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Class 1: Real and Complex Vector Bundles



DEFINITION OF VECTOR BUNDLES

Let M be a C* differentiable manifold of dimension m and let K =R or
K = C be the scalar field.
DEFINITION

A (real, complex) vector bundle of rank r over M is a C> manifold E
together with

a C>® map 7 : E — M called the projection,

a K-vector space structure of dimension r on each fiber E, = 7=1(x)

such that there exists an open covering {V,}aes of M and

diffeomorphisms
Op T H (Vo) — Vi x K,
satisfying:
probs=m
for all x € V,, of M, the map E, — {x} x K" = K" is a K-linear
isomorphism.

0., is called a local trivialization.
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TRANSITION FUNCTIONS

In the above conditions, for each «, 5 € I, the map
Oap =0 005" : (Vo N V5) x K" — (Vo N V3) x K

verifies 0,5({x} x K") = {x} x K" and is a K-isomorphism.
We thus define

eaﬁ(x’f):(x7gaﬂ(x)'§)v (x,§)€(VaﬂV5) x K
where go5 : Vo N V3 — GL(r,K) is C.

On triple intersections of the form V,, N Vg N V,, they satisfy the cocycle
relation

(1.1) gup8sy =8ay oNn VoNVaNV,.

The collection (gag) is called a system of transition matrices.
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EXAMPLES

Example. The product manifold E = M x K’ is a vector bundle over M,
and is called the trivial vector bundle of rank r over M.

Example. The tangent bundle TM of a differentiable manifold is a real
vector bundle over M.
The transition matrices are given by g,3 = d7.s Where 7,3 = 7, 0 Tgl.

Example. Similarly, the cotangent bundle T*M of TM and the p-th
exterior power AP T*M (bundle of differential forms of degree p on M)
are real vector bundles over M.
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CANONICAL LINE BUNDLE OVER PROJECTIVE SPACE

The complex projective space CP” is the set of complex lines on C"*+1:
CP" = C"™' — {0}/ ~,

where, for z,w € C™1, z ~ w & z = Aw for some A € C*.
Local charts for CP": for i =0, ..., n, set

U ={[z] 122 £0}, ¢i:U—C"plz]) = (2, 2L ZL 2y

z;’ z ' oz z;

The tautological line bundle L over CP" is defined as follows:

L={([z],w) | [z] € CP",w € [z]}
Consider the natural map
7. L— CP", x([z],w)=]z],

The fiber over the line [z] € CP" consists of all pairs ([z], w) with w € [].
Since the fibers are C-lines, we can introduce a natural C-vector space
structure on them.
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VECTOR SPACE STRUCTURE ON FIBERS

([z], w) + (2], v) := ([z], w + u)
k- (2], w) = ([z], 5 - w).

This turns the fibers of 771([z]) into C-vector spaces of dimension one.
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LocAL TRIVIALIZATIONS OF THE CANONICAL LINE BUNDLE

For a non-zero vector z € C™!, we denote by [z] the C-line spanned by
z. For1<i<n+1,let Uy ={[z] € CP" | x; # 0} and consider the
bijections

CD,- : U,' x C — @n+1|ui, ‘D,’([Z],)\Z) = ([Z],)\Z,‘).

It is easy to see that €t has a unique structure as a smooth manifold
such that the canonical map 7 : L — CP" is a complex line bundle for
which the bijections ®; are local trivializations, see Lemma 1.3.4.
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VECTOR BUNDLE CHART LEMMA

Let M be a smooth manifold, and suppose that for each x € M we are
given a K-vector space E, of some fixed dimension r. Let E = | |, ), Ex,
and let 7 : E — M be the map that takes each element of E, to the
point x.

Suppose furthermore that we are given the following data:
an open cover {U, }aer of M
for each a € 1, a bijective map 0, : 7} (Uy) — U, x C" whose
restriction to each E is a vector space isomorphism from E, to
{x} x K" =K
for each «, 8 € I with U, N Ug # (), a smooth map
gap : Ua N Ug — GL(r,K) such that the map 6, o 051 from
(Us N Ug) x K" to itself has the form

0o 0057 (x,€) = (x, 8ap(x)E)-

Then E has a unique topology and smooth structure making it into a
smooth manifold and a rank-r vector bundle over M.
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OPERATIONS ON VECTOR BUNDLES

Let E, F be K-vector bundles of rank ri, r» over M. We can construct
new K vector bundles using vector space operations.

For example E*, E ® F,Hom(E, F) are defined by

(E")x =(Ex)", (E®F)x=E ®F,, Hom(E,F),=Hom(E,, F).
Let {V,} be a local trivialization for both bundles E and F. If (gns) and
(vap) are the transition matrices of E and F, then for example

E® F,E® F,E*, Hom(E, F) are the bundles defined by the transition
matrices

8ap ®7aﬁ7 8ap 69"/04[37 (gojgl)Ta (g(;;)T@)%ﬁ
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Let M be a differentiable manifold and E a vector bundle over M.

Example The bundle of k-forms on M with values on E is A T*M ®g E.
The fiber at x consists of

NT*MRE, = {0 : T(Mx...xTyM — E, | o is k—linear and alternating}.

Example The complexified tangent bundle TM® = TM ®g C has fiber
T.M ®r C.
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PULLBACK BUNDLE

Let M, M be C> manifolds and ¢ : M —» M a smooth map. If E is a
vector bundNIe on M, one can define in a natu[al way a C° vector bundle
7 :E — M and a C*° linear morphism W : E — E such that the

diagram
E % E
Ny e
M % M

commutes and such that ¥ : £z — Ey(x) is an isomorphism for every
% € M. The bundle E can be defined by

E={(%¢) € MxE: (%) =n(£)}

and the maps 7 and W are then the restrictions to E of the projections of
M x E onto M and E, respectively.
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SECTIONS OF VECTOR BUNDLES

DEFINITION

Let U C M be an open subset of M. A smooth section of E on U is a
differentiable function s : U — E such that mos = idy (i.e. s(x) € Ey
for all x € U). We denote C*°(U, E) the set of all smooth sections on U.

If 51,50 € C°(U,E) and f € C*°(M,K), then s; + s, and fs; are
sections on U as well.

Example: The Zero Section

The zero section is the map s : M — E defined by s(x) = 0, for all

x € M, where 0, denotes the zero element in the fiber E,. This is always
a C*° section of E.

Example: Vector Fields
Vector fields on M are exactly the C* sections of the tangent bundle
™.

Example: Differential Forms
Differential p-forms on M are the C* sections of the bundle AP T*M,
where AP T*M is the p-th exterior power of the cotangent bundle.
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LOCAL FRAMES AND FORM OF SECTIONS

(On the blackboard)

Summary:

On a local chart 6 : 77 1(U) — U x K", take {e)}5_; a basis of K" and
set ex(x) := 07 1(x, €x), which are sections of E. Given any section

s: U — E, we have
S = E OXEN,
A

where gy € C>(U).
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Example: Forms with Values in a Vector Bundle
Sections of AKT*M ® E are C*> maps w: M — A*T*M ® E that are
k-forms on M with values in the vector bundle E.

These generalize differential forms by allowing coefficients in the fibers of
E rather than just scalar values.

For k > 1, we denote C2°(M, E) := C>(M,\T*M  E) the sections of

this bundle, and C§°(M, E) := C>*(M, E).
With this notation, C°(M,K) is the space of K-valued k-forms on M.
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Write sections in coordinates

Transition functions

Local frames and form of sections of AK\T*M @ E
(On the blackboard)

Summary:

On a local chart 6 : 771(U) — U x K', take e, as before. Given
s € C°(M, E) we have
s = ZU)\ & ey,
A

where o € C°(U,K) are usual k-forms on U C M.
If §: 7=1(U) — U x K" is another trivialization and s = 3, 5, ® &),
then

7(x) = g(x)o(x), YxeUundU,

where g : UN U — GL(r,K) are the transition functions verifying

00071 (x,&) = (x,8(x)¢).
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Class 2: Linear Connections and Curvature



DEFINITION OF LINEAR CONNECTION

DEFINITION
A (linear) connection D on the bundle E is a linear differential operator
of order 1 acting on C°(M, E), for all g > 0, and satisfying the following
properties:

D:Cx(M,E) — C3%1(M, E),

D(f ANs)=df ANs+ (=1)Pf A Ds
for any f € C;°(M,K) and s € C°(M, E), where df stands for the usual
exterior derivative of f.

Introduction to Complex Differential Geometry V.del Barco - UNICAMP



LEIBNIZ RULE FOR FUNCTIONS AND SECTIONS

In the particular case where f € C*°(M,K) is a function (i.e., a 0-form)
and s € C*°(M, E) is a section of E (i.e., a O-form with values in E), the
Leibniz rule simplifies to:

D(f -s)=df @ s+ f - Ds

This shows that D behaves like a derivation with respect to scalar
multiplication.
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Connection on a Trivial Bundle
Consider the trivial bundle E = M x V over M, where V is a fixed vector
space of dimension r. Let A € C°(M, End(K")).

We can then define a connection on E as follows.

Let 0 € C°(M, E) and write s = ) |0\ ® ey, where ey is a global frame
and o) are g-forms on M.

We thus set Ds = do + A A . One can check that this is in fact a
connection.
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EVERY CONNECTION IS LOCALLY A TRIVIAL CONNECTION

Locally, any connection is trivial. That is, with respect to a local
trivialization 0, : 7" 1(U,) — U, X K', a connection D can be
described by a matrix of 1-forms

A € QY(Uq, End(K"))

where the action of D on sections in coordinates is determined by:

Ds|y, =do+ANo
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CHANGE OF COORDINATES FOR CONNECTION 1-FORMS

Under a change of local trivialization corresponding to the transition
function g,g, the matrices of 1-forms transform as:

AB = g(;@}Aagozﬁ + g(;ﬁl dgaﬁ

where A, Ag denote, respectively the matrix of 1-forms corresponding to
the trivializations 6, 03.
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DIFFERENCE OF TwO CONNECTIONS

The difference of two connections D and D’ on the same bundle E is
given by a global 1-form:

D' — D = Q € C;*(M,End(E))

where Q is a section of the endomorphism bundle End(E) = Hom(E, E).
Note that @ is a matrix of 1-forms, globally defined on M, contrary to
the connection 1-forms A that depend on a trivialization.

This means the space of all connections on E is an affine space modeled
on C*°(M,End(E)).
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CURVATURE OF A CONNECTION

Given a connection RP on E, the curvature is defined as:

R=DoD:C®M,E) — C*(M,N*T*M® E)

Locally, with respect to a trivialization 6, the curvature is given by a
matrix of 2-forms:

RP =dA+ANA€ CG°(U, End(K"))
where A is the matrix of 1-forms corresponding to 6.

These local matrices glue together to form a global 2-form R? on M
with values in End(E).
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CURVATURE OF LINE BUNDLES

For a line bundle L over M, the curvature is a global (usual) 2-form on M:

R € C°(M,K) = Q*(M)

An important property is that the curvature of any connection on a line
bundle is always closed:

dR=0

This means the curvature defines a cohomology class in de Rham
cohomology H3 (M), which is an invariant of the line bundle
independent of the choice of connection.
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COVARIANT DERIVATIVE WITH RESPECT TO VECTOR FIELDS

Let D be a conection on E and £ € C*°(M, TM) a vector field on M.

DEFINITION

Given a section s € C>(M, E), the covariant derivative of s in the
direction of & is the section Ves € C>°(M, E) given by

(Ves)(x) = Ds(x)(&x)-
For any ¢ fixed, this gives a linear operator £p satisfying the Leibniz rule:

Ve(fs)=¢&(f)s+f Vs, fe C®(M,K), se C°(M,E).
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CURVATURE AND COMMUTATION OF COVARIANT DERIVATIVES

PROPOSITION

For any vector fields £, on M and any section s € C*°(M, E), the
commutator of covariant derivatives is given by:

VeViys =V, Ves = Vigs + RP(€,m)s

This relation shows that the failure of covariant derivatives to commute
is precisely measured by the curvature of the connection.

Proof. (On the blackboard)
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Class 3: Hermitian Vector Bundles and Complex Manifolds



HERMITIAN VECTOR BUNDLES

Let E — M be a complex rank k bundle over some differentiable
manifold M.
DEFINITION

A Hermitian structure H on E is a smooth field of Hermitian products on
the fibers of E, that is, for every x € M, H : E, x E, — C satisfies:

H(u,v) is C-linear in u for every v € E,.

H(u,v) = H(v, u) for all u,v € E,.

H(u, u) > 0 for all u # 0.
(u;v)

H(u, v) is a smooth function on M for every smooth sections u, v.
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PROPERTIES OF HERMITIAN STRUCTURES

From the above conditions:

H is C anti-linear in the second variable.

The third condition shows that H is non-degenerate so we get a
bundle isomorphism H : E — E*, H(§) = H(-,§).
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EXISTENCE OF HERMITIAN STRUCTURES

Every rank k complex vector bundle E admits Hermitian structures.
To see this, just take a trivialization (U;, 6;) of E and a partition of the
unity f; subordinate to the open cover {U;} of M.

For every x € U, let (H;)x denote the pull-back of the Hermitian metric
on Ck by the C-linear map 6;|g,. Then

H=Y fiH;

is a well-defined Hermitian structure on E.
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HERMITIAN STRUCTURE IN LOCAL COORDINATES

Assume H is a Hermitian structure on E, a complex bundle. Let 6 be a
trivialization 6 : 771(U) — U x C" and let ey, ..., e, be the local frame
induced by 6.

We define the matrix of the Hermitian form with respect to this local
frame as

h,J(X) = H(e,-(x), ej(x))

where hj € C*°(U,C). This gives a Hermitian matrix h = (h;;) of
smooth functions on U.
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EXTENSION OF HERMITIAN METRIC TO SECTIONS

We can extend the Hermitian metric to sections:

C°(M,E) x C°(M, E) — C;7,(M,C)

(s,t) — H(s,t)

such that for s =), o\x® ey and t =) 7, ® e,, we set

©w

H(s,t) = Zo,\ AT H(ex, e,).
A p
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PROPERTIES OF EXTENDED HERMITIAN METRIC

Note: If s, t € C5°(M,E), then s =3, oxey and t = Zu Tu€p.

Then H(s,t) € C§°(M, E) and its exterior derivative satisfies:

dH(s, t)(¢) = d(H(s, t))(§) = £(H(s, 1))

for every vector field £ on M.

Note: If u € C°(M,E), t € C§°(M, E) then H(u,t) € CX°(M, E).
Moreover, for every £ € X (M),

H(u, t)(€) = H(u(§), t)
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DEFINITION

A linear connection D is called Hermitian if for all s € C3°(M, E),
t € C°(M,E), we have

dH(s,t) = H(Ds, t) + (—1)PH(s, Dt).

Given the equalities above, if H is Hermitian and s, t € C§°(M, E), then

EH(s,t) = H(Ds(&),t)+H(s, Dt(€)) = H(Ves, t)+H(s, Vet), V€ € X(M).

Remark: Given an Hermitian vector bundle, there always exists an
hermitian connection. In general the hermitian structure is not unique.
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HERMITIAN CONNECTIONS: MATRIX OF 1-FORMS

Now let's assume E — M is a Hermitian bundle and D is a Hermitian
connection. Let # be a trivialization, and assume ey is an orthonormal

basis.
Then Dex =3, axu€, where ay, € C°(M, C).
We have dH(ey, e,) = 0 since H(ex, e,) = dx,. Therefore:

O:a,\u—kau,\

Thus A = —A*, so (iA)* = iA.
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CURVATURE OF HERMITIAN CONNECTIONS
For the curvature, we have:
RAM = da,\u + E Ak N Akp
K

Taking conjugates:

Rau = dax; + Y 3w A Gy = —dan + Y apn A s = —Rin
K K

Thus (Ry,.) is a skew-Hermitian matrix. Hence (iRP)* = iRP, which
implies that iRP has real-valued 2-forms on its diagonal. Define:

tr(iRD) = Zw;v\, where WAN = (RD),\,\
A

Since RP is a globally defined 2-form with values in E, tr(iRP) is a
real-valued 2-form defined on M.
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CHERN FORM FOR LINE BUNDLES

We claim that dtr(RP) = 0.
Note that

r
E arp Napn = — E A Napy = — E arp N aux

Ap=1 A,p=1 Ap=1

where first we used the skew-symmetry of the wedge product first and
later a change of summation index.
Using this, one can prove that

r(RP) =d (Z aM) = closed 1-form
A

Therefore:
tr(iRP) is closed and real.
tr(iRP) defines a cohomology class in H3z (M, R).

This class does not depend on the Hermitian connection (on the
blackboard: use the formula for difference of connections)
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INTRODUCTION TO COMPLEX GEOMETRY - PRELIMINARIES

If V is a real vector space and J € End(V) such that J?> = —1 then
V has a structure of complex vector space. We shall denote V7 this
complex vector space.

Identify C with R? and using the differentiable structure as real
manifold, we give to T(ny)R2 = T,C a complex structure:

J: TR = Ty R2, J(V)(F) = v(f o m), Vf € C*(R?)
where m: R? = R?, m(x,y) = (—y, x), (i.e. m(z) = iz). One can
easily check that J? = —/.

This is the canonical complex structure of T(X)y)Rz.

One can extend this procedure to R?" = C" using the multiplication
by i on each variable and obtain a canonical complex structure J, on
each tangent of R?" = C”".

Introduction to Complex Differential Geometry V.del Barco - UNICAMP



Let U C C be an open set and F : U — C be a smooth function,
which we view as a real function F(x,y) = (f(x,y),g(x,y)), if
z=x+1Iy.

DEFINITION
We say that F is holomorphic if Oyf = 0,g and 0,f = —0xg.
This condition is equivalent to

JodF =dF o J,

that is, dF(xy) is a C-linear map of (T, R?)’ for all (x,y) € R2.

Similarly, one can consider holomorphic functions F : U € C" — C, and
being holomorphic is now equivalent to dF commuting with the canonical
complex structure J,.
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COMPLEX MANIFOLDS

DEFINITION

A complex manifold of complex dimension m is a topological space M
with an open covering U such that for every point x € M there exists
U € U containing x and a homeomorphism ¢y : U — U c C™, such
that for every intersecting U,V € U, the map between open sets of C™

puv =puo @Ql

is holomorphic. A pair (U, @y) is called a (holomorphic) chart and the
collection of all charts is called a holomorphic structure.

Example: Complex projective space CP".

DEFINITION

A function F : M — C is holomorphic if F o <pal is holomorphic for every
holomorphic chart.
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ALMOST COMPLEX STRUCTURE ON COMPLEX MANIFOLDS

Clearly, any complex manifold is a real C> manifold. We can define an
almost complex structure on M using the canonical complex structure J,
of C":

Forpe M, J,: T,M — T,M is defined as follows: let (U, ) be a
holomorphic chart at p, then

Jp = d(py") © Jno dipy
The definition is independent of the local chart.
Clearly, J> = —1.
By definition, if oy = (x1,...,Xn, Y1, .-, Yn), then J(8/0x;) = 0/Dy;.
In addition, (dyy)p : ToM — T, ,)C™ is a R-linear isomorphism and

d(SOU) oJp=Jyodpy.
Note: Jis a (1,1) tensor on M, i.e. J € C*(M, End(TM)).

Introduction to Complex Differential Geometry V.del Barco - UNICAMP



ALMOST COMPLEX STRUCTURES

DEFINITION

A section J € C*°(M, End(TM)) on a differential manifold M (i.e. a
(1,1)-tensor on M) satisfying J*> = —1d is called an almost complex
structure. The pair (M, J) is then referred to as an almost complex

manifold.

The previous slide shows taht every complex manifold carries an almost
complex structure.

The converse holds only under some extra (integrability) assumption that
we shall see next.
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THE COMPLEXIFIED TANGENT BUNDLE

Let (M, J) be an almost complex manifold.

Consider TMC® = TM ®g C, that is, T MC = ToM ®gr C, which is a
complex vector space.

ToM ®g C is a complex vector space; i(v ® z) = v ® iz and
T,M C T,JM(C by viev®l.

Any R-linear map S : T,M — T,M is extended to T,M® as
S(v® z) = S(v) ® z, which is C-linear.

In particular we extend J to T,M®. This extension (which we also

denote by J) also verifies J> = —/ on TPI\/IC, so its eigenvalues are =i.
We denote T,°M and T2''M the eigenbundles corresponding to these
eigenvalues.

PROPOSITION

O={x—ilx:xeTM}, TP'={x+ik:xeTM}
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THEOREM (NEWLANDER-NIRENBERG )

Let (M, J) be an almost complex manifold. The almost complex
structure J is induced by a structure of complex manifold on M if and
only if T%1 js integrable.

Proof: Assume M is a complex manifold and let (U, ) be a
holomorphic chart. We have ¢ = (z1,...,2,) = (X1, s X0y Y1, - -, Yn)-

We denote:
9 _1(90 .90
8za o 2 aXa a)/a

0 _1(0 .0
afa o 2 8xa aya

d d o @ 1,0
Recall that J (%) /SO 57—, 5z are local sections of T-°M and

OYa
TO1M, respectively. They actually form a local basis of them.
Given X,Y € TO'M, X =3 an32 with Y =3 b M)z ;

b, O D20 0 o1
X Y]:g"“aza 0z, az hoz, oz < M

(complexified Lie bracket).
The converse holds ~~ see Demailly or Kobayashi-Nomizu.
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COMPLEXIFIED EXTERIOR BUNDLE

We continue with (M, J) an almost complex manifold.

Set AKMg = A*M @ C, whose sections are k-forms on M with values on
C.

J extends to T,M* by setting J(«) = ao J for all @« € M*. Later, we
extend it to ALM = T,M* @ C as explained before. One can easily check
that, again, J2 = —1 on ALM = T,M* @ C so it provides a
decomposition on eigenbundles:

NOM = {€ € NeM/JE = i€}, NIM = {€ € ALM/JE = —¢}.
Similarly as before, one has

LEMMA
ANOM = {6 e NEM/E(z) =0z € TO M}
NIM = {¢ e NLM/E(z) =0z € THOM}

Note that w e A*M < Xw =0 VX e TO1IM.
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Suppose that J is complex (that is, J comes from a complex manifold
structure on M). Let (U, ¢) be a holomorphic chart, with coordinates
Zo = Xa + Vo

Extending the exterior derivative to AKM® := AKM @ C we get

dz, = dxo + idy,, dz, = dx, — idy,.

0 0
J(%)_M

we have Jdx, = —dy,, Jdy, = —dx, and thus

Using that

AV = span{dz, = dx, + idy, : a=1,...,n},
ANIM = span{dZ, = dx, — idy, :a =1,...,n}

Notation: A*OM (resp. A%%M) denotes the k-th exterior power of ALOM
(resp. A% M). Furthermore, APIM := APOM @& A%9M and thus

NME = P ANTM
p+g=k
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NI1JENHUIS TENSOR AND INTEGRABILITY

To every almost complex structure J one can associate a (2, 1)-tensor N7
called the Nijenhuis tensor, satisfying:

NY(X,Y) = [X, Y]+ J[UX, Y]+ J[X, JY] — [UX, JY], VX,Y € X(M)

PROPOSITION

Let J be an almost complex structure on M?™. The following statements
are equivalent:

J is a complex structure.

TO1M is integrable.

dC®(AYOM) C C®(A>OM @ AVIM).

dC>®(APIM) C C®(ANPTLIM & NP9TIM) for all 0 < p,q < m.
N’ =0.

Proof. (On the blackboard)
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CHARACTERIZATION OF HOLOMORPHIC FUNCTIONS

PROPOSITION

Let M be a complex manifold. Let f : M — C be a smooth
complex-valued function on M. The following assertions are equivalent:

f is holomorphic.
Z(f)=0forall Z € TO'M.
df is a form of type (1,0) (i.e. df € ALOM).

Proof. (On the blackboard)
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DEFINITION OF 9,

Recall that on a complex manifold:

dC(M,NIM) C C=(M,NPTHIM & AP M)

We can therefore define

9
d

C®(M,N\?IM) — C=(APFHIM)
C®(M, APIM) — C®(APIHEM)

by composing d with projections so that d = 0 + 0.

Note that

82
52
90
00

Introduction to Complex Differential Geometry

: NP9
: NP4
: \PA
1 \P:4

s A\PTLa _y APT2,9
—y \P:GtL _y pAP:q+2

— APtLa _y pApt+lg+l
— AP9t1l _y Apt+lg+l
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LEMMA
The following identities hold:

P =0, #=0 00+00=0

COROLARY
f - M — C is holomorphic if and only if Of = 0.
The operator 0 is called the Dolbeault operator.
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Class 4: Holomorphic bundles and Chern connection



DEFINITION

A complex vector bundle 7 : E — M over a complex manifold M is said
to be holomorphic if E is a complex manifold, the projection map m is
holomorphic and there exists a covering (Va)aer of X and a family of
holomorphic trivializations 0, : 7=*(V,,) — V, x C".

Not every complex vector bundle over a complex manifold is holomorphic.
A complex vector bundle may admit different holomorphic structures.

For a holomorphic vector bundle the transition functions between
holomorphic charts g,z : Uy N Ug — GL(k, C) are holomorphic.
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Examples The tangent bundle of a complex manifold is holomorphic.

Examples If M is a complex manifold, AP°M is holomorphic. Indeed,
Let (U, ¢) be a chart on M, with ¢ = (z1,...,2,).

Then dz; A--- Adz is a (p,0)-form and thus we can define

& 771 (U) — U x C" with

a— (m(a), (a(dzy, . .., dz;)))
If (V,4) is another local chart with ¢ = (wx,..., w,), then the change

of coordinates is holomorphic.

In particular, if dimg M = 2n, then A"OM is a holomorphic line bundle,
that is, whose fibers have dimension 1.

Note: A%” is not in general holomorphic.

Introduction to Complex Differential Geometry V.del Barco - UNICAMP



DOLBEAULT OPERATOR ON E-VALUED FORMS

Let E be a holomorphic bundle over a complex manifold. We let
AP9E = APIM ® E be the E-valued (p, g)-forms.

Let ey be a local holomorphic frame. Given o € C*°(M,AP9E) we have

o= Zo,\ ® en, where oy € APIM
A

We define 0 : C*(AP9E) — C®°(AP9H1E) as follows:

50’2250)\@)6)\
A

By construction, 0% =
Note: If 0 = 2/\ ) ® fy for some other holomorphic trivialization, then

T =Dy 8 u0yu Where gy, are holomorphic.
Therefore Oy = ", 81,0, so O does not depend on the trivialization.
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CHARACTERIZATION OF HOLOMORPHIC BUNDLES

THEOREM

Let E be a complex vector bundle over a complex manifold. Then E is
holomorphic if and only if there exists an operator

9 : CO(NIE) — C(NPIHLE)

satisfying the Leibniz rule and such that 9% = 0.
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CHERN CONNECTION

We saw that:
M complex 5. ~oofnpad oo Apigil
Eholom.} = 30: CF(A\9E) — C=(A E)
We will see:
M complex
E complex v.bdl. = 3p°1. C>®(N\"9E) — Coc(/\p’qHE)

D connection
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DEFINITION

Let M be a complex vector bundle, E an holomorphic bundle and H an
hermitian structure on E. An hermitian connection D is called a Chern
connection if D% = 0.

Remark: The curvature of a Chern connection has zero (0, 2)-part.
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THEOREM

For every Hermitian structure H on a holomorphic vector bundle E, there
exists a unique hermitian connection D such that D%' = 0.

Proof. Assume that such D exists and let V denote its covariant
derivative.

Note that if E is holomorphic then E* is also holomorphic.
Moreover, since D on E satisfies D%1 = 9, this equation also holds
for the induced connection on E*.

D induces a connection in E*, which we also denote by D. Indeed,
it is the connection induced by the covariant derivative

(Vxo™)(o) := X(o*(0)) — 0" (Vx0),

for every X € X(M), o* € C®(M,E*), 0 € C*(M,E)
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D also induces a connection in End(E) (which we also denote by D)
by declaring its covariant derivative as:

(VxQ)(0) := Vx(Q(0)) — Q(Vx0),

for every X € X(M), Q € C>*(M, Hom(E)), o € C*(M, E)
In particular, if @ = H, the formulas of two induced connections
above give

(VxH)(o)() = Vx(H(0))(r) = H(Vxo)(7)
— X(H(0)(7)) — H(r)(Vx0) — H(Vx0)(7)
= X(H(r,0))— H(Vxo,7)— H(1,Vxo) =0

and this vanishes because D is an hermitian connection, for any
7,0 € C°(M, E). Therefore

Vx(H(0)) = H(Vxo), YX € TM,o € C®(M, E). (1)
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Applying (1) to Z = X +iY € TM® we get,

Vz(H(c)) = Vx(H(0))+iVz(H(0))
H(Vzo’) = H(~,on'+ iVyo = H(VXU) — IH(VyO')
Therefore,
V2(H(0)) = H(V30), ¥X € TM,o € C¥(M, E). 2)

For Z € T%1, we get
Vz(H(0)) = D(H(0))(Z) = D*'H(o).
Moreover, since Z € T4, we get
H(Vz0) = H((Do)(Z)) = H(D"%0(2))
Using this two equalities in (2), we get
D%*H(o) = H(D'°0(2)) (3)

Note that on the left hand side D% is the connection on E* and on
the right hand side, D*-? is on E. By hypothesis, D%' = 0 (on E*)
and therefore we can re-write the previous equality as

D¥0 = H10H.
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Finally, we can conclude that if a D as in the statement exists, then it

must satisfy _ _
D = DY 4+ D% = H719H + d. (4)

Therefore, given a holomorphic vector bundle E and a hermitian
structure H, D is determined by E and H by the formula above, so it
must be unique.

In addition, given E and H, we can define D on sections of E as in (4)
and extend it using Leibniz rule and prove that this is a connection that
satisfies the required conditions.
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FIRsT CHERN CLASS

PROPOSITION (KOBAYASHI-NOMIZU)

To every complex vector bundle E over a smooth manifold M one can
associate a cohomology class ci(E) € H*(M,Z) called the first Chern
class of E satisfying the following axioms:

(naturality) For every smooth map f : M — N and complex
vector bundle E over N, one has f*(ci(E)) = a(f*E).

(Whitney sum formula) For every bundles E, F over M one has
Cl(E@ F) = C1(E) + C1(F).

(normalization) The first Chern class of the tautological line bundle
of CP' is equal to —1 in H*(CP',Z) ~ Z, which means that the
integral over CP' of any representative of this class equals —1.
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CHERN CLASS FROM CONNECTION

THEOREM

Let D be a connection on a complex bundle E over M. The real
cohomology class

(D) = [2;”(/?0)]

is equal to the image of c1(E) in H3g(M,R).
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Note that a procedure on the proof generalizes to any line bundle.

Let E be a holomorphic line bundle with an Hermitian metric over a
complex manifold. Given a nowhere vanishing holomorphic section o, we

set
u=H(o,0)=e"%,

for some ¢ : M — R.

Then, for the Chern connection, a procedure similar as above gives
RP = 00 log u = 8d¢.

The function ¢ is called a local weight of the bundle.
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HERMITIAN METRIC ON ALMOST COMPLEX MANIFOLDS

DEFINITION

A Hermitian metric on an almost complex manifold (M, J) is a
Riemannian metric h such that:

h(X,Y)=h(JX,JY), VX,YeTM
The fundamental form of a Hermitian metric is defined by:

Q(X, Y) := h(JX,Y)

We say that (M, h, J) is an Hermitian manifold if J is an almost complex
structure on M and h is Hermitian on (M, J).
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EXTENSION TO THE COMPLEXIFIED TANGENT BUNDLE

The extension (also denoted by h) of the Hermitian metric to TM® by
C-linearity satisfies:

h(Z,W)=h(Z,W), YZ,W e TM®
h(Z,Z)>0 vZ € TM® - {0}
h(Z, W) =0, VZ,W e T' oM and VZ, W € T%'M

Conversely, each symmetric tensor on TM® with these properties defines
a Hermitian metric by restriction to TM.
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HERMITIAN STRUCTURE ON THE TANGENT BUNDLE

The tangent bundle of an almost complex manifold (M, J) is a complex
vector bundle. If his a Hermitian metric on M, then:

H(X,Y) = h(X,Y) — ih(JX,Y) = (h— iQ)(X, Y)

defines a Hermitian structure on the complex vector bundle (TM, J).

Conversely, any Hermitian structure H on TM defines a Hermitian metric
h on M by:
h := Re(H)
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EXISTENCE OF HERMITIAN METRICS

Every almost complex manifold admits Hermitian metrics.
Construction: Simply choose an arbitrary Riemannian metric g and

define:
h(X,Y) :=g(X,Y)+g(JX,JY)

This is automatically a Hermitian metric with respect to the almost
complex structure J.
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DEFINITION

A Hermitian metric h on an almost complex manifold (M, J) is called a
Kahler metric if J is a complex structure and the fundamental form Q is
closed, that is,

h is Kihler < N’ =0 and dQ = 0.

LEMMA

Let (M, h,J) be an Hermitian manifold and let V denote the Levi-Civita
connection. Then

N =0& (Vix))Y = J(VxJ)Y, VX,Y € TM (%)

Recall that
(VyD)X =Vy(IX) = J(VyX)
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Let X,Y € T,M and denote also by X, Y local vector fields around
p extending these vectors and such that that (VX), =0=VY),.
This implies that Vi X = VY = 0 for all W. In particular,

VxY =VyX =0, (VixJ)(Y)=VxJY,

Vy)X =Vy(UX), (VxJ)Y =Vx(JY).
using that [X, Y] = VxY — Vy X and the above we get

X,Y], = 0

[UX, Y], = —(Vy))X

[X,JY], = (VxJ)Y

(WX, IY], = (VixJ)Y = (V)X
Therefore
NI(X,Y) = JVxDY —IVyN)X = (Vix))Y + (Viy )X

= {J(Vx)Y = (Vix )Y} +{(Viy )X = J(Vy )X}
Clearly, if (x) holds, N/ = 0.
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For the converse, we define
AX,Y,Z)=h(J(Vx)Y = (Vix)Y, 2).

Excercise: A is skew-symmetric in the last two variables.

If N/ =0, the computation above gives A(X,Y,Z) = A(Y, X, Z). So
applying these properties in different orders, we get

AX,Y,Z)=—-A(X,Z,Y)=—-A(Z,X,Y)
but also
AX,Y,Z) =AY, X,Z)=-A(Y,Z,X)=-A(Z,Y,X)=A(Z,X,Y)

so A =0 and the lemma follows.
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THEOREM

A hermitian metric h on (M, J) almost complex is Kihler if and only if
VJ = 0. Equivalently, if and only if Vx(JY) = J(VxY) for all
X,Y eTM.

Proof. If VJ =0, then J is integrable by the previous lemma. Also, since
Q = h(J-,-), one can prove that VQ = 0 and therefore dQ = 0.

Conversely, suppose that h is Kahler and denote by B the tensor:

B(X,Y,Z) = h((VxJ)Y,Z) = (VxQ)(Y, 2).

Since J and VxJ anti-commute we have:
B(X,Y,JZ)=B(X,JY,2)
In addition, from the previous lemma,
B(X,Y,JZ)+ B(JX,Y,Z)=0
Combining these two relations also yields:

B(X,JY,Z)+ B(JX,Y,Z)=0
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We now use that df2 is the skew-symmetrization of V2 and apply
dQ = 0 twice, first on X, Y, JZ, then on X, JY, Z and get:

B(X,Y,JZ)+ B(Y,JZ,X)+ B(JZ,X,Y) =0
B(X,JY,Z)+ B(JY,Z,X)+ B(Z,X,JY) =0

Adding these two relations and using the previous properties of B yields
2B(X,Y,JZ) =0, that is, J is parallel. O
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