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Class 1: Real and Complex Vector Bundles
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Definition of Vector Bundles

Let M be a C∞ differentiable manifold of dimension m and let K = R or
K = C be the scalar field.

Definition

A (real, complex) vector bundle of rank r over M is a C∞ manifold E
together with

(i) a C∞ map π : E −→ M called the projection,

(ii) a K-vector space structure of dimension r on each fiber Ex = π−1(x)

such that there exists an open covering {Vα}α∈I of M and
diffeomorphisms

θα : π−1(Vα) −→ Vα ×Kr ,

satisfying:

• p1 ◦ θα = π

• for all x ∈ Vα of M, the map Ex → {x} ×Kr → Kr is a K-linear
isomorphism.

θα is called a local trivialization.
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Transition Functions

In the above conditions, for each α, β ∈ I , the map

θαβ = θα ◦ θ−1
β : (Vα ∩ Vβ)×Kr −→ (Vα ∩ Vβ)×Kr

verifies θαβ({x} ×Kr ) = {x} ×Kr and is a K-isomorphism.
We thus define

θαβ(x , ξ) = (x , gαβ(x) · ξ), (x , ξ) ∈ (Vα ∩ Vβ)×Kr

where gαβ : Vα ∩ Vβ → GL(r ,K) is C∞.
On triple intersections of the form Vα ∩ Vβ ∩ Vγ , they satisfy the cocycle
relation

(1.1) gαβgβγ = gαγ on Vα ∩ Vβ ∩ Vγ .

The collection (gαβ) is called a system of transition matrices.
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Examples

Example. The product manifold E = M ×Kr is a vector bundle over M,
and is called the trivial vector bundle of rank r over M.

Example. The tangent bundle TM of a differentiable manifold is a real
vector bundle over M.
The transition matrices are given by gαβ = dταβ where ταβ = τα ◦ τ−1

β .

Example. Similarly, the cotangent bundle T ∗M of TM and the p-th
exterior power ΛpT ∗M (bundle of differential forms of degree p on M)
are real vector bundles over M.
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Canonical Line Bundle over Projective Space

The complex projective space CPn is the set of complex lines on Cn+1:

CPn = Cn+1 − {0}/ ∼,

where, for z ,w ∈ Cn+1, z ∼ w ⇔ z = λw for some λ ∈ C∗.
Local charts for CPn: for i = 0, . . . , n, set

Ui = {[z ] : zi ̸= 0}, φi : Ui → Cn, φi ([z ]) = (
z0
zi
, . . . ,

zi−1

zi
,
zi+1

zi
, . . .

zn
zi
).

The tautological line bundle L over CPn is defined as follows:

L = {([z ],w) | [z ] ∈ CPn,w ∈ [z ]}

Consider the natural map

π : L −→ CPn, π([z ],w) = [z ],

The fiber over the line [z ] ∈ CPn consists of all pairs ([z ],w) with w ∈ [].
Since the fibers are C-lines, we can introduce a natural C-vector space
structure on them.
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Vector Space Structure on Fibers

([z ],w) + ([z ], u) := ([z ],w + u)

κ · ([z ],w) := ([z ], κ · w).

This turns the fibers of π−1([z ]) into C-vector spaces of dimension one.
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Local Trivializations of the Canonical Line Bundle

For a non-zero vector z ∈ Cn+1, we denote by [z ] the C-line spanned by
z . For 1 ≤ i ≤ n + 1, let Ui = {[z ] ∈ CPn | xi ̸= 0} and consider the
bijections

Φi : Ui × C −→ C̃n+1|Ui , Φi ([z ], λz) = ([z ], λzi ) .

It is easy to see that C̃n+1 has a unique structure as a smooth manifold
such that the canonical map π : L −→ CPn is a complex line bundle for
which the bijections Φi are local trivializations, see Lemma 1.3.4.
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Vector Bundle Chart Lemma

Let M be a smooth manifold, and suppose that for each x ∈ M we are
given a K-vector space Ex of some fixed dimension r . Let E =

⊔
x∈M Ex ,

and let π : E −→ M be the map that takes each element of Ex to the
point x .

Suppose furthermore that we are given the following data:

(i) an open cover {Uα}α∈I of M

(ii) for each α ∈ I , a bijective map θα : π−1(Uα) −→ Uα × Cr whose
restriction to each Ex is a vector space isomorphism from Ex to
{x} ×Kr ∼= Kr

(iii) for each α, β ∈ I with Uα ∩ Uβ ̸= ∅, a smooth map
gαβ : Uα ∩ Uβ −→ GL(r ,K) such that the map θα ◦ θ−1

β from
(Uα ∩ Uβ)×Kr to itself has the form

θα ◦ θ−1
β (x , ξ) = (x , gαβ(x)ξ).

Then E has a unique topology and smooth structure making it into a
smooth manifold and a rank-r vector bundle over M.

Introduction to Complex Differential Geometry V.del Barco - UNICAMP



Operations on Vector Bundles

Let E ,F be K-vector bundles of rank r1, r2 over M. We can construct
new K vector bundles using vector space operations.

For example E∗,E ⊕ F ,Hom(E ,F ) are defined by

(E∗)x = (Ex)
∗, (E ⊕ F )x = Ex ⊕ Fx , Hom(E ,F )x = Hom(Ex ,Fx).

Let {Vα} be a local trivialization for both bundles E and F . If (gαβ) and
(γαβ) are the transition matrices of E and F , then for example
E ⊗ F ,E ⊕ F ,E∗,Hom(E ,F ) are the bundles defined by the transition
matrices

gαβ ⊗ γαβ , gαβ ⊕ γαβ , (g−1
αβ )

T , (g−1
αβ )

T ⊗ γαβ .
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Let M be a differentiable manifold and E a vector bundle over M.

Example The bundle of k-forms on M with values on E is ΛkT ∗M ⊗R E .
The fiber at x consists of

ΛkT ∗
x M⊗Ex = {σ : TxM×. . .×TxM → Ex | σ is k−linear and alternating}.

Example The complexified tangent bundle TMC = TM ⊗R C has fiber
TxM ⊗R C.
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Pullback Bundle

Let M, M̃ be C∞ manifolds and ψ : M̃ −→ M a smooth map. If E is a
vector bundle on M, one can define in a natural way a C∞ vector bundle
π̄ : Ē −→ M̃ and a C∞ linear morphism Ψ : Ē −→ E such that the
diagram

Ē
Ψ−→ E

↓ π̄ ↓ π
M̃

ψ−→ M

commutes and such that Ψ : Ēx̃ −→ Eψ(x̃) is an isomorphism for every

x̃ ∈ M̃. The bundle Ē can be defined by

Ē = {(x̃ , ξ) ∈ M̃ × E : ψ(x̃) = π(ξ)}

and the maps π̄ and Ψ are then the restrictions to Ē of the projections of
M̃ × E onto M̃ and E , respectively.
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Sections of Vector Bundles

Definition

Let U ⊂ M be an open subset of M. A smooth section of E on U is a
differentiable function s : U → E such that π ◦ s = idU (i.e. s(x) ∈ Ex

for all x ∈ U). We denote C∞(U,E ) the set of all smooth sections on U.

If s1, s2 ∈ C∞(U,E ) and f ∈ C∞(M,K), then s1 + s2 and fs1 are
sections on U as well.

Example: The Zero Section
The zero section is the map s : M −→ E defined by s(x) = 0x for all
x ∈ M, where 0x denotes the zero element in the fiber Ex . This is always
a C∞ section of E .

Example: Vector Fields
Vector fields on M are exactly the C∞ sections of the tangent bundle
TM.

Example: Differential Forms
Differential p-forms on M are the C∞ sections of the bundle ΛpT ∗M,
where ΛpT ∗M is the p-th exterior power of the cotangent bundle.
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Local frames and form of sections

(On the blackboard)

Summary:

On a local chart θ : π−1(U) → U ×Kr , take {ϵλ}rλ=1 a basis of Kr and
set eλ(x) := θ−1(x , ϵλ), which are sections of E . Given any section
s : U → E , we have

s =
∑
λ

σλeλ,

where σλ ∈ C∞(U).
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Example: Forms with Values in a Vector Bundle
Sections of ΛkT ∗M ⊗ E are C∞ maps ω : M −→ ΛkT ∗M ⊗ E that are
k-forms on M with values in the vector bundle E .

These generalize differential forms by allowing coefficients in the fibers of
E rather than just scalar values.

For k ≥ 1, we denote C∞
k (M,E ) := C∞(M,ΛkT ∗M ⊗ E ) the sections of

this bundle, and C∞
0 (M,E ) := C∞(M,E ).

With this notation, C∞
k (M,K) is the space of K-valued k-forms on M.
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• Write sections in coordinates

• Transition functions

• Local frames and form of sections of ΛkT ∗M ⊗ E

(On the blackboard)

Summary:

On a local chart θ : π−1(U) → U ×Kr , take eλ as before. Given
s ∈ C∞

k (M,E ) we have

s =
∑
λ

σλ ⊗ eλ,

where σλ ∈ C∞
k (U,K) are usual k-forms on U ⊂ M.

If θ̄ : π−1(Ū) → Ū ×Kr is another trivialization and s =
∑
λ σ̄λ ⊗ ēλ,

then
σ̄(x) = g(x)σ(x), ∀x ∈ U ∩ Ū,

where g : U ∩ Ū → GL(r ,K) are the transition functions verifying
θ̄ ◦ θ−1(x , ξ) = (x , g(x)ξ).
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Class 2: Linear Connections and Curvature
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Definition of Linear Connection

Definition

A (linear) connection D on the bundle E is a linear differential operator
of order 1 acting on C∞

q (M,E ), for all q ≥ 0, and satisfying the following
properties:

1. D : C∞
q (M,E ) −→ C∞

q+1(M,E ),

2. D(f ∧ s) = df ∧ s + (−1)pf ∧ Ds

for any f ∈ C∞
p (M,K) and s ∈ C∞

q (M,E ), where df stands for the usual
exterior derivative of f .
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Leibniz Rule for Functions and Sections

In the particular case where f ∈ C∞(M,K) is a function (i.e., a 0-form)
and s ∈ C∞(M,E ) is a section of E (i.e., a 0-form with values in E ), the
Leibniz rule simplifies to:

D(f · s) = df ⊗ s + f · Ds

This shows that D behaves like a derivation with respect to scalar
multiplication.
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Connection on a Trivial Bundle
Consider the trivial bundle E = M × V over M, where V is a fixed vector
space of dimension r . Let A ∈ C∞

1 (M,End(Kr )).

We can then define a connection on E as follows.

Let σ ∈ C∞
q (M,E ) and write s =

∑
σλ ⊗ eλ, where eλ is a global frame

and σλ are q-forms on M.

We thus set Ds = dσ + A ∧ σ. One can check that this is in fact a
connection.
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Every connection is locally a trivial connection

Locally, any connection is trivial. That is, with respect to a local
trivialization θα : π−1(Uα) −→ Uα ×Kr , a connection D can be
described by a matrix of 1-forms

A ∈ Ω1(Uα,End(Kr ))

where the action of D on sections in coordinates is determined by:

Ds|Uα = dσ + A ∧ σ
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Change of Coordinates for Connection 1-forms

Under a change of local trivialization corresponding to the transition
function gαβ , the matrices of 1-forms transform as:

Aβ = g−1
αβAαgαβ + g−1

αβ dgαβ

where Aα, Aβ denote, respectively the matrix of 1-forms corresponding to
the trivializations θα, θβ .
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Difference of Two Connections

The difference of two connections D and D ′ on the same bundle E is
given by a global 1-form:

D ′ − D = Q ∈ C∞
1 (M,End(E ))

where Q is a section of the endomorphism bundle End(E ) = Hom(E ,E ).
Note that Q is a matrix of 1-forms, globally defined on M, contrary to
the connection 1-forms A that depend on a trivialization.

This means the space of all connections on E is an affine space modeled
on C∞(M,End(E )).
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Curvature of a Connection

Given a connection RD on E , the curvature is defined as:

R = D ◦ D : C∞(M,E ) −→ C∞(M,Λ2T ∗M ⊗ E )

Locally, with respect to a trivialization θ, the curvature is given by a
matrix of 2-forms:

RD = dA+ A ∧ A ∈ C∞
2 (U,End(Kr ))

where A is the matrix of 1-forms corresponding to θ.

These local matrices glue together to form a global 2-form RD on M
with values in End(E ).
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Curvature of Line Bundles

For a line bundle L over M, the curvature is a global (usual) 2-form on M:

R ∈ C∞
2 (M,K) = Ω2(M)

An important property is that the curvature of any connection on a line
bundle is always closed :

dR = 0

This means the curvature defines a cohomology class in de Rham
cohomology H2

dR(M), which is an invariant of the line bundle
independent of the choice of connection.
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Covariant Derivative with Respect to Vector Fields

Let D be a conection on E and ξ ∈ C∞(M,TM) a vector field on M.

Definition

Given a section s ∈ C∞(M,E ), the covariant derivative of s in the
direction of ξ is the section ∇ξs ∈ C∞(M,E ) given by

(∇ξs)(x) = Ds(x)(ξx).

For any ξ fixed, this gives a linear operator ξD satisfying the Leibniz rule:

∇ξ(f s) = ξ(f ) s + f ∇ξs, f ∈ C∞(M,K), s ∈ C∞(M,E ).
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Curvature and Commutation of Covariant Derivatives

Proposition

For any vector fields ξ, η on M and any section s ∈ C∞(M,E ), the
commutator of covariant derivatives is given by:

∇ξ∇ηs −∇η∇ξs = ∇[ξ,η]s + RD(ξ, η)s

This relation shows that the failure of covariant derivatives to commute
is precisely measured by the curvature of the connection.

Proof. (On the blackboard)
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Class 3: Hermitian Vector Bundles and Complex Manifolds
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Hermitian vector bundles

Let E → M be a complex rank k bundle over some differentiable
manifold M.

Definition

A Hermitian structure H on E is a smooth field of Hermitian products on
the fibers of E , that is, for every x ∈ M, H : Ex × Ex −→ C satisfies:

• H(u, v) is C-linear in u for every v ∈ Ex .

• H(u, v) = H(v , u) for all u, v ∈ Ex .

• H(u, u) > 0 for all u ̸= 0.

• H(u, v) is a smooth function on M for every smooth sections u, v.
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Properties of Hermitian Structures

From the above conditions:

• H is C anti-linear in the second variable.

• The third condition shows that H is non-degenerate so we get a
bundle isomorphism H : E −→ E∗, H(ξ) = H(·, ξ).
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Existence of Hermitian Structures

Every rank k complex vector bundle E admits Hermitian structures.
To see this, just take a trivialization (Ui , θi ) of E and a partition of the
unity fi subordinate to the open cover {Ui} of M.

For every x ∈ Ui , let (Hi )x denote the pull-back of the Hermitian metric
on Ck by the C-linear map θi |Ex . Then

H =
∑
i

fiHi

is a well-defined Hermitian structure on E .
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Hermitian Structure in Local Coordinates

Assume H is a Hermitian structure on E , a complex bundle. Let θ be a
trivialization θ : π−1(U) −→ U × Cr and let e1, . . . , er be the local frame
induced by θ.

We define the matrix of the Hermitian form with respect to this local
frame as

hij(x) := H(ei (x), ej(x))

where hij ∈ C∞(U,C). This gives a Hermitian matrix h = (hij) of
smooth functions on U.
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Extension of Hermitian Metric to Sections

We can extend the Hermitian metric to sections:

C∞
p (M,E )× C∞

q (M,E ) −→ C∞
p+q(M,C)

(s, t) 7→ H(s, t)

such that for s =
∑
λ σλ ⊗ eλ and t =

∑
µ τµ ⊗ eµ, we set

H(s, t) =
∑
λ,µ

σλ ∧ τµH(eλ, eµ).
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Properties of Extended Hermitian Metric

Note: If s, t ∈ C∞
0 (M,E ), then s =

∑
λ σλeλ and t =

∑
µ τµeµ.

Then H(s, t) ∈ C∞
0 (M,E ) and its exterior derivative satisfies:

dH(s, t)(ξ) = d(H(s, t))(ξ) = ξ(H(s, t))

for every vector field ξ on M.

Note: If u ∈ C∞
1 (M,E ), t ∈ C∞

0 (M,E ) then H(u, t) ∈ C∞
1 (M,E ).

Moreover, for every ξ ∈ X (M),

H(u, t)(ξ) = H(u(ξ), t)
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Definition

A linear connection D is called Hermitian if for all s ∈ C∞
p (M,E ),

t ∈ C∞
p (M,E ), we have

dH(s, t) = H(Ds, t) + (−1)pH(s,Dt).

Given the equalities above, if H is Hermitian and s, t ∈ C∞
0 (M,E ), then

ξH(s, t) = H(Ds(ξ), t)+H(s,Dt(ξ)) = H(∇ξs, t)+H(s,∇ξt), ∀ξ ∈ X (M).

Remark: Given an Hermitian vector bundle, there always exists an
hermitian connection. In general the hermitian structure is not unique.
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Hermitian Connections: matrix of 1-forms

Now let’s assume E → M is a Hermitian bundle and D is a Hermitian
connection. Let θ be a trivialization, and assume eλ is an orthonormal
basis.

Then Deλ =
∑
µ aλµeµ where aλµ ∈ C∞

1 (M,C).

We have dH(eλ, eµ) = 0 since H(eλ, eµ) = δλµ. Therefore:

0 = aλµ + aµλ

Thus A = −A∗, so (iA)∗ = iA.
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Curvature of Hermitian Connections

For the curvature, we have:

Rλµ = daλµ +
∑
κ

aλκ ∧ aκµ

Taking conjugates:

Rλµ = daλµ +
∑
κ

aλκ ∧ aκµ = −daµλ +
∑
κ

aκλ ∧ aµκ = −Rµλ

Thus (Rλµ) is a skew-Hermitian matrix. Hence (iRD)∗ = iRD , which
implies that iRD has real-valued 2-forms on its diagonal. Define:

tr(iRD) :=
∑
λ

ωλλ, where ωλλ = (RD)λλ

Since RD is a globally defined 2-form with values in E , tr(iRD) is a
real-valued 2-form defined on M.
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Chern Form for Line Bundles

We claim that dtr(RD) = 0.
Note that

r∑
λ,µ=1

aλµ ∧ aµλ = −
r∑

λ,µ=1

aµλ ∧ aµλ = −
r∑

λ,µ=1

aλµ ∧ aµλ

where first we used the skew-symmetry of the wedge product first and
later a change of summation index.
Using this, one can prove that

tr(RD) = d

(∑
λ

aλλ

)
=⇒ closed 1-form

Therefore:

1. tr(iRD) is closed and real.

2. tr(iRD) defines a cohomology class in H2
dR(M,R).

3. This class does not depend on the Hermitian connection (on the
blackboard: use the formula for difference of connections)

Introduction to Complex Differential Geometry V.del Barco - UNICAMP



Introduction to complex geometry - Preliminaries

• If V is a real vector space and J ∈ End(V ) such that J2 = −1 then
V has a structure of complex vector space. We shall denote V J this
complex vector space.

• Identify C with R2 and using the differentiable structure as real
manifold, we give to T(x,y)R2 = TzC a complex structure:

J : T(x,y)R2 → T(x,y)R2, J(v)(f ) = v(f ◦m), ∀f ∈ C∞(R2)

where m : R2 → R2, m(x , y) = (−y , x), (i.e. m(z) = iz). One can
easily check that J2 = −I .

This is the canonical complex structure of T(x,y)R2.

One can extend this procedure to R2n = Cn using the multiplication
by i on each variable and obtain a canonical complex structure Jn on
each tangent of R2n = Cn.
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• Let U ⊂ C be an open set and F : U → C be a smooth function,
which we view as a real function F (x , y) = (f (x , y), g(x , y)), if
z = x + iy .

Definition

We say that F is holomorphic if ∂x f = ∂yg and ∂y f = −∂xg.
This condition is equivalent to

J ◦ dF = dF ◦ J,

that is, dF(x,y) is a C-linear map of (T(x,y)R2)J for all (x , y) ∈ R2.

Similarly, one can consider holomorphic functions F : U ⊂ Cn → C, and
being holomorphic is now equivalent to dF commuting with the canonical
complex structure Jn.
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Complex Manifolds

Definition

A complex manifold of complex dimension m is a topological space M
with an open covering U such that for every point x ∈ M there exists
U ∈ U containing x and a homeomorphism φU : U −→ Ũ ⊂ Cm, such
that for every intersecting U,V ∈ U , the map between open sets of Cm

φUV := φU ◦ φ−1
V

is holomorphic. A pair (U, φU) is called a (holomorphic) chart and the
collection of all charts is called a holomorphic structure.

Example: Complex projective space CPn.

Definition

A function F : M → C is holomorphic if F ◦ φ−1
U is holomorphic for every

holomorphic chart.
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Almost Complex Structure on Complex Manifolds

Clearly, any complex manifold is a real C∞ manifold. We can define an
almost complex structure on M using the canonical complex structure Jn
of Cn:

For p ∈ M, Jp : TpM −→ TpM is defined as follows: let (U, φ) be a
holomorphic chart at p, then

Jp := d(φ−1
U ) ◦ Jn ◦ dφU

The definition is independent of the local chart.

Clearly, J2p = −I .

By definition, if φU = (x1, . . . , xn, y1, . . . , yn), then J(∂/∂xi ) = ∂/∂yi .

In addition, (dφU)p : TpM −→ Tφ(p)Cm is a R-linear isomorphism and
d(φU) ◦ Jp = Jn ◦ dφU .

Note: J is a (1, 1) tensor on M, i.e. J ∈ C∞(M,End(TM)).
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Almost Complex Structures

Definition

A section J ∈ C∞(M,End(TM)) on a differential manifold M (i.e. a
(1, 1)-tensor on M) satisfying J2 = −Id is called an almost complex
structure. The pair (M, J) is then referred to as an almost complex
manifold.

The previous slide shows taht every complex manifold carries an almost
complex structure.

The converse holds only under some extra (integrability) assumption that
we shall see next.
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The Complexified Tangent Bundle

Let (M, J) be an almost complex manifold.

Consider TMC = TM ⊗R C, that is, TpM
C = TpM ⊗R C, which is a

complex vector space.

TpM ⊗R C is a complex vector space; i(v ⊗ z) = v ⊗ iz and
TpM ⊂ TpM

C by v 7→ v ⊗ 1.

Any R-linear map S : TpM → TpM is extended to TpM
C as

S(v ⊗ z) = S(v)⊗ z , which is C-linear.

In particular we extend J to TpM
C. This extension (which we also

denote by J) also verifies J2 = −I on TpM
C, so its eigenvalues are ±i .

We denote T 1,0
p M and T 0,1

p M the eigenbundles corresponding to these
eigenvalues.

Proposition

T 1,0
p = {x − iJx : x ∈ TM}, T 0,1

p = {x + iJx : x ∈ TM}
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Theorem (Newlander-Nirenberg)

Let (M, J) be an almost complex manifold. The almost complex
structure J is induced by a structure of complex manifold on M if and
only if T 0,1 is integrable.

Proof: Assume M is a complex manifold and let (U, φ) be a
holomorphic chart. We have φ = (z1, . . . , zn) = (x1, . . . , xn, y1, . . . , yn).
We denote:

∂

∂zα
:=

1

2

(
∂

∂xα
− i

∂

∂yα

)
∂

∂z̄α
:=

1

2

(
∂

∂xα
+ i

∂

∂yα

)
Recall that J

(
∂
∂xα

)
= ∂

∂yα
, so ∂

∂zα
, ∂
∂z̄α

are local sections of T 1,0M and

T 0,1M, respectively. They actually form a local basis of them.
Given X ,Y ∈ T 0,1M, X =

∑
α aα

∂
∂z̄α

with Y =
∑
µ bµ

∂
∂z̄µ

:

[X ,Y ] =
∑
α,µ

aα
∂bµ
∂z̄α

∂

∂z̄µ
−
∑
α,µ

bµ
∂aα
∂z̄µ

∂

∂z̄α
∈ T 0,1M.

(complexified Lie bracket).
The converse holds ⇝ see Demailly or Kobayashi-Nomizu.
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Complexified exterior bundle

We continue with (M, J) an almost complex manifold.

Set ΛkMC = ΛkM ⊗ C, whose sections are k-forms on M with values on
C.

J extends to TpM
∗ by setting J(α) = α ◦ J for all α ∈ M∗. Later, we

extend it to Λ1
CM = TpM

∗ ⊗C as explained before. One can easily check
that, again, J2 = −1 on Λ1

CM = TpM
∗ ⊗ C so it provides a

decomposition on eigenbundles:

Λ1,0M = {ξ ∈ Λ1
CM/Jξ = iξ}, Λ0,1M = {ξ ∈ Λ1

CM/Jξ = −ξ}.

Similarly as before, one has

Lemma

Λ1,0M = {ξ ∈ Λ1
CM/ξ(z) = 0 ∀z ∈ T 0,1M}

Λ0,1M = {ξ ∈ Λ1
CM/ξ(z) = 0 ∀z ∈ T 1,0M}

Note that ω ∈ Λk,0M ⇔ X⌟ω = 0 ∀X ∈ T 0,1M.
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Suppose that J is complex (that is, J comes from a complex manifold
structure on M). Let (U, φ) be a holomorphic chart, with coordinates
zα = xα + iyα.
Extending the exterior derivative to ΛkMC := ΛkM ⊗ C we get

dzα = dxα + idyα, dz̄α = dxα − idyα.

Using that

J

(
∂

∂xα

)
=

∂

∂yα
,

we have Jdxα = −dyα, Jdyα = −dxα and thus

Λ1,0M = span{dzα = dxα + idyα : α = 1, . . . , n},
Λ0,1M = span{dz̄α = dxα − idyα : α = 1, . . . , n}

Notation: Λk,0M (resp. Λ0,kM) denotes the k-th exterior power of Λ1,0M
(resp. Λ0,1M). Furthermore, Λp,qM := Λp,0M ⊕ Λ0,qM and thus

ΛkMC :=
⊕

p+q=k

Λp,qM
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Nijenhuis Tensor and Integrability

To every almost complex structure J one can associate a (2, 1)-tensor NJ

called the Nijenhuis tensor, satisfying:

NJ(X ,Y ) = [X ,Y ] + J[JX ,Y ] + J[X , JY ]− [JX , JY ], ∀X ,Y ∈ X (M)

Proposition

Let J be an almost complex structure on M2m. The following statements
are equivalent:

(a) J is a complex structure.

(b) T 0,1M is integrable.

(c) dC∞(Λ1,0M) ⊂ C∞(Λ2,0M ⊕ Λ1,1M).

(d) dC∞(Λp,qM) ⊂ C∞(Λp+1,qM ⊕ Λp,q+1M) for all 0 ≤ p, q ≤ m.

(e) NJ = 0.

Proof. (On the blackboard)
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Characterization of Holomorphic Functions

Proposition

Let M be a complex manifold. Let f : M −→ C be a smooth
complex-valued function on M. The following assertions are equivalent:

(1) f is holomorphic.

(2) Z (f ) = 0 for all Z ∈ T 0,1M.

(3) df is a form of type (1, 0) (i.e. df ∈ Λ1,0M).

Proof. (On the blackboard)
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Definition of ∂, ∂̄

Recall that on a complex manifold:

dC∞(M,Λp,qM) ⊂ C∞(M,Λp+1,qM ⊕ Λp,q+1M)

We can therefore define

∂ : C∞(M,Λp,qM) −→ C∞(Λp+1,qM)

∂̄ : C∞(M,Λp,qM) −→ C∞(Λp,q+1M)

by composing d with projections so that d = ∂ + ∂̄.

Note that

∂2 : Λp,q → Λp+1,q → Λp+2,q

∂̄2 : Λp,q → Λp,q+1 → Λp,q+2

∂̄∂ : Λp,q → Λp+1,q → Λp+1,q+1

∂∂̄ : Λp,q → Λp,q+1 → Λp+1,q+1
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Lemma

The following identities hold:

∂2 = 0, ∂̄2 = 0, ∂∂̄ + ∂̄∂ = 0

Corolary

f : M → C is holomorphic if and only if ∂̄f = 0.

The operator ∂̄ is called the Dolbeault operator.
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Class 4: Holomorphic bundles and Chern connection
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Definition

A complex vector bundle π : E −→ M over a complex manifold M is said
to be holomorphic if E is a complex manifold, the projection map π is
holomorphic and there exists a covering (Vα)α∈I of X and a family of
holomorphic trivializations θα : π−1(Vα) −→ Vα × Cr .

Not every complex vector bundle over a complex manifold is holomorphic.

A complex vector bundle may admit different holomorphic structures.

For a holomorphic vector bundle the transition functions between
holomorphic charts gαβ : Uα ∩ Uβ → GL(k ,C) are holomorphic.
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Examples The tangent bundle of a complex manifold is holomorphic.

Examples If M is a complex manifold, Λp,0M is holomorphic. Indeed,
Let (U, φ) be a chart on M, with φ = (z1, . . . , zn).
Then dzi1 ∧ · · · ∧ dzip is a (p, 0)-form and thus we can define
Φ : π−1(U) −→ U × Cr with

α 7→ (π(α), (α(dzi1 , . . . , dzip )))

If (V , ψ) is another local chart with ψ = (w1, . . . ,wn), then the change
of coordinates is holomorphic.

In particular, if dimR M = 2n, then Λn,0M is a holomorphic line bundle,
that is, whose fibers have dimension 1.

Note: Λ0,p is not in general holomorphic.
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Dolbeault Operator on E-valued Forms

Let E be a holomorphic bundle over a complex manifold. We let
Λp,qE = Λp,qM ⊗ E be the E -valued (p, q)-forms.

Let eλ be a local holomorphic frame. Given σ ∈ C∞(M,Λp,qE ) we have

σ =
∑
λ

σλ ⊗ eλ, where σλ ∈ Λp,qM

We define ∂̄ : C∞(Λp,qE ) −→ C∞(Λp,q+1E ) as follows:

∂̄σ =
∑
λ

∂̄σλ ⊗ eλ

By construction, ∂̄2 = 0.

Note: If σ =
∑
λ τλ ⊗ fλ for some other holomorphic trivialization, then

τλ =
∑
λ gλµσµ where gλµ are holomorphic.

Therefore ∂̄τλ =
∑
λ gλµ∂̄σµ, so ∂̄ does not depend on the trivialization.
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Characterization of Holomorphic Bundles

Theorem

Let E be a complex vector bundle over a complex manifold. Then E is
holomorphic if and only if there exists an operator

∂̄ : C∞(Λp,qE ) −→ C∞(Λp,q+1E )

satisfying the Leibniz rule and such that ∂̄2 = 0.

Introduction to Complex Differential Geometry V.del Barco - UNICAMP



Chern Connection

We saw that:

M complex
E holom.

}
⇒ ∃∂̄ : C∞(Λp,qE ) → C∞(Λp,q+1E )

We will see:

M complex
E complex v.bdl.

D connection

 ⇒ ∃D0,1 : C∞(Λp,qE ) → C∞(Λp,q+1E )
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Definition

Let M be a complex vector bundle, E an holomorphic bundle and H an
hermitian structure on E. An hermitian connection D is called a Chern
connection if D0,1 = ∂̄.

Remark: The curvature of a Chern connection has zero (0, 2)-part.
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Theorem

For every Hermitian structure H on a holomorphic vector bundle E , there
exists a unique hermitian connection D such that D0,1 = ∂̄.

Proof. Assume that such D exists and let ∇ denote its covariant
derivative.

• Note that if E is holomorphic then E∗ is also holomorphic.
Moreover, since D on E satisfies D0,1 = ∂̄, this equation also holds
for the induced connection on E∗.

• D induces a connection in E∗, which we also denote by D. Indeed,
it is the connection induced by the covariant derivative

(∇Xσ
∗)(σ) := X (σ∗(σ))− σ∗(∇Xσ),

for every X ∈ X (M), σ∗ ∈ C∞(M,E∗), σ ∈ C∞(M,E )
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• D also induces a connection in End(E ) (which we also denote by D)
by declaring its covariant derivative as:

(∇XQ)(σ) := ∇X (Q(σ))− Q(∇Xσ),

for every X ∈ X (M), Q ∈ C∞(M,Hom(E )), σ ∈ C∞(M,E )
In particular, if Q = H, the formulas of two induced connections
above give

(∇XH)(σ)(τ) = ∇X (H(σ))(τ)− H(∇Xσ)(τ)

= X (H(σ)(τ))− H(τ)(∇Xσ)− H(∇Xσ)(τ)

= X (H(τ, σ))− H(∇Xσ, τ)− H(τ,∇Xσ) = 0

and this vanishes because D is an hermitian connection, for any
τ, σ ∈ C∞(M,E ). Therefore

∇X (H(σ)) = H(∇Xσ), ∀X ∈ TM, σ ∈ C∞(M,E ). (1)
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• Applying (1) to Z = X + iY ∈ TMC we get,

∇Z (H(σ)) = ∇X (H(σ)) + i∇Z (H(σ))

H(∇Zσ) = H(·,∇Xσ + i∇Y σ = H(∇Xσ)− iH(∇Y σ)

Therefore,

∇Z (H(σ)) = H(∇Z̄σ), ∀X ∈ TM, σ ∈ C∞(M,E ). (2)

• For Z ∈ T 0,1, we get

∇Z (H(σ)) = D(H(σ))(Z ) = D0,1H(σ).

Moreover, since Z̄ ∈ T 1,0, we get

H(∇Z̄σ) = H((Dσ)(Z̄ )) = H(D1,0σ(Z̄ ))

Using this two equalities in (2), we get

D0,1H(σ) = H(D1,0σ(Z̄ )) (3)

Note that on the left hand side D0,1 is the connection on E∗ and on
the right hand side, D1,0 is on E . By hypothesis, D0,1 = ∂̄ (on E∗)
and therefore we can re-write the previous equality as
D1,0 = H−1∂̄H.
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Finally, we can conclude that if a D as in the statement exists, then it
must satisfy

D = D1,0 + D0,1 = H−1∂̄H + ∂̄. (4)

Therefore, given a holomorphic vector bundle E and a hermitian
structure H, D is determined by E and H by the formula above, so it
must be unique.

In addition, given E and H, we can define D on sections of E as in (4)
and extend it using Leibniz rule and prove that this is a connection that
satisfies the required conditions.
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First Chern class

Proposition (Kobayashi-Nomizu)

To every complex vector bundle E over a smooth manifold M one can
associate a cohomology class c1(E ) ∈ H2(M,Z) called the first Chern
class of E satisfying the following axioms:

• (naturality) For every smooth map f : M −→ N and complex
vector bundle E over N, one has f ∗(c1(E )) = c1(f

∗E ).

• (Whitney sum formula) For every bundles E ,F over M one has
c1(E ⊕ F ) = c1(E ) + c1(F ).

• (normalization) The first Chern class of the tautological line bundle
of CP1 is equal to −1 in H2(CP1,Z) ≃ Z, which means that the
integral over CP1 of any representative of this class equals −1.

Introduction to Complex Differential Geometry V.del Barco - UNICAMP



Chern Class from Connection

Theorem

Let D be a connection on a complex bundle E over M. The real
cohomology class

c1(D) :=

[
i

2π
tr(RD)

]
is equal to the image of c1(E ) in H2

dR(M,R).
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Note that a procedure on the proof generalizes to any line bundle.

Let E be a holomorphic line bundle with an Hermitian metric over a
complex manifold. Given a nowhere vanishing holomorphic section σ, we
set

u = H(σ, σ) = e−φ,

for some φ : M → R.

Then, for the Chern connection, a procedure similar as above gives

RD = ∂̄∂ log u = ∂∂̄φ.

The function φ is called a local weight of the bundle.
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Hermitian Metric on Almost Complex Manifolds

Definition

A Hermitian metric on an almost complex manifold (M, J) is a
Riemannian metric h such that:

h(X ,Y ) = h(JX , JY ), ∀X ,Y ∈ TM

The fundamental form of a Hermitian metric is defined by:

Ω(X ,Y ) := h(JX ,Y )

We say that (M, h, J) is an Hermitian manifold if J is an almost complex
structure on M and h is Hermitian on (M, J).
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Extension to the Complexified Tangent Bundle

The extension (also denoted by h) of the Hermitian metric to TMC by
C-linearity satisfies:

h(Z̄ , W̄ ) = h(Z ,W ), ∀Z ,W ∈ TMC

h(Z ,Z ) > 0 ∀Z ∈ TMC − {0}
h(Z ,W ) = 0, ∀Z ,W ∈ T 1,0M and ∀Z ,W ∈ T 0,1M

Conversely, each symmetric tensor on TMC with these properties defines
a Hermitian metric by restriction to TM.
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Hermitian Structure on the Tangent Bundle

The tangent bundle of an almost complex manifold (M, J) is a complex
vector bundle. If h is a Hermitian metric on M, then:

H(X ,Y ) := h(X ,Y )− ih(JX ,Y ) = (h − iΩ)(X ,Y )

defines a Hermitian structure on the complex vector bundle (TM, J).

Conversely, any Hermitian structure H on TM defines a Hermitian metric
h on M by:

h := Re(H)
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Existence of Hermitian Metrics

Every almost complex manifold admits Hermitian metrics.
Construction: Simply choose an arbitrary Riemannian metric g and
define:

h(X ,Y ) := g(X ,Y ) + g(JX , JY )

This is automatically a Hermitian metric with respect to the almost
complex structure J.
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Definition

A Hermitian metric h on an almost complex manifold (M, J) is called a
Kähler metric if J is a complex structure and the fundamental form Ω is
closed, that is,

h is Kähler ⇐⇒ NJ = 0 and dΩ = 0.

Lemma

Let (M, h, J) be an Hermitian manifold and let ∇ denote the Levi-Civita
connection. Then

NJ = 0 ⇔ (∇JX J)Y = J(∇X J)Y , ∀X ,Y ∈ TM (⋆)

Recall that
(∇Y J)X = ∇Y (JX )− J(∇YX )
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• Let X ,Y ∈ TpM and denote also by X ,Y local vector fields around
p extending these vectors and such that that (∇X )p = 0 = ∇Y )p.
This implies that ∇WX = ∇WY = 0 for all W . In particular,

∇XY = ∇YX = 0, (∇JX J)(Y ) = ∇JX JY ,

∇Y J)X = ∇Y (JX ), (∇X J)Y = ∇X (JY ).

• using that [X ,Y ] = ∇XY −∇YX and the above we get

[X ,Y ]p = 0

[JX ,Y ]p = −(∇Y J)X

[X , JY ]p = (∇X J)Y

[JX , JY ]p = (∇JX J)Y − (∇JY J)X

Therefore

NJ(X ,Y ) = J(∇X J)Y − J(∇Y J)X − (∇JX J)Y + (∇JY J)X

= {J(∇X J)Y − (∇JX J)Y }+ {(∇JY J)X − J(∇Y J)X}

Clearly, if (⋆) holds, NJ = 0.
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For the converse, we define

A(X ,Y ,Z ) = h(J(∇X J)Y − (∇JX J)Y ,Z ).

Excercise: A is skew-symmetric in the last two variables.

If NJ = 0, the computation above gives A(X ,Y ,Z ) = A(Y ,X ,Z ). So
applying these properties in different orders, we get

A(X ,Y ,Z ) = −A(X ,Z ,Y ) = −A(Z ,X ,Y )

but also

A(X ,Y ,Z ) = A(Y ,X ,Z ) = −A(Y ,Z ,X ) = −A(Z ,Y ,X ) = A(Z ,X ,Y )

so A = 0 and the lemma follows.
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Theorem

A hermitian metric h on (M, J) almost complex is Kähler if and only if
∇J = 0. Equivalently, if and only if ∇X (JY ) = J(∇XY ) for all
X ,Y ∈ TM.

Proof. If ∇J = 0, then J is integrable by the previous lemma. Also, since
Ω = h(J·, ·), one can prove that ∇Ω = 0 and therefore dΩ = 0.

Conversely, suppose that h is Kähler and denote by B the tensor:

B(X ,Y ,Z ) := h((∇X J)Y ,Z ) = (∇XΩ)(Y ,Z ).

Since J and ∇X J anti-commute we have:

B(X ,Y , JZ ) = B(X , JY ,Z )

In addition, from the previous lemma,

B(X ,Y , JZ ) + B(JX ,Y ,Z ) = 0

Combining these two relations also yields:

B(X , JY ,Z ) + B(JX ,Y ,Z ) = 0
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We now use that dΩ is the skew-symmetrization of ∇Ω and apply
dΩ = 0 twice, first on X ,Y , JZ , then on X , JY ,Z and get:

B(X ,Y , JZ ) + B(Y , JZ ,X ) + B(JZ ,X ,Y ) = 0

B(X , JY ,Z ) + B(JY ,Z ,X ) + B(Z ,X , JY ) = 0

Adding these two relations and using the previous properties of B yields
2B(X ,Y , JZ ) = 0, that is, J is parallel. □
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