆′′α = 0⇐⇒ ∆′α = 0 =⇒ ∆α = 0.

Proof. Since X is compact, ker ∆′′ = ker ∂̄ ∩ ker ∂̄⋆ and ker ∆′ = ker ∂ ∩ ker ∂⋆. However, ∂α = 0
and ∂̄⋆α = 0 for any (n, 0)-form α for trivial bidegree reasons. Hence, for any α ∈ C∞

n, 0(X, C), the
following equivalences hold:

∆′α = 0⇔ ∂⋆α = 0 and ∆′′α = 0⇔ ∂̄α = 0.

Consequently, from the identity ∂⋆ = − ⋆ ∂̄⋆ (cf. e.g. [Dem97, VI, §.5.1]) and from the fact
that ⋆ is an isomorphism, we get the equivalence: ∆′α = 0 ⇔ ∂̄(⋆α) = 0. Since α is of type
(n, 0), it is primitive (w.r.t. any metric, hence also w.r.t. ω), so formula (4.68) applied to α reads:
⋆ α = (−1)n(n+1)/2 in α. Thus the previous equivalence implies the following equivalence:

∆′α = 0 ⇔ ∂̄α = 0,

while the equivalence ∂̄α = 0 ⇔ ∆′′α = 0 has already been observed. We have thus proved the
equivalence claimed in the statement. The implication claimed in the statement now follows from
identity (5.40) applied to the pure-type form α and the fact that ⟨⟨∆α, α⟩⟩ ≥ 0 with equality if and
only if ∆α = 0. □

Proof of Lemma 5.4.2. Let [α] ∈ Hn, 0(X, C) be an arbitrary Dolbeault cohomology class of type
(n, 0). Since the only ∂̄-exact form of type (n, 0) is the zero form, the class [α] contains a unique
representative α. Clearly, α is of type (n, 0) and ∆′′-harmonic, so from Lemma 5.4.3 we get ∆α = 0.
On the other hand, formula (4.68) applied to α (which is primitive since it is of type (n, 0)) reads:
⋆ α = (−1)n(n+1)/2 inα = in(n+2) α. Hence, if n is even, α ∈ Λn+ since in(n+2) = 1, while if n is odd,
α ∈ Λn− since in(n+2) = −i. Therefore the De Rham cohomology class {α} ∈ Hn(X, C) represented
by the ∆-harmonic form α must belong to Hn

+(X,C) when n is even, resp. to Hn
−(X,C) when n is

odd. □

Let us now consider a holomorphic family (Jt)t∈B of Calabi-Yau ∂∂̄ complex structures on a
compact differential manifold X. We set Xt := (X, Jt) and let n := dimCXt for all t ∈ B. Notice
that Q and H (cf. (6.34) and (6.35)) depend only on the differential structure of X. Thus,

C+ :=

{
{α} ∈ Hn(X, C) / H({α}, {α}) > 0

}
⊂ Hn(X, C),

and

C− :=

{
{α} ∈ Hn(X, C) / H({α}, {α}) < 0

}
⊂ Hn(X, C)

are open subsets of Hn(X, C) and depend only on the differential structure of X. Furthermore, if
we equip the fibres Xt with a C∞ family of arbitrary Hermitian metrics (ωt)t∈B, the corresponding
Hodge ⋆ operator ⋆ = ⋆t has eigenspaces H

n
+(Xt, C) and Hn

−(Xt, C) (cf. (5.48)) depending on the
complex structure Jt via the metric ωt (which is in particular a Jt-type (1, 1)-form). Lemma 5.4.1
ensures that

Hn
+(Xt, C) \ {0} ⊂ C+ and Hn

−(Xt, C) \ {0} ⊂ C− for all t ∈ B.
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Moreover, Lemmas 5.4.1 and 5.4.2 imply the following inclusions:

Hn, 0(Xt, C) \ {0} ⊂ Hn
+(Xt, C) \ {0} ⊂ C+ ⊂ Hn(X, C) ifn is even,

Hn, 0(Xt, C) \ {0} ⊂ Hn
−(Xt, C) \ {0} ⊂ C− ⊂ Hn(X, C) ifn is odd. (5.53)

It is clear that for any class φt = [αt] ∈ Hn, 0(Xt, C), Q(φt, φt) = 0 since αt ∧αt = 0 for any form of
Jt-type (n, 0). Thus the period domain, containing the complex lines Hn, 0(Xt, C) varying inside
Hn(X, C) when Jt varies, can be defined as in the standard (i.e. Kähler) case as

D = {C-line l ⊂ Hn(X, C) ; ∀φ ∈ l \ {0}, Q(φ, φ) = 0 and H(φ, φ) > 0}
if n is even (so, in particular, l ⊂ C+ whenever l ∈ D), and as

D = {C-line l ⊂ Hn(X, C) ; ∀φ ∈ l \ {0}, Q(φ, φ) = 0 and H(φ, φ) < 0}
if n is odd (so, in particular, l ⊂ C− whenever l ∈ D). Given the natural holomorphic embedding
D ⊂ PHn(X, C), the complex manifold D is projective and is contained in the quadric defined by
Q in PHn(X, C).

We can now show that the local Torelli theorem holds in this context.

Theorem 5.4.4. Let X be a compact Calabi-Yau ∂∂̄-manifold, dimCX = n, and let π : X −→ ∆
be its Kuranishi family. Then the associated period map

P : B −→ D ⊂ PHn(X, C), B ∋ t 7→ Hn, 0(Xt, C),

is a local holomorphic immersion.

Proof. As usual, we denote by (Xt)t∈B the fibres of the Kuranishi family of X = X0. They are all
C∞-diffeomorphic to X and the holomorphic family (Xt)t∈B can be seen as a fixed C∞ manifold X
equipped with a holomorphic family of complex structures (Jt)t∈B. Let (ut)t∈B be a holomorphic
family of nowhere vanishing n-forms on X such that for every t ∈ B, ut is of type (n, 0) for the
complex structure Jt and ∂̄tut = 0. The form ut identifies with the class [ut] it defines in H

n, 0(Xt, C),
hence with the whole space Hn, 0(Xt, C) = Cut. Thus the period map identifies with the map

B ∋ t 7→ ut.

It suffices to prove that P is a local immersion at t = 0. Recall that in the present situation
the Kodaira-Spencer map ρ : T0B → H0, 1(X, T 1, 0X) is an isomorphism (thanks to Theorem 2.4.7)
and that for any tangent vector ∂/∂t ∈ T0B, the choice of a representative θ in the class ρ(∂/∂t) =
[θ] ∈ H0, 1(X, T 1, 0X) determines a C∞ trivialisation Φ : X −→ B×X0 (after possibly shrinking B
about 0), which in turn determines about any pre-given point x ∈ X a choice of local Jt-holomorphic
coordinates z1(t), . . . , zn(t) for every t ∈ B.

Denote u = u0. Fix an arbitrary tangent vector ∂/∂t ∈ T0B \ {0} and choose a representative
θ of the class ρ(∂/∂t) ∈ H0, 1(X, T 1, 0X) such that the representative θ⌟u of the class [θ⌟u] ∈
Hn−1, 1(X, C) is d-closed. This is possible by the ∂∂̄-assumption on X, by (a) of Theorem 1.3.2 and
by Lemma and Definition 2.4.4. The associated local C∞ trivialisation Φ : X → B × X0 induces
C∞ diffeomorphisms Φ−1

t : X0 → Xt, t ∈ B, so the differential of the period map at t = 0 in the
∂/∂t-direction identifies with
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∂(Φ−1
t )⋆ut
∂t |t=0

= θ⌟u+ v on X, (5.54)

where v is some (n, 0)-form on X = X0. The identity in (5.54) can be proved in the usual way (see
e.g. [Tia87, proof of Lemma 7.2]): having fixed an arbitrary point x ∈ X, one writes

ut = ft dz1(t) ∧ · · · ∧ dzn(t) (5.55)

where ft is a holomorphic function in a neighbourhood of x in Xt and z1(t), . . . , zn(t) are the local
Jt-holomorphic coordinates about x determined by the choice of θ in the class ρ(∂/∂t). Taking ∂/∂t
at t = 0 in (5.55), one finds on the right-hand side the sum of the form v = (∂ft/∂t)|t=0 dz1(0) ∧
· · · ∧ dzn(0) of J0-type (n, 0) with the form θ⌟u of J0-type (n− 1, 1). The latter form is easily seen
to be the sum of the terms obtained by deriving one of the dzj(t) in (5.55) since, with the above
choices of θ and z1(t), . . . , zn(t), we have

∂

∂t
(dzj(t))|t=0 = θ⌟ dzj(0), j = 1, . . . , n.

Now, dut = 0 for all t, hence the left-hand term in (5.54) is a d-closed n-form onX. Thus d(θ⌟u+v) =
0. By our choice of θ (based on a key application of the ∂∂̄ lemma), d(θ⌟u) = 0, hence dv = 0. In
particular, v is a ∂̄0-closed form of J0-type (n, 0), so v = c u for some constant c ∈ C.

It is now clear that if (dP)0(∂/∂t) = 0, then θ⌟u = 0 and v = c u = 0, so θ = 0 (since
Tu(θ) = θ⌟u and Tu is an isomorphism – see (2.46)), hence ∂/∂t = 0 (since the Kodaira-Spencer
map is an isomorphism here). This last vanishing contradicts the choice of ∂/∂t ̸= 0. We have thus
shown that P is a local immersion at t = 0. □

5.4.2 Weil-Petersson metrics on B

We start with a refinement of (a) Theorem 1.3.2 singling out a particular d-closed representative of
a given Dolbeault cohomology class on a ∂∂̄-manifold.

Definition 5.4.5. Let X be a compact ∂∂̄-manifold equipped with an arbitrary Hermitian metric ω.
Given any Dolbeault cohomology class [α] ∈ Hp, q(X, C), let α be its ∆′′

ω-harmonic representative and
let vmin ∈ Im(∂∂̄)⋆ ⊂ C∞

p, q−1(X, C) be the solution of minimal L2 norm (w.r.t. ω) of the equation

∂∂̄v = −∂α. (5.56)

The d-closed (p, q)-form αmin := α+ ∂̄vmin will be called the ω-minimal d-closed representa-
tive of the class [α]. (It coincides with the ∆′′

ω-harmonic representative if ω is Kähler.)

A word of explanation is in order. Recall the elliptic fourth-order Aeppli Laplacian ∆p, q
A :

C∞
p, q(X, C)→ C∞

p, q(X, C) of Definition 1.1.11 that induces the L2
ω-orthogonal three-space decompo-

sition (1.11) of Corollary 1.1.13 in which

ker(∂∂̄) = ker∆p, q
A ⊕ (Im∂ + Im∂̄),

yielding the Hodge isomorphism Hp, q
A (X, C) ≃ ker∆p, q

A . Since the solution v of equation (5.56)
is unique only modulo ker(∂∂̄), the solution of minimal L2 norm is the unique solution lying in
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ker(∂∂̄)⊥ = Im(∂∂̄)⋆. Note that if the ∆′′-harmonic representative α of the class [α] happens to be
d-closed (for example, this is the case if the metric ω is Kähler), then ∂α = 0 and vmin = 0, so
αmin = α. Thus, αmin can be seen as the minimal d-closed correction in a given Dolbeault class of
the ∆′′-harmonic representative of that class.

Recall that if we fix a compact balanced Calabi-Yau ∂∂̄-manifold (X, ω) (dimCX = n), the base
space B[ωn−1] of the local universal family (Xt)t∈B[ωn−1]

of deformations of X that are co-polarised

by the balanced class [ωn−1] ∈ Hn−1, n−1(X, C) identifies to an open subset of H0, 1(X, T 1, 0X)[ωn−1]

and

TtB[ωn−1] ≃ H0, 1(Xt, T
1, 0Xt)[ωn−1] ≃ Hn−1, 1

prim (Xt, C), t ∈ B[ωn−1].

We shall now define two Weil-Petersson metrics on B[ωn−1] induced by pre-given balanced metrics
on the fibres Xt whose (n− 1)st powers lie in the co-polarising balanced class.

Definition 5.4.6. Fix any holomorphic family of nonvanishing holomorphic n-forms (ut)t∈B on the
fibres (Xt)t∈B. Let (ωt)t∈B[ωn−1]

be a C∞ family of balanced metrics on the fibres (Xt)t∈B[ωn−1]
such

that ωn−1
t ∈ {ωn−1} for all t and ω0 = ω. The associated Weil-Petersson metrics G

(1)
WP and G

(2)
WP

on B[ωn−1] are defined as follows. For any t ∈ B[ωn−1] and any [θt], [ηt] ∈ H0, 1(Xt, T
1, 0Xt)[ωn−1], let

G
(1)
WP ([θt], [ηt]) :=

⟨⟨θt, ηt⟩⟩∫
Xt

dVωt

, (where dVωt :=
ωnt
n!

) (5.57)

G
(2)
WP ([θt], [ηt]) :=

⟨⟨θt⌟ut, ηt⌟ut⟩⟩
in2
∫
Xt
ut ∧ ūt

, (5.58)

where θt (resp. ηt) is chosen in its class [θt] (resp. [ηt]) such that θt⌟ut (resp. ηt⌟ut) is the ωt-minimal
d-closed representative of the class [θt⌟ut] ∈ Hn−1, 1(Xt, C) (resp. [ηt⌟ut] ∈ Hn−1, 1(Xt, C)), while
⟨⟨ , ⟩⟩ stands for the L2 scalar product induced by ωt on the spaces involved.

The C∞ positive definite (1, 1)-forms on B[ωn−1] associated with G
(1)
WP and G

(2)
WP are denoted by

ω
(1)
WP > 0 and ω

(2)
WP > 0 on B[ωn−1].

Since every ut is unique up to a constant factor, the definition of G
(2)
WP is independent of the

choice of the family (ut)t∈B. From Lemma 5.1.7 we infer

Observation 5.4.7. If the balanced metrics can be chosen such that Ric(ωt) = 0 for all t ∈ B[ωn−1],
then

ω
(1)
WP = ω

(2)
WP on B[ωn−1].

5.4.3 Metric on B induced by the period map

Let L = OPHn(X,C)(−1) be the tautological line bundle on PHn(X, C). We will endow the restrictions
of L to two open subsets of PHn(X, C) with Hermitian fibres metrics induced by H. We set:

Un
+ :=

{
[l] ∈ PHn(X, C) / l is aC-line such that l ⊂ C+

}
⊂ PHn(X, C),

and
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Un
− :=

{
[l] ∈ PHn(X, C) / l is aC-line such that l ⊂ C−

}
⊂ PHn(X, C),

where [l] denotes the point in PHn(X, C) defined by the line l ⊂ Hn(X, C). It follows from the
discussion of C+ and C− in §.5.4.1 that Un

+ and Un
− are open subsets of PHn(X, C) and depend only

on the differential structure of X.
Moreover, for every [l] ∈ Un

+, the fibre L[l] = l ⊂ C+ is endowed with the scalar product defined
by the restriction of H. Thus L|Un

+
has a Hermitian fibre metric h+L induced by H. The (negative)

curvature form iΘh+L
(L|Un

+
) defines the associated Fubini-Study metric on Un

+ by

ω+
FS = −iΘh+L

(L|Un
+
) > 0 on Un

+ ⊂ PHn(X, C).

Likewise, for every [l] ∈ Un
−, the fibre L[l] = l ⊂ C− is endowed with the scalar product defined by

the restriction of −H. Thus L|Un
−
has a Hermitian fibre metric h−L induced by −H. The (negative)

curvature form iΘh−L
(L|Un

−
) defines the associated Fubini-Study metric on Un

− by

ω−
FS = −iΘh−L

(L|Un
−
) > 0 on Un

− ⊂ PHn(X, C).

It follows from the above discussion that ω+
FS and ω−

FS depend only on the differential structure of

X. Composing the period map with the holomorphic embedding D
ι
↪→ PHn(X, C), we obtain a

local holomorphic immersion ι ◦ P : B → PHn(X, C) (cf. Theorem 5.4.4). From (5.53), we get:

Im (ι ◦ P) ⊂ Un
+ if n is even, Im (ι ◦ P) ⊂ Un

− if n is odd.

Taking the inverse image of ω+
FS when n is even, resp. of ω−

FS when n is odd, we get a Hermitian
metric (i.e. a positive definite C∞ (1, 1)-form) γ on B which is actually Kähler:

γ := (ι ◦ P)⋆(ω+
FS) > 0 if n is even, γ := (ι ◦ P)⋆(ω−

FS) > 0 if n is odd.

Computation of γ. We can compute γ at any point t ∈ B (e.g. at t = 0) in the same way as
in [Tia87, §.7]. We spell out the details for the reader’s convenience. Let (ut)t∈B be a holomorphic
family of nonvanishing holomorphic n-forms on the fibres (Xt)t∈B. Recall that a tangent vector
(∂/∂t)|t=0 to B at 0 identifies via the Kodaira-Spencer map with a class [θ] ∈ H0, 1(X, T 1, 0X). Fix
any such class [θ]. We will compute γ0([θ], [θ]).

We have: Lut = C · ut = Hn, 0(Xt, C). Thus:
(i) if n is even, then Lut ⊂ Hn

+(Xt, C) and (−i)nQ(ut, ūt) = H(ut, ut) = |ut|2h+L = e−ρ(t), where ρ

denotes the local weight function of the fibre metric h+L of L|Un
+
. We get ρ(t) = − log((−i)nQ(ut, ūt));

(ii) if n is odd, then Lut ⊂ Hn
−(Xt, C) and −(−i)nQ(ut, ūt) = −H(ut, ut) = |ut|2h−L = e−ρ(t), where ρ

denotes the local weight function of the fibre metric h−L of L|Un
−
. We get ρ(t) = − log(−(−i)nQ(ut, ūt)).

Now suppose that n is even. The curvature form of (L, h+L) on a C-line C ·t in a small neigh-
bourhood of 0 equals i∂t∂̄tρ(t), which in turn equals:

−i∂t∂̄t log((−i)nQ(ut, ūt)) = −i
∂2 log((−i)nQ(ut, ūt))

∂t ∂t̄
dt ∧ dt̄,

This means that for [θ] = ρ(∂/∂t|t=0), using the fact that ∂ut
∂t̄

= 0 (since ut varies holomorphically
with t), we get:
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γ0([θ], [θ]) = −∂
2 log((−i)nQ(ut, ūt))

∂t ∂t̄ |t=0
= − ∂

∂t

(
(−1)n

Q(ut,
∂ūt
∂t̄
)

Q(ut, ūt)

)
|t=0

= (−1)n+1

[Q(∂ut
∂t |t=0

, ∂ūt
∂t̄ |t=0

)

Q(u0, ū0)
−
Q(∂ut

∂t |t=0
, ū0) ·Q(u0, ∂ūt∂t̄ |t=0

)

Q(u0, ū0)2

]
.

Now recall that in the proof of Theorem 5.4.4 a key application of the ∂∂̄ lemma enabled us to
choose the representative θ of the class [θ] such that d(θ⌟u) = 0. With this choice, if u := u0, in
formula (5.54) we had v = c u and

∂ut
∂t |t=0

= θ⌟u+ c u,

where c ∈ C is a constant, if we identify ut with (Φ−1
t )⋆ut when Φt : Xt → X0 (t ∈ B) denote the

C∞ isomorphisms induced by the choice of θ in [θ]. Using this, the above formula for γ0([θ], [θ])
translates to

γ0([θ], [θ]) = (−1)n+1 Q(u, ū) ·Q(θ⌟u, θ⌟u) + |c|2Q(u, ū)2 − |c|2Q(u, ū)2

Q(u, ū)2

= (−1)n+1 Q(θ⌟u, θ⌟u)
Q(u, ū)

=
−H({θ⌟u}, {θ⌟u})

in2
∫
X

u ∧ ū
.

In the case when n is odd, the formula for γ0([θ], [θ]) gets an extra (−1) factor. The conclusion
of these calculations is summed up in the following

Lemma 5.4.8. The Kähler metric γ defined on B by γ := (ι ◦P)⋆(ω+
FS) > 0 when n is even and by

γ := (ι ◦ P)⋆(ω−
FS) > 0 when n is odd, is independent of the choice of any metrics on (Xt)t∈B and is

explicitly given by the formula:

γt([θt], [θt]) =

−
∫
X

(θt⌟ut) ∧ (θt⌟ut)

in2
∫
X

ut ∧ ūt
=
−H({θt⌟ut}, {θt⌟ut})

in2
∫
X

ut ∧ ūt
, if n is even,

γt([θt], [θt]) =

−i
∫
X

(θt⌟ut) ∧ (θt⌟ut)

in2
∫
X

ut ∧ ūt
=
H({θt⌟ut}, {θt⌟ut})

in2
∫
X

ut ∧ ūt
, if n is odd,

for every t ∈ B and every [θt] ∈ H0, 1(Xt, T
1, 0Xt).

In particular, we see that γt([θt], [θt]) is independent of the choice of representative θt in the class
[θt] ∈ H0, 1(Xt, T

1, 0Xt) such that θt⌟ut is d-closed. Since for every t ∈ B, ut is unique up to
a constant factor, γ is independent of the choice of holomorphic family (ut)t∈B of Jt-holomorphic
n-forms.

Notice that in
2
ut ∧ ūt > 0 at every point of Xt for any non-vanishing (n, 0)-form ut. On the

other hand, it follows from Lemma 5.4.9 below that H({θt⌟ut}, {θt⌟ut}) < 0 when n is even and
that H({θt⌟ut}, {θt⌟ut}) > 0 when n is odd if a d-closed representative θt⌟ut of the class [θt⌟ut] ∈
Hn−1, 1(Xt, C) ⊂ Hn(X, C) can be chosen to be primitive. This reproves that γt([θt], [θt]) > 0 in
this case (which does occur if primitivess is taken w.r.t. a Kähler metric).
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5.4.4 Comparison of metrics on B

We shall now compare the Weil-Petersson metric ω
(2)
WP with the period-map metric γ on B[ωn−1]. We

need a general fact first.

Let X be a compact complex manifold (dimCX = n) equipped with a Hermitian metric ω and
let ⋆ : Λn−1, 1 → Λn−1, 1 be the Hodge ⋆ operator defined by ω on (n − 1, 1)-forms. (Here Λn−1, 1

stands for the space C∞
n−1, 1(X, C) of global smooth forms of bidegree (n − 1, 1) on X although ⋆

acts even pointwise on forms.) Since ⋆2 = (−1)n, ⋆ induces a decomposition that is orthogonal for
the L2 scalar product defined by ω on X (cf. §.5.4.1):

Λn−1, 1 = Λn−1, 1
− ⊕ Λn−1, 1

+ (the duality decomposition), (5.59)

where Λn−1, 1
± stand for the eigenspaces of ⋆ corresponding to the eigenvalues ±1 (if n is even), ±i

(if n is odd). On the other hand, the Hermitian metric ω induces the Lefschetz decomposition (cf.
[Voi02, proposition 6.22, p. 147])

Λn−1, 1 = Λn−1, 1
prim ⊕

(
ω ∧ Λn−2, 0

)
, (5.60)

which is again orthogonal for the L2 scalar product defined by ω on X, where Λn−1, 1
prim denotes the

space of primitive (n − 1, 1)-forms u (i.e. those u ∈ Λn−1, 1 for which ω ∧ u = 0 or, equivalently,
Λu = 0), while ω ∧ Λn−2, 0 denotes the space of forms ω ∧ v with v an arbitrary form of bidegree
(n− 2, 0).

Lemma 5.4.9. The decompositions (5.59) and (5.60) coincide up to order, i.e.

Λn−1, 1
− = Λn−1, 1

prim and Λn−1, 1
+ = ω ∧ Λn−2, 0 if n is even,

Λn−1, 1
+ = Λn−1, 1

prim and Λn−1, 1
− = ω ∧ Λn−2, 0 if n is odd.

Proof. It suffices to prove the inclusions:

(A) Λn−1, 1
prim ⊂ Λn−1, 1

− and (B) ω ∧ Λn−2, 0 ⊂ Λn−1, 1
+ if n is even,

(A) Λn−1, 1
prim ⊂ Λn−1, 1

+ and (B) ω ∧ Λn−2, 0 ⊂ Λn−1, 1
− if n is odd.

Let u ∈ Λn−1, 1
prim . Formula (4.68) gives ⋆u = (−1)n(n+1)/2 in−2 u = in

2+2n−2 u. If n is even,

n2 + 2n− 2 ∈ 4Z− 2, hence in
2+2n−2 = i−2 = −1, so u ∈ Λn−1, 1

− . If n is odd, n2 + 2n− 2 ∈ 4Z+ 1,
hence in

2+2n−2 = i, so u ∈ Λn−1, 1
+ . This proves inclusions (A).

To prove inclusions (B), we first prove the following formula

⋆(ω ∧ v) = in(n−2) ω ∧ v for all v ∈ Λn−2, 0. (5.61)

Pick any v ∈ Λn−2, 0. Then ω ∧ v ∈ Λn−1, 1. For every u ∈ Λn−1, 1, we have

∫
X

u ∧ ⋆(ω ∧ v) =
∫
X

⟨u, ω ∧ v⟩ dVω = ⟨⟨u, ω ∧ v⟩⟩ = ⟨⟨Λu, v⟩⟩. (5.62)
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On the other hand, the following formula holds

ω ∧ u =
ω2

2!
∧ Λu for all u ∈ Λn−1, 1. (5.63)

Indeed, ω2 ∧ Λu = [L2, Λ]u = 2(n − n + 2 − 1)Lu = 2ω ∧ u, where for the first identity we have
used the fact that L2u = 0 since L2u is of type (n+1, 3), while for the second identity we have used
the standard formula (5.27) with r = 2 and k = n.
Applying (5.63) on the top line below, for every u ∈ Λn−1, 1 we get

∫
X

u ∧ (ω ∧ v) =

∫
X

(ω ∧ u) ∧ v̄ =

∫
X

(
ω2

2!
∧ Λu

)
∧ v̄

=

∫
X

(Λu) ∧
(
ω2

2!
∧ v
)

= in(n−2)

∫
X

(Λu) ∧ ⋆v̄

= in(n−2)

∫
X

⟨Λu, v⟩ dVω = in(n−2) ⟨⟨Λu, v⟩⟩, (5.64)

where the last identity on the second line above has followed from the formula

⋆v = in(n−2) ω2

2!
∧ v, v ∈ Λn−2, 0 (cf. (4.68) with (p, q) = (n− 2, 0)).

It is clear that the combination of (5.62) and (5.64) proves formula (5.61).
With (5.61) in place, inclusions (B) follow immediately. Indeed, if n is even, n(n−2) ∈ 4Z, hence

in(n−2) = 1, so ω ∧ v ∈ Λn−1, 1
+ for all v ∈ Λn−2, 0. If n is odd, n(n− 2) ∈ 4Z− 1, hence in(n−2) = −i,

so ω ∧ v ∈ Λn−1, 1
− for all v ∈ Λn−2, 0. □

For any θ ∈ C∞
0, 1(X, T

1, 0X), we denote by

θ⌟u = θ′⌟u+ ω ∧ ζ (5.65)

the decomposition of θ⌟u ∈ Λn−1, 1 induced by the Lefschetz decomposition (5.60). Thus θ′⌟u ∈
Λn−1, 1
prim and ζ ∈ Λn−2, 0. By orthogonality we have ||θ⌟u||2 = ||θ′⌟u||2 + ||ω ∧ ζ||2. Now

||ω ∧ ζ||2 = ⟨⟨Λ(ω ∧ ζ), ζ⟩⟩ = ⟨⟨[Λ, L] ζ, ζ⟩⟩ = 2||ζ||2,
since Λζ = 0 for bidegree reasons (hence [Λ, L] ζ = Λ(ω ∧ ζ)−ω ∧Λζ = Λ(ω ∧ ζ)) and [Λ, L] ζ = 2ζ
(by formula (5.27) with r = 1 and k = n− 2).

Theorem 5.4.10. Let X be a compact balanced Calabi-Yau ∂∂̄-manifold of complex dimension n.
Then the metrics G

(2)
WP and γ on the base space B[ωn−1] of the local universal family of deformations

of X that are co-polarised by a given balanced class [ωn−1] ∈ Hn−1, n−1(X, C) ⊂ H2n−2(X, C) are
given at every point t ∈ B[ωn−1] by the formulae (see notation (5.65)):

G
(2)
WP, t([θt], [θt]) =

||θ′t⌟ut||2 + 2||ζt||2

in2
∫
X
ut ∧ ūt

, [θt] ∈ H0, 1(Xt, T
1, 0Xt)[ωn−1], (5.66)

γt([θt], [θt]) =
||θ′t⌟ut||2 − 2||ζt||2

in2
∫
X
ut ∧ ūt

, [θt] ∈ H0, 1(Xt, T
1, 0Xt)[ωn−1]. (5.67)
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Here θt is chosen in its class [θt] such that θt⌟ut is the ωt-minimal d-closed representative of the class
[θt⌟ut] ∈ Hn−1, 1(Xt, C) (where the ωt ∈ {ωn−1} are balanced metrics in the co-polarising balanced
class given beforehand).

Proof. We may assume that t = 0. Formula (5.66) follows immediately from (5.58) and from
the above considerations. To get (5.67), notice that Lemma 5.4.9 shows that if n is even, then
θ⌟u = ⋆(−θ′⌟u+ ω ∧ ζ), from which we get

∫
X

(θ⌟u) ∧ (θ⌟u) =
∫
X

(
θ′⌟u+ ω ∧ ζ

)
∧
(
− ⋆(θ′⌟u) + ⋆(ω ∧ ζ)

)
= −||θ′⌟u||2 + 2 ||ζ||2,

while if n is odd, then θ⌟u = ⋆(−i θ′⌟u+ i ω ∧ ζ), from which we get

∫
X

(θ⌟u) ∧ (θ⌟u) =
∫
X

(
θ′⌟u+ ω ∧ ζ

)
∧
(
i ⋆ (θ′⌟u)− i ⋆ (ω ∧ ζ)

)
= i ||θ′⌟u||2 − 2i ||ζ||2.

Now (5.67) follows from these expressions and from Lemma 5.4.8. □

Corollary 5.4.11. For all [θt] ∈ H0, 1(Xt, T
1, 0Xt)[ωn−1] \ {0}, we have

(G
(2)
WP − γ)t([θt], [θt]) =

4 ||ζt||2

in2
∫
Xt
ut ∧ ūt

≥ 0, t ∈ B[ωn−1],

hence the Hermitian metric ω
(2)
WP on B[ωn−1] defined by G

(2)
WP is bounded below by the Kähler metric

γ.

It is now clear that the obstruction to the metrics ω
(2)
WP and γ coinciding on B[ωn−1] is the possible

negative answer to Question 5.3.11 in the case of balanced, non-Kähler fibres. Indeed, if every class
in Hn−1, 1

prim (Xt, C) could be represented by a form ηt⌟ut that is both primitive and d-closed, we would

have, thanks to Lemma 5.4.9, that ⋆(ηt⌟ut) = c (ηt⌟ut) with c = −1 (if n is even), c = −i (if
n is odd). Hence, from Lemma 5.4.8, we would get ω

(2)
WP = γ as in the case of Kähler polarised

deformations of [Tia87] since formula (5.58) can be re-written in the following obvious way:

G
(2)
WP ([θt], [ηt]) =

∫
Xt

(θt⌟ut) ∧ ⋆(ηt⌟ut)

in2
∫
Xt

ut ∧ ūt

5.5 Balanced holomorphic symplectic ∂∂̄-manifolds

5.5.1 Primitive (1, 1)-classes on balanced manifolds

Let (X, ω) be a compact, balanced manifold (dimCX = n). The balanced class [ωn−1] ∈ Hn−1, n−1(X, C)
enables one to define the notion of primitive 2-classes onX in the same way as in the standard Kähler
case. Indeed, at the level of Dolbeault cohomology, the linear operator

Ln−1
ω : H1, 1(X, C)→ Hn, n(X, C) ≃ C, [α] 7→ [ωn−1 ∧ α], (5.68)
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is well defined because, thanks to the balanced assumption on ω, ∂̄(ωn−1 ∧ α) = 0 whenever ∂̄α = 0
and ωn−1 ∧ α = ∂̄(ωn−1 ∧ β) whenever α = ∂̄β is ∂̄-exact. We can then call primitive those classes
that are in the kernel of Ln−1

ω , i.e.

H1, 1
prim(X, C) := {[α] ∈ H1, 1(X, C) ; ωn−1 ∧ α is ∂̄ − exact}. (5.69)

Analogous definitions can be made for De Rham 2-classes and Dolbeault (2, 0) and (0, 2)-classes,
but all (2, 0) and (0, 2)-classes are primitive for trivial bidegree reasons. Thus, if the ∂∂̄-lemma
is supposed to hold on X, the Hodge decomposition H2(X, C) = H2, 0(X, C) ⊕ H1, 1(X, C) ⊕
H0, 2(X, C) shows that only the H1, 1(X, C) component supports a nontrivial notion of primitivity.
Notice that for k > 2, there is no corresponding notion of primitive k-classes if ω is only balanced
since ωn−k+1 is not closed unless ω is Kähler. It had to be replaced in bidegree (n − 1, 1) by the
ad-hoc definition 5.3.9 using the Calabi-Yau isomorphism when KX was assumed to be trivial.

Lemma 5.5.1. Let (X, ω) be a compact, balanced manifold (dimCX = n). Then a class [α] ∈
H1, 1(X, C) is primitive if and only if it can be represented by a primitive form.

Proof. By the standard definition (applicable to any Hermitian metric ω), a (1, 1)-form α is primitive
if ωn−1 ∧ α = 0. It is thus obvious that any class representable by a primitive form is primitive. To
see the converse, pick any class [α] ∈ H1, 1

prim(X, C) and any representative α. We have to prove the

existence of a (1, 0)-form u such that the representative α + ∂̄u of [α] is primitive. This amounts
to ωn−1 ∧ (α + ∂̄u) = 0, which is equivalent to ∂̄(ωn−1 ∧ u) = −ωn−1 ∧ α thanks to the balanced
assumption ∂̄ωn−1 = 0. Now, ωn−1 ∧ α is ∂̄-exact by the primitivity assumption on the class [α].
Pick any w ∈ C∞

n, n−1(X, C) such that ∂̄w = −ωn−1 ∧ α. It thus suffices to prove the existence of a
(1, 0)-form u such that ωn−1 ∧ u = w. The linear operator

Ln−1
ω : C∞

1, 0(X, C)→ C∞
n, n−1(X, C), u 7→ ωn−1 ∧ u, (5.70)

is an isomorphism (for any Hermitian metric ω), so there is a unique (1, 0)-form u such that ωn−1∧u =
w. □

The primitive representative of a primitive class [α] ∈ H1, 1(X, C) need not be unique, but we
can single out a particular one that is uniquely determined by the metric ω in the given primitive
class in the following way.

Choice of a primitive representative: given a primitive (1, 1)-class, let α be its ∆′′
ω-harmonic

representative. Then choose w ∈ C∞
nn−1(X, C) to be the solution of minimal L2-norm (w.r.t. ω) of

the equation ∂̄w = −ωn−1 ∧ α. Since the map (5.70) is an isomorphism, the (1, 0)-form u such that
ωn−1 ∧ u = w is uniquely determined by w. Since the above choices of α and w make them unique,
the primitive representative α + ∂̄u of the primitive class [α] is uniquely determined in this way by
ω and [α] ∈ H1, 1

prim(X, C). (⋆)

When ω is Kähler, the ∆′′
ω-harmonic representative α of a primitive class is a primitive form, a

standard fact that follows from ∆′′
ω and Lω commuting (as can be easily seen from the Kähler identi-

ties). Thus ωn−1∧α = 0, hence w = 0 is the minimal L2-norm solution of equation ∂̄w = −ωn−1∧α.
Consequently, u = 0 and α + ∂̄u = α, showing that our choice (⋆) of primitive representative coin-
cides with the standard ∆′′

ω-harmonic choice when ω is Kähler. However, when ω is only balanced,
it is not clear whether the ∆′′

ω-harmonic representative of a primitive class is a primitive form. This
accounts for the need of introducing the choice (⋆).
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5.5.2 Co-polarised deformations of holomorphic symplectic manifolds

Let (X, ω) be a compact, balanced ∂∂̄-manifold (dimCX = n). Suppose there exists a C∞ ∂̄-closed
(2, 0)-form σ that is non-degenerate at every point of X and that such a σ is unique up to a nonzero
constant factor. Thus H2, 0(X, C) ≃ C and σ defines a holomorphic symplectic structure on X. The
form σ naturally identifies with the class [σ] ∈ H2, 0(X, C).

It follows from the ∂∂̄-assumption on X that σ is actually d-closed by the following observation
which is standard when X is Kähler (and probably also under the weaker ∂∂̄-assumption). The
standard Kähler-case proof, using the Laplacian equality ∆′ = ∆′′, no longer holds in the ∂∂̄-case
for which we spell out the argument below for the sake of completeness.

Lemma 5.5.2. Every holomorphic p-form is d-closed on any compact complex ∂∂̄-manifold X for
any 0 ≤ p ≤ n = dimCX.

Proof. Fix any p and let α ∈ C∞
p, 0(X, C) be ∂̄-closed. To show that dα = 0, it suffices to show

that ∂α = 0. Now, ∂α is ∂̄-closed since α is, while ∂ and ∂̄ anti-commute. Thus ∂α is a d-closed,
∂-exact form of pure type (p + 1, 0). By the ∂∂̄-lemma, ∂α must be ∂∂̄-exact, i.e. ∂α = ∂∂̄β for
some (p, −1)-form β. Since β must vanish for type reasons, ∂α vanishes. □

We are now ready to connect the primitive (1, 1)-cohomology to the parameter space of co-
polarised deformations defined by a balanced class via the natural isomorphism associated with the
holomorphic symplectic structure.

Lemma 5.5.3. Let X be a compact complex manifold (dimCX = n) admitting a holomorphic sym-
plectic structure σ that is unique up to a constant factor.
(i) The linear map defined by σ as

Tσ : C∞
0, 1(X, T

1, 0X)
·⌟σ−→ C∞

1, 1(X, C), θ 7→ Tσ(θ) := θ⌟σ, (5.71)

is an isomorphism satisfying the following properties:

Tσ(ker ∂̄) = ker ∂̄ and Tσ(Im ∂̄) = Im ∂̄. (5.72)

Consequently, Tσ induces an isomorphism in cohomology

T[σ] ; H
0, 1(X, T 1, 0X)

·⌟[σ]−→ H1, 1(X, C) (5.73)

defined by T[σ]([θ]) = [θ⌟σ] for all [θ] ∈ H0, 1(X, T 1, 0X).

(ii) If ω is a balanced metric on X, then the image under T[σ] of the subspace H
0, 1(X, T 1, 0X)[ωn−1] ⊂

H0, 1(X, T 1, 0X) defined in (5.16) is the subspace H1, 1
prim(X, C) ⊂ H1, 1(X, C) of primitive (1, 1)-

classes defined in (5.69), i.e.

T[σ] : H0, 1(X, T 1, 0X)[ωn−1]
≃−→ H1, 1

prim(X, C). (5.74)
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Proof. It is clear that Tσ is an isomorphism. As in the proof of Lemma ??, the rest of (i) follows
from the easy-to-check formulae

∂̄(θ⌟σ) = (∂̄θ)⌟σ + θ⌟(∂̄σ) = (∂̄θ)⌟σ, ∂̄(ξ⌟σ) = (∂̄ξ)⌟σ − ξ⌟(∂̄σ) = (∂̄ξ)⌟σ (5.75)

for all θ ∈ C∞
0, 1(X, T

1, 0X) and all ξ ∈ C∞(X, T 1, 0X) which readily imply the inclusions Tσ(ker ∂̄) ⊂
ker ∂̄ and Tσ(Im ∂̄) ⊂ Im ∂̄.

Let us prove, for example, the identity Im ∂̄ = Tσ(Im ∂̄). This amounts to proving that θ is
∂̄-exact if and only if θ⌟σ is ∂̄-exact. Having fixed local holomorphic coordinates z1, . . . , zn on some
open subset U ⊂ X, let

θ =
∑
α, β

θαβ
∂

∂zα
dz̄β and σ =

∑
α, δ

σα, δ dz
α ∧ dzδ,

where the coefficients σα, δ are holomorphic functions (since σ is holomorphic) and the matrix
(σα, δ)α, δ is invertible at every point since σ is non-degenerate at every point. Then θ⌟σ =

∑
α, β, δ

θαβ (σα, δ−

σδ, α) dz̄
β ∧ dzδ. Thus θ⌟σ is ∂̄-exact if and only if there exists a (1, 0)-form v =

∑
δ

vδ dz
δ such that

θ⌟σ = ∂̄v, which amounts to∑
α, β, δ

θαβ (σα, δ − σδ, α) dz̄β ∧ dzδ =
∑
δ, β

∂vδ
∂z̄β

dz̄β ∧ dzδ ⇔
∑
α

θαβ (σα, δ − σδ, α) =
∂vδ
∂z̄β

for all β, δ. The last identity is equivalent to θαβ =
∑
δ

∂vδ
∂z̄β

(σδ, α − σα, δ) = ∂
∂z̄β

(
∑
δ

(σδ, α − σα, δ) vδ)

for all α, β, where the matrix (σδ, α)α, δ is the inverse of (σα, δ)α, δ. (We have used the fact that
the σδ, α’s are holomorphic functions since the σα, δ’s are.) This, in turn, is equivalent to θ =
∂̄(
∑
α

(
∑
δ

(σδ, α − σα, δ) vδ) ∂
∂zα

), i.e. to θ being ∂̄-exact. We have thus proved that θ⌟σ is ∂̄-exact if

and only if θ is ∂̄-exact, i.e. the latter identity in (5.72).
The remaining inclusion in the former identity of (5.72) is proved in a similar way.
The proof of (ii) will run in two steps. First we prove the inclusion

T[σ]

(
H0, 1(X, T 1, 0X)[ωn−1]

)
⊂ H1, 1

prim(X, C), (5.76)

which amounts to proving that for every class [θ] ∈ H0, 1(X, T 1, 0X) for which θ⌟ωn−1 is ∂̄-exact,
ωn−1 ∧ (θ⌟σ) is also ∂̄-exact. Now, we always have

0 = θ⌟(ωn−1 ∧ σ) = (θ⌟ωn−1) ∧ σ + ωn−1 ∧ (θ⌟σ),

where the first identity follows from the fact that ωn−1 ∧ σ is of type (n+ 1, n− 1), hence vanishes.
Thus

(θ⌟ωn−1) ∧ σ = −ωn−1 ∧ (θ⌟σ) for all θ ∈ C∞
0, 1(X, T

1, 0X).

Now, if θ⌟ωn−1 is supposed to be ∂̄-exact, then (θ⌟ωn−1) ∧ σ is ∂̄-exact, too, since σ is ∂̄-closed.
Hence ωn−1 ∧ (θ⌟σ) is ∂̄-exact whenever θ⌟ωn−1is, proving the inclusion (5.76).

Since T[σ] is injective by (i), it suffices to prove the dimension equality
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dimH0, 1(X, T 1, 0X)[ωn−1] = dimH1, 1
prim(X, C) (5.77)

to be able to conclude that the inclusion (5.76) is actually an identity.
By definition (5.69), we have

H1, 1
prim(X, C) = ker

(
Ln−1
ω : H1, 1(X, C)→ Hn, n(X, C) ≃ C

)
.

The linear map (5.68) cannot vanish identically, so it is surjective. Hence

dimH1, 1
prim(X, C) = h1, 1 − 1, (5.78)

where h1, 1 := dimH1, 1(X, C). Meanwhile, definition (5.16) translates to

H0, 1(X, T 1, 0X)[ωn−1] = ker

(
H0, 1(X, T 1, 0X) ∋ [θ]

T[ωn−1]7−→ [θ⌟ωn−1] ∈ Hn−2, n(X, C)
)
,

while Hn−2, n(X, C) ≃ H2, 0(X, C) ≃ C by Serre duality and the uniqueness (up to a constant factor)
assumption on the holomorphic symplectic structure [σ] ∈ H2, 0(X, C). It is clear that the linear
map T[ωn−1] does not vanish identically, so it must be surjective. Thus we get

dimH0, 1(X, T 1, 0X)[ωn−1] = dimH0, 1(X, T 1, 0X)− 1 = h1, 1 − 1, (5.79)

where the last identity follows from the isomorphism (5.73) dealt with under (i). It is now clear that
the dimension equality (5.77) is a consequence of the combined identities (5.78) and (5.79). The
proof is complete. □

The use of the isomorphism T[σ] in (5.73) in the holomorphic symplectic case may be an alternative
to the use of the isomorphism T[u] in (2.48) of the more general Calabi-Yau case while running the
construction of the Weil-Petersson metrics of section 5.4.



Chapter 6

Non-Kähler Mirror Symmetry: the
Iwasawa Manifold and Beyond

This chapter is mostly taken from [Pop18a] where a new approach to the Mirror Symmetry Conjec-
ture extended to the possibly non-Kähler setting was proposed. Further developments of the theory
are presented in section 6.8 (taken from [PSU20c]) and in section 6.9 (taken from [Pop18b]).

Our general methods, some of which have been presented in earlier chapters of this book, are
then applied by proving that the Iwasawa manifold X is its own mirror dual to the extent that its
Gauduchon cone, replacing the classical Kähler cone that is empty in this case, corresponds to what
we call the local universal family of essential deformations of X. These are obtained by removing
from the Kuranishi family the two “superfluous” dimensions of complex parallelisable deformations
that have a similar geometry to that of the Iwasawa manifold. The remaining four dimensions are
shown to have a clear geometric meaning including in terms of the degeneration at E2 of the Frölicher
spectral sequence. On the local moduli space of essential complex structures, we obtain a canonical
Hodge decomposition of weight 3 and a variation of Hodge structures, construct coordinates and
Yukawa couplings, while implicitly proving a local Torelli theorem. On the metric side of the mirror,
we construct a variation of Hodge structures parametrised by a subset of the complexified Gauduchon
cone of the Iwasawa manifold using the sGG property of all the small deformations of this manifold
proved in Corollary 4.3.5. Finally, we define a mirror map linking the two variations of Hodge
structures and we highlight its properties.

One of the main ideas in this chapter is to overcome the double whammy of a possible non-
existence of both Kähler metrics and rational curves on a given C-Y manifold X by using the
Gauduchon cone GX (see Definition 4.1.14 and §.4.1.3-§.4.1.6 for other roles it plays) of X. This
furnishes both an alternative to the classical Kähler cone (that is empty on a non-Kähler manifold)
and a transcendental substitute for cohomology classes of (currents of integration on) curves (e.g.
by virtue of its elements’ bidegree (n − 1, n − 1), but also in a far deeper sense). We stress that
the Gauduchon cone is relevant even on projective and on Kähler non-projective manifolds where
it might be preferable to the Kähler cone in certain circumstances (for example, when it is strictly
bigger, allowing for more flexibility).

6.1 Broad outline of the goals and the concepts

Before going into the details, we will use this section to give a very brief outline of the classical
approach to mirror symmetry, followed by a similar overview of our approach.

400
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6.1.1 Standard approach

The standard mirror symmetry conjecture predicts that the Calabi-Yau (C-Y) threefolds, defined as
compact Kähler manifolds of complex dimension 3 whose canonical bundle is trivial, ought to occur
in pairs (X, X̃) such that the local universal family of deformations of the complex structure (i.e.
the Kuranishi family) of X is isomorphic to the moduli space of Kähler structures enriched with

B-fields (i.e. the complexified Kähler cone) of X̃, and vice-versa.
As is well known, there is an obvious cohomological obstruction to some Kähler C-Y threefolds

X having Kähler mirror duals X̃. The Kuranishi family (X)t∈B of a given Kähler C-Y manifold
X = X0 is unobstructed (i.e. its base space B is smooth, hence can be viewed as an open ball in
the classifying space H0, 1(X, T 1, 0X)) by the Bogomolov-Tian-Todorov theorem ([Bog78], [Tia87],
[Tod89]). The triviality of the canonical bundle KX implies the isomorphism H0, 1(X, T 1, 0X) ≃
Hn−1, 1(X, C) = H2, 1(X, C), where the last identity follows from the assumption dimCX := n = 3.

On the other hand, the complexified Kähler cone K̃X̃ of X̃ is an open subset of H1, 1(X̃, C). So

a necessary condition for X and X̃ to be mirror dual is that the tangent space to ∆ at 0 (i.e.

H2, 1(X, C)) be isomorphic to the tangent space to the complexified Kähler cone K̃X̃ at some point

(i.e. H1, 1(X̃, C)), and vice-versa. It is thus necessary to have

h2, 1(X) = h1, 1(X̃) and h2, 1(X̃) = h1, 1(X).

However, there exist Kähler C-Y threefolds X such that h2, 1(X) = 0 (the so-called rigid such

threefolds, those that do not deform). Consequently, the mirror dual X̃, if it exists, cannot be

Kähler since h1, 1(X̃) = 0.
This standard observation has prompted many authors so far to conjecture the mirror symmetry

only for generic Kähler C-Y threefolds so that the discussion is confined to the Kähler realm. The
idea of investigating the possible existence of a mirror symmetry phenomenon beyond the Kähler
world was loosely suggested in [Rei87] and received attention recently in [LTY15]. This investigation
is our main motivation in the present work. Our methods and point of view are very different from
those in [LTY15].

The standard approach to the study of the Kähler side of the mirror is to use Gromov-Witten
invariants attached to pseudo-holomorphic curves and to count rational curves. However, on many
non-Kähler compact complex threefolds with trivial canonical bundle, there exist no rational curves.

6.1.2 Outline of our approach

We present in this chapter the new approach to mirror symmetry introduced in [Pop18a] by means of
transcendental methods in the general, possibly non-Kähler context of compact complex manifolds
whose canonical bundle is trivial (that we still call Calabi-Yau (C-Y) manifolds as in §.2.4.1 and
subsequently). We test our new point of view on the Iwasawa manifold by taking full advantage of
the explicit nature of extensive computations for this particular manifold found in the works [Nak75]
(cf. §.4.5.3), [Ang11] and [Ang14] of Nakamura and Angella.

We hope that these methods will apply to larger classes of C-Y manifolds in the future. One of
the new ideas in this approach is the notion of local universal family of essential deformations, viewed
as a subfamily of the Kuranishi family, of the Iwasawa manifold X. Three equivalent definitions
are given: by removing the complex parallelisable small deformations from the Kuranishi family; by
selecting the small deformations that have a kind of polarisation by the holomorphic non-closed 1-
form γ associated with X (cf. Definition 6.2.2); and by selecting the vector subspace of the Dolbeault
cohomology space Hn−1, 1(X, C) (known to parametrise all the small deformations of a C-Y manifold
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X, while the complex dimension of X is n = 3 here) that is naturally isomorphic to the vector space
En−1, 1

2 (X) featuring in bidegree (n− 1, 1) on the second page of the Frölicher spectral sequence of
X.

Looking ahead beyond the special case of the Iwasawa manifold treated in this chapter, we come
up against the question of what makes a deformation of a general, possibly non-Kähler, C-Y manifold
essential. The notion of essential deformations was extended from the case of the Iwasawa manifold
to the general case of page-1-∂∂̄-manifolds (discussed in §.3.3) in the very recent work [PSU20c] that
is presented at the end of this chapter.

We now flesh out this outline of our approach with a few more preliminary observations.

(I) On the complex-structure side of the mirror, the starting point of our method is
the observation that a natural Hodge decomposition of weight 3 exists on the Iwasawa manifold
X if H2, 1

∂̄
(X, C) is “pared down” to a 4-dimensional vector subspace H2, 1

[γ] (X, C) ⊂ H2, 1

∂̄
(X, C)

(induced by the vertical 1-form γ defined alongside the horizontal 1-forms α and β in (1.54)) that
injects canonically into H3

DR(X, C) and parametrises what we call the essential deformations of X.
Specifically, recalling that ∆ ⊂ H2, 1

∂̄
(X, C) is an open ball, if we put

B[γ] := B ∩H2, 1
[γ] (X, C),

we implicitly remove from the Kuranishi family (Xt)t∈B the two dimensions corresponding to com-
plex parallelisable deformations Xt of X (that have a similar geometry to that of X, so no geo-
metric information is lost) and we are left with a family (Xt)t∈B[γ]

of non-complex parallelisable
deformations that we call essential. This description of the local deformations of X is made pos-
sible by Nakamura’s explicit calculations in [Nak75]. The holomorphic tangent space to B[γ] at

any of its points t is isomorphic via the Kodaira-Spencer map to the analogue H2, 1
[γ] (Xt, C) at t

of H2, 1
[γ] (X, C) = H2, 1

[γ] (X0, C). We get a Hodge decomposition of weight 3 for every t ∈ B[γ] (cf.

Proposition 6.3.3) in the following form.

Proposition 6.1.1. There exist canonical isomorphisms

H3
DR(X, C) ≃ H3, 0

∂̄
(Xt, C)⊕H2, 1

[γ] (Xt, C)⊕H1, 2
[γ] (Xt, C)⊕H0, 3

∂̄
(Xt, C), t ∈ B[γ], (6.1)

(where H1, 2
[γ] (Xt, C) ⊂ H1, 2

∂̄
(Xt, C) is defined by analogy with H2, 1

[γ] (Xt, C)) and

H3, 0

∂̄
(Xt, C) ≃ H0, 3

∂̄
(Xt, C) and H2, 1

[γ] (X, C) ≃ H1, 2
[γ] (X, C), t ∈ B[γ]. (6.2)

We go on to show that B[γ] ∋ t 7→ H2, 1
[γ] (Xt, C) is a C∞ vector bundle of rank 4 (cf. Proposition

6.3.4) and that (6.1) and (6.2) define a Hodge filtration

F 2H3
[γ] ⊃ F 3H3

of holomorphic vector subbundles over B[γ] of the constant bundle H3 of fibre H3
DR(X, C). This

induces a variation of Hodge structures (VHS) endowed with a Gauss-Manin connection satisfying
the Griffiths transversality condition (cf. Theorem 6.3.10).

Thus, after restricting attention to the essential deformations of the non-∂∂̄ Iwasawa manifold,
we get a picture similar to the one described in §.1.3.1 for ∂∂̄-manifolds.

Two further crucial observations cement the role played by the space H2, 1
[γ] (X, C) in this approach

and its canonical nature. (By an isomorphism being canonical, we will mean that it is defined in an
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obvious way, not involving arbitrary choices, by the three standard holomorphic 1-forms α, β, γ that
generate the whole cohomology of the Iwasawa manifold and are induced by the canonical basis of
C3 as specified in (1.54).)

The first observation (cf. Proposition 6.3.9, (c)) is the following

Proposition 6.1.2. There exists a canonical isomorphism

H2, 1
[γ] (X, C) ≃ E2, 1

2 (X, C) (6.3)

where E2, 1
2 (X, C) is the space featuring at the second step of the Frölicher spectral sequence of X

(known to degenerate at E2 as do its counterparts for all the small deformations Xt).

Moreover, the Hodge decomposition (6.1) reflects precisely this E2 degeneration since there exist
isomorphisms (cf. (6.29))

H3
DR(X, C) ≃ E3, 0

2 (Xt, C)⊕ E2, 1
2 (Xt, C)⊕ E1, 2

2 (Xt, C)⊕ E0, 3
2 (Xt, C), t ∈ B[γ], (6.4)

in which each of the four spaces on the r.h.s. is isomorphic to the corresponding space on the r.h.s.
of (6.1).

The second observation (cf. Observation 6.5.11) is the following

Proposition 6.1.3. There exists a canonical isomorphism

H2, 1
[γ] (X, C) ≃ H2, 2

A (X, C). (6.5)

The isomorphism (6.5) justifies us in choosing the essential deformations of X on the complex-
structure side of the mirror and the Gauduchon cone of X on the metric side of the mirror as the two
main structures mirroring each other. Indeed, H2, 1

[γ] (X, C) is the tangent space to B[γ] at 0, while

H2, 2
A (X, C) is the tangent space to the complexified Gauduchon cone (see Definition 6.6.2) at any of

its points. The Aeppli-Gauduchon class [ω2
0] ∈ GX0 of a natural Gauduchon metric ω0 induced on X0

by the complex parallalisable structure of X0 will be the privileged point chosen in the Gauduchon
cone. It is the image of 0 ∈ B[γ] under the mirror map that will be defined in Defintions 6.6.1 and
6.6.2. Isomorphism (6.5) is the single most powerful piece of initial motivating evidence in favour of
the new mirror symmetry phenomenon that we highlight in this paper.

(II) On the metric side of the mirror, we start off by constructing a C∞ family (ωt)t∈B[γ]

of Gauduchon metrics on the fibres (Xt)t∈B[γ]
(cf. Lemma 6.5.1) and a C∞ family (ω1, 1

t )t∈B of

Gauduchon metrics on X0 (cf. Lemma 6.5.2). The ω1, 1
t ’s are the (1, 1)-components of the ωt’s w.r.t.

the complex structure J0 of X0.
Then we prove (cf. Corollary 6.5.6) that the Aeppli cohomology groups of bidegree (2, 2) of the

local essential deformations Xt of the Iwasawa manifold X = X0, namely the vector spaces

B[γ] ∋ t 7→ H2, 2
A (Xt, C),

define a C∞ vector bundle H2, 2
A of rank 4 that injects as a C∞ vector subbundle of the constant

bundle H4 → B[γ] of fibre given by the De Rham cohomology group H4
DR(Xt, C) = H4(X, C). This

injection is proved by using in a crucial way the sGG property (cf. [PU14]) of all the fibres Xt
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and the family (ωt)t∈B[γ]
of Gauduchon metrics thereon. Denoting by H̃2, 2

ωt the image of H2, 2
A (Xt, C)

into H4(X, C) under this ωt-induced injection, we get a C∞ vector bundle H̃2, 2
ω of rank 4

GX0 ∋ [(ω1, 1
t )2]A 7→ H̃2, 2

ωt ⊂ H4(X, C)

after suitable identifications of certain spaces depending on ωt with spaces depending on ω1, 1
t (cf.

Conclusion 6.5.12).
This produces a Hodge filtration

FGH4 := H2, 0(B)⊕ H̃2, 2
ω ⊃ F ′

GH4 := H2, 0(B)

of holomorphic vector bundles over the complexification G̃0 of the subset G0 of the Gauduchon cone
GX0 consisting of the classes [(ω1, 1

t )2]A with t ∈ B[γ], where H2, 0(B) is a holomorphic line bundle
over B[γ] induced by the Albanese tori Bt of the fibres Xt.

(III) The link between the two sides of the mirror is provided by the holomorphic family
(Bt)t∈B of 2-dimensional complex Albanese tori Bt = Alb(Xt) of the small deformations Xt of the
Iwasawa manifold X = X0. Indeed, every small deformation Xt of X is a locally trivial holomorphic
fibration πt : Xt → Bt over its Albanese torus Bt. We get a holomorphic vector bundle of rank 5

G̃0 ∋ [(ω1, 1
t )2]A 7→ H2, 0(Bt, C)⊕ H̃2, 2

ωt ⊂ H3(X, C)⊕H4(X, C) (6.6)

and a VHS parametrised by the complexification G̃0 of the subset

G0 := {[(ω1, 1
t )2]A | t ∈ B[γ]}

of the Gauduchon cone GX0 of X0 (cf. Conclusion 6.5.12).
The VHS (6.6), constructed on the metric side of the mirror, is then proved to be C∞ isomorphic

to the VHS induced by (6.1) and (6.2) on the complex-structure side of the mirror. This C∞

isomorphism is actually holomorphic at the level of the 1-dimensional parts of the two VHS’s and
anti-holomorphic at the level of the 4-dimensional parts. This regularity meshes with the sesquilinear
self-duality of the Iwasawa manifold highlighted in the next work [Pop17] of the author. This
isomorphism will be obtained by proving (cf. Corollary 6.3.11) that each of the two Hodge filtrations
is C∞ isomorphic to the Hodge filtration F 1H2(B) ⊃ F 2H2(B) of holomorphic vector bundles
induced by the family of tori (Bt)t∈B[γ]

over the moduli space B[γ] of essential deformations of the
Iwasawa manifold.

We also define explicitly (cf. Definition 6.6.2) a mirror map

M̃ : B[γ] → G̃X .

It has the property of taking the point 0 ∈ B[γ] (i.e. the Iwasawa manifold X = X0, the marked
point in B[γ]) to the Aeppli cohomology class [ω2

0]A ∈ GX of the canonical Gauduchon metric ω0 on

X (the marked point in the Gauduchon cone GX). The mirror map M̃ is then proved in Theorem
6.6.3 to be a local biholomorphism whose differential at 0 ∈ B[γ] is the canonical isomorphism

H2, 1
[γ] (X, C) ≃ H2, 2

A (X, C) of Proposition 6.1.3. The analogous statement holds at every t ∈ B[γ]

after we observe a canonical isomorphism H2, 1
[γ] (Xt, C) ≃ H2, 2

A (Xt, C) (cf. Observation 6.5.11).
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The mirror map is defined by “complexification” of what we call the positive mirror map
defined (cf. Definition 6.6.1) by

M : B[γ] → GX , t 7→
[
(ω1, 1

t )2
]
A

.

We hope that these methods can be extended to other classes of compact complex manifolds.
The ultimate goal is to get a general mirror symmetry theory asserting that every compact complex
n-dimensional sGG manifold X (possibly, but not necessarily, assumed to be ∂∂̄) whose canonical
bundleKX is trivial and having some other familiar properties (e.g. unobstructedness of its Kuranishi

family, degeneration at E2 of its Frölicher spectral sequence, etc) admits a mirror dual X̃ such that
the moduli space EssDef (X) of essential deformations of the complex structure of X (defined, e.g.
using the space En−1, 1

2 on the second page of the Frölicher spectral sequence of X) corresponds via

a local biholomorphism to the complexified Gauduchon cone G̃X̃ of X̃ and vice versa. This local
biholomorphism ought to induce an isomorphism of variations of Hodge structures parametrised
respectively by EssDef (X) and G̃X̃ . This isomorphism may turn out to be holomorphic at the level
of certain parts of the two VHS’s and anti-holomorphic for the other parts. Certain non-linear PDEs
(e.g. of the Monge-Ampère or Hessian type) are expected to produce canonical metrics representing
Aeppli cohomology classes in the Gauduchon cone. Some classes of nilmanifodls and solvmanifolds
provide a fertile testing ground for this conjecture.

6.2 Essential deformations of the Iwasawa manifold

6.2.1 The Calabi-Yau isomorphism

Since T 1, 0X is trivial, the Iwasawa manifold X is, in particular, a Calabi-Yau manifold. Since its
Kuranishi family (Xt)t∈B is unobstructed (by Nakamura [Nak75], see Theorem 4.5.39), its base B
can be identified with an open ball in the Dolbeault cohomology group H0, 1(X, T 1, 0X) of classes of
smooth ∂̄-closed (0, 1)-forms with values in the holomorphic tangent bundle T 1, 0X. In particular,
the holomorphic tangent space T 1, 0

0 B to B at 0 is isomorphic, via the Kodaira-Spencer map ρ, to
H0, 1(X, T 1, 0X).

On the other hand, the Calabi-Yau structure of X is defined by any nowhere-vanishing holo-
morphic (3, 0)-form Ω on X. All such forms are equal up to a multiplicative constant, so we may
choose, for example, Ω := α ∧ β ∧ γ. We get the following isomorphisms, the second of which will
be called the Calabi-Yau isomorphism:

T 1, 0
0 B

ρ−→
≃

H0, 1(X, T 1, 0X)
TΩ−→
≃

H2, 1

∂̄
(X, C), (6.7)

[θ]∂̄ 7−→ [θ⌟Ω]∂̄.

The Calabi-Yau isomorphism can be described explicitly in the case of the Iwasawa manifold.
Let ξα, ξβ, ξγ ∈ H0(X, T 1, 0X) be the frame of holomorphic vector fields of type (1, 0) dual to the
frame {α, β, γ}. Thus,

ξα = p⋆

(
∂

∂z1

)
, ξβ = p⋆

(
∂

∂z2
+ z1

∂

∂z3

)
and ξγ = p⋆

(
∂

∂z3

)
where p⋆ stands for the differential of the quotient map p : G→ X.
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Now, T 1, 0X being trivial, H0, 1(X, T 1, 0X) = H0, 1(X, C) ⊗ H0(X, T 1, 0X) is generated (cf.
[Nak75]) by the Dolbeault cohomology classes

H0, 1(X, T 1, 0X) =

〈
[α⊗ ξα], [α⊗ ξβ], [α⊗ ξγ], [β ⊗ ξα], [β ⊗ ξβ], [β ⊗ ξγ]

〉
. (6.8)

In particular, dimCH
0, 1(X, T 1, 0X) = 6, so the Kuranishi family of X is 6-dimensional. The images

under the Calabi-Yau isomorphism TΩ of these generators are [(α⊗ ξα)⌟(α∧ β ∧ γ)]∂̄ = [β ∧ γ ∧ α]∂̄
and its analogues for the remaining five generators, hence the description of H2, 1

∂̄
(X, C) in (1.57).

For future reference, we recall the following standard piece of notation. We let α1 = α, α2 =
β, ξ1 = ξα, ξ2 = ξβ, ξ3 = ξγ and denote by tiλ, with 1 ≤ λ ≤ 2 and 1 ≤ i ≤ 3, the coordinates
induced on H0, 1(X,T 1, 0X) by the basis ([αλ ⊗ ξi]) 1≤λ≤2

1≤i≤3
(cf. (6.8)). Since ∆ is an open ball about

the origin in H0, 1(X,T 1, 0X), we can view (t11, t12, t21, t22, t31, t32) as coordinates on ∆. Thus, the
points t ∈ B ⊂ H0, 1(X,T 1, 0X) can be written uniquely as

t =
∑
1≤λ≤2
1≤i≤3

tiλ αλξi ∈ H0, 1(X,T 1, 0X).

6.2.2 The essential deformations

The sequence of low-degree terms in the Leray spectral sequence induced by π and TX (the sheaf
associated with the holomorphic tangent bundle T 1, 0X) whose second page is given by Ep,q

2 =
Hp(B,Rqπ⋆TX), together with the cohomologies of the short exact sequence

0→ Tπ → TX → π⋆TB → 0

defining the relative tangent bundle to the submersion π, reads 1

0 // H1(B, π⋆Tπ)

��

// H1(X,Tπ)

��

// H0(B,R1π⋆Tπ)

��

0 // H1(B, π⋆TX)

��

iso // H1(X,TX)

��

// H0(B,R1π⋆TX)

��

0 // H1(B, TB) iso // H1(X, π⋆TB) //

L

bb

H0(B,R1π⋆OX ⊗ TB).

As TX is trivial and as all (0, 1)-Dolbeault cohomology classes on X come from classes on
B (i.e. in terms of the Leray filtration, we have H1(X,OX) = π⋆H1(B,OB) = F 1H1(X,OX)),
the horizontal map H1(B, π⋆TX) → H1(X,TX) is an isomorphism. As γ̄ ⊗ ξ· is ∂̄π-closed (i.e.
∂̄(γ̄ ⊗ ξ·) = −ᾱ ∧ β̄ ⊗ ξ· vanishes on the fibres of π), it defines an element in H0(B,R1π⋆Tπ), i.e. a
deformation of the fibres of π. However, since γ̄ ⊗ ξ· is not ∂̄-closed, this does not lift to a global
deformation of X.
Now, consider the quotient map

H0, 1(X,T 1, 0X) = H0, 1(X)⊗H0(X,TX)→ H0, 1(X)⊗H0(X, π⋆TB) = H0, 1(X, π⋆T 1, 0B)

1The notation used here refers to sheaves. We shall often use in the sequel the vector-bundle notation. For example,
H1(B, TB) (in sheaf notation) coincides with H0, 1(B, T 1, 0B) (in vector-bundle notation).
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given by the differential of the submersion π and choose its lift L : H0, 1(X, π⋆T 1, 0B)→ H0, 1(X,T 1, 0X)
defined by

L : (π ◦ p)⋆
(
∂

∂z1

)
7→ ξα, (π ◦ p)⋆

(
∂

∂z2

)
7→ ξβ.

Consider the subspace of H0, 1(X, T 1, 0X) defined by

H0, 1
[γ] (X, T

1, 0X) := LH0, 1(X, π⋆T 1, 0B) =

〈
[α⊗ ξα], [α⊗ ξβ], [β ⊗ ξα], [β ⊗ ξβ]

〉
(6.9)

This amounts to singling out, for every first-order deformation of B (i.e. for every element of
H0, 1(B, T 1, 0B)), a suitable first-order automorphism in H1(B, π⋆Tπ) of the fibres of π.

Lemma 6.2.1. The map H0, 1(X, T 1, 0X)
·⌟[γ]∂̄−→ H0, 1

∂̄
(X, C), [θ] 7→ [θ⌟γ]∂̄, is well defined and its

kernel is precisely H0, 1
[γ] (X, T

1, 0X), i.e.

H0, 1
[γ] (X, T

1, 0X) =

{
[θ] ∈ H0, 1(X, T 1, 0X)

/
[θ⌟γ] = 0 ∈ H0, 1

∂̄
(X, C)

}
. (6.10)

Proof. For every [θ] ∈ H0, 1(X, T 1, 0X), we have ∂̄(θ⌟γ) = (∂̄θ)⌟γ + θ⌟(∂̄γ) = 0 since ∂̄θ = 0 (where
∂̄ is the canonical (0, 1)-connection of the holomorphic vector bundle T 1, 0X and θ is viewed as a
∂̄-closed (0, 1)-form with values in this bundle) and ∂̄γ = 0. Thus, θ⌟γ defines indeed a Dolbeault
cohomology class of type (0, 1) which furthermore is independent of the choice of representative
θ of the class [θ] ∈ H0, 1(X, T 1, 0X). To see this last point, take two cohomologous θ1, θ2. Then,
θ1 − θ2 = ∂̄ξ for some ξ ∈ C∞(X, T 1, 0X). We have ∂̄(ξ⌟γ) = (∂̄ξ)⌟γ − ξ⌟(∂̄γ) = (∂̄ξ)⌟γ. This
proves the well-definedness of the map ·⌟[γ]∂̄. Identity (6.10) follows at once from (6.8) and (6.9).

Definition 6.2.2. Bearing in mind that B ⊂ H0, 1(X, T 1, 0X) is an open subset, let

B[γ] := B ∩H0, 1
[γ] (X, T

1, 0X).

So formally, thanks to (6.10) and by analogy with polarising (1, 1)-classes 2, the family of defor-
mations (Xt)t∈B[γ]

is “polarised” by the (1, 0)-class [γ]∂̄ ∈ H
1, 0

∂̄
(X, C).

It follows from Nakamura’s description of the Kuranishi family of the Iwasawa manifold ([Nak75,
p. 96]) that the manifolds Xt with t ∈ B[γ] \ {0} are contained in the union of Nakamura’s classes
(ii) and (iii). They are not complex parallelisable. Meanwhile, the removed deformations Xt with
t ∈ B \ {0} corresponding to [θ⌟Ω] ∈ ⟨[α∧ β ∧α]∂̄, [α∧ β ∧ β]∂̄⟩ ⊂ H2, 1

∂̄
(X, C) make up Nakamura’s

class (i). They are all complex parallelisable (and, in a sense, have the same geometry as the Iwasawa
manifold X = X0). So, no geometric information is lost by these removals. For this reason, we call
(Xt)t∈B[γ]

the local universal family of essential deformations of X.
In terms of coordinates, we see that (t11, t12, t21, t22) define coordinates on B[γ]. Consequently,

the points t ∈ B[γ] ⊂ H0, 1
[γ] (X,T

1, 0X) can be written uniquely as

t =
∑
1≤λ≤2
1≤i≤2

tiλ αλξi ∈ H0, 1
[γ] (X,T

1, 0X).

2Recall that in the standard case of a Kähler class [ω] on X0, the fibres Xt polarised by [ω], i.e. the fibres Xt

for which [ω] remains of Jt-type (1, 1), are precisely those corresponding to [θ] ∈ H0, 1(X0, T
1, 0X0) satisfying the

condition [θ⌟ω] = 0 in H0, 2(X0, C).
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6.3 Weight-three Hodge decomposition for the Iwasawa man-

ifold

6.3.1 The (3, 0)-part

We start with a simple general observation.

Lemma 6.3.1. Let Y be an arbitrary compact complex manifold with dimCY = n. Then, there is a
canonical injection Hn, 0

∂̄
(Y, C) ↪→ Hn

DR(Y, C).

Proof. It is clear that Hn, 0

∂̄
(Y, C) = C∞

n, 0(Y, C)∩ker ∂̄ since every Dolbeault cohomology class [u]∂̄ of
bidegree (n, 0) has a unique representative u. Indeed, zero is the only ∂̄-exact (n, 0)-form. Moreover,
every such (n, 0)-form u is d-closed since ∂u = 0 for bidegree reasons. Therefore, the following map
is well defined :

Hn, 0

∂̄
(Y, C) −→ Hn

DR(Y, C), [u]∂̄ 7−→ {u}DR.
It remains to prove that this map is injective, i.e. that u = 0 whenever u is d-exact. Suppose that
for a ∂̄-closed (n, 0)-form u, we have u = dv. Then u = ∂v for bidegree reasons. Hence

0 ≤
∫
Y

in
2

u ∧ ū =

∫
Y

in
2

u ∧ ∂̄v = (−1)n in2

∫
Y

∂̄(u ∧ v) = (−1)n in2

∫
Y

d(u ∧ v) = 0,

where the last identity follows from Stokes’s theorem.
Since the smooth (n, n)-form in

2
u ∧ ū is non-negative at every point, this can only happen if

in
2
u ∧ ū = 0 at every point. We get u = 0 on X. Indeed, writing u = f dz1 ∧ · · · ∧ dzn in local

coordinates, we see that in
2
u ∧ ū = |f |2 idz1 ∧ dz̄1 ∧ · · · ∧ idzn ∧ dz̄n, hence f = 0 in our situation.

6.3.2 The (2, 1)-part: definition of H2, 1
[γ] (X, C)

As above, X will stand for the Iwasawa manifold.
The space H2, 1

∂̄
(X, C) does not inject canonically into H3

DR(X, C) as can be seen from (1.56)
and (1.57), so there is no standard Hodge decomposition for H3

DR(X, C) on the Iwasawa manifold
X. This can also be seen by a simple dimension count: b3 = 10, while h3, 0 + h2, 1 + h1, 2 + h0, 3 =
1+6+6+1 = 14 > 10. However, we shall shrink the Dolbeault cohomology group of bidegree (2, 1)
in order to make it fit into H3

DR(X, C) and shall thus obtain a corresponding Hodge decomposition of
weight 3 that will be seen to have a precise geometric meaning in terms of the essential deformations
of X defined in §.6.2.2.
Definition 6.3.2. The 4-dimensional subspace H2, 1

[γ] (X, C) of H
2, 1

∂̄
(X, C) is defined as the image of

H0, 1
[γ] (X, T

1, 0X) = LH0, 1(X, π⋆T 1, 0B) under the Calabi-Yau isomorphism TΩ : H0, 1(X, T 1, 0X) →
H2, 1

∂̄
(X, C).
Thus, by (6.9), we get

H2, 1
[γ] (X, C) =

〈
[α ∧ γ ∧ α]∂̄, [α ∧ γ ∧ β]∂̄, [β ∧ γ ∧ α]∂̄, [β ∧ γ ∧ β]∂̄

〉
= [γ ∧ π⋆H1,1(B,C)]∂̄. (6.11)

We see from (1.56) that H2, 1
[γ] (X, C) injects into H3

DR(X,C). Note that, since [ξγ⌟Ω] = [α ∧ β] =
[−dγ] = 0 ∈ H2

DR(X,C) while ᾱ and β̄ are closed, the image of H2, 1
[γ] (X, C) in H3

DR(X,C) does

depend neither on the choice of the lift L 3 nor on the choice of [γ] in
H0(X,Ω1

X)

H0(π⋆Ω1
B)
.

3It is also the image of the map H0(X,Ω1
X/B)× π⋆H1,1

∂̄
(B,C)→ H3

DR(X,C), ([γ], [u]∂̄) 7→ {u ∧ γ}DR
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We get isomorphisms

T 1, 0
0 B[γ]

ρ−→
≃

H0, 1
[γ] (X, T

1, 0X)
TΩ−→
≃

TΩ(H
0, 1
[γ] (X, T

1, 0X)) =: H2, 1
[γ] (X, C).

6.3.3 The (1, 2)-part

Recall now that if a Hermitian metric ω has been fixed on an arbitrary compact complex n-
dimensional manifold Y , the corresponding Hodge star operator ⋆ (defined by u ∧ ⋆v̄ = ⟨u, v⟩ω dVω)
leads to the following isomorphisms for every bidegree (p, q) :

ι : Hp, q

∂̄
(Y, C) ≃−→ Hn−q, n−p

∂ (Y, C) ≃−→ Hn−p, n−q
∂̄

(Y, C).

Indeed, the first isomorphism is given by ⋆ since ⋆∆′′ = ∆′ ⋆, while the second one, which is C-anti-
linear, is defined by conjugation.

In our case, n = 3 and the Iwasawa manifold X0 is endowed with the canonical metric

ω = ω0 := iα ∧ ᾱ + iβ ∧ β̄ + iγ ∧ γ̄, (6.12)

so we get
H3, 0

∂̄
(X, C) ≃−→ H0, 3

∂̄
(X, C) and H2, 1

∂̄
(X, C) ≃−→ H1, 2

∂̄
(X, C).

Accordingly, we define

H1, 2
[γ] (X, C) : = ιH2, 1

[γ] (X, C) =
〈
[⋆(β ∧ β ∧ γ)]∂̄, [⋆(α ∧ β ∧ γ)]∂̄, [⋆(β ∧ α ∧ γ)]∂̄, [⋆(α ∧ α ∧ γ)]∂̄

〉
=

〈
[β ∧ β ∧ γ]∂̄, [α ∧ β ∧ γ]∂̄, [β ∧ α ∧ γ]∂̄, [α ∧ α ∧ γ]∂̄

〉
⊂ H3

DR(X, C), (6.13)

where ⋆ = ⋆ω is the Hodge star operator associated with ω. The fact that ⋆ can be dropped from
the above definition of H1, 2

[γ] (X, C) to give the expression on the second line follows from Lemma
6.4.2 below.

Proposition 6.3.3. Let X be the Iwasawa manifold.
There are canonical injections H2, 1

[γ] (X, C) ↪→ H3
DR(X, C) and H1, 2

[γ] (X, C) ↪→ H3
DR(X, C) giving

rise to a canonical isomorphism

H3
DR(X, C) ≃ H3, 0

∂̄
(X, C)⊕H2, 1

[γ] (X, C)⊕H
1, 2
[γ] (X, C)⊕H

0, 3

∂̄
(X, C) (6.14)

that will be called the essential weight-three Hodge decomposition of the Iwasawa manifold.
Moreover, there are canonical isomorphisms given by conjugation

H3, 0

∂̄
(X, C) ≃ H0, 3

∂̄
(X, C) and H2, 1

[γ] (X, C) ≃ H1, 2
[γ] (X, C)

4 (6.15)

that will be called the essential weight-three Hodge symmetry of the Iwasawa manifold.

Proof. The canonical injections follow obviously from the descriptions (6.11), (6.13) and (1.57) of
H2, 1

[γ] (X, C), H
1, 2
[γ] (X, C) and resp. H3

DR(X, C). On the other hand, H3, 0

∂̄
(X, C) injects canonically

into H3
DR(X, C) by Lemma 6.3.1, while H0, 3

∂̄
(X, C) injects canonically thanks to its explicit descrip-

tion in (1.57). Since the images in H3
DR(X, C) of H

3, 0

∂̄
(X, C), H2, 1

[γ] (X, C), H
1, 2
[γ] (X, C), H

0, 3

∂̄
(X, C)

are mutually transversal by the explicit description of the injections and since 10 = dimH3 =
dimH3, 0 + dimH2, 1

[γ] + dimH1, 2
[γ] + dimH0, 3 = 1 + 4 + 4 + 1, we get the isomorphism (6.14). The

isomorphisms (6.15) follow from (1.57), (6.11) and (6.13).
4Note from the explicit descriptions in (1.57) that this isomorphism does not hold for the full Dolbeault cohomology
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6.3.4 Hodge decomposition for small essential deformations of X

Recall that B[γ] = {t ∈ B | t31 = t32 = 0}, so (t11, t12, t21, t22) are coordinates on B[γ].

Proposition 6.3.4. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0. Then
the space H2, 1

[γ] (X, C) = H2, 1
[γ] (X0, C) described in (6.11) is the fibre over t = 0 of a C∞ vector bundle

B[γ] ∋ t 7→ H2, 1
[γ] (Xt, C) of rank 4 on B[γ] that will be denoted by H2, 1

[γ] .

Proof. Recall that by [Nak75, p. 95], for t =
∑

1≤λ≤2
1≤i≤3

tiλ αλξi ∈ H0, 1(X0, T
1, 0X0)

5, a system of local

holomorphic coordinates (ζ1(t), ζ2(t), ζ3(t)) on Xt = C3/Γt is given in terms of a system of local
holomorphic coordinates (z1, z2, z3) on X = X0 by the formulae

ζ1(t) = z1 +
2∑

λ=1

t1λ z̄λ, ζ2(t) = z2 +
2∑

λ=1

t2λ z̄λ, ζ3(t) = z3 +
2∑

λ=1

(t3λ + t2λ z1) z̄λ + At(z̄)−D(t) z̄3,

(6.16)
where

At(z̄) :=
1

2
[t11 t21 z̄

2
1 + 2 t11 t22 z̄1 z̄2 + t12 t22 z̄

2
2 ]

and D(t) := t11 t22 − t12 t21.

Note that the ζj(t)’s depend holomorphically on t. The projection map given in coordinates by

(ζ1(t), ζ2(t), ζ3(t))
πt7→ (ζ1(t), ζ2(t))

displays Xt as fibred over an Abelian surface Bt = Alb(Xt), the Albanse torus of Xt. These coordi-
nates induce ([Ang11, §.4.3]), for every t ∈ B close to 0, the co-frame

αt := dζ1(t), βt := dζ2(t), γt := dζ3(t)− z1 dζ2(t)− (t21 z̄1 + t22 z̄2) dζ1(t) (6.17)

of (1, 0)-forms on Xt (i.e. a Γt-invariant co-frame of (1, 0)-forms on C3) varying in a holomorphic
way with t. Note that αt, βt, γt are linearly independent at every point of Xt if t is sufficiently close
to 0 by mere continuity of their dependence on t since α0 = α, β0 = β and γ0 = γ are linearly
independent at every point of X0. Also note that γt need not be ∂̄t-closed when t ̸= 0. Actually, the
complex structure of Xt is complex parallelisable iff ∂̄tγt = 0 iff Xt is in Nakamura’s class (i) (see
[Nak75, p. 94-96]).

Moreover, for t in one of Nakamura’s classes (ii) or (iii) (in particular, for t ∈ B[γ]), the structure
equations for γt (cf. [Ang11, §.4.3]) read

∂̄tγt = σ11̄(t)αt ∧ ᾱt + σ12̄(t)αt ∧ β̄t + σ21̄(t) βt ∧ ᾱt + σ22̄(t) βt ∧ β̄t,
∂tγt = σ12(t)αt ∧ βt, (6.18)

where σ12 and σij̄ are C
∞ functions of t ∈ B[γ] that depend only on t (so σ12(t) and σij̄(t) are complex

numbers for every fixed t ∈ B[γ]) and satisfy σ12(0) = −1 and σij̄(0) = 0 for all i, j.
Now, for every t ∈ B close to 0, the Jt-(1, 1)-form

ωt := iαt ∧ αt + iβt ∧ βt + iγt ∧ γt (6.19)

5where α1 = α, α2 = β, ξ1 = ξα, ξ2 = ξβ , ξ3 = ξγ
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is positive definite, hence it defines a Hermitian metric on Xt that varies in a C∞ way with t. Note
that ω0 is canonically induced by the complex parallelisable structure of the Iwasawa manifold X0.
This feature will play a key role further down.

Let ∆′′
t = ∂̄t∂̄

⋆
t + ∂̄⋆t ∂̄t be the ∂̄-Laplacian on Xt defined by ωt. According to [Ang14, p. 80],

for every t in one of Nakamura’s classes (ii) or (iii) (in particular, for every t ∈ B[γ]), the following
Jt-(2, 1)-forms

Γ1(t) := αt ∧ γt ∧ ᾱt −
σ22̄(t)

σ12(t)
αt ∧ βt ∧ γ̄t, Γ2(t) := αt ∧ γt ∧ β̄t −

σ21̄(t)

σ12(t)
αt ∧ βt ∧ γ̄t,

Γ3(t) := βt ∧ γt ∧ ᾱt −
σ12̄(t)

σ12(t)
αt ∧ βt ∧ γ̄t, Γ4(t) := βt ∧ γt ∧ β̄t −

σ11̄(t)

σ12(t)
αt ∧ βt ∧ γ̄t (6.20)

are linearly independent ∆′′
t -harmonic forms. So, their Dolbeault classes are linearly independent.

Definition 6.3.5. We define

H2, 1
[γ] (Xt, C) :=

〈
[Γ1(t)]∂̄, [Γ2(t)]∂̄, [Γ3(t)]∂̄, [Γ4(t)]∂̄

〉
⊂ H2, 1

∂̄
(Xt, C) for every t ∈ B[γ]. (6.21)

The families (Γk(t))t∈B[γ]
are C∞ families of ∆′′

t -harmonic (2, 1)-forms (inducing C∞ families

([Γk(t)]∂̄)t∈B[γ]
of ∂̄-cohomology classes) on the fibres of (Xt)t∈B[γ]

such that Γ1(0) = α ∧ γ ∧
ᾱ, Γ2(0) = α ∧ γ ∧ β̄, Γ3(0) = β ∧ γ ∧ ᾱ, Γ4(0) = β ∧ γ ∧ β̄. Note that the Γk(t)’s do not
depend holomorphically on t.

Therefore, we get a C∞ vector bundle H2, 1
[γ] −→ B[γ] of rank 4, B[γ] ∋ t 7→ H2, 1

[γ] (Xt, C) = H2, 1
[γ], t

whose fibre above t = 0 is H2, 1
[γ] (X, C) defined in (6.11) 6.

Remark 6.3.6. By analogy with §.6.2.1, for every t ∈ B[γ] we consider the Jt-(3, 0)-form

Ωt := αt ∧ βt ∧ γt.

Then Ωt depends holomorphically on t, hence (by continuity) it is non-vanishing on Xt for all
t sufficiently close to zero since Ω0 is non-vanishing. Moreover, Ωt is holomorphic since ∂̄tΩt =
αt ∧ βt ∧ ∂̄tγt = 0, the last identity being a consequence of the special shape of the structure
equations (6.18) (displaying the form ∂̄tγt as lying in π⋆t C∞1, 1(Bt,C)). This shows again that the
canonical bundle of Xt is trivial. By analogy with (6.7), for every t ∈ B[γ] we define the Calabi-Yau
isomorphism of Xt by

H0, 1(Xt, T
1, 0Xt)

TΩt−→
≃

H2, 1

∂̄
(Xt, C), [θ] 7−→ [θ⌟Ωt], (6.22)

and finally, using the subspace H2, 1
[γ] (Xt, C) ⊂ H2, 1

∂̄
(Xt, C) introduced in Definition 6.3.5, we put

H0, 1
[γ] (Xt, T

1, 0Xt) := T−1
Ωt

(H2, 1
[γ] (Xt, C)) ⊂ H0, 1(Xt, T

1, 0Xt), t ∈ B[γ]. (6.23)

In particular, the family (TΩt)t∈B[γ]
of Calabi-Yau isomorphisms is holomorphic and T 1, 0

t B[γ] ≃
H0, 1

[γ] (Xt, T
1, 0Xt) for all t ∈ B[γ].

6Alternatively, we could have displayed H2, 1
[γ], t as the bundle of kernels of a smooth family of elliptic differential

operators involving a zeroth-order perturbation by the γt.
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The following statement follows from definitions (6.20) and the structure equations (6.18). For
t = 0, it overlaps with Lemma 6.4.1.

Lemma 6.3.7. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0. Then,
for every t ∈ B[γ], the Jt-(2, 1)-forms Γ1(t),Γ2(t),Γ3(t),Γ4(t) of (6.20) are d-closed and ∂̄⋆t -closed,
where ∂̄⋆t is the formal adjoint of ∂̄t w.r.t. the metric ωt defined in (6.19). When t = 0, they are
also ∂⋆0-closed.

Proof. Thanks to (6.17), we have dαt = dβt = 0. Meanwhile, ∂tγt = σ12(t)αt∧βt comes from a form
of type (2, 0) on Bt by (6.18). Hence,

∂t(αt ∧ γt ∧ ᾱt) = −αt ∧ ∂tγt ∧ ᾱt = 0

and also
∂t(βt ∧ γt ∧ ᾱt) = ∂t(αt ∧ γt ∧ β̄t) = ∂t(βt ∧ γt ∧ β̄t) = 0.

From (6.18), we get

∂tγ̄t = ∂̄tγt = σ11̄(t) ᾱt ∧ αt + σ12̄(t) ᾱt ∧ βt + σ21̄(t) β̄t ∧ αt + σ22̄(t) β̄t ∧ βt,

hence
∂t(αt ∧ βt ∧ γ̄t) = αt ∧ βt ∧ ∂tγ̄t = 0

since all the terms in the resulting sum contain a product αt∧αt = 0 or βt∧βt = 0. These identities,
together with (6.20), prove that ∂tΓj(t) = 0 for all t ∈ B[γ] and all j = 1, 2, 3, 4.

On the other hand, ∂̄tΓj(t) = 0 and ∂̄⋆t Γj(t) = 0 since the forms Γj(t) are ∆′′
t -harmonic ([Ang14,

p. 80]). Therefore, they are all d-closed and ∂̄⋆t -closed.
Thanks to (6.20), checking whether or not the forms Γj(t) lie in the kernel of ∂⋆t involves

computing the quantities ⟨⟨∂⋆t (αt ∧ γt ∧ ᾱt), u⟩⟩, ⟨⟨∂⋆t (βt ∧ γt ∧ ᾱt), u⟩⟩, ⟨⟨∂⋆t (αt ∧ γt ∧ β̄t), u⟩⟩,
⟨⟨∂⋆t (βt ∧ γt ∧ β̄t), u⟩⟩, ⟨⟨∂⋆t (αt ∧ βt ∧ γ̄t), u⟩⟩ for all forms u ∈ C∞

1, 1(Xt, C) in a system of generators.
Now, among the generators αt ∧ ᾱt, αt ∧ β̄t, αt ∧ γ̄t, βt ∧ ᾱt, βt ∧ β̄t, βt ∧ γ̄t, γt ∧ ᾱt, γt ∧ β̄t, γt ∧ γ̄t of
the space C∞

1, 1(Xt, C), only those containing γt or γ̄t are not ∂t-closed. Moreover, when u is one of
these except γt ∧ γ̄t, ∂tu is a sum of factors none of which is either γt or γ̄t, so the above L2

ωt
inner

products vanish.
Indeed, for example, if u = αt ∧ γ̄t, then

∂tu = −αt ∧ ∂tγ̄t = −αt ∧ [σ12̄(t) ᾱt ∧ βt + σ22̄(t) β̄t ∧ βt],
where the last identity follows from (6.18). We get

⟨⟨∂⋆t (αt ∧ γt ∧ ᾱt), u⟩⟩ = ⟨⟨αt ∧ γt ∧ ᾱt, ∂tu⟩⟩ = 0

since αt ∧ γt ∧ ᾱt is L2
ωt
-orthogonal onto αt ∧ ᾱt ∧βt and onto αt ∧ β̄t ∧βt. This orthogonality follows

from the basis of (1, 0)-forms αt, βt, γt being L
2
ωt
-orthonormal.

However, when u = γt ∧ γ̄t, we get

∂tu = ∂tγt ∧ γ̄t − γt ∧ ∂tγ̄t = σ12(t)αt ∧ βt ∧ γ̄t + σ11̄(t) γt ∧ αt ∧ ᾱt + σ12̄(t) γt ∧ βt ∧ ᾱt
+ σ21̄(t) γt ∧ αt ∧ β̄t + σ22̄(t) γt ∧ βt ∧ β̄t.

Hence ⟨⟨αt ∧ γt ∧ ᾱt, ∂tu⟩⟩ = −σ11̄(t) and ⟨⟨σ22̄(t)σ12(t)
αt ∧ βt ∧ γ̄t, ∂tu⟩⟩ = σ22̄(t), so ∂

⋆
t Γ1(t) = 0 if and

only if σ22̄(t) = −σ11̄(t). There is no reason for this to happen when t ̸= 0, but it does happen at
t = 0 since σij̄(0) = 0 for all i, j.

The forms Γ2(t),Γ3(t),Γ4(t) can be treated in a similar way.
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Corollary 6.3.8. For every t ∈ B[γ] sufficiently close to 0, we have a linear injection

H2, 1
[γ] (Xt, C) −→ H3

DR(X, C), [Γj(t)]∂̄ 7→ {Γj(t)}DR for j = 1, . . . , 4, (6.24)

where X is the C∞ manifold underlying the fibres Xt.

Proof. The ∆0-harmonicity of the linearly independent forms Γ1(0),Γ2(0),Γ3(0),Γ4(0) implies that
the De Rham classes they define are linearly independent in H3

DR(X, C). Thus, the linear map
defined in (6.24) is an injection when t = 0. Then, by continuity, it remains an injection for t ∈ B[γ]

sufficiently close to 0. □

As earlier on, we define

H1, 2
[γ] (Xt, C) := ιt(H

2, 1
[γ] (Xt, C)) =

〈
[⋆tΓ1(t)]∂̄, [⋆tΓ2(t)]∂̄, [⋆tΓ3(t)]∂̄, [⋆tΓ4(t)]∂̄

〉
⊂ H1, 2

∂̄
(Xt, C),(6.25)

where ⋆t := ⋆ωt is the Hodge star operator associated with the metric ωt defined in (6.19) on Xt.

6.3.5 Identification of H2, 1
[γ] (Xt, C) with E2, 1

2 (Xt)

We shall now give a cohomological interpretation of the spaces H2, 1
[γ] (Xt, C) in terms of the groups

E2, 1
2 (Xt, C) featuring at the second step of the Frölicher spectral sequence of each small deformation

Xt of the Iwasawa manifold X = X0. At least the first conclusion of the following statement was
observed in [COUV16]. Nakamura’s classes (i), (ii) and (iii) into which the small deformations of
the Iwasawa manifold are divided were described in Theorem and Definition 4.5.40.

Proposition 6.3.9. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0. Then:

(a) the Frölicher spectral sequence of Xt degenerates at E2 for every t ∈ B sufficiently close to
0;

(b) at the second step of the Frölicher spectral sequence, we have dimE2, 1
2 (Xt, C) = 4 for t = 0

and for every Xt in any of Nakamura’s classes (ii) and (iii) (in particular, for every t ∈ B[γ]);

(c) there is a canonical isomorphism E2, 1
2 (Xt, C) ≃ H2, 1

[γ] (Xt, C) for t = 0 and for every Xt in

any of Nakamura’s classes (ii) and (iii) (in particular, for every t ∈ B[γ]).

Proof. (a) This follows from Theorem 5.6 in [COUV16]. Indeed, the Xt’s are nilmanifolds of real
dimension 6 endowed with invariant complex structures and admitting sG metrics. This last property
follows from the Iwasawa manifold X0 being balanced, hence sG, and from the sG property being
deformation open ([Pop14, Theorem 3.1]).

(b) and (c) For X = X0, the part of the E1 page of the Frölicher spectral sequence relevant to
us is

· · · ∂−→ H1, 1

∂̄
(X, C) ∂−→ H2, 1

∂̄
(X, C) = H2, 1

[γ] (X, C)⊕
〈
[α∧β∧ᾱ]∂̄, [α∧β∧β̄]∂̄

〉
∂−→ H3, 1

∂̄
(X, C) ∂−→ 0,

where ∂ is defined in cohomology by ∂([u]∂̄) = [∂u]∂̄ and the direct-sum splitting follows from (1.57)
and (6.11). Now, we see that much like α∧β∧ᾱ and α∧β∧ β̄, the representatives α∧γ∧ᾱ, α∧γ∧ β̄,
β ∧ γ ∧ ᾱ and β ∧ γ ∧ β̄ of the four (2, 1)-classes generating H2, 1

[γ] (X, C) (cf. (6.11)) are ∂-closed.

Indeed, for example, ∂(α∧γ∧ᾱ) = −α∧∂γ∧ᾱ = α∧(α∧β)∧ᾱ = 0. Hence, the whole of H2, 1

∂̄
(X, C)
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is contained in the kernel of ∂. Using the explicit description (1.57) of H1, 1

∂̄
(X, C) and the structure

equation ∂γ = −α ∧ β of, we infer that the image of the map ∂ : H1, 1

∂̄
(X, C) −→ H2, 1

∂̄
(X, C) is

⟨[α ∧ β ∧ ᾱ]∂̄, [α ∧ β ∧ β̄]∂̄⟩. This proves that

E2, 1
2 (X) = ker

(
∂ : H2, 1

∂̄
(X, C) −→ H3, 1

∂̄
(X, C)

)/
Im

(
∂ : H1, 1

∂̄
(X, C) −→ H2, 1

∂̄
(X, C)

)
= H2, 1

∂̄
(X, C)

/〈
[α ∧ β ∧ ᾱ]∂̄, [α ∧ β ∧ β̄]∂̄

〉
≃ H2, 1

[γ] (X, C)

which is (c) for t = 0. In particular, dimE2, 1
2 (X) = 4 since H2, 1

[γ] (X, C) has dimension 4 by
construction.

We now analyse the case when Xt is in Nakamura’s class (iii) and show that the Frölicher spectral
sequence degenerates even at E1. Indeed, the Betti numbers (deformation invariant) and the Hodge
numbers of any such Xt computed in [Nak75] read

b1 = 4 = 2 + 2 = h1, 0(t) + h0, 1(t), b2 = 8 = 1 + 5 + 2 = h2, 0(t) + h1, 1(t) + h0, 2(t),

b3 = 10 = 1 + 4 + 4 + 1 = h3, 0(t) + h2, 1(t) + h1, 2(t) + h0, 3(t).

By Poincaré and Serre duality, we also get b4 = 8 = 2 + 5 + 1 = h3, 1(t) + h2, 2(t) + h1, 3(t) and
b5 = 4 = 2 + 2 = h3, 2(t) + h2, 3(t). These identities amount to E1(Xt) = E∞(Xt) for every Xt

in Nakamura’s class (iii). In particular, E2, 1
2 (Xt) = E2, 1

1 (Xt) = H2, 1

∂̄
(Xt, C) whose dimension is

h2, 1(t) = 4. Since the vector subspace H2, 1
[γ] (Xt, C) ⊂ H2, 1

∂̄
(Xt, C) has the same dimension 4 (cf.

(6.11)), we get E2, 1
2 (Xt) = H2, 1

∂̄
(Xt, C) = H2, 1

[γ] (Xt, C). This proves (b) and (c) for Xt in Nakamura’s

class (iii).
Suppose now that Xt is in Nakamura’s class (ii). Using the description (cf. [Ang11, Appendix

A])

H2, 1

∂̄
(Xt, C) = H2, 1

[γ] (Xt, C)⊕
〈
[αt ∧ βt ∧ ᾱt]∂̄, [αt ∧ βt ∧ β̄t]∂̄

〉
,

where dim ⟨[αt ∧ βt ∧ ᾱt]∂̄, [αt ∧ βt ∧ β̄t]∂̄⟩ = 1, and Lemma 6.3.7, we find that the map ∂t :
H2, 1

∂̄
(Xt, C) −→ H3, 1

∂̄
(Xt, C) is identically zero.

Recall that, thanks to [Ang11], we have the splitting

H1, 1

∂̄
(Xt, C) = π⋆tH

1, 1(Bt, C)⊕H1, 1
vert(Xt, C)

in which H1, 1
vert(Xt, C) is of dimension 2 and is generated by classes represented by forms (containing

the vertical form γ) of the shape E αt ∧ γ̄t + F βt ∧ γ̄t +Gγt ∧ ᾱt +H γt ∧ β̄t, where E,F,G,H are
constants. Since dαt = dβt = 0, ∂t(π

⋆
tH

1, 1(Bt, C)) = 0. Meanwhile, immediate computations and
the use of (6.18) give

∂t(αt ∧ γ̄t) = −αt ∧ ∂̄tγt = −αt ∧ (σ12̄(t) ᾱt ∧ βt + σ22̄(t) β̄t ∧ βt),
∂t(βt ∧ γ̄t) = −βt ∧ ∂̄tγt = −βt ∧ (σ11̄(t) ᾱt ∧ αt + σ21̄(t) β̄t ∧ αt),
∂t(γt ∧ ᾱt) = ∂tγt ∧ ᾱt = σ12(t)αt ∧ βt ∧ ᾱt, ∂t(γt ∧ β̄t) = ∂tγt ∧ β̄t = σ12(t)αt ∧ βt ∧ β̄t.

Thus, ∂t(H
1, 1

∂̄
(Xt, C)) = ⟨[αt∧βt∧ ᾱt]∂̄, [αt∧βt∧ β̄t]∂̄⟩. This settles the case of Nakamura’s class (ii).

The conclusion of these considerations is summed up in the following
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Theorem 6.3.10. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0.

(i) There exists over B[γ] a variation of Hodge structures (VHS) of weight 3

H3 = H3, 0 ⊕H2, 1
[γ] ⊕H

1, 2
[γ] ⊕H

0, 3, (6.26)

where H3 is the local system of fibre H3
DR(X, C), H3, 0 is the holomorphic line bundle B[γ] ∋ t 7→

H3, 0

∂̄
(Xt, C), H2, 1

[γ] is the C∞ vector bundle B[γ] ∋ t 7→ H2, 1
[γ] (Xt, C) ≃ E2, 1

2 (Xt, C) of rank 4, while

H1, 2
[γ] ≃ H

2, 1
[γ] and H0, 3 = H3, 0.

(ii) The vector subbundles F 3H3 := H3, 0 ⊂ H3 and F 2H3
[γ] := H3, 0 ⊕H2, 1

[γ] ⊂ H3 are holomor-
phic.

The C∞ vector subbundle F 1H3
[γ] := H3, 0⊕H2, 1

[γ] ⊕H
1, 2
[γ] ⊂ H3 is not holomorphic. This is one

of two possible deviations from the behaviour of a standard Hodge filtration.

(iii) As in the standard case, there is a flat connection ∇ : H3 −→ H3⊗ΩB[γ]
(the Gauss-Manin

connection) satisfying the Griffiths transversality condition

∇F 3H3 ⊂ F 2H3
[γ] ⊗ ΩB[γ]

. (6.27)

Moreover, in the case of F 1H3
[γ], the orthogonality relations derived from a possible transver-

sality statement remain true:

Q(∇F 1H3
[γ], F

0H3
[γ]) = 0. (6.28)

It is unclear whether the transversality condition ∇F pH3
[γ] ⊂ F p−1H3

[γ]⊗ΩB[γ]
holds for p = 2 or

p = 1 (the second possible deviation from the behaviour of a standard Hodge filtration).

Proof. (i) The injectionH3, 0 ↪→ H3 is a consequence of Lemma 6.3.1, while the injectionH2, 1
[γ] ↪→ H3

follows from Corollary 6.3.8.
Moreover, the property E2(Xt) = E∞(Xt) (cf. (a) of Proposition 6.3.9) gives an isomorphism

H3
DR(X, C) ≃ E3, 0

2 (Xt, C)⊕ E2, 1
2 (Xt, C)⊕ E1, 2

2 (Xt, C)⊕ E0, 3
2 (Xt, C) for every t ∈ B. (6.29)

We have (cf. (c) of Proposition 6.3.9) a canonical isomorphism E2, 1
2 (Xt, C) ≃ H2, 1

[γ] (Xt, C), while it

is easy to prove that E3, 0
2 (Xt, C) = H3, 0

∂̄
(Xt, C) for every t ∈ B[γ]. Indeed, to see this last point,

recall that

E3, 0
2 (Xt, C) = ker

(
∂t : H

3, 0

∂̄
(Xt, C) −→ 0

)/
Im

(
∂t : H

2, 0

∂̄
(Xt, C) −→ H3, 0

∂̄
(Xt, C)

)
. (6.30)

The map ∂t acting on H3, 0

∂̄
(Xt, C) arrives in H4, 0

∂̄
(Xt, C) = 0, while H2, 0

∂̄
(Xt, C) is generated by

[αt ∧ βt]∂̄ when Xt is in Nakamura’s class (iii) and by [αt ∧ βt]∂̄ and either [αt ∧ γt]∂̄ or [βt ∧ γt]∂̄
when Xt is in Nakamura’s class (ii). Now, all the three forms αt ∧ βt, αt ∧ γt, βt ∧ γt are ∂t-closed
since αt and βt are ∂t-closed and ∂tγt is a multiple of αt ∧βt. Therefore, ∂t(H2, 0

∂̄
(Xt, C)) = 0. Thus,

we get from (6.30) that E3, 0
2 (Xt, C) = H3, 0

∂̄
(Xt, C), as stated.

It can then be proved from this that E2, 1
2 (Xt, C)

≃−→ E1, 2
2 (Xt, C) for every t ∈ B[γ]. Now, (6.26)

follows by combining these facts with Proposition 6.3.4.

(ii) In the first statement, only the fact that the C∞ vector subbundle F 2H3
[γ] ⊂ H3 is actually

holomorphic still needs a proof. We have to show that the holomorphic structure of F 2H3
[γ] is the
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restriction of the holomorphic structure of H3. In other words, we have to show that for any C∞

section s of F 2H3
[γ], the a priori H3-valued (0, 1)-form D′′s is actually F 2H3

[γ]-valued, where D
′′ is

the canonical (0, 1)-connection of the constant bundle H3. We are thus reduced to showing that all
the anti-holomorphic first-order derivatives of the [Γj(t)]∂̄’s lie in F 2H3

[γ](Xt, C), i.e. that

∂[Γj]∂̄
∂t̄iλ

(t) ∈ H3, 0(Xt, C)⊕H2, 1
[γ] (Xt, C) = F 2H3

[γ](Xt, C) for all t ∈ B[γ] all i, λ. (6.31)

By way of example, we will show this for the derivatives at t = 0.
To this end, we will make use of the explicit formula for Γ1(t) and its analogues for Γ2(t),Γ3(t),Γ4(t)

obtained in Lemma 6.7.1 and also of Lemma 6.7.2. Only the terms on the r.h.s. of that formula
that are linear in the t̄iλ’s give a non-trivial contribution to (∂Γ1(t)/∂t̄iλ)(0). Now, in each of the
formulae for Γ1(t),Γ2(t),Γ3(t),Γ4(t), the only such term featuring on the r.h.s. is, respectively,

−t̄12 α ∧ β ∧ γ, −t̄22 α ∧ β ∧ γ, t̄11 α ∧ β ∧ γ, t̄21 α ∧ β ∧ γ,

whose derivative in the t̄12-direction (respectively the t̄22-, t̄11-, t̄21-direction) is obviously −α∧β ∧γ
(respectively −α ∧ β ∧ γ, α ∧ β ∧ γ, α ∧ β ∧ γ). Thus, for j ∈ {1, 2, 3, 4}, the only non-vanishing
first-order anti-holomorphic derivatives of the [Γj]∂̄’s at 0 are

∂[Γj]∂̄
∂t̄iλ

(0) = ± [α ∧ β ∧ γ]∂̄ ∈ H3, 0(X0, C) ⊂ H3, 0(X0, C)⊕H2, 1
[γ] (X0, C) = F 2H3

[γ](X0, C).

This proves the contention. Note that this also shows that the C∞ vector subbundle H2, 1
[γ] of H3 is

not a holomorphic subbundle, so the analogy with the standard, Kähler, case is preserved.
The second statement under (ii) is proved under (B) in the comments that follow the end of this

proof.

(iii) The transversality statement is an immediate consequence of the fact that the (−1, +1)-
component of the connection ∇[θ] coincides at any point [θ] ∈ T 1, 0

t B[γ] ≃ H0, 1
[γ] (Xt, T

1, 0Xt) (for

t ∈ B[γ]) with the contraction operator [θ]⌟· (see (6.22) and (6.23)). Note that the relation [ᾱ∧ β̄]∂̄ =
[−∂̄γ̄]∂̄ = 0 implies that the contraction of the forms of (6.11) by the elements of (6.9) vanishes,
hence we get transversality at 0: for all [θ] ∈ T 1, 0

0 B[γ] ≃ H0, 1
[γ] (X, T

1, 0X),

∇[θ]H
3, 0(X, C) ⊂ H3, 0(X, C)⊕H2, 1

[γ] (X, C),

∇[θ]H
2, 1
[γ] (X, C) ⊂ H2, 1

[γ] (X, C) ⊂ H2, 1
[γ] (X, C)⊕H

1, 2
[γ] (X, C).

We end this discussion with further comments about the Hodge filtration of Theorem 6.3.10.
We notice (cf. Corollary 6.3.11) that the Hodge filtration F 2H3

[γ] ⊃ F 3H3 of holomorphic vector
bundles over B[γ] constructed on the complex-structure side of the mirror is C∞ isomorphic to the
Hodge filtration F 1H2(B) ⊃ F 2H2(B) of holomorphic vector bundles over B[γ] determined by the
holomorphic family (Bt)t∈B[γ]

of Albanese tori Bt = Alb(Xt) of the fibres Xt. The latter Hodge
filtration will be proved to be C∞ isomorphic to a Hodge filtration that we shall construct on the
metric side of the mirror in section 6.5, providing thus the link between the two sides.
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(A) Recall that the fibres Xt are locally trivial holomorphic fibrations πt : Xt → Bt over complex
tori Bt (the Albanese tori of the Xt’s) of dimension 2 varying in a holomorphic family (Bt)t∈B.
Implicit in the definition of H2, 1

[γ] (Xt, C) ⊂ H2, 1

∂̄
(Xt, C) (cf. Definition 6.3.5) are the isomorphisms

of complex vector spaces

H3, 0(Xt, C) ≃ [γt ∧ π⋆tH2, 0(Bt, C)]∂̄ and H2, 1
[γ] (Xt, C) ≃ [γt ∧ π⋆tH1, 1(Bt, C)]∂̄, t ∈ B[γ], (6.32)

defined by the descriptions H2, 0(Bt, C) = C [αt ∧βt]∂̄ and H1, 1(Bt, C) = ⟨[αt ∧ ᾱt]∂̄, [αt ∧ β̄t]∂̄, [βt ∧
ᾱt]∂̄, [βt ∧ β̄t]∂̄⟩ of these vector spaces.

Corollary 6.3.11. The vector space isomorphisms (6.32) induce C∞ isomorphisms of vector bundles
over B[γ]

F 3H3 ≃ F 2H2(B) and F 2H3
[γ] ≃ F 1H2(B), (6.33)

where F 2H2(B) stands for the vector bundle B[γ] ∋ t 7→ H2, 0(Bt, C) and F 1H2(B) stands for the
vector bundle B[γ] ∋ t 7→ H2, 0(Bt, C)⊕H1, 1(Bt, C).

Although the first isomorphism in (6.33) is holomorphic (because γt and πt depend holomorphi-
cally on t), it is unclear whether the second one is holomorphic since the pullback under πt and the
subsequent exterior multiplication by γt are followed by the subtraction of a multiple of αt ∧ β ∧ γ̄t
in the definition (6.20) of the Γj(t)’s that need not depend holomorphically on t.

Now, (Bt)t∈B is a holomorphic family of compact Kähler manifolds, so its Hodge filtration
F pH2(B) consists of holomorphic subbundles of the constant bundle B[γ] ∋ t 7→ H2(Bt) (denoted
henceforth by H2(B)). On the other hand, we know from the conclusion (ii) of Theorem 6.3.10
that the subbundles F 3H3 −→ B[γ] and F 2H3

[γ] −→ B[γ] of the constant bundle H3 −→ B[γ] are
holomorphic.

(B) We now prove the last statement in part (ii) of Theorem 6.3.10. We know from (6.25) that
the vector bundle H1, 2

[γ] is trivialised in a neighbourhood of 0 ∈ B[γ] by the Dolbeault cohomology

classes of the forms ⋆t Γj(t) with j = 1, . . . , 4.
It will be seen in Lemma 6.4.2 that ⋆(α ∧ β ∧ γ) = i α ∧ β ∧ γ. This also applies at an arbitrary

t as do all the identities in Lemma 6.4.2, so ⋆t(αt ∧ βt ∧ γt) = i αt ∧ βt ∧ γt for all t ∈ B. Therefore,
using (6.20) for the first line below and (6.42) for the second line, we get for all t ∈ B

⋆tΓ1(t) = −i βt ∧ γt ∧ β̄t − i
σ22̄(t)

σ̄12(t)
αt ∧ βt ∧ γ̄t

= −i (β + t21 ᾱ + t22 β̄) ∧ (γ + t31 ᾱ + t32 β̄ −D(t) γ̄) ∧ (β̄ + t̄21 α + t̄22 β)

− i
σ22̄(t)

σ̄12(t)
(α + t11 ᾱ + t12 β̄) ∧ (β + t21 ᾱ + t22 β̄) ∧ (γ̄ + t̄31 α + t̄32 β −D(t) γ).

Thus, the terms of ⋆tΓ1(t) that are linear in the t̄iλ’s are contained in

i t̄21 α ∧ γ̄ ∧ β + i t̄31 β̄ ∧ α ∧ β + i
σ22̄(t)

σ12(t)
ᾱ ∧ β̄ ∧ γ.

Deriving at t = 0, we get
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∂ ⋆tΓ1(t)

∂t̄21 |t=0

= i α ∧ γ̄ ∧ β + i
∂

∂t̄21

(
σ22̄(t)

σ12(t)

)
|t=0

ᾱ ∧ β̄ ∧ γ.

However, although the form ᾱ ∧ β̄ ∧ γ is ∂̄0-closed, the form α ∧ γ̄ ∧ β is not (since ∂̄0(α ∧ γ̄ ∧ β) =
−α∧ ᾱ∧ β ∧ β̄ ̸= 0), so the form (∂ ⋆tΓ1(t))/(∂t̄21)|t=0 defines no Dolbeault cohomology class for ∂̄0.
In particular, the C∞ section

B[γ] ∋ t 7→ [⋆t Γ1(t)]∂̄

of the C∞ vector subbundle B[γ] ∋ t 7→ H1, 2
[γ] (Xt, C) of H3 −→ B[γ] does not remain a section of this

bundle after derivation in the direction t̄21.
We conclude that B[γ] ∋ t 7→ H1, 2

[γ] (Xt, C) is not a holomorphic subbundle of H3 −→ B[γ].

6.4 Coordinates on the base B[γ] of essential deformations

6.4.1 Signature of the intersection form on F 2
[γ]H

3(X, C)

Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0. Recall that the Hodge-
Riemann bilinear intersection form Q can always be canonically defined on Hn

DR(X, C) for any
compact complex n-dimensional manifold X. It is non-degenerate and depends only on the differ-
ential structure of X. When dimCX = 3, Q is alternating and reads

Q : H3
DR(X, C)×H3

DR(X, C) −→ C, ({u}, {v}) 7−→ −
∫
X

u ∧ v 7. (6.34)

The associated sesquilinear form

H : H3
DR(X, C)×H3

DR(X, C) −→ C, ({u}, {v}) 7−→ −i
∫
X

u ∧ v̄ = i Q({u}, {v̄}) 8 (6.35)

is non-degenerate.
Also recall that if a Hermitian metric ω has been fixed on an arbitrary compact complex n-

dimensional manifold Y , the corresponding Hodge star operator ⋆ maps ∆-harmonic n-forms to
∆-harmonic n-forms (where ∆ := dd⋆ + d⋆d is the usual d-Laplacian), hence defines in conjunction
with the Hodge isomorphism Hn

DR(Y, C) ≃ ker(∆ : C∞
n (Y, C) → C∞

n (Y, C)) a linear map ⋆ :
Hn
DR(Y, C) −→ Hn

DR(Y, C) satisfying ⋆2 = (−1)n. When n = 3, the eigenvalues of the operator ⋆
are −i, i and we get a decomposition

H3
DR(X, C) = H3

+(X, C)⊕H3
−(X, C), (6.36)

where H3
±(X, C) are the eigenspaces of ⋆ corresponding to the eigenvalues +i, resp. −i.

Suppose now that dimCX = 3. It was shown in [Pop13b, Lemmas 5.1 and 5.2] that for any
Hermitian metric ω on X, H(·, ·) is positive definite on H3

+(X, C), negative definite on H3
−(X, C)

and H3
+(X, C) is H-orthogonal to H3

−(X, C). Moreover,

H3, 0(X, C) ⊂ H3
−(X, C). (6.37)

7In dimension n, the coefficient of the integral is (−1)
n(n−1)

2 .
8For arbitrary n, the coefficient of the integral is (−1)

n(n+1)
2 in.
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Similar statements hold in arbitrary dimension n after adjusting for the parity of n.
Finally, recall that any compact complex parallelisable manifold X has a natural inner product

defined on its space C∞
p, q(X, C) of smooth differential forms of any bidegree (p, q) (cf. [Nak75, §.4]

for a construction going back to Kodaira). Indeed, if n = dimCX, the hypothesis on X amounts
to the existence of n holomorphic 1-forms φ1, . . . , φn ∈ C∞

1, 0(X, C) that are linearly independent at
every point in X. If ξ1, . . . , ξn ∈ H0(X, T 1, 0X) form the dual basis of holomorphic vector fields,

every form φ ∈ C∞
0, 1(X, C) can be written uniquely as φ =

n∑
λ=1

fλ φλ, where the fλ’s are smooth

functions globally defined on X. One defines the L2 inner product on C∞
0, 1(X, C) by

⟨⟨φ, ψ⟩⟩ :=
∫
X

( n∑
λ=1

fλ gλ

)
in

2

φ1 ∧ · · · ∧ φn ∧ φ1 ∧ · · · ∧ φn (6.38)

for any smooth (0, 1)-forms φ =
n∑
λ=1

fλ φλ and ψ =
n∑
λ=1

gλ φλ. Note that dV := in
2
φ1∧· · ·∧φn∧φ1∧

· · · ∧ φn > 0 is a C∞ positive (n, n)-form on X that is used as volume form in (6.38). This means
that ⟨⟨φ, ψ⟩⟩ =

∫
X
⟨φ, ψ⟩ dV , where the pointwise inner product ⟨φ, ψ⟩ on (0, 1)-forms is defined by

⟨φλ, φµ⟩ = δλµ for all λ, µ.

This induces a pointwise inner product on C∞
p, q(X, C) for every p, q.

Now suppose that X is the Iwasawa manifold. Thus, n = 3 and X is complex parallelisable, so
with the notation of §.1.3.3 we can choose

φ1 = α, φ2 = β, φ3 = γ and ξ1 = ξα, ξ2 = ξβ, ξ3 = ξγ.

The inner product defined above, induced by the complex parallelisable structure of X, coincides
with the inner product induced by the canonical metric ω0 on X defined in (6.12).

We can easily check that the (2, 1)-forms α ∧ γ ∧ α, α ∧ γ ∧ β, β ∧ γ ∧ α, β ∧ γ ∧ β representing
the Dolbeault cohomology classes that generate H2, 1

[γ] (X, C) (cf. (6.11)) are ∆-harmonic. Indeed,

they are ∂̄-closed since they are products of ∂̄-closed forms. They are also ∂-closed (even if γ isn’t),
as can easily be checked. For example, we get ∂(α ∧ γ ∧ α) = −α ∧ ∂γ ∧ α = α ∧ (α ∧ β) ∧ α = 0
since α ∧ α = 0. Thus, all these forms are d-closed. They are also both ∂⋆-closed and ∂̄⋆-closed as
shown in the next statement (cf. also Lemma 6.3.7).

Lemma 6.4.1. The forms α∧ γ ∧α, α∧ γ ∧ β, β ∧ γ ∧α, β ∧ γ ∧ β are all ∂⋆-closed and ∂̄⋆-closed.
Note furthermore that the forms α ∧ β ∧ α, α ∧ β ∧ β are ∂̄⋆-closed but not ∂⋆-closed.

Proof. The identity ∂⋆(α ∧ γ ∧ α) = 0 is equivalent to

⟨⟨∂⋆(α ∧ γ ∧ α), u⟩⟩ = 0, i.e. to ⟨⟨α ∧ γ ∧ α, ∂u⟩⟩ = 0 (6.39)

for every (1, 1)-form u on X. Now, the space C∞
1, 1(X, C) of smooth (1, 1)-forms on X is generated

by α ∧ ᾱ, α ∧ β̄, α ∧ γ̄, β ∧ ᾱ, β ∧ β̄, β ∧ γ̄, γ ∧ ᾱ, γ ∧ β̄, γ ∧ γ̄. Since dα = dβ = 0 and ∂̄γ = 0, the
only generators that are not d-closed are those containing γ. For them, since ∂γ = −α ∧ β, we get:

1. if u = γ ∧ ᾱ, then ∂u = −α ∧ β ∧ ᾱ, hence ⟨⟨α ∧ γ ∧ α, ∂u⟩⟩ = −⟨⟨α ∧ γ ∧ α, α ∧ β ∧ ᾱ⟩⟩ = 0;

2. if u = γ ∧ β̄, then ∂u = −α ∧ β ∧ β̄, hence ⟨⟨α ∧ γ ∧ α, ∂u⟩⟩ = −⟨⟨α ∧ γ ∧ α, α ∧ β ∧ β̄⟩⟩ = 0;
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3. if u = γ ∧ γ̄, then ∂u = −α ∧ β ∧ γ̄, hence ⟨⟨α ∧ γ ∧ α, ∂u⟩⟩ = −⟨⟨α ∧ γ ∧ α, α ∧ β ∧ γ̄⟩⟩ = 0.

The three inner products above vanish since the forms α, β, γ are ω0-orthonormal. We have thus
proved identity (6.39). The identities ∂⋆(α ∧ γ ∧ β) = ∂⋆(β ∧ γ ∧ α) = ∂⋆(β ∧ γ ∧ β) = 0 are proved
in the same way: all the resulting inner products involve the pairing of a form containing γ with a
form that does not contain γ, hence they vanish.

This argument does not hold for the forms α ∧ β ∧ α and α ∧ β ∧ β since ⟨⟨α ∧ β ∧ α, ∂u⟩⟩ ≠ 0
when u = γ ∧ ᾱ and ⟨⟨α ∧ β ∧ β, ∂u⟩⟩ ≠ 0 when u = γ ∧ β̄.

To prove the identities ∂̄⋆(α∧γ∧α) = ∂̄⋆(α∧γ∧β) = ∂̄⋆(β∧γ∧α) = ∂̄⋆(β∧γ∧β) = 0, we have
to prove that for any form v ∈ {α∧ γ ∧α, α∧ γ ∧ β, β ∧ γ ∧α, β ∧ γ ∧ β} and any w ∈ C∞

2, 0(X, C),
we have ⟨⟨v, ∂̄w⟩⟩ = 0. This is obvious since C∞

2, 0(X, C) is generated by the ∂̄-closed forms α ∧ β,
α ∧ γ and β ∧ γ. The same argument applies to yield the ∂̄⋆-closedness of the forms α ∧ β ∧ α and
α ∧ β ∧ β.

We now compute the Hodge star operator ⋆ induced by the pointwise inner product ⟨· , ·⟩ defined
by the complex parallelisable structure of X on the ∆′′-harmonic representatives of the classes
generating H2, 1

[γ] (X, C).

Lemma 6.4.2. On the Iwasawa manifold X, the following identities hold

⋆(α ∧ γ ∧ α) = −i β ∧ γ ∧ β, ⋆(β ∧ γ ∧ β) = −i α ∧ γ ∧ α,
⋆(α ∧ γ ∧ β) = i α ∧ γ ∧ β, ⋆(β ∧ γ ∧ α) = i β ∧ γ ∧ α,
⋆(α ∧ β ∧ γ) = −iα ∧ β ∧ γ, ⋆(α ∧ β ∧ γ) = i α ∧ β ∧ γ.

Consequently, we get

⋆(α ∧ γ ∧ α + β ∧ γ ∧ β) = −i (α ∧ γ ∧ α + β ∧ γ ∧ β),
⋆(α ∧ γ ∧ α− β ∧ γ ∧ β) = i (α ∧ γ ∧ α− β ∧ γ ∧ β).

Proof. From the definition of the Hodge star operator we know that

u ∧ ⋆(α ∧ γ ∧ α) = ⟨u, α ∧ γ ∧ α⟩ dV

for every (2, 1)-form u. Both sides of this identity vanish if u is the product of three forms chosen
from α, β, γ, α, β, γ, except if u = α ∧ γ ∧ α. In this case, we get

(α∧γ∧α)∧⋆(α ∧ γ ∧ α) = ⟨α∧γ∧α, α∧γ∧α⟩ dV = i α∧α∧ i β∧β∧ i γ∧γ = iα∧γ∧α∧β∧β∧γ

hence ⋆(α ∧ γ ∧ α) must be the form complementary to α∧γ∧α, i.e. iβ∧β∧γ. We get ⋆(α∧γ∧α) =
−i β ∧ γ ∧ β. The remaining identities are proved in a similar way.

We can now infer from these computations the signature of the sesquilinear intersection form H
on F 2

[γ]H
3(X, C). It is different from the one in the standard case of compact Kähler Calabi-Yau

3-folds with hp, 0 = 0 for p = 1, 2 (where the signature of H on the standard F 2H3 is (−, +, . . . ,+)
due to all classes in H3 being primitive thanks to the assumption h0, 1 = 0 which implies h3, 2 = 0
by Serre duality). In our non-Kähler case of the Iwasawa manifold, primitivity is meaningless for
classes in H3 while h0, 1 = 2 ̸= 0. The different signature of H is a key feature of our situation
compared to the standard one.
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Corollary 6.4.3. If X is the Iwasawa threefold, then {α∧ γ ∧α+ β ∧ γ ∧ β}DR ∈ H3
−(X, C), while

{α ∧ γ ∧ α− β ∧ γ ∧ β}DR, {α ∧ γ ∧ β}DR, {β ∧ γ ∧ α}DR ∈ H3
+(X, C).

Hence the signature of H(· , ·) on H2, 1
[γ] (X, C) is (−, +, +, +), while the signature of H(· , ·) on

F 2
[γ]H

3(X, C) is (−, −, +, +, +).

Proof. We have argued above (cf. Lemma 6.4.1) that the forms α∧γ∧α+β∧γ∧β, α∧γ∧α−β∧γ∧β,
α ∧ γ ∧ β and β ∧ γ ∧ α are all ∆-harmonic. Since the splitting (6.36) was defined by the analogous
splitting of the space of ∆-harmonic 3-forms, the first statement follows from Lemma 6.4.2.

The second statement follows from (6.37), from the properties of H(· , ·) spelt out above (6.37)
and from the fact that {[α ∧ γ ∧ α+ β ∧ γ ∧ β], [α ∧ γ ∧ α− β ∧ γ ∧ β], [α ∧ γ ∧ β], [β ∧ γ ∧ α]} is a
basis of H2, 1

[γ] (X, C).

6.4.2 Construction of coordinates on B[γ]

Abstract construction

Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0. We know from [Nak75, table
on p. 96] that h3, 0

∂̄
(Xt) = 1 for all t ∈ B. This implies that B ∋ t 7→ H3, 0

∂̄
(Xt, C) is a C∞ line

bundle by [KS60]. It is even holomorphic and denoted, as usual, by H3, 0. Moreover, since KX0

is trivial, the constancy of h3, 0(Xt) also implies that KXt is trivial for all t ∈ B. Let us fix, after
possibly shrinking ∆ about 0, a holomorphic section u = (ut)t∈B of the Hodge bundle H3, 0 (i.e. a
holomorphic family of holomorphic (3, 0)-forms ut on Xt) such that the form ut is non-vanishing on
Xt for every t ∈ B.

Put, for simplicity, H3(X, C) := H3
DR(X, C), where by X we mean the C∞ manifold underlying

the fibres Xt. We know from Lemma 6.3.1 that every space H3, 0(Xt, C) injects canonically into
H3(X, C), so u can be viewed as a holomorphic function B ∋ t 7−→ ut ∈ H3(X, C).

Meanwhile, (H3(X, C), Q(· , ·)) is a symplectic vector space (cf. (6.34)). We shall adapt to
our context the presentation in [Voi96, lemme 3.1] to prove that a well-chosen symplectic basis
{η0, η1, . . . , η4, ν0, ν1, . . . , ν4} (i.e. such that Q(ηj, ηk) = Q(νj, νk) = 0 and Q(ηj, νk) = δjk for all
j, k) of H3(X, C) produces holomorphic coordinates z1, . . . , z4 near 0 on B[γ]. We shall choose all
the classes ηj and νk to be real, i.e. ηj = ηj and νk = νk for all j, k. Consider the following

Setup. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0 on which we have fixed

a non-vanishing holomorphic section u = (ut)t∈B of H3, 0. Let η0 = η3, 00 +η2, 10 +η2, 10 +η3, 00 ∈ H3(X, C)
be a real class with η3, 00 ∈ H3, 0(X0, C), η2, 10 ∈ H2, 1

[γ] (X0, C) such that

(i)Q(u0, η0) ̸= 0 and (ii)H(η2, 10 , η2, 10 ) < 0. (6.40)

Complete η0 to a symplectic basis {η0, η1, . . . , η4, ν0, ν1, . . . , ν4} of (H3(X, R), Q(· , ·)). By continu-
ity, we have Q(ut, η0) ̸= 0 for all t in a neighbourhood of 0 ∈ B, so after replacing ut by u

′
t := ut/

Q(ut, η0) we may assume that

Q(ut, η0) = 1 for all t ∈ B sufficiently close to 0.

We can now state the main result of this subsection.
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Proposition 6.4.4. In the setup described above, the functions

zi(t) := Q(ut, ηi) for t ∈ B[γ] and i ∈ {1, . . . , 4} (6.41)

define holomorphic coordinates on B[γ] in a neighbourhood of 0.

Proof. Classes η0 ∈ H3(X, C) satisfying (6.40) do exist. Indeed, for every 3-class η0, Q(u0, η0) =
Q(u0, η

0, 3
0 ) for bidegree reasons since u0 is of type (3, 0), so it suffices to choose a class η0, 30 ∈

H0, 3(X0, C) such that Q(u0, η
0, 3
0 ) ̸= 0 for (i) to be satisfied. This is possible since u0 ̸= 0.

Classes η2, 10 ∈ H2, 1
[γ] (X0, C) satisfying (ii) exist thanks to the signature of H on H2, 1

[γ] (X0, C) be-

ing (−, +, +, +) (cf. Corollary 6.4.3). We can then put η0 := η0, 30 + η2, 10 + η2, 10 + η0, 30 to obtain
a real class η0 satisfying (6.40). Every class η0 ∈ H3(X, C) automatically satisfies Q(η0, η0) = 0
since Q(η0, η0) = Q(η3, 00 , η0, 30 ) + Q(η2, 10 , η1, 20 ) + Q(η1, 20 , η2, 10 ) + Q(η0, 30 , η3, 00 ) while Q(η3, 00 , η0, 30 ) =
−Q(η0, 30 , η3, 00 ) and Q(η2, 10 , η1, 20 ) = −Q(η1, 20 , η2, 10 ) since Q is alternating. So η0 can be completed to
a symplectic basis.

We have to prove that the holomorphic map

Φ : B[γ] −→ C4, Φ(t) := (z1(t), . . . , z4(t)),

is a local diffeomorphism at 0. Since Φ is the composition of the maps

B[γ]
u−→ H3(X, C)

Qη1,...,η4−→ C4, where Qη1,...,η4(·) :=
(
Q(·, η1), . . . , Q(·, η4)

)
,

its differential map dΦ0 at 0 is the composition of the maps

T 1, 0
0 B[γ]

ρ−→
≃

H0, 1
[γ] (X0, T

1, 0X0)
·⌟u0−→
≃

H2, 1
[γ] (X0, C) ↪→ H3(X, C)

Qη1,...,η4−→ C4,

where ρ is the restriction to B[γ] of the Kodaira-Spencer map classifying the infinitesimal deforma-

tions of X0 and the composition of the first three maps is the differential map du0 : T 1, 0
0 B[γ] −→

H3(X, C) by [Gri68] and Proposition 6.3.3. Since T 1, 0
0 B[γ] and C4 have equal dimensions, it suffices

to prove that dΦ0 is injective.
Reasoning by contradiction, suppose that dΦ0 is not injective. Then, there exists µ ∈ H2, 1

[γ] (X0, C)
such that Q(µ, η1) = · · · = Q(µ, η4) = 0. Since Q(ut, η0) = 1 for all t ∈ B[γ] close to 0,

Q(du0(ξ), η0) = 0 for every ξ ∈ T 1, 0
0 B[γ]. Hence Q(µ, η0) = 0 because µ ∈ H2, 1

[γ] (X0, C) =

(du0)(T
1, 0
0 B[γ]). Therefore, Q(µ, η0) = · · · = Q(µ, η4) = 0, so µ ∈ ⟨η0, η1, . . . , η4⟩ since the ba-

sis {η0, η1, . . . , η4, ν0, ν1, . . . , ν4} is symplectic. This implies that H(µ, µ) = 0 since the subspace
⟨η0, η1, . . . , η4⟩ ⊂ H3(X, C) is real and totally Q-isotropic.

On the other hand, H(µ, η0) = 0 because Q(µ, η0) = 0 and η0 = η0. Thus, 0 = H(µ, η0) =
H(µ, η3, 00 )+H(µ, η2, 10 )+H(µ, η1, 20 )+H(µ, η0, 30 ) = H(µ, η2, 10 ), where the last identity holds trivially
for bidegree reasons since µ is of type (2, 1).

Summing up, we have the classes µ, η2, 10 ∈ H2, 1
[γ] (X0, C) with the properties H(µ, µ) = 0 and

H(µ, η2, 10 ) = 0. On the other hand, we know from Corollary 6.4.3 that the restriction of H to
H2, 1

[γ] (X0, C) is non-degenerate of signature (−, +, +, +), i.e. H(· , ·) : H2, 1
[γ] × H2, 1

[γ] −→ C is a
Lorentzian sesquilinear form.

Let ρε ∈ H2, 1
[γ] (X0, C) such that H(ρε, ρε) < 0 for every ε > 0 and ρε → µ as ε→ 0 (i.e. (ρε)ε>0

is an approximation of µ, an element in the lightlike cone of H, by elements ρε in the timelike cone
of H). Let η2, 10, ε → η2, 10 be an approximation of η2, 10 such that H(ρε, η

2, 1
0, ε) = 0 for every ε. Since ρε
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is timelike and the signature of H on H2, 1
[γ] is (−, +, +, +), the H-orthogonal complement ⟨ρε⟩⊥ in

H2, 1
[γ] of the line generated by ρε is contained in the subspace {ζ ∈ H2, 1

[γ] /H(ζ, ζ) ≥ 0}. (This can

be trivially checked by completing ρε/
√
|H(ρε, ρε)| to an orthonormal basis of (H2, 1

[γ] , H).) Thus,

H(η2, 10, ε , η
2, 1
0, ε) ≥ 0 for every ε > 0, hence for its limit as ε → 0 we get H(η2, 10 , η2, 10 ) ≥ 0. This

contradicts the assumption (ii) of (6.40). Therefore, dΦ0 must be injective.

Explicit computations

The construction of §.6.4.2 can be made explicit by choosing

ut = αt ∧ βt ∧ γt,
η3,00 = α ∧ β ∧ γ, η2,10 = i (α ∧ α + β ∧ β) ∧ γ,
η0 = α ∧ β ∧ γ + i (α ∧ ᾱ + β ∧ β̄) ∧ (γ + γ̄) + ᾱ ∧ β̄ ∧ γ̄,
η1 = α ∧ β ∧ γ + ᾱ ∧ β̄ ∧ γ̄, η2 = i(α ∧ ᾱ− β ∧ β̄) ∧ (γ + γ̄),

η3 = α ∧ β̄ ∧ γ + ᾱ ∧ β ∧ γ̄, η4 = ᾱ ∧ β ∧ γ + α ∧ β̄ ∧ γ̄.

These forms satisfy condition (6.40). Indeed, for example, we have

H(η2,10 , η2,10 ) = −
∫
X

(i α ∧ ᾱ + i β ∧ β̄)2 ∧ i γ ∧ γ̄ < 0.

The forms αt, βt, γt can be computed in terms of α, β, γ using relations (6.16) and (6.17). After
recalling the notation D(t) := t11 t22 − t12 t21, we get the following identities for all t ∈ B:

αt = dζ1(t) = dz1 + (t11 ᾱ + t12 β̄) = α + t11 ᾱ + t12 β̄

βt = dζ2(t) = dz2 + (t21 ᾱ + t22 β̄) = β + t21 ᾱ + t22 β̄

γt = dζ3(t)− z1 dζ2(t)− (t21 z̄1 + t22 z̄2) dζ1(t)

= [dz3 + t21 dz1 z̄1 + (t31 + t21 z1) dz̄1 + t22 dz1 z̄2 + (t32 + t22 z1) dz̄2 + t11 t21 z̄1 dz̄1 +

+t11 t22 (z̄1 dz̄2 + z̄2 dz̄1) + t12 t22 z̄2 dz̄2 −D(t)dz̄3]

−z1 (β + t21 ᾱ + t22 β̄)− (t21 z̄1 + t22 z̄2) (α + t11 ᾱ + t12 β̄) (6.42)
(i)
= (γ + z1 β) + t21 z̄1 α + (t31 + t21 z1) ᾱ + t22 z̄2 α + (t32 + t22 z1) β̄ + t11 t21 z̄1ᾱ

+t11 t22 (z̄1 β̄ + z̄2 ᾱ) + t12 t22 z̄2 β̄ −D(t)dz̄3

−z1 (β + t21 ᾱ + t22 β̄)− (t21 z̄1 + t22 z̄2) (α + t11 ᾱ + t12 β̄)

= γ + t31 ᾱ + t32 β̄ −D(t)dz̄3 +D(t) z̄1 β̄

= γ + t31 ᾱ + t32 β̄ −D(t)γ̄, t ∈ B,

where (i) followed from dz3 = γ + z1 β.
Consequently, we get

ut =
(
α + t11 ᾱ + t12 β̄

)
∧
(
β + t21 ᾱ + t22 β̄

)
∧
(
γ + t31 ᾱ + t32 β̄ −D(t)γ̄

)
= α ∧ β ∧ (γ −D(t)γ̄) +D(t)ᾱ ∧ β̄ ∧ (γ −D(t)γ̄)

+(t21α ∧ ᾱ− t12β ∧ β̄) ∧ (γ −D(t)γ̄) + (t22α ∧ β̄ + t11ᾱ ∧ β) ∧ (γ −D(t)γ̄)

+α ∧ β ∧ (t31ᾱ + t32β̄) + (t21t32 − t31t22)α ∧ ᾱ ∧ β̄ + (t11t32 − t12t31)ᾱ ∧ β ∧ β̄.

Note that the terms are displayed according to their degree and type on the base B of π : X → B.
The part coming from the base (i.e. the terms on the last line, those containing neither γ nor γ̄)
vanishes on B[γ] since t31 = t32 = 0 there.
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We can now compute the resulting coordinates on B[γ]. We get for t ∈ B[γ]:

Q(ut, η0) = −
∫
X

ut ∧ η0 = −
∫
X

ut ∧
(
α ∧ β ∧ γ + ᾱ ∧ β̄ ∧ γ̄ + i(α ∧ ᾱ + β ∧ β̄) ∧ (γ + γ̄)

)
=

(
i(1 +D(t)2) + (t21 − t12)(1 +D(t))

) ∫
X

iα ∧ ᾱ ∧ iβ ∧ β̄ ∧ iγ ∧ γ̄ = 1,

where the last identity is the normalisation adopted in Proposition 6.4.4. We also get for t ∈ B[γ]:

Q(ut, η1) =
i(1 +D(t)2)

i(1 +D(t)2) + (t21 − t12)(1 +D(t))
, Q(ut, η2) = −

(t12 + t21)(1 +D(t))

i(1 +D(t)2) + (t21 − t12)(1 +D(t))
,

Q(ut, η3) = −i t11D(t) + t22
i(1 +D(t)2) + (t21 − t12)(1 +D(t))

, Q(ut, η4) = −i
t22D(t) + t11

i(1 +D(t)2) + (t21 − t12)(1 +D(t))
.

6.4.3 The B-Yukawa coupling

Definition 6.4.5. Suppose we have fixed a non-vanishing holomorphic (3, 0)-form u on the Iwasawa
manifold X. It identifies with the class [u] ∈ H3, 0

∂̄
(X, C) ≃ H0(X, KX) ≃ C. The Yukawa

coupling associated with u is standardly defined as

Y
(u)
2 : H0, 1(X0, T

1, 0X0)×H0, 1(X0, T
1, 0X0)×H0, 1(X0, T

1, 0X0) −→ C

([θ1], [θ2], [θ3]) 7→
〈
u2, [θ1] · [θ2] · [θ3]

〉
where u2 is viewed as a section u2 ∈ H0(X, K⊗2

X ) ≃ H3, 0(X, KX), the cup product [θ1] · [θ2] · [θ3] ∈
H0, 3(X, Λ3T 1, 0X) = H0, 3(X, K−1

X ) and ⟨·, ·⟩ : H3, 0(X, KX) × H0, 3(X, K−1
X ) −→ C is the Serre

duality.

We can now use the symplectic basis and the coordinates constructed in Proposition 6.4.4 to
show, by the same method as in the standard Kähler case ([BG83]), that the Yukawa couplings Y2
on T 1, 0

0 B[γ] ≃ H0, 1
[γ] (X0, T

1, 0X0) are defined by a potential.

Proposition 6.4.6. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0 on which
we have fixed a non-vanishing holomorphic section u = (ut)t∈B of H3, 0 normalised by the choice of a
symplectic basis as in Proposition 6.4.4. Let z1, . . . , z4 be the induced holomorphic coordinates near
0 on B[γ] constructed in Proposition 6.4.4. Then, there exists a C∞ function F = F (z1, . . . , z4) :
B[γ] −→ C such that

Y
(u)
2

(
∂

∂zi
,
∂

∂zj
,
∂

∂zk

)
=

∂3F

∂zi∂zj∂zk
(6.43)

for all ∂
∂zi
, ∂
∂zj
, ∂
∂zk
∈ T 1, 0

0 B[γ] ≃ H0, 1
[γ] (X0, T

1, 0X0).

Proof. The arguments are standard (see e.g. [Voi96, §.3.1.2]), but we spell them out for the reader’s
convenience and to show that they adapt to our non-standard situation.

Step 1. For all i ∈ {1, . . . , 4}, put Ψi : B[γ] −→ C, Ψi(z1(t), . . . , z4(t)) := Q(ut, νi). Prove that

∂Ψi

∂zj
=
∂Ψj

∂zi
for all i, j ∈ {1, . . . , 4}. (6.44)
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This is proved by writing ut = a0ν0+
4∑
j=1

ajνj+
4∑
j=1

bjηj+b0η0 and computing the coefficients aj, bj by

using the relationQ(ut, η0) = 1 and the symplectic property of the basis {η0, η1, . . . , η4, ν0, ν1, . . . , ν4}.

We get ut = ν0 +
4∑
j=1

zjνj −
4∑
j=1

Ψjηj −Q(ut, ν0) η0. Taking the derivative ∂/∂zi, we get

∂u

∂zi
= νi −

4∑
j=1

∂Ψj

∂zi
ηj −

∂Q(u, ν0)

∂zi
η0.

From this and the symplectic property of the basis ηj, νk, we infer

Q

(
∂u

∂zi
,
∂u

∂zj

)
= −∂Ψi

∂zj
+
∂Ψj

∂zi
.

On the other hand, ∂u
∂zi

= ρ( ∂
∂zi

)⌟u ∈ F 2
[γ]H

3(X, C) for all ∂
∂zi
∈ T 1, 0

0 B[γ]

ρ
≃ H0, 1

[γ] (X0, T
1, 0X0)

by Griffiths’s transversality [Gri68] (see (6.27), our version of it), so for bidegree reasons we get:

0 = Q

(
∂u
∂zi
, ∂u
∂zj

)
. This proves (6.44).

It follows from (6.44) that there exists a C∞ function F = F (z1, . . . , z4) : B[γ] −→ C such that

∂F

∂zi
= Ψi for all i ∈ {1, . . . , 4}.

Step 2. Prove (6.43) for this choice of F .
By the orthogonality relations (6.28), we have〈

u,
∂2u

∂zi∂zj

〉
= 0

since ut ∈ H3, 0(Xt, C) for all t. Applying ∂/∂zk, we get〈
∂u

∂zk
,

∂2u

∂zi∂zj

〉
+

〈
u,

∂3u

∂zi∂zj∂zk

〉
= 0, hence Y

(u)
2

(
∂

∂zi
,
∂

∂zj
,
∂

∂zk

)
= −

〈
∂u

∂zk
,

∂2u

∂zi∂zj

〉
.

On the other hand, from the identities ut = ν0 +
4∑
l=1

zl νl −
4∑
l=1

Ψl ηl −Q(ut, ν0) η0 seen at Step 1, we

compute〈
∂u

∂zk
,

∂2u

∂zi∂zj

〉
= −

〈
νk −

4∑
l=1

∂Ψl

∂zk
ηl −

∂Q(u, ν0)

∂zk
η0,

4∑
l=1

∂2Ψl

∂zi∂zj
ηl +

∂2Q(u, ν0)

∂zi∂zj
η0

〉
= − ∂2Ψk

∂zi∂zj
= − ∂3F

∂zi∂zj∂zk
.

The last two main identities combined prove (6.43).

6.5 The metric side of the mirror

As usual, we let (Xt)t∈B[γ]
stand for the Kuranishi family of the Iwasawa manifold X = X0.
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6.5.1 Constructing Gauduchon metrics

A smooth family (ωt)t∈B[γ]
of Gauduchon metrics on (Xt)t∈B[γ]

Recall that (6.19) provides us with a C∞ family of canonical Hermitian metrics (ωt)t∈B on the fibres
(Xt)t∈B after possibly shrinking ∆ about 0. Simple calculations enable us to prove the following.

Lemma 6.5.1. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0. Then, for
every t ∈ B[γ], the metric ωt = iαt ∧ ᾱt + iβt ∧ β̄t + iγt ∧ γ̄t is a Gauduchon metric on Xt, hence
[ω2
t ]A defines an element in the Gauduchon cone GXt of Xt.

Proof. Since dimCXt = 3, we have to show that ∂t∂̄tω
2
t = 0 for t ∈ B[γ]. For all t ∈ B,

ω2
t = −2αt ∧ ᾱt ∧ βt ∧ β̄t − 2αt ∧ ᾱt ∧ γt ∧ γ̄t − 2 βt ∧ β̄t ∧ γt ∧ γ̄t.

It now follows from lemma 6.5.10 that ∂t∂̄tω
2
t = 0 for all t ∈ B[γ].

A smooth family (ω1, 1
t )t∈B[γ]

of Gauduchon metrics on X0

We will implicitly construct a smooth family of Aeppli-Gauduchon classes in GX0 naturally induced
by the structure of the family (Xt)t∈B. Each Hermitian metric ωt = iαt ∧ ᾱt + iβt ∧ β̄t + iγt ∧ γ̄t
(proved in Lemma 6.5.1 to be even a Gauduchon metric on Xt for t ∈ B[γ]) can be viewed as a real
2-form on the C∞ manifold X underlying the fibres Xt. As such, ωt has a component of bidegree
(1, 1) w.r.t. the complex structure J0 of X0. We denote it by ω1, 1

t ∈ C∞
1, 1(X0, R).

Proposition 6.5.2. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X0. Then, the
J0-(1, 1)-form ω1, 1

t is a Gauduchon metric on X0 for every t ∈ B sufficiently close to 0. Moreover,
ω1, 1
0 = ω0 and ω1, 1

t varies in a C∞ way with t.

Proof. Recall that ωt = i αt ∧ ᾱt + i βt ∧ β̄t + i γt ∧ γ̄t. Hence, using the identities (6.42), we get

ωt = i (α + t11 ᾱ + t12 β̄) ∧ (ᾱ + t̄11 α + t̄12 β) + i (β + t21 ᾱ + t22 β̄) ∧ (β̄ + t̄21 α + t̄22 β)

+ i [γ + t31 ᾱ + t32 β̄ −D(t) γ̄] ∧ [γ̄ + t̄31 α + t̄32 β −D(t) γ].

Hence, the J0-type (1, 1)-component of ωt is

ω1, 1
t = (1 + c1(t)) iα ∧ ᾱ + (1 + c2(t)) iβ ∧ β̄ + (1 + c3(t)) iγ ∧ γ̄ + d(t) iα ∧ β̄ + d(t) iβ ∧ ᾱ, (6.45)

where

c1(t) = −(|t11|2 + |t21|2 + |t31|2)
c2(t) = −(|t12|2 + |t22|2 + |t32|2),
c3(t) = −|D(t)|2 = −|t11 t22 − t12 t21|2,
d(t) = −(t12 t̄11 + t22 t̄21 + t32 t̄31). (6.46)

We see that ω1, 1
t varies in a C∞ way with t and that ω1, 1

0 = ω0. In particular, since ω > 0, by
continuity we get ω1, 1

t > 0 for all t sufficiently close to 0, so (ω1, 1
t )t∈B is a C∞ family of Hermitian

metrics on X0 after possibly shrinking ∆ about 0.
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It remains to show that ∂∂̄(ω1, 1
t )2 = 0, where ∂ = ∂0 and ∂̄ = ∂̄0, i.e. that each ω1, 1

t is a
Gauduchon metric on X0. Taking squares in (6.45), we get

(ω1, 1
t )2 = ω2

0 + 2c1(t)ω0 ∧ i α ∧ ᾱ + 2c2(t)ω0 ∧ i β ∧ β̄ + 2c3(t)ω0 ∧ i γ ∧ γ̄
+ 2d(t)ω0 ∧ i α ∧ β̄ + 2d(t)ω0 ∧ i β ∧ ᾱ
+ 2c1(t) c2(t) i α ∧ ᾱ ∧ i β ∧ β̄ + 2c2(t) c3(t) i β ∧ β̄ ∧ i γ ∧ γ̄ + 2c1(t) c3(t) i α ∧ ᾱ ∧ i γ ∧ γ̄
+ 2c1(t) d(t) i α ∧ ᾱ ∧ i α ∧ β̄ + 2c1(t) d(t) i α ∧ ᾱ ∧ i β ∧ ᾱ
+ 2c2(t) d(t) i β ∧ β̄ ∧ i α ∧ β̄ + 2c2(t) d(t) i β ∧ β̄ ∧ i β ∧ ᾱ− 2|d(t)|2 i α ∧ ᾱ ∧ i β ∧ β̄
+ 2c3(t) d(t) i α ∧ β̄ ∧ i γ ∧ γ̄ + 2c3(t) d(t) i β ∧ ᾱ ∧ i γ ∧ γ̄.

After removing the vanishing terms (that are products containing two equal factors chosen from
α, β, ᾱ, β̄) and regrouping the remaining ones, we get

(ω1, 1
t )2 = ω2

0 + 2 [c1(t) + c2(t) + c1(t) c2(t)− |d(t)|2] i α ∧ ᾱ ∧ i β ∧ β̄
+ 2 [c1(t) + c3(t) + c1(t) c3(t)] i α ∧ ᾱ ∧ i γ ∧ γ̄ + 2 [c2(t) + c3(t) + c2(t) c3(t)] i β ∧ β̄ ∧ i γ ∧ γ̄
+ 2 d(t) [1 + c3(t)] i α ∧ β̄ ∧ i γ ∧ γ̄ + 2 d(t) [1 + c3(t)] i β ∧ ᾱ ∧ i γ ∧ γ̄. (6.47)

We can now show, using the identities dα = dβ = 0, ∂̄γ = 0 and ∂γ = −α ∧ β (cf. (1.55)), that
every term on the r.h.s. of (6.47) is at least ∂∂̄-closed. We have already seen that ∂∂̄ω2

0 = 0. We
get furthermore

∂̄(i α ∧ ᾱ ∧ i β ∧ β̄) = 0 since the forms α, ᾱ, β, β̄ are all ∂̄-closed,

∂̄(i α ∧ ᾱ ∧ i γ ∧ γ̄) = −i α ∧ ᾱ ∧ i γ ∧ ∂γ = i α ∧ ᾱ ∧ i γ ∧ ᾱ ∧ β̄ = 0 since ᾱ ∧ ᾱ = 0,

∂̄(i β ∧ β̄ ∧ i γ ∧ γ̄) = −i β ∧ β̄ ∧ i γ ∧ ∂γ = i β ∧ β̄ ∧ i γ ∧ ᾱ ∧ β̄ = 0 since β̄ ∧ β̄ = 0,

∂̄(i α ∧ β̄ ∧ i γ ∧ γ̄) = −i α ∧ β̄ ∧ i γ ∧ ∂γ = i α ∧ β̄ ∧ i γ ∧ ᾱ ∧ β̄ = 0 since β̄ ∧ β̄ = 0,

∂̄(i β ∧ ᾱ ∧ i γ ∧ γ̄) = −i β ∧ ᾱ ∧ i γ ∧ ∂γ = i β ∧ ᾱ ∧ i γ ∧ ᾱ ∧ β̄ = 0 since ᾱ ∧ ᾱ = 0.

We conclude from these identities and from (6.47) that ∂∂̄(ω1, 1
t )2 = 0, so ω1, 1

t is indeed a Gauduchon
metric on X0 for all t ∈ B close to 0.

We now observe that, in a certain sense, there are as “many” Aeppli-Gauduchon classes of the
type [(ω1, 1

t )2]A as elements in the Gauduchon cone GX0 .

Lemma 6.5.3. For every t ∈ B sufficiently close to 0, the Aeppli-Gauduchon class [(ω1, 1
t )2]A ∈ GX0

satisfies the following identity

1

2
[(ω1, 1

t )2]A = (1 + c1(t))(1 + c3(t)) [i α ∧ ᾱ ∧ i γ ∧ γ̄]A + (1 + c2(t))(1 + c3(t)) [i β ∧ β̄ ∧ i γ ∧ γ̄]A

+ d(t)(1 + c3(t)) [i α ∧ β̄ ∧ i γ ∧ γ̄]A + d(t)(1 + c3(t)) [i β ∧ ᾱ ∧ i γ ∧ γ̄]A. (6.48)

Note that since the classes [i α∧ ᾱ∧ i γ∧ γ̄]A, [i β∧ β̄∧ i γ∧ γ̄]A, [i α∧ β̄∧ i γ∧ γ̄]A, [i β∧ ᾱ∧ i γ∧ γ̄]A
generate H2, 2

A (X0, C) over C, the real classes [i α ∧ ᾱ ∧ i γ ∧ γ̄]A, [i β ∧ β̄ ∧ i γ ∧ γ̄]A, [i α ∧ β̄ ∧ i γ ∧
γ̄ + i β ∧ ᾱ ∧ i γ ∧ γ̄]A and 1

2i
([i α ∧ β̄ ∧ i γ ∧ γ̄ − i β ∧ ᾱ ∧ i γ ∧ γ̄]A) generate H2, 2

A (X0, R) over R.

Proof. Identity (6.48) follows from (6.47) after noticing that, since α ∧ β = −∂γ, we have

i α ∧ ᾱ ∧ i β ∧ β̄ = ∂γ ∧ ∂̄γ̄ = ∂(γ ∧ ∂̄γ̄) ∈ Im ∂ ⊂ Im ∂ + Im ∂̄,

hence [i α ∧ ᾱ ∧ i β ∧ β̄]A = 0.
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6.5.2 Use of the sGG property

Recall that the Iwasawa manifold X0 and all its small deformations Xt are sGG manifolds ([PU14]).
As such, there are canonical surjections

Pt : H
4
DR(X, R) ↠ H2, 2

A (Xt, R), {Ω}DR 7→ [Ω2, 2
t ]A, (6.49)

where Ω2, 2
t is the component of Jt-bidegree (2, 2) of Ω, while X is the C∞ manifold underlying

the fibres Xt. Moreover, for every fixed Hermitian metric ωt on Xt, there is a lift of Pt naturally
associated with ωt, namely an injection

Qωt : H
2, 2
A (Xt, R) ↪→ H4

DR(X, R), [Ω2, 2]A 7→ {Ω}DR, (6.50)

such that Pt ◦ Qωt : H
2, 2
A (Xt, R) −→ H2, 2

A (Xt, R) is the identity map, defined in the following way
(cf. [PU14, §.5.1). For every class [Ω2, 2]A ∈ H2, 2

A (Xt, R), let Ω2, 2
A be the (unique) Aeppli-harmonic

representative of [Ω2, 2]A w.r.t. the Aeppli Laplacian ∆A,ωt associated with the metric ωt.
9 Let Ω3, 1

A

be the (unique) minimal L2
ωt
-norm solution of the ∂̄-equation

∂̄tΩ
3, 1
A = −∂tΩ2, 2

A . (6.51)

This equation is solvable thanks to the sGG property of the manifold Xt for all t ∈ B sufficiently
close to 0. Indeed, n-dimensional sGG manifolds are characterised by the fact that every d-closed
∂-exact (n, n − 1)-form is ∂̄-exact ([PU14, Lemma 1.2]). Here n = 3, so ∂tΩ

2, 2
A is ∂̄t-exact. Thus,

Ω3, 1
A exists and is given by the Neumann formula Ω3, 1

A = −∆′′−1
t ∂̄⋆t (∂tΩ

2, 2
A ), where the formal adjoint

∂̄⋆t of ∂̄t and the Laplacian ∆′′
t = ∂̄t∂̄

⋆
t + ∂̄⋆t ∂̄t are computed w.r.t. the L2 inner product induced by

ωt, while ∆
′′−1
t is the Green operator of ∆′′

t . Finally, we put

Ω = Ωωt := Ω3, 1
A + Ω2, 2

A + Ω3, 1
A

which is easily seen to be d-closed, to complete the definition (6.50) of Qωt (cf. [PU14]).

Conclusion 6.5.4. With every Hermitian metric ωt on a small deformation Xt of the Iwasawa
manifold X = X0 there is associated a 4-dimensional real vector subspace of H4

DR(X, R) as follows

ωt 7→ Qωt(H
2, 2
A (Xt, R)) ⊂ H4

DR(X, R). (6.52)

Besides the metric-induced injections Qωt of (6.50), there are canonical injections as follows.

Lemma 6.5.5. (a)Let X = X0 be the Iwasawa manifold. There is a canonical linear injection

I0 : H
2, 2
A (X0, C) −→ H4

DR(X, C). (6.53)

(b) Let ω = ω0 := iα ∧ ᾱ + iβ ∧ β̄ + iγ ∧ γ̄ be the metric on the Iwasawa manifold X = X0

canonically induced by the complex parallelisable structure of X (cf. (6.19)).
The injection Qω0 : H2, 2

A (X0, R) ↪→ H4
DR(X, R) of (6.50) induced by ω0 coincides with the

canonical injection I0 : H
2, 2
A (X0, R) ↪→ H4

DR(X, R) of (6.53).
9See [Sch07] for the definition of the Aeppli Laplacian.
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Proof. (a) The contention follows from the explicit descriptions(1.56) and (6.58) of the cohomology
groups involved. Specifically, I0 is defined by letting

H2, 2
A (X0, C) ∋ [Ω2, 2]A 7→ {Ω2, 2}DR := I0([Ω

2, 2]A) ∈ H4
DR(X, C) (6.54)

for every Ω2, 2 ∈ {α∧γ ∧ ᾱ∧ γ̄, α∧γ ∧ β̄ ∧ γ̄, β ∧γ ∧ ᾱ∧ γ̄, β ∧γ ∧ β̄ ∧ γ̄} and extending by linearity.
It is implicit that the forms α∧ γ ∧ ᾱ∧ γ̄, α∧ γ ∧ β̄ ∧ γ̄, β ∧ γ ∧ ᾱ∧ γ̄, β ∧ γ ∧ β̄ ∧ γ̄ are all d-closed,
as can be readily checked.

(b) The representatives α∧γ ∧ ᾱ∧ γ̄, α∧γ ∧ β̄ ∧ γ̄, β ∧γ ∧ ᾱ∧ γ̄, β ∧γ ∧ β̄ ∧ γ̄ of the four Aeppli
classes generating H2, 2

A (X0, C) are all in ker ∂⋆ ∩ ker ∂̄⋆ when the adjoints ∂⋆ and ∂̄⋆ are computed
w.r.t. ω0. Indeed,

(1) the identity ∂⋆(α ∧ γ ∧ ᾱ ∧ γ̄) = 0 is equivalent to ⟨⟨α ∧ γ ∧ ᾱ ∧ γ̄, ∂u⟩⟩ = 0 for all forms
u ∈ C∞

1, 2(X, C). Now, the only generators of C∞
1, 2(X, C) that are not ∂-closed are γ∧ ᾱ∧ β̄, γ∧ ᾱ∧ γ̄

and γ∧ β̄∧ γ̄. When u is one of these forms, we have ∂u = −α∧β∧ ᾱ∧ β̄, or ∂u = −α∧β∧ ᾱ∧ γ̄, or
∂u = −α∧β∧ β̄∧ γ̄ and the inner product of any of these forms against α∧γ∧ᾱ∧ γ̄ vanishes because
they are all part of an ω0-orthonormal basis and the ones do not contain γ while the other does. The
same argument proves the ∂⋆-closedness of the remaining forms α∧γ∧β̄∧γ̄, β∧γ∧ᾱ∧γ̄, β∧γ∧β̄∧γ̄
since they all contain γ.

(2) the identity ∂̄⋆(α ∧ γ ∧ ᾱ ∧ γ̄) = 0 is equivalent to ⟨⟨α ∧ γ ∧ ᾱ ∧ γ̄, ∂̄v⟩⟩ = 0 for all forms
v ∈ C∞

2, 1(X, C). The only generators of C∞
2, 1(X, C) that are not ∂̄-closed are α∧β∧ γ̄, α∧γ∧ γ̄ and

β ∧ γ ∧ γ̄. When v is one of these forms, we have ∂̄v = −α ∧ β ∧ ᾱ ∧ β̄, or ∂̄v = −α ∧ γ ∧ ᾱ ∧ β̄, or
∂̄v = −β∧γ∧ᾱ∧ β̄ and the inner product of any of these forms against α∧γ∧ᾱ∧ γ̄ vanishes because
they are all part of an ω0-orthonormal basis and the ones do not contain γ̄ while the other does. The
same argument proves the ∂̄⋆- closedness of the remaining forms α∧γ∧β̄∧γ̄, β∧γ∧ᾱ∧γ̄, β∧γ∧β̄∧γ̄
since they all contain γ̄.

Now, the forms α ∧ γ ∧ ᾱ ∧ γ̄, α ∧ γ ∧ β̄ ∧ γ̄, β ∧ γ ∧ ᾱ ∧ γ̄, β ∧ γ ∧ β̄ ∧ γ̄ are also ∂∂̄-closed (see
lemma 6.5.10), so they must be Aeppli-harmonic 10 w.r.t. ω0, i.e.

α ∧ γ ∧ ᾱ ∧ γ̄, α ∧ γ ∧ β̄ ∧ γ̄, β ∧ γ ∧ ᾱ ∧ γ̄, β ∧ γ ∧ β̄ ∧ γ̄ ∈ ker∆A,ω0 = ker(∂∂̄) ∩ ker ∂⋆ω0
∩ ker ∂̄⋆ω0

.

Thus, for any class [Ω2, 2]A = c1 [α∧γ∧ᾱ∧γ̄]A+c2 [α∧γ∧β̄∧γ̄]A+c3 [β∧γ∧ᾱ∧γ̄]A+c4 [β∧γ∧β̄∧γ̄]A ∈
H2, 2
A (X0, R) with coefficients c1, . . . , c4 ∈ R, the Aeppli-harmonic representative w.r.t. ω0 is

Ω2, 2
A = c1 α ∧ γ ∧ ᾱ ∧ γ̄ + c2 α ∧ γ ∧ β̄ ∧ γ̄ + c3 β ∧ γ ∧ ᾱ ∧ γ̄ + c4 β ∧ γ ∧ β̄ ∧ γ̄.

Meanwhile, the forms α ∧ γ ∧ ᾱ ∧ γ̄, α ∧ γ ∧ β̄ ∧ γ̄, β ∧ γ ∧ ᾱ ∧ γ̄, β ∧ γ ∧ β̄ ∧ γ̄ are all d-closed,
hence dΩ2, 2

A = 0. Since Ω2, 2
A is of pure type, this implies that ∂0Ω

2, 2
A = 0. Consequently, the minimal

L2-norm solution Ω3, 1
A of equation ∂̄0Ω

3, 1
A = −∂0Ω2, 2

A (cf. (6.51)) is the zero form. From (6.50) and
(6.12) we get

Qω0([Ω
2, 2]A) = Qω0([Ω

2, 2
A ]A) = {Ω2, 2

A }DR.

Comparing with (6.54), we see that Qω0([Ω
2, 2]A) = I0([Ω

2, 2]A).

Corollary 6.5.6. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0. Then

B ∋ t 7→ H2, 2
A (Xt, C)

10For the definition of the Aeppli Laplacian ∆A (an elliptic operator of order 4 whose kernel is isomorphic to the
corresponding Aeppli cohomology group) and the description of its kernel used here, see [Sch07].
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is a C∞ vector bundle of rank 4 that we shall denote by H2, 2
A . Moreover, H2, 2

A injects canonically
as a C∞ vector subbundle of the constant bundle H4 → ∆ of fibre H4

DR(X, C) in the following way:
for every t ∈ B sufficiently close to 0, we define the canonical linear injection

It : H
2, 2
A (Xt, C) −→ H4

DR(X, C) by It = Qωt , (6.55)

the injection (6.50) induced by the canonical metric ωt = iαt ∧ ᾱt + iβt ∧ β̄t + iγt ∧ γ̄t of (6.19) on
Xt.

Proof. Let (γt)t∈B be any C∞ family of Hermitian metrics on the fibres (Xt)t∈B and let (∆A, t)t∈B
be the associated C∞ family of elliptic Aeppli Laplacians inducing Hodge isomorphisms ker∆A, t ≃
H2, 2
A (Xt, C) for t ∈ B ([Sch07]). Meanwhile, dimCH

2, 2
A (Xt, C) = 4 for all t ∈ B ([Ang11, §.4.3]).

Since the dimension of the kernel of ∆A, t is independent of t ∈ B, we infer by ellipticity from [KS60]
that B ∋ t 7→ ker∆A, t ≃ H2, 2

A (Xt, C) is a C∞ vector bundle of rank 4.
The last statement follows from Lemma 6.5.5 and from the C∞ dependence on t of the injections

It (itself a consequence of the C∞ dependence on t of each of the forms αt, βt, γt).

Remark 6.5.7. Note that for t ∈ B[γ] \ {0}, It cannot be defined by analogy with definition (6.54)
of I0 since the representatives αt ∧ γt ∧ ᾱt ∧ γ̄t, αt ∧ γt ∧ β̄t ∧ γ̄t, βt ∧ γt ∧ ᾱt ∧ γ̄t, βt ∧ γt ∧ β̄t ∧ γ̄t of
the classes generating H2, 2

A (Xt, C) (cf. (6.58) ) are not d-closed.

For future reference, we notice the following trivialisation of the vector bundle B ∋ t 7→
H2, 2
A (Xt, C). The following definition is meaningful thanks to Lemma 6.5.10 of the following sub-

section.

Definition 6.5.8. For every t ∈ B, we consider the isomorphism of complex vector spaces

Bt : H
2, 2
A (Xt, C) −→ H2, 2

A (X0, C) (6.56)

defined by [αt∧γt∧ᾱt∧γ̄t]A 7→ [α∧γ∧ᾱ∧γ̄]A, [αt∧γt∧β̄t∧γ̄t]A 7→ [α∧γ∧β̄∧γ̄]A, [βt∧γt∧ᾱt∧γ̄t]A 7→
[β ∧ γ ∧ ᾱ ∧ γ̄]A, [βt ∧ γt ∧ β̄t ∧ γ̄t]A 7→ [β ∧ γ ∧ β̄ ∧ γ̄]A.

Corollary 6.5.9. With every Aeppli-Gauduchon class of the shape [(ω1, 1
t )2]A ∈ GX0 (for t ∈ B) on

the Iwasawa manifold X = X0 there is associated a 4-dimensional real vector subspace of H4
DR(X, R)

as follows

GX0 ∋ [(ω1, 1
t )2]A 7→ H̃2, 2

t := Qω1, 1
t

(
H2, 2
A (X0, R)

)
⊂ H4

DR(X, R), (6.57)

where Qω1, 1
t

: H2, 2
A (X0, R) ↪→ H4

DR(X, R) is the injective linear map of (6.50) defined by the metric

ω1, 1
t on X0.

6.5.3 The Hodge bundles H2, 1
[γ] ≃ H

2, 2
A and H4 over B[γ]

The following description of the Aeppli cohomology groups of bidegree (2, 2) of the small deforma-
tions Xt with t ∈ B of the Iwasawa manifold X = X0 will be used several times in this section.

Lemma 6.5.10. For every t ∈ B, the forms αt ∧ ᾱt ∧ γt ∧ γ̄t, βt ∧ β̄t ∧ γt ∧ γ̄t, αt ∧ β̄t ∧ γt ∧ γ̄t and
βt ∧ ᾱt ∧ γt ∧ γ̄t are ∂t∂̄t-closed and

H2, 2
A (Xt, C) =

〈
[αt∧γt∧ ᾱt∧ γ̄t]A, [αt∧γt∧ β̄t∧ γ̄t]A, [βt∧γt∧ ᾱt∧ γ̄t]A, [βt∧γt∧ β̄t∧ γ̄t]A

〉
. (6.58)
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Proof. We spell out the details of the pluriclosedness argument, that is similar for the four forms,
when t ∈ B[γ]. It goes

∂t(αt ∧ γt ∧ ᾱt ∧ γ̄t) = −αt ∧ ∂tγt ∧ ᾱt ∧ γ̄t − αt ∧ γt ∧ ᾱt ∧ ∂̄tγt
= −σ12(t)αt ∧ (αt ∧ βt) ∧ ᾱt ∧ γ̄t − αt ∧ γt ∧ ᾱt ∧ (σ22̄(t) β̄t ∧ βt)
= −σ22̄(t)αt ∧ ᾱt ∧ βt ∧ β̄t ∧ γt,

where we used the structure equations (6.18) to get the second line above. So, ∂t(αt∧γt∧ᾱt∧ γ̄t) ̸= 0
when t ̸= 0, but (6.18) implies that ∂̄tγt comes from a 2-form on Bt, so applying ∂̄t we get
∂̄t∂t(αt ∧ γt ∧ ᾱt ∧ γ̄t) = 0.

Now, it was shown in [Ang11, Remark 5.2] that

H1, 1
BC(Xt, C) =

〈
[αt ∧ ᾱt]BC , [αt ∧ β̄t]BC , [βt ∧ ᾱt]BC , [βt ∧ β̄t]BC

〉
, t ∈ B.

This implies (6.58) via the non-degenerate duality H1, 1
BC(Xt, C)×H2, 2

A (Xt, C) −→ C, ([u]BC , [v]A) 7→∫
X
u ∧ v.

Observation 6.5.11. (a) On the Iwasawa manifold X0, there is a canonical isomorphism

H2, 1
[γ] (X0, C)

≃−→ H2, 2
A (X0, C) (6.59)

defined by [Γ]∂̄ 7→ [Γ ∧ γ̄]A for Γ ∈ {α ∧ γ ∧ ᾱ, α ∧ γ ∧ β̄, β ∧ γ ∧ ᾱ, β ∧ γ ∧ β̄}.

(b) In the Kuranishi family (Xt)t∈B of the Iwasawa manifold X0, there is a canonical isomorphism

At : H
2, 1
[γ] (Xt, C)

≃−→ H2, 2
A (Xt, C) for every t ∈ B[γ] (6.60)

defined by [Γ]∂̄ 7→ [Γ ∧ γ̄t]A for Γ ∈ {Γ1(t), Γ2(t), Γ3(t), Γ4(t)} (see (6.20) and (6.21)). (Note
that At depends anti-holomorphically on t.)

In particular, the rank-four C∞ vector bundles B[γ] ∋ t 7→ H2, 1
[γ] (Xt, C) (of Definition 6.3.5)

and B[γ] ∋ t 7→ H2, 2
A (Xt, C) (of Corollary 6.5.6) are canonically isomorphic, i.e. H2, 1

[γ] ≃ H
2, 2
A .

Proof. Part (a) is a special case of part (b). To prove (b), we note that in conjunction with the descrip-
tion ofH2, 1

[γ] (Xt, C) given at the end of §.6.3.2 asH2, 1
[γ] (Xt, C) = ⟨[Γ1(t)]∂̄, [Γ2(t)]∂̄, [Γ3(t)]∂̄, [Γ4(t)]∂̄⟩ ⊂

H2, 1

∂̄
(Xt, C) for all t ∈ B[γ], (6.58) proves the isomorphism (6.60). Indeed, Γ1(t)∧γ̄t = αt∧γt∧ᾱt∧γ̄t,

Γ2(t)∧ γ̄t = αt ∧ γt ∧ β̄t ∧ γ̄t, Γ3(t)∧ γ̄t = βt ∧ γt ∧ ᾱt ∧ γ̄t, Γ4(t)∧ γ̄t = βt ∧ γt ∧ β̄t ∧ γ̄t and all these
forms are ∂∂̄-closed as proved in Lemma 6.5.10.

6.5.4 Bringing the families of metrics (ωt)t∈B[γ]
and (ω1, 1

t )t∈B[γ]
together

We can now describe a VHS parametrised by Aeppli-Gauduchon classes on X0. It is related to the
VHS of weight 2 induced by the holomorphic family (Bt)t∈B[γ]

of 2-dimensional complex tori. Since
the Bt’s are Kähler, we get a weight-two Hodge decomposition

H2(B, C) ≃ H2, 0(Bt, C)⊕H1, 1(Bt, C)⊕H0, 2(Bt, C), t ∈ B, (6.61)
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where B stands for the C∞ manifold underlying the complex tori Bt and H
2(B, C) := H2

DR(Bt, C)
is the fibre of the constant bundle H2(B) over ∆ defined by the De Rham cohomology of degree 2
of the tori Bt with t ∈ B. As usual, we get holomorphic vector bundles

F 1H2(B) :=

(
B ∋ t 7→ H2, 0(Bt, C)⊕H1, 1(Bt, C)

)
⊃ F 2H2(B) :=

(
B ∋ t 7→ H2, 0(Bt, C)

)
(6.62)

that constitute the Hodge filtration associated with the VHS (6.61). Let D be the Gauss-Manin
connection of the constant bundle H2(B). It satisfies the transversality condition

D[θ]F
2H2(B)t ⊂ F 1H2(B)t, t ∈ B[γ], (6.63)

for all [θ] ∈ T 1, 0
t B[γ] ≃ H1, 1(Bt, C) ≃ H2, 2

A (Xt, C) ≃ H2, 1
[γ] (Xt, C).

The second isomorphism of vector spaces on the previous line is a consequence of the description
of H1, 1(Bt, C) as

H1, 1(Bt, C) =

〈
[αt ∧ ᾱt]∂̄, [αt ∧ β̄t]∂̄, [βt ∧ ᾱt]∂̄, [βt ∧ β̄t]∂̄

〉
≃

〈
[αt ∧ γt ∧ ᾱt ∧ γ̄t]A, [αt ∧ γt ∧ β̄t ∧ γ̄t]A, [βt ∧ γt ∧ ᾱt ∧ γ̄t]A, [βt ∧ γt ∧ β̄t ∧ γ̄t]A

〉
= H2, 2

A (Xt, C) ≃ Qωt(H
2, 2
A (Xt, C)) := H̃2, 2

ωt ⊂ H4
DR(X, C), t ∈ B[γ], (6.64)

where the first identity on the last line is (6.58) and Qωt : H2, 2
A (Xt, C) ↪→ H4

DR(X, C) is the
complexification of the injective linear map of (6.50) defined by the Gauduchon metric ωt of (6.19)
on Xt (and also denoted by It in (6.55)).

On the other hand,

H2, 0(Bt, C) ≃ H3, 0(Xt, C) ↪→ H3
DR(X, C), t ∈ B, (6.65)

since H2, 0(Bt, C) = ⟨[αt ∧ βt]∂̄⟩ and H3, 0(Xt, C) = ⟨[αt ∧ βt ∧ γt]∂̄⟩, while the C-line H3, 0(Xt, C)
injects canonically into H3

DR(X, C) as observed in Lemma 6.3.1. We get a canonical injection of
holomorphic vector bundles

j : F 2H2(B) ↪→ H3

such that jt : H
2, 0(Bt, C) ↪→ H3(X, C) is the composition of the maps (6.65) for every t ∈ B.

Together with (6.64), this gives an injection of holomorphic vector bundles

j ⊕Q : F 1H2(B) ↪→ H3 ⊕H4

such that (j ⊕Q)t = jt ⊕Qωt for all t ∈ B[γ].

We now anticipate the definition of what will be called later the complexified parameter set:

G̃0 := {[ω2
0]A−t11 [iβ∧ᾱ∧iγ∧γ̄]A+t22 [iα∧β̄∧iγ∧γ̄]A−t12 [iβ∧β̄∧iγ∧γ̄]A+t21 [iα∧ᾱ∧iγ∧γ̄]A | t ∈ B[γ]}

⊂ H2, 2
A (X0, C).
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Recall the identification B[γ] = {t = (t11, t12, t21, t22) ∈ H0, 1
[γ] (X0, T

1, 0X0) ; |t| < ε} for some small

ε > 0 when H0, 1
[γ] (X0, T

1, 0X0) is identified with C4 by the basis specified in (6.9). The set G̃0 is a
complexification of the parameter set

G0 := {[(ω1, 1
t )2]A | t ∈ B[γ]} ⊂ GX0 . (6.66)

Thus, G̃0 is a subset of the complexified Gauduchon cone G̃X0 ⊂ H2, 2
A (X0, C) (cf. Defintion 6.6.2) of

the Iwasawa manifold X = X0.

Conclusion 6.5.12. Let (Xt)t∈B[γ]
be the local universal family of essential deformations of the

Iwasawa manifold X = X0.
(i) Our discussion so far can be summed up in the following diagram for all t ∈ B[γ].

H2, 2
A (Xt, C)

≃−−−→
Bt

H2, 2
A (X0, C)

≃
yQωt ≃

yQω
1, 1
t

H4(X, C) ⊃ H2, 2
A (Xt, C) ≃ Qωt(H

2, 2
A (Xt, C)) := H̃2, 2

ωt

≃−−−→ Qω1, 1
t

(H2, 2
A (X0, C)) := H̃2, 2

t ⊂ H4(X, C),

where the isomorphism H̃2, 2
ωt → H̃2, 2

t is the composition Qω1, 1
t
◦Bt ◦Q−1

ωt
.

(ii) Moreover, we get a C∞ vector subbundle of rank 4 of the constant bundle H4:

B[γ] ≃ G̃0 ∋ t 7→ Qωt(H
2, 2
A (Xt, C)) ⊂ H4(X, C), (6.67)

denoted henceforth by H̃2, 2
ω , and a holomorphic vector subbundle of rank 1 of the constant bundle

H3(X):

B[γ] ≃ G̃0 ∋ t 7→ H2, 0(Bt, C)
jt
↪→ H3(X, C), (6.68)

denoted henceforth by H2, 0(B) = F ′
GH, such that the following complex vector bundle of rank 5,

denoted henceforth by FGH4 := H2, 0(B)⊕ H̃2, 2
ω ,

B[γ] ≃ G̃0 ∋ t 7→ H2, 0(Bt, C)⊕Qωt(H
2, 2
A (Xt, C)) ⊂ H3(X, C)⊕H4(X, C) (6.69)

is a holomorphic subbundle of the constant bundle H3 ⊕H4 of fibre H3(X, C)⊕H4(X, C) and is
C∞ isomorphic to F 1H2(B).

(iii) In particular, the vector bundles (6.68) and (6.67) define a VHS parametrised by the subset

B[γ] ≃ G̃0 ⊂ G̃X0 (6.70)

whose corresponding Hodge filtration FGH4 ⊃ F ′
GH4 is C∞ isomorphic to the Hodge filtration

F 1H2(B) ⊃ F 2H2(B) associated with the holomorphic family (Bt)t∈B[γ]
of base tori of the family

(Xt)t∈B[γ]
.

Only the holomorphic nature of the above vector bundle isomorphisms still needs a proof that is
provided in the next subsection.
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6.5.5 Holomorphicity of the Hodge filtration parametrised by G0
We prove in this subsection that the Hodge filtration

H3 ⊕H4 ⊃ FGH4 ⊃ F ′
GH4

constructed in the previous subsection (cf. Conclusion 6.5.12) consists of holomorphic vector
subbundles of the constant bundle H3 ⊕H4 of fibre H3(X, C)⊕H4(X, C) over G0.

Our starting point is the following simple observation.

Lemma 6.5.13. For every t ∈ B, there is a canonical linear injection

H3, 1
BC(Xt, C) ↪→ H2, 2

A (Xt, C). (6.71)

Proof. From [Ang14, p. 83] we infer that H3, 1
BC(Xt, C) = ⟨[αt ∧ βt ∧ γt ∧ ᾱt]BC , [αt ∧ βt ∧ γt ∧ β̄t]BC⟩

for all t ∈ B. Coupled with (6.58), this allows us to explicitly define the canonical linear injection
by

[αt ∧ βt ∧ γt ∧ ᾱt]BC 7→ [αt ∧ ᾱt ∧ γt ∧ γ̄t]A and [αt ∧ βt ∧ γt ∧ β̄t]BC 7→ [βt ∧ β̄t ∧ γt ∧ γ̄t]A.

The forms αt, βt, γt are canonically associated with the complex structure of Xt, which makes the
above linear injection canonical. □

Since F ′
GH = H2, 0(B) is a holomorphic subbundle of H3(X), we are reduced to proving the

following

Lemma 6.5.14. The holomorphic structure of the vector bundle FGH4 := H2, 0(B) ⊕ H̃2, 2
ω is the

restriction of the holomorphic structure of the constant bundle H3 ⊕H4.

Proof. We have to show that for any C∞ section s of H̃2, 2
ω , the a priori H3(X) ⊕ H4(X)-valued

(0, 1)-form D′′s is actually FGH4-valued, where D′′ is the canonical (0, 1)-connection of the constant
bundleH3(X)⊕H4(X). Thanks to (6.58), it suffices to prove that all the anti-holomorphic first-order
derivatives of each of the classes [αt∧γt∧ᾱt∧γ̄t]A, [αt∧γt∧β̄t∧γ̄t]A, [βt∧γt∧ᾱt∧γ̄t]A, [βt∧γt∧β̄t∧γ̄t]A
lie in FGH4.

We now study these classes individually. By way of example, we compute derivatives at t = 0.
From (6.42), we infer that the only terms in

αt∧γt∧ᾱt∧γ̄t = (α+t11 ᾱ+t12 β̄)∧(γ+t31 ᾱ+t32 β̄−D(t) γ̄)∧(ᾱ+t̄11 α+t̄12 β)∧(γ̄+t̄31 α+t̄32 β−D(t) γ)

that are linear in the t̄iλ’s are

t̄12 α ∧ γ ∧ β ∧ γ̄ and t̄32 α ∧ γ ∧ ᾱ ∧ β.
So, the non-trivial anti-holomorphic first-order derivatives at t = 0 are

∂(αt ∧ γt ∧ ᾱt ∧ γ̄t)
∂t̄12 |t=0

= −α ∧ β ∧ γ ∧ γ̄ and
∂(αt ∧ γt ∧ ᾱt ∧ γ̄t)

∂t̄32 |t=0

= α ∧ β ∧ γ ∧ ᾱ. (6.72)

Note that α∧ β ∧ γ ∧ γ̄ is not d-closed, so it defines no class in H3, 1
BC(X0, C). However, α∧ β ∧ γ ∧ γ̄

is the image under the multiplication by γ ∧ γ̄ of α∧ β whose Dolbeault cohomology class [α∧ β] is
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the (unique up to a multiplicative constant) generator of H2, 0(B0, C). Meanwhile, α ∧ β ∧ γ ∧ ᾱ is
d-closed and its Bott-Chern cohomology class is one of the generators of H3, 1

BC(X0, C) (cf. proof of
Lemma 6.5.13) which injects canonically into H2, 2

A (X0, C) by Lemma 6.5.13. Under this injection,
[α ∧ β ∧ γ ∧ ᾱ]BC identifies with its image [α ∧ ᾱ ∧ γ ∧ γ̄]A in H2, 2

A (X0, C), which in turn identifies

with its image in H̃2, 2
ω0 = Qω0(H

2, 2
A (X0, C)) under the canonical injection Qω0 = I0 : H

2, 2
A (X0, C) ↪→

H4(X, C) of Lemma 6.5.5.
The upshot is that after all these identifications, we have

∂ [αt ∧ γt ∧ ᾱt ∧ γ̄t]A
∂t̄iλ |t=0

∈ (FGH4)0 = H2, 0(B0, C)⊕ H̃2, 2
ω0

for all indices i, λ.
Similarly, for the remaining 3 generators of H2, 2

A (Xt, C), we get from (6.81) that the only terms
linear in the t̄iλ’s in αt ∧ γt ∧ β̄t ∧ γ̄t are t̄22 α∧ γ ∧ β ∧ γ̄ and t̄32 α∧ γ ∧ β̄ ∧ β; in βt ∧ γt ∧ ᾱt ∧ γ̄t are
t̄11 β ∧γ ∧α∧ γ̄ and t̄31 β ∧γ ∧ ᾱ∧α; and in βt∧γt∧ β̄t∧ γ̄t are t̄21 β ∧γ ∧α∧ γ̄ and t̄31 β ∧γ ∧ β̄ ∧α.
Thus, the only non-zero anti-holomorphic first-order derivatives at t = 0 of these terms are

±α ∧ β ∧ γ ∧ γ̄, ±α ∧ β ∧ γ ∧ ᾱ and ± α ∧ β ∧ γ ∧ β̄.

Note that the only new quantity compared to (6.72) is α ∧ β ∧ γ ∧ β̄. It has the same properties as
α∧β∧γ∧ ᾱ, i.e. it is d-closed and its Bott-Chern cohomology class is a generator of H3, 1

BC(X0, C) (cf.
proof of Lemma 6.5.13). This vector space injects canonically into H2, 2

A (X0, C) by Lemma 6.5.13.
So the above argument applies again and yields

∂ [αt ∧ γt ∧ β̄t ∧ γ̄t]A
∂t̄iλ |t=0

,
∂ [βt ∧ γt ∧ ᾱt ∧ γ̄t]A

∂t̄iλ |t=0

,
∂ [βt ∧ γt ∧ β̄t ∧ γ̄t]A

∂t̄iλ |t=0

∈ (FGH4)0

for all indices i, λ.
□

6.5.6 Construction of coordinates on the Gauduchon cone

Recall the isomorphisms

H1, 1(B0, C)=
〈
[α ∧ ᾱ]∂̄, [α ∧ β̄]∂̄, [β ∧ ᾱ]∂̄, [β ∧ β̄]∂̄

〉
≃
y·∧γ

H2, 1
[γ] (X0, C)=

〈
[α ∧ γ ∧ ᾱ]∂̄, [α ∧ γ ∧ β̄]∂̄, [β ∧ γ ∧ ᾱ]∂̄, [β ∧ γ ∧ β̄]∂̄

〉
≃
y·∧γ̄

H2, 2
A (X0, C)=

〈
[α ∧ γ ∧ ᾱ ∧ γ̄]A, [α ∧ γ ∧ β̄ ∧ γ̄]A, [β ∧ γ ∧ ᾱ ∧ γ̄]A, [β ∧ γ ∧ β̄ ∧ γ̄]A

〉
.

On the other hand, on the vector space

H3, 0(Xt, C)⊕H2, 1
[γ] (Xt, C) ≃ H2, 0(Bt, C)⊕H1, 1(Bt, C), t ∈ B,
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we have two sesquilinear intersection forms (the first of which was considered in (6.35)). The first
one is obtained by restriction from H3

DR(X, C)×H3
DR(X, C) (where X is the differentiable manifold

underlying the Xt’s) when H
3, 0(Xt, C)⊕H2, 1

[γ] (Xt, C) is viewed as a vector subspace of H3
DR(X, C):

H :

(
H3, 0(Xt, C)⊕H2, 1

[γ] (Xt, C)
)
×

(
H3, 0(Xt, C)⊕H2, 1

[γ] (Xt, C)
)
−→ C,

({u}, {v}) 7→ −i
∫
X

u ∧ v̄.

Its signature is (−, −, +, +, +) (cf. Corollary 6.4.3).
The second sesquilinear intersection form is obtained by restriction from H2

DR(B, C) (where B is
the differentiable manifold underlying the tori Bt) when H

2, 0(Bt, C) ⊕ H1, 1(Bt, C) is viewed as a
vector subspace of H2

DR(B, C):

HB :

(
H2, 0(Bt, C)⊕H1, 1(Bt, C)

)
×

(
H2, 0(Bt, C)⊕H1, 1(Bt, C)

)
−→ C,

({ξ}, {ζ}) 7→
∫
B

ξ ∧ ζ̄ . (6.73)

Indeed, the coefficient of the integral
∫
B
ξ ∧ ζ̄ in the defintion of the sesquilinear intersection form

in degree n on an n-dimensional compact complex manifold is (−1)
n(n+1)

2 in, so in the case of HB,
where n = dimCBt = 2, this coefficient equals 1.

In particular, on the vector space

H2, 0(B0, C)⊕H1, 1(B0, C)
·∧γ
≃ H3, 0(X0, C)⊕H2, 1

[γ] (X0, C), (6.74)

the two sesquilinear intersection forms are given by

HB({u}, {v}) =
∫
B

u ∧ v̄ and H({u ∧ γ}, {v ∧ γ}) = −
∫
B

(u ∧ v̄) ∧ (iγ ∧ γ̄).

Proposition 6.5.15. The signature of the sesquilinear intersection form HB defined in (6.73) is
(+, +, −, −, −).

Specifically, for any Hermitian metric ρt on Bt, H
2, 0(Bt, C) ⊂ H2

+(Bt, C), while HB has signa-
ture (+, −, −, −) on H1, 1(Bt, C).

Proof. Every class in H2, 0(Bt, C) has a unique representative which, for bidegree reasons, is a
primitive (2, 0)-form w.r.t. any Hermitian metric we equip Bt with. Thus, the standard formula
(4.68) applied with p+q = n and (p, q) = (2, 0) yields ⋆ v = v. Therefore, H2, 0(Bt, C) ⊂ H2

+(Bt, C).
Now, recall that H1, 1(Bt, C) is generated by the classes [αt∧ ᾱt]∂̄, [αt∧ β̄t]∂̄, [βt∧ ᾱt]∂̄, [βt∧ β̄t]∂̄.

Let us equip Bt with the Hermitian metric

ρt := iαt ∧ ᾱt + iβt ∧ β̄t, t ∈ B.
The associated volume form is dVρt = ρ2t/2! = iαt ∧ ᾱt ∧ iβt ∧ β̄t. Denoting by ⋆ = ⋆ρt the Hodge
star operator induced by ρt, we can check as in Lemma 6.4.2 that the following identities hold

⋆ (iαt ∧ ᾱt) = iβt ∧ β̄t, ⋆ (iβt ∧ β̄t) = iαt ∧ ᾱt,
⋆ (iαt ∧ β̄t) = −iαt ∧ β̄t, ⋆ (iβt ∧ ᾱt) = −iβt ∧ ᾱt (6.75)
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for every t ∈ B.
Indeed, from the definition of the Hodge star operator, we know that

u ∧ ⋆ (iαt ∧ ᾱt) = ⟨u, iαt ∧ ᾱt⟩ dVρt .

When u is the product of a form chosen from αt, βt and a form chosen from ᾱt, β̄t, the two sides of
this identity are non-zero only when u = iαt ∧ ᾱt. In this case, we get

(iαt ∧ ᾱt) ∧ ⋆ (iαt ∧ ᾱt) = iαt ∧ ᾱt ∧ iβt ∧ β̄t,

so ⋆ (iαt ∧ ᾱt) must be the form complementary to iαt ∧ ᾱt. We get ⋆ (iαt ∧ ᾱt) = iβt ∧ β̄t. The
remaining identities in (6.75) are proved in an analogous way.

The last two identities in (6.75) show that iαt∧ β̄t and iβt∧ ᾱt are eigenvectors of ⋆ corresponding
to the eigenvalue −1, so they represent classes lying in H2

−(Bt, C). Meanwhile, the first two identities
in (6.75) can be re-written as

⋆ (iαt ∧ ᾱt + iβt ∧ β̄t) = iαt ∧ ᾱt + iβt ∧ β̄t and ⋆ (iαt ∧ ᾱt − iβt ∧ β̄t) = −(iαt ∧ ᾱt − iβt ∧ β̄t).

Therefore, iαt ∧ ᾱt + iβt ∧ β̄t represents a class lying in H2
+(Bt, C) and iαt ∧ ᾱt− iβt ∧ β̄t represents

a class lying in H2
−(Bt, C). □

A consequence of these considerations is that Proposition 6.4.4 can now be used to construct
coordinates on the complexification G̃0 ⊂ G̃X0 of the parameter set G0 = {[(ω1, 1

t )2]A | t ∈ B[γ]} ⊂ GX0

using the symplectic vector space (H2(B, C), QB(· , ·)) equipped with the bilinear intersection form
QB : H2(B, C)×H2(B, C)→ C defined by QB({u}, {v}) := −

∫
B
u ∧ v. Consider the following

Setup. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0 and let (Bt)t∈B be
the associated family of 2-dimensional Albanese tori. Let v = (vt)t∈B[γ]

be a holomorphic section of

the vector bundle B[γ] ∋ t 7→ H2, 0(Bt, C) such that each (2, 0)-form vt is non-vanishing on Bt. (We
may choose vt := αt ∧ βt.)

Let η0 = η3, 00 + η2, 10 + η2, 10 + η3, 00 ∈ H3(X, R) be a real class with η3, 00 ∈ H3, 0(X0, C), η2, 10 ∈
H2, 1

[γ] (X0, C) satisfying conditions (6.40) of Proposition 6.4.4. Thanks to isomorphism (6.74), there
exist unique classes

η2, 00, B ∈ H
2, 0(B0, C) and η1, 10, B ∈ H

1, 1(B0, C)

such that η3, 00 = η2, 00, B ∧ γ and η2, 10 = η1, 10, B ∧ γ. Put

η0, B := η2, 00, B +
η1, 10, B + η1, 10, B

2
+ η2, 00, B ∈ H

2(B0, R).

Complete η0, B to a symplectic basis {η0, B, η1, B, . . . , η4, B, ν0, B, ν1, B, . . . , ν4, B} of (H2(B0, R), QB(· , ·)).
Normalise such that

QB(vt, η0, B) = 1 for all t ∈ B sufficiently close to 0.

We can now state the result we have been aiming at.
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Proposition 6.5.16. In the setup described above, the functions

wi(t) := QB(vt, ηi, B) for t ∈ B[γ] and i ∈ {1, . . . , 4}

define holomorphic coordinates on B[γ] in a neighbourhood of 0 and implicitly on the complexified

parameter set G̃0, the complexification of

G0 =
{
[(ω1, 1

t )2]A

∣∣∣∣ t ∈ B[γ]

}
⊂ GX0 ,

in a neighbourhood of [ω2
0]A.

Proof. It runs along the lines of the proof of Proposition 6.4.4. □

6.6 The mirror map

We can now associate with every small deformation Xt of X0 an element in the Gauduchon cone of
X0 in which the canonical class [ω2

0]A = [(ω1, 1
0 )2]A is a marked point.

Definition 6.6.1. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0 and let
(ω1, 1

t )t∈B[γ]
be the smooth family of canonical Gauduchon metrics on X0 constructed in Proposition

6.5.2. For every t ∈ B[γ], let [(ω
1, 1
t )2]A ∈ GX0 = GX be the associated Aeppli cohomology class.

We define the positive mirror map of X = X0 by

M : B[γ] −→ GX , t 7→ [(ω1, 1
t )2]A, (6.76)

where GX is the Gauduchon cone of X = X0 (i.e. the open subset of H2, 2
A (X, R) consisting of real

positive classes). Thus, the parameter subset of the Gauduchon cone of X defined in (6.66) is
G0 =M(B[γ]).

From (6.46) and from Lemma 6.5.3 we get the following formula for the positive mirror map after
recalling that t3, 1 = t3, 2 = 0 when t ∈ B[γ]:

M(t) = 2

(
1− |t11|2 − |t21|2

)(
1− |t11 t22 − t12 t21|2

)[
i α ∧ ᾱ ∧ i γ ∧ γ̄

]
A

+ 2

(
1− |t12|2 − |t22|2

)(
1− |t11 t22 − t12 t21|2

)[
i β ∧ β̄ ∧ i γ ∧ γ̄

]
A

− 2

(
t12 t̄11 + t22 t̄21

)(
1− |t11 t22 − t12 t21|2

)[
i α ∧ β̄ ∧ i γ ∧ γ̄

]
A

− 2

(
t11 t̄12 + t21 t̄22

)(
1− |t11 t22 − t12 t21|2

)[
i β ∧ ᾱ ∧ i γ ∧ γ̄

]
A

, t ∈ B[γ]. (6.77)

Alternatively, formula (6.47) yields for every t ∈ B[γ]
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M(t) = [ω2
0]A

+ 2

(
c1(t) + c3(t) + c1(t) c3(t)

)[
i α ∧ ᾱ ∧ i γ ∧ γ̄

]
A

+ 2

(
c2(t) + c3(t) + c2(t) c3(t)

)[
i β ∧ β̄ ∧ i γ ∧ γ̄

]
A

+ 2 d(t)

(
1 + c3(t)

)[
i α ∧ β̄ ∧ i γ ∧ γ̄

]
A

+ 2 d(t)

(
1 + c3(t)

)[
i β ∧ ᾱ ∧ i γ ∧ γ̄

]
A

,(6.78)

where cj(t) and d(t) are defined by (6.46) with t3, 1 = t3, 2 = 0 when t ∈ B[γ].
Since B[γ] is an open subset in a vector space of complex dimension 4 (see Definition 6.2.2) while

GX is an open subset in a vector space of real dimension 4, we rebalance the two sides of (6.76) by
complexifying the latter set.

Definition 6.6.2. Let X = X0 be the Iwasawa manifold.

(i) We know from (6.58) that H2, 2
A (X0, C) injects canonically (and C-linearly) into H4

DR(X, C).
Similarly, H2, 2

A (X0, R) injects canonically (and R-linearly) into H4
DR(X, R). On the other hand, we

know that the image of H4(X, Z) in H4
DR(X, R) under the natural map H4(X, Z) ↪→ H4

DR(X, R) is
a lattice. We put

H2, 2
A (X0, Z) := H2, 2

A (X0, R) ∩H4(X, Z) ⊂ H2, 2
A (X0, R).

Thus H2, 2
A (X0, Z) is a lattice in H2, 2

A (X0, R).

(ii) We define the complexified Gauduchon cone of the Iwasawa manifold X = X0 by

G̃X0 := GX0 ⊕H
2, 2
A (X0, R)/2πiH2, 2

A (X0, Z).

(iii) We define the mirror map M̃ : B[γ] −→ G̃X0 of X = X0 by

M̃(t) = [ω2
0]A − t11 [i β ∧ ᾱ ∧ i γ ∧ γ̄]A + t22 [i α ∧ β̄ ∧ i γ ∧ γ̄]A

− t12 [i β ∧ β̄ ∧ i γ ∧ γ̄]A + t21 [i α ∧ ᾱ ∧ i γ ∧ γ̄]A.

Thus, the positive mirror mapM is a kind of “squared absolute value” of M̃.

(iv) We define the complexified parameter set by G̃0 := M̃(B[γ]). It contains the marked
point [ω2

0]A of the Gauduchon cone GX .

Thus, if the radius of B[γ] as an open ball about the origin in H0, 1(X, T 1, 0
X ) is small enough, M̃

defines a biholomorphism between B[γ] and the open subset G̃0 ⊂ G̃X ⊂ H2, 2
A (X0, C).

Our discussion can be summed up as follows.

Theorem 6.6.3. The mirror map M̃ : B[γ] −→ G̃X of the Iwasawa manifold X = X0 enjoys the
following properties.

(i) M̃ is holomorphic and defines a biholomorphism onto its image if the radius of B[γ] as an
open ball in H0, 1(X0, T

1, 0X0) is small enough;
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(ii) M̃(0) = [ω2
0]A ∈ GX , where ω0 is the Gauduchon metric on X canonically induced by the

complex parallelisable structure of X (cf. (6.19));

(iii) The composition of the canonical isomorphism At observed in (6.60) with Bt defined in
(6.56) and with the Kodaira-Spencer and the Calabi-Yau isomorphisms is the following canonical
isomorphism

T 1, 0
t B[γ] ≃ H2, 1

[γ] (Xt, C)
≃
−→
At
H2, 2
A (Xt, C)

≃
−→
Bt
H2, 2
A (X0, C) = T 1, 0

M̃(t)
G̃X , [Γ]∂̄ 7→ [Γ ∧ γ̄t]A = At([Γ]∂̄),

that coincides at t = 0 with the differential map dM̃0 of M̃ and depends anti-holomorphically on t;

(iv) On the metric side of the mirror, there is a variation of Hodge structures (VHS)

H3 ⊕H4 ⊃ FGH4 = H2, 0(B)⊕ H̃2, 2
ω ⊃ F ′

GH4 = H2, 0(B)

parametrised by G̃0 = M̃(B[γ]) ≃ B[γ] whose 4-dimensional fibre over any point M̃(t) ∈ G̃0 is the

vector subspace H̃2, 2
ωt := Qωt(H

2, 2
A (Xt, C)) ⊂ H4(X, C) defined in Conclusion 6.5.12. Moreover,

there exists a C∞ isomorphism of VHS between this VHS and the VHS

H3 ⊃ F 2H3
[γ] ⊃ F 3H3

parametrised by B[γ] and defined on the complex-structure side of the mirror in Theorem 6.3.10.
This isomorphism is holomorphic between the 1-dimensional parts H2, 0(B), resp. F 3H3 (it is

the multiplication by γt), while the isomorphism between the rank-4 vector bundles H2, 1
[γ] and H2, 2

A

(defining, up to identifications, the 4-dimensional parts of these VHS’s) is anti-holomorphic (given
by the At’s, the multiplication by γ̄t).

Moreover, each of the two Hodge filtrations F 2H3
[γ] ⊃ F 3H3 and FGH4 ⊃ F ′

GH4 is C∞ isomorphic

to the Hodge filtration F 1H2(B) ⊃ F 2H2(B) associated with the family (Bt)t∈B[γ]
of Albanese tori of

the small essential deformations (Xt)t∈B[γ]
of the Iwasawa manifold X = X0.

(v) There is a bijection(
z1(t), z2(t), z3(t), z4(t)

)
7→
(
w1(t), w2(t), w3(t), w4(t)

)
, t ∈ B[γ] (6.79)

depending holomorphically on t between the holomorphic coordinates defined in Proposition 6.4.4
on B[γ] in a neighbourhood of 0 and the holomorphic coordinates defined in Proposition 6.5.16 on

{[(ω1, 1
t )2]A / t ∈ B[γ]} ⊂ GX0 in a neighbourhood of [ω2

0]A.

Proof. (i) and (ii) follow from the construction. To prove (iii), we start by recalling that with the
notation α1 := α, α2 := β, ξ1 := ξα, ξ2 := ξβ, ξ3 := ξγ, the space H0, 1(X, T 1, 0X) consists of the
objects ∑

i=1,2,3
λ=1,2

tiλ ξi ⊗ ᾱλ

where the tiλ define holomorphic coordinates on ∆. Also recall that t31 = t32 = 0 on B[γ]. Thus, the
holomorphic tangent space to B[γ] at 0 is generated by ∂/∂t11, ∂/∂t12, ∂/∂t21, ∂/∂t22 and the images
of these vector fields under the composition of the Kodaira-Spencer map ρ with the Calabi-Yau
isomorphism TΩ (= ·⌟(α ∧ β ∧ γ))

T 1, 0
0 B[γ]

ρ−→
≃

H0, 1
[γ] (X, T

1, 0X)
TΩ−→
≃

H2, 1
[γ] (X, C)
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(cf. (6.7)) are spelt out as follows

∂

∂t11
7→ [ξ1 ⊗ ᾱ1 = ξα ⊗ ᾱ] 7→ −[β ∧ γ ∧ ᾱ]∂̄,

∂

∂t12
7→ [ξ1 ⊗ ᾱ2 = ξα ⊗ β̄] 7→ −[β ∧ γ ∧ β̄]∂̄,

∂

∂t21
7→ [ξ2 ⊗ ᾱ1 = ξβ ⊗ ᾱ] 7→ [α ∧ γ ∧ ᾱ]∂̄,

∂

∂t22
7→ [ξ2 ⊗ ᾱ2 = ξβ ⊗ β̄] 7→ [α ∧ γ ∧ β̄]∂̄.(6.80)

We get

dM̃
(

∂

∂t11

)
=

∂M̃
∂t11

= −[i β ∧ ᾱ ∧ i γ ∧ γ̄]A = A0(−[β ∧ γ ∧ ᾱ]∂̄) ≃ A0

(
∂

∂t11

)
,

dM̃
(

∂

∂t22

)
=

∂M̃
∂t22

= [i α ∧ β̄ ∧ i γ ∧ γ̄]A = A0([α ∧ γ ∧ β̄]∂̄) ≃ A0

(
∂

∂t22

)
,

dM̃
(

∂

∂t12

)
=

∂M̃
∂t12

= − [i β ∧ β̄ ∧ i γ ∧ γ̄]A = A0(−[β ∧ γ ∧ β̄]∂̄) ≃ A0

(
∂

∂t12

)
,

dM̃
(

∂

∂t21

)
=

∂M̃
∂t21

= [i α ∧ ᾱ ∧ i γ ∧ γ̄]A = A0([α ∧ γ ∧ ᾱ]∂̄) ≃ A0

(
∂

∂t21

)
,

where ≃ stands for the identifications under (6.80).

We conclude that dM̃0 = A0, so part (iii) is proved at t = 0.
(iv) is contained in Theorem 6.3.10, Corollary 6.3.11 and Conclusion 6.5.12.
(v) is contained in Propositions 6.4.4 and 6.5.16.

6.7 Further computations in the case of the Iwasawa man-

ifold

We spell out the details of the computations of the first-order anti-holomorphic partial derivatives
of the forms Γj(t) defined in (6.20) for j ∈ {1, 2, 3, 4}.

Recall the following identities proved in (6.42):

αt = α + t11 ᾱ + t12 β̄, βt = β + t21 ᾱ + t22 β̄, γt = γ + t31 ᾱ + t32 β̄ −D(t) γ̄.

So we get

Γ1(t) = (α + t11 ᾱ + t12 β̄) ∧ (γ + t31 ᾱ + t32 β̄ −D(t) γ̄) ∧ (ᾱ + t̄11 α + t̄12 β)

− σ22̄(t)

σ̄12(t)
(α + t11 ᾱ + t12 β̄) ∧ (β + t21 ᾱ + t22 β̄) ∧ (γ̄ + t̄31 α + t̄32 β −D(t) γ)

= −
[
α ∧ ᾱ + t̄12 α ∧ β − |t11|2 α ∧ ᾱ + t11 t̄12 ᾱ ∧ β − t12 ᾱ ∧ β̄ − t12 t̄11 α ∧ β̄ − |t12|2 β ∧ β̄

]
∧(γ + t31 ᾱ + t32 β̄ −D(t) γ̄)

− σ22̄(t)

σ̄12(t)

[
α ∧ β + t21 α ∧ ᾱ + t22 α ∧ β̄ + t11 ᾱ ∧ β + t11 t22 ᾱ ∧ β̄ − t12 β ∧ β̄ − t12 t21 ᾱ ∧ β̄

]
∧(γ̄ + t̄31 α + t̄32 β −D(t) γ).

After expanding and grouping the terms, we get
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Lemma 6.7.1. For every t ∈ B[γ], the Jt-(2, 1)-form Γ1(t) of (6.20) is explicitly given by the
following formula in terms of a basis of 3-forms generated by α, β, γ and their conjugates:

Γ1(t) = −t̄12 α ∧ β ∧ γ

− D(t)

(
t12 +

σ22̄(t)

σ̄12(t)

)
ᾱ ∧ β̄ ∧ γ̄ −

(
1− |t11|2 −

σ22̄(t)

σ̄12(t)
t21D(t)

)
α ∧ ᾱ ∧ γ

−
[
t32 (1− |t11|2) + t12 t̄11 t31 −

σ22̄(t)

σ̄12(t)
D(t) t̄31

]
α ∧ ᾱ ∧ β̄

−
[
t̄12 t31 −

σ22̄(t)

σ̄12(t)
(t21 t̄32 + t11 t̄31)

]
α ∧ β ∧ ᾱ−

[
(|t11|2 − 1)D(t) +

σ22̄(t)

σ̄12(t)
t21

]
α ∧ ᾱ ∧ γ̄

−
[
t̄12 t32 −

σ22̄(t)

σ̄12(t)
(t22 t̄32 + t12 t̄31)

]
α ∧ β ∧ β̄ +

[
t̄12D(t)− σ22̄(t)

σ̄12(t)

]
α ∧ β ∧ γ̄

−
[
t11 t̄12 −

σ22̄(t)

σ̄12(t)
t11D(t)

]
ᾱ ∧ β ∧ γ −

[
t11 t̄12 t32 − |t12|2 t31 −

σ22̄(t)

σ̄12(t)
D(t) t̄32

]
ᾱ ∧ β ∧ β̄

+

[
D(t) t11 t̄12 −

σ22̄(t)

σ̄12(t)
t11

]
ᾱ ∧ β ∧ γ̄ +

[
t12 +

σ22̄(t)

σ̄12(t)
|D(t)|2

]
ᾱ ∧ β̄ ∧ γ

+

[
t12 t̄11 +

σ22̄(t)

σ̄12(t)
t22D(t)

]
α ∧ β̄ ∧ γ +

σ22̄(t)

σ̄12(t)
D(t)α ∧ β ∧ γ +

[
t12 t̄11D(t) +

σ22̄(t)

σ̄12(t)
t22

]
α ∧ β̄ ∧ γ̄

+

[
|t12|2 −

σ22̄(t)

σ̄12(t)
t12D(t)

]
β ∧ β̄ ∧ γ −

[
|t12|2D(t)− σ22̄(t)

σ̄12(t)
t12

]
β ∧ β̄ ∧ γ̄.

Analogous formulae hold for the Jt-(2, 1)-forms Γ2(t), Γ3(t), Γ4(t) of (6.20). Each formula
contains on the r.h.s. a single term featuring an isolated anti-holomorphic factor t̄iλ (i.e. an anti-
holomorphic factor t̄iλ that is not multiplied by any other tjµ or t̄jµ). These terms are, respectively,

−t̄22 α ∧ β ∧ γ, t̄11 α ∧ β ∧ γ, t̄21 α ∧ β ∧ γ.

On the other hand, the dependence on t of the C∞ functions σ12(t), σ11̄(t), σ12̄(t), σ21̄(t), σ22̄(t)
can be made explicit using computations from [Ang14]. Indeed, consider the following functions of
t (cf. [Ang14, p. 76] where the notation α, β, γ was used instead of a(t), b(t), c(t) featuring below):

a(t) =
1

1− |t22|2 − t21 t̄12
, b(t) = t21 t̄11+t22 t̄21, c(t) =

1

1− |t11|2 − a(t) b(t) (t11 t̄12 + t12 t̄22)− t̄12 t̄21
,

λ1(t) = −t11 (1 + a(t) t̄12 t21 + a(t) |t22|2), λ2(t) = a(t) (t11 t̄12 + t12 t̄22),

λ3(t) = −t12 (1 + a(t) t̄12 t21 + a(t) |t22|2), µ0(t) = b(t) c(t), µ1(t) = λ1(t) b(t) c(t)− t21,
µ2(t) = 1 + λ2(t) b(t) c(t), µ3(t) = λ3(t) b(t) c(t)− t22.

Then, for all t in Nakamura’s class (ii), we have the explicit formulae (cf. e.g. [Ang14, p.77]):

σ12(t) = −c(t) + t21 λ̄3(t) c̄(t) + t22 ā(t) µ̄3(t),

and
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σ11̄(t) = t21 c(t) (1 + t21 t̄12 a(t) + |t22|2 a(t)), σ12̄(t) = t22 c(t) (1 + t21 t̄12 a(t) + |t22|2 a(t)),
σ21̄(t) = −t11 c(t) (1 + t21 t̄12 a(t) + |t22|2 a(t)), σ22̄(t) = −t12 c(t) (1 + t21 t̄12 a(t) + |t22|2 a(t)).

This explicitly yields

σ22̄(t) = −t12
1 + t21 t̄12

1−|t22|2−t21 t̄12 +
|t22|2

1−|t22|2−t21 t̄12

1− |t11|2 − (t11 t̄12+t12 t̄22)(t21 t̄11+t22 t̄21)
1−|t22|2−t21 t̄12 − t12 t̄21

(6.81)

and analogous formulae for σ11̄(t), σ12̄(t), σ21̄(t) with a different holomorphic factor ±tiλ and a
possibly conjugated big fraction.

The conclusion is the following

Lemma 6.7.2. For all t in Nakamura’s class (ii) and for all i, λ, we have

∂σ11̄
∂t̄iλ

(0) =
∂σ12̄
∂t̄iλ

(0) =
∂σ21̄
∂t̄iλ

(0) =
∂σ22̄
∂t̄iλ

(0) = 0. (6.82)

The same conclusion holds for all t in Nakamura’s class (iii), hence in particular for all t ∈ B[γ],
by very similar computations.

Proof. Whenever some t̄iλ features in formula (6.81) for σ22̄(t) or in one of its analogues for σ11̄(t),
σ12̄(t) and σ21̄(t), it is multiplied by a factor tjµ or t̄jµ which vanishes at t = 0, while the denominators
on the r.h.s. of (6.81) equal 1 at t = 0. □

6.8 Essential deformations of page-1-∂∂̄-manifolds

This section, in which the notion of essential deformations of the Iwasawa manifold is extended to
the whole class of page-1-∂∂̄-manifolds, is taken from [PSU20c]. It generalises the discussion of §.6.2.

The undertaking is motivated by the fact that unobstructedness of the Kuranishi family occurs
for some well-known compact complex manifolds that are not ∂∂̄-manifolds but are page-1-∂∂̄-
manifolds, such as the Iwasawa manifold I(3) and its 5-dimensional counterpart I(5). The point we
will make is that I(3) and I(5) are not isolated examples, but they are part of a pattern. The fairly
large class of Calabi-Yau page-1-∂∂̄-manifolds, that contains I(3) and I(5), seems well suited for an
application of the generalised mirror symmetry theory presented in this chapter.

We will first discuss non-essential deformations, mainly the complex parallelisable deformations
of a complex parallelisable nilmanifold, in order to emphasise the contrast with the essential defor-
mations that are defined subsequently in this more general context.

6.8.1 Small non-essential deformations

A key point made in §.6.2.2 was: I(3) is a complex parallelisable nilmanifold, so removing from its
Kuranishi family its complex parallelisable small deformations, which have the same geometry as
I(3), does not induce any loss of geometric information. This point is now generalised to the context
of arbitrary complex parallelisable nilmanifolds.

Theorem 6.8.1. Let X = G/Γ be a complex parallelisable nilmanifold, where G is a simply
connected nilpotent complex Lie group and Γ ⊂ G is a lattice. The universal cover of any complex
parallelisable small deformation of X is isomorphic to G as a Lie group with left-invariant complex
structure.
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Note that this result does not state that the corresponding small deformations of X are them-
selves biholomorphic. For example, when X is a torus, we only recover the fact that the universal
cover of each small deformation is Cn (while, of course, the lattice changes).

Before proving Theorem 6.8.1, we make a few preliminary observations.

For complex parallelisable nilmanifolds X = G/Γ, where G is a simply connected nilpotent
complex Lie group and Γ ⊆ G a lattice, the Dolbeault cohomology can be computed by left invariant
forms (cf. [Sak76]). In particular, one has (cf. [Nak75]):

H0,1(X,T 1,0X) ∼= H0, 1(X,C)⊗ g1,0 = (ker ∂̄ ∩ A0,1
g )⊗ g1,0,

where g is the Lie algebra of G.
Furthermore, g is actually a complex Lie algebra and g1,0 ⊆ gC is a complex subalgebra. In fact,

one has an identification of complex Lie algebras g ∼= g1,0 given by z 7→ 1
2
(z− iJz). In what follows,

we will always tacitly use the above identifications.
Of particular interest are the cohomology classes in

Hpar(X) := H0, 1(X,C)⊗ Z(g) = (ker ∂̄ ∩ A0,1
g )⊗ Z(g) ⊂ H0,1(X,T 1,0X),

where Z(g) is the centre of g (which coincides with the Lie algebra of the centre Z(G) of G since
G is connected). They will be called infinitesimally complex parallelisable deformations of X due to
the following

Theorem 6.8.2. ([Rol11]) Let X = G/Γ be a complex parallelisable nilmanifold. Let µ ∈ H0,1(X,T 1,0X).
The following statements are equivalent.

1. µ ∈ Hpar(X).

2. For all X, Y ∈ g, one has [X,µY ] = 0.

3. tµ induces a 1-parameter family of complex parallelisable manifolds for t small enough.

Moreover, for each such µ, the sequence of equations (Eq. (ν))ν≥1 (equivalently, (2.15)) is solvable
with ψ = ψ1 = µ.

We will show that the cohomology is the same for all the complex parallelisable small deformations
of a given complex parallelisable nilmanifold X = G/Γ. This is a consequence of Theorem 6.8.1 that
we now prove.

Proof of Theorem 6.8.1. It is known that all small deformations of a left-invariant complex structure
on a complex parallelisable nilmanifold X = G/Γ are again left-invariant (cf. [Rol11, sect. 4]).

On the other hand, the C∞ manifold underlying the universal cover of any sufficiently small
deformation Xt of X = X0 is again G, since it depends only on the smooth structure of Xt which
is the same as that of X = X0 when t is sufficiently close to 0. Obviously, the C∞ manifold G is
determined entirely by g through the Lie-group/Lie-algebra correspondence. However, the complex
structure induced on G by the complex structure of Xt varies with µ. Since it remains left-invariant,
it depends only on the complex structure on the Lie algebra g, so it is determined by the splitting
gC = g0,1µ ⊕ g1,0µ into i- and (−i)-eigenspaces, which can be computed from the complex structure of

the central fibre X = X0 via g0,1µ = (Id+µ)g0,10 and g1,0µ = (Id+µ̄)g1,00 .
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Claim 6.8.3. The linear map of vector spaces

α : gC −→ gC,

defined as (Id+µ) on g0,10 and as (Id+µ) on g1,00 , is an isomorphism of Lie algebras.

Proof of Claim 6.8.3. Since µ is small, α is an isomorphism of vector spaces and the point is to show
that it is also a morphism of Lie algebras. We use [X, Ȳ ] = 0 for all X ∈ g1,0 and Ȳ ∈ g0,1. Since
µ ∈ H0, 1(X,C)⊗ Z(g), one also has [X,µȲ ] = 0, so [Z, µȲ ] = [Z, µ̄X] = 0 for any Z ∈ gC. So, for
X̄, Ȳ ∈ g0,1, we have:

[αX̄, αȲ ] = [X̄, Ȳ ] + [µX̄, µȲ ] + [µX̄, Ȳ ] + [X̄, µȲ ]

= [X̄, Ȳ ] = [X̄, Ȳ ] + µ([X̄, Ȳ ]) = α([X̄, Ȳ ]).

Regarding the last-but-one equality, recall Cartan’s formula (∂̄η̄)(X̄, Ȳ ) = −η̄([X̄, Ȳ ]) that holds
for any left-invariant (0, 1)-form η̄ and that µ ∈ ker ∂̄ ∩ A0,1

g ⊗ Z(g). Therefore, µ([X̄, Ȳ ]) =
−(∂̄µ)(X̄, Ȳ ) = 0. By a similar argument, [αX,αY ] = α([X, Y ]) for X, Y ∈ g1,0.

Finally, for all X ∈ g1, 0 and all Ȳ ∈ g0,1, we have:

[αX,αȲ ] = [X, Ȳ ] + [µ̄X, µȲ ] + [µ̄X, Ȳ ] + [X,µȲ ]

= 0 = α([X, Ȳ ]).

Summing up, α is an isomorphism of Lie algebras. Thus, we get an induced isomorphism G → G
which by construction is compatible with the complex structures corresponding to 0 resp. µ.

This finishes the proof of Claim 6.8.3 and that of Theorem 6.8.1. □

The next statement is a general result in the context of non-essential complex parallelisable defor-
mations. It says that for any complex parallelisable small deformation Xt of a complex parallelisable
nilmanifold X0, all types of cohomology discussed in this book (De Rham, Dolbeault, Bott-Chern,
Aeppli and their higher-page analogues discussed in chapter 3) remain unchanged. Thus, much as
in the special case where X0 = I(3), the complex parallelisable small deformations have the same
geometry as X0.

Corollary 6.8.4. Let X ′ be a complex parallelisable small deformation of a complex parallelisable
nilmanifold X. Then, there exists an isomorphism between the double complexes of left invariant
forms on X and X ′.

In particular, there exist isomorphisms H(X) ∼= H(X ′), where H stands for any cohomology of
one of the following types: Dolbeault, Frölicher Er, De Rham, Bott-Chern, Aeppli and higher-page
Bott-Chern and Aeppli.

Proof. The first statement follows from Claim 6.8.3, since the double complex of left invariant forms
can be computed in terms of the Lie-algebra with its complex structure, while the second follows
from [Ste20, Prop. 12] and the fact that for any nilmanifold X = G/Γ, the inclusion of the double
complex of left-invariant forms on G into all forms onX is an E1-isomorphism. (This is conjectured
to hold for all complex nilmanifolds and it is known for complex parallelisable ones, see [Sak76]).
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6.8.2 Small essential deformations of Calabi-Yau manifolds

The notion of essential deformations was introduced in [Pop18a] in the special case of the Iwasawa
manifold I(3) (see §.6.2.2). We will now extend it to a larger class of Calabi-Yau manifolds.

Let X be a compact complex manifold with dimCX = n. Recall that, for every integer r ≥ 1
and every bidegree (p, q), the vector space of smooth Er-closed (resp. Er-exact) (p, q)-forms on X
is denoted by Zp, qr (X) (resp. Cp, qr (X)). Let us now define the following vector subspace of Ep, q

1 (X):

Ep, q
1 (X)0 :=

{α ∈ C∞
p, q(X) | ∂̄α = 0 and ∂α ∈ Im ∂̄}
{∂̄β | β ∈ C∞

p, q−1(X)}
=
Zp, q2 (X)

Cp, q1 (X)
⊂ Ep, q

1 (X).

In other words, Ep, q
1 (X)0 = ker d1 consists of the E1-cohomology classes (i.e. Dolbeault cohomology

classes) representable by E2-closed forms of type (p, q).

Lemma 6.8.5. For all p, q, the canonical linear map

P p, q : Ep, q
1 (X)0 → Ep, q

2 (X), {α}E1 7→ {α}E2 ,

is well defined and surjective. Its kernel consists of the E1-cohomology classes representable by
E2-exact forms of type (p, q).

In particular, P p, q is injective (hence an isomorphism) if and only if Cp, q1 (X) = Cp, q2 (X).

Proof. Well-definedness means that P p, q({α}E1) is independent of the choice of representative of
the class {α}E1 ∈ E

p, q
1 (X)0. This follows from the inclusion Cp, q1 (X) ⊂ Cp, q2 (X). The other three

statements are obvious. □

Let us now fix a Hermitian metric ω on X. By the Hodge theory for the E2-cohomology in-
troduced in [Pop16] (and used e.g. in [PSU20b]) and the standard Hodge theory for the Dolbeault
cohomology, there are Hodge isomorphisms:

En−1, 1
2 (X) ≃ Hn−1, 1

2 = Hn−1, 1
2, ω and En−1, 1

1 (X) ≃ Hn−1, 1
1 = Hn−1, 1

1, ω

associating with every E2- (resp. E1-)class its unique E2- (resp. E1-)harmonic representative (w.r.t.
ω), where the ω-dependent harmonic spaces are defined by

Hn−1, 1
2 := ker(∆̃ : C∞

n−1, 1(X)→ C∞
n−1, 1(X)) ⊂ Hn−1, 1

1 := ker(∆′′ : C∞
n−1, 1(X)→ C∞

n−1, 1(X))

and ∆̃ = ∂p′′∂⋆ + ∂⋆p′′∂ + ∆′′ is the pseudo-differential Laplacian introduced in [Pop16] and ∆′′ =
∂̄∂̄⋆ + ∂̄⋆∂̄ is the standard ∂̄-Laplacian, both associated with the metric ω. (Recall that p′′ is the
L2
ω-orthogonal projection onto ker∆′′.)

Definition 6.8.6. Let (X, ω) be an n-dimensional compact complex Hermitian manifold. The ω-lift
of the canonical linear surjection P n−1, 1 : En−1, 1

1 (X)0 ↠ En−1, 1
2 (X) introduced in Lemma 6.8.5 is

the ω-dependent linear injection

Jn−1, 1
ω : En−1, 1

2 (X) ↪→ En−1, 1
1 (X)0

induced by the inclusion Hn−1, 1
2, ω ⊂ Hn−1, 1

1, ω , namely the map Jn−1, 1
ω that makes the following diagram

commutative:
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En−1, 1
2 (X)

Jn−1, 1
ω−−−−→ En−1, 1

1 (X)

≃
y ≃

y
Hn−1, 1

2, ω
inclusion−−−−−−−→ Hn−1, 1

1, ω ,

where the vertical arrows are the Hodge isomorphisms.

It follows from the definitions that the image of the injection Jn−1, 1
ω : En−1, 1

2 (X) −→ En−1, 1
1 (X)

defined by the above commutative diagram is contained in En−1, 1
1 (X)0 and we have

P n−1, 1 ◦ Jn−1, 1
ω = IdEn−1, 1

2 (X).

Thus, every Hermitian metric ω on X induces a natural injection Jn−1, 1
ω of En−1, 1

2 (X) into
En−1, 1

1 (X) (and even into En−1, 1
1 (X)0). In particular, if a canonical metric ω0 exists on X (in

the sense that ω0 depends only on the complex structure of X with no arbitrary choices involved
in its definition), the associated map Jn−1, 1

ω0
constitutes a canonical injection of En−1, 1

2 (X) into

En−1, 1
1 (X).
We now specialize to page-1-∂∂̄-manifolds. We refer to [PSU20a] for their definition and proper-

ties.

Definition 6.8.7. Let X be a compact complex n-dimensional Calabi-Yau page-1-∂∂̄-manifold.
Suppose that X carries a canonical Hermitian metric ω0.

The space of small essential deformations of X is defined as the image in En−1, 1
1 (X) of the

canonical injection Jn−1, 1
ω0

, namely

En−1, 1
1 (X)ess := Jn−1, 1

ω0
(En−1, 1

2 (X)) ⊂ En−1, 1
1 (X).

Remark 6.8.8. If the page-1-∂∂̄-assumption on X is replaced by a more general one (for example,
the page-r-∂∂̄-assumption for some r ≥ 2 or merely the Er(X) = E∞(X) assumption for a specific
r ≥ 2), one can define a version of essential deformations using higher pages than the second one.
The most natural choice is the degenerating page Er = E∞ of the FSS if r > 2. Since at the moment
we are mainly interested in page-1-∂∂̄-manifolds, we confine ourselves to E2.

Example 6.8.9. (The Iwasawa manifold) If α, β, γ are the three canonical holomorphic (1, 0)-
forms induced on the complex 3-dimensional Iwasawa manifold X = G/Γ by dz1, dz2, dz3 − z1 dz2
from C3 (the underlying complex manifold of the Heisenberg group G), it is well known that α and
β are d-closed, while dγ = ∂γ = −α ∧ β ̸= 0. It is equally standard that the Dolbeault cohomology
group of bidegree (2, 1) is generated as follows:

E2, 1
1 (X) =

〈
[α ∧ γ ∧ α]∂̄, [α ∧ γ ∧ β]∂̄, [β ∧ γ ∧ α]∂̄, [β ∧ γ ∧ β]∂̄

〉
⊕
〈
[α ∧ β ∧ α]∂̄, [α ∧ β ∧ β]∂̄

〉
.

In particular, we see that every E1-class of bidegree (2, 1) can be represented by a d-closed form.
Since every pure-type d-closed form is also E2-closed (and, indeed, Er-closed for every r), we get

E2, 1
1 (X) = E2, 1

1 (X)0.

It is equally standard that the E2-cohomology group of bidegree (2, 1) is generated as follows:

E2, 1
2 (X) =

〈
[α ∧ γ ∧ α]E2 , [α ∧ γ ∧ β]E2 , [β ∧ γ ∧ α]E2 , [β ∧ γ ∧ β]E2

〉
.
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It identifies canonically with the vector subspace

H2, 1
[γ] (X) =

〈
[α∧γ∧α]∂̄, [α∧γ∧β]∂̄, [β∧γ∧α]∂̄, [β∧γ∧β]∂̄

〉
≃ E2, 1

1 (X)

/〈
[α∧β∧ᾱ]∂̄, [α∧β∧β̄]∂̄

〉
of E2, 1

1 (X) introduced in [Pop18a, §.4.2] as parametrising the essential deformations defined there
for the Iwasawa manifold X.

On the other hand, let
ω0 := iα ∧ ᾱ + iβ ∧ β̄ + iγ ∧ γ̄

be the Hermitian (even balanced) metric on X canonically induced by the complex parallelisable
structure of X. It can be easily seen that the vector space of small essential deformations coincides
with the space H2, 1

[γ] (X) of [Pop18a]:

E2, 1
1 (X)ess = J2, 1

ω0
(E2, 1

2 (X)) = H2, 1
[γ] (X) ⊂ E2, 1

1 (X).

Example 6.8.10. (The Kuranishi family of the 5-dimensional Iwasawa-type manifold)

Let us now consider the specific example of the complex parallelisable nilmanifold X = I(5) of
complex dimension 5. Its complex structure is described by five holomorphic (1, 0)-forms φ1, . . . , φ5

satisfying the equations:

dφ1 = dφ2 = 0, dφ3 = φ1 ∧ φ2, dφ4 = φ1 ∧ φ3, dφ5 = φ2 ∧ φ3.

If θ1, . . . , θ5 form the dual basis of (1, 0)-vector fields, then [θi, θj] = 0 except in the following cases:

[θ1, θ2] = −θ3, [θ1, θ3] = −θ4, [θ2, θ3] = −θ5,

hence also [θ2, θ1] = θ3, [θ3, θ1] = θ4, [θ3, θ2] = θ5.

In particular, H0, 1(X, T 1. 0X) = ⟨[φ1⊗θi], [φ2⊗θi] | i = 1, . . . , 5⟩, so dimCH
0, 1(X, T 1. 0X) = 10.

This manifold is the 5-dimensional analogue of the 3-dimensional Iwasawa manifold I(3). The
following fact was observed in [Rol11].

Proposition 6.8.11. The Kuranishi family of the 5-dimensional nilmanifold I(5) is unobstructed.

Proof. Consider any ψ1(t) :=
5∑
i=1

2∑
λ=1

tiλ θi φλ with arbitrary coefficients tiλ ∈ C such that |t| is close

to 0. Then

[ψ1(t), ψ1(t)] =
5∑

i, j=1

2∑
λ, µ=1

tiλ tjµ [θi, θj]φλ ∧ φµ.

Since [θi, θj] = 0 except when (i, j) ∈ {(1, 2), (2, 1), (1, 3), (3, 1), (2, 3), (3, 2)}, we get

[ψ1(t), ψ1(t)] = [−(t11t22 − t21t12) θ3 + (t12t21 − t22t11) θ3 − (t11t32 − t31t12) θ4 + (t12t31 − t32t11) θ4
− (t21t32 − t31t22) θ5 + (t22t31 − t32t21) θ5]φ1 ∧ φ2

= 2 [D21(t) θ3 +D31(t) θ4 +D32(t) θ5] φ1 ∧ φ2,
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where we set Dji := D12
ji and

Dλµ
ji :=

∣∣∣∣tiµ tjλ
tjµ tiλ

∣∣∣∣
.
Since φ1 ∧ φ2 = ∂̄φ3, equation (Eq. 2) reads

∂̄ψ2(t) = (D21(t) θ3 +D31(t) θ4 +D32(t) θ5) ∂̄φ3,

so an obvious solution is ψ2(t) = (D21(t) θ3 +D31(t) θ4 +D32(t) θ5) φ3.
We now go on to compute

[ψ1(t), ψ2(t)] =
5∑
i=1

2∑
λ=1

tiλD21(t) [θi, θ3]φλ ∧ φ3

+
5∑
i=1

2∑
λ=1

tiλD31(t) [θi, θ4]φλ ∧ φ3 +
5∑
i=1

2∑
λ=1

tiλD32(t) [θi, θ5]φλ ∧ φ3

All the terms on the second line above vanish since [θi, θ4] = [θi, θ5] = 0 for all i, and so do the
terms with i /∈ {1, 2} on the first line (see (6.83)), so using (6.83) we get

[ψ1(t), ψ2(t)] = −
2∑

λ=1

t1λD21(t) θ4 φλ ∧ φ3 −
2∑

λ=1

t2λD21(t) θ5 φλ ∧ φ3.

We infer that equation (Eq. 3) ∂̄ψ3(t) = [ψ1(t), ψ2(t)] has the obvious solution

ψ3(t) = −D21(t) [(t11 θ4 + t21 θ5)φ4 + (t12 θ4 + t22 θ5)φ5].

To study equation (Eq. 4), namely

∂̄ψ4(t) = [ψ1(t), ψ3(t)] +
1

2
[ψ2(t), ψ2(t)],

we notice that [ψ1(t), ψ3(t)] = [ψ2(t), ψ2(t)] = 0 because [θi, θ4] = [θi, θ5] = 0 for all i and [θ3, θ3] =
0. Consequently, equation (Eq. 4) is the trivial equation ∂̄ψ4(t) = 0 admitting the trivial solution
ψ4(t) = 0.

We conclude that the Kuranishi family of X is unobstructed and the deformations of its complex

structure in any pregiven direction ψ1(t) :=
5∑
i=1

2∑
λ=1

tiλ θi φλ are defined by the finite sum

ψ(t) =
5∑
i=1

2∑
λ=1

tiλ θi φλ+(D21(t) θ3+D31(t) θ4+D32(t) θ5) φ3−D21(t) [(t11 θ4+t21 θ5)φ4+(t12 θ4+t22 θ5)φ5].

So, no convergence issues are involved. □

Example 6.8.12. (The manifold I(5)) Let X = I(5) be the complex parallelisable nilmanifold of
complex dimension 5 described in Example 6.8.10 (i.e. the 5-dimensional analogue of the Iwasawa
manifold.) It is a page-1-∂∂̄-manifold by [PSU20a, Thm. 4.7].

We will use the standard notation φi1...ipj̄1...j̄q := φi1 ∧ · · · ∧ φip ∧ φj1 ∧ · · · ∧ φjq .
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For every l ∈ {3, 4, 5}, the linear map

Tl : H
0, 1(X, T 1, 0X) −→ H0, 1(X), [θ] 7→ [θ⌟φl],

is well defined. If we set

H0, 1
ess (X, T

1, 0X) := kerT3 ∩ kerT4 ∩ kerT5 ⊂ H0, 1(X, T 1, 0X),

and define H4, 1
ess (X) ⊂ H4, 1(X) to be the image of H0, 1

ess (X, T
1, 0X) under the Calabi-Yau isomor-

phism H0, 1(X, T 1, 0X) −→ H4, 1(X) w.r.t. u = φ1 ∧ . . . ∧ φ5, we get the following description:

H4, 1
ess (X) =

〈
[φ23451̄]∂̄, [φ13451̄]∂̄, [φ23452̄]∂̄, [φ13452̄]∂̄

〉
.

Moreover, we have the following identities of C-vector spaces:

H4, 1
ess (X) = E4, 1

1 (X)ess := J4, 1
ω0

(E4, 1
2 (X)) ⊂ E4, 1

1 (X),

where

ω0 :=
5∑
j=1

iφj ∧ φj,

is the canonical metric of I(5).

6.8.3 Deformation unobstructedness for page-1-∂∂̄-manifolds

In this subsection, we prove a generalisation of the Bogomolov-Tian-Todorov Theorem 2.4.7. It says
that, under certain cohomological conditions, the unobstructedness phenomenon described in the
next definition holds when the ∂∂̄-assumption is weakened to the page-1-∂∂̄-assumption.

Definition 6.8.13. Let X be a Calabi-Yau page-1-∂∂̄-manifold with dimCX = n. Fix a non-
vanishing holomorphic (n, 0)-form u on X.

We say that the essential Kuranishi family of X is unobstructed if every E2-class in
En−1, 1

2 (X) admits a representative ψ1(t)⌟u such that the integrability condition (2.15) is satis-
fied (i.e. all the equations (Eq. (ν)) in (2.22) of §.2.3.1 are solvable) when starting off with
ψ1(t) ∈ C∞

0, 1(X, T
1, 0X).

Meanwhile, for any bidegree (p, q), we let Zp, qr (X) stand for the vector space of smooth Er-closed
(p, q)-forms on X. (These are the smooth (p, q)-forms on X that represent Er-cohomology classes
on the r-th page of the Frölicher spectral sequence. See e.g. Proposition 2.3 in [PSU20b] for a
description of them.)

Theorem 6.8.14. Let X be a compact Calabi-Yau page-1-∂∂̄-manifold with dimCX = n. Fix a
non-vanishing holomorphic (n, 0)-form u on X and suppose that

ψ1(t)⌟(ρ1(s)⌟u) ∈ Zn−2, 2
2 (6.83)

for all ψ1(t), ρ1(s) ∈ C∞
0, 1(X, T

1, 0X) such that ψ1(t)⌟u, ρ1(s)⌟u ∈ ker d ∪ Im ∂.

(i) Then, the essential Kuranishi family of X is unobstructed.

(ii) If, moreover, Zn−1, 1
1 = Zn−1, 1

2 , the Kuranishi family of X is unobstructed.
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Before proving Theorem 6.8.14, we make a few comments. First, we notice an equivalent for-
mulation for the assumption made in (ii). Needless to say, the inclusion Zn−1, 1

2 ⊂ Zn−1, 1
1 always

holds.

Lemma 6.8.15. Let X be a compact complex page-1-∂∂̄-manifold with dimCX = n. Then,
Zn−1, 1

1 = Zn−1, 1
2 if and only if every Dolbeault cohomology class of bidegree (n− 1, 1) can be repre-

sented by a d-closed form.

Proof. Let α ∈ C∞
n−1, 1(X) be an arbitrary ∂̄-closed form, i.e. α ∈ Zn−1, 1

1 . The class {α}∂̄ can
be represented by a d-closed form if and only if there exists β of bidegree (n − 1, 0) such that
∂(α + ∂̄β) = 0. This is equivalent to ∂α being ∂∂̄-exact, which implies that ∂α is ∂̄-exact.

Conversely, since X is a page-1-∂∂̄-manifold, the ∂̄-exactness of ∂α implies its ∂∂̄-exactness.
Indeed, ∂̄α = 0 and if ∂α is ∂̄-exact, then α ∈ Zn−1, 1

2 , so ∂α ∈ ∂(Zn−1, 1
2 ). Now, ∂(Zn−1, 1

2 ) = Im (∂∂̄)
thanks to property (i) in characterisation (F) of the page-1-∂∂̄-property given in [PSU20b, Thm.
4.3] (with r = 2). Therefore, ∂α ∈ Im (∂∂̄) whenever α ∈ Zn−1, 1

2 .
Summing up, the class {α}∂̄ can be represented by a d-closed form if and only if ∂α is ∂̄-exact

if and only if α ∈ Zn−1, 1
2 . □

Second, we notice that both the Iwasawa manifold I(3) and the 5-dimensional Iwasawa manifold
I(5) satisfy all the hypotheses of Theorem 6.8.14. Indeed, I(3) and I(5) are complex parallelisable
nilmanifolds, so they are page-1-∂∂̄-manifolds by Theorem [PSU20a, Thm. 4.7]. In particular they
are also Calabi-Yau manifolds (actually, all nilmanifolds are). Moreover, we have

Lemma 6.8.16. Let X be either I(3) or I(5) and let n = dimCX ∈ {3, 5}. Let u := φ1 ∧ φ2 ∧ φ3 =
α ∧ β ∧ γ ∈ C∞

3, 0(I
(3)) or u := φ1 ∧ · · · ∧ φ5 ∈ C∞

5, 0(I
(5)) according to whether X = I(3) or X = I(5),

a non-vanishing holomorphic (n, 0)-form on X.
Then, for all ψ1(t), ρ1(s) ∈ C∞

0, 1(X, T
1, 0X) such that ψ1(t)⌟u, ρ1(s)⌟u ∈ ker d ∪ Im ∂, we have

ψ1(t)⌟(ρ1(s)⌟u) ∈ Zn−2, 2
2 .

Proof. It is given in §.6.8.4. □

Finally, let us mention that both manifolds X = I(3) and X = I(5) have the property that every
Dolbeault cohomology class of type (n−1, 1) can be represented by a d-closed form. Indeed, as seen
in the proof of Lemma 6.8.16 spelt out in §.6.8.4, Hn−1, 1

∂̄
(X) is generated by the classes represented

by the φ̂i ∧ φ1’s and the φ̂i ∧ φ2’s with i ∈ {1, 2, 3} (in the case of X = I(3)) and i ∈ {1, . . . , 5} (in
the case of X = I(5)), where φ̂i stands for u = φ1 ∧ . . . ∧ φ5 with φi omitted. All the forms φ̂i ∧ φλ,
with λ ∈ {1, 2}, are d-closed.

Note that the hypotheses of Theorem 6.8.14, all of which are satisfied by X = I(3) and X = I(5),
have the advantage of being cohomological in nature, hence fairly general and not restricted to the
class of nilmanifolds. Indeed, there is no mention of any structure equations in Theorem 6.8.14.

Proof of Theorem 6.8.14. Let {η1}E2 ∈ E
n−1, 1
2 (X) be an arbitrary nonzero class. Pick any d-closed

representative η1 ∈ C∞
n−1, 1(X) of it. A d-closed representative exists thanks to the page-1-∂∂̄-

assumption on X. Under the extra assumption Zn−1, 1
1 = Zn−1, 1

2 of (ii), there is even a d-closed
representative η1 in every Dolbeault class {η1}E1 ∈ En−1, 1

1 (X), thanks to Lemma 6.8.15. So, we
choose an arbitrary d-closed form η1 ∈ C∞

n−1, 1(X) that represents an arbitrary nonzero class in
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either En−1, 1
2 (X) or En−1, 1

1 (X) depending on whether we are in case (i) or in case (ii). By the
Calabi-Yau isomorphism, there exists a unique ψ1 ∈ C∞

0, 1(X, T
1, 0X) such that

ψ1⌟u = η1.

We will prove the existence of forms ψν ∈ C∞
0, 1(X, T

1, 0X), with ν ∈ N⋆ and ψ1 being the already
fixed such form, that satisfy the equations

∂̄ψν =
1

2

ν−1∑
µ=1

[ψµ, ψν−µ] (Eq. (ν − 1)), ν ≥ 2,

which, as recalled in §.??, are equivalent to the integrability condition ∂̄ψ(τ) = (1/2) [ψ(τ), ψ(τ)]
being satisfied by the form ψ(τ) := ψ1 τ + ψ2 τ

2 + · · ·+ ψN τ
N + · · · ∈ C∞

0, 1(X, T
1, 0X) for all τ ∈ C

with |τ | sufficiently small. The convergence in a Hölder norm of the series defining ψ(τ) for |τ | small
enough is guaranteed by the general Kuranishi theory (cf. [Kur62]), while the resulting ψ(τ) defines a
complex structure ∂̄τ on X that identifies on functions with ∂̄−ψ(τ) and represents the infinitesimal
deformation of the original complex structure ∂̄ of X in the direction of [ψ1] ∈ H0, 1(X, T 1, 0X).

Since ∂(ψ1⌟u) = ∂η1 = 0, the Tian-Todorov lemma ([Tia87], [Tod89]) guarantees that [ψ1, ψ1]⌟u ∈
Im ∂ and

[ψ1, ψ1]⌟u = ∂(ψ1⌟(ψ1⌟u)).

On the other hand, ∂̄η1 = 0, hence ∂̄ψ1 = 0, hence ψ1⌟(ψ1⌟u) ∈ ker ∂̄. We even have the stronger
property ψ1⌟(ψ1⌟u) ∈ Zn−2, 2

2 thanks to assumption (6.83), since ψ1⌟u ∈ ker d. Therefore,

[ψ1, ψ1]⌟u = ∂(ψ1⌟(ψ1⌟u)) ∈ ∂(Zn−2, 2
2 ) = Im (∂∂̄),

the last identity being a consequence of the page-1-∂∂̄-assumption on X. (See (i) of property (F) in
[PSU20b, Thm. 4.3].)

Thus, there exists a form Φ2 ∈ C∞
n−2, 1(X) such that

∂̄∂Φ2 =
1

2
[ψ1, ψ1]⌟u.

If we fix an arbitrary Hermitian metric ω on X, we choose Φ2 as the unique solution of the above
equation with the extra property Φ2 ∈ Im (∂∂̄)⋆. This is the minimal L2

ω-norm solution, as follows
from the 3-space orthogonal decomposition of C∞

n−2, 1(X) induced by the Aeppli Laplacian (see
[Sch07]). Let η2 := ∂Φ2 ∈ C∞

n−1, 1(X). Thanks to the Calabi-Yau isomorphism, there exists a unique
ψ2 ∈ C∞

0, 1(X, T
1, 0X) such that ψ2⌟u = η2. In particular, ∂(ψ2⌟u) = 0 and (∂̄ψ2)⌟u = ∂̄(ψ2⌟u) =

∂̄η2 = (1/2) [ψ1, ψ1]⌟u. This means that

∂̄ψ2 =
1

2
[ψ1, ψ1],

so ψ2 is a solution of (Eq. 1). Moreover, by construction, ψ2 has the extra key property that
ψ2⌟u ∈ Im ∂.

Now, we continue inductively to construct the forms (ψN)N≥3. Suppose the forms ψ1, ψ2, . . . , ψN−1 ∈
C∞

0, 1(X, T
1, 0X) have been constructed as solutions of the equations (Eq. (ν − 1)) for all ν ∈

{2, . . . , N − 1} with the further property ψ2⌟u, . . . , ψN−1⌟u ∈ Im ∂. (Recall that ψ1⌟u ∈ ker d.)
Since ∂(ψ1⌟u) = ∂(ψ2⌟u) = · · · = ∂(ψN−1⌟u) = 0, the Tian-Todorov lemma ([Tia87], [Tod89])
guarantees that [ψµ, ψN−µ]⌟u ∈ Im ∂ for all µ ∈ {1, . . . , N − 1} and yields the first identity below:

N−1∑
µ=1

[ψµ, ψN−µ]⌟u = ∂

(N−1∑
µ=1

ψµ⌟(ψN−µ⌟u)

)
∈ ∂(Zn−2, 2

2 ) = Im (∂∂̄),
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where the relation “∈” follows from assumption (6.83) and the last identity is a consequence of the
page-1-∂∂̄-assumption on X. (See (i) of property (F) in [PSU20b, Thm. 4.3].).

Thus, there exists a form ΦN ∈ C∞
n−2, 1(X) such that

∂̄∂ΦN =
1

2

N−1∑
µ=1

[ψµ, ψN−µ]⌟u.

We choose ΦN to be the solution of minimal L2
ω-norm of the above equation, so ΦN ∈ Im (∂∂̄)⋆.

Let ηN := ∂ΦN ∈ C∞
n−1, 1(X). Thanks to the Calabi-Yau isomorphism, there exists a unique ψN ∈

C∞
0, 1(X, T

1, 0X) such that ψN⌟u = ηN . Hence, (∂̄ψN)⌟u = ∂̄(ψN⌟u) = ∂̄ηN = ∂̄∂ΦN , so

∂̄ψN =
1

2

N−1∑
µ=1

[ψµ, ψN−µ],

which means that ψN is a solution of (Eq. (N − 1)). Moreover, by construction, ψN has the extra
key property that ψN⌟u ∈ Im ∂.

This finishes the induction process and completes the proof of Theorem 6.8.14.

6.8.4 Explicit computations

In this subsection, we spell out the proof of Lemma 6.8.16.

• Case where X = I(3). We use the notation of Example 6.8.9, but also put φ1 := α, φ2 := β
and φ3 := γ. We have: dφ1 = dφ2 = 0 and dφ3 = −φ1 ∧ φ2. The dual basis of (1, 0)-vector fields
consists of

θ1 =
∂

∂z1
, θ2 =

∂

∂z2
+ z1

∂

∂z3
, θ3 =

∂

∂z3
,

(actually of the vector fields induced by these ones on X by passage to the quotient) whose mutual
Lie brackets are as follows:

[θ1, θ2] = −[θ2, θ1] = θ3 and [θi, θj] = 0 whenever {i, j} ≠ {1, 2}.

In particular, H0, 1(X, T 1. 0X) = ⟨[φ1 ⊗ θi], [φ2 ⊗ θi] | i = 1, . . . , 3⟩, so dimCH
0, 1(X, T 1. 0X) = 6.

Note that all the (2, 1)-forms (φ1 ⊗ θi)⌟u and (φ2 ⊗ θi)⌟u are d-closed for i ∈ {1, 2, 3}, so every
Dolbeault class in H2, 1

∂̄
(X) can be represented by a d-closed form.

(a) Let ψ1(t), ρ1(s) ∈ C∞
0, 1(X, T

1, 0X) such that ψ1(t)⌟u, ρ1(s)⌟u ∈ ker d. Then,

ψ1(t) =
3∑
i=1

2∑
λ=1

tiλ θiφλ, so ψ1(t)⌟u =
3∑
i=1

(−1)i−1

2∑
λ=1

tiλ φλ ∧ φ̂i,

ρ1(s) =
3∑
j=1

2∑
µ=1

sjµ θjφµ, so ρ1(s)⌟u =
3∑
j=1

(−1)j−1

2∑
µ=1

sjµ φµ ∧ φ̂j,

where φ̂j stands for φ1 ∧ φ2 ∧ φ3 with φj omitted.
Since ψ1(t)⌟u, ρ1(s)⌟u ∈ ker ∂̄, ψ1(t) and ρ1(s) are ∂̄-closed for the ∂̄ of the holomorphic structure

of T 1, 0X, hence ψ1(t)⌟(ρ1(s)⌟u) ∈ Z1, 2
1 . Moreover, since ψ1(t)⌟u, ρ1(s)⌟u ∈ ker ∂, the so-called Tian-

Todorov Lemma (see [Tia87], [Tod89]) ensures that

∂(ψ1(t)⌟(ρ1(s)⌟u)) = [ψ1(t)⌟u, ρ1(s)⌟u],
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where [ψ1(t)⌟u, ρ1(s)⌟u] is the scalar-valued (n−1, 2)-form defined by the identity [ψ1(t)⌟u, ρ1(s)⌟u] =
[ψ1(t), ρ1(s)]⌟u. So, we have to show that [ψ1(t)⌟u, ρ1(s)⌟u] is ∂̄-exact. We get:

[ψ1(t), ρ1(s)] =
∑

1≤i, j≤3

∑
1≤λ, µ≤2

tiλ sjµ [θi, θj]φλ ∧ φµ = Dt,s θ3 φ1 ∧ φ2,

where Dt,s = (t11 s22 + t22 s11 − t12 s21 − t21 s12). Hence,

[ψ1(t), ρ1(s)]⌟u = Dt,s φ1 ∧ φ2 ∧ φ1 ∧ φ2 = ∂̄(Dt,s ∂φ3 ∧ φ3) = ∂̄∂(Dt,s φ3 ∧ φ3) ∈ Im ∂̄,

as desired.
We conclude that ψ1(t)⌟(ρ1(s)⌟u) ∈ Z1, 2

1 and ∂(ψ1(t)⌟(ρ1(s)⌟u)) ∈ Im ∂̄, hence ψ1(t)⌟(ρ1(s)⌟u) ∈
Z1, 2

2 , as desired.

(b) Let ψ1(t), ρ1(s) ∈ C∞
0, 1(X, T

1, 0X) such that ψ1(t)⌟u ∈ ker d and ρ1(s)⌟u ∈ Im ∂. Then,
ψ1(t) =

∑
1≤i≤3

∑
1≤λ≤2 tiλ θiφλ and ρ1(s) = (

∑
1≤µ≤3 sµ φµ) θ3, so

ρ1(s)⌟u =
∑

1≤µ≤3

sµ φµ ∧ φ1 ∧ φ2 = ∂(−
∑

1≤µ≤3

sµ φ3 ∧ φµ) ∈ Im ∂.

On the one hand, we get ψ1(t)⌟(ρ1(s)⌟u) =
2∑

λ=1

3∑
µ=1

t1λ sµ φλ∧φµ∧φ2−
2∑

λ=1

3∑
µ=1

t2λ sµ φλ∧φµ∧φ1,

hence ∂̄(ψ1(t)⌟(ρ1(s)⌟u)) = −
2∑

λ=1

t1λ s3 φλ ∧ ∂̄φ3 ∧ φ2 +
2∑

λ=1

t2λ s3 φλ ∧ ∂̄φ3 ∧ φ1 = 0 because ∂̄φ3 =

−φ1 ∧ φ2. Thus, ψ1(t)⌟(ρ1(s)⌟u) ∈ ker ∂̄.
On the other hand, since [θi, θ3] = 0 for all i, we get

∂(ψ1(t)⌟(ρ1(s)⌟u)) = [ψ1(t), ρ1(s)]⌟u =
3∑
i=1

2∑
λ=1

3∑
µ=1

tiλ sµ φλ ∧ φµ [θi, θ3] = 0

We conclude that ψ1(t)⌟(ρ1(s)⌟u) ∈ Z1, 2
2 .

(c) If ψ1(t), ρ1(s) ∈ C∞
0, 1(X, T

1, 0X) are such that ψ1(t)⌟u and ρ1(s)⌟u both lie in Im ∂, then
ψ1(t) = (

∑
1≤λ≤3 tλ φλ) θ3 and ρ1(s) = (

∑
1≤µ≤3 sµ φµ) θ3. We get

ψ1(t)⌟(ρ1(s)⌟u) = −(
∑

1≤λ≤3

tλ φλ) ∧
∑

1≤µ≤3

sµ φµ ∧ [θ3⌟(φ1 ∧ φ2)] = 0

since θ3⌟φ1 = θ3⌟φ2 = 0. In particular, ψ1(t)⌟(ρ1(s)⌟u) ∈ Z1, 2
2 .

• Case where X = I(5). We use the notation of Example 6.8.10.

(a) Let ψ1(t), ρ1(s) ∈ C∞
0, 1(X, T

1, 0X) such that ψ1(t)⌟u, ρ1(s)⌟u ∈ ker d. Then,

ψ1(t) =
5∑
i=1

2∑
λ=1

tiλ θiφλ, so ψ1(t)⌟u =
5∑
i=1

(−1)i−1

2∑
λ=1

tiλ φλ ∧ φ̂i,
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ρ1(s) =
5∑
j=1

2∑
µ=1

sjµ θjφµ, so ρ1(s)⌟u =
5∑
j=1

(−1)j−1

2∑
µ=1

sjµ φµ ∧ φ̂j,

where φ̂j stands for φ1 ∧ · · · ∧ φ5 with φj omitted.
Since [θi, θj] = 0 unless {i, j} ⊂ {1, 2, 3} and given the other values for [θi, θj], we get:

[ψ1(t), ρ1(s)]⌟u = −D3(t, s)φ1 ∧ φ2 ∧ φ4 ∧ φ5 ∧ φ1 ∧ φ2 +D2(t, s)φ1 ∧ φ2 ∧ φ3 ∧ φ5 ∧ φ1 ∧ φ2

− D1(t, s)φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ φ1 ∧ φ2, where

D3(t, s) =

∣∣∣∣t11 t12
s21 s22

∣∣∣∣− ∣∣∣∣s11 s12
t21 t22

∣∣∣∣, D2(t, s) =

∣∣∣∣t11 t12
s31 s32

∣∣∣∣− ∣∣∣∣s11 s12
t31 t32

∣∣∣∣, D1(t, s) =

∣∣∣∣t21 t22
s31 s32

∣∣∣∣− ∣∣∣∣s21 s22
t31 t32

∣∣∣∣.
Now, since φ1 ∧ φ2 = ∂φ3 and φ̄1 ∧ φ2 = ∂̄φ3, using also the other properties of the φi’s, we get

φ1 ∧ φ2 ∧ φ4 ∧ φ5 ∧ φ1 ∧ φ2 = ∂̄∂(φ3 ∧ φ4 ∧ φ5 ∧ φ3)

φ1 ∧ φ2 ∧ φ3 ∧ φ5 ∧ φ1 ∧ φ2 = ∂̄∂(φ2 ∧ φ4 ∧ φ5 ∧ φ3).

Similarly, since φ2 ∧ φ3 = ∂φ5 and φ̄1 ∧ φ2 = ∂̄φ3, we get

φ1 ∧ φ2 ∧ φ3 ∧ φ4 ∧ φ1 ∧ φ2 = ∂̄∂(φ1 ∧ φ4 ∧ φ5 ∧ φ3).

We conclude that ∂(ψ1(t)⌟(ρ1(s)⌟u)) = [ψ1(t), ρ1(s)]⌟u ∈ Im (∂∂̄) ⊂ Im ∂̄. Meanwhile, ψ1(t)⌟(ρ1(s)⌟u)
is ∂̄-closed (because ψ1(t)⌟u and ρ1(s)⌟u are), hence ψ1(t)⌟(ρ1(s)⌟u) ∈ Z4, 1

2 , as desired.

(b) Let ψ1(t), ρ1(s) ∈ C∞
0, 1(X, T

1, 0X) such that ψ1(t)⌟u ∈ ker d and ρ1(s)⌟u ∈ Im ∂. Then,

ψ1(t) =
5∑
i=1

2∑
λ=1

tiλ θiφλ, so ψ1(t)⌟u =
5∑
i=1

(−1)i−1

2∑
λ=1

tiλ φλ ∧ φ̂i,

ρ1(s) =
5∑
j=3

sj θjφ3, so ρ1(s)⌟u =
5∑
j=3

(−1)j−1 sj φ3 ∧ φ̂j.

Indeed, in the case of ρ1(s)⌟u, we have

φ̂3 = ∂(φ3 ∧ φ4 ∧ φ5), so φ3 ∧ φ̂3 = −∂(φ3 ∧ φ3 ∧ φ4 ∧ φ5),

φ̂4 = ∂(φ2 ∧ φ4 ∧ φ5), so φ3 ∧ φ̂4 = −∂(φ3 ∧ φ2 ∧ φ4 ∧ φ5),

φ̂5 = ∂(φ1 ∧ φ4 ∧ φ5), so φ3 ∧ φ̂5 = −∂(φ3 ∧ φ1 ∧ φ4 ∧ φ5)

and every ∂-exact (4, 1)-form is a linear combination of φ3 ∧ φ̂3, φ3 ∧ φ̂4 and φ3 ∧ φ̂5.
On the one hand, we get

ψ1(t)⌟(ρ1(s)⌟u) =
5∑
i=1

5∑
j=3

2∑
λ=1

(−1)j−1 tiλ sj φλ ∧ φ3 ∧ (θi⌟φ̂j).

Now, θi⌟φ̂j is always ∂̄-closed because it vanishes when i = j, it equals (−1)i−1φ̂ij when i < j and
it equals (−1)iφ̂ji when i > j, where φ̂ij stands for φ1 ∧ · · · ∧ φ5 with φi and φj omitted and i < j.
All the φi’s being ∂̄-closed, so are all the φ̂ij’s. Meanwhile, ∂̄(φλ ∧ φ3) = −φλ ∧ ∂̄φ3 = 0 for all
λ ∈ {1, 2}, since ∂̄φ3 = φ1 ∧ φ2. This proves that ψ1(t)⌟(ρ1(s)⌟u) ∈ ker ∂̄.
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On the other hand, we get

∂(ψ1(t)⌟(ρ1(s)⌟u)) = [ψ1(t), ρ1(s)]⌟u =
5∑
i=1

5∑
j=3

2∑
λ=1

tiλ sj φλ ∧ φ3 ∧ ([θi, θj]⌟u)

= −
2∑

λ=1

t1λ s3 φλ ∧ φ3 ∧ (θ4⌟u)−
2∑

λ=1

t2λ s3 φλ ∧ φ3 ∧ (θ5⌟u)

= t11 s3 φ1 ∧ φ3 ∧ φ̂4 + t12 s3 φ2 ∧ φ3 ∧ φ̂4 − t21 s3 φ1 ∧ φ3 ∧ φ̂5 − t22 s3 φ2 ∧ φ3 ∧ φ̂5

= t11 s3 ∂̄φ4 ∧ φ̂4 + t12 s3 ∂̄φ5 ∧ φ̂4 − t21 s3 ∂̄φ4 ∧ φ̂5 − t22 s3 ∂̄φ5 ∧ φ̂5

= ∂̄(t11 s3 φ4 ∧ φ̂4 + t12 s3 φ5 ∧ φ̂4 − t21 s3 φ4 ∧ φ̂5 − t22 s3 φ5 ∧ φ̂5) ∈ Im ∂̄,

where the second line followed from the fact that [θi, θj] = 0 unless i, j ∈ {1, 2, 3} and i ̸= j. Given
the fact that the summation bears over j ∈ {3, 4, 5}, this forces j = 3 and i ∈ {1, 2}. Then, we get
the second line from [θ1, θ3] = −θ4 and [θ2, θ3] = −θ5.

The facts that ψ1(t)⌟(ρ1(s)⌟u) ∈ ker ∂̄ and ∂(ψ1(t)⌟(ρ1(s)⌟u)) ∈ Im ∂̄ translate to ψ1(t)⌟(ρ1(s)⌟u) ∈
Z3, 2

2 , as desired.

(c) Let ψ1(t), ρ1(s) ∈ C∞
0, 1(X, T

1, 0X) such that ψ1(t)⌟u, ρ1(s)⌟u ∈ Im ∂. Then,

ψ1(t) =
5∑
i=3

ti θiφ3, ρ1(s) =
5∑
j=3

sj θjφ3, so ρ1(s)⌟u =
5∑
j=3

(−1)j−1 sj φ3 ∧ φ̂j.

We get

ψ1(t)⌟(ρ1(s)⌟u) =
5∑
i=3

5∑
j=3

(−1)j−1 ti sj φ3 ∧ φ3 ∧ (θi⌟φ̂j) = 0 ∈ Z3, 2
2 ,

as desired.
This completes the proof of Lemma 6.8.16. □

6.9 Self-duality of the Iwasawa manifold in terms of the

Albanese map

This section, taken from [Pop18b], is a complement from a different perspective to sections §.6.2-6.7
where a non-Kähler mirror symmetry of the Iwasawa manifold was described.

We now give another criterion of a different nature by which the Iwasawa manifold I(3) is self-dual
in a sesquilinear way. It states that in the well-known description of I(3) as a locally holomorphically
trivial fibration by elliptic curves over a two-dimensional complex torus (its Albanese torus Alb(I(3))),
both the base and the fibre are self-dual tori. This means that the base torus Alb(I(3)) identifies
canonically with its dual torus, the Jacobian torus of I(3), under a sesquilinear duality, while the
fibre identifies with itself.

The Albanese torus and map of the Iwasawa manifold are manifestations of the Albanese torus
and map (otherwise known to always be abstractly defined) we explicitly construct in full generality
on any sGG manifold by means of Hodge theory duly adapted to the specific context of possibly
non-Kähler sGG manifolds. This construction occupies subsections 6.9.1-6.9.3.

Our hope, motivating in part this section, is that the sesquilinear duality between the explicitly
constructed Albanese and Jacobian tori of an arbitrary sGG manifold will show the way in the future
to guessing the mirror dual of more general sGG manifolds that may not be mirror self-dual.
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Our starting point in defining the Jacobian and Albanese tori and maps for arbitrary sGG man-
ifolds will be Theorem 4.3.9. In particular, if X is an n-dimensional compact complex sGG mani-
fold, the canonical splittings (4.30) and (4.31) of H1

DR(X, C) and resp. H2n−1
DR (X, C) are the weaker

substitutes for the Hodge decomposition in degrees 1, resp. 2n− 1, afforded to sGG manifolds.

Corollary 6.9.1. For every sGG manifold X, the Dolbeault cohomology group H0, 1

∂̄
(X, C) in-

jects canonically into the De Rham cohomology group H1
DR(X, C). The canonical injection j :

H0, 1

∂̄
(X, C) ↪→ H1

DR(X, C) is obtained as the composition of the injective linear maps

H0, 1

∂̄
(X, C) ↪→ H0, 1

∂̄
(X, C)⊕H0, 1

∂̄
(X, C) F−1

−→ H1
DR(X, C).

Proof. The sGG assumption ensures that the canonical linear map F defined in (4.30) is an isomor-
phism. Then so is its inverse F−1. □

The canonical splittings (4.30) and (4.31) enable one to construct canonically and explicitly the
Jacobian variety (cf. Definition 6.9.2) and the Albanese variety (cf. Definition 6.9.3) of any sGG
manifold by imitating the classical constructions on compact Kähler (or merely ∂∂̄) manifolds with
the necessary modifications. The details are spelt out in §.6.9.1 and §.6.9.2.

6.9.1 The Jacobian variety of an sGG manifold

Let X be an sGG manifold with dimCX = n. The inclusions Z ⊂ R ⊂ C ⊂ O induce morphisms

H1(X, Z) −→ H1(X, R) −→ H1(X, C) −→ H1(X, O)

where the image of H1(X, Z) is a lattice in H1(X, R). On the other hand, the map H1(X, R) →
H0, 1

∂̄
(X, C) obtained by composing the maps H1(X, R) → H1(X, C) → H1(X, O) ≃ H0, 1

∂̄
(X, C)

identifies canonically with the composite map

H1
DR(X, R)

j1
↪→ H1

DR(X, C)
p1◦F−→ H0, 1

∂̄
(X, C),

where j1 is the natural injection and p1 : H0, 1

∂̄
(X, C)⊕H0, 1

∂̄
(X, C) −→ H0, 1

∂̄
(X, C) is the projection

onto the first factor. Since F is an isomorphism (thanks to X being sGG), we get that

p1 ◦ F ◦ j1 : H1
DR(X, R) −→ H0, 1

∂̄
(X, C)

is an isomorphism. Hence ImH1(X, Z) is a lattice in H0, 1

∂̄
(X, C). As a result, we can put

Definition 6.9.2. The Jacobian variety of an n-dimensional sGG manifold X is defined exactly
as in the Kähler (or merely ∂∂̄) case as the q-dimensional complex torus

Jac(X) := H0, 1

∂̄
(X, C)/ImH1(X, Z), (6.84)

where q := h0, 1
∂̄

(X) stands for the irregularity of X.
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6.9.2 The Albanese variety of an sGG manifold

Let once again X be an sGG manifold with dimCX = n. In a way similar to the above discussion,
we have morphisms

H2n−1(X, Z) −→ H2n−1(X, R) j2n−1−→ H2n−1(X, C) (F ⋆)−1

−→ Hn, n−1

∂̄
(X, C)⊕Hn, n−1

∂̄
(X, C),

where ImH2n−1(X, Z) is a lattice in H2n−1(X, R) (a general feature of any compact complex
manifold X) and (F ⋆)−1 is an isomorphism (thanks to X being sGG). If we denote by p2 :

Hn, n−1

∂̄
(X, C)⊕Hn, n−1

∂̄
(X, C) −→ Hn, n−1

∂̄
(X, C) the projection onto the second factor, then

p2 ◦ (F ⋆)−1 ◦ j2n−1 : H2n−1
DR (X, R) −→ Hn, n−1

∂̄
(X, C)

is an isomorphism and therefore ImH2n−1(X, Z) is a lattice in Hn, n−1

∂̄
(X, C) ≃ (H0, 1

∂̄
(X, C))⋆.

Definition 6.9.3. The Albanese variety of an n-dimensional sGG manifold X is the complex
torus

Alb(X) := Hn, n−1

∂̄
(X, C)/ImH2n−1(X, Z) =

(
H0, 1

∂̄
(X, C)

)⋆
/ImH1(X, Z)⋆. (6.85)

The spaces Hn, n−1

∂̄
(X, C) and H0, 1

∂̄
(X, C) are dual under the Serre duality, while H2n−1(X, Z)

and H1(X, Z) are Poincaré dual.
Recall that in the standard case when X is Kähler (or merely ∂∂̄), the Albanese torus of X is

defined as the quotient

Hn−1, n(X, C)/ImH2n−1(X, Z).

Since, by Hodge symmetry, the conjugation defines an isomorphism Hn−1, n

∂̄
(X, C) ≃ Hn, n−1

∂̄
(X, C)

when X is Kähler (or merely ∂∂̄), our Definition 6.9.3 of the Albanese torus coincides with the
standard defintion in the Kähler and ∂∂̄ cases.

Conclusion 6.9.4. We can now conclude from Definitions 6.9.2 and 6.9.3 that the Jacobian torus
and the Albanese torus of any sGG manifold X are dual tori in the sense of the following
sesquilinear duality obtained by composing the bilinear Serre duality with the conjugation in the
second factor:

H0, 1

∂̄
(X, C)×Hn, n−1

∂̄
(X, C) −→ C, ([α]∂̄, [β]∂̄) 7→

∫
X

α ∧ β. (6.86)

6.9.3 The Albanese map of an sGG manifold

We can now easily adapt to the general context of sGG manifolds X the construction of the Albanese
map α : X −→ Alb(X) from the familiar Kähler (or merely ∂∂̄) case. We shall follow the presentation
and use the notation of [Dem97, §.9.2].

Let X be an sGG manifold with dimCX = n. The standard isomorphism

H1(X, Z) −→ H2n−1(X, Z)
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given by the Poincaré duality is induced by the map [ξ] 7→ {Iξ}DR ∈ H2n−1
DR (X, R) associating

with the homology class [ξ] of every loop ξ in X the De Rham cohomology class of the current of
integration Iξ over ξ. Using this isomorphism, the expression (6.85) of the Albanese torus of X
transforms to

Alb(X) =

(
H0, 1

∂̄
(X, C)

)⋆
/ImH1(X, Z), (6.87)

where the map H1(X, Z) −→ H0, 1

∂̄
(X, C)

⋆

is defined by

[ξ] 7→ Ĩξ :=

(
[v] 7→

∫
ξ

{v}
)
, where {v} := j([v]) ∈ H1

DR(X, C). (6.88)

We have used the canonical injection j : H0, 1

∂̄
(X, C) ↪→ H1

DR(X, C) defined in Corollary 6.9.1 and

the fact that the integral
∫
ξ
{v} depends only on the homology class [ξ] and on the cohomology class

{v} (so not on the actual representatives of these classes).

Definition 6.9.5. Let X be an sGG manifold. Fix a base point a ∈ X. For every point x ∈ X, let

ξ be any path from a to x and let Ĩξ ∈ H0, 1

∂̄
(X, C)

⋆

be the linear functional defined in (6.88).
The canonical holomorphic map

α : X −→ Alb(X) =

(
H0, 1

∂̄
(X, C)

)⋆
/ImH1(X, Z), x 7→ Ĩξ mod ImH1(X, Z), (6.89)

will be called the Albanese map of the sGG manifold X.

Note that the class of Ĩξ modulo ImH1(X, Z) does not depend on the choice of path ξ from a

to x because for any other such path η, Ĩη−1 ξ ∈ ImH1(X, Z). Also note that definition (6.89) of
the Albanese map for sGG manifolds X coincides with the standard definition when X is Kähler or

just ∂∂̄. Indeed, in the Kähler and ∂∂̄ cases, H0, 1

∂̄
(X, C) is canonically isomorphic to H1, 0

∂̄
(X, C) by

Hodge symmetry. Moreover, the role played by the canonical injection j : H0, 1

∂̄
(X, C) ↪→ H1

DR(X, C)
defined in Corollary 6.9.1 when X is sGG is an apt substitute for the fact that every holomorphic
1-form (i.e. the unique representative of every element in H1, 0

∂̄
(X, C)) is d-closed when X is Kähler

or merely ∂∂̄.
As in the standard Kähler case, we have an alternative description of the Albanese map.

Observation 6.9.6. Let X be an sGG manifold with dimCX = n. Using the expression (6.85) of
the Albanese torus of X, the Albanese map of X is given by

α : X −→ Alb(X) = Hn, n−1

∂̄
(X, C)/ImH2n−1(X, Z), x 7→ {Iξ}n, n−1 mod ImH2n−1(X, Z),

where {Iξ}n, n−1 ∈ Hn, n−1

∂̄
(X, C) is the projection of the De Rham cohomology class {Iξ}DR ∈

H2n−1
DR (X, R) onto Hn, n−1

∂̄
(X, C) w.r.t. the isomorphism

(F ⋆)−1 : H2n−1
DR (X, C) ≃−→ Hn, n−1

∂̄
(X, C)⊕Hn, n−1

∂̄
(X, C)

induced by (4.31). As usual, Iξ stands for the current of integration over the path ξ from a to x in
X.
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Note that in Observation 6.9.6 the only difference in the sGG case compared with the stan-

dard Kähler (or ∂∂̄) case is the substitution of Hn, n−1

∂̄
(X, C) for Hn−1, n

∂̄
(X, C). These spaces are

isomorphic by Hodge symmetry when X is Kähler or merely ∂∂̄.

6.9.4 Application of the Albanese and Jacobian tori of sGG manifolds
to the mirror self-duality of the Iwasawa manifold

In this section, we apply the above constructions to the Iwasawa manifold that is known to not be
a ∂∂̄-manifold (cf. Proposition 1.3.22). However, the Iwasawa manifold X = X0 and all its small
deformations in its Kuranishi family (Xt)t∈B are sGG compact complex manifolds of dimension 3
(cf. Corollary 4.3.5). So, the extension to the sGG context of the classical constructions of the
Albanese torus and map from the ∂∂̄-case, performed in §.6.9.2 and §.6.9.3, is key to our purposes
here.

For the Iwasawa manifold X = X0 and all its small deformations (Xt)t∈B, the Albanese maps

πt : Xt −→ Alb(Xt) := Bt, t ∈ B,
have simple explicit descriptions and π := π0 : X0 → B0 is a locally holomorphically trivial fibration
whose fibre π−1(s) is the Gauss elliptic curve C/Z[i] and whose base is the 2-dimensional complex
torus C/Z[i]× C/Z[i].

First, we show that the Albanese torus of every small deformation Xt of the Iwasawa manifold
X = X0 is self-dual in the context of the constructions of §.6.9.1 and §.6.9.2.
Lemma 6.9.7. Let (Xt)t∈B be the Kuranishi family of the Iwasawa manifold X = X0. Thus n =
dimCXt = 3. For every t ∈ B sufficiently close to 0, the dual Jacobian and Albanese tori Jac(Xt)
and Alb(Xt) can be identified canonically in the following sense.

There exist canonical isomorphisms

H0, 1

∂̄
(Xt, C) ≃ H3, 2

∂̄
(Xt, C) and H1(Xt, Z) ≃ H5(Xt, Z), t ∈ B. (6.90)

Proof. Dual finite-dimensional vector spaces are, of course, isomorphic, so the main feature of the
isomorphisms (6.90) is their canonical nature. By “canonical” we mean “depending only on the
complex or differential structure, independent of any choice of metric”. As can be seen below, the
canonical nature of these isomorphisms follows from the existence of canonical bases, defined by
the structural differential forms αt, βt, γt mentioned in the introduction and their conjugates, in the
vector spaces involved.

From [Sch07, p.6] and [Ang14, §.2.2.2, §.2.2.3], we gather that the vector spaces featuring in
(6.90) are generated by the structural (1, 0)-forms αt, βt, γt as follows:

H0, 1

∂̄
(Xt, C) =

〈
[ᾱt]∂̄, [β̄t]∂̄

〉
, H3, 2

∂̄
(Xt, C) =

〈
[αt ∧ βt ∧ γt ∧ ᾱt ∧ γ̄t]∂̄, [αt ∧ βt ∧ γt ∧ β̄t ∧ γ̄t]∂̄

〉
,

H1
DR(Xt, C) =

〈
{αt}, {βt}, {ᾱt}, {β̄t}

〉
, (6.91)

H5
DR(Xt, C) =

〈
{αt ∧ βt ∧ γt ∧ ᾱt ∧ γ̄t}, {αt ∧ βt ∧ γt ∧ β̄t ∧ γ̄t}, {αt ∧ γt ∧ ᾱt ∧ β̄t ∧ γ̄t},

{βt ∧ γt ∧ ᾱt ∧ β̄t ∧ γ̄t}
〉
,
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where { } stands for De Rham cohomology classes.
Thus, the isomorphism H0, 1

∂̄
(Xt, C) ≃ H3, 2

∂̄
(Xt, C) of (6.90) is canonically defined by [ξ̄]∂̄ 7→

[ξ̄∧αt∧βt∧γt∧γ̄t]∂̄ for ξ ∈ {αt, βt}, while the isomorphismH1
DR(Xt, C) ≃ H5

DR(Xt, C) is canonically
defined by {ζ} 7→ {ζ ∧ αt ∧ βt ∧ γt ∧ γ̄t} for ζ ∈ {ᾱt, β̄t} and by {ζ} 7→ {ζ ∧ γt ∧ ᾱt ∧ β̄t ∧ γ̄t} for
ζ ∈ {αt, βt}. □

Now, we recall two standard facts that prove between them that every elliptic curve (in particular,
the fibre of the Albanese map π := π0 : X0 → B0) is self-dual.

Proposition 6.9.8. (see e.g. [Dem97, §.10.2]) Let X be a compact complex manifold such that
dimCX = 1 (i.e. X is a compact complex curve).

(i) The Jacobian torus Jac(X) of X coincides with its Albanese torus Alb(X). Moreover, for
every point a ∈ X, the Jacobi map

Φa : X −→ Jac(X), x 7→ O([x]− [a]),

coincides with the Albanese map

α : X −→ Alb(X) = Jac(X).

(ii) If X is an elliptic curve (i.e. g = 1, where g := h0, 1(X) is the genus of the complex curve
X), then Φa = α is an isomorphism, i.e.

X ≃ Jac(X) = Alb(X).

In particular, since the dual tori Jac(X) and Alb(X) coincide, X is self-dual.

We can now infer the main result of this paper showing that the Iwasawa manifold is its own
dual in a simple sense pertaining to its Albanese torus and map. This self-duality point of view
complements those considered in [Pop17].

Theorem 6.9.9. The Iwasawa manifold X = X0 is its own dual in the sense that in its Albanese
map description

π = π0 : X0 −→ B0 := Alb(X0)

as a locally holomorphically trivial fibration by elliptic curves C/Z[i] over the 2-dimensional complex
torus C/Z[i]× C/Z[i], both the base Alb(X0) and the fibre π−1

0 (s) are (sesquilinearly) self-dual tori.

Proof. The self-duality of Alb(X0) was proved in Lemma 6.9.7, while the self-duality of π−1
0 (s) is

the standard fact recalled in Proposition 6.9.8. □



Chapter 7

Deformation Limits of Certain Classes of
Compact Complex Manifolds

In this chapter, we discuss several deformation closedness results and conjectures in the sense
of (ii) of Definition 2.6.1. Specifically, we investigate whether the properties of compact complex
manifolds summed up in diagram (⋆) of §.2.6.3 persist in the deformation limits and how they
degenerate when they do not persist. Recall that a given fibre X0 of a holomorphic family π : X −→
B of compact complex manifolds (Xt = π−1(t))t∈B can be viewed as the limit, when the parameter
t ∈ B tends to 0 ∈ B, of the nearby fibres Xt. Most of the material in this chapter is taken from
[Pop09a], [Pop09b], [Pop10a] and [Pop19].

After Kodaira and Spencer proved the deformation openness of the Kähler condition (cf.
Theorem 2.6.6), it became natural to wonder whether the Kähler property of compact complex
manifolds is also deformation closed. This question was answered negatively by Hironaka for families
of compact complex manifolds of dimensions ≥ 3.

Theorem 7.0.1. ([Hir62]) For every integer n ≥ 3, there exists a holomorphic family of compact
complex manifolds π : X −→ D over an open disc D ⊂ C centred at the origin such that the fibre
Xt := π−1(t) is projective for every t ∈ D \ {0}, but the fibre X0 := π−1(0) is not Kähler.

(A) In the case of families of compact complex surfaces, the opposite conclusion holds: the
Kähler property is deformation closed. Together with the deformation openness result of Kodaira
and Spencer for the Kähler property in arbitrary dimension, this translates to the following

Theorem 7.0.2. Let π : X −→ D be a holomorphic family of compact complex manifolds over an
open disc D ⊂ C centred at the origin such that dimCXt = 2 for all t ∈ D.

If the fibre X0 := π−1(0) is Kähler, the fibre Xt := π−1(t) is again Kähler for every t ∈ D.

This statement follows at once from the fact that the Kählerianity of compact complex surfaces
is a topological property, depending solely on the parity of the first Betti number b1, and from the
C∞ triviality of any family as above (cf. Ehresmann’s Theorem 2.1.1) which obviously implies that
b1 is the same for all the fibres.

Theorem 7.0.3. (Kodaira, Miyaoka, Siu) A compact complex surface X is Kähler if and only if
its first Betti number b1(X) is even.

This fact can be derived by putting together Kodaira’s classification of surfaces, Miyaoka’s result
[Miy74] asserting that an elliptic surface is Kähler if and only if its first Betti number is even and

462
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Siu’s result [Siu83] asserting that every K3 surface is Kähler. Direct proofs of Theorem 7.0.3, which
do not invoke Kodaira’s classification of compact complex surfaces, were subsequently given by
Buchdahl [Buc99] and Lamari [Lam99] independently. The reader will find further details on the
history of this result in these references.

(B) Since, by Hironaka’s Theorem 7.0.1, neither the projectivity, nor the Kählerianity of compact
complex manifolds of dimension ≥ 3 is deformation closed, the question of what kind of manifolds
can occur as limits X0 of projective (or merely Moishezon) manifolds Xt, respectively of Kähler (or
merely class C) manifolds Xt, arises naturally. A series of conjectures1 in this respect, that we now
set about describing, were put forward in the 1970’s.

Theorem 7.0.4. ([Pop10a] and again [Pop19]) Let π : X → B be a holomorphic family of compact
complex manifolds over an open ball B ⊂ CN about the origin such that the fibre Xt := π−1(t) is a
Moishezon manifold for every t ∈ B \ {0}. Then X0 := π−1(0) is again a Moishezon manifold.

In particular, any deformation limit X0 of projective manifolds is Moishezon. The purpose of
this chapter is to present two proofs of this result, the first of which appeared in [Pop09a], [Pop09b]
and [Pop10a], the second of which appeared in [Pop19]. The second proof uses the machinery of the
Frölicher spectral sequence and builds on material presented in chapters 1 and 3 to put on a more
conceptual footing the first, ad hoc, proof.

Conjecture 7.0.5. Let π : X → B be a holomorphic family of compact complex manifolds over an
open ball B ⊂ CN about the origin such that the fibre Xt := π−1(t) is a class C manifold for every
t ∈ B \ {0}. Then X0 := π−1(0) is again a class C manifold.

This conjecture, which can be regarded as a transcendental version of Theorem 7.0.4, is still wide
open even when the stronger Kählerianity assumption is made on the fibres Xt with t ∈ B \ {0}. In
particular, any degeneration of the Kähler property of compact complex manifolds in the deformation
limit is expected to be only mild, in the form of the class C property at the worst.

A two-step strategy for an attack on Conjecture 7.0.5 was outlined in [Pop15a] (cf. §.4.3.1).
The second step of this strategy was carried out in [PU18] where the class of sGG manifolds was
introduced and studied for this purpose (cf. §.4.3).

The last conjecture in this series brings together the openness and the closedness points of view.
It goes further than the Kodaira-Spencer Theorem 2.6.6 by predicting that the Kähler property of
compact complex manifolds is open in the analytic Zariski topology of the base of the family of
deformations of a complex structure.

Conjecture 7.0.6. Let π : X → B be a holomorphic family of compact complex manifolds over an
open ball B ⊂ CN about the origin. Suppose that the fibre X0 := π−1(0) is a Kähler manifold.

There exists a countable union Σ =
⋃
ν∈N

Σν ⊂ B of proper analytic subsets of B such that:

(a) Xt is Kähler for all t ∈ B \ Σ;
and

(b) Xt is of class C for all t ∈ Σ.

In other words, if one fibre is Kähler, not only are all the nearby fibres Kähler (Theorem 2.6.6),
but almost all the fibres, even those lying far away from the originally Kähler one, are expected to
be Kähler, except possibly some exceptional fibres that will nevertheless be of class C, as predicted
by the previous Conjecture 7.0.5.

1These conjectures were brought to the author’s attention by J.-P. Demailly.
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(I) First proof of Theorem 7.0.4

We will present it in two stages over sections 7.1 and 7.2.

7.1 Limits of ∂∂̄-manifolds under holomorphic deformations

In this section, taken from [Pop09b], we prove the following key

Theorem 7.1.1. ([Pop09b, Theorem 1.4]) Let π : X → B be a holomorphic family of compact
complex manifolds such that the fibre Xt := π−1(t) is a ∂∂̄-manifold for every t ∈ B⋆ := B \ {0}.
Then, X0 := π−1(0) is a strongly Gauduchon manifold.

This result is optimal since

-the ∂∂̄ assumption on the fibres Xt with t ∈ B⋆ cannot be weakened to the strongly Gauduchon
assumption on these fibres (cf. [COUV16, Theorem 5.9]), so the strongly Gauduchon property
of compact complex manifolds is not closed under deformations of the complex structure. (It is,
however, open – see [Pop14].);

-the strongly Gauduchon conclusion on the limit fibre X0 cannot be strengthened to the ∂∂̄
conclusion, so the ∂∂̄ property of compact complex manifolds is not closed under deformations (cf.
[AK13] or [FOU15]).

Moreover, thanks to the ∂∂̄-property being satisfied by all compact Kähler and all class C man-
ifolds, Theorem 7.1.1 is expected to play a key role in future attacks on Conjecture 7.0.5.

7.1.1 Notation and preliminary remarks

Throughout this chapter, we denote n := dimCXt for t ∈ B.
The spaces of C∞ forms of degree k, resp. of bidegree (p, q), on Xt will be denoted by C∞

k (X, C),
resp. C∞

p, q(Xt, C). Given a form u, its component of type (p, q) with respect to the complex structure
Jt will be denoted by up, qt .

The λ-eigenspace of a given elliptic differential operator Pt : C
∞
p, q(Xt, C) → C∞

p, q(Xt, C) will be
denoted by Ep, q

Pt
(λ), where in most cases Pt will be taken to be one of the Laplace-Beltrami operators

∆′
t, ∆

′′
t associated with a given Hermitian metric on Xt.

As usual, we shall denote by hp, q(t) := dimCH
p, q(Xt, C), resp. bk := dimCH

k(X, C) the Hodge,
resp. Betti numbers of Xt. Thanks to the ∂∂̄ assumption on Xt for every t ̸= 0, every hp, q(t) is
constant on ∆⋆ after possibly shrinking B about 0. However, it may happen that hp, q(0) > hp, q(t)
for t ̸= 0, although this case is a posteriori ruled out if Xt is projective for every t ∈ B⋆ by Theorem
7.0.4. But, of course, we have to contend with it until Theorem 7.0.4 has been proved. We stress
that the weaker ∂∂̄-assumption for t ̸= 0 in Theorem 7.1.1 need not rule out, even a posteriori, the
jumping at t = 0 of hp, q(t).

Remark 7.1.2. One of the main difficulties one is faced with in trying to prove Theorems 7.0.4 and
7.1.1 is the possible jump at t = 0 of the Hodge numbers hp, q(t).

Specifically, suppose a C∞ family (γt)t∈B of Hermitian metrics on the fibres (Xt)t∈B has been
fixed. We get an associated C∞ family (∆′′

t )t∈B of Laplace-Beltrami operators acting on the Jt-
(p, q)-forms of X for every bidegree (p, q). For every t ∈ B and every bidegree, the operator
∆′′
t := ∂̄t∂̄

⋆
t + ∂̄⋆t ∂̄t is elliptic and therefore has a compact resolvent and a discrete spectrum
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0 = λ0(t) ≤ λ1(t) ≤ · · · ≤ λk(t) ≤ . . . (7.1)

with λk(t)→ +∞ as k → +∞. Thanks to the Hodge isomorphism

Hp, q(Xt, C) ≃ ker(∆′′
t : C

∞
p, q(Xt, C)→ C∞

p, q(Xt, C)), t ∈ B,

the multiplicity of zero as an eigenvalue of ∆′′
t equals hp,q(t). By Corollary 2.5.20, for every small

ε > 0, the numberm ∈ N⋆ of eigenvalues (counted with multiplicities) of ∆′′
t contained in the interval

[0, ε) is independent of t if t ∈ B is sufficiently close to 0 (say δε-close). If ε > 0 has been chosen so
small that 0 is the only eigenvalue of ∆′′

0 contained in [0, ε), it follows that m = hp,q(0) ≥ hp,q(t) for
t sufficiently close to 0 (the upper-semicontinuity property). Consequently, for t near 0, hp,q(0) =
hp,q(t) if and only if 0 is the only eigenvalue of ∆′′

t lying in [0, ε). In other words, if hp, q(0) > hp,q(t)
when t(̸= 0) is near 0, choosing increasingly small ε > 0 gives eigenvalues of ∆′′

t

0 < λk1(t) ≤ λk2(t) ≤ · · · ≤ λkN (t) := εt < ε, t ∈ B⋆, (7.2)

that converge to zero (i.e. εt → 0) when t→ 0, where N = hp, q(0)− hp, q(t).
Now, we will have to solve on several occasions throughout this chapter, for C∞ (up to t = 0)

families of ∂̄t-exact forms (vt)t∈B, equations of the shape

∂̄tut = vt on Xt, for t ∈ B \ {0},

whose minimal L2
γt-norm solution is given by the Neumann formula

ut = ∆
′′−1
t ∂̄⋆t vt, t ∈ B \ {0},

that features the Green operator ∆
′′−1
t of ∆′′

t (i.e. the inverse of the restriction of ∆′′
t to the orthogonal

complement of its kernel). The inverses 1/λkj(t) of the eigenvalues of ∆′′
t are eigenvalues for ∆

′′−1
t

and 1/λkj(t)→ +∞ when t→ 0 for every kj ∈ {k1, . . . , kN} (i.e. for every small eigenvalue) if there
is a jump hp, q(0) > hp, q(t). It follows that, if ∂̄⋆t vt has non-trivial projections onto the eigenspaces
Ep, q

∆′′
t
(λkj(t)) with kj ∈ {k1, . . . , kN}, these projections get multiplied by 1/λkj(t) when ∆

′′−1
t is applied

to ∂̄⋆t vt. Then ut need not be bounded as t approaches 0, unless the said projections can be proved
to tend to zero sufficiently quickly to offset the growth 1/λkj(t) → +∞ when t approaches 0. This
unboundedness may cause the family of forms (ut)t∈B\{0} to not extend across t = 0, i.e. to not have
a limit u0 on X0 when t→ 0.

The same conclusion applies to the ∂t-Laplacians ∆
′
t := ∂t∂

⋆
t + ∂⋆t ∂t because of the possible jump

(upwards) at t = 0 of the dimensions of the cohomology groups Hp, q
∂t

(Xt,C) that depend on the
complex structures Jt.

Remark 7.1.3. However, a simple observation that will play a major role in our approach to
Theorem 7.1.1 is that the unboundedness phenomenon described in Remark 7.1.2 does not occur for
the C∞ family (∆t)t∈B of d-Laplacians on the fibres (Xt)t∈B.

Indeed, analogous families (ut = ∆−1
t d⋆tvt)t∈B\{0} of minimal L2

γt-norm solutions of d-equations

dut = vt on Xt, t ∈ B \ {0},

for given C∞ (up to t = 0) families of d-exact forms (vt)t∈B, always extend smoothly to a form u0
on X0 thanks to the De Rham cohomology of the fibres Xt being independent of t ∈ B. The reason
is that the family of manifolds (Xt)t∈B is C∞ trivial, so the Betti numbers bk of the fibres Xt are
constant. Therefore, there is no “jumping” phenomenon in this case.
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7.1.2 Preliminaries to the proof of Theorem 7.1.1

We now start the proof of Theorem 7.1.1 that will occupy the rest of this section.

Reduction of the uniform boundedness problem to a positivity problem

Fix any C∞ family (γt)t∈B of Gauduchon metrics on the respective fibres (Xt)t∈B. (It is well known
that such families exist, see e.g. Proposition 4.1.13.) For every k ∈ {0, . . . , 2n} and every p, q ∈
{0, . . . , n}, we denote by ∆t := dd⋆t + d⋆td : C∞

k (X,C)→ C∞
k (X,C) and by

∆′
t := ∂t∂

⋆
t + ∂⋆t ∂t, ∆′′

t := ∂̄t∂̄
⋆
t + ∂̄⋆t ∂̄t : C

∞
p, q(Xt,C)→ C∞

p, q(Xt,C)

the d-, ∂t- and ∂̄t-Laplace-Beltrami operators induced by the metrics γt on Xt. Let (λj(t))j∈N be the
eigenvalues, ordered non-increasingly and repeated as many times as the respective multiplicity, of

∆′′
t : C

∞
n,n−1(Xt,C) −→ C∞

n,n−1(Xt,C), t ∈ B.
By Theorem A in §.2.5.1, each λj is a continuous function of t ∈ B. If there are eigenvalues

such that λj(t) > 0 for t ̸= 0 and λj(0) = 0, there are only finitely many of them numbering
hn, n−1(0) − hn, n−1(t) = h0,1(0) − h0,1(t) for any t ̸= 0 close to 0. This number is, of course,
independent of t ̸= 0. For t ̸= 0, let ε′′t > 0 be the largest of these small eigenvalues, so ε′′t → 0 as
t→ 0. The remaining, infinitely many, eigenvalues are then bounded below (after possibly shrinking
B about 0) by some ε′′ > 0 independent of t ∈ B. Thus

Spec∆′′
t ⊂ [0, ε′′t ] ∪ [ε′′, +∞), t ∈ B, (7.3)

where we have set ε′′0 = 0. We get an L2
γt-orthogonal eigenspace decomposition

C∞
n,n−1(Xt,C) =

⊕
λ≤ε′′t

En,n−1
∆′′

t
(λ)⊕

⊕
λ≥ε′′

En,n−1
∆′′

t
(λ), t ∈ B. (7.4)

Now, ∆′′
t being an elliptic self-adjoint operator, it has a compact resolvent and there exists an

orthonormal basis (en,n−1
j (t))j∈N of C∞

n,n−1(Xt,C) consisting of eigenvectors of ∆′′
t :

∆′′
t e

n,n−1
j (t) = λj(t) e

n,n−1
j (t), t ∈ B. (7.5)

Furthermore, in the three-space orthogonal decomposition

C∞
n,n−1(Xt,C) = ker∆′′

t ⊕ Im ∂̄t ⊕ Im ∂̄⋆t , (7.6)

each subspace is ∆′′
t -invariant due to ∆

′′
t commuting with ∂̄t and ∂̄

⋆
t . This means that the eigenvectors

en,n−1
j (t) forming an orthonormal basis can be chosen such that each of them lies in one (and only

one) of the three subspaces of (7.6). So none of the en,n−1
j (t) straddles two or three subspaces. These

simple reductions are valid for every t ∈ B and we will henceforth suppose that the choices have
been made as described above. The orthogonal decomposition of ∂tγ

n−1
t ∈ C∞

n,n−1(Xt,C) according
to (7.4) has the shape:

∂tγ
n−1
t =

∑
j∈J1

cj(t) e
n,n−1
j (t) +

∑
j∈J2

cj(t) e
n,n−1
j (t) = Ut + Vt, t ∈ B, (7.7)

where Ut =
∑
j∈J1

cj(t) e
n,n−1
j (t) ∈

⊕
λ≤ε′′t

En,n−1
∆′′

t
(λ) and Vt =

∑
j∈J2

cj(t) e
n,n−1
j (t) ∈

⊕
λ≥ε′′

En,n−1
∆′′

t
(λ), with

coefficients cj(t) ∈ C⋆ and index sets J1, J2 ⊂ N such that J1 ∩ J2 = ∅. As already noticed, by
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the Gauduchon condition, ∂tγ
n−1
t is d-closed for all t ∈ B and, since it is ∂t-exact, it must also

be ∂̄t-exact for all t ̸= 0 by the ∂∂̄-lemma. Since each eigenvector en,n−1
j (t) belongs to one of the

three orthogonal subspaces of (7.6), this means that only eigenvectors belonging to Im ∂̄t can have
a non-trivial contribution to (7.7) for t ̸= 0.

In particular, for every t ̸= 0, both Ut and Vt are ∂̄t-exact. We can therefore find, for every t ̸= 0,
a smooth Jt−(n, n− 2)-form wt such that Vt = ∂̄wt. If we choose the form wt of minimal L2 norm
(with respect to γt) with this property, the condition Vt ∈

⊕
λ≥ε′′

En,n−1
∆′′

t
(λ) guarantees that the family

of forms (wt)t∈B⋆ extends smoothly across t = 0 to a family (wt)t∈B varying in a C∞ way with t
up to t = 0. This is because the eigenvalues λ contributing to Vt are uniformly bounded below by
ε′′ > 0.

As for Ut ∈
⊕
λ≤ε′′t

En,n−1
∆′′

t
(λ), we are unable to guarantee the boundedness near t = 0 of its ∂̄t-

potential because of the eigenvalues λj(t) ≤ ε′′t converging to 0. Therefore we will not consider the
∂̄t-potential. However, the (n, n − 1)-form Ut is d-closed. Indeed, it is ∂t-closed in a trivial way
for bidegree reasons and is also ∂̄t-closed (even ∂̄t-exact, as it has been argued above). Thus, the
∂∂̄-lemma implies that Ut is d-exact for every t ̸= 0. We can therefore find, for all t ̸= 0, a form ξt
of degree 2n− 2 such that Ut = d ξt. If we choose the form ξt of minimal L2-norm (with respect to
γt) with this property, we have

ξt = ∆−1
t d⋆tUt, t ̸= 0, (7.8)

where, for all t ∈ B (including t = 0), ∆t = d d⋆t + d⋆t d : C∞
2n−2(X, C) → C∞

2n−2(X, C) is the
d-Laplacian associated with the metric γt and ∆−1

t is the inverse of the restriction of ∆t to the
orthogonal complement of its kernel (the Green operator of ∆t). Now, the Hodge isomorphism
theorem gives:

ker∆t ≃ H2n−2
DR (Xt,C) = H2n−2(X,C), t ∈ B, (7.9)

and we know that all the De Rham cohomology groupsH2n−2
DR (Xt,C) of the fibresXt can be identified

with a fixed space H2n−2(X,C). In particular, the dimension of ker∆t is independent of t ∈ B, which
means that the positive eigenvalues of ∆t have a uniform positive (> 0) lower bound for t close to 0
(cf. Kodaira-Spencer arguments recalled in Remarks 7.1.2 and 7.1.3 and applied to the C∞ family
of strongly elliptic operators (∆t)t∈B). Thus, in this respect, there is a sharp contrast between
the d-Laplacian ∆t and its ∂̄t-counterpart ∆′′

t : unlike ∆′′
t , ∆t never displays the small eigenvalue

phenomenon. In particular, the family of (2n − 2)-forms (ξt)t∈B⋆ extends smoothly across t = 0 to
a family (ξt)t∈B of forms varying in a C∞ way with t ∈ B (up to t = 0).

Our discussion so far can be summed up as follows.

Lemma 7.1.4. Given any family of Gauduchon metrics (γt)t∈B varying in a C∞ way with t ∈ B
on the fibres of a family (Xt)t∈B in which Xt is a ∂∂̄-manifold for every t ̸= 0, we can find a
decomposition:

∂tγ
n−1
t = d ξt + ∂̄twt, t ∈ B, (7.10)

in such a way that

d ξt ∈
⊕
λ≤ε′′t

En,n−1
∆′′

t
(λ), ∂̄twt ∈

⊕
λ≥ε′′

En,n−1
∆′′

t
(λ), (7.11)
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where (wt)t∈B and (ξt)t∈B are families of (2n− 2)-forms and respectively (n, n− 2)-forms varying in
a C∞ way with t ∈ B (up to t = 0), ε′′ > 0 is independent of t, ε′′t > 0 for t ̸= 0 and ε′′t converges
to zero as t approaches 0 ∈ B (thus ε′′0 = 0). Moreover, the following identity holds:

∂t(γ
n−1
t − ξn−1, n−1

t ) = ∂̄t(ξ
n, n−2
t + wt), t ∈ B. (7.12)

As the form ξn−1, n−1
t need not be real, we find it more convenient to write:

∂t(γ
n−1
t − ξn−1, n−1

t − ξn−1, n−1
t ) = ∂̄t(ξ

n, n−2
t + ξn−2, n

t + wt), t ∈ B. (7.13)

To get (7.12) from (7.10), it suffices to write d ξt = ∂tξt + ∂̄tξt and to remember that d ξt = Ut
is a form of pure Jt-type (n, n − 1). Hence d ξt = ∂tξ

n−1, n−1
t + ∂̄tξ

n, n−2
t . The vanishing of the

(n− 1, n)-component of d ξt amounts to ∂̄tξ
n−1, n−1
t + ∂tξ

n−2, n
t = 0, or equivalently by conjugation to

∂t(−ξn−1, n−1
t ) = ∂̄tξ

n−2, n
t . Hence (7.13) follows from (7.12).

As all the forms involved in (7.13) vary in a C∞ way with t ∈ B (up to t = 0), to finish the proof
of Theorem 7.0.4 it clearly suffices to show that

γn−1
t − ξn−1, n−1

t − ξn−1, n−1
t > 0, for all t ∈ B. (7.14)

Indeed, if this positivity property has been proved, Michelsohn’s observation in linear algebra of

Lemma 4.0.1 enables one to extract the (n− 1)st root of γn−1
t − ξn−1, n−1

t − ξn−1, n−1
t and to find, for

all t ∈ B, a unique Jt − (1, 1)-form ρt > 0 such that

γn−1
t − ξn−1, n−1

t − ξn−1, n−1
t = ρn−1

t , t ∈ B. (7.15)

By construction, ρt defines a strongly Gauduchon metric on Xt for every t ∈ B thanks to (7.13). In
particular, X0 is a strongly Gauduchon manifold and Theorem 7.1.1 follows. It actually suffices to
prove (7.14) for t = 0.

Moreover, it would clearly suffice to prove the stronger property:

ξn−1,n−1
0 = 0. (7.16)

If this has been proved, then identity (7.12) applied to t = 0 reads ∂0γ
n−1
0 = ∂̄0(ξ

n,n−2
0 + w0), hence

γ0 is a strongly Gauduchon metric on X0 and Theorem 7.1.1 follows.

We have thus reduced our uniform boundedness problem for the main quantity It to the positivity
problem (7.14) or the vanishing subproblem (7.16).

The positivity problem

Let || · || = || · ||t and ⟨⟨ , ⟩⟩ = ⟨⟨ , ⟩⟩t stand for the L2-norm and respectively the L2-scalar
product defined by the Gauduchon metric γt on the forms of Xt.

Sufficiency of a small L2 norm for the correcting form

As γn−1
t > 0, we shall now see that in order to prove Theorem 7.1.1, it suffices to show that the

L2-norm || · || of ξn−1, n−1
t can be made arbitrarily small (hence so can the L2-norm of the real form

ξn−1, n−1
t + ξn−1, n−1

t ) uniformly w.r.t. t ∈ B. It actually suffices to guarantee this property when
t = 0 as the following observation shows.
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Lemma 7.1.5. Suppose that for a constant ε > 0 , we have:

||ξn−1, n−1
0 || < ε. (7.17)

Then, if ε is sufficiently small, there exists a C∞ form ρ0 > 0 that is positive definite and of type
(1, 1) for J0 on X0 such that

∂0ρ
n−1
0 − ∂0

(
γn−1
0 − ξn−1, n−1

0 − ξn−1, n−1
0

)
∈ Im (∂0∂̄0). (7.18)

In particular, since ∂0(γ
n−1
0 −ξn−1, n−1

0 −ξn−1, n−1
0 ) is ∂̄0-exact by (7.13), we see that ∂0ρ

n−1
0 is ∂̄0-exact,

hence ρ0 is a strongly Gauduchon metric on X0.

Proof. To lighten the notation, we drop the indices and spell out the argument on an arbitrary
compact complex n−fold X which will be taken to be X0 in the end.

Having fixed the metric γ(= γ0) on X(= X0) and calculating all the formal adjoint operators
w.r.t. γ, recall the following facts seen in §.1.1.1, including Corollary 1.1.13: the Aeppli Laplacian
∆̃p, q
A : C∞

p, q(X, C) −→ C∞
p, q(X, C) is elliptic and induces an L2

γ-orthogonal three-space decomposi-
tion:

C∞
p, q(X,C) = ker ∆̃p, q

A ⊕ (Im∂ + Im∂̄)⊕ Im(∂∂̄)⋆,

the orthogonal direct sum of the first two subspaces being the kernel of ∂∂̄:

ker(∂∂̄) = ker ∆̃p, q
A ⊕ (Im∂ + Im∂̄), (7.19)

a decomposition proving the Hodge isomorphism Hp, q
A (X, C) ≃ ker ∆̃p, q

A .
Taking (p, q) = (n − 1, n − 1) in this general context, recall that we have (cf. (7.12) at t = 0

with indices dropped, set ξ := ξ0):

∂(γn−1 − ξn−1, n−1) = ∂̄(ξn, n−2 + w).

Since ∂∂̄γn−1 = 0, taking ∂̄ on both sides of the above identity, we get ∂∂̄ξn−1, n−1 = 0, hence the
following decomposition according to (7.19):

ker(∂∂̄) ∋ ξn−1, n−1 = ξn−1, n−1

∆̃A
+ (∂ζ + ∂̄η), (7.20)

where ζ and η are C∞ forms of respective types (n− 2, n− 1) and (n− 1, n− 2), while ξn−1, n−1

∆̃A
∈

ker ∆̃n−1, n−1
A is orthogonal onto the sum ∂ζ + ∂̄η. By orthogonality, we get:

0 ≤ ||ξn−1, n−1

∆̃A
|| ≤ ||ξn−1, n−1|| < ε, (7.21)

the last inequality being the hypothesis (7.17) (for ξn−1, n−1 := ξn−1, n−1
0 ).

Thus the ∆̃n−1, n−1
A -harmonic form ξn−1, n−1

∆̃A
is small in L2-norm by (7.21). However, the har-

monicity w.r.t. an elliptic operator implies that ξn−1, n−1

∆̃A
must be small in a much stronger norm.

Indeed, applying the fundamental a priori inequality satisfied by elliptic operators to the fourth-order
elliptic operator ∆̃n−1, n−1

A , we get for every k ∈ N and every L2-form u of type (n− 1, n− 1) such
that ∆̃n−1, n−1

A u is in the Sobolev space W k(X, Λn−1, n−1T ⋆X) of (n − 1, n − 1)-forms on X whose
derivatives up to order k are in L2 :

||u||Wk+4 ≤ Ck(||∆̃n−1, n−1
A u||Wk + ||u||L2), (7.22)
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where || · ||L2 := || · || and Ck > 0 is a constant depending only on k. If u = ξn−1, n−1

∆̃A
, ∆̃n−1, n−1

A u = 0

and, by (7.21), ||u||L2 < ε. Thus (7.22) reduces to

||ξn−1, n−1

∆̃A
||Wk+4 ≤ Ck ε, k ∈ N. (7.23)

Now by the well-known Sobolev Lemma, we have a continuous injection:

W k(X,Λn−1, n−1T ⋆X) ↪→ C l(X,Λn−1, n−1T ⋆X), ∀k > l + n,

into the space of (n− 1, n− 1)-forms of class C l on X. Choosing l = 0 and k + 4 > n, we get, for a
constant C ′

k+4 > 0 depending only on k:

||ξn−1, n−1

∆̃A
||C0 ≤ C ′

k+4 ||ξ
n−1, n−1

∆̃A
||Wk+4 < C ′

k+4Ck ε, (7.24)

having used (7.23) for the last inequality.
Thus the C0-norm of ξn−1, n−1

∆̃A
can be made arbitrarily small by choosing ε small enough. Hence so

can the C0-norm of ξn−1, n−1

∆̃A
+ξn−1, n−1

∆̃A
. Since γn−1 > 0, it follows that γn−1−ξn−1, n−1

∆̃A
−ξn−1, n−1

∆̃A
> 0

if ε > 0 is chosen small enough, achieving thus the desired positivity property (7.14). Extracting
Michelsohn’s (n− 1)st root, we get a unique C∞ (1, 1)-form ρ > 0 (i.e. a Hermitian metric ρ on X)
satisfying

ρn−1 = γn−1 − ξn−1, n−1

∆̃A
− ξn−1, n−1

∆̃A
> 0.

On the other hand, it follows from (7.20) that

γn−1 − ξn−1, n−1 − ξn−1, n−1 = γn−1 − ξn−1, n−1

∆̃A
− ξn−1, n−1

∆̃A
− ∂ζ − ∂̄η − ∂̄ζ̄ − ∂η̄

= ρn−1 − ∂ζ − ∂̄η − ∂̄ζ̄ − ∂η̄,

hence, taking ∂ on either side of the above identity, we get

∂ρn−1 − ∂(γn−1 − ξn−1, n−1 − ξn−1, n−1) = ∂∂̄(η + ζ̄),

proving contention (7.18) (indices have been dropped here). The proof is complete. □

7.1.3 The iterative procedure and L2 estimates

With Lemma 7.1.5 understood, the rest of the proof of Theorem 7.1.1 will focus on correcting the
forms γn−1

t > 0 by subtracting real forms whose L2-norms can be made arbitrarily small uniformly
w.r.t. t ∈ B such that the ∂t of the difference is ∂̄t-exact for all t ∈ B. Actually, the case t = 0 will
suffice. Thus, we will achieve the positivity posited in (7.14) thanks to Lemma 7.1.5.

However, we can see no reason that the L2-norm of ξn−1, n−1
t should be as small as needed

in general. In other words, the forms ξn−1, n−1
t constructed in Lemma 7.1.4 need not satisfy the

hypothesis of Lemma 7.1.5. Therefore we will replace them by new forms ξ̃n−1, n−1
t, (p) constructed by

an inductive procedure that will be described below. The lower index (p) will indicate that ξ̃n−1, n−1
t, (p)

has been produced at step p ∈ N of the inductive procedure. This procedure is based on an iterative
use of Lemma 7.1.4 in which ∂tξ

n−1, n−1
t will be replaced by an appropriate form changing at each

step p. Running the inductive procedure sufficiently many times p ≫ 1, we shall get the L2-norm
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||ξ̃n−1, n−1
t, (p) || to become arbitrarily small in a way that is uniform w.r.t. both t ∈ B and the number

p≫ 1 of iterations. Uniformity is of the essence in all that follows.
Nevertheless, an intermediate step is needed in passing from (ξn−1, n−1

t )t∈B to (ξ̃n−1, n−1
t, (p) )t∈B. It

will produce a family of forms (ξn−1, n−1
t, (p) )t∈B.

The inductive construction of the forms (ξn−1, n−1
t, (p) )t∈B

Smooth families of forms (ξn−1, n−1
t, (p) )t∈B with p ∈ N will be constructed inductively. The main obser-

vation here is that the ∂∂̄-assumption enables the construction in Lemma 7.1.4 to run indefinitely.
Identities (7.27) below compare to (7.12) and (7.28) to (7.13).

Lemma 7.1.6. For p ∈ N, let (ξt, (p))t∈B be the family of smooth (2n−2)-forms on the fibres (Xt)t∈B
constructed inductively on p ∈ N by putting

ξt, (0) := ξt, t ∈ B,

and then defining ξt, (p+1) as the minimal L2-norm solution of the equation

d ξt, (p+1) = ∂tξ
n−1, n−1
t, (p) , t ∈ B, p ∈ N, (7.25)

where, as usual, ξr, st, (l) denotes the component of Jt-type (r, s) of ξt, (l).

For every t ∈ B and every p ∈ N, let Ωn−1, n−1
t, (p) be the smooth Jt-(n−1, n−1)-form on Xt defined

as the minimal L2-norm solution of the equation

∂tΩ
n−1, n−1
t, (p) = ∂tξ

n−1, n−1
t, (p) . (7.26)

Then, for every p ∈ N, the family (ξt, (p))t∈B varies in a C∞ way with t (up to t = 0), the family

(Ωn−1, n−1
t, (p) )t∈B varies continuously with t (up to t = 0) and, for all t ∈ B and all p ∈ N, we have:

∂t(γ
n−1
t − Ωn−1, n−1

t, (p) ) = ∂t(γ
n−1
t − ξn−1, n−1

t, (p) )

= ∂̄t(ξ
n, n−2
t, (p) + ξn, n−2

t, (p−1) + · · ·+ ξn, n−2
t, (1) + ξn, n−2

t + wt). (7.27)

Equivalently, we have:

∂t(γ
n−1
t − ξn−1, n−1

t, (p) − ξn−1, n−1
t, (p) ) = ∂̄t(ξ

n, n−2
t, (p) + ξn−2, n

t, (p) + ξn, n−2
t, (p−1) + · · ·+ ξn, n−2

t + wt). (7.28)

As the form Ωn−1, n−1
t, (p) need not be real, (7.28) rather than (7.27) will prove useful to us later on.

Note that Ωn−1, n−1
t, (p) may be different from ξn−1, n−1

t, (p) since, although ξt, (p) is the minimal L2-norm d-

potential of ∂tξ
n−1, n−1
t, (p−1) , its (n−1, n−1)-component ξn−1, n−1

t, (p) need not have minimal L2-norm among

the ∂t-potentials of ∂tξ
n−1, n−1
t, (p) . Thus, the form Ωn−1, n−1

t, (p) can be seen as a correction of ξn−1, n−1
t, (p) if

the latter does not have minimal L2-norm. The forms Ωn−1, n−1
t, (p) will only be used in some technical

comparison arguments (e.g. in the proof of Lemma 7.1.7), but will eventually drop out of later
statements.

Proof of Lemma 7.1.6. • The first thing we have to prove is that equation (7.25) is solvable (i.e.
∂tξ

n−1, n−1
t, (p) is d-exact) for all t ∈ B and all p ∈ N. Equation (7.26) is obviously solvable.
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Step p = 0. We have already noticed that ∂tγ
n−1
t and its projections d ξt and ∂̄twt given in (7.10)

are all d, ∂t and ∂̄t-exact for all t ̸= 0. Writing d ξt = ∂tξ
n−1, n−1
t + ∂̄tξ

n, n−2
t , we see that ∂̄tξ

n, n−2
t is

∂̄t-closed (even ∂̄t-exact) and is also ∂t-closed for bidegree reasons (being of pure type (n, n − 1)).
Thus ∂̄tξ

n, n−2
t is d-closed and of pure type. By the ∂∂̄-assumption, the ∂̄t-exactness of ∂̄tξ

n, n−2
t

implies its d and ∂t-exactness for all t ̸= 0. Then ∂tξ
n−1, n−1
t must also be d and ∂t-exact for all t ̸= 0

as a difference of two such forms. We can thus write:

∂tξ
n−1, n−1
t = ∂tΩ

n−1, n−1
t = d ξt, (1), t ∈ B, (7.29)

where Ωn−1, n−1
t stands for the ∂t-potential of minimal L2-norm || · || and ξt, (1) denotes the d-potential

of minimal L2-norm || · || of ∂tξn−1, n−1
t . In particular, equation (7.25) is solvable for all t ∈ B and

for p = 0.
Identities (7.29) a priori hold only for t ̸= 0 as the ∂∂̄-assumption is only made on Xt with t ̸= 0.

However, we have seen that in the Neumann formula for the minimal L2-norm solution:

ξt, (1) = ∆−1
t d⋆t (∂tξ

n−1, n−1
t ), t ∈ B⋆,

the family of Green’s operators (∆−1
t )t∈B is a C∞ family (up to t = 0) by results of Kodaira-

Spencer and the De Rham cohomology being constant on the fibres Xt, t ∈ B (no small eigenvalue
phenomenon for ∆t). Thus ∂0ξ

n−1, n−1
0 is d-exact and the family (ξt, (1))t∈B is defined and C∞ up to

t = 0.
Meanwhile, as the minimal L2-norm solution of the first equation in (7.29), Ωn−1, n−1

t is given by
the Neumann formula for a ∂t-equation, namely

Ωn−1, n−1
t = ∆

′−1
t ∂⋆t (∂tξ

n−1, n−1
t ), t ∈ B⋆.

Thus, Ωn−1, n−1
t is obtained by dividing by the eigenvalues of ∆′

t (some of which may tend to 0, hence
their inverses may tend to +∞, when t approaches 0 ∈ B if there is a jump at t = 0 of the dimension
of ker∆′

t) the coefficients of ∂⋆t (∂tξ
n−1, n−1
t ) with respect to an orthonomal basis of (n−1, n−1)-forms

that are eigenvectors of ∆′
t. (See the similar formula (7.37) further down.) However, the family of

forms (∂⋆t (∂tξ
n−1, n−1
t ))t∈B depends in a C∞ way with t ∈ B (up to t = 0). On the other hand,

||Ωn−1, n−1
t || ≤ ||ξn−1, n−1

t || for all t ∈ B⋆ by the L2-norm minimality of Ωn−1, n−1
t . As ξn−1, n−1

t is
known to extend in a C∞ way to X0, the family (Ωn−1, n−1

t )t∈B⋆ is bounded near t = 0. Since the
eigenvalues of ∆′

t vary continuously with t ∈ B by Kodaira-Spencer (see e.g. [Kod85, Theorem 7.2]),
the boundedness w.r.t. t of Ωn−1, n−1

t and the expression of Ωn−1, n−1
t in terms of the inverses of the

eigenvalues of ∆′
t imply that the family (Ωn−1, n−1

t )t∈B⋆ extends at least continuously across 0 ∈ B.
(Elementarily, if f and g are continuous functions on a disc ∆ ⊂ C about 0, if f(t) > 0 for all t ̸= 0,
f(0) = 0 but f(t)/g(t) is bounded near t = 0, then f(tν)/g(tν) converges to a finite limit for some
sequence tν → 0.)

Thus identities (7.29) hold for all t ∈ B (including t = 0), while the families (Ωn−1, n−1
t )t∈B and

(ξt, (1))t∈B vary in a continuous, respectively C∞, way with t. Set Ωn−1, n−1
t, 0 := Ωn−1, n−1

t .
The procedure described above can now be iterated indefinitely.

Step p = 1. In view of (7.29), identity (7.12) becomes:

∂t(γ
n−1
t − Ωn−1, n−1

t ) = ∂t(γ
n−1
t − ξn−1, n−1

t ) = ∂̄t(ξ
n, n−2
t + wt), t ∈ B. (7.30)

Writing d ξt, (1) = ∂tξ
n−1, n−1
t, (1) + ∂̄tξ

n, n−2
t, (1) (recall that d ξt, (1) is of Jt-type (n, n− 1)) and using (7.29),

we get:
∂t(γ

n−1
t − ξn−1, n−1

t, (1) ) = ∂̄t(ξ
n, n−2
t, (1) + ξn, n−2

t + wt), t ∈ B. (7.31)
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The right-hand term in (7.31) is a d-closed and ∂̄t-exact (n, n − 1)-form, hence it must be d, ∂t
and ∂̄t-exact for all t ̸= 0 by the ∂∂̄-assumption. Then so is ∂tξ

n−1, n−1
t, (1) as a difference of two such

forms (i.e. ∂tγ
n−1
t and the right-hand term in (7.31)). We then get identities analogous to (7.29):

∂tξ
n−1, n−1
t, (1) = ∂tΩ

n−1, n−1
t, (1) = d ξt, (2), t ∈ B,

where Ωn−1, n−1
t, (1) and ξt, (2) are the ∂t and respectively d-potentials of ∂tξ

n−1, n−1
t, (1) with minimal L2-

norms. They extend continuously, resp. smoothly to X0 by the same arguments as above. In
particular, equation (7.25) is solvable for all t ∈ B and for p = 1.

Moreover, writing d ξt, (2) = ∂tξ
n−1, n−1
t, (2) + ∂̄tξ

n, n−2
t, (2) , (7.31) reads:

∂t(γ
n−1
t − ξn−1, n−1

t, (2) ) = ∂̄t(ξ
n, n−2
t, (2) + ξn, n−2

t, (1) + ξn, n−2
t + wt), t ∈ B. (7.32)

The (n, n − 1)-form ∂tξ
n−1, n−1
t, (2) is again d, ∂t and ∂̄t-exact for all t ̸= 0 by the ∂∂̄-assumption and

the procedure can be repeated.

Step p. At step p, one gets:

∂tξ
n−1, n−1
t, (p) = ∂tΩ

n−1, n−1
t, (p) = d ξt, (p+1), t ∈ B, p ∈ N, (7.33)

with Ωn−1, n−1
t, (p) and ξt, (p+1) the ∂t and respectively d-potentials of minimal L2-norms of ∂tξ

n−1, n−1
t, (p) .

• It is clear that the analogue for p of (7.30), (7.31), (7.32) and the definition of Ωn−1, n−1
t, (p) in

(7.33) add up to the identities (7.27) claimed in the statement. To get (7.28) from (7.27), recall that
∂tξ

n−1, n−1
t, (p−1) = d ξt, (p) is of Jt-type (n, n − 1), hence its (n − 1, n)-component ∂tξ

n−2, n
t, (p) + ∂̄tξ

n−1, n−1
t, (p)

vanishes. Taking conjugates, one gets ∂t(−ξn−1, n−1
t, (p) ) = ∂̄tξ

n−2, n
t, (p) and this term can be added to (7.27)

to get (7.28). □

The next observation is that the L2-norm of ξn−1, n−1
t, (p) can only decrease or stay constant when p

increases, so successive iterations of the construction described in Lemma 7.1.6 bring us increasingly
close to achieving our aim of rendering the L2-norm of ξn−1, n−1

t, (p) arbitrarily small when p≫ 1.

Lemma 7.1.7. The C∞ families of forms (ξn−1, n−1
t, (p) )t∈B, p ∈ N, constructed in Lemma 7.1.6 obey

the following L2-norm inequalities:

||ξn−1, n−1
t, (p+1) || ≤ ||ξ

n−1, n−1
t, (p) || and ||ξt, (p+1)|| ≤ ||ξt, (p)|| t ∈ B, p ∈ N. (7.34)

Proof. The minimal L2-norm solutions of equations (7.33) are given by:

ξt, (p+1) = ∆−1
t d⋆t (∂tξ

n−1, n−1
t, (p) ), resp. Ωn−1, n−1

t, (p) = ∆
′−1
t ∂⋆t (∂tξ

n−1, n−1
t, (p) ). (7.35)

Now it is easily seen that, for any ∂t-exact (r, s)-form u on Xt, one has

||∆′−1
t ∂⋆t u|| = ||∆

′− 1
2

t u||. (7.36)

Indeed, if (er, sj )j∈N is an orthonormal basis of C∞
r, s(Xt, C) consisting of eigenvectors of ∆′

t such that
∆′
te
r, s
j = λj e

r, s
j and if u splits as u =

∑
j∈Ju

cj e
r, s
j with cj ∈ C, then er, sj is ∂t-exact for every j ∈ Ju

and
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∆
′−1
t ∂⋆t u =

∑
j∈Ju

cj√
λj
er−1, s
j , (7.37)

where (er−1, s
j )j∈Ju is an orthonormal subset of C∞

r−1, s(Xt, C) consisting of eigenvectors of ∆′
t corre-

sponding to the same eigenvalues as for (r, s)−forms: ∆′
te
r−1, s
j = λj e

r−1, s
j . This is because

∂⋆ : Im (∂ : C∞
r−1, s → C∞

r, s) −→ Im (∂⋆ : C∞
r, s → C∞

r−1, s)

is an angle-preserving isomorphism that maps any ∂-exact ∆′-eigenvector of type (r, s) to a ∆′-
eigenvector of type (r− 1, s) having the same eigenvalue λ and an L2-norm multiplied by

√
λ. (We

have suppressed indices t to ease the notation). A further application of ∆
′−1 introduces divisions

by the eigenvalues λj, hence the overall effect of applying ∆
′−1∂⋆ to u consists in multiplying the

coefficients cj by
√
λj/λj = 1/

√
λj and replacing the orthonormal set of (r, s)-forms {er, sj , j ∈ Ju}

with an orthonormal set of (r − 1, s)-forms {er−1, s
j , j ∈ Ju}. Hence (7.37) follows.

On the other hand, ∆
′− 1

2u =
∑
j∈Ju

cj√
λj
er, sj . Thus we get (7.36) since

||∆′−1
t ∂⋆t u||2 = ||∆

′− 1
2u||2 =

∑
j∈Ju

|cj|2

λj
.

Similarly, for any d-exact k-form u on Xt, one has

||∆−1
t d⋆tu|| = ||∆− 1

2u||. (7.38)

Thus in the light of (7.35), (7.36) and (7.38) with u = ∂tξ
n−1, n−1
t, (p) , we get

||ξt, (p+1)|| = ||∆
− 1

2
t (∂tξ

n−1, n−1
t, (p) )||, resp. ||Ωn−1, n−1

t, (p) || = ||∆
′− 1

2
t (∂tξ

n−1, n−1
t, (p) )||. (7.39)

We are thus led to compare the Laplacians ∆′
t and ∆t for t ∈ B. We begin by noticing that for

any pure-type (say (r, s)) form u on some Xt, we have:

⟨⟨∆tu, u⟩⟩ ≥ ⟨⟨∆′
tu, u⟩⟩, (7.40)

while, if u is not ∆′′
t -harmonic, we even have

⟨⟨∆tu, u⟩⟩ > ⟨⟨∆′
tu, u⟩⟩. (7.41)

Indeed, by compactness of Xt, any (r, s)-form u satisfies:

⟨⟨∆tu, u⟩⟩ = ||d u||2 + ||d⋆t u||2 = ||∂tu||2 + ||∂̄tu||2 + ||∂⋆t u||2 + ||∂̄⋆t u||2

= ⟨⟨∆′
tu, u⟩⟩+ ⟨⟨∆′′

t u, u⟩⟩ ≥ ⟨⟨∆′
tu, u⟩⟩ ≥ 0, (7.42)

since ⟨⟨∆′
tu, u⟩⟩ = ||∂tu||2+||∂⋆t u||2 ≥ 0 and ⟨⟨∆′′

t u, u⟩⟩ = ||∂̄tu||2+||∂̄⋆t u||2 ≥ 0, while the assumption
that u is not ∆′′

t -harmonic amounts to ⟨⟨∆′′
t u, u⟩⟩ > 0. The equality between the top two lines follows

from d u = ∂tu+ ∂̄tu and the pure-type forms ∂tu and ∂̄tu of distinct types (r+1, s), resp. (r, s+1),
being orthogonal. Thus ||d u||2 = ||∂tu||2 + ||∂̄tu||2 and the adjoints satisfy the analogous identity
||d⋆t u||2 = ||∂⋆t u||2 + ||∂̄⋆t u||2 for the same reasons.

Thus it follows from (7.39) and (7.42) that

||ξt, (p+1)|| ≤ ||Ωn−1, n−1
t, (p) ||. (7.43)
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Now ||ξn−1, n−1
t, (p+1) || ≤ ||ξt, (p+1)|| by mutual orthogonality of the pure-type components of ξt, (p+1).

Similarly ||ξn−1, n−1
t, (p) || ≤ ||ξt, (p)||, while

||Ωn−1, n−1
t, (p) || ≤ ||ξn−1, n−1

t, (p) || (7.44)

by L2-norm minimality of Ωn−1, n−1
t, (p) among the solutions of the equation ∂tΩ

n−1, n−1
t, (p) = ∂tξ

n−1, n−1
t, (p) (cf.

(7.33)). Thus we get

||ξn−1, n−1
t, (p+1) || ≤ ||ξt, (p+1)|| ≤ ||Ωn−1, n−1

t, (p) || ≤ ||ξn−1, n−1
t, (p) || ≤ ||ξt, (p)||.

This sequence of inequalities contains (7.34). □

Taking our cue from the strict inequality (7.41), we now notice that inequality (7.34) can be
improved in a way that is uniform w.r.t. t ∈ B if the relevant forms ∂tξ

n−1, n−1
t, (p) avoid the harmonic

spaces ker∆′′
t for all t ∈ B (including t = 0). This is not possible, however, if the non-∆′′

t -harmonicity
assumption is only made at t ̸= 0.

Observation 7.1.8. (i) Let (ut)t∈B be a family of Jt-(r, s)-forms varying continuously with t (up
to t = 0) such that ut /∈ ker∆′′

t for all t ∈ B (including t = 0).
Then there exists a constant ε > 0 independent of t ∈ B such that

⟨⟨∆tut, ut⟩⟩ ≥ (1 + ε) ⟨⟨∆′
tut, ut⟩⟩ for all t ∈ B, (7.45)

after possibly shrinking the base B about 0.

(ii) In particular, suppose that for a given p ∈ N we have

∂tξ
n−1, n−1
t, (p) /∈ ker∆′′

t , for all t ∈ B (including t = 0). (7.46)

Then there exists a constant ε > 0 independent of t ∈ B such that

⟨⟨∆t(∂tξ
n−1, n−1
t, (p) ), ∂tξ

n−1, n−1
t, (p) ⟩⟩ ≥ (1 + ε) ⟨⟨∆′

t(∂tξ
n−1, n−1
t, (p) ), ∂tξ

n−1, n−1
t, (p) ⟩⟩, t ∈ B, (7.47)

after possibly shrinking the base B about 0.
Implicitly, if hypothesis (7.46) is satisfied for a given p ∈ N, we get

||ξn−1, n−1
t, (p+1) || ≤

1√
1 + ε

||ξn−1, n−1
t, (p) ||, t ∈ B, (7.48)

for a certain ε > 0 independent of t ∈ B.

Proof. Since u0 /∈ ker∆′′
0, inequality (7.41) applies to ∆0, ∆′

0 and u0 to give ⟨⟨∆0u0, u0⟩⟩ >
⟨⟨∆′

0u0, u0⟩⟩. Thus there exists a constant ε > 0 such that this inequality strengthens to

⟨⟨∆0u0, u0⟩⟩ > (1 + ε) ⟨⟨∆′
0u0, u0⟩⟩. (7.49)

Now (∆t)t∈B and (∆′
t)t∈B are C∞ families of operators since they are defined by metrics (γt)t∈B

that vary in a C∞ way with t ∈ B (up to t = 0). Since ut also varies continuously with t ∈ B (up to
t = 0), ⟨⟨∆tut, ut⟩⟩ and ⟨⟨∆′

tut, ut⟩⟩ both vary continuously with t ∈ B (up to t = 0). By continuity,
shrinking B about 0 if necessary, (7.49) extends to a small neighbourhood of 0 in B to give (7.45)
and prove part (i).
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The first statement of part (ii) is an immediate consequence of part (i). As for the second
statement of part (ii), it follows from (7.47), (7.35), (7.36) and (7.38) that

||ξt, (p+1)|| ≤
1√
1 + ε

||Ωn−1, n−1
t, (p) ||,

while the easy comparison arguments given at the end of the proof of Lemma 7.1.7 further give the
uniform estimate (7.48). The proof is complete. □

The forms ξn−1, n−1
t, (p) produced iteratively in Lemma 7.1.6 may appear at first glance as the right

substitute for the previous forms ξn−1, n−1
t if p ≫ 1. However, the L2-norm of ξn−1, n−1

t, (p) need not be
small uniformly w.r.t. t ∈ B and the number p≫ 1 of iterations due to the uncontrollable behaviour
of ∂tξ

n−1, n−1
t, (p) from which ξn−1, n−1

t, (p+1) is constructed by solving equations (7.33). Indeed, ∂tξ
n−1, n−1
t, (p)

cannot be guaranteed to satisfy hypothesis (7.46) for all t ∈ B and all p ∈ N. Consequently,
estimate (7.48) need not hold at all, let alone with a constant ε > 0 independent of both t ∈ B and
p ∈ N. Even in the favourable case where ∂tξ

n−1, n−1
t, (p) /∈ ker∆′′

t for all t and p, the ε of (7.47) cannot

not be guaranteed to be independent of p ∈ N since ∂tξ
n−1, n−1
t, (p) may come arbitrarily close to ker∆′′

t

as p→ +∞.
In other words, we cannot guarantee that inequality (7.34) does not become an identity for

p ≫ 1 or that the decrease of the L2-norms ||ξn−1, n−1
t, (p) ||, should it occur, is uniform w.r.t. t and

p as p → +∞. A further modification is needed to achieve uniformity in the L2-estimates: the
forms ξt, (p) will be replaced by new inductively constructed forms ξ̃t, (p) obtained in the following

way. If ξ̃t, (p) has been constructed at step p of the inductive procedure that will be described below,

∂tξ̃
n−1, n−1
t, (p) will be altered to ∂t(ξ̃

n−1, n−1
t, (p) + νn−1, n−1

t, (p) ) (for a suitably chosen form νn−1, n−1
t, (p) that will

force ∂t(ξ̃
n−1, n−1
t, (p) + νn−1, n−1

t, (p) ) to satisfy analogues of hypothesis (7.46) and of estimate (7.47)) before

solving equations analogous to (7.33) and running step (p+ 1) of the inductive procedure that will

produce the next form ξ̃t, (p+1). Thus we will “push” ∂tξ̃
n−1, n−1
t, (p) away from ker∆′′

t by adding some

auxiliary form ∂tν
n−1, n−1
t, (p) changing with p. We stress that the auxiliary form must be changed at

every step p to shift ∂tξ̃
n−1, n−1
t, (p) beyond a uniform distance from ker∆′′

t . There is no “universal”
choice of auxiliary form that would suit every p. The details are spelt out in the next sections.

The inductive construction of the forms (ξ̃n−1, n−1
t, (p) )t∈B

Step 1. By (7.12) of Lemma 7.1.4 we get

∂tγ
n−1
t = ∂tξ

n−1, n−1
t + ∂̄t(ξ

n, n−2
t + wt), t ∈ B. (7.50)

Let (ηt)t∈B be a smooth family of Jt-(n, n − 1)-forms (the auxiliary forms at step 1) satisfying
the following three conditions (⋆):

(a) ηt = ∂tν
n−1, n−1
t = ∂̄tϑ

n, n−2
t for all t ∈ B and for continuous families of forms (νn−1, n−1

t )t∈B,
(ϑn, n−2

t )t∈B of the shown types;

(b) ||ξn−1, n−1
t + νn−1, n−1

t || ≤ ||ξt||, t ∈ B;

(c) for all t ∈ B and for some ε0 > 0 independent of t we have
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⟨⟨∆′′
t (∂tξ

n−1, n−1
t + ∂tν

n−1, n−1
t ), ∂tξ

n−1, n−1
t + ∂tν

n−1, n−1
t ⟩⟩

⟨⟨∆′
t(∂tξ

n−1, n−1
t + ∂tν

n−1, n−1
t ), ∂tξ

n−1, n−1
t + ∂tν

n−1, n−1
t ⟩⟩

≥ ε0 > 0,

with the convention that if the denominator vanishes, any ε0 > 0 will do.

Now using (a), (7.50) becomes:

∂tγ
n−1
t = ∂t(ξ

n−1, n−1
t + νn−1, n−1

t ) + ∂̄t(ξ
n, n−2
t + wt − ϑn, n−2

t ), t ∈ B. (7.51)

Let Ω̃n−1, n−1
t and ξ̃t, (1) be the ∂t-potential and respectively the d-potential of minimal L2-norms

of ∂t(ξ
n−1, n−1
t + νn−1, n−1

t ) :

∂t(ξ
n−1, n−1
t + νn−1, n−1

t ) = ∂tΩ̃
n−1, n−1
t = d ξ̃t, (1), t ∈ B. (7.52)

Notice that, since d ξ̃t, (1) is of pure type (n, n− 1), we must have

d ξ̃t, (1) = ∂tξ̃
n−1, n−1
t, (1) + ∂̄tξ̃

n, n−2
t, (1) , t ∈ B.

Using this and (7.52), (7.51) reads:

∂tγ
n−1
t = ∂tξ̃

n−1, n−1
t, (1) + ∂̄t(ξ̃

n, n−2
t, (1) + ξn, n−2

t + wt − ϑn, n−2
t ), t ∈ B. (7.53)

Step p+1. Suppose that Step p has been performed and has produced the following decomposition
for all t ∈ B:

∂tγ
n−1
t = ∂tξ̃

n−1, n−1
t, (p) + ∂̄t(ξ̃

n, n−2
t, (p) + · · ·+ ξ̃n, n−2

t, (1) + ξn, n−2
t + wt

− ϑn, n−2
t − ϑn, n−2

t, (1) − · · · − ϑ
n, n−2
t, (p−1)). (7.54)

Let (ηt, (p))t∈B be a smooth family of Jt-(n, n− 1)-forms (the auxiliary forms at step p+ 1) sat-
isfying the following three conditions (⋆p):

(a) ηt, (p) = ∂tν
n−1, n−1
t, (p) = ∂̄tϑ

n, n−2
t, (p) for all t ∈ B and for continuous families of forms (νn−1, n−1

t, (p) )t∈B,

(ϑn, n−2
t, (p) )t∈B of the shown types;

(b) ||ξ̃n−1, n−1
t, (p) + νn−1, n−1

t,(p) || ≤ ||ξ̃t, (p)||, t ∈ B;

(c) for all t ∈ B and for some ε0 > 0 independent of t and of p ∈ N we have

⟨⟨∆′′
t (∂tξ̃

n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ), ∂tξ̃

n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ⟩⟩

⟨⟨∆′
t(∂tξ̃

n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ), ∂tξ̃

n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ⟩⟩

≥ ε0 > 0,

with the convention that if the denominator vanishes, any ε0 > 0 will do.

Now using (a), (7.54) becomes for all t ∈ B:

∂tγ
n−1
t = ∂t(ξ̃

n−1, n−1
t, (p) + νn−1, n−1

t, (p) ) + ∂̄t(ξ̃
n, n−2
t, (p) + · · ·+ ξ̃n, n−2

t, (1) + ξn, n−2
t + wt

− ϑn, n−2
t − ϑn, n−2

t, (1) − · · · − ϑ
n, n−2
t, (p) ). (7.55)

Let Ω̃n−1, n−1
t, (p) and ξ̃t, (p+1) be the ∂t-potential and respectively the d-potential of minimal L2-norms

of ∂t(ξ̃
n−1, n−1
t, (p) + νn−1, n−1

t, (p) ) :
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∂t(ξ̃
n−1, n−1
t, (p) + νn−1, n−1

t, (p) ) = ∂tΩ̃
n−1, n−1
t, (p) = d ξ̃t, (p+1), t ∈ B. (7.56)

Notice that, since d ξ̃t, (p+1) is of pure type (n, n− 1), we must have

d ξ̃t, (p+1) = ∂tξ̃
n−1, n−1
t, (p+1) + ∂̄tξ̃

n, n−2
t, (p+1), t ∈ B.

Using this and (7.56), (7.55) reads for all t ∈ B:

∂tγ
n−1
t = ∂tξ̃

n−1, n−1
t, (p+1) + ∂̄t(ξ̃

n, n−2
t, (p+1) + · · ·+ ξ̃n, n−2

t, (1) + ξn, n−2
t + wt

− ϑn, n−2
t − ϑn, n−2

t, (1) − · · · − ϑ
n, n−2
t, (p) ), (7.57)

completing the inductive construction of the families (ξ̃n−1, n−1
t, (p) )t∈B, p ∈ N.

Summing up: if we set ξ̃t, (0) := ξt and ξ̃n−1, n−1
t, (0) := ξn−1, n−1

t as well as Ω̃n−1, n−1
t, (0) := Ω̃n−1, n−1

t

and νn−1, n−1
t, (0) := νn−1, n−1

t , we get continuous families of forms (ξ̃n−1, n−1
t, (p) )t∈B and (Ω̃n−1, n−1

t, (p) )t∈B for
each p ∈ N.

Comment 7.1.9. It is clear that the forms ηt, (p) = 0 with νn−1, n−1
t, (p) = 0 and ϑn, n−2

t, (p) = 0 for all t ∈ B
trivially satisfy conditions (a) and (b) of (⋆p), while they need not satisfy condition (c). Indeed, we

have ||ξ̃n−1, n−1
t, (p) || ≤ ||ξ̃t, (p)|| (hence (b) for νn−1, n−1

t, (p) = 0) since the former form is the (n− 1, n− 1)-
component of the latter and forms of distinct pure types are orthogonal. So, in general, the choices
of these auxiliary forms are non-trivial. However, the trivial choice of identically zero auxiliary forms
will do if it happens to satisfy (c) (see (7.65) below).

7.1.4 Proof of the existence of auxiliary forms

We now spell out the argument accounting for the existence of smooth families of forms (ηt, (p))t∈B
satisfying conditions (⋆p) for all p ∈ N. The spectra of ∆′

t and ∆′′
t acting on (n, n− 1)-forms satisfy

inclusions:

Spec∆′
t ⊂ [0, ε′t] ∪ [ε′, +∞), Spec∆′′

t ⊂ [0, ε′′t ] ∪ [ε′′, +∞), t ∈ B, (7.58)

where ε′, ε′′ > 0 are independent of t, while ε′t, ε
′′
t → 0 as t → 0. (Thus ε′0 = ε′′0 = 0.) Since the

eigenspaces of ∆′
t and of ∆′′

t are finite-dimensional and since there are at most finitely many eigenval-
ues of ∆′

t below ε′ and of ∆′′
t below ε′′, each of the vector spaces ⊕µ≤ε′tE

n, n−1
∆′

t
(µ) and ⊕λ≤ε′′tE

n, n−1
∆′′

t
(λ)

(which are the obstruction to what we are striving to achieve) has finite dimension. Hence their
respective orthogonal complements ⊕µ≥ε′En, n−1

∆′
t

(µ) and ⊕λ≥ε′′En, n−1
∆′′

t
(λ) in the infinite-dimensional

vector space C∞
n, n−1(Xt, C) have both infinite dimension and so has their intersection with the

infinite-dimensional subspace Im ∂̄t, i.e.

En, n−1
t :=

⊕
µ≥ε′

En, n−1
∆′

t
(µ) ∩

⊕
λ≥ε′′

En, n−1
∆′′

t
(λ) ∩ Im ∂̄t ⊂ C∞

n, n−1(Xt, C), t ∈ B,

has infinite dimension. The infinite dimensionality of En, n−1
t will play a crucial role in the sequel: the

auxiliary forms ηt, (p) will be chosen in En, n−1
t and having plenty of “room for choice” will be a key

factor. Moreover, ∆ ∋ t 7→ En, n−1
t defines an infinite-rank C∞-subbundle of ∆ ∋ t 7→ C∞

n, n−1(Xt, C).
Notice the inclusion
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En, n−1
t ⊂ Im ∂t, t ∈ B. (7.59)

Indeed, being of type (n, n − 1), every form ηt ∈ En, n−1
t is trivially ∂t-closed, hence also d-closed

since the ∂̄t-exactness assumption is implicit in the definition of En, n−1
t . Then ηt is ∂t-exact for all

t ̸= 0 by the ∂∂̄-lemma. Since any ηt ∈ En, n−1
t avoids the small eigenvalues of ∆′

t by definition of
En, n−1
t , it follows that η0 must be again ∂0-exact if η0 stands in a C∞ family (ηt)t∈B with ηt ∈ En, n−1

t

for all t ∈ B.
Now fix p ∈ N and suppose that the induction has been performed up to Step p. In particular, the

forms (ξ̃t, (p))t∈B have already been constructed. To run Step (p+ 1), we have to show the existence

of auxiliary forms (ηt, (p))t∈B adapted to the pre-existing forms (ξ̃n−1, n−1
t, (p) )t∈B by satisfying conditions

(⋆p). To start with, pick any smooth family (ηt, (p))t∈B of non-zero Jt-(n, n− 1)-forms such that

ηt, (p) = ∂tν
n−1, n−1
t, (p) = ∂̄tϑ

n, n−2
t, (p) ∈ E

n, n−1
t , t ∈ B, (7.60)

where the families of minimal L2-norm ∂t-potentials (ν
n−1, n−1
t, (p) )t∈B and ∂̄t-potentials (ϑ

n, n−2
t, (p) )t∈B vary

continuously with t ∈ B (up to t = 0). We thus satisfy requirement (a) in the infinite-rank vector
bundle ∆ ∋ t 7→ En, n−1

t ⊂ C∞
n, n−1(Xt, C). We have yet to satisfy the requirements (b) and (c).

Fo every t ∈ B, consider the map

En, n−1
t ∋ ηt, (p)

St7−→ νn−1, n−1
t, (p) ∈ Im ∂⋆t ⊂ C∞

n−1, n−1(Xt, C) (7.61)

which associates with every ηt, (p) ∈ En, n−1
t its ∂t-potential ν

n−1, n−1
t, (p) of minimal L2-norm (i.e. the

unique ∂t-potential that lies in Im ∂⋆t ). Since ImSt ⊂ Im ∂⋆t , we have

ImSt ⊥ ker ∂t. (7.62)

It is clear that the map St is linear (because νn−1, n−1
t, (p) = ∆

′−1
t ∂⋆t ηt, (p) while ∆

′−1
t and ∂⋆t are linear

operators) and injective (because ∂tν
n−1, n−1
t, (p) = ηt, (p)). Hence ImSt is an infinite-dimensional vector

subspace of Im ∂⋆t .
Meanwhile, for every t ∈ B and every p ∈ N, let

Ut, (p) := B

(
− ξ̃n−1, n−1

t, (p) , ||ξ̃t, (p)||
)
⊂ C∞

n−1, n−1(Xt, C)

be the closed ball (w.r.t. L2-norm) centred at −ξ̃n−1, n−1
t, (p) and of radius ||ξ̃t, (p)|| in C∞

n−1, n−1(Xt, C).
Clearly, 0 ∈ Ut, (p). Condition (b) of (⋆p) translates to

νn−1, n−1
t, (p) ∈ Ut, (p), t ∈ B, (7.63)

so any form

νn−1, n−1
t, (p) ∈ ImSt ∩ Ut, (p), t ∈ B, (7.64)

automatically satisfies conditions (a) (after setting ηt, (p) := ∂tν
n−1, n−1
t, (p) ) and (b) of (⋆p). Note that

unless the form ξ̃n−1, n−1
t, (p) (given by the induction hypothesis) already satisfies the condition

⟨⟨∆′′
t (∂tξ̃

n−1, n−1
t, (p) ), ∂tξ̃

n−1, n−1
t, (p) ⟩⟩

⟨⟨∆′
t(∂tξ̃

n−1, n−1
t, (p) ), ∂tξ̃

n−1, n−1
t, (p) ⟩⟩

≥ ε0 > 0, (7.65)



CHAPTER 7. DEFORMATION LIMITS OF CERTAIN CLASSES OF COMPACT COMPLEXMANIFOLDS480

for the uniform ε0 obtained from the previous induction steps 1, . . . , p, the auxiliary form νn−1, n−1
t, (p)

that we are now trying to construct cannot be chosen to be the zero form. Thus, unless ξ̃n−1, n−1
t, (p)

satisfies (7.65), we must show that

ImSt ∩ Ut, (p) ⊋ {0}, t ∈ B. (7.66)

If we can manage to achieve (7.66), we will choose 0 ̸= νn−1, n−1
t, (p) ∈ ImSt∩Ut, (p) (cf. (7.64)) in a family

varying in a continuous way with t ∈ B and will set ηt, (p) := ∂tν
n−1, n−1
t, (p) for every t ∈ B. (Recall that

ImSt varies continuously with t up to t = 0 since the family (νn−1, n−1
t, (p) )t∈B of ∂t-potentials does, as

explained above.) Property (7.60) will then be satisfied and so will be (a) and (b) of (⋆p).
The discussion of the possibility of enforcing the choice (7.64) falls into two cases that we now

analyse.

Case 1: if ||ξ̃n−1, n−1
t, (p) || < ||ξ̃t, (p)||, then the origin 0 of C∞

n−1, n−1(Xt, C) lies in the interior of the ball

Ut, (p), so the vector subspace ImSt meets the interior of Ut, (p). Hence (7.66) is guaranteed and we

can choose νn−1, n−1
t, (p) ̸= 0 to satisfy (7.64). Conditions (a) and (b) of (⋆p) are thus simultaneously

fulfilled as explained above.

Case 2: if ||ξ̃n−1, n−1
t, (p) || = ||ξ̃t, (p)||, then ξ̃t, (p) = ξ̃n−1, n−1

t, (p) , hence ξ̃t, (p) is of pure type (n − 1, n − 1).

(Recall that, in general, ||ξ̃t, (p)||2 = ||ξ̃n, n−2
t, (p) ||2 + ||ξ̃

n−1, n−1
t, (p) ||2 + ||ξ̃n−2, n

t, (p) ||2 by mutual orthogonality of

the pure-type components of a given form.) In this case the zero form 0 lies on the boundary of the
ball Ut, (p).

Let Ht, (p) denote the hyperplane of C
∞
n−1, n−1(Xt, C) that is orthogonal to the vector ξ̃n−1, n−1

t, (p) at
0. If the inclusion

ImSt ⊂ Ht, (p) (7.67)

does not hold, then ImSt meets the interior of the ball Ut, (p), (7.66) holds, we can choose νn−1, n−1
t, (p) ̸= 0

to satisfy (7.64) and we can proceed as in Case 1.
However, if the inclusion (7.67) happens to hold, then ImSt does not meet the interior of Ut, (p)

and ImSt ∩ Ut, (p) = {0}. Thus (7.66) does not hold. Meanwhile recall that ξ̃t, (p) satisfies (by
construction) the following induction hypothesis (cf. (7.56) with p− 1 in place of p):

∂t(ξ̃
n−1, n−1
t, (p−1) + νn−1, n−1

t, (p−1) ) = ∂tΩ̃
n−1, n−1
t, (p−1) = d ξ̃t, (p), t ∈ B. (7.68)

Since d ξ̃t, (p) = ∂t ξ̃t, (p) + ∂̄t ξ̃t, (p) is of pure type (n, n− 1) and since ξ̃t, (p) = ξ̃n−1, n−1
t, (p) is of pure type

(n− 1, n− 1) here, we see that the (n− 1, n)-form ∂̄t ξ̃t, (p) must vanish for bidegree reasons. Thus
(7.68) yields

∂t(ξ̃
n−1, n−1
t, (p−1) + νn−1, n−1

t, (p−1) ) = ∂t ξ̃t, (p) = ∂t ξ̃
n−1, n−1
t, (p) , t ∈ B. (7.69)

Now recall that by the induction hypothesis the form ∂t(ξ̃
n−1, n−1
t, (p−1) + νn−1, n−1

t, (p−1) ) featuring in the left-

hand side of (7.69) satisfies property (c) of (⋆p−1) with the uniform ε0 > 0 obtained from the previous
induction steps 1, . . . , p. (The auxiliary forms νn−1, n−1

t, (p−1) were chosen as such at Step p of the induction

process). Therefore (7.69) combined with (c) of (⋆p−1) shows that
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⟨⟨∆′′
t (∂t ξ̃

n−1, n−1
t, (p) ), ∂t ξ̃

n−1, n−1
t, (p) ⟩⟩

⟨⟨∆′
t(∂t ξ̃

n−1, n−1
t, (p) ), ∂t ξ̃

n−1, n−1
t, (p) ⟩⟩

=
⟨⟨∆′′

t ∂t(ξ̃
n−1, n−1
t, (p−1) + νn−1, n−1

t, (p−1) ), ∂t(ξ̃
n−1, n−1
t, (p−1) + νn−1, n−1

t, (p−1) )⟩⟩

⟨⟨∆′
t∂t(ξ̃

n−1, n−1
t, (p−1) + νn−1, n−1

t, (p−1) ), ∂t(ξ̃
n−1, n−1
t, (p−1) + νn−1, n−1

t, (p−1) )⟩⟩
≥ ε0 > 0,

which means that ξ̃n−1, n−1
t, (p) satisfies (7.65). Therefore we can make the trivial choice of auxiliary

form νn−1, n−1
t, (p) , i.e. we can (and will) choose

νn−1, n−1
t, (p) = 0 ∈ ImSt ∩ Ut, (p) = {0}.

This guarantees (7.64), hence (a) and (b) of (⋆p). This also guarantees (c) of (⋆p) thanks to (7.65)
(which holds as we have just seen). As explained in Comment 7.1.9, this choice meets our conditions
in this case. (This is the only case where the choice of the zero form will do.)

Conclusion 7.1.10. The choice (7.64) can always be enforced and we shall henceforth assume that
νn−1, n−1
t, (p) has been chosen as in (7.64). This guarantees conditions (a) and (b) of (⋆p).

Moreover, in Case 2 discussed above, condition (c) is satisfied simultaneously with (a) and (b).
It remains to prove that, in Case 1 discussed above, νn−1, n−1

t, (p) can be chosen as in (7.64) to satisfy

furthermore condition (c) of (⋆p).

Let us make the following observation. Since νn−1, n−1
t, (p) has been chosen as the minimal L2-

norm ∂t-potential of ηt, (p), it satisfies νn−1, n−1
t, (p) ⊥ ker ∂t in C∞

n−1, n−1(Xt, C) (cf. (7.62)). Thus

νn−1, n−1
t, (p) cannot have a non-trivial orthogonal projection on any of the eigenspaces En−1, n−1

∆′
t

(µ)

corresponding to eigenvalues µ ≤ ε′t. Indeed, if δt ∈ E
n−1, n−1
∆′

t
(µ) \ {0} were such a projection, then

∂tδt ∈ En, n−1
∆′

t
(µ) \ {0} would play the analogous role for ηt, (p) = ∂tν

n−1, n−1
t, (p) in bidegree (n, n − 1)

since ∂t and ∆′
t commute. However, the existence of such a component for ηt, (p) is ruled out by

(7.60) and the definition of En, n−1
t . Therefore, any form νn−1, n−1

t, (p) ∈ ImSt satisfies

νn−1, n−1
t, (p) ∈

⊕
µ≥ε′

En−1, n−1
∆′

t
(µ), t ∈ B. (7.70)

We now explain how to choose a form νn−1, n−1
t, (p) as in (7.64) that also satisfies requirement (c) of

(⋆p) in Case 1.

Condition (c) essentially requires ∂tξ̃
n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) to stay away from ker∆′′

t at an L2-
distance that is bounded below by a positive constant independent of both t ∈ B and p ∈ N if
simultaneously the behaviour of ∂tξ̃

n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) w.r.t. ∆′

t is kept under control relative to

the behaviour w.r.t. ∆′′
t .

The possibility that ∂tξ̃
n−1, n−1
t, (p) be ∆′′

t -harmonic cannot be ruled out and in this case condition

(c) cannot not be fulfilled without correcting ∂tξ̃
n−1, n−1
t, (p) by non-zero auxiliary forms ηt, (p). Recall

that the auxiliary form ηt, (p) = ∂tν
n−1, n−1
t, (p) is to be chosen among the forms that satisfy condition

(7.60). Any such ηt, (p) is ∂̄t-exact for all t ∈ B by the choice (7.60), hence ηt, (p) is orthogonal to

ker∆′′
t (since ker∆′′

t ⊥ Im ∂̄t). Thus ηt, (p) = ∂tν
n−1, n−1
t, (p) is in a good position to “drive” ∂tξ̃

n−1, n−1
t, (p)

away from ker∆′′
t and ensure that the corrected form ∂tξ̃

n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) satisfies (c).

The discussion of the choice of a form νn−1, n−1
t, (p) as in (7.64) that also satisfies requirement (c) of

(⋆p) in Case 1 falls into two steps.
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(I) Uniformly bounding the numerator of (c) in (⋆p) from below in Case 1

It is clear that ⟨⟨∆′′
t (∂tξ̃

n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ), ∂tξ̃

n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ⟩⟩ has a uniform positive

lower bound whenever the following three conditions are simultaneously met as ∆ ∋ t → 0 and
p→ +∞:

(i) the L2-distance from ∂tξ̃
n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) to ker∆′′

t does not become arbitrarily small;

(ii) the L2-norm of ∂tξ̃
n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) does not become arbitrarily small;

(iii) ∂tξ̃
n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) /∈ ⊕λ≤ε′′tE

n, n−1
∆′′

t
(λ) for ε′′t → 0 as t→ 0.

In fact condition (iii) is related to condition (i): if ∂tξ̃
n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ∈ ⊕λ≤ε′′tE

n, n−1
∆′′

t
(λ) for

ε′′t → 0 as t→ 0, then ∂0ξ̃
n−1, n−1
0, (p) + ∂0ν

n−1, n−1
0, (p) ∈ ker∆′′

0 in violation of (i).

Observation 7.1.11. Without loss of generality we may make the following

Assumption (A1): ∂0ξ̃
n−1, n−1
0, (p) ∈ ker∆′′

0.

Proof. There are three cases:

(1) if ∂tξ̃
n−1, n−1
t, (p) ∈

⊕
λ≥ε′′

En,n−1
∆′′

t
(λ) for all t ∈ B, then ∂0ξ̃

n−1, n−1
0, (p) ∈ Im ∂̄0. (Indeed, recall

that ∂tξ̃
n−1, n−1
t, (p) ∈ Im ∂̄t for all t ∈ B⋆ by (7.54) and by the fact that, thanks to the ∂∂̄-lemma,

∂tγ
n−1
t ∈ Im ∂̄t for t ̸= 0. Recall moreover that the limit of ∂̄t-exact forms that avoid the small

eigenvalues of ∆′′
t is again ∂̄0-exact.) Hence γ0 is strongly Gauduchon in this case and the proof of

Theorem 7.1.1 ends here;

(2) if ∂tξ̃
n−1, n−1
t, (p) ∈

⊕
λ≤ε′′t

En,n−1
∆′′

t
(λ) for all t ∈ B, then ∂0ξ̃

n−1, n−1
0, (p) ∈ ker∆′′

0 as in the assumption

(A1);

(3) if ∂tξ̃
n−1, n−1
t, (p) = ut + vt with ut ∈

⊕
λ≤ε′′t

En,n−1
∆′′

t
(λ) and vt ∈

⊕
λ≥ε′′

En,n−1
∆′′

t
(λ) for all t ∈ B, then

ut, vt ∈ Im ∂̄t for all t ∈ B⋆, while u0 ∈ ker∆′′
0 and v0 ∈ Im ∂̄0. (In particular u0 ⊥ v0, hence

||u0|| ≤ ||∂0ξ̃n−1, n−1
0, (p) ||.) Thus v0 can be absorbed in the ∂̄0-exact part of ∂0γ

n−1
0 in (7.54), while

the new obstruction u0 to ∂0γ
n−1
0 being ∂̄0-exact is ∆′′

0-harmonic, much as the former obstruction

∂0ξ̃
n−1, n−1
0, (p) is supposed to be in assumption (A1). □

Thus, after possibly replacing ∂0ξ̃
n−1, n−1
0, (p) with u0, we may (and will henceforth) make the as-

sumption (A1). An immediate consequence of (A1) is

ker∆′′
0 ∋ ∂0ξ̃

n−1, n−1
0, (p) ⊥ ∂0ν

n−1, n−1
0, (p) , ∀ νn−1, n−1

0, (p) ∈ (ImS0) ∩ U0, (p), (7.71)

because ∂0ν
n−1, n−1
0, (p) ∈ Im ∂̄0 by (7.60) and because ker∆′′

0 ⊥ Im ∂̄0. We get

⟨⟨∆′′
0(∂0ξ̃

n−1, n−1
0, (p) + ∂0ν

n−1, n−1
0, (p) ), ∂0ξ̃

n−1, n−1
0, (p) + ∂0ν

n−1, n−1
0, (p) ⟩⟩
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= ⟨⟨∆′′
0(∂0ν

n−1, n−1
0, (p) ), ∂0ξ̃

n−1, n−1
0, (p) ⟩⟩+ ⟨⟨∆′′

0(∂0ν
n−1, n−1
0, (p) ), ∂0ν

n−1, n−1
0, (p) ⟩⟩

because ∆′′
0(∂0ξ̃

n−1, n−1
0, (p) ) = 0 by assumption (A1). Now ∆′′

0(∂0ν
n−1, n−1
0, (p) ) ∈ Im ∂̄0 since ∂0ν

n−1, n−1
0, (p) ∈

Im ∂̄0 by the choice (7.60) and since ∂̄0 and ∆′′
0 commute. Meanwhile, ∂0ξ̃

n−1, n−1
0, (p) ∈ ker∆′′

0 by

assumption (A1). Since ker∆′′
0 ⊥ Im ∂̄0, the first term on the second line above vanishes. On

the other hand, again by the choice (7.60) and the definition of En, n−1
0 , we have ∂0ν

n−1, n−1
0, (p) ∈⊕

λ≥ε′′
En, n−1

∆′′
0

(λ). It follows that the second term on the second line above satisfies

⟨⟨∆′′
0(∂0ν

n−1, n−1
0, (p) ), ∂0ν

n−1, n−1
0, (p) ⟩⟩ ≥ ε′′ ||∂0νn−1, n−1

0, (p) ||2,

so we get

⟨⟨∆′′
0(∂0ξ̃

n−1, n−1
0, (p) + ∂0ν

n−1, n−1
0, (p) ), ∂0ξ̃

n−1, n−1
0, (p) + ∂0ν

n−1, n−1
0, (p) ⟩⟩

≥ ε′′ ||∂0νn−1, n−1
0, (p) ||2 = ε′′ (||∂0νn−1, n−1

0, (p) ||2 + ||∂⋆0ν
n−1, n−1
0, (p) ||2)

= ε′′ ⟨⟨∆′
0ν

n−1, n−1
0, (p) ), νn−1, n−1

0, (p) ⟩⟩ ≥ ε′ ε′′ ||νn−1, n−1
0, (p) ||2. (7.72)

The equality on the second line of (7.72) follows from ∂⋆0ν
n−1, n−1
0, (p) = 0 which in turn follows from

νn−1, n−1
0, (p) ∈ Im ∂⋆0 ⊂ ker ∂⋆0 . (Recall that ν

n−1, n−1
0, (p) has been chosen to have minimal L2-norm among

the ∂0-potentials of η0, (p) in the definition (7.61) of the map S0.) The last inequality on the third

line in (7.72) follows from νn−1, n−1
0, (p) ∈

⊕
µ≥ε′

En−1, n−1
∆′

0
(µ) (see (7.70) for t = 0).

Conclusion 7.1.12. Under the assumption (A1), we have:

⟨⟨∆′′
0(∂0ξ̃

n−1, n−1
0, (p) + ∂0ν

n−1, n−1
0, (p) ), ∂0ξ̃

n−1, n−1
0, (p) + ∂0ν

n−1, n−1
0, (p) ⟩⟩ ≥ ε′ ε′′ ||νn−1, n−1

0, (p) ||2 (7.73)

for all νn−1, n−1
0, (p) ∈ (ImS0) ∩ U0, (p).

Now recall that by Conclusion 7.1.10 it is only in Case 1 that condition (c) of (⋆p) has yet to be
obtained. (We have already argued that (a), (b), (c) are simultaneously satisfied in Case 2 with the
choices made so far.) Let

α(p) := ||ξ̃0, (p)|| − ||ξ̃n−1, n−1
0, (p) || > 0 in Case 1.

Lemma 7.1.13. If νn−1, n−1
0, (p) ∈ (ImS0)∩U0, (p) is chosen of maximal L2-norm among the forms in

the intersection of the subspace ImS0 with the ball U0, (p), we have

||νn−1, n−1
0, (p) || ≥ α(p) (7.74)

and α(p) > 0 in Case 1.

Proof. It is clear that α(p) > 0 in Case 1 and α(p) = 0 in Case 2.

In the ball U0, (p), the ray R(p) emanating from the centre −ξ̃n−1, n−1
0, (p) of U0, (p) and going through

the origin 0 ∈ U0, (p) of the ambient vector space C∞
n−1, n−1(X0, C) cuts the boundary sphere of

U0, (p) in a point that we call A(p). If d(p) denotes the distance from 0 to A(p), then d(p) = α(p).
Meanwhile, the hyperplane H0, (p) is orthogonal to the ray R(p) at 0 and the maximal L2-norm that

a vector νn−1, n−1
0, (p) ∈ (ImS0) ∩ U0, (p) can have attains its minimal value when ImS0 is contained in
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H0, (p). When ImS0 ⊂ H0, (p), the vector ν
n−1, n−1
0, (p) can be chosen in the intersection of ImS0 with the

boundary sphere of U0, (p) to attain the maximal value that the L2-norm of a vector in (ImS0)∩U0, (p)
can have in this case. Then in the right-angled triangle formed by the points 0, νn−1, n−1

0, (p) and A(p),

the side joining 0 to νn−1, n−1
0, (p) (of length ||νn−1, n−1

0, (p) ||) cannot be shorter than the side joining 0 to

A(p) (of length d(p) = α(p)) since the angle facing the former side is ≥ π/4 while the angle facing the
latter side is ≤ π/4. □

Now recall that in Case 2 we have α(p) = 0 and we can choose νn−1, n−1
0, (p) = 0 because ξ̃0, (p) already

satisfies condition (c) of (⋆p) with νn−1, n−1
0, (p) = 0 for the uniform ε0 > 0 obtained at the previous

induction steps 1, . . . , p. Therefore, if in Case 1 α(p) ↓ 0 as p→ +∞, we can satisfy condition (c) of
(⋆p) with the uniform ε0 > 0 of (⋆p0)(c) for all p ≥ p0 and for some p0 ∈ N.

Thus it remains to treat the case covered by the following

Assumption (A2): α(p) ≥ α0 > 0, ∀p ∈ N,
for some α0 > 0 independent of p ∈ N.

In this case, we get from the estimate (7.73) of Conclusion 7.1.12 and from the estimate (7.74)
of Lemma 7.1.13 the following

Conclusion 7.1.14. Under the assumptions (A1) and (A2), we have:

⟨⟨∆′′
0(∂0ξ̃

n−1, n−1
0, (p) + ∂0ν

n−1, n−1
0, (p) ), ∂0ξ̃

n−1, n−1
0, (p) + ∂0ν

n−1, n−1
0, (p) ⟩⟩ ≥ ε′ ε′′ α2

0 (7.75)

for some νn−1, n−1
0, (p) ∈ (ImS0) ∩ U0, (p) chosen to maximise the L2-norm ||νn−1, n−1

0, (p) ||.

We have thus achieved our purpose of proving the existence of auxiliary forms νn−1, n−1
t, (p) ∈

(ImSt) ∩ Ut, (p) (i.e. satisfying (7.64) which automatically guarantees (a) and (b) of (⋆p)) such
that the numerator of (c) in (⋆p) is uniformly bounded below by a positive constant in Case 1.

(II) Uniformly bounding the fraction of (c) in (⋆p) from below in Case 1

Recall that under (I) above we have been working under the induction hypothesis that the
induction steps 1, . . . , p had been run and have shown as a result the existence of auxiliary forms
ηt, (p) = ∂tν

n−1, n−1
t, (p) = ∂̄tϑ

n, n−2
t, (p) satisfying conditions (a), (b) of (⋆p) and (7.75). Thus the inductively

constructed auxiliary forms satisfy (a) and (b) of (⋆p) for all p ∈ N as well as the uniform lower
bound:

⟨⟨∆′′
t (∂tξ̃

n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ), ∂tξ̃

n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ⟩⟩ ≥ δ > 0, (7.76)

for all t ∈ B (after possibly shrinking B about 0) and all p ∈ N, where we have denoted δ :=
ε′ ε′′ α2

0 > 0 (independent of t and p, cf. (7.75)).
Now we have:

At, (p) : = ⟨⟨∆t(∂tξ̃
n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ), ∂tξ̃

n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ⟩⟩

= A′
t, (p) + ⟨⟨∆′′

t (∂tξ̃
n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ), ∂tξ̃

n−1, n−1
t, (p) + ∂tν

n−1, n−1
t, (p) ⟩⟩

≥ A′
t, (p) + δ, t ∈ B, p ∈ N, (7.77)
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where we have denoted A′
t, (p):= ⟨⟨∆′

t(∂tξ̃
n−1, n−1
t, (p) +∂tν

n−1, n−1
t, (p) ), ∂tξ̃

n−1, n−1
t, (p) +∂tν

n−1, n−1
t, (p) ⟩⟩ and by At, (p)

the analogous expression with ∆t in place of ∆′
t. (To justify the identity between the top two lines in

(7.77), recall that for any pure-type form u one has ⟨⟨∆tu, u⟩⟩ = ⟨⟨∆′
tu, u⟩⟩+ ⟨⟨∆′′

t u, u⟩⟩ by (7.42).)
Recall that in order to guarantee condition (c) of (⋆p) for all p ∈ N we need to prove the existence

of an ε0 > 0 independent of both t ∈ B and p ∈ N such that

At, (p) ≥ (1 + ε0)A
′
t, (p), t ∈ B, p ∈ N. (7.78)

Since (7.77) holds, it suffices to get a uniform ε0 > 0 as above such that

A′
t, (p) + δ ≥ (1 + ε0)A

′
t, (p) or equivalently A′

t, (p) ≤
δ

ε0
, t ∈ B, p ∈ N. (7.79)

The existence of such a uniform ε0 > 0 is of course guaranteed if we can prove that A′
t, (p) is uniformly

bounded above. Since A′
t, (p) ≤ At, (p), it suffices to prove the existence of a uniform upper bound for

the latter quantity.

Lemma 7.1.15. In the above notation, the auxiliary forms ηt, (p) = ∂tν
n−1, n−1
t, (p) = ∂̄tϑ

n, n−2
t, (p) ∈ E

n, n−1
t

constructed by the induction procedure set up in the preceding paragraphs and with the choices made
there satisfy

A′
t, (p) ≤ At, (p) ≤M < +∞, t ∈ B, p ∈ N, (7.80)

for some M independent of both t ∈ B and p ∈ N.

Proof. Recall that in the induction process we solve the equations (cf. (7.56)):

dξ̃t, (p+1) = ∂t(ξ̃
n−1, n−1
t, (p) + νn−1, n−1

t, (p) ), t ∈ B, p ∈ N, (7.81)

and we choose ξ̃t, (p+1) to be the minimal L2-norm solution for every given p ∈ N. Thus

ξ̃t, (p+1) = ∆−1
t d⋆t∂t(ξ̃

n−1, n−1
t, (p) + νn−1, n−1

t, (p) ), t ∈ B, p ∈ N, (7.82)

and

||ξ̃t, (p+1)||2 = ||∆− 1
2

t ∂t(ξ̃
n−1, n−1
t, (p) + νn−1, n−1

t, (p) )||2 = Bt, (p), t ∈ B, p ∈ N,

where we have denoted

Bt, (p) := ⟨⟨∆−1
t ∂t(ξ̃

n−1, n−1
t, (p) + νn−1, n−1

t, (p) ), ∂t(ξ̃
n−1, n−1
t, (p) + νn−1, n−1

t, (p) )⟩⟩.

It is clear that if Bt, (p) became arbitrarily small when p → +∞, then ||ξ̃t, (p+1)|| would become
arbitrarily small. This would give right away the conclusion of Corollary 7.1.18 below and the proof
of Theorem 7.1.1 would follow as explained at the end of the section. This gives a hint that At, (p) is
likely to satisfy the uniform upper bound (7.80) at least in the complementary case (i.e. when Bt, (p)

is uniformly bounded below by a positive constant). Here are the details.

If we denote ϖt, (p) := ∂t(ξ̃
n−1, n−1
t, (p) + νn−1, n−1

t, (p) ), we know that

ϖt, (p) = d ξ̃t, (p+1), with ξ̃t, (p+1) ∈ Im d⋆t ⊂ ker d⋆t , t ∈ B, p ∈ N.

So we get
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At, (p) = ⟨⟨∆tϖt, (p), ϖt, (p)⟩⟩ = ||dϖt, (p)||2 + ||d⋆tϖt, (p)||2 = ||d⋆tϖt, (p)||2 = ||d⋆td ξ̃t, (p+1)||2

= ||d⋆td ξ̃t, (p+1) + d d⋆t ξ̃t, (p+1)||2 = ||∆t ξ̃t, (p+1)||2, t ∈ B, p ∈ N. (7.83)

Now observe that the proof of Lemma 7.1.7 shows that the families of forms (ξ̃t, (p))t∈B (p ∈ N)
defined by solving equations (7.56) for p− 1 satisfy inequalities analogous to the inequalities (7.34)
for (ξt, (p))t∈B (p ∈ N):

||ξ̃t, (p+1)|| ≤ ||Ω̃n−1, n−1
t, (p) ||, t ∈ B, p ∈ N, (cf. (7.43)) (7.84)

by comparison of the minimal d and ∂t-potentials of the given form ϖt, (p),

||Ω̃n−1, n−1
t, (p) || ≤ ||ξ̃n−1, n−1

t, (p) + νn−1, n−1
t, (p) ||, t ∈ B, p ∈ N, (cf. (7.44)) (7.85)

by minimality of Ω̃n−1, n−1
t, (p) among the ∂t-potentials of ϖt, (p), and

||ξ̃n−1, n−1
t, (p) + νn−1, n−1

t, (p) || ≤ ||ξ̃t, (p)||, t ∈ B, p ∈ N, (7.86)

by (b) of (⋆p). The last three inequalities add up to

||ξ̃t, (p+1)|| ≤ ||ξ̃t, (p)||, t ∈ B, p ∈ N, (cf. (7.34)). (7.87)

The sequence (||ξ̃t, (p)||)p∈N is thus non-increasing (hence bounded above) for each t ∈ B. After
slightly shrinking B about 0, let

M1:= sup
t∈B, p∈N

||ξ̃t, (p)|| = sup
t∈B
||ξ̃t, (0)|| = sup

t∈B
||ξt|| < +∞. (7.88)

Recall that in view of formula (7.83) we need to show that ||∆tξ̃t, (p)|| is bounded above indepen-
dently of t ∈ B and p ∈ N. Only the uniform boundedness w.r.t. p has yet to be justified. Note
that ∆t does not depend on p. We need a slight refinement of (7.87).

For every t ∈ B and p ∈ N let

ξ̃t, (p) =
+∞∑
j=0

u
(p)
j (t), with u

(p)
j (t) ∈ E∆t(λj), (7.89)

be the decomposition of ξ̃t, (p) w.r.t. the eigenspaces E∆t(λj) of ∆t. The eigenvalues λj = λj(t) of
∆t, ordered (without repetitions) increasingly, tend to +∞ as j tends to +∞. Inequality (7.87)
translates to

||ξ̃t, (p+1)||2 =
+∞∑
j=0

||u(p+1)
j (t)||2 ≤

+∞∑
j=0

||u(p)j (t)||2 = ||ξ̃t, (p)||2, t ∈ B, p ∈ N. (7.90)

Meanwhile, we clearly have

||∆tξ̃t, (p)||2 =
+∞∑
j=0

λ2j ||u
(p)
j (t)||2, t ∈ B, p ∈ N. (7.91)
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The inductive process that produced the forms (ξ̃t, (p)) shows in effect that the norm inequality
(7.87) occurs component-wise, i.e. for every j ∈ N we have:

||u(p+1)
j (t)|| ≤ ||u(p)j (t)||, t ∈ B, p ∈ N. (7.92)

Indeed, recall that by (7.40) any pure-type form u satisfies ⟨⟨∆tu, u⟩⟩ ≥ ⟨⟨∆′
tu, u⟩⟩, hence inequality

(7.84) occurs component-wise. Inequality (7.85) occurs component-wise as well since ξ̃n−1, n−1
t, (p) +

νn−1, n−1
t, (p) is obtained from Ω̃n−1, n−1

t, (p) by adding a form (lying in ker ∂t) that is orthogonal to the

minimal L2-norm ∂t-potential Ω̃
n−1, n−1
t, (p) ∈ Im ∂⋆t ⊥ ker ∂t. On the other hand, νn−1, n−1

t, (p) is chosen to

lie in ImSt ∩Ut, (p) (by (7.64)) and to have maximal L2-norm among these forms (by Lemma 7.1.13)
while St is independent of p and the radius of the ball Ut, (p) is non-increasing w.r.t. p ∈ N by (7.87).

Hence we can choose the forms νn−1, n−1
t, (p) such that

||νn−1, n−1
t, (p) || ≤ ||νn−1, n−1

t, (p−1) || component-wise, t ∈ B, p ∈ N⋆.

Thus we obtain (7.92) inductively on p ∈ N: if (7.92) has been shown for p − 1, then for all t ∈ B
we have

||ξ̃n−1, n−1
t, (p) + νn−1, n−1

t, (p) || ≤ ||ξ̃n−1, n−1
t, (p−1) + νn−1, n−1

t, (p−1) || component-wise,

which implies ||ξ̃t, (p+1)|| ≤ ||ξ̃t, (p)|| component-wise. This is nothing but (7.92).
Now (7.91) and (7.92) combine to show the existence of a uniform upper bound for the Laplacian

of ξ̃t, (p) (after slightly shrinking B about 0):

M := sup
t∈B, p∈N

||∆t ξ̃t, (p+1)|| < +∞, (7.93)

which in view of (7.83) is nothing but (7.80).
Lemma 7.1.15 is proved. □

We can now explicitly achieve (7.79), hence also (7.78) which is equivalent to condition (c) of (⋆p).
Indeed, estimate (7.80) obtained in Lemma 7.1.15 shows that the inductively constructed auxiliary
forms fulfill condition (c) of (⋆p) with the uniform ε0 > 0 defined by

ε0 :=
δ

M
=
ε′ ε′′ α2

0

M
> 0,

where δ := ε′ ε′′ α2
0 > 0 is the uniform lower bound of (7.76) and M < +∞ is the uniform upper

bound of (7.93).

The existence of the auxiliary forms is thus accounted for. □

7.1.5 Final arguments in proving Theorem 7.1.1

With the new inductive construction based on auxiliary forms in place, the identities of Lemma 7.1.6
obeyed by ξt, (p) are transformed into the following identities obeyed by ξ̃t, (p).

Lemma 7.1.16. The family (ξ̃t, (p))t∈B of (2n−2)-forms constructed above varies in a C∞ way with
t (up to t = 0) and satisfies for all t ∈ B and all p ∈ N:
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∂t(γ
n−1
t − ξ̃n−1, n−1

t, (p) − ξ̃n−1, n−1
t, (p) ) = ∂̄t(ξ̃

n, n−2
t, (p) + ξ̃n−2, n

t, (p) + · · ·+ ξ̃n, n−2
t, (1) + ξn, n−2

t

+ wt − ϑn, n−2
t − ϑn, n−2

t, (1) − · · · − ϑ
n, n−2
t, (p−1)). (7.94)

Proof. It follows trivially from (7.57) with p+1 replaced by p and the fact that d ξ̃t, (p) = ∂tξ̃
n−1, n−1
t, (p) +

∂̄tξ̃
n, n−2
t, (p) is of type (n, n− 1) (thus its (n− 1, n)-component vanishes, hence −∂̄tξ̃n−1, n−1

t, (p) = ∂tξ̃
n−2, n
t, (p)

and taking conjugates −∂tξ̃n−1, n−1
t, (p) = ∂̄tξ̃

n−2, n
t, (p) ) by arguments analogous to those of Lemma 7.1.6. □

The next, more substantial step is to show that the L2-norm of ξ̃n−1, n−1
t, (p) decreases strictly at each

step p of the above inductive construction in a way that guarantees it to become arbitrarily small
when p becomes large enough. The following lemma and its corollary provide the final argument to
the proof of Theorem 7.1.1 and, implicitly, to that of Theorem 7.0.4.

Lemma 7.1.17. There exists ε > 0 independent of t ∈ B and of p ∈ N such that the minimal
L2-norm solutions Ω̃n−1, n−1

t, (p) and ξ̃t, (p+1) of the equations

∂tΩ̃
n−1, n−1
t, (p) = ∂t(ξ̃

n−1, n−1
t, (p) + νn−1, n−1

t, (p) ) and d ξ̃t, (p+1) = ∂t(ξ̃
n−1, n−1
t, (p) + νn−1, n−1

t, (p) ) (7.95)

satisfy the L2-norm estimates:

||ξ̃t, (p+1)|| ≤
1√
1 + ε

||Ω̃n−1, n−1
t, (p) ||, t ∈ B, p ∈ N. (7.96)

Before proving this statement, we notice an immediate corollary.

Corollary 7.1.18. The forms ξ̃t, (p) obtained above satisfy

||ξ̃t, (p)|| ≤
1

(
√
1 + ε)p

||ξt||, t ∈ B, p ∈ N. (7.97)

In particular, ||ξ̃t, (p)|| (hence also ||ξ̃n−1, n−1
t, (p) || which is ≤ ||ξ̃t, (p)||) becomes arbitrarily small,

uniformly w.r.t. t ∈ B and p≫ 1, if the number p ∈ N of iterations is sufficiently large.

Proof of Corollary 7.1.18. From Lemma 7.1.17 we get the following inequalities:

||ξ̃t, (p+1)|| ≤
1√
1 + ε

||Ω̃n−1, n−1
t, (p) || ≤ 1√

1 + ε
||ξ̃n−1, n−1

t,(p) + νn−1, n−1
t, (p) ||, p ∈ N.

The latter inequality follows from the L2-norm minimality of Ω̃n−1, n−1
t, (p) among the solutions of

the equation ∂tΩ̃
n−1, n−1
t, (p) = ∂t(ξ̃

n−1, n−1
t, (p) + νn−1, n−1

t, (p) ). Combining with (b) of properties (⋆p), we get

||ξ̃t, (p+1)|| ≤
1√
1 + ε

||ξ̃t, (p)||, t ∈ B, p ∈ N.

Letting p run through 0, . . . , p− 1, these inequalities multiply up to (7.97). □

We now come to the key task of proving Lemma 7.1.17. However, the ground has been largely
prepared by Lemma 7.1.7 and Observation 7.1.8 whose proofs outlined the difficulties and explained
how to overcome them under certain hypotheses, as well as by the construction of auxiliary forms
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ηt, (p) satisfying conditions (⋆p) which enable those hypotheses to be met. The remaining arguments
are almost purely formal.

Proof of Lemma 7.1.17. Recall the notation ξ̃n−1, n−1
t, (0) := ξn−1, n−1

t , Ω̃n−1, n−1
t, (0) := Ω̃n−1, n−1

t and

νn−1, n−1
t, (0) := νn−1, n−1

t . Set ϖt, (p) := ∂t(ξ̃
n−1, n−1
t, (p) + νn−1, n−1

t, (p) ), the right-hand term of equations (7.95).

The minimal L2-norm solutions of equations (7.95) are explicitly given by the formulae:

Ω̃n−1, n−1
t, (p) = ∆

′−1
t ∂⋆tϖt, (p) and ξ̃t, (p+1) = ∆−1

t d⋆tϖt, (p), t ∈ B, p ∈ N. (7.98)

Thus by (7.36) and (7.38) with u = ϖt, (p), the proof of Lemma 7.1.17 reduces to proving that, for
some ε > 0 independent of t ∈ B and p ∈ N, we have:

||∆− 1
2

t ϖt, (p)|| ≤
1√
1 + ε

||∆
′− 1

2
t ϖt, (p)||, t ∈ B, p ∈ N. (7.99)

Now the forms ηt, (p) = ∂tν
n−1, n−1
t, (p) have been chosen to satisfy conditions (⋆p) whose part (c)

translates to:

0 < ε0 ≤
⟨⟨∆′′

tϖt, (p), ϖt, (p)⟩⟩
⟨⟨∆′

tϖt, (p), ϖt, (p)⟩⟩
, t ∈ B, p ∈ N, (7.100)

for an ε0 > 0 independent of both t ∈ B and p ∈ N.
By the choice (a) of (⋆p), we have ηt, (p) = ∂tν

n−1, n−1
t, (p) = ∂̄tϑ

n, n−2
t, (p) , hence ηt, (p) is ∂̄t-exact for all

t ∈ B and all p ∈ N. It follows that:

(i) the form ϖt, (p) = ∂tξ̃
n−1, n−1
t, (p) + ηt, (p) is ∂̄t-exact for all t ̸= 0, hence ϖt, (p) is orthogonal to

ker∆′′
t for all t ̸= 0;

(ii) when t = 0, the form ϖ0, (p) = ∂0ξ̃
n−1, n−1
0, (p) + η0, (p) cannot be ∆′′

0-harmonic.

Indeed, otherwise the condition (c) of (⋆p) would be violated (see (7.100) for t = 0) unless we also

have ∆′
0ϖ0, (p) = 0. However, in this latter case the ∂0-exact form ϖ0, (p) = ∂0(ξ̃

n−1, n−1
0, (p) + νn−1, n−1

0, (p) )

would have to vanish (since Im ∂0 ⊥ ker∆′
0) and ∂0γ

n−1
0 would be ∂̄0-exact by (7.55) applied at

t = 0. Then γ0 would be a strongly Gauduchon metric on X0 and the proof of Theorem 7.1.1 would
be complete.

We conclude that, for every fixed p ∈ N, the family (ϖt, (p))t∈B satisfies the non-∆′′
t -harmonicity

hypothesis (7.46), hence also estimate (7.47) uniformly w.r.t. t ∈ B.
Moreover, by (7.42) and by ϖt, (p) being of pure type, we have

⟨⟨∆tϖt, (p), ϖt, (p)⟩⟩ = ⟨⟨∆′
tϖt, (p), ϖt, (p)⟩⟩+ ⟨⟨∆′′

tϖt, (p), ϖt, (p)⟩⟩,

so the uniform estimate (7.100) amounts to

⟨⟨∆tϖt, (p), ϖt, (p)⟩⟩ ≥ (1 + ε0) ⟨⟨∆′
tϖt, (p), ϖt, (p)⟩⟩, t ∈ B, p ∈ N, (7.101)

which provides unifomity w.r.t. p ∈ N besides the uniformity w.r.t. t ∈ B. This proves Lemma
7.1.17. □

End of proof of Theorem 7.1.1. By Corollary 7.1.18, the L2-norm ||ξ̃n−1, n−1
t, (p) || can be made arbitrarily

small, uniformly with respect to t ∈ B and p≫ 1, if p is chosen sufficiently large. In particular, so
can the L2-norm ||ξ̃n−1, n−1

0, (p) ||.
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Thanks to Lemma 7.1.5, if p is sufficiently large, we get a C∞ positive definite J0−(1, 1)-form
ρ0 > 0 such that

∂0ρ
n−1
0 − ∂0

(
γn−1
0 − ξ̃n−1, n−1

0, (p) − ξ̃n−1, n−1
0, (p)

)
∈ Im (∂0∂̄0).

Since ∂0(γ
n−1
0 − ξ̃n−1, n−1

0, (p) − ξ̃n−1, n−1
0, (p) ) is known to be ∂̄0-exact by identity (7.94) of Lemma 7.1.16,

we see that ∂0ρ
n−1
0 must be ∂̄0-exact, hence ρ0 is a strongly Gauduchon metric on X0. The proof of

Theorem 7.1.1 is complete. □

7.2 Existence of limiting divisors in families whose generic

fibre is a ∂∂̄-manifold

In this section, taken from [Pop10a], we provide the second and final main argument for the first
proof of Theorem 7.0.4. Intuitively put, the main result of this section says that, if all the fibres Xt

with t ̸= 0 of a holomorphic family of compact complex manifolds over a small ball B ⊂ CN about
0 are ∂∂̄-manifolds, the limiting fibre X0 has at least as many divisors as the neighbouring fibres.
This fact, stated in a precise way as Theorem 7.2.2 below, will be given a proof that critically relies
on Theorem 7.1.1 of the previous section.

Recall that the algebraic dimension a(X) of a compact complex n-dimensional manifold X is the
maximal number of algebraically independent meromorphic functions on X. Equivalently, a(X) is
the transcendence degree over C of the field of meromorphic functions on X. It is standard that
a(X) ≤ n and that a(X) = n if and only if X is Moishezon ([Moi67]). Since every meromorphic
function gives rise to its divisor of zeros and poles, Moishezon manifolds can be regarded as the
compact complex manifolds that carry “many” divisors.

The algebraic dimension a(Xt) does not, in general, depend upper-semicontinuously on the fibre
Xt varying in a holomorphic family of compact complex manifolds. This is so even in families of
surfaces, as shown by an example found by Fujiki and Pontecorvo in [FP09] of a family of compact
non-Kähler complex surfaces of class VII in which the algebraic dimension drops from 1 on Xt with
t ̸= 0 to 0 on X0. However, one key consequence of our results of this section is that the dependence
of the algebraic dimension a(Xt) on t ∈ B becomes upper-semicontinuous if all the fibres, except
possibly one, are supposed to be ∂∂̄-manifolds.

Theorem 7.2.1. ([Pop10a] and again [Pop19, Theorem 3.7.]) Let π : X → B be a holomorphic
family of compact complex manifolds over an open ball B ⊂ CN about the origin such that the fibre
Xt := π−1(t) is a ∂∂̄-manifold for every t ∈ B \ {0}. Then a(X0) ≥ a(Xt) for all t ∈ B \ {0}
sufficiently close to 0, where a(Xt) is the algebraic dimension of Xt.

Since any compact complex ∂∂̄-surface must be Kähler (because its first Betti number b1 is
necessarily even by Hodge decomposition and symmetry, so equal to 2h0, 1, and thus the result of
Buchdahl [Buc99] and Lamari [Lam99] can be applied to yield Kählerianity for any ∂∂̄-surface), the
family exhibited in [FP09] does not satisfy the hypothesis of Theorem 7.2.1. Indeed, surfaces of class
VII are very far from being Kähler. Thus, Theorem 7.2.1 shows once again the key role played by
∂∂̄-manifolds in deformation theory.

Proof of Theorem 7.0.4 assuming that Theorem 7.2.1 has been proved. SinceXt is assumed
to be Moishezon for every t ∈ B \ {0}, a(Xt) = n := dimCXt and Xt is a ∂∂̄-manifold for every
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t ∈ B \ {0}. In particular, Theorem 7.2.1 applies and implies that

a(X0) ≥ a(Xt) = n, t ∈ B \ {0}.

Hence, a(X0) = n = dimCX0. Therefore, X0 must be Moishezon. □

The precise form of the main result of this section, which implies Theorem 7.2.1, can be stated
in terms of the relative Barlet space of divisors Cn−1(X/B) associated with a holomorphic family
π : X → B of compact complex manifolds Xt.

Theorem 7.2.2. ([Pop10a, Proposition 1.5]) Let π : X → B be a holomorphic family of compact
complex manifolds such that Xt is a ∂∂̄-manifold for every t ∈ B \ {0}. Then, the canonical
holomorphic projection

µn−1 : Cn−1(X/B)→ B, µn−1(Zt) = t,

mapping every divisor Zt ⊂ Xt contained in some fibre Xt to the base point t ∈ B, has the property
that its restrictions to the irreducible components of Cn−1(X/B) are proper.

We describe the barebones of Barlet’s space of (relative) cycles in §.7.2.1 and refer the reader to
[Bar75], [Bis64], [Cam80], [CP94] and [Lie78] for further details and proofs. Then, we give the proof
of Theorem 7.2.2 in §.7.2.2.

7.2.1 Very brief reminder of a few fundamental facts in Barlet’s theory
of cyles

Let π : X → B be a holomorphic family of compact complex manifolds Xt := π−1(t), with t ∈ B ⊂
CN , for some N ∈ N⋆, and B a small open ball about the origin, and let n denote the complex
dimension of the fibres Xt.

For every p ∈ {0, 1, . . . , n}, consider the relative Barlet space Cp(X/B) of effective analytic
p-cycles on X that are contained in the fibres Xt. It is a subspace of the (absolute) Barlet
space Cp(X ) of compact p-cycles on X . Recall that C(X ) := ∪pCp(X ) is the Chow scheme of
X (which, by definition, parametrises the compactly supported analytic cycles of X ) that Barlet
endowed with a natural structure of Banach analytic set whose irreducible components are finite-
dimensional analytic sets (cf. [Bar75]). Moreover, any irreducible component S of C(X ) arises as an
analytic family of compact cycles (Zs)s∈S parametrised by S, while giving an analytic family (Zs)s∈S
of compact cycles of dimension p on X is equivalent to giving an analytic subset

Z = {(s, z) ∈ S ×X / z ∈ |Zs|} ⊂ S ×X ,

where |Zs| denotes the support of the cycle Zs, such that the restriction to Z of the natural projection
on S is proper, surjective and has fibres of pure dimension p (cf. [Bar75, Théorème 1, p. 38]). Recall
finally Lieberman’s strengthened form ([Lie78, Theorem 1.1]) of Bishop’s Theorem [Bis64]: a
subset S ⊂ C(X ) is relatively compact if and only if the supports |Zs|, s ∈ S, all lie in a same
compact subset of X and the ω̃-volume of Zs is uniformly bounded when s ∈ S for some (hence
any) Hermitian metric ω̃ on X . Here, as usual, the ω̃-volume of a p-cycle Zs ⊂ X is defined to be

vω̃(Zs) :=

∫
X

[Zs] ∧ ω̃p =
∫
Zs

ω̃p,

where [Zs] is the current of integration on the cycle Zs.
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While the irreducible components of the Barlet space of cycles of arbitrary codimension C(X)
need not be compact on a general compact complex manifold X (cf. [Lie78]), compactness of the
irreducible components of the Barlet space Cn−1(X) of divisors of X always holds if X is compact
(see e.g. [CP94, Remark 2.18.]). Thus the absolute case of Theorem 7.2.2 (i.e. when B is reduced
to a point) is well-known and no special assumption is necessary.

It has been known since the work of Fujiki (see [Fuj78, Theorem 4.9.]) that the irreducible
components of the Barlet space of cycles C(X) of a class C manifold X are compact. (They are even
class C by [Cam80, Corollaire 3], but this extra property is immaterial to our purposes here.) As
already mentioned, this last property fails if X is merely supposed to be compact (although it holds
for divisors), while the class C assumption is the minimal requirement on X that we are aware of
ensuring compactness of the irreducible components.

It thus appears natural to conjecture the (more general) relative case.

Conjecture 7.2.3. Let π : X → B be a complex analytic family of compact complex manifolds such
that the fibre Xt := π−1(t) is a class C manifold for every t ∈ B. Then the irreducible components
of the relative Barlet space C(X/B) of cycles on X are proper over B.

We have used the standard notation:

C(X/B) =
⋃

0≤p≤n

Cp(X/B),

where Cp(X/B) stands for the relative Barlet space of effective analytic p-cycles contained in the
fibres Xt. The special case of the above conjecture where all the fibres are supposed to be Kähler
is well-known and quite easy to prove, but the general case of class C fibres is still elusive. We may
even go so far as conjecture the same conclusion when the class C assumption is made to skip one
of the fibres.

Conjecture 7.2.4. Let π : X → B be a holomorphic family of compact complex manifolds such that
the fibre Xt := π−1(t) is a class C manifold for every t ∈ B \{0}. Then, the irreducible components
of the relative Barlet space of cycles C(X/B) are proper over B.

Theorem 7.2.2 answers affirmatively the stronger Conjecture 7.2.4 in the special case of divisors
(and even under the weaker ∂∂̄-assumption which is satisfied by any class C manifold). A tantalising
special case of Conjecture 7.2.4 is the one where the fibres Xt with t ̸= 0 are supposed to be even
Kähler. The central fibre X0 is then expected to be class C, but proving the compactness of the
irreducible components of its Barlet space of cycles would be a first step towards confirming this
expectation.

Proof of Theorem 7.2.1 assuming that Theorem 7.2.2 has been proved. The properness
given by Theorem 7.2.2 guarantees that the images of the irreducible components of Cn−1(X/B)
under µn−1 are analytic subsets of B thanks to Remmert’s Proper Mapping Theorem. Let Σν ⊊ B,
for ν ∈ Z, be those such images (at most countably many) that are strictly contained in B. Each Σν

is thus a proper analytic subset of B. Bearing in mind the structure of the irreducible components of
the (relative) Barlet space of cycles as described in [Bar75], we see that every irreducible component
S of Cn−1(X/B) gives rise to an analytic family (in the sense of [Bar75, Théorème 1, p. 38]) of
relative effective divisors (Zs)s∈S such that Zs ⊂ Xµn−1(s) for all s ∈ S. We can either have

µn−1(S) = B or (7.102)
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µn−1(S) = Σν ⊊ B, for some ν ∈ Z. (7.103)

Let Σ =
⋃
ν Σν ⊊ B. Thus, every divisor Zs0 contained in a fibre Xt0 lying above some point

t0 = µn−1(s0) ∈ B \ Σ (call such a fibre generic) stands in an analytic family of divisors (Zs)s∈S
covering the whole base B as in (7.102) (call these divisors generic), while the exceptional fibres Xt

(i.e. those above points t ∈ Σ) may have extra divisors (those standing in isolated families satisfying
(7.103)) besides the generic divisors that “sweep” B in families with the property (7.102).

In other words, properness of the irreducible components of Cn−1(X/B) ensures that every fibre
(in particular X0) has at least as many divisors (the generic ones) as the generic fibres of the family.
On the other hand, the algebraic dimension of any fibre Xt is the maximal number of effective prime
divisors meeting transversally at a generic point of Xt (see e.g. [CP94, Remark 2.22]). It follows
from the last two assertions that the algebraic dimension of X0 is ≥ the algebraic dimension of the
generic fibre. □

7.2.2 Proof of Theorem 7.2.2.

Fix a family (γt)t∈B of Hermitian metrics, varying in a C∞ way with t, on the respective fibres
(Xt)t∈B of the given family of manifolds. As usual, Jt stands for the complex structure of Xt.

Also fix an arbitrary p ∈ {0, 1, . . . , n}. We start by running the proof of Theorem 7.2.2 as if we
targeted the stronger conclusion of Conjecture 7.2.4 and will only assume that p = 1 towards the
end.

Let (Zt)t∈B\{0} be a differentiable family of effective analytic (n − p)-cycles such that Zt ⊂ Xt

for every t ∈ B \ {0}. The main difficulty in proving the properness predicted by Conjecture 7.2.4
is to ensure the uniform boundedness of the γt-volumes of the cycles Zt:

vγt(Zt) =

∫
X

[Zt] ∧ γn−pt , t ∈ B \ {0},

as t approaches 0 ∈ B.
As every effective (n − p)-cycle Zt =

∑
j nj(t)Zj(t) on Xt is a finite linear combination with

positive integers nj(t) of irreducible analytic subsets Zt ⊂ Xt of dimension n− p, the associated De
Rham cohomology class {[Zt]} ∈ H2p(X, R) is integral. Thus, the map

∆⋆ ∋ t 7→ {[Zt]} ∈ H2p(X, Z),

being continuous and integral-class-valued, must be constant. Fix any real (d-closed) differential
(2p)-form α in this constant De Rham class. As [Zt] and α are d-cohomologous for every t ∈ B \{0},
there exists a real current β′

t of degree (2p− 1) on X such that

α = [Zt] + dβ′
t, t ∈ B \ {0}. (7.104)

A double upper index r, s will denote throughout the component of pure type (r, s) of the form
or current to which the index is attached. Since the current [Zt] is of pure type (p, p), identifying
the pure-type components on either side of the equality, we see that identity (7.104) is equivalent to
the following set of identities for all t ∈ B \ {0}:
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α0, 2p
t = ∂̄tβ

′0, 2p−1
t ,

α1, 2p−1
t − ∂tβ

′0, 2p−1
t = ∂̄tβ

′1, 2p−2
t , . . . , αp−1, p+1

t − ∂tβ
′p−2, p+1
t = ∂̄tβ

′p−1, p
t ,

αp, pt − ∂tβ
′p−1, p
t − [Zt] = ∂̄tβ

′p, p−1
t ,

αp+1, p−1
t − ∂tβ

′p, p−1
t = ∂̄tβ

′p+1, p−2
t , · · · , α2p−1, 1

t − ∂tβ
′2p−2, 1
t = ∂̄tβ

′2p−1, 0
t ,

α2p, 0
t = ∂tβ

′2p−1, 0
t . (7.105)

For all t ∈ B \ {0}, we also have β′
t = β′

t (as β
′
t is real) which amounts to

β
′l, 2p−1−l
t = β

′2p−1−l, l
t , l = 0, 1, . . . , 2p− 1. (7.106)

The current β′
t is determined only up to the kernel of d. We now proceed to construct a real C∞

(2p− 1)-form βt, having the same properties as the current β′
t, by inductively choosing its pure-type

components to be minimal L2-norm solutions (w.r.t. γt) of the first half of equations (7.105) for all
t ∈ B \ {0}.

Thus, for every t ∈ B \ {0}, let β0, 2p−1
t be the form of Jt-type (0, 2p − 1) which is the minimal

L2-norm solution of the equation (cf. first equation in (7.105)):

α0, 2p
t = ∂̄tβ

0, 2p−1
t , t ∈ B \ {0}. (7.107)

In other words, β0, 2p−1
t corrects β

′0, 2p−1
t if the latter is not of minimal L2-norm among the

solutions of the above equation. It is explicitly given by the familiar Neumann formula:

β0, 2p−1
t = ∆

′′−1
t ∂̄⋆t α

0, 2p
t , t ∈ B \ {0}, (7.108)

where ∆′′
t := ∂̄t∂̄

⋆
t + ∂̄

⋆
t ∂̄t denotes the ∂̄t-Laplacian defined by the metric γt (involved in the adjoints)

on the fibre Xt for all t ∈ B, while ∆
′′−1
t denotes the inverse of the restriction of ∆′′

t to the orthogonal
complement of the kernel of ∆′′

t (i.e. ∆
′′−1
t is the Green operator of ∆′′

t ).
To continue, we first need to ensure that α1, 2p−1

t − ∂tβ0, 2p−1
t is ∂̄t-exact. Given that α1, 2p−1

t −
∂tβ

′0, 2p−1
t is ∂̄t-exact (see the second equation in (7.105)), the ∂̄t-exactness of the former form is

equivalent to the ∂̄t-exactness of the difference of these two forms, i.e. the ∂̄t-exactness of:

(α1, 2p−1
t − ∂tβ0, 2p−1

t )− (α1, 2p−1
t − ∂tβ

′0, 2p−1
t ) = ∂t(β

′0, 2p−1
t − β0, 2p−1

t ).

Now d[∂t(β
′0, 2p−1
t − β0, 2p−1

t )] = 0 because ∂2t (β
′0, 2p−1
t − β0, 2p−1

t ) = 0 and

∂̄t∂t(β
′0, 2p−1
t − β0, 2p−1

t ) = −∂t∂̄t(β
′0, 2p−1
t − β0, 2p−1

t ) = −∂t(α0, 2p
t − α0, 2p

t ) = 0,

thanks to the fact that ∂̄tβ
′0, 2p−1
t = ∂̄tβ

0, 2p−1
t as both β0, 2p−1

t and β
′0, 2p−1
t are solutions of equation

(7.107) (see also the first equation in (7.105)). Thus, the pure type (1, 2p − 1)-form ∂t(β
′0, 2p−1
t −

β0, 2p−1
t ) is d-closed and also, in an obvious way, ∂t-exact for all t ∈ B\{0}. Then, the ∂∂̄-assumption

on Xt for t ̸= 0 implies the ∂̄t-exactness of ∂t(β
′0, 2p−1
t − β0, 2p−1

t ) for all t ̸= 0. This in turn implies,
as has already been argued, that α1, 2p−1

t − ∂tβ0, 2p−1
t is ∂̄t-exact for all t ∈ B \ {0}.

Considering now the analogue of the second equation in (7.105), we define β1, 2p−2
t to be the

(2p− 1)-form of pure Jt-type (1, 2p− 2) which is the minimal L2-norm solution of the equation:

α1, 2p−1
t − ∂tβ0, 2p−1

t = ∂̄tβ
1, 2p−2
t , t ∈ B \ {0}. (7.109)
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This equation does have solutions since we have proved that its left-hand side is ∂̄t-exact for all
t ∈ B \ {0}. We can thus go on inductively to construct forms βl, 2p−1−l

t of Jt-type (l, 2p − 1 − l)
for all l ∈ {0, 1, . . . , p − 1} and all t ∈ B \ {0}. Indeed, once βl−1, 2p−l

t has been constructed as the
minimal L2-norm solution of the equation

αl−1, 2p−l+1
t − ∂tβl−2, 2p−l+1

t = ∂̄tβ
l−1, 2p−l
t , t ∈ B \ {0}, (7.110)

the pure-type form αl, 2p−lt − ∂tβl−1, 2p−l
t is seen to be ∂̄t-exact by the same argument using the ∂∂̄-

assumption on Xt (t ̸= 0) as the one spelt out above for l = 1. The form βl, 2p−l−1
t is then defined to

be the minimal L2-norm solution of the equation

αl, 2p−lt − ∂tβl−1, 2p−l
t = ∂̄tβ

l, 2p−l−1
t , t ∈ B \ {0}. (7.111)

In this case, the explicit Neumann formula for the minimal solution reads:

βl, 2p−l−1
t = ∆

′′−1
t ∂̄⋆t (α

l, 2p−l
t − ∂tβl−1, 2p−l

t ), t ∈ B \ {0}, l = 1, . . . p− 1, (7.112)

where ∆′′
t : C

∞
l, 2p−l−1(Xt, C) → C∞

l, 2p−l−1(Xt, C) is the ∂̄t-Laplacian defined on the space of (l, 2p−
l − 1)-forms of class C∞ on Xt.

In this fashion, we have defined smooth forms β0, 2p−1
t , β1, 2p−2

t , . . . , βp−1, p
t for all t ∈ B\{0}. They

satisfy the first p equations (with βt replacing β
′
t) among the (2p+1) equations in (7.105). We then

go on to define, for all t ∈ B \ {0}, smooth forms βp, p−1
t , βp+1, p−2

t , . . . , β2p−1, 0
t as the conjugates of

the previous set of forms taken in reverse order:

βp+s, p−s−1
t := βp−s−1, p+s

t , s = 0, 1, . . . , p− 1, t ∈ B \ {0}. (7.113)

Since the form α has been chosen to be real, we take conjugates and see that the forms βp+s, p−s−1
t ,

s = 0, 1, . . . , p− 1, satisfy the last p equations (with βt replacing β
′
t) among the (2p + 1) equations

in (7.105). If we now set

βt := β0, 2p−1
t + · · ·+ βp−1, p

t + βp, p−1
t + · · ·+ β2p−1, 0

t , t ∈ B \ {0}, (7.114)

we obtain a family (βt)t∈B\{0} of real C∞ forms of degree 2p − 1 on X varying in a C∞ way with
t ∈ B \ {0}. Moreover, the (2p)-current α− [Zt]− dβt is of pure type (p, p) for all t ∈ B \ {0} as can
be seen from the construction of βt: its pure-type components satisfy the analogues for βt (instead
of β′

t) of equations (7.105), except the one involving [Zt], which amount to the vanishing of all the
pure-type components of α− [Zt]− dβt, except the one of type (p, p) which is the only one to which
[Zt] contributes. The current α− [Zt]− dβt is also d-exact in an obvious way (it equals d(β′

t − βt)).
A final application of the ∂∂̄-assumption on every Xt with t ̸= 0 shows that α − [Zt] − dβt is

also ∂t∂̄t-exact for t ̸= 0. Thus, there exists a family (Rt)t∈B\{0} of (2p − 2)-currents of respective
Jt-types (p− 1, p− 1) such that

α = [Zt] + dβt + ∂t∂̄tRt, t ∈ B \ {0}. (7.115)

Conclusion 7.2.5. If Xt is a ∂∂̄-manifold for all t ∈ B \ {0}, the γt-volumes of any C∞ family of
relative (n− p)-cycles (Zt)t∈B\{0} can be expressed as

vγt(Zt) :=

∫
X

[Zt] ∧ γn−pt =

∫
X

α ∧ γn−pt −
∫
X

dβt ∧ γn−pt −
∫
X

∂t∂̄tRt ∧ γn−pt , t ∈ B \ {0}, (7.116)
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for any family of Hermitian metrics (γt)t∈B on the fibres (Xt)t∈B, where α is a fixed real (2p)-form
in the De Rham class that is common to all [Zt], (βt)t∈B\{0} are given by formula (7.114) by adding
their components inductively defined in formulae (7.108), (7.112) and (7.113), while (Rt)t∈B\{0} are
given by (7.115).

Recall that what is at stake is ensuring that vγt(Zt) is uniformly bounded as t ∈ B\{0} approaches
0 ∈ B. If γt is chosen to vary in a C∞ way with t ∈ B (up to t = 0), the first term in the right-hand
side of (7.116) stays bounded when t varies in a relatively compact neighbourhood U ⋐ ∆ of 0 ∈ B,
since α is independent of t. The other two terms are problematic as both βt and Rt are only defined
off t = 0 ∈ B.

The first observation is that, when the cycles Zt are divisors (i.e. p = 1), the third term in the
right-hand side of (7.116) can be easily handled. The reason is that, thanks to Proposition 4.1.13,
the Hermitian metrics γt of the fibres Xt can be chosen to be Gauduchon metrics, i.e. such that
∂t∂̄tγ

n−1
t = 0 for all t ∈ B. With this special choice for (γt)t∈B, Stokes’s Theorem gives:∫

X

∂t∂̄tRt ∧ γn−1
t = −

∫
X

Rt ∧ ∂t∂̄tγn−1
t = 0, t ∈ B \ {0},

so this term vanishes in the case of divisors. However, achieving uniform boundedness for this term
in the case of higher codimensional cycles (i.e. for p ≥ 2) is a major challenge.

As for uniformly bounding the term depending on βt in the right-hand side of (7.116), the
difficulty stems from the possible jump of the Hodge numbers hp, q(t) := dimCH

p, q(Xt, C) at t = 0.
The family of strongly elliptic operators (∆′′

t )t∈B defined in Jt-bidegree (p, q) varies in a C∞ way
with t, while a classical Kodaira-Spencer Theorem D in §.2.5 ensures that the corresponding family
of Green operators (∆

′′−1
t )t∈B varies in a C∞ with t if the dimension (as a C-vector space) of the

kernel ker∆′′
t is independent of t ∈ B. Since ker∆′′

t is isomorphic to the Dolbeault cohomology
space Hp, q(Xt, C) by the Hodge Isomorphism Theorem, we have differentiability of the families of
operators (∆

′′−1
t )t∈B (and hence of the families of forms (βl, 2p−l−1

t )t∈B, l = 0, 1, . . . , p − 1, thanks
to the formulae (7.108) and (7.112)) if the Hodge numbers hl, 2p−l−1(t), l = 0, 1, . . . , p − 1, of the
fibres do not jump at t = 0 ∈ B. This condition is fulfilled, for instance, under the hypothesis
of Conjecture 7.2.3 since the class C assumption on the fibres ensures the degeneracy at E•

1 of the
Frölicher spectral sequence of each fibre which, in turn, implies the local constancy of the Hodge
numbers of the fibres (cf. Theorem 2.6.3). Thus, the term depending on βt in the expression (7.116)
for vγt(Zt) is uniformly bounded when t varies in a relatively compact neighbourhood U ⋐ ∆ of
0 ∈ B under the hypothesis of Conjecture 7.2.3. However, controlling this term in the more general
situation of Conjecture 7.2.4 poses a major challenge as the Hodge numbers might a priori jump at
t = 0 if the class C assumption skips X0 (unless they can be shown not to do so, which seems to be
a daunting task).

A by-product of these considerations is that the divisor case of Conjecture 7.2.3 holds true.

We now choose the metrics (γt)t∈B to be Gauduchon and assume that p = 1. It remains to
control the term depending on βt in (7.116). (We stress that the control of this term in the case
p ≥ 2 falls completely outside the method of the present proof and is widely open.)

As p = 1, formula (7.108) defining β0, 1
t reads:

β0, 1
t = ∆

′′−1
t ∂̄⋆t α

0, 2
t , t ∈ B \ {0}, (7.117)

while βt = β0, 1
t + β0, 1

t (cf. (7.113) and (7.114)) is now a 1-form. Thus, only the (1, 1)-component of
dβt has a non-trivial contribution to vγt(Zt) and we get



CHAPTER 7. DEFORMATION LIMITS OF CERTAIN CLASSES OF COMPACT COMPLEXMANIFOLDS497

∫
X

dβt ∧ γn−1
t =

∫
X

(∂tβ
0, 1
t + ∂̄tβ

1, 0
t ) ∧ γn−1

t ,

where we have set β1, 0
t := β0, 1

t . As ∂tβ
0, 1
t and ∂̄tβ

1, 0
t are conjugate to each other, it suffices to

uniformly bound

It :=

∫
X

∂tβ
0, 1
t ∧ γn−1

t , t ∈ B \ {0}. (7.118)

The difficulty is that β0, 1
t (hence also ∂tβ

0, 1
t ) might explode as t ∈ B \ {0} approaches 0 ∈ B, if

h0, 1(t) jumps at t = 0. However, ∂̄tβ
0, 1
t = α0, 2

t (see equation (7.107) with p = 1) and thus ∂̄tβ
0, 1
t

extends in a C∞ way to t = 0 since the (0, 2)-component α0, 2
t of the fixed form α w.r.t. to the

holomorphic family of complex structures (Jt)t∈B does. Hence the idea of trying to substitute ∂̄tβ
0, 1
t

for ∂tβ
0, 1
t in (7.118) appears as natural. Stokes’ theorem gives

It =

∫
X

β0, 1
t ∧ ∂tγn−1

t , t ∈ B \ {0}. (7.119)

Since the metric γt is Gauduchon, d(∂tγ
n−1
t ) = 0 for every t ∈ B, so the ∂∂̄-assumption on every

Xt with t ̸= 0 implies that the d-closed form ∂tγ
n−1
t of pure type (n, n − 1), which is obviously

∂t-exact, must also be ∂̄t-exact for every t ̸= 0. However, it is not clear a priori whether ∂0γ
n−1
0 is

∂̄0-exact since X0 is not supposed to be a ∂∂̄-manifold.
It is at this point that we need Theorem 7.1.1. Under our assumptions, it ensures the existence

of a strongly Gauduchon (sG) metric γ0 on X0. Moreover, the sG property of compact complex
manifolds is deformation open by Theorem 4.2.4, so we can deform γ0 to a C∞ family (γt)t∈B of
strongly Gauduchon (sG) metrics on the fibres (Xt)t∈B. Finally, recall that the proof of Theorem
4.2.4 gives a real d-closed C∞ form Ω of degree 2n− 2 on X (the C∞ manifold underlying the fibres
Xt) such that its component of J0-type (n− 1, n− 1) is positive definite (i.e. Ωn−1, n−1

0 > 0). Thus,
if X0 carries a strongly Gauduchon metric γ0, the components Ωn−1, n−1

t of Jt-type (n− 1, n− 1) of
Ω vary in a C∞ way with t ∈ B and, therefore, the strict positivity condition is preserved in a small
neighbourhood of 0 ∈ B (and thus on the whole B if B is shrunk sufficiently about 0):

Ωn−1, n−1
t > 0, t ∈ B.

The induced sG metric γt on Xt satisfies γ
n−1
t = Ωn−1, n−1

t for t ∈ B. Moreover, since the form Ω is
real, the closedness condition dΩ = 0 is equivalent to

∂tΩ
n−1, n−1
t = −∂̄tΩn, n−2

t , t ∈ B.

Thus, the ∂̄t-potentials Ωn, n−2
t of ∂tΩ

n−1, n−1
t also vary in a C∞ way with t ∈ B since they are

components of pure Jt-type (n, n− 2) of the fixed form Ω.
Put ζt = −Ωn, n−2

t for t ∈ B. Then, (7.119) reads:

It =

∫
X

β0, 1
t ∧ ∂tγn−1

t =

∫
X

β0, 1
t ∧ ∂̄tζ

n, n−2
t =

∫
X

∂̄tβ
0, 1
t ∧ ζ

n, n−2
t =

∫
X

α0, 2
t ∧ ζ

n, n−2
t , t ∈ B \ {0},

where the third identity follows from Stokes’s theorem. As both families of forms (α0, 2
t )t∈B and

(ζn, n−2
t )t∈B vary in a C∞ way with t (up to t = 0), It is bounded independently of t ∈ B \ {0}
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after possibly shrinking B about 0. Hence, the volume vγt(Zt) is bounded independently of t when
t ∈ B \ {0} approaches 0 ∈ B (see (7.116)).

To show properness over B of an arbitrary irreducible component S ⊂ Cn−1(X/B), one has to
show that for every compact subset K ⊂ B, µ−1

n−1(K) ∩ S is a compact subset of Cn−1(X/B). If
(Zs)s∈S is the analytic family of divisors associated with S (such that Zs ⊂ Xµn−1(s), s ∈ S), this
amounts to proving that the volumes

vγs(Zs) =

∫
X

[Zs] ∧ γn−1
s

are uniformly bounded when s ranges over µ−1
n−1(K) ∩ S. Here we have denoted for convenience

γs = γµn−1(s). As mentioned in §.7.2.1, the absolute Barlet space Cn−1(Xt) of divisors of every fibre
Xt is known to have compact irreducible components. Thus, vγs(Zs) stays uniformly bounded when
Zs varies across any irreducible component of any given fibre. It then suffices to show uniform
boundedness of the volumes in the horizontal directions, i.e. when Zt ⊂ Xt varies in a differentiable
family (Zt)t∈B\{0} with t ∈ B \ {0} approaching 0 ∈ B. This has been done above. The proof of
Theorem 7.2.2 is complete. □

Recall that we have already proved the implications:

Theorem 7.2.2 =⇒ Theorem 7.2.1 =⇒ Theorem 7.0.4.

Together with the proof of Theorem 7.2.2 given in this §.7.2.2, these implications complete the first
proof of Theorem 7.0.4.
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(II) Second proof of Theorem 7.0.4

We will present it in two stages over sections 7.3 and 7.4.

7.3 The Frölicher approximating vector bundle (FAVB)

This section, taken from [Pop19], is the analogue in this more conceptual approach to Theorem 7.0.4
of §.7.1. We prove the following slightly weaker version of Theorem 7.1.1 that will turn out to be
equally effective for the proof of Theorem 7.0.4.

Theorem 7.3.1. ([Pop19, Theorem 1.4 and Theorem 3.3]) Let π : X −→ B be a holomorphic family
of compact complex n-dimensional manifolds over an open ball B ⊂ CN about the origin. Suppose
that the fibre Xt := π−1(t) is a ∂∂̄-manifold for all t ∈ B \ {0}.

Then, the fibre X0 := π−1(0) is an Er-sG manifold, where r is the smallest positive integer
such that the Frölicher spectral sequence of X0 degenerates at Er.

Furthermore, X0 is even an Er-sGG manifold.

Recall that Er-sG metrics and Er-sG manifolds were introduced in Definition 4.4.1 and discussed
in §.4.4. In particular, recall that the Er-sG property becomes weaker and weaker as r ∈ N⋆ increases,
it coincides with the strongly Gauduchon (sG) property when r = 1 and only the cases r = 1, 2, 3
correspond to new properties (i.e. any Er-sG metric with some r ≥ 4 is also E3-sG).

The proof of Theorem 7.3.1 presented in this section relies heavily on the adiabatic limit theory
for complex structures introduced and discussed in §.3.5. In §.7.3.1, we construct pseudo-differential
operators (∆̃h)h∈C, resp. (∆̃

(r)
h )h∈C with r ∈ N and r ≥ 3, as deformations of the pseudo-differential

Laplacians ∆̃, resp. ∆̃(r), introduced in Definition 3.1.2, resp. (iii) of Proposition 3.2.6, such that

∆̃0 = ∆̃ and ∆̃
(r)
0 = ∆̃(r). The operators (∆̃h)h∈C, resp. (∆̃

(r)
h )h∈C, will then be used to display the

second page, resp. the r-th page with r ≥ 3, of the Frölicher spectral sequence of X as the limit,
when C ∋ h→ 0, of the dh-cohomology when E2(X) = E∞(X), resp. when Er(X) = E∞(X). This
limiting construction, carried out in §.7.3.2, will produce what we call the Frölicher approximating
vector bundle (FAVB) of X (in its absolute version), resp. of a family (Xt)t∈B of manifolds (in
its relative verion). The proof of Theorem 7.3.1 will then follow easily (cf. §.7.3.3) from these
constructions.

7.3.1 h-theory for the Frölicher spectral sequence

Let X be a compact complex manifold with dimCX = n.
Recall that (∆h)h∈C, introduced in Definition 3.5.6, is a C∞ family of elliptic differential operators

such that ∆0 = ∆′′. So, the ∆h’s can be regarded as a deformation (allowing for more flexibility) of
the standard ∂̄-Laplacian ∆′′. The kernel of ∆′′ is classically isomorphic to the Dolbeault cohomology
of X (thus, to the first page of the Frölicher spectral sequence), cf. e.g. Corollary 1.1.7.

(A) Second page: the pseudo-differential Laplacians ∆̃h

We will now introduce and study a similar deformation of the pseudo-differential Laplacian

∆̃ = ∂p′′∂⋆ + ∂⋆p′′∂ +∆′′ : C∞
p, q(X, C) −→ C∞

p, q(X, C), p, q = 0, . . . , n,

introduced in Definition 3.1.2 and proved in §.3.1 to define a Hodge theory for the second page of
the Frölicher spectral sequence, namely a Hodge isomorphism (cf. Theorem 3.1.4):
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Hp, q

∆̃
(X, C) := ker(∆̃ : C∞

p, q(X, C) −→ C∞
p, q(X, C)) ≃ Ep, q

2 (X)

in every bidegree (p, q). Note that ∆̃ = (∂p′′)(∂p′′)⋆+(p′′∂)⋆(p′′∂)+∆′′, so we will approximate ∂p′′

and p′′∂ by adding to each a small h-multiple of its conjugate, while still approximating ∆′′ by ∆h.

Definition 7.3.2. Let (X, ω) be a compact complex Hermitian manifold with dimCX = n. For
every h ∈ C and every k = 0, . . . , 2n, we let

∆̃h = (∂p′′ + h ∂̄p′)(∂p′′ + h ∂̄p′)⋆ + (p′′∂ + h p′∂̄)⋆(p′′∂ + h p′∂̄) + ∆h : C∞
k (X, C) −→ C∞

k (X, C),

where p′ = p′ω : C∞
p, q(X, C) −→ ker(∆′ : C∞

p, q(X, C) −→ C∞
p, q(X, C)) := H

p, q
∆′ (X, C) and p′′ = p′′ω :

C∞
p, q(X, C) −→ ker(∆′′ : C∞

p, q(X, C) −→ C∞
p, q(X, C)) := H

p, q
∆′′(X, C) are the orthogonal projections

onto the ∆′-, resp. ∆′-harmonic spaces of any fixed bidegree (p, q). These projections are then
extended by linearity to

p′ = p′ω : C∞
k (X, C) −→ Hk

∆′(X, C), p′′ = p′′ω : C∞
k (X, C) −→ Hk

∆′′(X, C),

where Hk
∆′(X, C) := ⊕p+q=kHp, q

∆′ (X, C) and Hk
∆′′(X, C) := ⊕p+q=kHp, q

∆′′(X, C).

For every h ∈ C, ∆̃h is a non-negative, self-adjoint pseudo-differential operator and ∆̃0 = ∆̃.
Further properties include the following.

Lemma 7.3.3. For every h ∈ C \ {0}, ∆̃h is an elliptic pseudo-differential operator whose kernel is

ker ∆̃h = ker(∂p′′ + h ∂̄p′)⋆ ∩ ker(p′′∂ + h p′∂̄) ∩ ker dh ∩ ker d⋆h
= ker dh ∩ ker d⋆h = ker∆h, k = 0, . . . , 2n. (7.120)

Hence, the 3-space orthogonal decompositions induced by ∆̃h and ∆h coincide when h ∈ C \ {0}:

C∞
k (X, C) = ker ∆̃h ⊕ Im dh ⊕ Im d⋆h, k = 0, . . . , 2n, (7.121)

where ker dh = ker ∆̃h ⊕ Im dh, ker d
⋆
h = ker ∆̃h ⊕ Im d⋆h and Im ∆̃h = Im dh ⊕ Im d⋆h.

Consequently, we have the Hodge isomorphism:

Hk
∆̃h

(X, C) = Hk
∆h

(X, C) ≃ Hk
dh
(X, C), k = 0, . . . , 2n, h ∈ C \ {0}. (7.122)

Moreover, the decomposition (7.121) is stable under ∆̃h, namely

∆̃h(Im dh) ⊂ Im dh and ∆̃h(Im d⋆h) ⊂ Im d⋆h. (7.123)

Proof. The first identity in (7.120) follows immediately from the fact that ∆̃h is a sum of non-negative
operators of the shape A⋆A and ker(A⋆A) = kerA for every A, since ⟨⟨A⋆Au, u⟩⟩ = ||Au||2.

To prove the second identity in (7.120), we will prove the inclusions ker dh ⊂ ker(p′′∂ + h p′∂̄)
and ker d⋆h ⊂ ker(∂p′′ + h ∂̄p′)⋆.

Let u =
∑

r+s=k u
r, s be a smooth k-form such that dhu = 0. This amounts to h∂ur, s+∂̄ur+1, s−1 =

0 whenever r + s = k. Applying p′ and respectively p′′, we get

p′∂̄ur+1, s−1 = 0 and p′′∂ur, s = 0, whenever r + s = k,

since h ̸= 0, while p′∂ = 0 and p′′∂̄ = 0. Hence,
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(p′′∂ + h p′∂̄)u =
∑
r+s=k

(p′′∂ur, s + h p′∂̄ur+1, s−1) = 0.

This proves the inclusion ker dh ⊂ ker(p′′∂ + h p′∂̄).

The ellipticity of the (pseudo)-differential operators ∆h and ∆̃h, combined with the compactness
of the manifold X, implies that the images of dh and ∂p′′ + h ∂̄p′ are closed in C∞

k (X, C). Hence,
these images coincide with the orthogonal complements of the kernels of the adjoint operators d⋆h and
(∂p′′ + h ∂̄p′)⋆. Therefore, proving the inclusion ker d⋆h ⊂ ker(∂p′′ + h ∂̄p′)⋆ is equivalent to proving
the inclusion Im (∂p′′ + h ∂̄p′) ⊂ Im dh. (Actually, the closedness of these images is not needed here,
we would have taken closures otherwise.)

Let u = ∂p′′v + h ∂̄p′v be a smooth k-form lying in the image of ∂p′′ + h ∂̄p′. Since ∂p′ = 0 and
∂̄p′′ = 0, while h ̸= 0, we get

u = (h∂) (
1

h
p′′v + h p′v) + ∂̄ (

1

h
p′′v + h p′v) = dh (

1

h
p′′v + h p′v) ∈ Im dh.

This completes the proof of (7.120).
Since ∆h commutes with both dh and d⋆h, to prove (7.123) it suffices to prove the stability of

Im dh and Im d⋆h under ∆̃h −∆h. Now, since (p′′∂ + hp′∂̄) dh = 0 (immediate verification), we get

(∆̃h −∆h) dh = (∂p′′ + h∂̄p′)(∂p′′ + h∂̄p′)⋆(h∂ + ∂̄).

Since Im (∂p′′ + h∂̄p′) ⊂ Im dh (as seen above), we get (∆̃h − ∆h)(Im dh) ⊂ Im dh. Similarly, an
immediate verification shows that (∂p′′ + h∂̄p′)⋆d⋆h = 0. Consequently,

(∆̃h −∆h) d
⋆
h = (p′′∂ + hp′∂̄)⋆(p′′∂ + hp′∂̄)d⋆h.

Meanwhile, Im (p′′∂+hp′∂̄)⋆ ⊂ Im d⋆h (since this is equivalent to the inclusion ker dh ⊂ ker(p′′∂+h p′∂̄)

that was proved above). Therefore, (∆̃h −∆h)(Im d⋆h) ⊂ Im d⋆h. The proof of (7.123) is complete.
The remaining statements follow from the standard elliptic theory as in §.3.5. □

Conclusion 7.3.4. Let (X, ω) be a compact complex Hermitian manifold with dimCX = n. For
every degree k ∈ {0, . . . , 2n}, we have C∞ families of elliptic differential operators (∆h)h∈C and,

respectively, elliptic pseudo-differential operators (∆̃h)h∈C from C∞
k (X, C) to C∞

k (X, C) such that

(i) ∆0 = ∆′′ and ∆̃0 = ∆̃;

(ii) Hk
∆h

(X, C) = Hk
∆̃h

(X, C) ≃ Hk
dh
(X, C) for all h ∈ C \ {0};

(iii) Hk
∆0
(X, C) ≃

⊕
p+q=kH

p, q(X, C) and Hk
∆̃0
(X, C) ≃

⊕
p+q=k E

p, q
2 (X).

Proof. Only the latter part of (iii) still needs a proof. Since ∆̃ preserves the pure type of forms and

since the kernel of ∆̃ : C∞
p, q(X, C) −→ C∞

p, q(X, C) is isomorphic to Ep, q
2 (X, C) for every bidegree

(p, q) (cf. Theorem 3.1.4), the isomorphism follows. □

(B) Page r ≥ 3: the pseudo-differential Laplacians ∆̃
(r)
h

Besides the case of E2 treated in §.7.3.1 (A), only the case of E3 will be needed for the proof of
Theorem 7.0.4. However, we will treat the general case of Er for the sake of completeness.

With the construction and the notation of §.3.2.2 (mainly those of Proposition 3.2.6) and of §.3.2.3
in place, we now introduce, for every r ∈ N⋆, a smooth family (∆̃

(r+1)
h )h∈C of pseudo-differential
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operators whose member for h = 0 is the pseudo-differential Laplacian ∆̃(r+1) constructed in (iii) of

Proposition 3.2.6. When r = 1, this will be the smooth family (∆̃h)h∈C constructed in Conclusion

7.3.4 as a deformation of the pseudo-differential Laplacian ∆̃(2) = ∆̃. Following the model of
Definition 7.3.2, we will deform each factor in the above definition of ∆̃(r+1) by adding to it a small
h-multiple of its conjugate.

Definition 7.3.5. Let (X, ω) be a compact complex Hermitian manifold with dimCX = n. For every

h ∈ C and every k = 0, . . . , 2n, we define the pseudo-differential operator ∆̃
(r+1)
h : C∞

k (X, C) −→
C∞
k (X, C) by induction on r ≥ 2 as follows:

∆̃
(r+1)
h =

(
∂Dr−1pr + h ∂̄Dr−1p̄r

)(
∂Dr−1pr + h ∂̄Dr−1p̄r

)⋆
+

(
pr∂Dr−1 + h p̄r∂̄Dr−1

)⋆(
pr∂Dr−1 + h p̄r∂̄Dr−1

)
+ ∆̃

(r)
h ,

where ∆̃
(r)
h : C∞

k (X, C) −→ C∞
k (X, C) has been defined at the previous induction step and ∆̃

(2)
h :=

∆̃h was defined in Definition 7.3.2. For every bidegree (p, q), by p̄r : C∞
p, q(X, C) −→ ker(∆̃(r) :

C∞
p, q(X, C) −→ C∞

p, q(X, C)) we mean the orthogonal projection onto the kernel of the conjugate of

∆̃(r) acting in bidegree (p, q). Both the projections pr and p̄r are then extended by linearity to the
whole space C∞

k (X, C).

As in the case of ∆̃h = ∆̃
(2)
h (cf. Lemma 7.3.3), we need to prove that ∆̃

(r+1)
h has the same kernel

as ∆h for every r ≥ 2. A priori, the kernel of ∆̃
(r+1)
h might be smaller than that of ∆h.

Lemma 7.3.6. For every h ∈ C \ {0}, the following identities of kernels hold:

ker∆h = ker ∆̃
(2)
h = · · · = ker ∆̃

(r)
h = ker ∆̃

(r+1)
h = . . .

in every degree k = 0, . . . , 2n.

Proof. Fix any k. We will prove by induction on r ≥ 1 that ker ∆̃
(r+1)
h = ker∆h in degree k. The case

r = 1 was proved in Lemma 7.3.3. Since each operator ∆̃
(r+1)
h is a sum of non-negative self-adjoint

operators of the shape AA⋆ and since ker(AA⋆) = kerA⋆, we have:

ker ∆̃
(r+1)
h = ker

(
∂Dr−1pr + h ∂̄Dr−1p̄r

)⋆
∩ ker

(
pr∂Dr−1 + h p̄r∂̄Dr−1

)
∩ ker ∆̃

(r)
h .

In particular, ker ∆̃
(r+1)
h ⊂ ker ∆̃

(r)
h ⊂ · · · ⊂ ker ∆̃

(2)
h ⊂ ker∆h for every r and ker ∆̃

(2)
h = ker∆h

thanks to Lemma 7.3.3.
Suppose, as the induction hypothesis, that ker ∆̃

(r)
h = ker∆h for some r ≥ 2. Since ker∆h =

ker dh ∩ ker d⋆h, to prove that ker ∆̃
(r+1)
h = ker∆h, it suffices to prove the inclusions

ker(h∂ + ∂̄) ⊂ ker

(
pr∂Dr−1 + h p̄r∂̄Dr−1

)
and ker(h∂⋆ + ∂̄⋆) ⊂ ker

(
∂Dr−1pr + h ∂̄Dr−1p̄r

)⋆
.(7.124)

• To prove the first inclusion of (7.124), let u =
∑

l+s=k u
l, s ∈ ker(h∂ + ∂̄). This amounts to

h∂ul, s+ ∂̄ul+1, s−1 = 0 for all l, s such that l+ s = k. For any fixed r ≥ 1, applying pr and p̄r to this
identity and using the fact that h ̸= 0, we get

pr∂u
l, s = 0 and p̄r∂̄u

l+1, s−1 = 0 for all l, s such that l + s = k, (7.125)
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since pr∂̄ = 0 and p̄r∂ = 0. The last two identities follow from the fact that Im ∂̄ (resp. Im ∂) is

orthogonal to ker∆′′ (resp. ker∆′), hence also to its subspace Hp, q
r (resp. Hp, q

r ) onto which pr (resp.
p̄r) projects orthogonally.

Meanwhile, for such a u, we have:(
pr∂Dr−1 + h p̄r∂̄Dr−1

)
u

=
∑
l+s=k

(
pr∂Dr−2 (∆̃

(r−1))−1∂̄⋆(∂ul, s) + h p̄r∂̄ Dr−2(∆̃(r−1))−1∂⋆(∂̄ul, s)

)
=

∑
l+s=k

(
− 1

h
pr∂Dr−2 (∆̃

(r−1))−1∂̄⋆(∂̄ul+1, s−1)− h2 p̄r∂̄ Dr−2(∆̃(r−1))−1∂⋆(∂ul−1, s+1)

)
,

where the last line followed from the properties of the forms ul, s: ∂ul, s = − 1
h
∂̄ul+1, s−1 and ∂̄ul, s =

−h ∂ul−1, s+1.
Now, the orthogonal decomposition C∞

l+1, s−1(X, C) = ker∆′′ ⊕ Im ∂̄ ⊕ Im ∂̄⋆ induces a splitting

ul+1, s−1 = αl+1, s−1+∂̄ξl+1, s−2+∂̄⋆ηl+1, s with αl+1, s−1 ∈ ker∆′′. Similarly, the orthogonal decomposi-
tion C∞

l−1, s+1(X, C) = ker∆′⊕Im ∂⊕Im ∂⋆ induces a splitting ul−1, s+1 = βl−1, s+1+∂ζ l−2, s+1+∂⋆ρl, s+1

with βl−1, s+1 ∈ ker∆′. Therefore, in the last sum over l+ s = k, we can re-write the following quan-
tity as follows:

(∆̃(r−1))−1∂̄⋆(∂̄ul+1, s−1) = (∆̃(r−1))−1(∂̄⋆∂̄)(∂̄⋆ηl+1, s) = (∆̃(r−1))−1∆′′(∂̄⋆ηl+1, s)

and this quantity equals ∂̄⋆ηl+1, s when r = 2 since ∆̃(1) = ∆′′. Similarly,

(∆̃(r−1))−1∂⋆(∂ul−1, s+1) = (∆̃(r−1))−1(∂⋆∂)(∂⋆ρl, s+1) = (∆̃(r−1))−1∆′(∂⋆ρl, s+1)

and this quantity equals ∂⋆ρl, s+1 when r = 2 since ∆̃(1) = ∆′.
Suppose that r = 2. We get(

pr∂Dr−1 + h p̄r∂̄Dr−1

)
u =

∑
l+s=k

(
− 1

h
p2∂∂̄

⋆ηl+1, s − h2 p̄2∂̄∂⋆ρl, s+1

)

=
∑
l+s=k

(
− 1

h
p2∂ (α

l+1, s−1 + ∂̄ξl+1, s−2 + ∂̄⋆ηl+1, s)− h2 p̄2∂̄ (βl−1, s+1 + ∂ζ l−2, s+1 + ∂⋆ρl, s+1)

)
=

∑
l+s=k

(
− 1

h
p2∂u

l+1, s−1 − h2 p̄2∂̄ul−1, s+1

)
= 0

where the last identity follows from (7.125), while the identity on the second row follows from
p2∂∂̄ξ

l+1, s−2 = −(p2∂̄) ∂ξl+1, s−2 = 0 (since p2∂̄ = 0 as already explained), from p̄2∂̄∂ζ
l−2, s+1 =

−(p̄2∂) ∂̄ζ l−2, s+1 = 0 (since p̄2∂ = 0 as already explained) and from p2∂α
l+1, s−1 = 0 and p̄2∂̄β

l−1, s+1 =
0.

Let us explain the identity p2∂α
l+1, s−1 = 0. (To get p̄2∂̄ β

l−1, s+1 = 0, it will suffice to conjugate
all the operators involved.) Since αl+1, s−1 ∈ ker∆′′, we have αl+1, s−1 = p1α

l+1, s−1, so p2∂ α
l+1, s−1 =

p2∂p1α
l+1, s−1. Now, the following identity of operators holds in every bidegree:

p2∂p1 = 0. (7.126)
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This is because Im (∂p1) ⊂ Im (∂| ker ∂̄) ⊂ Im ∂̄ + Im (∂| ker ∂̄) and ker ∆̃(2) is orthogonal to (Im ∂̄ +
Im (∂| ker ∂̄)) (as can be checked at once, see also [Pop16, the orthogonal 3-space decomposition (26)

of Lemma 3.3]). Since p2 is the orthogonal projection onto ker ∆̃(2), it must vanish on any subspace

that is orthogonal to ker ∆̃(2). In particular, p2 vanishes on Im (∂p1), which proves (7.126).
Thus, the first inclusion of (7.124) is proved in the case when r = 2. In fact, more has been

proved when r = 2, namely that ker(h∂ + ∂̄) ⊂ ker(p2∂D1) ∩ ker(p̄2∂̄D̄1) (and even that for every
u ∈ ker(h∂ + ∂̄), every ul, s ∈ ker(p2∂D1) ∩ ker(p̄2∂̄D̄1)). The following stronger form of the second
inclusion of (7.124) can be proved in a similar fashion when r = 2: ker(h∂⋆ + ∂̄⋆) ⊂ ker(∂D1p2)

⋆ ∩
ker(∂̄D1p̄2)

⋆.

• We will now prove by induction on r ≥ 3 the analogous stronger forms of the inclusions of
(7.124). Suppose we have already proved the inclusions

ker(h∂ + ∂̄) ⊂ ker(pj∂Dj−1) ∩ ker(p̄j ∂̄D̄j−1), ker(h∂⋆ + ∂̄⋆) ⊂ ker(∂Dj−1pj)
⋆ ∩ ker(∂̄D̄j−1p̄j)

⋆(7.127)

for all j = 1, . . . , r−1 (and even their stronger versions according to which for every u ∈ ker(h∂+ ∂̄),
every ul, s ∈ ker(p2∂D1) ∩ ker(p̄2∂̄D̄1) and the analogous statement for the other inclusion) and let
us prove the inclusion ker(h∂ + ∂̄) ⊂ ker(pr∂Dr−1) ∩ ker(p̄r∂̄D̄r−1). Its counterpart ker(h∂

⋆ + ∂̄⋆) ⊂
ker(∂Dr−1pr)

⋆ ∩ ker(∂̄D̄r−1p̄r)
⋆ can be proved in a similar way.

Given u =
∑

l+s=k u
l, s ∈ ker(h∂ + ∂̄), we have seen that

(pr∂Dr−1)u = −1

h

∑
l+s=k

pr∂Dr−2(∆̃
(r−1))−1∂̄⋆(∂̄ul+1, s−1).

Now, according to the orthogonal 3-space decomposition (3.27) with r + 1 replaced by r − 1,
every form ul+1, s−1 splits uniquely as

ul+1, s−1 = αl+1, s−1
(r−1) + Al+1, s−1

(r−1) +Bl+1, s−1
(r−1) ,

where αl+1, s−1
(r−1) ∈ ker ∆̃(r−1) = ker ∂̄∩· · ·∩ker(pr−2∂Dr−3)∩ker ∂̄⋆∩· · ·∩ker(∂Dr−3pr−2)

⋆, Al+1, s−1
(r−1) ∈

Im ∂̄ + Im (∂p1) + · · · + Im (∂Dr−3pr−2) ⊂ ker ∂̄ ∩ ker(p1∂) ∩ · · · ∩ ker(pr−2∂Dr−3) and Bl+1, s−1
(r−1) ∈

Im ∂̄⋆ + · · ·+ Im (pr−2∂Dr−3)
⋆ ⊂ ker ∂̄⋆ ∩ ker(∂p1)

⋆ ∩ · · · ∩ ker(∂Dr−3pr−2)
⋆.

Therefore, since ∂̄ul+1, s−1 = ∂̄Bl+1, s−1
(r−1) and ∂̄⋆Bl+1, s−1

(r−1) = 0, we get

(∆̃(r−1))−1∂̄⋆(∂̄ul+1, s−1) = (∆̃(r−1))−1∆′′Bl+1, s−1
(r−1) .

We claim that ∆′′Bl+1, s−1
(r−1) = ∆̃(r−1)Bl+1, s−1

(r−1) . Proving this claim amounts to proving that

Bl+1, s−1
(r−1) ∈

(
ker(p1∂) ∩ · · · ∩ ker(pr−2∂Dr−3)

)
∩
(
ker(∂p1)

⋆ ∩ · · · ∩ ker(∂Dr−3pr−2)
⋆

)
.

We already know that Bl+1, s−1
(r−1) lies in the latter big paranthesis. To see that it also lies in the

former, we recall that Bl+1, s−1
(r−1) = ul+1, s−1 − (αl+1, s−1

(r−1) + Al+1, s−1
(r−1) ) and that αl+1, s−1

(r−1) + Al+1, s−1
(r−1) ∈

ker ∂̄ ∩ ker(p1∂) ∩ · · · ∩ ker(pr−2∂Dr−3), while u
l+1, s−1 ∈ ker(p1∂) ∩ · · · ∩ ker(pr−1∂Dr−2) by the

induction hypothesis (see the first inclusion in (7.127) for j = 1, . . . , r − 1). Thus, the claim is
proved and we get

(∆̃(r−1))−1∂̄⋆(∂̄ul+1, s−1) = (∆̃(r−1))−1∆̃(r−1)Bl+1, s−1
(r−1) = Bl+1, s−1

(r−1) ,
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where for the last identity we also used the fact that Bl+1, s−1
(r−1) lies in a subspace that is orthogonal

to ker ∆̃(r−1). Consequently, we get

(pr∂Dr−1)u = −1

h

∑
l+s=k

(pr∂Dr−2)B
l+1, s−1
(r−1) . (7.128)

The next observation is that, for every r ≥ 2 and in every bidegree, the following identity holds:

pr∂Dr−2pr−1 = 0. (7.129)

Indeed, in the orthogonal 3-space decomposition (3.27) with r + 1 replaced by r, Im (∂Dr−2pr−1) is

a subspace of Im ∂̄+ · · ·+Im (∂Dr−2pr−1) which is orthogonal on ker ∆̃(r). Since pr is the orthogonal

projection onto ker ∆̃(r), the restriction of pr to Im (∂Dr−2pr−1) must vanish, hence (7.129).

In our case, αl+1, s−1
(r−1) ∈ ker ∆̃(r−1), so αl+1, s−1

(r−1) = pr−1α
l+1, s−1
(r−1) , hence using (7.129) we get:

(pr∂Dr−2)α
l+1, s−1
(r−1) = (pr∂Dr−2pr−1)α

l+1, s−1
(r−1) = 0. (7.130)

The next observation is that
(pr∂Dr−2)A

l+1, s−1
(r−1) = 0. (7.131)

To see this, recall that Al+1, s−1
(r−1) is of the shape Al+1, s−1

(r−1) = ∂̄a + ∂b. Since Dr−2 is a composition

of operators ending with ∂, we get Dr−2A
l+1, s−1
(r−1) = Dr−2∂̄a. On the other hand, if ul+1, s−1 =

αl+1, s−1
(r) +Al+1, s−1

(r) +Bl+1, s−1
(r) is the splitting of u w.r.t. the orthogonal 3-space decomposition (3.27)

with r+1 replaced by r, we do have (pr−1∂Dr−2)A
l+1, s−1
(r) = 0, which amounts to (pr−1∂Dr−2) ∂̄a = 0.

Then also (pr∂Dr−2) ∂̄a = 0, hence (pr∂Dr−2)A
l+1, s−1
(r−1) = 0, proving (7.131).

Putting together (7.128), (7.130) and (7.131), we get

(pr∂Dr−1)u = −1

h

∑
l+s=k

(pr∂Dr−2) (α
l+1, s−1
(r−1) + Al+1, s−1

(r−1) +Bl+1, s−1
(r−1) ) = −1

h
(pr∂Dr−2)u = 0,

where the last identity followed from the induction hypothesis (pr−1∂Dr−2)u = 0 (see the first
inclusion in (7.127) for j = r − 1).

We have thus proved the inclusion ker(h∂ + ∂̄) ⊂ ker(pr∂Dr−1). The inclusion ker(h∂ + ∂̄) ⊂
ker(p̄r∂̄D̄r−1) can be proved by conjugating the above arguments as we did in the case r = 2. □

Summing up, as in the case of ∆̃h = ∆̃
(2)
h described in Conclusion 7.3.4, we get an analogous

family of pseudo-differential operators (∆̃
(r)
h )h∈C for every integer r ≥ 2 (and the already discussed

family of differential operators (∆h)h∈C for r = 1). The kernel of ∆̃
(r)
h : C∞

k (X, C)→ C∞
k (X, C) will

be denoted by Hk

∆̃
(r)
h

(X, C) and the analogous notation is used for ∆h.

Conclusion 7.3.7. Let (X, ω) be a compact complex Hermitian manifold with dimCX = n. For
every integer r ≥ 2 and every degree k ∈ {0, . . . , 2n}, we have C∞ families of elliptic differential

operators (∆h)h∈C (independent of r) and, respectively, elliptic pseudo-differential operators (∆̃
(r)
h )h∈C

from C∞
k (X, C) to C∞

k (X, C) such that

(i) ∆0 = ∆′′ and ∆̃
(r)
0 = ∆̃(r), where ∆̃(r) was defined in (iii) of Proposition 3.2.6 for an arbitrary

r + 1;

(ii) Hk
∆h

(X, C) = Hk

∆̃
(r)
h

(X, C) ≃ Hk
dh
(X, C) for all h ∈ C \ {0};

(iii) Hk
∆0
(X, C) ≃

⊕
p+q=kH

p, q(X, C) and Hk

∆̃
(r)
0

(X, C) ≃
⊕

p+q=k E
p, q
r (X).
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7.3.2 Construction of the FAVB

Let X be a compact complex manifold with dimCX = n. Recall the following map, introduced in
§.3.5.1:

θh : Λ
kT ⋆X −→ ΛkT ⋆X, θh

( ∑
p+q=k

up, q
)

=
∑
p+q=k

hp up, q,

defined for all h ∈ C and k ∈ {0, 1, . . . , 2n}. When h = 0, θ0(
∑

p+q=k u
p, q) = u0, k. As a preliminary

to our construction, we notice that this projection onto the (0, k)-component at the level of forms
induces the analogous projection in cohomology, that will still be denoted by θ0, in the context of
the splitting Hk

DR(X, C) ≃ ⊕p+q=kEp, q
∞ (X) provided by the Frölicher spectral sequence of X.

Lemma 7.3.8. For every k ∈ {0, . . . , n}, the canonical linear map:

θ0 : H
k
DR(X, C) −→ E0, k

∞ (X), {α}DR 7−→ {α0, k}E∞ = {θ0α}E∞ , (7.132)

is well defined and surjective.

Proof. Let r ∈ N⋆ be the smallest positive integer l such that the Frölicher spectral sequence of X
degenerates at El. In particular, E0, k

∞ (X) = E0, k
r (X).

To show well-definedness, we have to show two things, namely that

(a) α0, k = θ0α is Er-closed for every d-closed k-form α. (This will show that α0, k = θ0α
represents an Er-cohomology class, or equivalently an E∞-cohomology class.)

(b) for any De Rham cohomologous d-closed k-forms α and β, their (0, k)-components α0, k and
β0, k are Er-cohomologous. (This will show that the E∞-cohomology class of α0, k = θ0α does not
depend on the choice of representative of the De Rham class {α}DR.)

To prove (a), let α ∈ C∞
k (X, C) be d-closed. The condition dα = 0 is equivalent to the following

tower of (k + 2) equations:

∂αk, 0 = 0

∂αk−1, 1 = −∂̄αk, 0
...

∂α0, k = −∂̄α1, k−1

∂̄α0, k = 0. (7.133)

When read from bottom to top, this tower of equations expresses the fact that α0, k is El-closed for
every l ≥ k + 2. (Note that ∂αk, 0 is of type (k + 1, 0), so it vanishes if and only if it is ∂̄-exact.)

Now, if k + 2 ≥ r, any Ek+2-closed form is also Er-closed. So, α0, k is Er-closed in this case. If
k + 2 < r, we have already noticed above that α0, k is Er-closed. Thus, α

0, k is always Er-closed.

To prove (b), let α, β ∈ C∞
k (X, C) such that dα = dβ = 0 and α = β + dγ for some γ ∈

C∞
k−1(X, C). The last identity implies that α0, k−β0, k = ∂̄γ0, k−1. Thus, being ∂̄-exact (equivalently,

E1-exact), α
0, k − β0, k is also El-exact for every l ≥ 1, hence Er-exact, i.e. E∞-exact. Therefore,

{α0, k}E∞ = {β0, k}E∞ .

To show surjectivity, let {α0, k}Er ∈ E0, k
r (X). Pick an arbitrary representative α0, k ∈ C∞

0, k(X, C)
of this class. It is necessarily Er-closed. This means that, if r ≥ k+2, there exist smooth pure-type
forms α1, k−1, α2, k−2, . . . , αk−1, 1, αk, 0 of the shown types that, together with α0, k, satisfy the tower
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(7.133) of (k + 2) equations. This expresses the fact that the smooth k-form α := αk, 0 + · · ·+ α0, k

is d-closed. It is obvious, by construction, that θ0({α}DR) = {α0, k}E∞ .
If r ≤ k + 1, then E0, k

r (X) = E0, k
∞ (X) = E0, k

k+2(X) and the Er-closed forms coincide with the
Ek+2-closed forms. Hence, we still get forms αl, k−l as above satisfying the tower of equations (7.133)
and the conclusion is the same. □

(I) The FAVB in the absolute case

As a first application of the pseudo-differential operators ∆̃h, we obtain a holomorphic vector bundle
over C whose fibre above 0 is defined by the page in the Frölicher spectral sequence of X on which
degeneration occurs.

Corollary and Definition 7.3.9. Let X be a compact complex manifold with dimCX = n. Let
r ∈ N⋆ be the smallest positive integer such that the Frölicher spectral sequence of X degenerates at
Er.

For every k ∈ {0, . . . , 2n}, there exists a holomorphic vector bundle Ak −→ C, of rank equal to
the k-th Betti number bk of X, whose fibres are

Akh = Hk
dh
(X, C) if h ∈ C \ {0}, and Ak0 =

⊕
p+q=k

Ep, q
r (X) if h = 0,

and whose restriction to C \ {0} is isomorphic to the constant vector bundle Hk
|C⋆ −→ C \ {0} of

fibre Hk
DR(X, C) under the holomorphic vector bundle isomorphism θ = (θh)h∈C⋆ : Hk

|C⋆ −→ Ak|C⋆.

The vector bundle Ak −→ C will be called the Frölicher approximating vector bundle
(FAVB) of X in degree k.

Proof. Recall that dimCH
k
dh
(X, C) = bk for every h ̸= 0. Fix any Hermitian metric ω on X.

If r = 1, the dimension of ⊕p+q=kEp, q
1 (X, C) equals bk and the fibre Ak0 is isomorphic to the

kernel of ∆′′ = ∆0 : C
∞
k (X, C) −→ C∞

k (X, C). Thus, the C∞ family (∆h)h∈C of elliptic differential
operators has the property that the dimension of the kernel of ∆h : C∞

k (X, C) −→ C∞
k (X, C)

is independent of h ∈ C. The classical Kodaira-Spencer Theorem C of §.2.5.1 ensures that the
harmonic spaces Hk

∆h
(X, C) depend in a C∞ way on h ∈ C. Therefore, they form a C∞ vector

bundle over C, as do the vector spaces Akh to which they are isomorphic.
If r = 2, the dimension of ⊕p+q=kEp, q

2 (X, C) equals bk and the fibre Ak0 is isomorphic to the

kernel of ∆̃ = ∆̃0 : C∞
k (X, C) −→ C∞

k (X, C) by Theorem 3.1.4. The classical Kodaira-Spencer

Theorem C of §.2.5.1 still applies to the C∞ family (∆̃h)h∈C of elliptic pseudo-differential operators
(cf. argument in [Mas18] for the case h = 0), whose kernels have dimension independent of h ∈ C
(and equal to bk, see Conclusion 7.3.4), to ensure that the harmonic spaces Hk

∆̃h
(X, C) depend in

a C∞ way on h ∈ C. As above, we infer that the vector spaces Akh, to which the harmonic spaces
Hk

∆̃h
(X, C) are isomorphic for all h ∈ C (cf. Conclusion 7.3.4), form a C∞ vector bundle over C.
If r ≥ 3, the dimension of ⊕p+q=kEp, q

r (X, C) equals bk and the fibre Ak0 is isomorphic to the

kernel of ∆̃(r) = ∆̃
(r)
0 : C∞

k (X, C) → C∞
k (X, C) (cf. Conclusion 7.3.7). The classical Kodaira-

Spencer Theorem C of §.2.5.1 still applies to the C∞ family (∆̃
(r)
h )h∈C of elliptic pseudo-differential

operators (cf. argument in [Mas18] for the case of ∆̃) whose kernels have dimension independent of
h ∈ C (and equal to bk) to ensure that the harmonic spaces Hk

∆̃
(r)
h

(X, C) depend in a C∞ way on

h ∈ C. We infer as above that the vector spaces Akh, to which the harmonic spaces Hk

∆̃
(r)
h

(X, C) are
isomorphic for all h ∈ C (cf. Conclusion 7.3.7), form a C∞ vector bundle over C.
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Meanwhile, we know from (ii) of Lemma 3.5.5 that for every h ̸= 0, the linear map θh :
Hk
DR(X, C) −→ Hk

dh
(X, C) defined by θh({u}DR) = {θhu}dh is an isomorphism of C-vector spaces.

Since θh depends holomorphically on h and the space Hk
DR(X, C) is independent of h, we infer that

the C-vector spaces Hk
dh
(X, C) form a holomorphic vector bundle over C \ {0}. However, we know

from the above argument that this holomorphic vector bundle extends in a C∞ way across 0 to the
whole of C. This extension must then be holomorphic. □

(II) The FAVB in the relative case

We will now define the Frölicher approximating vector bundles of a holomorphic family (Xt)t∈B of
compact complex n-dimensional manifolds induced by a proper holomorphic submersion π : X −→ B
whose base B ⊂ CN is an open ball about the origin in some complex Euclidean vector space.

By the Ehresmann’s classical Theorem 2.1.1, the differential structure of the fibres Xt is inde-
pendent of t ∈ B, hence so is the Poincaré differential d, which splits differently as d = ∂t + ∂̄t as
the complex structure of Xt varies. In particular, the differential operators dh depend on t (except
when h = 1), so we put

dh,t := h∂t + ∂̄t : C
∞
k (X, C) −→ C∞

k+1(X, C), h ∈ C, t ∈ B, k ∈ {0, . . . , 2n},

where X is the C∞ manifold underlying the fibres Xt. Likewise, the pointwise linear maps θh (which
are isomorphisms when h ̸= 0) depend on t (because the splitting of k-forms into pure-type-forms
depends on the complex structure of Xt), so we put

θh,t : Λ
kT ⋆X −→ ΛkT ⋆X, u =

∑
p+q=k

up, qt 7→ θh,tu :=
∑
p+q=k

hp up, qt .

When h ̸= 0, this induces an isomorphism in cohomology:

θh,t : H
k
DR(X, C) −→ Hk

dh,t
(Xt, C), θh,t({u}DR) = {θh,tu}dh,t , (7.134)

for every t ∈ B, since θh,td = dh,tθh,t. When h = 0, we saw in Lemma 7.3.8 that θ0,t induces a
surjective linear map:

θ0,t : H
k
DR(X, C) −→ E0, k

∞ (Xt), θ0,t({u}DR) = {u0, kt }E∞ , (7.135)

for every t ∈ B, where u0, kt is the component of type (0, k) of u w.r.t. the complex structure of Xt.
For every k, let Hk −→ B be the constant vector bundle of rank bk = bk(X) (the kth Betti number

of X, or equivalently of any Xt) whose fibre is the kth De Rham cohomology group Hk(X, C) of X
(= of any Xt). Thus, Hk

t = Hk
DR(Xt, C) = Hk

DR(X, C) for every t ∈ B. Let ∇̃ be the Gauss-Manin
connection on Hk. Recall that this is the trivial connection, given in the local trivialisations of Hk

by the usual differentiation d (i.e. ∇̃(
∑

j fj ⊗ ej) =
∑

j(dfj)⊗ ej for any local frame {ej} of Hk and

any locally defined functions fj) thanks to the transition matrices of Hk having constant entries.
Recall that the degeneration at E1 of the Frölicher spectral sequence is a deformation open

property of compact complex manifolds. Thus, if E1(X0) = E∞(X0), then E1(Xt) = E∞(Xt) for
every t ∈ B, after possibly shrinking B about 0. (This follows at once from the upper-semicontinuity
of the Hodge numbers hp, q(t) and from the invariance of the Betti numbers bk of the fibres Xt.)
However, when r ≥ 2, the degeneration at Er of the Frölicher spectral sequence is not deformation
open, so we will have to assume it on all the fibres Xt for the sake of convenience.



CHAPTER 7. DEFORMATION LIMITS OF CERTAIN CLASSES OF COMPACT COMPLEXMANIFOLDS509

Corollary and Definition 7.3.10. Let π : X −→ B be a holomorphic family of compact complex
n-dimensional manifolds over an open ball B ⊂ CN about the origin. Suppose that for an r ∈ N⋆,
the Frölicher spectral sequence of Xt degenerates (at least) at Er for all t ∈ B and that r is the
smallest positive integer with this property.

For every k ∈ {0, . . . , 2n}, there exists a holomorphic vector bundle Ak −→ C×B, of rank equal
to the k-th Betti number bk of X (= of any fibre Xt), whose fibres are

Akh, t = Hk
dh,t

(Xt, C) for (h, t) ∈ C⋆ ×B, and Ak0, t =
⊕
p+q=k

Ep, q
r (Xt) for (0, t) ∈ {0} ×B,

and whose restriction to C⋆ × B is isomorphic to the constant vector bundle Hk
|C⋆×B −→ C⋆ × B of

fibre Hk
DR(X, C) under the holomorphic vector bundle isomorphism θ = (θh,t)(h, t)∈C⋆×B : Hk

|C⋆×B −→
Ak|C⋆×B.

The vector bundle Ak −→ C × B is called the Frölicher approximating vector bundle
(FAVB) of the family (Xt)t∈B in degree k.

Proof. We know that dimCH
k
dh,t

(Xt, C) = bk for all h ̸= 0 and t ∈ B. Moreover, thanks to the

Er-degeneration assumption on every fibre Xt, dimC ⊕p+q=k Ep, q
r (Xt, C) = bk for all t ∈ B. Thus,

dimCAkh, t = bk for all (h, t) ∈ C×B.
Now, fix an arbitrary C∞ family (ωt)t∈B of Hermitian metrics on the fibres (Xt)t∈B and consider

the C∞ family (∆h, t)(h, t)∈C⋆×B of elliptic differential operators defined in every degree k by analogy
with the absolute case as

∆h, t = dh, td
⋆
h, t + d⋆h, tdh, t : C

∞
k (X, C) −→ C∞

k (X, C),

where the formal adjoint d⋆h, t is computed w.r.t. the metric ωt. The kernels ker∆h, t are isomorphic

to the vector spaces Akh, t, hence they have a dimension independent of (h, t) ∈ C⋆×B (and equal to

bk). This implies, thanks to the classical Kodaira-Spencer Theorem C of §.2.5.1, that Ak −→ C⋆×B
is a C∞ complex vector bundle of rank bk. This vector bundle is even holomorphic since, as pointed
out in the statement, the C∞ vector bundle isomorphism θ = (θh,t)(h, t)∈C⋆×B : Hk −→ Ak, viewed
as a section of End (Hk, Ak), depends in a holomorphic way on (h, t) ∈ C⋆ × B. Note that no
assumption on the spectral sequence is necessary to get this conclusion on C⋆ ×B.

On the other hand, for every fixed t ∈ B, we know from the absolute case of Corollary and
Definition 7.3.9 that C ∋ h 7→ Akh, t is a holomorphic vector bundle (of rank bk) over C.

We conclude that near the points of the hypersurface {0} × B ⊂ C × B, the entries of the
transition matrices of the vector bundle Ak −→ C⋆ × B are functions g(h, t) on open subsets
U \ ({0} ×B) ⊂ C⋆ ×B (where U is an open subset of C×B) with the following two properties:

-the function (h, t) 7→ g(h, t) is holomorphic in the complement of the hypersurface U∩({0}×B)
in U ;

-for every t ∈ B, the holomorphic function 0 ̸= h 7→ g(h, t) extends holomorphically across 0.

Therefore, the resulting functions g(h, t), defined for all (h, t) ∈ U ⊂ C× B, must be holomorphic
on the whole of U , proving that C×B ∋ (h, t) 7→ Akh, t is a holomorphic vector bundle over C×B.
□

7.3.3 Proof of Theorem 7.3.1.

Let γ0 be an arbitrary Gauduchon metric on X0. It is known that, after possibly shrinking B about
0, γ0 can be extended to a C∞ family (γt)t∈ B of C∞ 2-forms on X (= the C∞ manifold underlying
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the complex manifolds Xt) such that γt is a Gauduchon metric on Xt for every t ∈ B (see, e.g.,
[Pop13, section 3]). Let n be the complex dimension of the fibres Xt.

The Gauduchon property of the γt’s implies that dh, t(∂tγ
n−1
t ) = 0 for all (h, t) ∈ C⋆ × B and

that ∂tγ
n−1
t is Er(Xt)-closed for all t ∈ B. Thus, the following object is well defined:

σ(h, t) :=

{ {∂tγn−1
t }dh, t ∈ H2n−1

dh, t
(Xt, C) = A2n−1

h, t , if (h, t) ∈ C⋆ ×B,
{∂tγn−1

t }Er(Xt) ∈
⊕

p+q=2n−1

Ep, q
r (Xt) = A2n−1

0, t , if (h, t) = (0, t) ∈ {0} ×B,

where A2n−1 −→ C×B is the Frölicher approximating vector bundle of the family (Xt)t∈B in degree
2n−1 defined in Corollary and Definition 7.3.10. Note that the ∂∂̄-assumption on the fibres Xt with
t ̸= 0 implies that the Frölicher spectral sequence of each of these fibres degenerates at E1, hence
also at any Er with r ≥ 1. Thus, the assumption of Corollary and Definition 7.3.10 is satisfied and
that result ensures that A2n−1 −→ C×B is a holomorphic vector bundle of rank b2n−1 = b1 (= the
(2n− 1)-st, respectively the first Betti numbers of X, that are equal by Poincaré duality).

This last fact, in turn, implies that σ is a global C∞ section of A2n−1 on C×B. Indeed, ∂t varies
holomorphically with t ∈ B, γn−1

t varies in a C∞ way with t ∈ B, while the vector space A2n−1
h, t

varies holomorphically with (h, t) ∈ C×B.
Meanwhile, the ∂∂̄-assumption on every Xt with t ∈ B⋆ implies that the d-closed ∂t-exact

(n, n − 1)-form ∂tγ
n−1
t is (∂t∂̄t)-exact, hence also dh, t-exact for every h ∈ C. (Indeed, if ∂tγ

n−1
t =

∂t∂̄tut, then ∂tγ
n−1
t = dh, t(−∂tut).) This translates to σ(h, t) = {∂tγn−1

t }dh, t = 0 ∈ A2n−1
h, t for all

(h, t) ∈ C⋆ ×B⋆. (We even have σ(h, t) = 0 for all (h, t) ∈ C×B⋆.)
Thus, the restriction of σ to C⋆×B⋆ is identically zero. Then, by continuity, σ must be identically

zero on C×B. In particular,

σ(0, t) = {∂tγn−1
t }Er(Xt) = 0 ∈ A2n−1

0, t for all t ∈ B,

which means precisely that ∂tγ
n−1
t is Er(Xt)-exact for every t ∈ B. In other words, γt is an Er-sG

metric on Xt for every t ∈ B, including t = 0. In particular, X0 is an Er-sG manifold and even an
Er-sGG manifold since the Gauduchon metric γ0 was chosen arbitrarily on X0 in the first place. □

7.4 Uniform control of volumes of divisors and of masses of

currents using Er-sG metrics

This section is the analogue in this more conceptual approach to Theorem 7.0.4 of §.7.2.

7.4.1 Deformation limits of real (1, 1)-classes

We now derive a key application of the FAVB construction that will be used later on.
By Hp, q

DR(X, C) we will mean the space of De Rham cohomology classes of degree p+ q that can
be represented by a (d-closed) pure-type (p, q)-form. These classes will be said to be of type (p, q).

The next statement will play a key role despite its simplicity. It gives a criterion for a real De
Rham 2-class to be of type (1, 1) on a possibly non-∂∂̄-manifold that is analogous to the familiar
criterion on ∂∂̄-manifolds requiring the vanishing of the projection onto H0, 2(X, C) in the canonical
Hodge decomposition H2

DR(X, C) ≃ H2, 0(X, C) ⊕ H1, 1(X, C) ⊕ H0, 2(X, C). On an arbitrary X,
there is no Hodge decomposition, but its role is played in a certain sense by the non-canonical
isomorphism H2

DR(X, C) ≃ E2, 0
∞ (X)⊕ E1, 1

∞ (X)⊕ E0, 2
∞ (X), as the following result shows.
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Lemma 7.4.1. Let {α}DR ∈ H2
DR(X, R) be a real class. The following equivalence holds:

{α}DR ∈ H1, 1
DR(X, C) ⇐⇒ θ0({α}DR) = 0 ∈ E0, 2

∞ (X). (7.136)

Proof. Recall that θ0({α}DR) = {α0, 2}E∞ by Lemma 7.3.8.
“ =⇒ ” If {α}DR ∈ H1, 1

DR(X, C), there exists a d-closed form u1, 1 ∈ C∞
1, 1(X, C) such that

{α}DR = {u1, 1}DR. Then, θ0u1, 1 = 0, hence θ0({α}DR) = {θ0u1, 1}DR = 0 ∈ E0, 2
∞ (X).

“⇐=” Since the class {α}DR is real, it can be represented by a real form α = α2, 0 + α1, 1 + α0, 2.
The condition α = α translates to α1, 1 = α1, 1 and α2, 0 = α0, 2, while the condition dα = 0 for the
real form α translates to either of the following two equivalent conditions being satisfied:

(∂α2, 0 = 0 and ∂α1, 1 + ∂̄α2, 0 = 0) ⇐⇒ (∂̄α0, 2 = 0 and ∂α0, 2 + ∂̄α1, 1 = 0). (7.137)

On the other hand, θ0α = α0, 2, so the hypothesis θ0({α}DR) = 0 amounts to {α0, 2}E∞ = 0. This
is equivalent to α0, 2 being Er-exact, where r is the smallest positive integer l such that the Frölicher
spectral sequence of X degenerates at El. However, for bidegree reasons, a (0, q)-form is Er-exact
if and only if it is ∂̄-exact. (See characterisation of Er-exactness in (ii) of Proposition 3.2.4. In
an arbitrary bidegree, ∂̄-exactness, which coincides with E1-exactness, is a stronger property than
Er-exactness when r ≥ 2.) Thus, our assumption θ0({α}DR) = 0 translates to the existence of a
form u0, 1 ∈ C∞

0, 1(X, C) such that

α0, 2 = ∂̄u0, 1.

Conjugating the above identity, we get α2, 0 = ∂u1, 0, where we put u1, 0 := u0, 1. This yields:

α2, 0 + α0, 2 = du− (∂̄u1, 0 + ∂u0, 1), where u := u1, 0 + u0, 1,

hence finally
α− du = α1, 1 − (∂̄u1, 0 + ∂u0, 1).

This shows that α − du is a representative of bidegree (1, 1) of the De Rham cohomology class
{α}DR, proving that {α}DR ∈ H1, 1

DR(X, C). □

We can now prove the following

Theorem 7.4.2. Let π : X −→ B be a holomorphic family of compact complex manifolds over an
open ball B ⊂ CN about the origin. Suppose that the fibre Xt := π−1(t) is a ∂∂̄-manifold for all
t ∈ B \ {0}. Let {α}DR ∈ H2

DR(X, R) be a real class.
If {α}DR ∈ H1, 1

DR(Xt, C) for every t ∈ B \ {0}, then {α}DR ∈ H1, 1
DR(X0, C).

Proof. Let θ : H2 −→ A2 be the vector bundle morphism from the constant bundle of fibre
H2
DR(X, C) on C × B to the Frölicher approximating vector bundle A2 −→ C × B of the family

(Xt)t∈B in degree 2 defined by the family of linear maps:

θh, t : H
2
DR(X, C) −→ A2

h, t, (h, t) ∈ C×B.

(See (7.134) and (7.135).)
By Lemma 7.4.1, the hypothesis {α}DR ∈ H1, 1

DR(Xt, C) for every t ∈ B \ {0} translates to

θ0, t({α}DR) = 0 ∈ A2
0, t, t ∈ B \ {0}.

Since θ0, 0({α}DR) = lim
t→0

θ0, t({α}DR), we get

θ0, 0({α}DR) = 0 ∈ A2
0, 0 = E2, 0

∞ (X0)⊕ E1, 1
∞ (X0)⊕ E0, 2

∞ (X0).

We know from Lemma 7.3.8 that θ0, 0({α}DR) ∈ E0, 2
∞ (X0), so θ0, 0({α}DR) = 0 ∈ E0, 2

∞ (X0).
By Lemma 7.4.1, this is equivalent to {α}DR ∈ H1, 1

DR(X0, C) and we are done. □
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7.4.2 Deformation limits of Moishezon manifolds

Besides Theorem 7.3.1, the second main ingredient in the second proof of Theorem 7.0.4 is the
following

Theorem 7.4.3. Let π : X −→ B be a holomorphic family of compact complex n-dimensional
manifolds over an open ball B ⊂ CN about the origin such that the fibre Xt := π−1(t) is a ∂∂̄-
manifold for all t ∈ B \ {0}. Let X be the C∞ manifold that underlies the fibres (Xt)t∈B and let Jt
be the complex structure of Xt.

Suppose there exists a C∞ family (ω̃t)t∈B of d-closed, smooth, real 2-forms on X such that, for
every t ∈ B, the Jt-pure-type components of ω̃t are d-closed. Fix an integer r ≥ 1 and suppose there
exists a C∞ family (γt)t∈B of Er-sG metrics on the fibres (Xt)t∈B with potentials depending in a C∞

way on t.

(i) If, for every t ∈ B⋆, there exists a Kähler metric ωt on Xt that is De Rham-cohomologous to
ω̃t, then there exists a constant C > 0 independent of t ∈ B⋆ such that the γt-masses of the metrics
ωt are uniformly bounded above by C:

0 ≤Mγt(ωt) :=

∫
X

ωt ∧ γn−1
t < C < +∞, t ∈ B⋆.

In particular, there exists a sequence of points tj ∈ B⋆ converging to 0 ∈ B and a d-closed positive
J0-(1, 1)-current T on X0 such that ωtj converges in the weak topology of currents to T as j → +∞.

(ii) If, for every t ∈ B⋆, there exists an effective analytic (n − 1)-cycle Zt =
∑

l nl(t)Zl(t) on
Xt (i.e. a finite linear combination with integer coefficients nl(t) ∈ N⋆ of irreducible analytic subsets
Zl(t) ⊂ Xt of codimension 1) that is De Rham-cohomologous to ω̃t, then there exists a constant
C > 0 independent of t ∈ B⋆ such that the γt-volumes of the cycles Zt are uniformly bounded above
by C:

0 ≤ vγt(Zt) :=

∫
X

[Zt] ∧ γn−1
t < C < +∞, t ∈ B⋆.

Proof. We will prove (ii). The proof of (i) is very similar and we will indicate the minor differences
after the proof of (ii). The method is almost the same as the one used to prove Theorem 7.2.2.

Since the positive (1, 1)-current [Zt] =
∑

l nl(t) [Zl(t)] (a linear combination of the currents [Zl(t)]
of integration on the hypersurfaces Zt) on Xt is De Rham cohomologous to ω̃t for every t ∈ B⋆,
there exists a real current β′

t of degree 1 on X such that

ω̃t = [Zt] + dβ′
t, t ∈ B⋆. (7.138)

This implies that
∂̄tβ

′0, 1
t = ω̃0, 2

t , t ∈ B⋆. (7.139)

In particular, ω̃0, 2
t is ∂̄t-exact for every t ∈ B⋆, so it can be regarded as the right-hand side term of

equation (7.139) whose unknown is β
′0, 1
t .

For every t ∈ B⋆, let β0, 1
t be the minimal L2

γt-norm solution of equation (7.139). Thus, β0, 1
t is

the C∞ Jt-type (0, 1)-form given by the Neumann formula

β0, 1
t = ∆

′′−1
t ∂̄⋆t ω̃

0, 2
t , t ∈ B⋆, (7.140)
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where ∆
′′−1
t is the Green operator of the ∂̄-Laplacian ∆′′

t := ∂̄t∂̄
⋆
t + ∂̄⋆t ∂̄t induced by the metric γt

on the forms of Xt. The difficulty we are faced with is that the family of operators (∆
′′−1
t )t∈B⋆ ,

hence also the family of forms (β0, 1
t )t∈B⋆ , need not extend in a continuous way to t = 0 if the Hodge

number h0, 1(t) of Xt jumps at t = 0 (i.e. if h0, 1(0) > h0, 1(t) for t ∈ B⋆ close to 0).
As in the proof of Theorem 7.2.2, the way around this goes through the use of special metrics

on the fibres Xt. Set

β1, 0
t := β0, 1

t and βt := β1, 0
t + β0, 1

t , t ∈ B⋆.

Since ω̃t is real, this and equation (7.139) satisfied by β0, 1
t imply that ω̃t − [Zt] − dβt is a Jt-type

(1, 1)-current. Since this current is d-exact (it equals d(β′
t−βt)) and since every fibre Xt with t ∈ B⋆

is supposed to be a ∂∂̄-manifold, we infer that the current ω̃t− [Zt]− dβt is ∂t∂̄t-exact. (Indeed, the
∂∂̄-property can be equivalently expressed in terms of smooth forms or currents since it is equivalent
to the canonical maps between the Bott-Chern and Aeppli cohomologies being isomorphic and both
these cohomologies can be defined using either smooth forms or currents.) Hence, there exists a
family of distributions (Rt)t∈B⋆ on (Xt)t∈B⋆ such that

ω̃t = [Zt] + dβt + ∂t∂̄tRt on Xt for all t ∈ B⋆. (7.141)

Consequently, for the γt-volume of the divisor Zt we get:

vγt(Zt) :=

∫
X

[Zt] ∧ γn−1
t =

∫
X

ω̃t ∧ γn−1
t −

∫
X

dβt ∧ γn−1
t , t ∈ B⋆, (7.142)

since
∫
X
∂t∂̄tRt ∧ γn−1

t = 0 thanks to the Gauduchon property of γt and to integration by parts.
Now, the families of forms (ω̃t)t∈B and (γn−1

t )t∈B depend in a C∞ way on t up to t = 0, so the
quantity

∫
X
ω̃t ∧ γn−1

t is bounded as t ∈ B⋆ converges to 0 ∈ B. Thus, we are left with proving the

boundedness of the quantity
∫
X
dβt ∧ γn−1

t =
∫
X
∂tβ

0, 1
t ∧ γn−1

t +
∫
X
∂̄tβ

1, 0
t ∧ γn−1

t whose two terms
are conjugated to each other. Consequently, it suffices to prove the boundedness of the quantity

It :=

∫
X

∂tβ
0, 1
t ∧ γn−1

t =

∫
X

β0, 1
t ∧ ∂tγn−1

t , t ∈ B⋆,

as t approaches 0 ∈ B.
So far, the proof has been identical to the one in [Pop10]. The assumption made on the C∞

family (γt)t∈B of Er-sG metrics implies the existence of C∞ families of Jt-type (n, n − 2)-forms
(Γn, n−2

t )t∈B and of Jt-type (n− 1, n− 1)-forms (ζr−2, t)t∈B such that

∂tγ
n−1
t = ∂̄tΓ

n, n−2
t + ∂tζr−2, t, t ∈ B, (7.143)

and

∂̄tζr−2, t = ∂tv
(r−2)
r−3, t (7.144)

∂̄tv
(r−2)
r−3, t = 0.

(We have already noticed that, for bidegree reasons, tower (1.29) reduces to its first two rows when
we start off in bidegree (n, n− 1).)

On the other hand, ∂̄t(∂tβ
0, 1
t ) = −∂t(∂̄tβ0, 1

t ) = −∂tω̃0, 2
t = 0, the last identity being a consequence

of the d-closedness assumption made on the Jt-pure-type components of ω̃t. The ∂∂̄-assumption on
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Xt for every t ∈ B⋆ implies that the Jt-type (1, 1)-form ∂tβ
0, 1
t is ∂̄t-exact (since it is already d-closed

and ∂t-exact), so there exist Jt-type (1, 0)-forms (ut)t∈B⋆ such that

∂tβ
0, 1
t = ∂̄tut, t ∈ B⋆. (7.145)

This, in turn, implies that the Jt-type (2, 0)-form ∂tut is ∂̄t-closed, hence d-closed. The ∂∂̄-
assumption on Xt for every t ∈ B⋆ implies that ∂tut is ∂̄t-exact, hence zero, for bidegree reasons.
Thus

∂tut = 0, t ∈ B⋆. (7.146)

Putting (7.143), (7.144), (7.145) and (7.146) together and integrating by parts several times, we
get:

It =

∫
X

∂̄tβ
0, 1
t ∧ Γn, n−2

t +

∫
X

∂tβ
0, 1
t ∧ ζr−2, t =

∫
X

ω̃0, 2
t ∧ Γn, n−2

t +

∫
X

∂̄tut ∧ ζr−2, t

=

∫
X

ω̃0, 2
t ∧ Γn, n−2

t +

∫
X

ut ∧ ∂̄tζr−2, t =

∫
X

ω̃0, 2
t ∧ Γn, n−2

t +

∫
X

ut ∧ ∂tv(r−2)
r−3, t

=

∫
X

ω̃0, 2
t ∧ Γn, n−2

t +

∫
X

∂tut ∧ v(r−2)
r−3, t =

∫
X

ω̃0, 2
t ∧ Γn, n−2

t , t ∈ B⋆.

Since the families of forms (Γn, n−2
t )t∈B and (ω̃0, 2

t )t∈B vary in a C∞ way with t up to t = 0 ∈ B, we
infer that the quantities (It)t∈B⋆ are bounded as t ∈ B⋆ converges to 0 ∈ B. This completes the
proof of (ii).

The proof of (i) is identical to that of (ii), except for the fact that [Zt] has to be replaced by ωt
in (7.138), (7.141) and (7.142), while β′

t and Rt are smooth. □

Proof of Theorem 7.2.1 as a consequence of Theorems 7.3.1, 7.4.3 and 7.4.2

By Theorem 7.3.1, X0 is an Er-sG manifold, where r ∈ N⋆ is the smallest positive integer such that
Er(X0) = E∞(X0). Therefore, thanks to Lemma 4.4.2, after possibly shrinking B about 0, there
exists a C∞ family (γt)t∈B of Er-sG metrics on the fibres (Xt)t∈B whose potentials depend in a C∞

way on t ∈ B.
Let (Zt)t∈B⋆ be a C∞ family of effective analytic divisors such that Zt ⊂ Xt for all t ∈ B⋆.

The De Rham cohomology class {[Zt]}DR ∈ H2(X, R) of the current [Zt] of integration over Zt =∑
l nl(t)Zl(t) (where nl(t) ∈ N⋆ and the Zl(t)’s are irreducible analytic hypersurfaces of Xt) is

integral. Therefore, the continuous, integral-class-valued map

B⋆ ∋ t 7→ {[Zt]}DR ∈ H2(X, Z)

must be constant, equal to an integral De Rham 2-class that we denote by {α}. Moreover, the
current [Zt] is of bidegree (1, 1) for Jt, so {α}DR ∈ H1, 1

DR(Xt, C) for every t ∈ B⋆. By Theorem 7.4.2,
{α}DR ∈ H1, 1

DR(X0, C).
Therefore, there exists a C∞ family (ω̃t)t∈B of d-closed, smooth, real 2-forms on X lying in the

De Rham class {α} such that, for every t ∈ B, the Jt-pure-type components of ω̃t are d-closed.
(Actually, Theorem 7.4.2 implies more, but this suffices for our purposes.) In particular, for every
t ∈ B⋆, the current [Zt] is De Rham-cohomologous to ω̃t.
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Thus, all the hypotheses of Theorem 7.4.3 are satisfied. From (ii) of that theorem we get that
the γt-volumes (vγt(Zt))t∈B⋆ of the divisors Zt are uniformly bounded. This implies, thanks to
Lieberman’s strengthened form ([Lie78, Theorem 1.1]) of Bishop’s Theorem [Bis64], that a limiting
effective divisor Z0 ⊂ X0 for the family of relative effective divisors (Zt)t∈B⋆ exists. Since this family
has been chosen arbitrarily, it follows that X0 has at least as many divisors as the nearby fibres Xt

with t ̸= 0 and t close to 0. Meanwhile, we know (see, e.g., [CP94, Remark 2.22]) that the algebraic
dimension of any compact complex manifold X is the maximal number of effective prime divisors
meeting transversally at a generic point of X. It follows that the algebraic dimension of X0 is ≥ the
algebraic dimension of the generic fibre Xt with t ∈ B⋆ close to 0. □

Recall that in §.7.2 we proved the implication:

Theorem 7.2.1 =⇒ Theorem 7.0.4.

Together with the second proof of Theorem 7.2.1 given in this §.7.4.2, this implication completes
the second proof of Theorem 7.0.4.



Chapter 8

Appendix: Nilmanifolds and
Solvmanifolds

For the convenience of the reader, we collect here some well-known facts about Lie groups, Lie
algebras, nilmanifolds and solvmanifolds that are a rich source of examples of various classes of
manifolds and have been used throughout the book. Many statements are given without proofs, but
the references for those proofs are indicated.

8.1 Nilpotent Lie algebras (NLA’s)

Most of this section is taken from Salamon [Sal01].
Let (g, [·, ·]) be a real Lie algebra with dimRg = 2n, where the alternating R-bilinear map

[·, ·] : g× g −→ g satisfying the Jacobi identity:

[x, [y, z]] + [y, [z, x]] + [z, [x, y]] = 0, x, y, z ∈ g,

is its Lie bracket. The standard example is the Lie algebra g of a real Lie group G, in which case
g consists of the left-invariant vector fields on G. Let (g⋆, d) be the dual of (g, [·, ·]). So, one has a
complex:

0 −→ g⋆
d−→ Λ2g⋆

d−→ Λ3g⋆
d−→ . . .

d−→ Λ2ng⋆ −→ 0

obtained by extending the linear map d : g⋆ −→ Λ2g⋆ which is the dual of the Lie bracket. The
vanishing of the composition g⋆ −→ Λ3g⋆ corresponds to the Jacobi identity satisfied by [·, ·]. When
g is the Lie algebra of a Lie group G, g⋆ consists of the left-invariant 1-forms on G.

We denote by

bk := dim
ker(d : Λkg⋆ −→ Λk+1g⋆)

Im (d : Λk−1g⋆ −→ Λkg⋆)
, k = 1, . . . , 2n. (8.1)

Moreover, we have isomorphisms:

ker(d : Λkg⋆ −→ Λk+1g⋆)

Im (d : Λk−1g⋆ −→ Λkg⋆)
≃ Hk(g), k = 1, . . . , 2n,

where Hk(g) is the Lie algebra cohomology group of degree k.

The descending central series of a Lie algebra g is the chain of ideals:

g0 := g ⊃ g1 := [g, g] ⊃ g2 := [[g, g], g] ⊃ · · · ⊃ gp := [gp−1, g] ⊃ . . . .

In other words, we define inductively: g0 := g and gi := [gi−1, g] for all i ≥ 1.

516
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Definition 8.1.1. A Lie algebra g is said to be s-step nilpotent if gs = 0 and gs−1 ̸= 0.
A Lie algebra g is said to be a nilpotent Lie algebra (NLA) if g is s-step nilpotent for some

s ∈ N⋆.

The nilpotency condition can be expressed in terms of differential forms as follows. Define vector
subspaces Vi ⊂ g⋆ inductively as:

V0 := {0} and Vi := {σ ∈ g⋆ | dσ ∈ Λ2Vi−1}, i ≥ 1.

Observation 8.1.2. V1 = {σ ∈ g⋆ | dσ = 0} = ker(d : g⋆ → Λ2g⋆) ≃ H1(g), so dimV1 = b1.

Proof. It is obvious from the definitions and what has been said above. □

Notation 8.1.3. The annihilator of an ideal h of g is denoted by (h)o.

Lemma 8.1.4. ([Sal01, Lemma 1.1]) For every i ≥ 0, Vi is the annihilator of g
i, namely Vi = (gi)o.

Proof. We proceed by induction on i ≥ 0. Since the annihilator of g0 = g is {0} = V0 ⊂ g⋆, the
statement is true for i = 0.

Suppose that, for a given i ≥ 0, Vi is the annihilator of g
i. Fix an arbitrary σ ∈ g⋆. The following

equivalences hold:

σ ∈ Vi+1
(a)⇐⇒ dσ ∈ Λ2Vi

(b)⇐⇒ dσ(X, Y ) = 0 ∀X ∈ g, ∀Y ∈ gi

(c)⇐⇒ σ([X, Y ]) = 0 ∀X ∈ g, ∀Y ∈ gi
(d)⇐⇒ σ annihilates gi+1,

where (a) is the definition of Vi+1; (b) expresses the fact that Vi is the annihilator of gi; (c) follows
from the fact that dσ(X, Y ) = −σ([X, Y ]) for any σ ∈ g⋆ and any X, Y ∈ g (as a special case of
Cartan’s formula dσ(X, Y ) = X.σ(Y )−Y.σ(X)−σ([X, Y ]) on a manifold in which σ(Y ) and σ(X)
are constant, hence X.σ(Y ) and Y.σ(X) vanish); (d) follows from the definition of gi+1.

We conclude that Vi+1 = (gi+1)o. □

Corollary 8.1.5. The subspaces Vi form an ascending sequence:

{0} = V0 ⊂ V1 = ker(d : g⋆ → Λ2g⋆) = (g1)o ⊂ V2 = (g2)o ⊂ · · · ⊂ Vp = (gp)o ⊂ · · · ⊂ g⋆.

In particular:

(a) the Lie algebra g is s-step nilpotent if and only if Vs = g⋆ and Vs−1 ⊊ g⋆;

(b) A real Lie group G of dimension m is nilpotent if and only if there exists a basis {e1, . . . , em}
of left-invariant 1-forms on G (i.e. a basis of g⋆) such that

dei ∈ Λ2⟨e1, . . . , ei−1⟩, 1 ≤ i ≤ m, (8.2)

with the right-hand side interpreted as zero when i = 1.

(c) H1(g) ≃ V1 = ([g, g])o. Hence, H1(g) is isomorphic to (the dual of) the quotient g/[g, g].

Characterisation (b) of nilpotency in Corollary 8.1.5 leads to the following notation for NLA’s.
To make a choice, we give it in real dimension 6.

Notation 8.1.6. Let g be an NLA of real dimension 6. We write, for example, g = (0, 0, 0, 0, 12, 34)
to signify that g⋆ has a basis {e1, . . . , e6} such that

de1 = de2 = de3 = de4 = 0, de5 = e1 ∧ e2, de6 = e3 ∧ e4. (8.3)
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The well-known Cartan formula:

dσ(X, Y ) = X.σ(Y )− Y.σ(X)− σ([X, Y ]) (8.4)

that holds for any smooth 1-form σ and any vector fields X, Y on any manifold, implies that de-
scription (8.3) of the 6-dimensional NLA g = (0, 0, 0, 0, 12, 34) in terms of 1-forms is equivalent
to the following description in terms of vector fields: g has a basis {e1, . . . , e6} (dual to the basis
{e1, . . . , e6} of g⋆) such that

[e1, e2] = −e5, [e3, e4] = −e6 and [ei, ej] = 0 in all the other cases. (8.5)

Finally, let us mention that the nilpotency of a Lie group implies the following interpretation of
the numbers bk defined in (8.1).

Theorem 8.1.7. (Nomizu) Let G be a nilpotent Lie group. For any discrete co-compact
subgroup Γ ⊂ G, bk equals the k-th Betti number of the quotient manifold G/Γ.

Proof. See [Nom54]. □

8.2 Left-invariant complex structures on Lie groups

Most of this section is taken from Salamon [Sal01], Cordero-Fernandez-Gray-Ugarte [CFGU00] and
Ceballos-Otal-Ugarte-Villacampa [COUV14].

Definition 8.2.1. A left-invariant almost complex structure on a Lie group G is a complex
structure on its Lie algebra g = TeG, namely an R-linear map J : g −→ g such that J2 = −Idg.

Given a left-invariant almost complex structure J on a Lie group G, one defines the space of
left-invariant (1, 0)-forms on G as the subspace

Λ1, 0 := {α− iJα | α ∈ g⋆} ⊂ g⋆C (8.6)

of the complexification g⋆C of g⋆. One then defines the space of left-invariant (0, 1)-forms on G by

Λ0, 1 := Λ1, 0

and, more generally, the spaces Λp, q of left-invariant (p, q)-forms on G as subspaces of Λp+qg⋆C.

Theorem and Definition 8.2.2. Let J be a left-invariant almost complex structure on a Lie group
G.

(i) The following equivalences hold:

J is integrable
(a)⇐⇒ [JX, JY ] = [X, Y ] + J [JX, Y ] + J [X, JY ], ∀X, Y ∈ g
(b)⇐⇒ d(Λ1, 0) ⊂ Λ2, 0 ⊕ Λ1, 1.

In this case, we say that J is a left-invariant complex structure on G.

(ii) One defines the space g0, 1 of left-invariant vector fields of type (0, 1) as the annihilator
of Λ1, 0:

g0, 1 := (Λ1, 0)o = (Λ0, 1)⋆.
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The space g1, 0 of left-invariant vector fields of type (1, 0) is then defined by conjugating g0, 1:

g1, 0 := g0, 1.

One has:
g1, 0 := {X − iJX | X ∈ g} ⊂ gC, (8.7)

where gC is the complexification of g.

(iii) If J is integrable, g0, 1 has the structure of a complex Lie algebra.

Equivalence (a) in (i) of Theorem and Definition 8.2.2 is the definition of integrability, while
equivalence (b) expresses the fact that J is integrable if and only if the operator d splits as d = ∂+ ∂̄,
with ∂ of type (1, 0) and ∂̄ of type (0, 1). Meanwhile, (8.7) follows from (8.6) and from (ii).

(I) Two opposite types of extreme left-invariant complex structures on a Lie group

(1) The first of these is described in the following

Theorem and Definition 8.2.3. Let J be a left-invariant complex structure on a Lie group G.
The following equivalences hold:

d(Λ1, 0) ⊂ Λ2, 0 ⇐⇒ J [X, Y ] = [JX, Y ] ∀X, Y ∈ g

⇐⇒ g is the real Lie algebra underlying g0, 1.

A left-invariant complex structure J that satisfies the above equivalent conditions is said to be
complex parallelisable. In this case, g is a complex Lie algebra.

Note that the condition J [X, Y ] = [JX, Y ] for all X, Y ∈ g (which is equivalent to J [X, Y ] =
[X, JY ] for all X, Y ∈ g thanks to [· , ·] being alternating) expresses the C-bilinearity of the Lie
bracket [· , ·]. Also note that, when g is a complex Lie algebra, G is a complex Lie group, so the
group operation is holomorphic. Thus, any left-invariant form in Λ1, 0 is holomorphic. In particular,
we have the implications:

u ∈ Λ1, 0 =⇒ ∂̄u = 0 =⇒ du = ∂u ∈ Λ2, 0.

Proof of Theorem and Definition 8.2.3. It remains to prove the first equivalence in the statement.
For any σ ∈ Λ1, 0, the following equivalence holds:

dσ ∈ Λ2, 0 ⇐⇒ (dσ)(Z, W ) = 0 ∀Z,W ∈ g1, 0.

On the other hand, from Cartan’s formula (8.4) we get

(dσ)(Z, W ) = −σ([Z, W ]) ∀Z,W ∈ g1, 0,

since σ(W ) and σ(Z) are constant, so their derivatives (including Z.σ(W ) and W.σ(Z)) vanish.
We conclude that

d(Λ1, 0) ⊂ Λ2, 0 ⇐⇒ [Z, W ] = 0 ∀Z,W ∈ g1, 0.
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Now, writing Z = X − iJX and W = Y − iJY with X, Y ∈ g (see (8.7)), the above equivalence
translates to the first equivalence below:

d(Λ1, 0) ⊂ Λ2, 0 ⇐⇒ [X − iJX, Y + iJY ] = 0 ∀X, Y ∈ g

⇐⇒ ([X, Y ] + [JX, JY ]) + i ([X, JY ]− [JX, Y ]) = 0 ∀X, Y ∈ g

⇐⇒ [X, Y ] = −[JX, JY ] ∀X, Y ∈ g

(
(a)⇐⇒ [X, JY ] = [JX, Y ] ∀X, Y ∈ g)
(b)⇐⇒ −[X, Y ] = [X, Y ] + J [JX, Y ] + J [X, JY ] ∀X, Y ∈ g
(c)⇐⇒ −2[X, Y ] = 2J [JX, Y ] ∀X, Y ∈ g
(d)⇐⇒ J [X, Y ] = [JX, Y ] ∀X, Y ∈ g,

where (a) follows by replacing Y with JY in the previous equivalence and using J2 = −1, (b) follows
from the integrability condition (a) of (i) of Theorem and Definition 8.2.2, (c) follows from (b) and
(a), while (d) follows by applying the isomorphism J to (c).

The first equivalence in the statement is proved. □

Finally, let us mention the following addition to Wang’s Theorem 4.5.30. It relates the notion
of complex parallelisable for compact complex manifolds (in the sense of Definition 4.5.29) and for
left-invariant complex structures on a Lie group (in the sense of Theorem and Definition 8.2.3).

Theorem 8.2.4. ([Wan54]) Let X = G/Γ be a compact complex manifold defined as the quotient
of a simply connected, connected Lie group G by a discrete subgroup Γ ⊂ G.

Then, X = G/Γ is complex parallelisable if and only if the complex structure of X is induced
by a complex parallelisable left-invariant complex structure on G.

Proof. See [Wan54]. The proof is actually implicit in that of Theorem and Definition 8.2.3). □

(2) The other type of extreme left-invariant complex structure on a Lie group is described in
the following

Theorem and Definition 8.2.5. Let J be a left-invariant complex structure on a Lie group G.
The following equivalence holds:

d(Λ1, 0) ⊂ Λ1, 1 ⇐⇒ [JX, JY ] = [X, Y ], ∀X, Y ∈ g

⇐⇒ g0, 1 is an abelian Lie algebra.

A left-invariant complex structure J that satisfies the above equivalent conditions is said to be
abelian.

Proof. •We start by proving the first equivalence. For any σ ∈ Λ1, 0, the following equivalence holds:

dσ ∈ Λ1, 1 ⇐⇒ (dσ)(Z, W ) = 0 ∀Z,W ∈ g1, 0.

On the other hand, from Cartan’s formula (8.4) we get

(dσ)(Z, W ) = −σ([Z, W ]) ∀Z,W ∈ g1, 0,

since σ(W ) and σ(Z) are constant, so their derivatives (including Z.σ(W ) and W.σ(Z)) vanish.
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We conclude that

d(Λ1, 0) ⊂ Λ1, 1 ⇐⇒ [Z, W ] = 0 ∀Z,W ∈ g1, 0.

Now, writing Z = X − iJX and W = Y − iJY with X, Y ∈ g (see (8.7)), the above equivalence
translates to the first equivalence below:

d(Λ1, 0) ⊂ Λ1, 1 ⇐⇒ [X − iJX, Y − iJY ] = 0 ∀X, Y ∈ g

⇐⇒ ([X, Y ]− [JX, JY ])− i ([X, JY ] + [JX, Y ]) = 0 ∀X, Y ∈ g

⇐⇒ [X, Y ] = [JX, JY ] ∀X, Y ∈ g

(
(a)⇐⇒ [X, JY ] = −[JX, Y ] ∀X, Y ∈ g),

where (a) follows by replacing Y with JY in the previous equivalence and using J2 = −1.
The first equivalence in the statement is proved.

• We now prove the second equivalence. We have the following equivalences:

g0, 1 is abelian ⇐⇒ g1, 0 is abelian
(a)⇐⇒ [X − iJX, Y − iJY ] = 0 for all X, Y ∈ g

⇐⇒ ([X, Y ]− [JX, JY ])− i ([X, JY ] + [JX, Y ]) = 0 for all X, Y ∈ g

⇐⇒ [X, Y ] = [JX, JY ] and [X, JY ] = −[JX, Y ] for all X, Y ∈ g
(b)⇐⇒ [X, Y ] = [JX, JY ] for all X, Y ∈ g,

where (a) follows from (8.7) and (b) follows from the obvious equivalence:

[X, Y ] = [JX, JY ] for all X, Y ∈ g ⇐⇒ [X, JY ] = −[JX, Y ] for all X, Y ∈ g.

□

(II) Existence and classification of complex structures on NLA’s

We will now use the following notation. If ω1, . . . , ωi ∈ g⋆C, the ideal I(ω1, . . . , ωi) in Λ•g⋆C generated
by ω1, . . . , ωi consists of the 2-forms of the shape∑

1≤j≤i
k

Ajk ω
j ∧ αk, (8.8)

with arbitrary 1-forms αk ∈ g⋆C and constants Ajk ∈ C. Thus, I(ω1, . . . , ωi) = ⟨ω1, . . . , ωi⟩ ∧ g⋆C.

Theorem 8.2.6. ([Sal01, Theorem 1.3]) A nilpotent Lie group G admits a left-invariant com-
plex structure if and only if g⋆C has a basis {ω1, . . . , ωn, ω1, . . . , ωn} such that

dωi+1 ∈ I(ω1, . . . , ωi), i = 0, 1, . . . , n− 1, (8.9)

where I(ω1, . . . , ωi) is the ideal in Λ•g⋆C generated by ω1, . . . , ωi and is interpreted as zero when i = 0.
In this case, Λ1, 0 is the span of ω1, . . . , ωn.
In particular, when G admits a left-invariant complex structure, we have:

(a) dω1 = 0, so there exists a non-zero d-closed (1, 0)-form ω1 ∈ g⋆C;

(b) the (n, 0)-form ω1 ∧ ... ∧ ωn is d-closed.
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The last statement in (b) follows at once from (8.9) since the latter implies that (dωi+1) ∧ ω1 ∧
... ∧ ωi = 0 for every i = 0, 1, . . . , n− 1.

Proof of Theorem 8.2.6. “⇐=” Any basis {ω1, . . . , ωn, ω1, . . . , ωn} of g⋆C determines an almost-
complex structure J on G by decreeing Λ1, 0 to be the span of ω1, . . . , ωn. The integrability of J
then follows from condition (8.9).

“=⇒” Suppose that G admits a left-invariant complex structure J . Then, (i) of Theorem and
Definition 8.2.2 gives:

d(Λ1, 0) ⊂ Λ2, 0 ⊕ Λ1, 1 (8.10)

On the other hand, let
V 1, 0
i := (Vi)C ∩ Λ1, 0, 0 ≤ i ≤ s,

where, for each i, (Vi)C is the complexification of the vector subspace Vi ⊂ g⋆ of Corollary 8.1.5.
We construct the ωi’s inductively by successively extending a basis of each V 1, 0

j to one of V 1, 0
j+1.

Suppose we have constructed ω1, . . . , ωi linearly independent such that

dωl ∈ I(ω1, . . . , ωl−1), l = 1, . . . , i.

Let j be the least positive integer (depending on i) such that ω1, . . . , ωi ∈ V 1, 0
j . We may assume

that {ω1, . . . , ωi} is a basis of V 1, 0
j . Then1, (Vj)C is generated by ω1, . . . , ωi, ω1, . . . , ωi and, possibly,

for some positive integer p, by p other linearly independent 1-forms of the shape:

σ1 + ρ1, . . . , σp + ρp,

where the σl’s are of type (1, 0) and the ρl’s are of type (0, 1).
Then, Λ2(Vj)C is generated by the wedge products of two elements of the above basis, namely

by the 2-forms of the following kinds:

(1) ωk ∧ ωl, k, l ∈ {1, . . . , i};

(2) ωk ∧ ωl, k, l ∈ {1, . . . , i};

(3) ωk ∧ (σr + ρr), k ∈ {1, . . . , i}, r ∈ {1, . . . , p};

(4) ωk ∧ ωl, k, l ∈ {1, . . . , i};

(5) ωk ∧ (σr + ρr), k ∈ {1, . . . , i}, r ∈ {1, . . . , p};

(6) (σr + ρr) ∧ (σs + ρs), r, s ∈ {1, . . . , p}.

Let ωi+1 ∈ V 1, 0
j+1 such that {ω1, . . . , ωi, ωi+1} is linearly independent. Since J is integrable, (8.10)

implies that dωi+1 is a linear combination of forms of the above types (1), (2) and (3) only. This
amounts to dωi+1 ∈ ⟨ω1, . . . , ωi⟩ ∧ g⋆C = I(ω1, . . . , ωi). □

1The remaining part of the argument starting here was pointed out to the author by L. Ugarte as an addition to
the proof given in [Sal01, Theorem 1.3].
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Definition 8.2.7. ([CFGU00]) Let J be a complex structure on a nilpotent Lie algebra (NLA) g of
real dimension 2n. One says that J is nilpotent if Λ1, 0 has a C-basis {ω1, . . . , ωn} such that

dωi+1 ∈ Λ2⟨ω1, . . . , ωi, ω1, . . . , ωi⟩, i = 0, 1, . . . , n− 1, (8.11)

where the right-hand side is interpreted as zero when i = 0.
Explicitly, this means that dω1 = 0 and

dωi+1 =
∑
j<k≤i

Aijk ω
j ∧ ωk +

∑
j, k≤i

Bijk ω
j ∧ ωk i = 0, 1, . . . , n− 1, (8.12)

where Aijk, Bijk ∈ C.

One has the obvious

Observation 8.2.8. Let J be a complex structure on a nilpotent Lie algebra (NLA) g of real di-
mension 2n. If J is either complex parallelisable or abelian, then J is nilpotent. Specifically:

(i) J is complex parallelisable if and only if Λ1, 0 has a C-basis {ω1, . . . , ωn} such that iden-
tities (8.12) are satisfied with Bijk = 0 for all 1 ≤ j, k ≤ i ≤ n;

(ii) J is abelian if and only if Λ1, 0 has a C-basis {ω1, . . . , ωn} such that identities (8.12) are
satisfied with Aijk = 0 for all 1 ≤ j < k ≤ i ≤ n.

Using Notation 8.1.6, we now cite the following result of Salamon’s (also reproduced as Theorem
2.1. in [COUV ]) classifying 6-dimensional NLA’s in terms of the types of complex structures they
admit.

Theorem 8.2.9. ([Uga07, Theorem 8]) Let g be an NLA of real dimension 6.

(I) There exists a complex structure on g if and only if g is isomorphic to one of the following
Lie algebras:

h1 = (0, 0, 0, 0, 0, 0), h10 = (0, 0, 0, 12, 13, 14),
h2 = (0, 0, 0, 0, 12, 34), h11 = (0, 0, 0, 12, 13, 14 + 23),
h3 = (0, 0, 0, 0, 0, 12 + 34), h12 = (0, 0, 0, 12, 13, 24),
h4 = (0, 0, 0, 0, 12, 14 + 23), h13 = (0, 0, 0, 12, 13 + 14, 24),
h5 = (0, 0, 0, 0, 13 + 42, 14 + 23), h14 = (0, 0, 0, 12, 14, 13 + 42),
h6 = (0, 0, 0, 0, 12, 13), h15 = (0, 0, 0, 12, 13+42, 14+23),
h7 = (0, 0, 0, 12, 13, 23), h16 = (0, 0, 0, 12, 14, 24),
h8 = (0, 0, 0, 0, 0, 12), h−19 = (0, 0, 0, 12, 23, 14− 35),
h9 = (0, 0, 0, 0, 12, 14 + 25), h+26 = (0, 0, 12, 13, 23, 14 + 25).

(II) From the point of view of nilpotency, the complex structures on the above NLA’s satisfy
the following dichotomy.

(a) Any complex structure on h−19 and on h+26 is non-nilpotent.

(b) For every 1 ≤ k ≤ 16, any complex structure on hk is nilpotent.

(III) From the point of view of abelianity, the nilpotent complex structures on the above NLA’s
are of the following types.

(i) Any complex structure on h1, h3, h8 and h9 is abelian.
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(ii) There exist both abelian and non-abelian nilpotent complex structures on h2, h4, h5 and
h15.

(iii) Any complex structure on h6, h7, h10, h11, h12, h13, h14 and h16 is non-abelian nilpotent.

Of particular interest to us is the following application of the above classification of complex
structures on NLA’s, given by Ceballos, Otal, Ugarte and Villacampa, showing, in particular, that
deformation limits of balanced manifolds need not even be strongly Gauduchon, let alone bal-
anced.

Theorem 8.2.10. ([COUV16, Theorem 5.9.]) Let B = {t ∈ C | |t| < 1} be the open unit disc
in the complex plane. There exists a holomorphic family (X, Jt)t∈B of compact complex manifolds
such that (X, Jt) is balanced for every t ∈ B \ {0}, but (X, J0) does not admit any strongly
Gauduchon metric.

In particular, the balanced and sG properties of compact complex manifolds are not closed
under holomorphic deformations of complex structures.

Sketch of proof (according to [COUV16]). Let X = G/Γ be a nilmanifold (i.e. G is a simply
connected nilpotent real Lie group and Γ ⊂ G is a discrete co-compact subgroup) whose underlying
Lie algebra is h4 = (0, 0, 0, 0, 12, 14 + 23) (i.e. h4 is the Lie algebra of G). Let J0 be the abelian
complex structure on h4.

There exists a basis {η1, η2, η3} of (1, 0)-forms for J0 (i.e. a C-basis of Λ1, 0
J0

) satisfying the
structure equations:

dη1 = dη2 = 0 and dη3 =
i

2
η1 ∧ η̄1 + 1

2
η1 ∧ η̄2 + 1

2
η2 ∧ η̄1.

Thanks to results of Maclaughlin-Pedersen-Poon-Salamon (2006), the Kuranishi family of J0 consists
entirely of invariant complex structures that can be completely described in terms of the invariant
forms η1, η2, η3, η̄1, η̄2, η̄3 as follows. Any complex structure JΦ on X sufficiently close to J0 has a
basis {µ1

Φ, µ
2
Φ, µ

3
Φ} of (1, 0)-forms such that:

µ1
Φ = η1 + Φ1

1 η̄
1 + Φ1

2 η̄
2

µ2
Φ = η2 + Φ2

1 η̄
1 + Φ2

2 η̄
2

µ3
Φ = η3 + Φ3

3 η̄
3, (8.13)

where the coefficients Φj
k ∈ R are sufficiently small and satisfy the condition:

i(1 + Φ3
3) Φ

1
2 = (1− Φ3

3)(Φ
1
1 − Φ2

2). (8.14)

Moreover, the deformed complex structure remains abelian if and only if Φ1
2 = 0 and Φ1

1 = Φ2
2.

To exhibit a particular holomorphic family of deformations of J0 that are not abelian but have
balanced metrics, one considers, for every t ∈ B \ {0} sufficiently close to 0, the following linearly
independent family of complex-valued 1-forms on X:

µ1
t := η1 + t η̄1 − it η̄2, µ2

t := η2, µ3
t := η3.

This choice of 1-forms corresponds to the choice of coefficients Φ1
1 = t, Φ1

2 = −it, Φ2
1 = Φ2

2 =
Φ3

3 = 0 in (8.13). One immediately checks that these coefficients satisfy condition (8.14). The
linearly independent family {µ1

t , µ
2
t , µ

3
t} of 1-forms defines an invariant complex structure Jt on X
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by decreeing that the forms µ1
t , µ

2
t , µ

3
t are of type (1, 0) for Jt (i.e. by decreeing Λ1, 0

Jt
to be the

C-span of µ1
t , µ

2
t , µ

3
t ).

Now, a straightforward computation shows that the structure equations for Jt in this basis are:

dµ1
t = dµ2

t = 0, 2(1− |t|2) dµ3
t = 2t̄ µ12

t + i µ11̄
t + µ12̄

t + µ21̄
t − i|t|2 µ22̄

t , t ∈ B. (8.15)

(Here, as elsewhere, µjkt stands for µjt ∧ µkt and µjk̄t stands for µjt ∧ µ̄kt .)
By certain results from [COUV16], the authors conclude that the complex manifold (X, J0) is

not sG because, on the one hand, J0 being abelian implies the equivalence: (X, J0) is sG ⇐⇒
(X, J0) is balanced, while on the other hand, (X, J0) is seen to not be balanced by an explicit
computation.

Meanwhile, for every t ∈ B \ {0}, the complex structure Jt is nilpotent but not abelian. One can
normalise the coefficient of µ12

t in (8.15) by substituting (1− |t|2)/t̄ µ3
t for µ

3
t . Then, one goes on to

replace the (1, 0)-basis {µ1
t , µ

2
t , µ

3
t} with the (1, 0)-basis

{τ 1t := µ1
t − iµ2

t , τ
2
t := −2t̄i µ2

t , τ
3
t := −2t̄i µ3

t}.

The structure equations for Jt in this new basis are:

dτ 1t = dτ 2t = 0, dτ 3t = τ 12t + τ 11̄t −
1

t
τ 12̄t +

1− |t|2

4|t|2
τ 22̄t , t ∈ B. (8.16)

Finally, the proof of another result from [COUV16] shows that, for any t ∈ B \ {0}, (X, Jt)
admits balanced metrics if and only if

1

|t|2

(
1

|t|2
− 4

1− |t|2

4|t|2

)
=

1

|t|2
> 0.

The conclusion is that (X, Jt) is a balanced manifold for every t ∈ C such that 0 < |t| < 1. □

Salamon’s Theorem 8.2.6 is also used in the proof of the following result of Fino, Parton and
Salamon which shows, in particular, that on a 6-dimensional nilmanifold equipped with an invariant
complex structure, the SKT condition depends only on the underlying Lie algebra and the complex
structure . This is in stark contrast with the sG property studied in [COUV16].

Theorem 8.2.11. ([FPS02, Theorem 1.2]) Let X = G/Γ be a nilmanifold with dimRX = 6 and let
J be a left-invariant complex structure on X. Then, either every invariant Hermitian metric
ω on (X, J) is SKT or none is.

Moreover, (X, J) is an SKT manifold if and only if J has a basis {ω1, ω2, ω3} of (1, 0)-forms
such that

dω1 = 0

dω2 = 0

dω3 = Aω1̄2 +B ω2̄2 + C ω11̄ +Dω12̄ + E ω12, (8.17)

where the constants A,B,C,D,E ∈ C satisfy the condition

|A|2 + |D|2 + |E|2 + 2Re (B̄ C) = 0. (8.18)

Proof. See [FPS02, §.1 and §.2]. □

The following result of Ugarte’s is a refinement of Theorem 8.2.11.
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Theorem 8.2.12. ([Uga07, Theorem 19]) In the setting of Theorem 8.2.11, (X, J) is an SKT
manifold if and only if J has a basis {ω1, ω2, ω3} of (1, 0)-forms such that

dω1 = 0

dω2 = 0

dω3 = ρω12 + ω11̄ +B ω1̄2 +Dω22̄, (8.19)

where the constants ρ,B,D ∈ C satisfy the conditions:

ρ ∈ {0, 1} and ρ+ |B|2 = 2Re (D). (8.20)

Proof. See [Uga07, Theorem 19]. □

Note that the third equation in (8.17) implies that

dω3 ∈ Λ2⟨ω1, ω1, ω2, ω2⟩,

so the complex structure J is nilpotent in the sense of Definition 8.2.7.

8.3 Adjoint representations and solvable Lie algebras

The material in this section is classical and was gleaned from various well-known sources, such as
Serre’s classical book [Ser64]. It is included here to provide the reader with a quick rundown on
some basic facts. Most of the proofs will be skipped and the reader referred to standard sources.

8.3.1 The adjoint representation of a Lie group

The basic notion here is the following

Definition 8.3.1. Let G be a Lie group.

(i) For every a ∈ G, the inner automorphism induced by a is the map:

Int a : G −→ G, x 7→ axa−1.

(ii) The adjoint representation of G is the linear representation Ad : G −→ End (g) of G on
its Lie algebra g defined as:

G ∋ a 7→ Ada := de(Int a) ∈ End (g),

where de(Int a) is the differential at the identity element e of G of Int a.

Note that (Int a)(e) = e, so the differential de(Int a) : TeG −→ TeG lies in End (g) when g is
identified with the tangent space TeG to G at e. Note also that

Int a = Ra−1 ◦ La, (8.21)

where Lg : G −→ G, resp. Rg : G −→ G, is the left, resp. right, translation by a given element
g ∈ G: Lg(x) = gx, resp. Rg(x) = xg, for every x ∈ G.

Some basic properties of the adjoint representation of a Lie group are given in the following
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Proposition 8.3.2. Let G be a Lie group.

(i) If G is a group of isomorphisms of a vector space V , namely G ⊂ GL(V ), then for every
a ∈ G, the map Ada : g −→ g is given by

Ada(X) = aXa−1, X ∈ TeG = g ⊂ End (V ).

(ii) If Z(G) is the centre of G, one has the inclusion:

Z(G) ⊂ ker(Ad).

(iii) If G is connected and the ground field has characteristic zero, then

Z(G) = ker(Ad).

Proof. It follows at once from the definitions and from the obvious equivalence:

a ∈ Z(G) ⇐⇒ Int a = IdG.

□
Recall that, when V is finite dimensional, End (V ) is the Lie algebra of GL(V ) and its Lie bracket

is given by [T, S] := T ◦ S − S ◦ T for all S, T ∈ End (V ).

8.3.2 The adjoint representation of a Lie algebra

The basic notion here is the following

Definition 8.3.3. The adjoint representation of a Lie algebra g is the linear representation
ad : g −→ End (g) of g on the module g defined as:

g ∋ x 7−→ adx := [x, ·] : g −→ g,

where [· , ·] is the Lie bracket of g.

Recall that a derivation on a Lie algebra (g, [· , ·]) is a linear map D : g −→ g satisfying the
Leibniz rule:

D([x, y]) = [Dx, y] + [x, Dy], x, y ∈ g.

The set Der (g) of all derivations on g is a Lie algebra with the Lie bracket:

[D, D′] := DD′ −D′D, D,D′ ∈ Der (g).

Some basic properties of the adjoint representation of a Lie group are given in the following

Proposition 8.3.4. Let g be a Lie algebra.

(i) If V is a finite dimensional vector space and g = End (V ) is the Lie algebra of GL(V ), then

ker(ad) = Z(g)

(the centre of g).

(ii) For every x ∈ g, adx : g −→ g is a derivation on g (called the inner derivation induced
by x).

(iii) The map

g ∋ x ad7−→ adx ∈ Der (g)

is a Lie algebra homomorphism, namely

ad[x, y] = [adx, ady], x, y ∈ g.
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Proof. (i) is obvious, while both (ii) and (iii) are equivalent to the Jacobi identity satisfied by the
Lie bracket [· , ·]. □

Definition 8.3.5. Let g be a Lie algebra. The image ad(g) of the map g ∋ x ad7−→ adx ∈ Der (g) is
called the adjoint linear Lie algebra associated with g.

We list two basic properties of the object defined above.

Proposition 8.3.6. Let g be a Lie algebra.

(i) ad(g) ⊂ Der (g) is an ideal.

(ii) The quotient Der (g)/ad(g) is the cohomology space H1(g) of degree 1 of g. In particular, if
the ground field is of characteristic zero, one has the equivalence:

ad(g) = Der (g) ⇐⇒ g is semi-simple.

Finally, the following result relates the adjoint representation of a Lie group G to the one of its
Lie algebra g viewed as the Lie algebra of left-invariant vector fields on G.

Proposition 8.3.7. Let g be the Lie algebra of a Lie group G. Then, ad is the differential of Ad at
the identity element e of G:

ad = de(Ad) : g −→ End (g). (8.22)

Moreover, Der (g) is the Lie algebra of the automorphism group Aut (g) of g.

Proof. Fix a ∈ G. From Definition 8.3.1, we get: Ada = de(Ra−1 ◦ La) = da(Ra−1) ◦ de(La). Hence,
for every Y ∈ g (i.e. for every left-invariant vector field Y on G), we get:

Ada(Y ) = da(Ra−1)(Ya) ∈ g, (8.23)

where we have used the identity de(La)(Y ) = Ya that follows from Y being left-invariant.
On the other hand, for any vector fields X, Y on G, their Lie bracket is given by the following

standard formula:

[X, Y ] = lim
t→0

1

t

(
Y − (dφt)(Y )

)
= lim

t→0

1

t

(
(dφ−t)(Y )− Y

)
, (8.24)

where φt : G→ G is the flow generated by X for t ∈ (−ε, ε) and some small ε > 0.
Now, it turns out that φt(a) = aφt(e) = Rφt(e)(a) for all a ∈ G because both φt(a) and aφt(e)

satisfy the same ODE defining the flow of X. This means that

φt = Rφt(e), t ∈ (−ε, ε). (8.25)

If φt(e) = a, then a−1 = φ−t(e), so (8.23) and (8.25) yield:

Ada(Y ) = da(φ−t)(Ya), or equivalently Adφt(e)(Y ) = dφt(e)(φ−t)(Y ).

Together with (8.24), this gives:

[X, Y ] = lim
t→0

1

t

(
Adφt(e)(Y )− Y

)
= de(Ad)(X)(Y ),

for any left-invariant vector fields X, Y on G (i.e. X, Y ∈ g). □
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8.3.3 Construction of Lie algebras from known ones

The following reminder of classical constructions is taken from [Ser64, I(vi)].

Proposition and Definition 8.3.8. (a) If g is a Lie algebra and J ⊂ g is an ideal, then the
quotient g/J is a Lie algebra.

(b) If (gi)i∈I is a family of Lie algebras, then Πi∈Igi is a Lie algebra.

(c) Let g be a Lie algebra, a ⊂ g an ideal and b ⊂ g a subalgebra.
We say that g is a semidirect product of b by a if the natural map

g −→ g/a

induces an isomorphism b
≃−→ g/a.

In other words, (c) requires the subalgebra b of g to be realised as a quotient algebra of g. As
for (a), for all x, y ∈ g and every a ∈ J , we have: [x + a, y] = [x, y] + [a, y] and [a, y] ∈ J , so
[x+ a, y] = [x, y] modulo J . Thus, we may define the Lie bracket on g/J as

[x̂, ŷ] := [x, y], x̂, ŷ ∈ g/J.

8.3.4 Solvable Lie algebras

Most of this subsection is again taken from [Ser64], especially from chapter V, §.2-§.5.
Let g be a Lie algebra.

Definition 8.3.9. The derived series of g is the inductively defined chain of ideals:

g(0) := g ⊃ g(1) := [g, g] ⊃ g(2) := [g(1), g(1)] = [[g, g], [g, g]] ⊃ · · · ⊃ g(n) := [g(n−1), g(n−1)] ⊃ . . .

Theorem and Definition 8.3.10. The following conditions are equivalent.

(i) There exists n ∈ N⋆ such that g(n) = {0}.
(In other words, the derived series of g terminates in the zero subalgebra.)

(ii) There exist n ∈ N⋆ and a sequence of ideals

g = a1 ⊃ a2 ⊃ · · · ⊃ an = {0}

such that ai/ai+1 is abelian (equivalently, [ai, ai] ⊂ ai+1) for every i.

(In other words, g is a successive extension of abelian Lie algebras.)

If g satisfies either of the equivalent conditions (i) and (ii), g is said to be a solvable Lie
algebra.

The standard example of a nilpotent, resp. solvable, Lie algebra is the following.

Example 8.3.11. Let V be a finite-dimensional k-vector space, where k is a field, and let F = (Vi)i
be a flag in V , namely a sequence of vector subspaces:

{0} = V0 ⊂ V1 ⊂ · · · ⊂ Vi ⊂ Vi+1 ⊂ · · · ⊂ Vn = V

such that dimVi = i for every i.
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(i) Let u(F ) := {u ∈ End (V ) | u(Vi) ⊂ Vi−1 for all i ≥ 1} ⊂ End (V ).
Then, u(F ) is a nilpotent Lie subalgebra of End (V ) under the bracket [S, T ] = S ◦T −T ◦S.
(ii) Let b(F ) := {u ∈ End (V ) | u(Vi) ⊂ Vi for all i ≥ 1} ⊂ End (V ).
Then, b(F ) is a solvable Lie subalgebra of End (V ) under the bracket [S, T ] = S ◦ T − T ◦ S.

Proof. (i) We see that u(F ) is the space of endomorphisms of V that take each Vi into itself and
factor to the zero endomorphisms Vi/Vi−1 −→ Vi/Vi−1 of the successive quotient spaces. It is obvious
that u(F ) is a Lie subalgebra of End (V ).

Now, let {v1, . . . , vn} be a basis for V adapted to F in the sense that

Vi = kv1 + · · ·+ kvi, i = 1, . . . , n.

The Lie algebra u(F ) consists of those endomorphisms of V whose matrix w.r.t. such a basis is
strictly superdiagonal, namely it has zeros on and below the main diagonal.

For every k, define

uk(F ) := {u ∈ End (V ) | u(Vi) ⊂ Vi−k for all i ≥ k} ⊂ End (V ).

We have
· · · ⊂ uk+1(F ) ⊂ uk(F ) ⊂ · · · ⊂ u1(F ) = u(F )

and uk(F ) = 0 for k large enough. Furthermore, u(F ) uk(F ) ⊂ uk+1(F ) and uk(F ) u(F ) ⊂ uk+1(F ),
hence [u(F ), uk(F )] ⊂ uk+1(F ) for every k. This implies that every uk(F ) is an ideal of u(F ).

Since the nilpotency of a Lie algebra g is equivalent, by a standard general result, to the existence
of a chain of ideals:

g = a1 ⊃ a2 ⊃ · · · ⊃ an = {0}

such that [g, ai] ⊂ ai+1 for every i, we conclude from the above observations that the Lie algebra
u(F ) is nilpotent.

(ii) In a basis {v1, . . . , vn} for V adapted to F , the Lie algebra b(F ) consists of those endomor-
phisms of V whose matrix w.r.t. such a basis is upper triangular, namely it has zeros below the
main diagonal.

One easily checks that u(F ) ⊂ b(F ), that u(F ) is an ideal of b(F ) and that the quotient Lie
algebra b(F )/u(F ) is abelian. Thus, for some large enough n, the sequence of ideals

b(F ) ⊃ u(F ) = u1(F ) ⊃ · · · ⊃ uk(F ) ⊃ uk+1(F ) ⊃ · · · ⊃ un(F ) = {0}

has the properties in (ii) of Theorem and Definition 8.3.10 because [uk(F ), uk(F )] ⊂ [u(F ), uk(F )] ⊂
uk+1(F ) for every k.

Consequently, b(F ) is solvable by (ii) of Theorem and Definition 8.3.10. □

An immediate observation is that the derived series and the descending central series of a Lie
algebra g compare as follows:

g(0) = g0 = g, g(1) = g1 = [g, g], g(k) ⊂ gk, k ≥ 2.

Hence, we get

Corollary 8.3.12. Every nilpotent Lie algebra is solvable.

As a kind of weak converse, we have the following
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Theorem 8.3.13. Let g be a finite-dimensional Lie algebra over a field of characteristic zero.
The following statements are equivalent.

(i) g is solvable.

(ii) The adjoint representation ad : g −→ End (g) of g is solvable.

(iii) [g, g] is nilpotent.

Note that the implication (iii) =⇒ (i) is always (i.e. the finite-dimensionality and the character-
istic zero assumptions are not needed) trivially true. The implication (i) =⇒ (iii) follows from the
main theorem on solvable Lie algebras that we now state.

Theorem 8.3.14. (Lie’s theorem on solvable Lie algebras) Let g be a solvable Lie algebra over
an algebraically closed field k of characteristic 0. Let ρ : g −→ End (V ) be a linear representation of
g on a vector space V .

Then, there exists a flag F = (Vi)i in V such that ρ(g) ⊂ b(F ).

In other words, there exists a flag in V that is preserved by every element of g under the given
linear representation ρ. Let us make this last piece of terminology more precise.

Definition 8.3.15. Let (g, [·, ·]) be a Lie algebra over a field k. A g-module is a k-vector space V
equipped with a k-bilinear map

g× V −→ V, (x, v) 7−→ xv,

that satisfies the condition:

[x, y] v = x(yv)− y(xv), x, y ∈ g, v ∈ V. (8.26)

The corresponding Lie homomorphism:

ρ : g −→ End (V ), x 7−→ ρ(x) := (V ∋ v 7→ xv ∈ V ),

is called a linear representation of g on V .

As usual, the Lie algebra structure of End (V ) is defined by the Lie bracket [S, T ] := S ◦ T −
T ◦ S for all S, T ∈ End (V ). Note that ρ : (g, [·, ·]) −→ (End (V ), [·, ·]) being a Lie algebra
homomorphism, namely the condition

ρ([x, y]) = [ρ(x), ρ(y)], x, y ∈ g,

is equivalent to property (8.26).

Observation 8.3.16. Let (g, [·, ·]) be a Lie algebra over a field k. Then:

(i) g is a g-module with the k-bilinear map:

g× g −→ g, (x, v) 7−→ [x, v].

(ii) the adjoint representation ad : g −→ End (g) is a linear representation of g on itself.

Proof. (i) We need to check that condition (8.26) is satisfied in this case, namely that

[[x, y], z] = [x, [y, z]]− [y, [x, z]], x, y, z ∈ g.

This is precisely the Jacobi identity satisfied by the Lie bracket of g.

(ii) is an immediate consequence of (i) and of Definition 8.3.15. □
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Corollary 8.3.17. Let g be a solvable Lie algebra over an algebraically closed field k of character-
istic 0. Then, there exists a flag of ideals in g.

Proof. Lie’s Theorem 8.3.14 applied to the adjoint representation ad : g −→ End (g) yields a flag
F = (Vi)i in g such that x(Vi) ⊂ Vi for all i and all x ∈ g. This means precisely that each Vi is an
ideal of g. □

The next corollary of Lie’s Theorem 8.3.14 proves implication (i) =⇒ (iii) in Theorem 8.3.13.

Corollary 8.3.18. Let g be a solvable Lie algebra over a field k of characteristic 0. Then, the Lie
algebra [g, g] is nilpotent.

Proof. The statement being linear, we may suppose that k is algebraically closed. Otherwise, we
consider an extension field k′ of k and we put g′ := g ⊗k k′. Then, g is solvable, resp. nilpotent, if
and only if g′ is solvable, resp. nilpotent. Moreover, [g, g]′ = [g′, g′].

By Corollary 8.3.17, there exists a flag of ideals in g:

g ⊃ g1 ⊃ g2 ⊃ · · · ⊃ gn = {0}.

Fix an arbitrary x ∈ [g, g]. Since x ∈ g, adx(gi) ⊂ gi for every i because gi is an ideal of g. But
more is true: adx(gi) ⊂ gi+1 for every i because the induced map adx : gi/gi+1 −→ gi/gi+1 on the
quotient vanishes identically as a result of End (gi/gi+1) ≃ k being commutative and of the special
form [x, ·] of the map adx. This means that adx is nilpotent on g and all the more so on [g, g].

We have thus shown that adx is nilpotent for each x ∈ [g, g]. By a well-known theorem (see
[Ser64, V., Theorem 3.1]), this is equivalent to [g, g] being nilpotent. □

We end this brief review of general basic notions and results with the following link between the
notions of solvability and nilpotency for Lie algebras, on the one hand, and for Lie groups, on the
other hand.

Theorem 8.3.19. Let g be a Lie algebra over a field k of characteristic 0. Suppose that g is the
Lie algebra of a connected Lie group G. The following equivalences hold:

g is solvable (resp. nilpotent) as a Lie algebra ⇐⇒ G is solvable (resp. nilpotent) in the
group theoretic sense.

Recall that a group G is called:

(a) solvable if there exist normal subgroups

1 = G0 ◁ G1 ◁ · · · ◁ Gn = G

such that the quotients Gj/Gj−1 are all abelian;

(b) nilpotent if there exist normal subgroups

1 = G0 ◁ G1 ◁ · · · ◁ Gn = G

such that Gj/Gj−1 ⊂ Z(G/Gj−1) for every j, where Z(G/Gj−1) stands for the centre of G/Gj−1.
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8.3.5 Classification of complex parallelisable 3-dimensional solvmani-
folds

This subsection is taken from Nakamura’s work [Nak75]. The starting point is the following

Proposition 8.3.20. ([Nak75, Proposition 1.4.]) Any simply connected, connected, solvable com-
plex Lie group G is biholomorphically equivalent to Cn, where n = dimCG.

Sketch of proof. We proceed by induction on n ≥ 1. The case n = 1 is easy. Suppose we have proved
the result for n − 1. When n = dimCG ≥ 2, there exists a connected normal Lie subgroup N ⊂ G
such that dimCN = 1. Thus, (G, π, G/N) is a holomorphic fibre bundle with fibre N . We easily
find that N and G/N are simply connected, connected and solvable, so by the induction hypothesis
G/N , resp. N , is biholomorphically equivalent to Cn−1, resp. C. It then follows from Oka’s principle
that G is biholomorphically equivalent to Cn. □

Nakamura goes on to deduce the following classification of complex parallelisable solvmanifolds of
complex dimension 3. They are all of the shape X = G/Γ, where G is a solvable simply connected,
connected complex Lie group with dimCG = 3 and Γ is a discrete co-compact subgroup of G. By
Proposition 8.3.20, G is biholomorphically equivalent to C3. By Lie’s Theorem 8.3.14 applied to the
(necessarily solvable) Lie algebra g of G, there exists a C-basis {φ1, φ2, φ3} of Λ1, 0g⋆ such that

dφν = ξν ∧ φν + ην , ν = 1, 2, 3, (8.27)

where ξν ∈ {φ1, . . . , φν−1} and ην ∈ {φj ∧ φk | 1 ≤ j < k ≤ 3} for each ν.

Theorem 8.3.21. Let X = G/Γ be a compact complex paralellisable solvmanifold with dimCX =
3. Let {φ1, φ2, φ3} be a C-basis of H1, 0(X, C) that satisfies (8.27).

Then, the manifolds X are classified into the following 3 classes:

III-(1): dφ1 = dφ2 = dφ3 = 0;

III-(2): dφ1 = dφ2 = 0, dφ3 = −φ1 ∧ φ2;

III-(3): dφ1 = 0, dφ2 = φ1 ∧ φ2, dφ3 = −φ1 ∧ φ3.

By duality, properties III-(1), III-(2), III-(3) are equivalent to the following properties satisfied
by the dual basis {θ1, θ2, θ3} of (1, 0)-vector fields on X:

III-(1’): [θλ, θν ] = 0, λ, ν ∈ {1, 2, 3};
III-(2’): [θ1, θ2] = −[θ2, θ1] = θ3, [θλ, θν ] = 0 otherwise;

III-(3’): [θ1, θ2] = −[θ2, θ1] = −θ2, [θ1, θ3] = −[θ3, θ1] = θ3, [θ2, θ3] = 0.

In the case III-(1), G is abelian and X is a complex torus. In the case III-(2), G is a nilpotent
complex Lie group (as will be seen below) and X is of the type of the Iwasawa manifold (cf. §.1.3.3).
In the case III-(3), G is a solvable non-nilpotent complex Lie group (as will be seen below). In
all three cases, C3 is the universal covering space of the manifold X, as follows from Proposition
8.3.20.

• Determination of the solvable Lie group structures on C3

Let 0 be the origin of C3.
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Case III-(2). For each ν ∈ {1, 2}, let

Φν(z) :=

z∫
0

φν , z ∈ C3.

Since the 1-forms φ1 and φ2 are d-closed on G = C3, Φ1, Φ2 : C3 −→ C are single-valued holomorphic
functions and we have

φν = dΦν on C3 for ν = 1, 2.

In particular, we get:

dφ3 = −φ1 ∧ φ2 = −dΦ1 ∧ dΦ2 = −d(Φ1dΦ2) ⇐⇒ d(φ3 + Φ1dΦ2) = 0.

Thus, the 1-form φ3 + Φ1dΦ2 is d-closed on C3, so

Φ3(z) :=

z∫
0

(φ3 + Φ1dΦ2), z ∈ C3,

defines a single-valued holomorphic function Φ3 : C3 −→ C and we have

φ3 = dΦ3 − Φ1dΦ2 on C3.

Now, fix an arbitrary g ∈ Γ and consider its orbit {z′ = gz | z ∈ C3}. Since φ1 and φ2 are
Γ-invariant, φ1(gz) = φ1(z) and φ2(gz) = φ2(z) for every z ∈ C3, or equivalently dΦ1(gz) = dΦ1(z)
and dΦ2(gz) = dΦ2(z) for every z ∈ C3. Hence, there exist constants ω1(g), ω2(g) ∈ C depending
only on g such that

Φ1(gz) = Φ1(z) + ω1(g) and Φ2(gz) = Φ2(z) + ω2(g) for all z ∈ C3. (8.28)

On the other hand, we have

φ3(gz) = dΦ3(gz)− Φ1(gz)dΦ2(gz) = dΦ3(gz)− (Φ1(z) + ω1(g)) dΦ2(z).

Since φ3(gz) = φ3(z) (because φ3 is Γ-invariant), we get:

d

(
Φ3(gz)− ω1(g) Φ2(z)

)
= φ3(z) + Φ1(z)dΦ2(z) = dΦ3(z) ⇐⇒ d

(
Φ3(gz)− Φ3(z)− ω1(g) Φ2(z)

)
= 0.

Hence, there exists a constant ω3(g) ∈ C depending only on g such that

Φ3(gz) = Φ3(z) + ω1(g) Φ2(z) + ω3(g) for all z ∈ C3. (8.29)

Consequently, (8.28) and (8.29) leads one to define the following multiplication on C3:

(ζ1, ζ2, ζ3) ⋆ (z1, z2, z3) := (ζ1 + z1, ζ2 + z2, ζ3 + ζ1z2 + z3). (8.30)

This multiplication coincides with the matrix multiplication for upper triangular matrices:1 ζ1 ζ3
0 1 ζ2
0 0 1

1 z1 z3
0 1 z2
0 0 1

 =

1 z1 + ζ1 z3 + ζ1z2 + ζ3
0 1 z2 + ζ2
0 0 1
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and makes C3 into a nilpotent complex Lie group with Lie algebra of type III-(2’). The forms
φ1, φ2, φ3 on G ≃ (C3, ⋆) pass to the quotient and define forms denoted by the same symbols on
the nilmanifold X = G/Γ.

Case III-(3). Let

Φ1(z) :=

z∫
0

φ1, z ∈ C3.

Since the 1-form φ1 is d-closed on G = C3, Φ1 : C3 −→ C is a single-valued holomorphic function on
C3 and

φ1 = dΦ1 on C3.

Meanwhile, we have:

dφ2 = φ1 ∧ φ2 ⇐⇒ e−Φ1dφ2 − e−Φ1dΦ1 ∧ φ2 = 0 ⇐⇒ d(e−Φ1φ2) = 0.

Thus, the 1-form e−Φ1φ2 is d-closed on G = C3, so

Φ2(z) :=

z∫
0

e−Φ1φ2, z ∈ C3,

defines a single-valued holomorphic function Φ2 : C3 −→ C and

φ2 = eΦ1dΦ2 on C3.

Similarly,

dφ3 = −φ1 ∧ φ3 ⇐⇒ eΦ1dφ3 − eΦ1dΦ1 ∧ φ3 = 0 ⇐⇒ d(eΦ1φ3) = 0.

Thus, the 1-form eΦ1φ3 is d-closed on G = C3, so

Φ3(z) :=

z∫
0

eΦ1φ3, z ∈ C3,

defines a single-valued holomorphic function Φ3 : C3 −→ C and

φ3 = e−Φ1dΦ3 on C3.

By the arguments used in the case III-(2), for every g ∈ Γ, we get the existence of constants
ω1(g), ω2(g), ω3(g) ∈ C depending only on g such that

Φ1(gz) = Φ1(z) + ω1(g)

Φ2(gz) = e−ω1(g)Φ2(z) + ω2(g)

Φ3(gz) = eω1(g)Φ3(z) + ω3(g)

for all z ∈ C3. This leads one to define the following multiplication on C3:

(ζ1, ζ2, ζ3) ⋆ (z1, z2, z3) := (ζ1 + z1, ζ2 + e−ζ1z2, ζ3 + eζ1z3). (8.31)

This multiplication makes C3 into a solvable non-nilpotent complex Lie group with Lie algebra
of type III-(3’). The forms φ1, φ2, φ3 on G ≃ (C3, ⋆) pass to the quotient and define forms denoted
by the same symbols on the solvmanifold X = G/Γ.
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• Examples of complex parallelisable manifolds as above

As already mentioned, in the case III-(2), G = (C3, ⋆) is the Heisenberg group and X = G/Γ is
the Iwasawa manifold discussed in §.1.3.3.

In the case III-(3), Nakamura constructs an example that we now briefly describe.

Nakamura’s example. Let A =

(
a b
c d

)
such that a, b, c, d ∈ Z, A is invertible and the entries

of A−1 are all integers. Suppose that trace (A) ≥ 3. Let α be an eigenvalue of A.
The elliptic curve E = C/Λ and the group H of analytic automorphisms of C×E×E are defined

in the same way as in example (a) using this new choice of α, except that we now put

σ2 : (z1, z2, z3) 7−→ (z1 + logα, az2 + bz3, cz2 + dz3).

One checks that the action of H on C × E × E is properly discontinuous and fixed-point
free. The quotient manifold

X := C× E × E/H

is a complex parallelisable solvmanifold of type III-(3) with h0, 1
∂̄

(X) = 3. □

We get the following addition to Nakamura’s Classification Theorem 8.3.21. By T k we mean a
complex torus of complex dimension k.

Observation 8.3.22. ([Nak75, Theorem 1]) The manifolds in class III-(1) are 3-dimensional com-
plex tori T 3.

The manifolds in class III-(2) are nilmanifolds that arise as T 1-bundles over some T 2.
The manifolds in class III-(3) are solvmanifolds that arise as T 2-bundles over some T 1.

• Further description of solvmanifolds of type III-(3)

Recall that in this case, we are given a compact complex parallelisable solvmanifold X = C3/Γ for
which we have constructed holomorphic functions (Φ1, Φ2, Φ3) on C3 which can be chosen as coor-
dinates, henceforth denoted by (z1, z2, z3), on C3. The action of Γ on C3 is described in (8.31) and
there exists a basis of holomorphic 1-forms φ1, φ2, φ3 on X obtained from the following holomorphic
1-forms on C3 by passing to the quotient:

φ1 = dz1, φ2 = ez1dz2, φ3 = e−z1dz3.

By duality and Cartan’s formula, the dual basis of (1, 0)-vector fields is

θ1 =
∂

∂z1
, θ2 = e−z1

∂

∂z2
, θ2 = ez1

∂

∂z3
.

Since dφ1 = 0, ∂φ1 = 0, hence ∂̄φ1 = 0, so [φ1]∂̄ ∈ H
0, 1

∂̄
(X, C).

On the other hand,

∂φ2 = φ1 ∧ φ2 ̸= 0 and ∂φ3 = −φ1 ∧ φ3 ̸= 0,

so φ2 and φ3 are not ∂̄-closed and, therefore, do not represent cohomology classes in H0, 1

∂̄
(X, C).

However, they can be modified to (0, 1)-forms φ⋆2 and φ⋆3 that are ∂̄-closed and induce cohomology
classes in H0, 1

∂̄
(X, C) that, together with [φ1]∂̄, form a basis. It is roughly for this reason that one

either has h0, 1
∂̄

(X) = 1 or h0, 1
∂̄

(X) = 3 (as in Nakamura’s above example).
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Case III-(3)(a). This is the case when h0, 1
∂̄

(X) = 1 and

H0, 1

∂̄
(X, C) = C

〈
[φ1]∂̄

〉
.

Since T 1, 0X is trivial, this implies that

H0, 1

∂̄
(X, T 1, 0X) = C

〈
[θi φ1]∂̄ | i = 1, 2, 3

〉
.

In particular, dimCH
0, 1

∂̄
(X, T 1, 0X) = 3.

Case III-(3)(b). This is the case when h0, 1
∂̄

(X) = 3 and

H0, 1

∂̄
(X, C) = C

〈
[φ1]∂̄, [φ

⋆
2]∂̄, [φ

⋆
3]∂̄

〉
,

where the ∂̄-closed (0, 1)-forms φ⋆2 and φ⋆3 are defined as:

φ⋆2 := ez1−z̄1 φ2 = ez1dz̄2 and φ⋆3 := e−z1+z̄1 φ3 = e−z1dz̄3.

Since T 1, 0X is trivial, this implies that

H0, 1

∂̄
(X, T 1, 0X) = C

〈
[θi φ

⋆
λ]∂̄ | i = 1, 2, 3; λ = 1, 2, 3

〉
,

where we put φ⋆1 := φ1. In particular, dimCH
0, 1

∂̄
(X, T 1, 0X) = 9.
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[Che87] P. Cherrier — Équations de Monge-Ampère sur les variétés hermitiennes compactes — Bull.
Sc. Math. (2) 111 (1987), 343-385.

[Chi14] I. Chiose — Obstructions to the Existence of Kähler Structures on Compact Complex Man-
ifolds — Proc AMS 142 (2014), no. 10, 3561–3568).

[CFGU97] L.A. Cordero, M. Fernández, A.Gray, L. Ugarte — A General Description of the Terms
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Séminaire d’analyse P. Lelong, P. Dolbeault, H. Skoda (editors) 1983/1984, Lecture Notes in Math.,
no. 1198, Springer Verlag (1986), 88-97.

[Dem90] J.-P. Demailly — Singular Hermitian Metrics on Positive Line Bundles — in Hulek K.,
Peternell T., Schneider M., Schreyer FO. (eds) “Complex Algebraic Varieties”. Lecture Notes in
Mathematics, vol 1507, Springer, Berlin, Heidelberg.

[Dem92] J.-P. Demailly — Regularization of Closed Positive Currents and Intersection Theory — J.
Alg. Geom., 1 (1992), 361-409.
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[LT95] M. Lübke, A. Teleman — The Kobayashi-Hitchin Correspondence — World Scientific, 1995.

[LZ09] T.-J. Li, W. Zhang — Comparing tamed and compatible symplectic cones and cohomological
properties of almost complex manifolds — Comm. Anal. Geom. 17, no. 4 (2009), 651-683.

[Mas18] M. Maschio — On the Degeneration of the Frölicher Spectral Sequence and Small Defor-
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