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Chapter 1

Elementary properties of holomorphic
functions in several complex variables

1.1 Preliminaries

Let u be a complex valued function in C1(Ω), where Ω is an open set in R2n. We shall denote
the real coordinates by xj, 1 ≤ j ≤ n and yj, 1 ≤ j ≤ n, and the complex coordinates by
zj = xj + iyj, j = 1, . . . , n. With this R-linear isomorphism, we identify Cn with R2n and Cn is
the cartesian product of n copies of C, which carries the structure of an n-dimensional complex
vector space. The standard hermitian inner product on Cn is defined by (z, z′) =

∑n
j=1 zjz

′
j,

z, z′ ∈ Cn. The associated norm | z |= (z, z)1/2 induces the euclidian metric in the usual way:
for z, z′ ∈ Cn, dist(z, z′) =| z − z′ |.

We can express du as a linear combination of the differentials dzj and dz̄j,

du =
n∑
1

∂u

∂zj
dzj +

n∑
1

∂u

∂z̄j
dz̄j,

where we have used the notation dzj = dxj + idyj and dz̄j = dxj − idyj with

∂u

∂zj
=

1

2
(
∂u

∂xj
− i

∂u

∂yj
),

∂u

∂z̄j
=

1

2
(
∂u

∂xj
+ i

∂u

∂yj
).

We write du in the form du = ∂u+ ∂̄u with

∂u =
n∑
1

∂u

∂zj
dzj, ∂̄u =

n∑
1

∂u

∂z̄j
dz̄j.

Differential forms which are linear combinations of the differentials dzj are said to be of type
(1, 0), and those which are linear combinations of dz̄j are said to be of type (0, 1). Thus ∂u
(resp. ∂̄u) is the component of du of type (1, 0) (resp. (0, 1)).
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We extend the definition of the ∂ and ∂̄ operators to arbitrary differential forms. A differ-
ential form f is said to be of type (p, q) if it can be written in the form

f =
∑
|I|=p

∑
|J |=q

fI,Jdz
I ∧ dz̄J ,

where I = (i1, . . . , ip) and J = (j1, . . . , jq) are multi-indices, that is, sequences of indices
between 1 and n. Coefficients fI,J are distributions in open sets in Cn (a distribution on an
open set U is a linear functional on D0(U) = C∞

c (U) that is continuous when D0(U) is given
a topology called the canonical LF topology (a locally convex inductive limit of a countable
inductive system of Fréchet spaces (generalizations of Banach spaces)). This leads to the space
of (all) distributions on U , usually denoted by D′(U) = (D0(U))′, that is the continuous dual
space of D0(U)). We have here used the notation

dzI ∧ dz̄J = dzi1 ∧ . . . ∧ dzip ∧ dz̄j1 ∧ . . . ∧ dz̄jq .

Every differential form can be written in one and only one way as a sum of forms of type (p, q),
where 0 ≤ p, q ≤ n. And every differential form of type (p, q) can be written in one and only
one way as a sum

∑′ of forms where |I| = p and |J | = q are strictly increasing.

If f is of type (p, q) and in C1, the exterior differential

df =
∑

dfI,Jdz
I ∧ dz̄J

can be written df = ∂f + ∂̄f , where

∂f =
∑
I,J

∂fI,J ∧ dzI ∧ dz̄J , ∂̄f =
∑
I,J

∂̄fI,J ∧ dzI ∧ dz̄J

are of type (p + 1, q) and (p, q + 1), respectively. If f is in C2, since 0 = d2f = ∂2f + (∂∂̄ +
∂̄∂)f + ∂̄2f and all terms are of different types, we obtain

∂2 = 0, ∂∂̄ + ∂̄∂ = 0 ∂̄2 = 0.

Hence the equation

∂̄u = f,

where f is of type (p, q + 1), cannot have a solution u unless

∂̄f = 0.

This shows that it is natural to study the ∂̄ operator for any forms of type (p, q) and not only
for functions u.
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1.2 Holomorphic functions

1.2.1 Definition and first properties

If Ω is an open set in Cn = R2n and u is in C1(Ω), du(a) is the differential of u in a ∈ Ω and
it is the unique R-linear map : R2n → R2 such that u(z + a) = u(a) + du(a)(z) + o(|z|) when
z tends to 0 ∈ Cn. This R-linear map can be uniquely written as the sum of a C-linear map,

∂u(a)(z) =
∑
j

∂u

∂zj
(a)zj, and the conjugate of an other C-linear map,

∑
j

∂ū

∂zj
(a)zj.

Definition 1.2.1 A function u ∈ C1(Ω) is said to be holomorphic in Ω if du is of type (1, 0),
that is, if ∂̄u(a) = 0 in Ω (the Cauchy-Riemann equations) or

∂u

∂z̄j
(a) = 0, for any a ∈ Ω and for any 1 ≤ j ≤ n.

Or equivalently, it meens that du(a) is a C-linear map for any a ∈ Ω.

The set of all holomorphic functions in Ω is denoted by O(Ω).

Proposition 1.2.2 1) O(Ω) is a C-algebra for addition, product of holomorphic functions and
product with constants in C.
2) If u ∈ O(Ω) and if u(z) ̸= 0, ∀z ∈ Ω, then 1/u ∈ O(Ω).
3) Suppose that Ω is connected and that u ∈ O(Ω). If u is real valued or if | u | is constant,
then u is constant in Ω.

Proof. 1) The differential operators ∂ and ∂̄ are obviously linear and satisfy the product
rule : if u and v ∈ C1(Ω), ∂(uv) = v∂u+ u∂v and ∂̄(uv) = v∂̄u+ u∂̄v.
2) If u ∈ C1(Ω) and if u(z) ̸= 0, ∀z ∈ Ω, 1/u ∈ C1(Ω) and ∂̄(1/u) = −u−2∂̄u.
3) If u is real valued, then ∂u/∂xj and ∂u/∂yj are real valued for any 1 ≤ j ≤ n. The Cauchy-
Riemann equations give : ∂u

∂xj
= −i ∂u

∂yj
, then ∂u

∂xj
= ∂u

∂yj
= 0, 1 ≤ j ≤ n and u is constant in Ω.

If | u |= ϱ > 0 is constant, we have locally u(z) = ϱeiθ(z) with ∂̄u = ϱeiθ(z)i∂̄θ(z) = 0, then θ is
holomorphic and real valued in Ω, then θ is constant in Ω. □

Remark 1.2.3 If a function u is holomorphic in Ω, then u is an holomorphic function of each
zj when the other variables are kept fixed. The reverse is true and it is Hartog’s Theorem (1906)
(we will see it later).

1.2.2 Holomorphic maps

Now let u be an holomorphic function in Ω (open set in Cn) with values in Cm, that is

u = (u1, . . . , um),
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where each component uj is holomorphic in Ω. We say that u is an holomorphic map.
If u = (u1, . . . , um) is an holomorphic map in Ω, the matrix

Ju(a) =

(
∂uj
∂zk

(a)

)
1≤j≤m, 1≤k≤n

is called the jacobian matrix of u in a. The differential of u in a, du(a), is a C-linear map from
Cn to Cm, such that the matrix with respect to the canonical basis of Cn to Cm is Ju(a). We
have u(a+ z) = u(a) + Ju(a)z + o(|z|) when z tends to O.
If u is an holomorphic map in Ω with values in Cm and v is an holomorphic function in an open
set ω such that Cm ⊃ ω ⊃ u(Ω), then v ◦ u is an holomorphic function: for any 1 ≤ k ≤ n, we
have

∂

∂z̄k
(v(u(z))) =

m∑
l=1

∂v

∂wl

(u(z)).
∂ul
∂z̄k

(z) +
m∑
l=1

∂v

∂w̄l

(u(z)).
∂ūl
∂z̄k

(z)

and Jv◦u(a) = Jv(u(a))Ju(a), since d(v ◦ u)(a) = dv(u(a)) ◦ du(a).

The implicit function theorem extends to holomorphic functions.

Theorem 1.2.4 Let fj(w, z), j = 1, . . . ,m, be holomorphic functions of (w, z) =
(w1, . . . , wm, z1, . . . , zn) in a neighborhood of a point (w0, z0) in Cm × Cn, and assume that
fj(w

0, z0) = 0, j = 1, . . . ,m and that

det

(
∂fj
∂wk

)m

j,k=1

̸= 0 at (w0, z0).

Then the equations fj(w, z) = 0, j = 1, . . . ,m, have a uniquely determined holomorphic solution
w(z) in a neighborhood of a point z0 in Cn, such that w(z0) = w0.

Proof. We have

0 ̸=
∣∣∣∣det( ∂fj∂wk

)mj,k=1

∣∣∣∣2 = det

(
(
∂fj
∂wk

) 0

0 (
∂f̄j
∂w̄k

)

)
= det

D(f1, . . . , fm, f̄1, . . . , f̄m)

D(w1, . . . , wm, w̄1, . . . , w̄m)
.

We write fj = uj + ivj where uj and vj are real valued for 1 ≤ j ≤ m. We write wk = xk + iyk.
Then

D(u1, v1, . . . , um, vm)

D(x1, y1, . . . , xm, ym)
̸= 0.

We apply the usual implicit real valued function theorem, and we obtain w = w(z).

Functions wk are holomorphic since
∑m

1
∂fj
∂wk

dwk +
∑n

1
∂fj
∂zk
dzk = dfj = 0; and we can solve this

system of equations for dwk and we find that dwk is a linear combination of dz1, . . . , dzn. □
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Exercise 1.2.5 Express the previous determinant
D(f1, . . . , fm, f̄1, . . . , f̄m)

D(w1, . . . , wm, w̄1, . . . , w̄m)
in terms of

D(u1, v1, . . . , um, vm)

D(x1, y1, . . . , xm, ym)
. We could remark for instance that

1

2

(
1 −i

)( ∂u1

∂x1

∂v1
∂x1

∂u1

∂y1

∂v1
∂y1

)(
1
i

)
=

1

2

(
1 −i

)( ∂f1
∂x1
∂f1
∂y1

)
=
∂f1
∂z1

and that the product of the following three matrices gives
1 −i 0 0
0 0 1 −i
1 i 0 0
0 0 1 i




∂u1

∂x1

∂v1
∂x1

∂u2

∂x1

∂v2
∂x1

∂u1

∂y1

∂v1
∂y1

∂u2

∂y1

∂v2
∂y1

∂u1

∂x2

∂v1
∂x2

∂u2

∂x2

∂v2
∂x2

∂u1

∂y2

∂v1
∂y2

∂u2

∂y2

∂v2
∂y2




1 0 1 0
i 0 −i 0
0 1 0 1
0 i 0 −i

 = 2


∂f1
∂z1

∂f2
∂z1

0 0
∂f1
∂z2

∂f2
∂z2

0 0

0 0 ∂f1
∂z1

∂f2
∂z1

0 0 ∂f1
∂z2

∂f2
∂z2


which is exactly 2

D(f1, f2, f̄1, f̄2)

D(z1, z2, z̄1, z̄2)
.

Corollary 1.2.6 Inverse function theorem. An holomorphic map of an open set in Cn into
itself has locally an holomorphic inverse where the Jacobian does not vanish.

Proof. We apply the previous theorem to f(w)− z with m = n. □

Exercise 1.2.7 If u is a holomorphic map of Ω ⊂ Cn into Cm and if f =
∑
fI,J(w)dw

I ∧ dw̄J

is a form defined in an open neighborhood of the range of u, we can define the pullback of f
relative to u: the form u∗f in Ω by

u∗f =
∑

fI,J(u(z))du
I ∧ dūJ ,

where duk and dūk for k = 1, . . . ,m are differential forms in Ω.
Prove that these differential forms are of type (1, 0) and (0, 1), respectively, since uk is an
holomorphic function, for k = 1, . . . ,m.
Hence u∗f is of type (p, q) if f is of type (p, q).
Prove that d(u∗f) = u∗(df) and deduce that ∂(u∗f) = u∗(∂f) and ∂̄(u∗f) = u∗(∂̄f).

1.3 Cauchy’s integral formula

Till the beginning of the 1930’s, the only multidimensional integral formula was the Cauchy
formula for a polydomain D =

∏n
1 Dj in Cn, where each Dj is a bounded domain in C with

rectifiable boundary. A set D ⊂ Cn is called a polydisc if there are discs D1, . . . , Dn in C such
that

D =
n∏
1

Dj = {z, zj ∈ Dj, j = 1, . . . , n}.

The set
∏n

1 ∂Dj is called the distinguished boundary, or Shilov’s boundary, of D and we denote
it by ∂0D ⊂ ∂D, but it is not equal to ∂D.
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Theorem 1.3.1 Let D be an open polydisc and let u be a continuous function in D̄ which is
(in D) an holomorphic function of each zj when the other variables are kept fixed. Then, for
any z ∈ D, we have

u(z) =
1

(2iπ)n

∫
∂0D

u(ζ1, . . . , ζn)∏n
j=1(ζj − zj)

dζ1 . . . dζn.

Hence u ∈ C∞(D) and u is in fact holomorphic in D.

Proof. Fix 1 ≤ j ≤ n. Let zk ∈ D̄k, for any k ̸= j be fixed. If ((ζp1 , . . . , ζ
p
j−1, ζ

p
j+1, . . . , ζ

p
n))p

is a sequence in
∏

k ̸=j Dk which converges to (z1, . . . , zj−1, zj+1, . . . , zn), then the sequence of
holomorphic function (of one variable) in Dj, (u(ζ

p
1 , . . . , ζ

p
j−1, zj, ζ

p
j+1, . . . , ζ

p
n))p converges uni-

formly in any compact sets in Dj to u(z1, . . . , zj−1, zj, zj+1, . . . , zn), which is an holomorphic
function in Dj. For n = 1, we have

u(z1) =
1

2iπ

∫
∂D1

u(ζ1)

ζ1 − z1
dζ1.

For any n ∈ N∗, (z1, . . . , zn−1) ∈ D̄1 × . . . D̄n−1, the function zn 7→ u(z1, . . . , zn) is holomorphic
in Dn and we have

u(z1, . . . , zn) =
1

2iπ

∫
∂Dn

u(z1, . . . , zn−1, ζn)

ζn − zn
dζn.

Then u(z1, . . . , zn−1, ζn) is holomorphic in zn−1 ∈ Dn−1 when (z1, . . . , zn−2, ζn) ∈ D̄1×. . . D̄n−2×
D̄n. According to the previous formula for n = 1, we obtain

u(z1, . . . , zn−1, ζn) =
1

2iπ

∫
∂Dn−1

u(z1, . . . , zn−2, ζn−1, ζn)

ζn−1 − zn−1

dζn−1.

By induction on n and according to Fubini’s theorem, we obtain the Cauchy formula.
The partial derivatives for any order under

∫
in this formula are possible, then u ∈ C∞(D) and

in particular ∂̄u = 0. □

Corollary 1.3.2 If Ω is an open set in Cn and u ∈ O(Ω), it follows that u ∈ C∞(Ω) and that
all derivatives of u are also holomorphic in Ω.

Proof. Let z0 ∈ Ω and D be an open polydisc centered in z0 such that D̄ ⊂ Ω. Then
according to theorem 1.3.1, u is C∞ in D, and in Ω. The partial derivatives of u in z1, . . . , zn
are obtained by derivation under the integral sign in Cauchy’s formula and are holomorphic in
D, since for any ν = (ν1, . . . , νn) ∈ Nn,

∏n
j=1(ζj − zj)

νj is holomorphic in D, with respect to z.
□

Corollary 1.3.3 (Osgood) If a function u, continuous in an open set Ω in Cn, is an holo-
morphic function of each zj when the other variables are kept fixed, then u is holomorphic in
Ω.

In fact the hypothesis of continuity is not necessary.
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Theorem 1.3.4 Hartog’s Theorem (1906). If u is a complex valued function defined in the
open set Ω ⊂ Cn and u is holomorphic in each variable zj when the other variables are given
arbitrary fixed values, then u is holomorphic in Ω.

Proof. See for instance [Ho1] Theor 2.2.8. □

A corresponding result would be false for functions of real variables. Indeed, let study
f1 : R2 → R defined by f1(O) = 0 and f1(x, y) = xy

x4+y4
if (x, y) ̸= (0, 0). f1 is infinitely

differentiable with respect to x (or y) when y (or x) is kept fixed, but in spite of that f1 is not
bounded around origin.
Let study the function f2 such that f2(x, y) = xy/(x2 + y2), f2(0, 0) = 0. f2 is infinitely
differentiable with respect to x (or y) when y (or x) is kept fixed, but in spite of that f2 is
bounded and not even continuous at the origin (use polar coordinates).

1.4 Applications of the Cauchy’s integral formula

Cauchy formula allows one to prove the fundamental properties of holomorphic functions of
several variables, for example, the local representation of holomorphic functions by power series,
the property of uniqueness of analytic continuation, etc...
We can also immediately obtain bounds for the derivatives of u. In doing so we shall call an
n-tuple α = (α1, . . . , αn) of non-negative integers a multi-order and write ∂α = ∂

∂z1

α1
. . . ∂

∂zn

αn
.

The operator ∂̄α is defined similarly and we write α! = α1! . . . αn! and | α |= α1 + . . .+ αn.
Since the partial derivatives of any order under

∫
in Cauchy’s integral formula are possible, we

obtain:

Proposition 1.4.1 Let Ω be an open set in Cn. For any u ∈ O(Ω) and any z ∈ Ω, we have:

∂αu(z) =
α!

(2iπ)n

∫
∂0D

u(ζ1, . . . , ζn)∏n
k=1(ζk − zk)αk+1

dζ1 . . . dζn,

where D is an open polydisc containing z and relatively compact in Ω.

Theorem 1.4.2 (Cauchy’s inequalities)
1) For every compact set K ⊂ Ω (open set in Cn) and every open neighborhood ω of K, there
are constants Cα for all multi-orders α such that

sup
K

| ∂αu |≤ Cα || u ||L1(ω), u ∈ O(Ω).

1’) For every compact set K ⊂ Ω (open set in Cn) and every bounded open neighborhood ω of
K, for any p ≥ 1, there are constants Cα,p for all multi-orders α such that

sup
K

| ∂αu |≤ Cα,p || u ||Lp(ω), u ∈ O(Ω).
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2) If u is holomorphic in the polydisc D = {z : | zj |< rj, 1 ≤ j ≤ n} and | u |≤ M in D, it
follows that

| ∂αu(0) |≤Mα!/rα.

Proof. 1) There exist r′j > rj > 0 such that any closed polydisc centered in z ∈ K with
multi-radius (r′1, . . . , r

′
n) is contained in ω. Indeed, it is sufficient to choose 0 < rj < r′j <

inf{supj | zj − wj |: z ∈ K,w ∈ ∂ω}.
Fix z ∈ K and rj for any 1 ≤ j ≤ n chosen as above. We can apply Proposition 1.4.1 to the
polydisc D centered in z and with multi-radius (r1, . . . , rn)

∂αu(z) =
α!

(2iπ)n

∫
∂0D

u(ζ1, . . . , ζn)∏n
k=1(ζk − zk)αk+1

dζ1 . . . dζn,

where for 1 ≤ j ≤ n, ζj = zj + rje
iθj . Then

|∂αu(z)| ≤ α!

rα+1(2π)n

∫
[2π]n

|u(ζ1(θ), . . . , ζn(θ))|r1 . . . rndθ1 . . . dθn.

|∂αu(z)|
∫
[0,r′1]×...×[0,r′n]

rα+1dr1 . . . drn = |∂αu(z)| r′α+2

(α1 + 2) . . . (αn + 2)

≤ α!

(2π)n

∫
[0,r′1]×...×[0,r′n]

∫
[2π]n

|u(ζ1(θ), . . . , ζn(θ))|r1 . . . rndθ1 . . . dθndr1 . . . drn

=
α!

(2π)n

∫
D(z,r′)

|u(ζ)|dV (ζ).

To conclude,

|∂αu(z)| ≤ α! (α1 + 2) . . . (αn + 2)

(2π)n r′α+2

∫
D(z,r′)

|u(ζ)|dV (ζ)

and

sup
K

| ∂αu |≤ α! (α1 + 2) . . . (αn + 2)

(2π)n r′α+2
|| u ||L1(ω) .

1’) If in addition ω is bounded, then for any p > 1, we have (according to Hölder’s inequality)

|| u ||L1(ω)≤ V (ω)1−1/p || u ||Lp(ω) .

2) It is a direct consequence of proposition 1.4.1. □

We endowO(Ω) with the topology of uniform convergence on compact sets in Ω. Let (Kj)j≥1

be an exhaustive sequence of compact sets in Ω : Ω = ∪jKj and Kj ⊂ Int(Kj+1). For example
Kj = {z ∈ Ω : d(z, ∂Ω) ≥ 1/j, |z| ≤ j}.
If f and g ∈ C0(Ω), we note δ(f, g) =

∑∞
j=1

1
2j
inf{1, ||f − g||Kj

}.
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Exercise 1.4.3 Prove that
1) δ is a metric which defines the previous topology.
2) C0(Ω,C) endowed with this topology, is a complete metric space (and then it is a Fréchet
space).

Then the following corollary proves that O(Ω) is closed in C0(Ω,C) and the Cauchy inequal-
ities show that all derivations ∂α are continuous operators on O(Ω) to itself.

Corollary 1.4.4 If uk ∈ O(Ω) and uk → u when k → ∞, uniformly on compact subsets of Ω,
it follows that u ∈ O(Ω).

Proof. Application of theorem 1.4.2 to un − um shows that ∂un converges uniformly on
compact subsets of Ω (Cauchy’s sequence). Since ∂̄un = 0, it follows that ∂un/∂xj converges
uniformly on compact sets in Ω. Hence u ∈ C1(Ω) and ∂̄u = 0. □

Definition 1.4.5 A subset S in O(Ω) is bounded iff for any compact set K ⊂ Ω we have

sup
f∈S

||f ||K < +∞.

The following theorem essentially says that a subset S in O(Ω) is compact iff it is bounded
and closed in O(Ω).

Corollary 1.4.6 (Montel or Stieltjes-Vitali) If uk ∈ O(Ω) and the sequence (| uk |)k is
uniformly bounded on every compact subset of Ω, there is a subsequence (ukj)j converging uni-
formly on every compact subset of Ω to a limit u ∈ O(Ω).

Proof. First let recall Ascoli’s theorem. Let K be a compact set and (E, d) a metric
space. The space C(K,E) of continuous functions in K valued in E, with the topology induced
by uniform distance, is a metric space. A part A in C(K,E) is relatively compact iff the two
following conditions are satisfied:
- A is equicontinuous, i.e for any x ∈ K, we have: ∀ϵ > 0, ∃V ∈ V(x), ∀f ∈ A, ∀y ∈ V ,
d(f(x), f(y)) < ϵ;
- for all x ∈ K, the set A(x) = {f(x) : f ∈ A} is relatively compact.

According to theorem 1.4.2, we obtain that there are uniform bounds for the first-order
derivatives of un on any compact set. Hence this sequence is equicontinuous on any compact
subset in Ω.
Let (Kν)ν be an increasing sequence of compact subsets in Ω such that ∪νKν = Ω. First in K1,
we can apply Ascoli’s theorem and we obtain that there exists a subsequence of (uk)k which
converges uniformly in K1 to a function u1. Denote by u1,1 a term of this subsequence such
that || u1,1−u1 ||K1≤ 1. In K2, we apply again Ascoli’s theorem and we obtain that there exists
a subsequence of the previous one which converges uniformly in K2 to a function u2. It is clear
that u2 = u1 in K1. Denote by u2,2 a term of this subsequence such that || u2,2 − u2 ||K2≤ 1/2.
We continue like that for any k, and we finally obtain that the subsequence (uk,k)k of (uk)k
converges uniformly in any compact subset of Ω to a function u defined by u = uν on any
compact set Kν . Finally we conclude with corollary 1.4.4. □

13



Theorem 1.4.7 If u is holomorphic in the polydisc D = {z :| zj |< rj, 1 ≤ j ≤ n}, we have

u(z) =
∑
α

∂αu(0)

α!
zα, z ∈ D,

with normal convergence on any compact polydiscs D̄(O, r′), where r′ < r.

Proof. The power series expansions

(ζj − zj)
−1 =

1

ζj

∑
αj

z
αj

j

ζ
αj

j

, ∀ 1 ≤ j ≤ n

and
n∏

j=1

(ζj − zj)
−1 =

∑
α

zα

ζα+1

converges normally when (ζ, z) ∈ ∂0D(O, r”) × D(O, r′), where r′ < r′′ < r. Hence we can
multiply by u(ζ1, . . . , ζn) and integrate term by term in Cauchy’s formula (Theorem 1.3.1)
since u is continuous in D̄(O, r”). According to proposition 1.4.1,

∂αu(0)

α!
=

1

(2iπ)n

∫
∂0D(O,r”)

u(ζ1, . . . , ζn)∏n
k=1 ζ

αk+1
k

dζ1 . . . dζn.

If we commute
∫
and

∑
, we obtain the theorem, with normal convergence in D̄(O, r′), according

to Cauchy’s inequalities. □

Remark 1.4.8 Conversely, any series in z in D = {z :| zj |< rj, 1 ≤ j ≤ n}, which converges
normally on any compact polydiscs D̄(O, r′) where r′ < r, is an holomorphic function in D.
Indeed, in this case a differentiation under the sign

∑
is valid.

Theorem 1.4.9 Let Ω be an open set in Cn. f ∈ O(Ω), i.e. f is holomorphic in Ω, iff for any
z ∈ Ω, f has a power series expension in a neighborhood of z, i.e. f is analytic in Ω.

In the following we will use indiscriminately the two words holomorphic and analytic.
A domain Ω ⊆ Cn is, by definition, an open and connected set.

Theorem 1.4.10 Uniqueness principle for holomorphic functions. Let f and g be two
holomorphic functions in a domain Ω in Cn; then if there exists a non empty open set ω in Ω
such that f = g on ω, we have f = g in Ω.

Lemma 1.4.11 Let Ω be a domain in Cn and u ∈ O(Ω) such that there exists z0 ∈ Ω with
∂αu(z0) = 0, for any α ∈ Nn. Then u ≡ 0 in Ω.

14



Proof of Lemma 1.4.11. Let E = {z ∈ Ω : ∂αu(z) = 0, for any α ∈ Nn}. E is closed in
Ω, since it is an intersection of closed sets in Ω. If w ∈ E, there exists an open polydisc D,
centered in w, with closure contained in Ω; according to Theorem 1.4.7, u is equal to 0 in D.
And E is open in Ω. z0 ∈ E, then E ̸= ∅. Since Ω is connected, we have E = Ω. □

Proof of Theorem 1.4.10. We apply the previous lemma to u = f − g. □

Exercise 1.4.12 Let

Ωϵ
1 = {z ∈ C2 :| z1 |< 1 + ϵ, 1− ϵ <| z2 |< 1 + ϵ}

and
Ωϵ

2 = {z ∈ C2 :| z1 − 1 |< ϵ, | z2 |< 1 + ϵ}.

1) Prove that Ωϵ
1∪Ωϵ

2 is a domain, contained in an ϵ-neighbourhood of the boundary of the bidisc

Ω = {z ∈ C2 :| z1 |< 1, | z2 |< 1}.

2) Prove that any function f , holomorphic in Ωϵ
1 ∪ Ωϵ

2, has a holomorphic continuation to the
bidisc

Ωϵ = {z ∈ C2 :| z1 |< 1 + ϵ, | z2 |< 1 + ϵ}.

Indeed, for any z such that |z1| < 1 + ϵ and |z2| < 1 + ϵ, let choose any ϵ′ such that 0 < ϵ′ < ϵ
and |z2| < 1 + ϵ′ and we could consider the function F defined by

F (z1, z2) =
1

2iπ

∫
|ζ2|=1+ϵ′

f(z1, ζ2)

ζ2 − z2
dζ2.

Why this formula doesn’t depend on ϵ′ chosen such that |z2| < 1 + ϵ′ < 1 + ϵ ?
Prove that F is holomorphic in Ωϵ.
Prove that F is agrees with f in Ωϵ

2 and prove finally that F is agrees with f in Ωϵ
1.

Theorem 1.4.13 Let Ω be a domain in Cn and f ∈ O(Ω). If f is not constant then the
mapping f : Ω → C is open, i.e. the set f(Ω) is open in C.

Exercise 1.4.14 Prove this theorem.

Theorem 1.4.15 (Maximum Principle) Let Ω be a domain in Cn. If f ∈ O(Ω) and if there
exists w ∈ Ω such that | f(z) |≤| f(w) | for any z in a neighbourhood of w, then f(z) = f(w)
for any z ∈ Ω.

Proof. Let D = D(w, r) be an open polydisc such that D̄ ⊂ Ω. Then

V (D) | f(w) |≤
∫
D

| f(ζ) | dV (ζ),
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where V (D) is the volum of D and dV is the volum form in Cn. Indeed, Cauchy’s inte-

gral formula gives for n = 1, f(w) = 1
2π

∫ 2π

0
f(w + ϱeiθ)dθ and πr21f(w) = 2πf(w)

∫ r1
0
ϱdϱ =∫

D(w,r1)
f(ζ)dV (ζ). Then V (D)f(w) =

∫
D
f(ζ)dV (ζ). And we deduce the same formula for an

arbitrary n with Fubini’s formula.
Now let D = D(w, r) be an open polydisc centered in w, such that for any z ∈ D, we have
| f(w) | − | f(z) |≥ 0. Then

0 ≤
∫
D

(| f(w) | − | f(ζ) |)dV (ζ) = V (D) | f(w) | −
∫
D

| f(ζ) | dV (ζ) ≤ 0,

according to the previous inequality. Thus | f(w) | − | f(z) |= 0 for any z ∈ D. According
to proposition 1.2.2, f is constant in D : f(z) = f(w), and according to theorem 1.4.10, f is
constant in Ω. □

Another version of Maximum Principle.

Theorem 1.4.16 Let Ω be a bounded domain in Cn and f ∈ O(Ω)∩C(Ω). If f is not constant
in Ω, for any z ∈ Ω

| f(z) |< sup
w∈∂Ω

| f(w) | .

Exercise 1.4.17 Prove this theorem.

Theorem 1.4.18 (Schwarz’s Lemma) Let f be an holomorphic function in a neighbourhood
of D̄(O, r) = (∆̄(0, r))n, with order k in O and such that | f(z) |≤ M in D̄(O, r). Then, we
have

| f(z) |≤M

(
maxj | zj |

r

)k

, in D̄(O, r).

Proof. f(z) = pk(z) + . . ., where pk ̸≡ 0 is an homogeneous polynomial. Let z ∈ D∗(O, r)
be fixed and let t ∈ C, | t |≤ r. Let denote g by g(t) = t−kf(tz/maxj | zj |). Then Taylor
expension of g is

g(t) = pk(z/maxj | zj |) + pk+1(z/maxj | zj |)t+ . . .

and g is an holomorphic function of one complex variable in ∆(0, r). By hypothesis we have
| f(tz/maxj | zj |) |≤ M , then | g(t) |≤ Mr−k when | t |= r. According to maximum principle
in C, we have | g(t) |≤ Mr−k when | t |≤ r; in particular for t = maxj | zj |, we have
(maxj | zj |)−k | f(z) |=| g(maxj | zj |) |≤Mr−k. □

Exercise 1.4.19 It follows easily from Theorem 1.4.18 that every bounded holomorphic func-
tion on Cn is constant (Liouville’s theorem), and more generally, every holomorphic function f
on Cn such that | f(z) |≤ A(1+ | z |)B with suitable constants A, B ≥ 0 is in fact a polynomial
of degree ≤ B.
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Using the classical Cauchy formula, Hartogs (1906) showed that in Cn, for n > 1, there is a
domainD such that each function holomorphic onD necessarily has a holomorphic continuation
to some larger domain Ω ⊃ D.
Poincaré (1907) using the expansion of a function on a sphere by spherical harmonics, showed
that each function, holomorphic in a neighbourhood of the boundary of a ball in C2, extends
holomorphically to the interior of this ball.

1.5 Poisson formula and Jensen inequality

Theorem 1.5.1 Let f be a holomorphic function in a neighbourhood of D(O, ϱ), where D(O, ϱ) =
D(0, ϱ1)× . . .×D(0, ϱn), in Cn. Then for any z ∈ D(O, ϱ), we have

ℜf(z) =
(

1

2π

)n ∫
ζ∈

∏
j ∂Dj

n∏
j=1

ϱ2j− | zj |2

| ζj − zj |2
ℜf(ζ1, . . . , ζn)d(argζ1) ∧ . . . ∧ d(argζn), (P )

ln | f(z) |≤
(

1

2π

)n∫
ζ∈

∏
j ∂Dj

n∏
j=1

ϱ2j− | zj |2

| ζj − zj |2
ln | f(ζ1, . . . , ζn) | d(argζ1)∧ . . .∧d(argζn). (J)

Proof. We will first prove the formula and the inequality when n = 1.
In this case introduce {a1, . . . , ap} the zero set of f (repeated with multiplicity) in D(O, ϱ) and

the holomorphic function F defined by F (z) = f(z)
∏p

j=1
ϱ2−ājz

ϱ(z−aj)
in the same open set as f .

Remark that F has no zero in D(O, ϱ), | F (z) |=| f(z) | in ∂D(O, ϱ) and | F (z) |≥| f(z) | in
D(O, ϱ). And we conclude by using Poisson formula with harmonic functions ℜf and ln | F |.
In the case n > 1, we will apply the previous formula and inequality with respect to each
variable zj of z = (z1, . . . , zn). □

Corollary 1.5.2 Let f be a holomorphic function in a neighbourhood of D(O, ϱ), where D(O, ϱ) =
D(0, ϱ1)× . . .×D(0, ϱn), in Cn. Then, if f(O) ̸= 0, ln | f | is integrable in D̄ and we have

ln | f(O) |≤ 1

V (D)

∫
D̄

ln | f | dv.

Proof. If we apply Jensen inequality to ln |f | in any polydisc D(O, r) = D(0, r1) × . . . ×
D(0, rn) (where rj ≤ ϱj for any j) then

ln | f(O) |≤
(

1

2π

)n ∫
ζ∈

∏
j ∂D(0,rj)

ln | f(ζ1, . . . , ζn) | d(argζ1) ∧ . . . ∧ d(argζn).

We multiply each side of the previous inequality by
∏n

j=1 rj and we integrate with respect to
r1, . . . , rn.
Without any restriction, we can suppose that ||f ||D(O,ϱ) ≤ 1.

To conclude, by using Fubini theorem, it is sufficient to prove that ln | f | is integrable with
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respect to dv. For any m ≥ 1, let fm be a function defined by fm = max{−m, ln | f |}.
−m ≤ fm ≤ 0 and fm is mesurable and integrable with respect to dv.
ln | f |≤ fm and V (D) ln | f(O) |≤

∫∏
j [0,ϱj ]

∫∏
j ∂D(0,rj)

fm
∏n

j=1 rjdθ1 . . . dθndr1 . . . drn =∫
D̄
fmdv. The sequence (fm) is decreasing and pointwise converging to ln | f |. According

to monotonic convergence theorem, we conclude that ln | f | is integrable with respect to dv
and we obtain finally the required inequality. □

Corollary 1.5.3 Let Ω be a domain in Cn and f be an holomorphic function in Ω. We suppose
that f ̸≡ 0 in Ω. Then the set Z(f) := {z ∈ Ω : f(z) = 0} has a 2n-dimensional Lebesgue
measure equal to 0.

Proof. First remark that the interior of Z(f) is empty. Then Ω \ Z(f) is dense in Ω and
there exists a sequence of polydiscs D(zν , ϱν) ⊂ Ω such that f(zν) ̸= 0 and ∪νD(zν , ϱν) = Ω.
Indeed, since Ω \ Z(f) = ∪z /∈Z(f)B(z, dist(z, Z(f) ∪ ∂Ω)), we have (Qn + iQn) ∩ (Ω \ Z(f))
is dense in Ω. Let denote (zν)ν∈N = (Qn + iQn) ∩ (Ω \ Z(f)). Let denote also (rµ,ν)µ∈N =

Q+ ∩ [0, dist(zν , ∂Ω)). Then ∪(ν,µ)∈N2D(zν , rµ,ν) = Ω.

Then we can apply Corollary 1.5.2 to each f(zν) and deduce for any ν, that Z(f) ∩D(zν , ϱν)
has a 2n-dimensional Lebesgue measure equal to 0. Then we conclude. □
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Chapter 2

Introduction to the ∂̄-problem,
extension theorems, applications and
different notions of convexity

2.1 Cauchy Formula in One Variable

We start by recalling a few elementary facts in one complex variable theory. Let Ω ⊂ C be an
open set and let z = x+ iy be the complex variable, where x, y ∈ R. If f is a function of class
C1 on Ω, we have

df =
∂f

∂x
dx+

∂f

∂y
dy =

∂f

∂z
dz +

∂f

∂z̄
dz̄

with the usual notations ∂
∂z

= 1
2

(
∂
∂x

− i ∂
∂y

)
, ∂

∂z̄
= 1

2

(
∂
∂x

+ i ∂
∂y

)
.

The function f is holomorphic on Ω iff df is C-linear, that is, ∂f/∂z̄ = 0.

Theorem 2.1.1 Cauchy-Green-Pompéiu formula (1904) Let K ⊂ C be a compact set
with piecewise C1 boundary ∂K. Then for every f ∈ C1(K,C)

f(w) =
1

2iπ

∫
∂K

f(z)

z − w
dz +

1

2iπ

∫
K

1

z − w

∂f

∂z̄
(z)dz ∧ dz̄, ∀w ∈ K◦,

where dλ(z) = i
2
dz ∧ dz̄ = dx ∧ dy is the Lebesgue measure on C.

Proof. Assume for simplicity that w = 0. As the function z 7→ 1/z is locally integrable at
z = 0, we get ∫

K

1

πz

∂f

∂z̄
dλ(z) = lim

ϵ→0

∫
K\D(0,ϵ)

1

πz

∂f

∂z̄

i

2
dz ∧ dz̄ =

lim
ϵ→0

∫
K\D(0,ϵ)

d[
1

2iπ
f(z)

dz

z
] =

1

2iπ

∫
∂K

f(z)
dz

z
− lim

ϵ→0

1

2iπ

∫
∂D(0,ϵ)

f(z)
dz

z

19



by Stokes’ formula. The last integral is equal to 1
2π

∫ 2π

0
f(ϵeiθ)dθ and converges to f(0) as ϵ

tends to 0. □

When f is holomorphic on Ω, we get the usual Cauchy formula

f(w) =
1

2π

∫
∂K

f(z)

z − w
dz, w ∈ K◦.

The Cauchy and Cauchy-Green-Pompéiu formulae are fundamental technical tools in the theory
of functions of one complex variable. Examples of profound applications of these formulas are
given in the works of Carleson and Vitushkin. In the first of these, the famous “Corona” problem
for the disc in C is solved. In the second is solved the problem, going back to Weierstrass and
Runge, on the uniform approximation by holomorphic functions on compact sets in C.
Many other basic properties of holomorphic functions can be derived from theses formulas:
power and Laurent series expansions, Cauchy residue formula, ...
Another interesting consequence is:

Corollary 2.1.2 The L1
loc function E(z) = 1/πz is a fundamental solution of the operator

∂/∂z̄ on C, i.e. ∂E/∂z̄ = δ0 (Dirac measure at 0). As a consequence, if v is a distribution
with compact support in C, then the convolution u = (1/πz) ∗ v is a solution of the equation
∂u/∂z̄ = v.

Proof. Apply the previous Cauchy-Green-Pompéiu formula with w = 0, f ∈ D(C) and
K ⊃ Supp f , so that f = 0 on the boundary ∂K. Then < δ0, f >= f(0) =< 1/πz,−∂f/∂z̄ >
=< ∂/∂z̄(1/πz), f >.
u is a solution of the equation ∂u/∂z̄ = v iff for any f ∈ D(C), we have

< v, f >=< u,−∂f/∂z̄ > .

And we have < E ∗ v,−∂f
∂z̄

>=<
∂(E ∗ v)
∂z̄

, f >=< v, f >, because

∂(E ∗ v)
∂z̄

(z) =
∂

∂z̄
(

∫
C
E(z − w)v(w)dλ(w)) =

∫
C

∂E

∂z̄
(z − w)v(w)dλ(w) = v(z).

To summarise, in the sense of distributions we have
∂

∂z̄
(E ∗ v) = ∂E

∂z̄
∗ v = δ0 ∗ v = v. □

Remark 2.1.3 If u is a solution, u+ h is an other solution for any h ∈ O(C).
It should be observed that the previous formula cannot be used to solve the equation ∂u/∂z̄ = v
when Supp v is not compact.
If Supp v is compact, a solution u with compact support need not always exist.
If v is a distribution with compact support in C (as in the previous corollary) such that there
exists a solution u with compact support, then < v, zn >= 0 for all integers n ≥ 0.
It is sufficient to choose f ∈ D(C) such that f(z) = zn in D(0, R), and Supp u ∪ Supp v ⊂
D(0, R).
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Conversely, when the necessary condition < v, zn >= 0 is satisfied and Supp v is contained in
the disk |z| < R, then the canonical solution u = (1/πz) ∗ v has compact support.
Indeed, this is easily seen by means of the power series expansion

(z − w)−1 =
∑

wnz−n−1,

where |w| < R < |z|. If R < |z|, we have E ∗ v(z) =
∫
CE(z − w)v(w)dλ(w)

=
1

π

∑
n

z−n−1

∫
C
wnv(w)dλ(w) =

1

π

∑
n

z−n−1

∫
D(0,R)

wnv(w)dλ(w) = 0.

2.2 The inhomogeneous Cauchy-Riemann equations in

Cn, when n ≥ 2 and some extension theorems

We first consider the equation
∂̄u = f

where f is a given form of type (0, 1) with compact support (f(z) =
∑

j fj(z)dz̄j), and the

unknown u is a function. ∂̄f = 0 is a necessary condition for the existence of a solution. We
want to solve the differential equations

∂u/∂zj = fj, j = 1, . . . , n (2.1)

when the compatibility conditions

∂fj/∂z̄k − ∂fk/∂z̄j = 0, j, k = 1, . . . , n (2.2)

are fulfilled.
Ck
0 (Cn) is the subset of Ck(Cn) containing functions with compact support.

Theorem 2.2.1 Let fj ∈ Ck
0 (Cn), j = 1, . . . , n where k > 0, and assume that (2.2) is fulfilled

(n > 1). Then there is a function u ∈ Ck
0 (Cn) satisfying (2.1).

Remark 2.2.2 Note that this theorem is false when n = 1, for f1 ∈ C∞
0 with Lebesgue integral

different from 0.
Let suppose that there exists u1 ∈ C∞

0 (∆) such that ∂u1

∂z̄
= f1 on ∆ (an open disc containing the

supports of f1 and u1). We can apply theorem 2.1.1 to u1. Then u1(z) =
1

2iπ

∫
∆

f1(w)
w−z

dwdw̄. In

addition,
∫
∆
f1dzdz̄ =

∫
C f1dzdz̄ =

∫
C

∂u1

∂z̄
dzdz̄

= lim
R→∞

∫
D(O,R)

∂u1
∂z̄

dzdz̄ = − lim
R→∞

∫
D(O,R)

d(u1(z)dz) = 0,

if u1 has a compact support, according to Stokes’ formula. There is a contradiction.
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Proof of Theorem 2.2.1 We set for any z ∈ Cn

u(z) =
1

2iπ

∫
C
(τ − z1)

−1f1(τ, z2, . . . , zn)dτ ∧ dτ̄

=
1

2iπ

∫
C
τ−1f1(z1 + τ, z2, . . . , zn)dτ ∧ dτ̄ .

The second form of the definition shows that u ∈ Ck(Cn), and it is clear that u(z) = 0 if
| z2 | + . . .+ | zn | is large enough.
Let z′ = (z2, . . . , zn) be fixed. u(z) = (Ez1 ∗ f1,z′)(z1), where f1,z′(z1) = f1(z).
Denote by Kz′ the compact support in C of τ 7→ f1(τ, z

′). Choose K ⊂ C a compact set with
piecewise C1 boundary ∂K, such that K contains z1 and Kz′ is included in the interior of K.

Then we verify that

∫
∂K

u(λ, z′)

λ− z1
dλ = 0.

Indeed, this last integral is equal to
1

2iπ

∫
τ∈C

∫
λ∈∂K

dλ

(λ− z1)(τ − λ)
f1(τ, z

′)dτdτ̄ , where∫
λ∈∂K

dλ

(λ− z1)(τ − λ)
= 0, according to residus theorem, in the two cases z1 = τ and z1 ̸= τ .

Then from Theorem 2.1.1 or Corollary 2.1.2, we deduce that ∂u/∂z̄1 = f1.
If k > 1, by differentiating under the sign of integration and using the fact that ∂f1/∂z̄k =
∂fk/∂z̄1, we obtain

∂u/∂z̄k =
1

2iπ

∫
C
(τ − z1)

−1∂fk(τ, z2, . . . , zn)

∂τ̄
dτ ∧ dτ̄ = fk(z),

where the last equality follows from theorem 2.1.1. Hence u satisfies all the equations (2.1),
which means in particular that u is holomorphic outside the compact set supp f1∪ . . .∪supp fn.
Since u(z) = 0 if | z2 | + . . .+ | zn | is large enough, from the uniqueness of analytic continua-
tion, we conclude that u(z) = 0 in the unbounded component of Cn \ supp f1 ∪ . . . ∪ supp fn,
i.e., u has compact support. □

Theorem 2.2.3 (Hartogs) Let Ω be an open set in Cn, n > 1, and let K be a compact subset
of Ω such that Ω \K is connected. For every f ∈ O(Ω \K) one can find an unique F ∈ O(Ω)
so that f = F in Ω \K.

This is a striking contrast with the situation in the case of one complex variable. Indeed, the
previous result is false in one variable. It is sufficient to think about an holomorphic function
with a singularity. And more generally, we have the following result.

Theorem 2.2.4 Let Ω be an open set in C. Then there exists a holomorphic function in Ω
that does not extend to any open set containing Ω.

Proof. See for instance [Ho1] p14-15, with the use of Weierstrass theorem.

22



Proof of Theorem 2.2.3. Let φ ∈ C∞
0 (Ω) be equal to 1 in a neighborhood of K. Set

f0 = (1 − φ)f , defined as 0 in a neighborhood of K. Then f0 ∈ C∞(Ω), and we want to find
g ∈ C∞(Cn) so that

F = f0 − g

has the required properties. The function F will be analytic in Ω iff

∂̄g = ∂̄f0 = −f∂̄φ := ψ,

where ψ, defined as 0 in a neighborhood of K and outside Ω (spt(ψ) ⊂ Ω \K), is a (0, 1)-form
with components in C∞

0 (Cn). In addition ψ satisfies the compatibility conditions (2.2). Hence
the previous equation has a solution g, according to theorem 2.2.1, which vanishes in the un-
bounded component of the complement of the support of φ. The boundary of the support of g
belongs to Ω, so there exists a non-empty open set ω in Ω \ (K ∪ supp φ) where g = 0, F = f0
and φ = 0. Hence the analytic function F in Ω which we have defined, coincides with f on
ω ⊂ Ω \K, which is connected. Then f = F in Ω \K.
Let remark that Ω is necessary connected and consequently, F is unique. □

A refined version of the Hartogs extension theorem 2.2.3, due to Bochner, shows that f need
only be given as a C1 function on ∂Ω, satisfying the tangencial Cauchy-Riemann equations (a
so-called CR-function). Then f extends as a holomorphic function F ∈ O(Ω)∩C0(Ω̄), provided
that ∂Ω is connected. (see for instance Theorem 2.3.2’, [Ho1] p.31.).

Corollary 2.2.5 Let n ≥ 2, and let D ⊂ Cn be a domain. If f ∈ O(D), f ̸≡ 0 and N(f) =
{z ∈ D : f(z) = 0}, then
(i) D \N(f) is connected,
(ii) N(f) is not compact.

Proof. D \N(f) is open (because N(f) is closed in D) and it is dense in D (because N(f)
has an empty interior).
(i) We only have to prove that for every open ball B ⊂ D the set B \N(f) is connected.
Indeed, let suppose that it is the case and that D \N(f) = U1 ∪ U2, where Uj are non empty

disjoint open sets. We know that D = D \N(f) = Ū1 ∪ Ū2. D is connected, then Ū1 ∩ Ū2 ̸= ∅.
Let a ∈ Ū1 ∩ Ū2. Let B be a ball centered in a such that B \ N(f) is a domain. We have
B \N(f) = (B ∩U1)∪ (B ∩U2). Consequently, one B ∩Uj is empty, which is impossible since
B is a neighborhood of a ∈ Ūj. Then we will deduce that D \N(f) is connected.
To do this we consider two arbitrary points z, w ∈ B \N(f) and show that z and w belong to
the same component of B \N(f). Let X be a complex line which contains z and w. Then the
restriction of f to X ∩B can be considered as a holomorphic function of one complex variable.
Since f is not identically equal to zero on X∩B, X∩B∩N(f) is discrete in X∩B. Since X∩B
is a disc and therefore connected, this implies that (X ∩B) \N(f) is connected. Consequently,
there exists a continuous path between z and w in (X ∩B) \N(f) and finally z and w belong
to the same component of B \N(f).
(ii) Assume that N(f) is compact. Since, by part (i), D\N(f) is connected, then it follows from
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Hartog’s theorem that 1/f can be continued holomorphically to N(f). This is a contradiction,
because f = 0 on N(f). □

We can generalize this result to the case of a finite number of holomorphic functions: we
replace N(f) by an analytic set A (for a definition of analytic sets and some properties, see
[Gu], [Na]).

To solve the inhomogeneous Cauchy-Riemann equations locally without the hypothesis on
compact support is slightly more complicated than the previous proof. For example, one cannot,
in general, solve these equations with regularity C∞ for any open set: this is linked to the notion
of pseudo-convexity.
Here is the following result in polydiscs, which also implies local solvability.

Theorem 2.2.6 Let D be an open set in Cn and let f be a C∞(D) (0, 1)-form such that the
compatibility condition ∂̄f = 0 is fulfilled in D. Then, for every open polydisc P relatively
compact in D, there exists u ∈ C∞(P ) satisfying ∂̄u = f in P .

Proof. We shall prove inductively that the theorem is true if fm+1 = . . . = fn = 0.
This is trivial if m = 0.
Assume that it has already been proved for m−1. Let D′ =

∏n
j=1D

′
j and D

′′ be open polydiscs
such that P ⋐ D′′ ⋐ D′ ⋐ D and choose χ ∈ C∞

0 (D′
m) such that χ = 1 in D′′

m. Define for
z ∈ D′

v(z) := − 1

2iπ

∫
ζ∈D′

m

χ(ζ)fm(z1, . . . , zm−1, ζ, zm+1, . . . , zn)

zm − ζ
dζ ∧ dζ̄.

Since χ ∈ C∞
0 (D′

m), after the change of variables ζ − zm → ζ, we see that v ∈ C∞(D′). Since
χ = 1 in D′′

m, it follows from Corollary 2.1.2 that

∂v

∂z̄m
= fm, in D′′.

Since ∂fm
∂z̄j

=
∂fj
∂ ¯zm

= 0 for j = m + 1, . . . , n, we obtain by differentiation under the sign of

integration that
∂v

∂z̄j
= 0 = fj in D′′ for j = m+ 1, . . . , n.

Then the functions f̃j := fj − ∂v
∂z̄j

, j = 1, . . . , n, fulfil the compatibility conditions (2.2) and

it follows from above that f̃m = . . . = f̃n = 0 in D′′. Therefore, by the inductive hypothesis,
we can find w ∈ C∞(P ) such that ∂w

∂z̄j
= f̃j ∀j = 1, ..., n in P and u := v + w is the required

solution of ∂̄u = f in P . □

See [Ho1] p32-33, for a result about (p, q)-forms with q ≥ 1.
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As we have seen with Hartogs and Bochner’s theorems, for some open sets in Cn, any holo-
morphic function automatically extends to a strictly larger open set. This phenomenon, absent
in dimension 1 shows that any open of Cn is not a ”natural” open set of definition of holomor-
phic functions. The ”natural” open sets are those for which there are holomorphic functions
that do not extend to a larger open set; they are called ”domains of holomorphy”.

A last extension theorem when n ≥ 2.
We usually call the following open set Ω the Hartogs pot, according to its form in the space R3

of the points (z1, | z2 |). This theorem says that the domain of definition of f can be extended
to the filled pot.

Theorem 2.2.7 Let consider the following domain Ω := Ω1 ∪ Ω2 in Cn:

{(z1, z2) ∈ C2 :| z1 |< r1, | z2 |< ϵ} ∪ {(z1, z2) ∈ C2 : r1 − ϵ <| z1 |< r1, | z2 |< r2},

where 0 < ϵ < r1.
Let f be a continuous function in Ω, holomorphic in z1 in Ω1 and in z2 in Ω2. Then f has an
unique holomorphic extension in all the polydisc D(O, r).

Proof. Let fix δ1 and δ2 such that r1 − ϵ < δ1 < r1 and ϵ < δ2 < r2.
When | z2 |< ϵ is fixed, the function f(z1, z2) is holomorphic in the open disc | z1 |< r1.
According to the Cauchy’s formula in z1, when | z1 |< δ1,

f(z) =
1

2iπ

∫
|ζ1|=δ1

(ζ1 − z1)
−1f(ζ1, z2)dζ1.

When r1 − ϵ <| ζ1 |< r1, the function f(ζ1, z2) is holomorphic in z2 in the disc | z2 |< r2.
According to Cauchy’s formula in z2, when | z2 |< δ2

f(ζ1, z2) =
1

2iπ

∫
|ζ2|=δ2

(ζ2 − z2)
−1f(ζ1, ζ2)dζ2.

Otherwise, the function F(δ1,δ2) defined by

1

(2iπ)2

∫
|ζ1|=δ1

∫
|ζ2|=δ2

(ζ1 − z1)
−1(ζ2 − z2)

−1f(ζ1, ζ2)dζ1dζ2

is an holomorphic function in D(O, δ). According to the two previous equalities, F(δ1,δ2) = f in
the open set | z1 |< δ1, | z2 |< ϵ. According to the identity theorem, we deduce that F(δ1,δ2) = f
in all Ω ∩D(O, δ).
If r1 − ϵ < δ1 < δ′1 < r1 and ϵ < δ2 < δ′2 < r2, F(δ1,δ2) = F(δ′1,δ

′
2)
in D(O, δ). □
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2.3 Domains of holomorphy, holomorphic convexity and

pseudoconvexity in Cn, n ≥ 2

The phenomena of Hartogs described in Theorem 2.2.3, leds Hartogs to the following definition:
a domain of holomorphy is an open subset D in Cn such that there is no part of ∂D across
which all functions f ∈ O(D) can be extended. More precisely:

Definition 2.3.1 Let D ⊂ Cn be an open subset. D is said to be a domain of holomorphy if
for every connected open set U ⊂ Cn which meets ∂D and every connected component V of
U ∩D there exists f ∈ O(D) such that f|V has no holomorphic extension to U .

Example 2.3.2 1) Every open subset D ⊂ C is a domain of holomorphy (for any z0 ∈ ∂D,
f(z) = (z − z0)

−1 cannot be extended at z0).
2) Cn is a domain of holomorphy.
3) In Cn every convex open subset is a domain of holomorphy: if ℜ⟨z−z0, ξ0⟩ = 0 is a supporting
hyperplane of ∂D at z0, the function f(z) = (⟨z− z0, ξ0⟩)−1 is holomorphic on D but cannot be
extended at z0.
4) Hartogs figure. Assume that n ≥ 2. Let ω ⊂ Cn−1 be a connected open set and ω′ ⊊ ω an
open connected subset. Consider the open sets in Cn:

Ω = ((D(R) \D(r))× ω) ∪ (D(R)× ω′) Hartogs figure,

Ω̃ = D(R)× ω filled Hartogs figure.

where 0 ≤ r < R and D(r) ⊂ C denotes the open disk centered at 0 with radius r.
Then every function f ∈ O(Ω) can be extended to Ω̃ = D(R) × ω by means of the Cauchy
formula:

f̃(z1, z
′) =

1

2iπ

∫
|ζ1|=ϱ

f(ζ1, z
′)

ζ1 − z1
dζ1, z ∈ Ω̃, max{| z1 |, r} < ϱ < R.

Remark first that this last definition doesn’t depend on the choice of max{| z1 |, r} < ϱ < R.
f̃ ∈ O(D(R)× ω) and f̃ = f on D(R)× ω′, so we must have f̃ = f on Ω since Ω is connected
(prove it). It follows that Ω is not a domain of holomorphy. □

Let us quote one interesting last extension theorem.

Theorem 2.3.3 (Riemann’s extension theorem) Let D be an open set in Cn and S a
closed submanifold of codimension ≥ 2. Then every f ∈ O(Ω \ S) extends holomorphically to
Ω.

According to Hartogs theorem, we see that if K is a compact subset in a domain Ω in Cn

(n ≥ 2) such that Ω\K is connected, then any holomorphic function in Ω\K, can be extended
holomorphically in all Ω. Consequently, Ω \K is not a domain of holomorphy.
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We first introduce the notion of holomorphic hull of a compact set K in an open set D. This
can be seen somehow as the complex analogue of the notion of (affine) convex hull for a compact
set in a real vector space. It is shown that domains of holomorphy in Cn are characterized by
a property of holomorphic convexity. And finally, we will see that holomorphic convexity is
equivalent to another notion of convexity: pseudoconvexity, another complex analogue of the
geometric notion of convexity.

Definition 2.3.4 Let D be an open set in Cn and let K be a compact subset in D. Then the
holomorphic hull of K in D is defined to be

K̂ = K̂D = K̂O(D) = {z ∈ D :| f(z) |≤ sup
K

| f |, ∀f ∈ O(D)}.

Remark 2.3.5 However, when Ω is arbitrary, K̂O(Ω) is not always compact in Ω. For instance,
in the case when Ω = Cn \ {O}, n ≥ 2, then O(Ω) = O(Cn) and the holomorphic hull of
K = S(0, 1) is the non compact set K̂ = B̄(O, 1) \ {O}.
In general, K̂O(Ω) ⊂ K̂aff and they are not equal.

Definition 2.3.6 An open set Ω in Cn is said to be holomorphically convex if the holomorphic
hull K̂O(Ω) of every compact set K ⊂ Ω is compact.

Example 2.3.7 Let Ω = {z ∈ Cn : 1
2
<| z |< 2} and K = S(O, 1) be a compact subset in Ω.

If n = 1, we can prove (by using holomorphic functions 1/z and z) that K̂O(Ω) = K.

If n ≥ 2, we can prove that B̄(O, 1) ∩ Ω = K̂O(Ω).
Indeed, the Hartogs phenomena implies that any holomorphic function f in Ω can be extended
holomorphically in all B(O, 2). Denote by f̃ its extension. According to the maximum principle,
| f̃(z) |=| f(z) |≤ supK | f | for any 1

2
<| z |< 1. Then B̄(O, 1) ∩ Ω ⊂ K̂O(Ω). In addition,

K̂O(Ω) ⊂ K̂aff = B̄(O, 1) ∩ Ω.

Consequently K̂O(Ω) is not relatively compact in Ω and Ω is not holomorphically convex.

Then we have the following theorem which characterizes domains of holomorphy in terms
of holomorphic convexity, obtained by H. Cartan and P. Thullen (1932).

Theorem 2.3.8 Let Ω be an open subset of Cn. The following properties are equivalent:
a) Ω is a domain of holomorphy;
b) Ω is holomorphically convex;
c) For every countable subset {wj}j∈N ⊂ Ω without accumulation points in Ω and every sequence
of complex numbers (aj), there exists an interpolation function F ∈ O(Ω) such that F (wj) = aj.
d) There exists a function F ∈ O(Ω) which is unbounded on any neighborhood of any point of
∂Ω.

Example 2.3.9 Let Ω be a domain in Cn and (fj)1≤j≤N be a family of analytic functions in
Ω.

P = {z ∈ Ω; | fj(z) |< 1, 1 ≤ j ≤ N}
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is called an analytic polyhedron in Ω.
Since the polydisc PN(O, 1) is convex and then it is a domain of holomorphy in CN , P is also
a domain of holomorphy in Cn if Ω is a domain of holomorphy in Cn or if P ⊂⊂ Ω.

We now finish this chapter by seeing that a holomorphically convex open set in Cn must
satisfy some more geometric convexity condition, known as pseudoconvexity, which is most
easily described in terms of the existence of plurisubharmonic exhaustion functions.

Plurisubharmonic functions are the several variables complex counterparts of subharmonic
functions in C. These objects are relatively soft in comparison to holomorphic functions which
are rigid objects.

Definition 2.3.10 A function u : Ω → [−∞,+∞) defined on an open subset Ω ⊂ Cn is said
to be plurisubharmonic (psh) if
a) u is upper semicontinuous (usc);
b) for every complex line L ⊂ Cn, u |Ω∩L is subharmonic as a function of one complex variable,
in the open set Ω ∩ L in C.
The set of plurisubharmonic functions on Ω is denoted by Psh(Ω).

Definition 2.3.11 A function Ψ : X → [−∞,+∞[ on a topological space X is said to be
an exhaustion if all sublevel sets Xc := {z ∈ X; Ψ(z) < c}, c ∈ R, are relatively compact in
X. Equivalently, Ψ is an exhaustion if and only if Ψ tends to +∞ relatively to the filter of
complements X \K of compact subsets of X (for any M ∈ R, there exists a compact set K ⊂
X, such that u ≥M in X \K).

A function Ψ on an open set Ω ⊂ Rn is thus an exhaustion if and only if Ψ(x) → +∞ as
x→ ∂Ω or |x| → ∞. Since plurisubharmonic functions appear as the natural generalization of
convex functions in complex analysis, we are led to the following definition.

Definition 2.3.12 Let Ω be an open set in Cn. Then Ω is said to be
a) weakly pseudoconvex if there exists a smooth plurisubharmonic exhaustion function Ψ ∈
Psh(Ω) ∩ C∞(Ω);
b) strongly pseudoconvex if there exists a smooth strictly plurisubharmonic exhaustion function
Ψ ∈ Psh(Ω) ∩ C∞(Ω), i.e. HΨ is positive definite at every point.

Theorem 2.3.13 Every holomorphically convex open set Ω is weakly pseudoconvex.

Theorem 2.3.14 Let Ω ⊂ Cn be an open subset. The following properties are equivalent:
a) Ω is strongly pseudoconvex;
b) Ω is weakly pseudoconvex;
c) Ω has a plurisubharmonic exhaustion function Ψ.
d) − log d(z, ∁Ω) is plurisubharmonic and continuous on Ω.
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Definition 2.3.15 Let Ω ⊂ Cn be an open subset. If one of the previous properties holds, Ω is
said to be a pseudoconvex open set.

Definition 2.3.16 Let D be an open set in Cn and let K be a compact subset of D. Then the
plurisubharmonic convex-hull of K in D is defined to be

K̂Psh(D) = {z ∈ D : u(z) ≤ sup
K
u, ∀u ∈ Psh(D)}.

Since f ∈ O(D) implies that | f |∈ PSH(D), it is clear that K̂Psh(D) ⊂ K̂O(D).

Using the classical Cauchy formula as in examples of this chapter 2, Hartogs showed that
for any domain of holomorphy in Cn, the following Continuity Principle holds (1909).

Theorem 2.3.17 Hartogs, 1909, Continuity Principle Let Ω be a domain of holomorphy.
If (∆ν) is an arbitrary sequence of analytic discs whose closures are contained in Ω and such
that lim

ν→∞
∆ν = ∆0, b∆0 ⊂ Ω, where ∆0 is an analytic disc, then ∆0 ⊂ Ω.

Here, an analytic disc δ means a non constant holomorphic mapping φ : ∆ → Cn, where ∆
is the unit disc in C. δ := φ(∆). If φ is continuous up to ∆̄, we will say that φ(∆̄) = φ(∆)
(according to the continuity of φ and the compacity of ∆̄) is a closed analytic disc and φ(∂∆)
is its boundary bδ.

Following Hartogs and Levi a domain in Cn is called pseudoconvex if the continuity principle
is valid for it.

Theorem 2.3.18 Let Ω ⊂ Cn be an open set. The following properties are equivalent:
a) Ω is pseudoconvex;
b) If K is a compact subset in Ω then K̂Psh(D) ⋐ Ω;
c) The Continuity Principle is satisfies : Let (δα)α∈A be a family of closed analytic discs in Ω.
If ∪α∈Abδα ⋐ Ω then ∪α∈Aδα ⋐ Ω.

A consequence of this theorem is the following one

Theorem 2.3.19 Any domain of holomorphy (or holomorphically convex) is pseudoconvex.

E. Levi (1911) formulated a natural problem: any pseudoconvex domain is a domain of
holomorphy. This problem turned out to be exceedingly difficult and was solved by Oka only
in 1942.

Theorem 2.3.20 (Oka 1942) Any pseudoconvex open set in Cn is a domain of holomorphy.
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Chapter 3

Liouville’s theorem, Ahlfors’ Lemma,
Picard’s theorems

3.1 Theorems

In C the complex plane, Dr := {z ∈ C : |z| < r} is the open disc with radius r > 0 and
D∗

r := Dr\{0}. Also D := D1 and D∗ := D∗
1.

O(Ω) is the family of holomorphic functions on the domain Ω,
O (Ω1,Ω2) is the family of holomorphic mappings from a domain Ω1 to domain Ω2.

Theorem 3.1.1 (Schwarz’s lemma) Assume f ∈ O(D,D) and f(0) = 0.
(a) Then |f(z)| ≤ |z| for every z ∈ D and |f ′(0)| ≤ 1.
(b) If |f ′(0)| = 1, or if |f (z0)| = |z0| for some z0 ∈ D∗, then there exists a ∈ ∂D such that
f(z) = az.

Proof. We just apply the maximum principle on an auxiliary function f(z)/z, which is
holomorphic on D, since f(0) = 0. □

Schwarz’s lemma could be very easily reformulated for discs of arbitrary radii.
Supposing that f ∈ O (Dr1 ,Dr2), where r1, r2 > 0 and f(0) = 0. Then the mapping F (z) :=
r−1
2 f (r1z) meets the conditions of the lemma, so we get |F (z)| ≤ |z| for z ∈ D. Then |f(z)| ≤
(r2/r1) |z| for z ∈ Dr1 . Let f be the entire function, i.e. holomorphic on C such that f(C) ⊂ Dr2

for a fixed r2 > 0. The radius r1 can be arbitrary large, so we get f(z) ≡ 0.

Theorem 3.1.2 (Liouville) Every bounded entire function is constant.

The connection between Schwarz’s lemma and Liouville’s theorem is a wonderful and simple
example of Bloch’s principle: there is nothing in the infinite which was not first in the finite.
In consequence, for a global result like Liouville’s, there must be a more powerful local result,
such as Schwarz’s result: Bloch’s principle.
Let Dr (z0) := {z ∈ C : |z − z0| < r} be an open disc with radius r > 0 and centre z0 ∈ C.
A(Ω) is the set of all continuous functions on Ω̄ which are holomorphic on Ω.
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Theorem 3.1.3 (Bloch’s principle) There is a universal constant B > 0 with the property
that for every value of 0 < R < B, every function f ∈ A(D) with |f ′(0)| = 1 maps a domain
Ω ⊂ D biholomorphically onto DR (z0) for some z0 ∈ f(D).

We name the discs from the theorem simple (”schlicht”) discs. Bloch’s theorem is interesting
because it guarantees the existence of simple discs with a fixed radius in the image of ”quite a
large family” of holomorphic functions on the unit disc.
In accordance with his principle, Bloch derived the following global result from his ”local”
theorem.

Theorem 3.1.4 (The Little Picard Theorem) Any entire function whose range omits at
least two distinct values is a constant.

The above theorem is a remarkable generalization of Liouville’s theorem.
It is simple to find entire functions whose range is the entire C; nonconstant polynomials, for
instance.
The exponential function is an example of an entire function whose range omits only one value,
namely zero.
But there does not exist a nonconstant entire function whose range omits 0 and 1. The latter
statement is actually equivalent to the Little Picard theorem since (b−a)z+a is a biholomorphic
mapping between C\{0, 1} and C\{a, b}, where a ̸= b. Theorem 3.1.4 was proved first by C.E.
Picard, by using arguments based on the modular function (a covering map from the upper
halfplane H := {z ∈ C : ℑ(z) > 0} onto C\{0, 1}. See for instance [Ahl79, 7.3.4]).

Theorem 3.1.5 (The Big Picard Theorem) In the neighborhood of an isolated essential
singularity a holomorphic function takes every value in C infinitely often with no more than
one exception.

Similarly to the relation between Liouville’s theorem and the Little Picard theorem, there
is a weaker and more accessible theorem in the case of the Big Picard theorem.
We know that a holomorphic function on Ω\{a} has in a one and only one type of isolated
singularity: removable singularity, pole or essential singularity. In the latter case, the limit
lim
z→a

|f(z)| does not exist and this happens if and only if the image of the neighborhood of the

point a is dense in C.
Theorem 3.1.5 can be reformulated as a meromorphic extension: if a holomorphic function in
the neighborhood of an isolated singularity omits two distinct values, then the singularity is
removable or it is a pole. In this case, the function becomes meromorphic.

3.2 The Poincaré metric on a disc

In this section we introduce the Poincaré metric on a disc and we compute the corresponding
distance in order to obtain the Schwarz-Pick lemma.
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R+ := {x ∈ R : x > 0} and R+
0 := R+ ∪ {0}. The Poincaré metric on Dr is

dρ2r :=
4r2 dz ∧ dz̄

(r2 − |z|2)2
(1)

This is a form of a Hermitian pseudometric, which is on domain Ω ⊆ C defined by

ds2Ω := 2λ(z) dz ∧ dz̄ (2)

where λ(z) ∈ C2
(
Ω,R+

0

)
is twice real-differentiable function with λ(z) = λ(z) and Z(λ) := {z ∈

Ω : λ(z) = 0} is a discrete set. If Z(λ) = ∅, then ds2Ω is said to be a Hermitian metric.
We can observe that (1) is really a Hermitian metric. For the sake of simplicity, let us write
dρ2 := dρ21.

Let Ω1 and Ω2 be two domains on C and f ∈ O (Ω1,Ω2). The pullback of arbitrary pseudo-
metric ds2Ω2

is defined by

f ∗ (ds2Ω2

)
:= 2λ(f(z)) |f ′(z)|2 dz ∧ dz̄,

which is a pseudometric on Ω1. For the Möbius transformation

φa(z) :=
z − a

1− āz
,

where a ∈ D, φa ∈ Aut(D), φ−1
a = φ−a and φ∗

a (dρ
2) = dρ2. Aut(D) is the family of holomor-

phic automorphisms of the unit disc. Therefore Möbius transformations are isometries for the
Poincaré metric. We have (according to Schwarz’s lemma [BG91, Examples 2.3.12])

Aut(D) =
{
eiaφb(z) : a ∈ R, b ∈ D

}
.

A pseudodistance (differs from a distance in metric spaces only in that the distance between
two different points might be zero) can always be assigned to a Hermitian pseudometric.
The process is the following.

Let Ω ⊆ C be an arbitrary domain and x, y ∈ Ω arbitrary points. The mapping γ :
[0, 1] → Ω is called Cn-path from x to y for n ≥ 0 if γ is n-times differentiable mapping and
γ(0) = x, γ(1) = y. In the case n = 0 we speak about C-paths and γ is a continuous mapping.
The concatenation of Cn-paths γ1 from x to y and γ2 from y to z is C-path

(γ1 ∗ γ2) (t) :=

{
γ1(2t), t ∈ [0, 1/2]

γ2(2t− 1), t ∈ [1/2, 1]

from x to z. Piecewise Cn-path γ from x to y is γ := γ1 ∗ · · · ∗ γk where γ1, . . . , γk are Cn-paths
and γ(0) = x, γ(1) = y.
Assume that domain Ω is equipped with a Hermitian pseudometric ds2Ω. Let γ : [0, 1] → Ω be
a piecewise C1-path from x to y. The length of γ is defined by

Lds2Ω
(γ) :=

∫ 1

0

√
2(λ ◦ γ)|γ̇|dt
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The pseudodistance between the points x and y is defined by

dΩ(x, y) := inf Lds2Ω
(γ),

where the infimum goes through all piecewise C1-paths γ from x to y.

Let domains Ω1,Ω2 ⊆ C be equipped with pseudometrics ds2Ω1
= 2λ1(z)|dz|2 and ds2Ω2

=
2λ2(z)|dz|2. Let there be points x, y ∈ Ω1, f ∈ O (Ω1,Ω2) and a piecewise C1-path γ : [0, 1] → Ω1

from x to y. Assume that f ∗ (ds2Ω2

)
≤ ds2Ω1

. Then f(γ) is a piecewise C1-path from f(x) to
f(y). We have

dΩ2(f(x), f(y)) ≤
∫ 1

0

√
2 (λ2 ◦ f ◦ γ) |f ′(γ)| |γ̇|dt ≤

∫ 1

0

√
2 (λ1 ◦ γ)|γ̇|dt (3)

Because this is valid for every such path, it follows

dΩ2(f(x), f(y)) ≤ dΩ1(x, y). (4)

If f ∈ O (Ω1,Ω2) is a biholomorphic mapping and f is an isometry for pseudometrics i.e.
f ∗ (ds2Ω2

)
= ds2Ω1

, then we can, with similar inequality as (3), but on inverse mapping f−1,
obtain dΩ2(f(x), f(y)) = dΩ1(x, y). In this case f is also an isometry for the induced pseudodis-
tances.

To the Poincaré metric on a disc we can explicitly write down the distance function between
arbitrary points p, q ∈ D. We denote it with ρ(p, q) and we call it the Poincaré distance.

Proposition 3.2.1 For arbitrary points p, q ∈ D, the Poincaré distance is

ρ(p, q) = ln
|1− p̄q|+ |p− q|
|1− p̄q| − |p− q|

= ln
1 + |φp(q)|
1− |φp(q)|

= 2artanh |φp(q)| . (5)

The area hyperbolic tangent artanh(x) := 1
2
ln
(
1+x
1−x

)
, x ∈ (−1, 1), is an increasing function, is

equal to zero at x = 0. Also lim
x→−1

artanh(x) = −∞ and lim
x→1

artanh(x) = +∞.

Proof. The second and third equalities are clear from the definitions.
Let’s prove the first equality. Since rotations and Möbius transformations are isometries for the
Poincaré metric, it is sufficient to show for every a ∈ [0, 1) that

ρ(0, a) = ln
1 + a

1− a
(6)

Because

ρ

(
0,

∣∣∣∣ p− q

1− p̄q

∣∣∣∣) = ρ

(
0,

q − p

1− p̄q

)
= ρ (0, φp(q)) = ρ (φ−p(0), q) = ρ (p, q) ,
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equation (5) follows from (6). Let γ(t) := x(t) + iy(t) be a piecewise C1-path from 0 to a and
γ̄(t) := at. Then

Ldρ2(γ) =

∫ 1

0

2
√
ẋ2(t) + ẏ2(t)

1− x2(t)− y2(t)
dt ≥

∫ 1

0

2ẋ(t)dt

1− x2(t)

= ln
1 + x(t)

1− x(t)

∣∣∣∣t=1

t=0

= ln
1 + a

1− a
= Ldρ2(γ̄)

The inequality above becomes equality if and only if y ≡ 0. And we verify that Ldρ2(γ̄) = ρ(0, a).
□

The above proof makes it evident that the shortest path in the Poincaré metric from 0 to
a ∈ [0, 1) is a chord between those points. We call the shortest path in arbitrary metric
a geodesic. For a general domain and metric on it, the geodesic does not always exist; think
about a nonconvex domain, equipped with the Euclidean metric. If it exists, it may not be the
only one.
Let’s now connect Schwarz’s lemma and the Poincaré metric to obtain the Schwarz-Pick lemma.

Theorem 3.2.2 (The Schwarz-Pick Lemma) Assume f ∈ O(D,D).
(a) Then

ρ(f(p), f(q)) ≤ ρ(p, q), ∀ p, q ∈ D (7)

and

|f ′(z)| ≤ 1− |f(z)|2

1− |z|2
, ∀ z ∈ D. (8)

(b) If p ̸= q exist such that the equality in (7) is valid or if z0 exists such that the equality in
(8) is valid, then f ∈ Aut(D).

Proof. Choose arbitrary f ∈ O(D,D) and arbitrary points p, q ∈ D. Define F (z) :=(
φf(p) ◦ f ◦ φ−p

)
(z). Then F ∈ O(D,D), F (0) = 0 (φ−p(0) = p and φf(p)(f(p)) = 0) and

F ′(0) =
f ′(p) (1− |p|2)
1− |f(p)|2

.

According to Schwarz’s lemma we have |F (z)| ≤ |z| in D, then
∣∣φf(p)(f(z))

∣∣ ≤ |φp(z)|. This is
equivalent to (7), since artanh is an increasing function. According again to Schwarz’s lemma
we have |F ′(0)| ≤ 1 and we obtain (8).
If f(0) = 0, then with (7) we get ρ(0, f(z)) ≤ ρ(0, z), which is equivalent to |f(z)| ≤ |z| and
with (8) we get |f ′(0)| ≤ 1. Therefore part (a) of Schwarz’s lemma is equivalent to part (a) of
the Schwarz-Pick lemma.
To have p ̸= q such that the equality in (7) is valid (|φf(p)(f(q))| = |φp(q)|), is equivalent to
have w ̸= 0 such that |F (w)| = |w| (q = φ−p(w)). To have z0 such that the equality in (8) is
valid is equivalent to have |F ′(0)| = 1. In these two situations f ∈ Aut(D). Consequently parts
(b) of both lemmas are equivalent. □
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3.3 Inner distances

What makes the Poincaré distance exceptional ?
In the Poincaré distance the boundary is infinitely far away from every point.
It can also be observed that closed balls in the Poincaré metric are compact. From the explicit
expression for ρ we can prove that every Cauchy sequence with respect to ρ is convergent in
D. We say that (D, ρ) is a complete metric space. And there is a connection among the
infiniteness of the boundary, the compactness of closed balls and the completeness of the metric
space.

Let γ : [0, 1] → Ω be a piecewise C1-path from x to y and δ := {0 = t0 < t1 < · · · < tk = 1}
partition of [0, 1] on k pieces. Length of γ in space (Ω, dΩ) is defined by

LdΩ(γ) := sup
δ

k∑
n=1

dΩ (γ (tn−1) , γ (tn))

We call diΩ(x, y) := inf LdΩ(γ), where the infimum goes through all piecewise C1-paths γ
from x to y, inner pseudodistance.
It is not difficult to prove that this is indeed a pseudodistance.
Because it is always dΩ(x, y) ≤ LdΩ(γ), it follows that dΩ(x, y) ≤ diΩ(x, y).
If the opposite inequality is valid, then we say that dΩ is inner. In that case we have dΩ = diΩ.

Proposition 3.3.1 Let dΩ be a pseudodistance, generated with (2). Then dΩ is inner.

Proof. Let γ : [0, 1] → Ω be a piecewise C1-path from p to q. Because we have

k∑
n=1

dΩ (γ (tn−1) , γ (tn)) ≤
k∑

n=1

∫ tn

tn−1

√
2(λ ◦ γ)|γ̇|dt = Lds2Ω

(γ)

for every partition δ, it follows LdΩ(γ) ≤ Lds2Ω
(γ). Therefore diΩ(p, q) ≤ dΩ(p, q). □

The balls BdΩ(x, r) := {y ∈ Ω : dΩ(x, y) < r} and B̄dΩ(x, r) := {y ∈ Ω : dΩ(x, y) ≤ r}.

Proposition 3.3.2 Assume that dΩ is a continuous inner distance. Then dΩ is equivalent to
the Euclidean topology on Ω.

Proof. Let x ∈ Ω be arbitrary point. dΩ : {x} × Ω → [0,∞) is a continuous function. The
set [0, r) ⊂ [0,∞) is open. Because BdΩ(x, r) =

(
pr2 ◦d−1

Ω

)
([0, r)) where pr2 is a projection to

the second component, every ball BdΩ(x, r) is open in the Euclidean topology.
Conversely, we are going to prove that every open set in Ω for the Euclidean topology is open
for dΩ. Let U ⊂ Ω be an arbitrary neighborhood of a point x ∈ Ω. We must show that there
exists r > 0 such that BdΩ(x, r) ⊂ U . Choose a relatively compact neighborhood U ′ ⊂ U of x.
Define

r := dΩ (x, ∂U ′) = inf
y∈∂U ′

dΩ(x, y).
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This infimum is a minimum because dΩ is continuous with respect to the Euclidean topol-
ogy. Because dΩ is an inner distance, for every point y ∈ BdΩ(x, r), there exists a piecewise
C1-path γy from x to y such that LdΩ(γy) < r. This means that sptγy ⊂ BdΩ(x, r). Hence
BdΩ(x, r) ⊂ U ′, because contrary, for y ∈ BdΩ(x, r)\U ′ there will be x′ ∈ ∂U ′ ∩ sptγy such that
r > LdΩ(γy) ≥ r + dΩ (x′, y). As this is impossible, the proposition is thus proved. □

Remember that a complete metric space (X, dΩ) means that every Cauchy sequence con-
verges in dΩ. If there is a continuous inner distance, then compactness of closed balls charac-
terizes completeness of a metric space.

Theorem 3.3.3 (Hopf-Rinow) Assume that dΩ is a continuous inner distance. Then (Ω, dΩ)
is a complete metric space if and only if every closed ball B̄dΩ(x, r) is compact.

Proof. The easy part of the proof is the implication from compactness of closed balls to
completeness of the space and is valid without the assumption of innerness. Let every closed
dΩ-ball be compact. Because in a metric space every Cauchy sequence has one accumulation
point at most and in a compact space every sequence has one accumulation point at least, it
follows that (Ω, dΩ) is complete.
Let (Ω, dΩ) be a complete space. Fix x0 ∈ Ω. Then r > 0 exists (small enought) such that
BdΩ (x0, r) is relatively compact. We want to prove that this is true for all r > 0. Assuming
the contrary, set

r0 := sup
{
r : B̄dΩ (x0, r) is compact

}
<∞.

Then the set B̄dΩ (x0, r0 − ε) is compact for all ε > 0. Therefore a sequence {yi}ni=1 ⊂
B̄dΩ (x0, r0 − ε) exists such that

B̄dΩ (x0, r0 − ε) ⊂
n⋃

i=1

BdΩ (yi, ε)

For any ε′ ≥ 0, we will demonstrate that {BdΩ (yi, ε
′ + 2ε)}ni=1 is an open cover ofBdΩ (x0, r0 + ε′).

Let us take arbitrary

x ∈ BdΩ (x0, r0 + ε′) \B̄dΩ (x0, r0 − ε)

By innerness a piecewise C1-path γ exists from x0 to x such that LdΩ(γ) < r0 + ε′. Then
t0 ∈ (0, 1) and yj ∈ {yi}ni=1 exist such that γ (t0) ∈ ∂BdΩ (x0, r0 − ε) and γ (t0) ∈ BdΩ (yj, ε).
Then we have

LdΩ

(
γ|[t0,1]

)
= LdΩ(γ)− LdΩ

(
γ|[0,t0]

)
< r0 + ε′ − (r0 − ε) = ε′ + ε

This means that dΩ (γ (t0) , x) < ε′ + ε and dΩ (x, yj) ≤ dΩ (x, γ (t0)) + dΩ (γ (t0) , yj) < ε′ + 2ε.
It follows

BdΩ (x0, r0 + ε′) ⊂
n⋃

i=1

BdΩ (yi, ε
′ + 2ε)
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For ε = ε′ = r0/6, we have BdΩ (x0, r0 + r0/6) ⊂
⋃n

i=1BdΩ (yi, r0/6 + 2r0/6).
Then there exists n1 ∈ N, 1 ≤ n1 ≤ n such that B̄dΩ (yn1 , r0/2) is not compact with yn1 ∈
B̄dΩ (x0, 5r0/6) . Set

0 < r1 := sup
{
r : B̄dΩ (yn1 , r) is compact

}
≤ r0/2.

We inductively continue this process as above. We obtain a sequence of points
ynk

∈ BdΩ

(
ynk−1

, 5.2−kr0/3
)
, where B̄dΩ

(
ynk

, r02
−k
)
is not compact for every k ∈ N. The se-

quence (ynk
) doesn’t converge. Indeed if w = lim ynk

then for k large enough, B̄dΩ

(
ynk

, r02
−k
)
⊂

B̄dΩ

(
w, r02

−k+1
)
, which is not compact. This is impossible for any k large enough. But the

nonconvergent sequence (ynk
) is Cauchy (for any k′ ≥ k, d(ynk′

, ynk
) ≤ 10r0

3
1
2k
), which is in

contradiction with the assumption of the completeness of (Ω, dΩ). The theorem is therefore
proved. □

Let Ω ⊆ C be a domain and x ∈ Ω an arbitrary point. The mapping γ : [0, 1) → Ω is
a piecewise C1-path from x to y ∈ ∂Ω ∪ {∞} if for every t0 ∈ (0, 1), the mapping γ|[0,t0] is a

C1-path, γ(0) = x and lim
t→1

γ(t) = y.

Definition 3.3.4 A domain Ω is b-complete with respect to the distance dΩ if for arbitrary
points x ∈ Ω, y ∈ ∂Ω ∪ {∞} and for an arbitrary piecewise C1-path γ from x to y, it follows

that lim
t→1

LdΩ

(
γ|[0,t]

)
= ∞.

Letter ”b” stands for ”boundary”. Intuitively speaking, (Ω, dΩ) is b-complete if and only if
the boundary is ”infinitely far away” from every inner point.

Corollary 3.3.5 Assume that dΩ is a continuous inner distance. Then (Ω, dΩ) is a complete
metric space if and only if (Ω, dΩ) is b-complete.

Proof. Assume that Ω is not b-complete. Then there exists a piecewise C1-path γ : [0, 1) → Ω

from x ∈ Ω to y ∈ ∂Ω ∪ {∞} such that limt→1 LdΩ

(
γ|[0,t]

)
= r for some r > 0. For every

sequence (yn) ⊂ γ([0, 1)), where yn → y, it follows that dΩ (x, yn) ≤ r for every n ∈ N. Because
the closed ball B̄dΩ(x, r) is not compact, Theorem 3.3.3 guarantees that (Ω, dΩ) is not complete.
Now let assume that Ω is not a complete metric space. Then there exists a Cauchy sequence
(xi) ⊂ Ω ⊂ C with the limit x ∈ ∂Ω.
Let fix arbitrary ε ∈ (0, 1). Since the sequence is Cauchy, then there exists a subsequence
{ki} ⊂ N such that dΩ

(
xki , xki+1

)
< εi. Because dΩ is an inner distance, there exist piecewise

C1-paths γi with γi(0) = xki and γi(1) = xki+1
such that

dΩ
(
xki , xki+1

)
≤ LdΩ (γi) ≤ dΩ

(
xki , xki+1

)
+ εi < 2εi

Define a piecewise C1-path γ : [0, 1) → Ω from xk1 to x with γ(t) := γi (2
i(t− 1) + 2) for

t ∈ [1− 21−i, 1− 2−i]. Take arbitrary t0 ∈ (0, 1). Then there exists j ∈ N such that t0 ∈
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[1− 21−j, 1− 2−j]. Therefore

LdΩ

(
γ|[0,t0]

)
=

j−1∑
i=1

LdΩ (γi) + LdΩ

(
γ|[1−21−j ,t0]

)
< 2

(
ε+ ε2 + · · ·+ εj

)
<

2ε

1− ε

Since lim
t→1

LdΩ

(
γ|[0,t]

)
<∞, the domain Ω is not b-complete. □

3.4 Ahlfors’ generalization of the Schwarz-Pick lemma

Ahlfors’ generalization is based on curvature.

Definition 3.4.1 Gaussian curvature Kds2Ω
of a pseudometric (2) is defined by

Kds2Ω
(z) := −1

λ

∂2

∂z∂z̄
log λ(z) (9)

for z ∈ Ω\Z(λ) and −∞ for the rest of the points.

We can compute: Kdρ2r
≡ −1 for the Poincaré metric (1) on Dr.

This curvature is indeed connected to Gaussian curvature of Riemannian metric on surfaces in
real differential geometry.
An important property of Gaussian curvature is invariance on the pullback. For an arbitrary
f ∈ O (Ω1,Ω2) there is

Kds2Ω2
(f(z)) = Kds2Ω1

(z) (10)

where ds2Ω2
is an arbitrary Hermitian pseudometric on Ω2 and ds2Ω1

:= f ∗ (ds2Ω2

)
. This can be

easily seen from (9), using the chain rule and ∂f/∂z̄ ≡ 0 since f is holomorphic.

We will need later to have weaker assumptions for the function λ. Assume that λ is only
continuous function and then ds2Ω = 2λdz ∧ dz̄ is a continuous Hermitian metric.

Definition 3.4.2 A pseudometric ds2supp = 2λsupp (z)dz∧dz̄ is supporting pseudometric for ds2

at z0 ∈ Ω if there is a neighborhood U ∋ z0 in Ω such that λsupp ∈ C2
(
U,R+

0

)
and λsupp |U ≤ λ|U

with equality at z0.

We do not need a supporting pseudometric, defined on the whole domain Ω. When a
supporting pseudometric exists for a continuous pseudometric, this is defined as local existence,
which can change from point to point.

Theorem 3.4.3 (Ahlfors’ lemma) Let Ω be a domain with a continuous Hermitian pseudo-

metric ds2Ω, for which a supporting pseudometric ds2supp exists. Assume that Kds2supp

∣∣∣
Ω
≤ L for

some L < 0. Then for every f ∈ O(D,Ω) we have

f ∗ (ds2Ω) ≤ |L|−1dρ2 (11)

where dρ2 is the Poincaré metric (1) in D.

39



Proof. There is a continuous Hermitian pseudometric ds2Ω = 2λdz ∧ dz̄ on Ω. Define

ds2 := |L|f ∗ (ds2Ω) = 2|L|λ(f) · |f ′|2 dz ∧ dz̄

Then ds2 is a continuous Hermitian pseudometric on D. Define λ1 := |L|λ(f). |f ′|2. The
equation (11) is equivalent to ds2 ≤ dρ2.
For every r ∈ R+, define µr(z) := 2r2 (r2 − |z|2)−2

on Dr. dϱ2r = 2µrdz ∧ dz̄ and dρ2 =
2µ1(z)dz ∧ dz̄.
Define the function ur(z) := λ1(z)µ

−1
r (z). Hence ds2 = urdρ

2
r. If we show that u1 ≤ 1 on D,

then ds2 ≤ dρ2.
If we show that for any r < 1: ur(z) ≤ 1 for every z ∈ Dr, then u1 ≤ 1 on D, because when
z0 ∈ D is fixed and r → 1 and it follows ur (z0) → u1 (z0).
Let fix an arbitrary r ∈ (0, 1).
Since λ1 is bounded on Dr, when |z| → r follows that ur(z) → 0. Function ur is continuous,
hence there exists z0 ∈ Dr such that maxDr

ur = ur(z0).
Let there be a supporting pseudometric ds2supp for ds2Ω at f (z0) ∈ Ω. Then we define

ds′2supp := |L|f ∗ (ds2supp ) .
It is a supporting pseudometric for ds2 at z0, whose curvature is −1 at most, according to (9)
and (10): Kds′2supp

= 1
|L|Kf∗ds2supp =

1
|L|Kds2supp

(f) ≤ L
|L| = −1.

Then there exist a neighborhood U ∋ z0 and λ′supp (z) ∈ C2
(
U,R+

0

)
such that λ′supp

∣∣
U
≤ λ1|U

with equality in z0. Define function

vr(z) :=
λ′supp (z)

µr(z)
=
λ′supp (z)

λ1(z)
ur(z).

Hence maxz∈U vr = ur (z0).
Although what follows is related to the theory of real functions, it is a crucial element of the
proof. Let us have u ∈ C2 (Ω,R+), where Ω ⊂ C is a domain. Assume that a function u reaches
its maximum at (x0, y0) ∈ Ω. Because this point is singular, it follows that ∂u/∂x (x0, y0) =
∂u/∂y (x0, y0) = 0. But the point is a maximum, so ∂2u/∂x2 (x0, y0) ≤ 0 and ∂2u/∂y2 (x0, y0) ≤
0. A computation shows that

∂2

∂z∂z̄
log u =

1

4

(
∂2

∂x2
+

∂2

∂y2

)
log u =

u (uxx + uyy)−
(
u2x + u2y

)
4u2

.

Then we have
∂2 log u

∂z∂z̄

∣∣∣∣
z=x0+iy0

≤ 0.

Remember that the maximum of function vr|U is reached at point z0. Hence

0 ≥ ∂2 log vr|U
∂z∂z̄

∣∣∣∣
z0

=
∂2 log λ′supp

∂z∂z̄

∣∣∣∣
z0

− ∂2 log µr

∂z∂z̄

∣∣∣∣
z0

= −λ′supp (z0)Kds′2supp (z0)− µr (z0)

= µr (z0)
(
−vr (z0)Kds′2supp (z0)− 1

)
≥ µr (z0) (vr (z0)− 1)
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because Kds′2supp (z0) ≤ −1. We get vr (z0) ≤ 1 and ur (z0) ≤ 1. Since z0 is the maximum of ur,
it follows ur(z) ≤ 1 on Dr. □

The original version of Ahlfors’ lemma is for Riemann surfaces (one dimensional complex
manifolds), so the proof is essentially the same as one above.
Assume that L = −1 in Ahlfors’ lemma. Then we have f ∗ (ds2Ω) ≤ dρ2. Therefore we can use
inequality (4) and get

dΩ(f(p), f(q)) ≤ ρ(p, q) (13)

In the case of domain (D, dρ2), we get (7) of the Schwarz-Pick lemma.

3.5 Applications and Proofs

In this section we prove the theorems mentioned in the introduction.
Firstly, we will prove Bloch’s theorem and a familiar theorem due to Landau, which drops out
the assumption about simple discs. Bloch’s and Landau’s theorems are examples of applications
of Ahlfors’ lemma.
Next, a Hermitian metric is constructed on domain C\{0, 1}, which satisfies the assumptions of
Ahlfors’ lemma. From that point, we are able to provide a proof of the Little Picard theorem.
Then Schottky theorem permits us to prove the Big Picard theorem.

3.5.1 The Bloch Theorem

B := {f ∈ A(D) : |f ′(0)| = 1} where A(D) = C(D) ∩ O(D).
Remember that Bloch’s theorem (Theorem 3.1.3) guarantees the existence of a constant B > 0
such that B(f) ≥ B for every f ∈ B, where B(f) be a supremum of all radii of simple discs in
f(D) (discs in f(D) which are biholomorphic with f to an open subset in D).

Proof of Bloch’s theorem. By S := {z ∈ D : f ′(z) = 0} we denote the set of singular points.
It is a discrete set of points. According to the open mapping theorem, Ω := f(D) is a domain
and f(D) ⊆ Ω̄ ⊂ C. For every point w ∈ Ω there is a number ρ̃(w) such that Dρ̃(w)(w) is the
largest simple disc. Therefore B(f) = supw∈Ω ρ̃(w) and B(f) < ∞ (otherwise we would have
Ω = C. This is impossible since f is continuous on D and Ω is bounded). On D we define a
metric

λ(z) :=
A2 |f ′(z)|2

ρ̃(f(z)) (A2 − ρ̃(f(z)))2
(14)

where A is a constant, which satisfies A2 > B(f). Since ρ̃ is a continuous function and ρ̃(f(z)) =
0 if and only if z ∈ S, then (14) is a continuous Hermitian metric at nonsingular points.
We must care only at singular points. Take arbitrary z0 ∈ S. We know that there is a small
neighborhood U ∋ z0 in D, n ≥ 2 and biholomorphic function φ on U (φ(z0) = 0 and φ′(z0) ̸= 0)

such that f(z) = f (z0) + φn(z) on U (f(z) = f (z0) +
f (n)(z0)

n!
(z − z0)

ng(z) with g(z0) = 1. We
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can choose U small enought such that |g(z)−1| < 1 on U . There exists a holomorphic nth root
on D1(1)) and ρ̃(f(z)) = |f(z)− f (z0)| on U . Therefore the equation (14) can be rewritten as

λ(z) =
A2n2|φ(z)|n−2 |φ′(z)|2

(A2 − |φ(z)|n)2

for z ∈ U . Therefore λ is a Hermitian pseudometric in the neighborhood U of the singular
point z0, with constant curvature -1.
If we want to use Ahlfors’ lemma, we need to construct a supporting pseudometric for (14)
in a neighborhood of any nonsingular point z0 ∈ D\S. There exists s0 ∈ D such that the
boundary of Dϱ̃(f(z0)) (f (z0)) contains the point f (s0) and in the neighborhood U of z0, we
have ϱ̃(f(z)) ≤ |f(z)− f (s0)|. On U define a Hermitian metric

λsupp(z) :=
A2 |f ′(z)|2

|f(z)− f(s0)|.(A2 − |f(z)− f(s0)|)2
. (15)

Let choose A such that x 7→ x (A2 − x)
2
is an increasing function on [0, B(f)]. A quick

calculation shows that this function is increasing on [0, A2/3]. Thereforewe choose A2 > 3 B(f).
Then the inequality λsupp (z) ≤ λ(z) is satisfied on U . Since λsupp (z0) = λ (z0), metric (15),
which has constant curvature -1 , is supporting for (14) at z0.
Let f(0) = z0. By assumption |f ′(0)| = 1, the upper bounds combined with Ahlfors’ lemma
give

3 B(f) < A2 ≤ 4ρ̃ (z0)
(
A2 − ρ̃ (z0)

)2 ≤ 4 B(f)
(
A2 − B(f)

)2
.

Pushing A2 toward 3 B(f), we get B(f) ≥
√
3/4. Hence B ≥

√
3/4. □

Edmund G. H. Landau dropped the assumption about simple discs in Bloch’s theorem.

Theorem 3.5.1 Assume f ∈ A(D) and |f ′(0)| = 1. Then there exists a universal constant
L > 0 such that there exists a disc with radius R ≥ L in the image f(D).

Proof. Proving this theorem is very similar to proving Bloch’s theorem. Let there be a
real and positive function ρ̃(z) such that Dρ̃(z)(z) is the largest disc in Ω := f(D). Define
L(f) := supz∈Ω ρ̃(z). Since we are not dealing with singular points, we take metrics

λ(z) :=
1

2

(
ρ̃(z) ln

C

ρ̃(z)

)−2

and λsupp(z) :=
1

2

(
|z − s0| ln

C

|z − s0|

)−2

on Ω. The metric λsupp(z) is defined on a neighborhood U of a point z0 ∈ Ω and s0 ∈
∂Dρ̃(z0) (z0) ∩ ∂Ω where it has constant curvature -1 . We have ϱ̃(z) ≤ |z − s0| in U . Therefore
λsupp will be supporting for λ at z0 if the inequality λsupp (z) ≤ λ(z) is satisfied on U . This
will be true if x ln (Cx−1) is an increasing function on [0, L(f)]. This function is increasing for
e.x < C, therefore the metric is supporting if e.L < C.
Assume f(0) = z0. We have |f ′(0)| = 1. According to Ahlfors’ lemma it follows

1 ≤
(
2ρ̃ (z0) ln

C

ρ̃ (z0)

)2

≤
(
2 L(f) ln

C

L(f)

)2

Pushing C toward e.L(f), we get L(f) ≥ 1/2 and hence L ≥ 1/2. □
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3.5.2 The Little Picard Theorem

The Little Picard theorem (Theorem 3.1.4) deals with domain C\{0, 1}. Therefore, we are
going to construct a Hermitian metric with curvature, bounded with negative constant and use
Ahlfors’ lemma.
On looking at the definition of λC∗∗ , one sees that the first factor is singular at 0 and the
second is singular at 1. Let us concentrate on the first of these. Since the expression defin-
ing curvature is rotationally invariant, it is plausible that the metric we define would also be
rotationally invariant about its singularities. Thus it should be a function of |z|. Hence one
would like to choose exponents α, β so that (1 + |z|α)β defines a metric of negative curvature.
However, a calculation reveals that the α, β which are suitable for z large are not suitable for
z small and vice-versa. This explains why the expression has powers both of |z| (for behavior
near 0) and of (1+|z|) (for behavior near ∞). A similar discussion applies to the factors |z−1|α.

Proof of the Little Picard theorem. Introduce C∗∗ := C\{0, 1}. Define

λC∗∗(z) :=
(1 + |z|1/3)1/2(1 + |z − 1|1/3)1/2

C|z|5/3|z − 1|5/3
(16)

with a constant C > 0. λC∗∗ is positive and smooth on C∗∗. The metric ds2C∗∗ := 2λC∗∗(z)dz∧dz̄
is a Hermitian metric on C∗∗ and for C sufficiently large its curvature K(z) := Kds2C∗∗

(z) < −1.

Let proceed to calculate its curvature. First notice that, away from the origin, ∂2(ln(|z|5/3))
∂z∂z̄

= 0,
since z 7→ ln |z| is harmonic in C∗. The situation is the same around 1. Thus in C∗∗ we have

K(z) =− 1

λC∗∗

∂2

∂z∂z̄
ln

[
(1 + |z|1/3)1/2(1 + |z − 1|1/3)1/2

C|z|5/3|z − 1|5/3

]
=− 1

λC∗∗

∂2

∂z∂z̄
ln
[
(1 + |z|1/3)1/2(1 + |z − 1|1/3)1/2

]
=− 1

72λC∗∗

[
1

|z|5/3(1 + |z|1/3)2
+

1

|z − 1|5/3(1 + |z − 1|1/3)2

]
=− C

72

[
|z − 1|5/3

(1 + |z|1/3)5/2(1 + |z − 1|1/3)1/2
+

|z|5/3

(1 + |z|1/3)1/2(1 + |z − 1|1/3)5/2

]
It can be derived from the expression above that

lim
z→0

K(z) = lim
z→1

K(z) = − C

72
√
2
and lim

|z|→∞
K(z) = −∞.

It follows immediately that K is bounded from above by −1 for C large enought.

Let f ∈ O (Dr,C∗∗), with r > 0. Then g(z) := f(rz) ∈ O (D,C∗∗). According to Ahlfors’
lemma it follows that λC∗∗(g(0))|g′(0)|2 ≤ 2 and

(r |f ′(0)|)2 ≤ 2

λC∗∗(f(0))
(17)
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We can now prove the Little Picard theorem. Assume that f is an entire function such that
f(C) ⊆ C∗∗. Choose an arbitrary point z0 ∈ C and introduce a function g(z) := f (z + z0).
Choose an increasing and unbounded sequence (rn) of positive real numbers. Let gn := g|Drn

.
By equation (17) for every n ∈ N it follows

|f ′ (z0)|2 = |g′n(0)|
2 ≤ 2

r2nλC∗∗ (gn(0))
=

2

r2nλC∗∗ (f (z0))

n→∞−−−→ 0

since gn(0) = f (z0) and g
′
n(0) = f ′ (z0). Hence f

′
(z0) = 0. Because z0 was an arbitrary point,

it follows f ′ ≡ 0 on C. This means that f is a constant function. □

By using inequality (17) we are able to provide a very easy proof of the following Landau
theorem.

Theorem 3.5.2 Assume that f ∈ O (Dr,C∗∗) for some r > 0 and f ′(0) ̸= 0. Then there is a
constant C > 0, depending only on f(0) and f ′(0) such that r ≤ C.

Proof. Inequality (17) suggests that a good choice for a constant is

C =
2

|f ′(0)|λ1/2C∗∗(f(0))

which only depends on f(0) and f ′(0). □

Assume that f(z) = a0 + a1z + a2z
2 + · · · is a power series expansion of f at 0 . Then

f(0) = a0 and f ′(0) = a1. Theorem 3.5.2 has the following equivalent form: if f omits 0 and 1
and a1 ̸= 0, then a constant C (a0, a1) > 0 exists such that the convergence radius of f is not
greater than C (a0, a1).

In the same vein, H. Schottky studied the size of an image of a disc under a holomorphic
mapping, which omits two distinct points on C. The theorem is a bridge between the Little
and Big Picard theorems.

Theorem 3.5.3 (Schottky’s Theorem) Let R and C be positive real numbers. Assume that
we have f ∈ O (DR,C∗∗) such that |f(0)| < C. Then for every r ∈ (0, R), there exits a constant
M , depending only on R, r and C such that |f(z)| ≤M for |z| ≤ r.

3.5.3 The Big Picard Theorem

While studying the properties of O(Ω), we should introduce the concept of normal families:
a family F ⊂ O(Ω) is normal if every sequence in F has a convergent subsequence in O(Ω),
where convergence is uniformly on compact sets. For F we say that it is bounded on Ω if for
every compact set K ⊂ Ω a constant C(K) exists such that

sup
f∈F

(
sup
z∈K

|f(z)|
)

≤ C(K). (18)
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We denote ∥f∥K := supz∈K |f(z)|.

Theorem 3.5.4 (Montel) A family F ⊂ O(Ω) is bounded on Ω if and only if it is normal.

It is useful to expand the definition of normality in the direction that allows uniform con-
vergence on compact sets to ∞. A closed family F ⊂ O (Ω1,Ω2) is normal if every sequence
in F has convergent subsequence or has a compactly divergent subsequence. A sequence
(gn) ⊂ O (Ω1,Ω2) is compactly divergent if for arbitrary compact sets K ⊂ Ω1 and L ⊂ Ω2,
there exists an integer N ∈ N such that gn(K) ∩ L = ∅ for all n > N .

For the proof of the next theorem we need the classical result by A. Hurwitz [Ahl79, p. 178]:
Assume that (fn) ⊂ O(Ω) is a convergent sequence with the limit f ∈ O(Ω). If there exists
a ∈ C such that a /∈ fn(Ω) for every n ∈ N, then a /∈ f(Ω) or f ≡ a.

Theorem 3.5.5 (The Normality Theorem) Let there be a, b ∈ C, a ̸= b. Then any family
F ⊆ O(Ω,C\{a, b}) is normal for every domain Ω ⊂ C.

Proof. Since z 7→ (b − a)z + a is a biholomorphisme mapping between C\{0, 1}) and
C\{a, b}), we can suppose that F ⊂ O(Ω,C\{0, 1}) and (fn) ⊂ F is an arbitrary sequence. It
is enough to show that for every point x ∈ Ω there is a neighborhood U ⊂ Ω such that the
family {fn|U : n ∈ N} is normal.
Choose a fixed but arbitrary point x ∈ Ω. Choose R > 0 such that DR(x) ⊂ Ω. If the se-
quence (fn(x)) is bounded (by C), then according to Schottky’s theorem, for any 0 < r < R,
there exists M > 0 such that fn

(
Dr(x)

)
⊂ DM : sup

f∈{fn}
∥f∥Dr(x)

≤ M . According to Montel’s

theorem, there exists a subsequence (fn(j))j ⊂ (fn) such that (fn(j))j uniformly converges to
f ∈ O (Dr(x)) on compact sets in Dr(x). If f (Dr(x)) ⊂ C\{0, 1}, the goal has been achieved.
If it isn’t the case, according to Hurwitz’ Theorem, since the sequence (fn(j)) ⊂ O(Ω,C\{0, 1}),
this implies that f ≡ 0 or 1. Therefore, the sequence is compactly divergent.
If the sequence (fn(x)) is unbounded, there exists a subsequence (|fn(j)(x)|)j which goes to ∞.
Then we can do the same thing as before with gn = 1/fn and we obtain the same conclusion.
□

The Normality theorem is used to prove the Big Picard theorem (Theorem 3.1.5).

Proof of Theorem 3.1.5. Assume that f ∈ O (D∗
ϵ), where 0 is an essential singularity

and there are two values a ̸= b such that both equations f(z) = a and f(z) = b have only
finitely many solutions in D∗

ϵ . Hence there is a ϵ ≥ δ > 0 such that there are no solution
in D∗

δ . By a simple change of variable we can assume δ = 2. Consider now the domain
D = {z ∈ C : 1/2 < |z| < 2}. Define the family F := (fn|D), where fn(z) := f (2−nz). fn is
defined in {z ∈ C : 0 < |z| < 2n+1}. Since

F ⊂ O(D,C\{a, b}),

the Normality theorem guarantees that F is a normal family. Therefore there is a subsequence
(fn(j)) such that fn(j) → g ∈ O(D) (normally in D). Either g ≡ ∞ or g is holomorphic in D.
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If g ̸≡ ∞, then we can assume that the sequence (fn(j)) is uniformly bounded on the unit circle
∂D, which is a compact subset of D. Then there exists M > 0 such that |f(z)| ≤ M and
|fn(j)(z)| ≤ M , for any j and any z ∈ ∂D. Then we have |f(z)| ≤ M for |z| = 2−n(j). By the
maximum principle, whenever 2−n(j) ≤ |z| ≤ 1, |f(z)| ≤ M . Hence |f(z)| ≤ M in D∗, since
2−n(j) → 0. This means that the singularity is removable. This is in contradiction with the
assumption of an essential singularity.
If g ≡ ∞, then (fn(j)) → ∞ uniformly in ∂D and we can assume that (1/fn(j)) is bounded in
∂D. Then this implies that 0 is a removable singularity for 1/f , which implies that f has a
pole at 0. It is also a contradiction. □
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Chapter 4

Entire curve and a glimpse of
hyperbolic complex manifolds

We briefly describe main properties of Kobayashi hyperbolic complex manifolds and Brody
hyperbolic complex manifolds. We are especially interested on those properties which are in
direct connection with Picard’s theorems.

4.1 Kobayashi hyperbolicity

We begin with the notion of invariant pseudodistances. These are pseudodistances which can
be constructed on the category of complex manifolds and they become isometries for biholo-
morphic mappings. In 1967, S.Kobayashi constructed one of those pseudodistances.
For every x, y ∈ M and every f ∈ O(M,N), where M and N are (connected) complex mani-
folds, the Kobayashi pseudodistance dKM has the following properties

dKN (f(x), f(y)) ≤ dKM(x, y) (1)

dKD (x, y) = ρ(x, y) (2)

Thus dKM is an invariant pseudodistance, which coincides with the Poincaré distance on a disc.
Explicit construction is carried out by the so-called chain of holomorphic discs. A chain of
holomorphic discs from p to q (points in M) is the following data

α :


p = p0, p1, . . . , pn = q ∈M
a1, a2, . . . , an ∈ D
f1, f2, . . . , fn ∈ O(D,M)

where fk(0) = pk−1 and fk (ak) = pk for all k ∈ {1, . . . , n}. The lenght of α is l(α) :=∑n
k=1 ρ (0, ak) and Kobayashi pseudodistance is then defined as

dKM(p, q) := inf
α

{
n∑

k=1

ρ (0, ak)

}
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It is a pseudo-distance: dKM(p, q) = dKM(q, p) and dKM(p, q) ≤ dKM(p, w) + dKM(w, q), for all p, q
and w ∈M .
We have the distance decreasing property (1) because any chain of holomorphic discs joining
x to y can be composed with f to induce a chain of holomorphic discs joining f(x) and f(y).
The result just follows by taking infimums.
And we have (2), according to Schwarz Lemma:
ρ(0, φp(q)) = ρ(p, q) ≤

∑n
k=1 ρ(pk−1, pk) =

∑n
k=1 ρ(fk(0), fk(ak)) ≤

∑n
k=1 ρ (0, ak).

The Kobayashi pseudo-distance is also inner.

Generally speaking, dKM is not a distance.
We have dKC ≡ 0. We say that dKC is degenerate. To see this, take a holomorphic mapping
f(z) := p + ε−1(q − p)z from D into C, where p, q ∈ C are arbitrary points and ε > 0 is an
arbitrary small number. Then f(0) = p and f(ε) = q. From (1) we get dKC (p, q) ≤ ϱ(0, ϵ) =
ln 1+ϵ

1−ϵ
≲ 2ε.

Similarly, the Kobayashi pseudo-distance of C∗ is also degenerate because we have the holo-
morphic mapping exp : C→ C∗ which is surjective.

This distance decreasing property characterizes the Kobayashi pseudo-distance.

Proposition 4.1.1 Let δ : M × M → R+
0 be a pseudo-distance on M such that for any

holomorphic map f ∈ O(D,M), and for any z, w ∈ D one has

δ(f(z), f(w)) ≤ ϱ(z, w)

then δ(x, y) ≤ dKM(x, y), ∀x, y ∈M .

Proof. Let x, y ∈M and consider a chain α of holomorphic discs given by the data

α :


x = x0, x1, . . . , xn = y ∈M
a1, a2, . . . , an ∈ D
f1, f2, . . . , fn ∈ O(D,M)

By hypothesis and the triangular inequality, one has

δ(x, y) ≤
n∑

i=1

δ(xi−1, xi) =
n∑

i=1

δ(fi(0), fi(ai)) ≤
n∑

i=1

ϱ(0, ai) = l(α).

By passing to the infimum, one obtains δ(x, y) ≤ dKM(x, y). □

We call pseudodistances, which satisfy the properties (1) and (2), contractible pseudodis-
tances. Then the Kobayashi pseudodistance is the largest among contractible pseudodistances.

Definition 4.1.2 A complex manifold M is Kobayashi hyperbolic if the Kobayashi pseudo-
distance dKM becomes a distance and is complete Kobayashi hyperbolic if (M,dKM) is a
complete metric space.
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Definition 4.1.3 Property (Kobayashi, Royden) Let X be a complex manifold. x ∈ X
and ξ ∈ TX,x a tangent vector at X in x. The Kobayashi-Royden infinitesinal pseudo-metric
on X is defined by

FX(ξ) = inf{||u||ϱ : ∃f : D→ X, f(0) = x, u ∈ TD,0, df(u) = ξ}

= inf{λ > 0 : ∃f : D→ X, f(0) = x, λf ′(0) = ξ}.

The pseudo-distance of Kobayashi dKX is the associated integrated pseudo-distance of this pseudo-
norm: for any x, y ∈ X,

dKX(x, y) = inf
γ

∫ 1

0

FX(γ
′(t))dt

where the infimum is taken over all piecewise smooth curves γ : [0, 1] → X joining x to y.

Holomorphic maps f : X → Y are distance decreasing with respect to it: for any x ∈ X
and ξ ∈ TX,x, one has

FY (f∗ξ) ≤ FX(ξ).

For instance: FD(ξ) = ||ξ||ϱ and FC ≡ 0.

Kobayashi hyperbolic manifolds have several important properties, including the fact that
direct product of (complete) Kobayashi hyperbolic manifolds is (complete) Kobayashi hyper-
bolic.
If M and N are two complex manifolds. For any z1, z2 ∈ M and any w1, w2 ∈ N , we have
dKM×N((z1, w1), (z2, w2)) = max{dKM(z1, z2), d

K
N (w1, w2)}.

And dKM :M×M → R+
0 is a continuous map, whereM is endowed with the Euclidean topology

and R+
0 with the standard topology.

Any submanifold of a Kobayashi hyperbolic manifold, is Kobayashi hyperbolic.
With this pseudo-distance, we can see (1), as a generalization of the Schwarz’Lemma in any
dimension.

C, C∗ and P1 are not Kobayashi hyperbolic. Generally, a Riemann surface is hyperbolic if
and only if it is uniformazed by the unit disc (its universal covering is D).
Ahlfors’ lemma implies that every planar domain (or more generally every Riemann sur-
face), which carries a complete Hermitian metric (ds2) of curvature not greater than -1 (then
f ∗(ds2) ≤ dϱ2), is complete Kobayashi hyperbolic:
we have d(p, q) ≤

∑
k d(pk−1, pk) =

∑
k d(fk(0), fk(ak)) ≤

∑
k ϱ(0, ak); and passing to the infi-

mum over all chain of holomorphic discs we obtain that: d(p, q) ≤ dK(p, q).

Therefore, the domain C\{0, 1} is complete Kobayashi hyperbolic. From this it is easy to
see that every domain Ω ⊆ C\{a, b}, a ̸= b, is complete Kobayashi hyperbolic; observe that
every Cauchy sequence in Ω is also Cauchy in C\{a, b}, a ̸= b.
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In higher dimensions, any bounded domain in Cn is Kobayashi hyperbolic. There exist un-
bounded domains in Cn which are not Kobayashi hyperbolic and there exist bounded domains
in Cn which are not complete Kobayashi hyperbolic.
1) The Kobayashi distance on D×D is given by dKD2((z1, w1), (z2, w2)) = max{ϱ(z1, z2), ϱ(w1, w2)}.
2) The Kobayashi distance on D× C is given by dK((z1, w1), (z2, w2)) = ϱ(z1, z2).
3) An example of Eisenman and Taylor. Consider the following open set U in C2

U = {(z, w) ∈ C2 : |z| < 1, |zw| < 1} \ {(0, w) : |w| ≥ 1}.

U is unbounded and is not Kobayashi hyperbolic.
For any (z1, w1), (z2, w2) ∈ U , we have

dKU ((z1, w1), (z2, w2)) = 0, if z1 = z2 = 0

dKU ((z1, w1), (z2, w2)) = dKD2((z1, z1w1), (z2, z2w2)) otherwise.

Indeed, for any |w0| < 1, let f1(z) = (z, 0), f2(z) = ( 1
n
+ z

2
, w0) defined in D. f1(0) = (0, 0),

f1(
1
n
) = ( 1

n
, w0) = f2(0) and f2(

−2
n
) = (0, w0). Then when n goes to ∞, dKU ((0, 0), (0, w0)) goes

to 0.
4) The punctured bidisc D2\{(0, 0)} is a simple example of bounded domain not complete
Kobayashi hyperbolic.
Denote punctured bidisc by X. Because X is bounded, it is Kobayashi hyperbolic.
Define the following sequences an := (0, αn) , bn := (αn, 0) and cn,m := (αn, αm) where {αn} ⊂ D
is a sequence with property ρ (0, αn) = 2−n. Introducing domains X1 := D × D∗ ⊂ X and
X2 := D∗ × D ⊂ X yields

dKX (an, bn) ≤ dKX (an, cn,n) + dKX (bn, cn,n) ≤ dKX1
(an, cn,n) + dKX2

(bn, cn,n)

dKX (bn, an+1) ≤ dKX (bn, cn,n+1) + dKX (an+1, cn,n+1) ≤ dKX2
(bn, cn,n+1) + dKX1

(an+1, cn,n+1) .

Define fn ∈ O (D, X1) with fn(z) := (z, αn) and gn ∈ O (D, X2) with gn(z) := (αn, z).
Then dKX1

(an, cn,n) = dKX1
(fn(0), fn(αn)) ≤ ρ (0, αn) and

dKX1
(an+1, cn,n+1) = dKX1

(fn+1(0), fn+1(αn)) ≤ ρ (0, αn).
Equivalently dKX2

(bn, cn,n) ≤ ρ (0, αn) and d
K
X2

(bn, cn,n+1) ≤ ρ (0, αn).
Thus dKX (an, bn) ≤ 21−n, dKX (bn, an+1) ≤ 21−n and dKX (an, an+1) ≤ 22−n. Therefore (an) is a
Cauchy sequence which converges to (0, 0) /∈ X. □

Definition 4.1.4 Let X be a complex manifold. Let h be a metric on TX , namely a smooth
map h : TX × TX → C such that for any x ∈ X the induced map hx : TX,x × TX,x → C is a
hermitian metric (we identy it to a hermitian (1, 1)-form).
Set ||.||h : TX → R+

0 the associated lenght function ||ξ||h =
√
h(ξ, ξ), for all ξ ∈ TX .

The holomorphic sectional curvature of h is the following function defined by

HSCh(x, [ξ]) = supKf∗h(0)

for all x ∈ X and ξ ∈ TX,x\{O}, where the supremum is taken over all analytic disc f : D→ X
such that f(0) = x and ξ ∈ Cf ′(0). Kf∗h is the Gaussian curvature of the pseudo-metric f ∗h.
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If X is a complex curve then HSCh = Kh (see chapter 3).

Theorem 4.1.5 Let X be a complex manifold endowed with a metric h such that HSCh ≤ −γ
for some γ > 0. Then X is Kobayashi hyperbolic.

Proof. After normalization, one can suppose that HSCh ≤ −1 (just we replace h by γ.h).
Let δ be the distance induced by h

δ(x, y) = inf
φ

∫ 1

0

||φ′(t)||hdt

with φ : [0, 1] → X such that φ(0) = x and φ(1) = y.
Let f : D → X be a holomorphic map. The Ahlfors’ Lemma implies f ∗h ≤ dϱ2, where
dϱ2 is the Poincaré metric. f ∗||.||h ≤ ||.||ϱ. Integrating yields, for the associated integrated
pseudodistances, we have

δ(f(z), f(w)) ≤ ϱ(z, w), for any z, w ∈ D.

By the distance decreasing characterization of the Kobayashi pseudo-distance, one finds for any
x, y ∈ X

δ(x, y) ≤ dKX(x, y).

Hence dKX is a distance. □

4.2 Brody hyperbolicity

Definition 4.2.1 Let X be a complex manifold. An entire curve in X is a non-constant holo-
morphic map f : C→ X.

Hyperbolicity is closely related to the Little Picard theorem. If we assume f ∈ O(C, X),
then we get dKX(f(z), f(w)) = 0 by (1), since dKX is contractible and dKC ≡ 0. This shows that
every holomorphic map from C to a Kobayashi hyperbolic manifold is constant.
For instance, if X is a bounded open subset in Cn, then there are no entire curves f : C→ X,
according to Liouville’s theorem.

Proposition 4.2.2 If X is Kobayashi hyperbolic, then X doesn’t contain any entire curve.

This justifies the following definition

Definition 4.2.3 A complex manifold X is said to be Brody hyperbolic if X doesn’t contain
any entire curve.
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Then we have proved that

Kobayashi hyperbolicity ⇒ Brody hyperbolicity.

The converse doesn’t always hold. A counter example is given by the Eisenmann-Taylor
example: the unbounded open set U in C2

U = {(z, w) ∈ C2 : |z| < 1, |zw| < 1} \ {(0, w) : |w| ≥ 1}.

We have already seen that U is not Kobayashi hyperbolic. We can prove that U is Brody
hyperbolic.
Indeed, let π1 be the first projection U → D, (z, w) 7→ z. π1 is holomorphic with fibers which
are discs (If z = 0 then |w| < 1. If z ̸= 0, |z| < 1 then |w| < 1/|z|).
Let f = (f1, f2) be an entire curve in U . Then according to Liouville’s Theorem, f1 = π1 ◦ f :
C→ D is a constant c1 (|c1| < 1). If c1 = 0, then f2 : C→ D and f2 is constant too. If c1 ̸= 0,
then f2 : C→ D1/|c1| and f2 is constant too.

According to Little Picard Theorem, we have that C\{a, b} (where a ̸= b) is also Brody
hyperbolic.

The converse of the previous proposition is true on compact complex manifolds in view of
a fundamental theorem of R.Brody from 1978.

Theorem 4.2.4 A compact complex manifold is Kobayashi hyperbolic if and only if it is Brody
hyperbolic.

Lemma 4.2.5 (Brody’s reparametrization lemma) Let X be a complex manifold endowed
with a hermitian metric h. Let f : D → X be an analytic disc in X. For any 0 ≤ r < 1 there
exists R ≥ r||f ′(0)||h and a biholomorphic map φ : DR → Dr such that
(i) ||(f ◦ φ)′(0)||h = 1

(ii) For all t ∈ DR, ||(f ◦ φ)′(t)||h ≤ 1

1− |t/R|2
.

Proof. Let z0 ∈ D be such that (1 − |z|2)||f ′(rz)||h has a maximum at z0, i.e. the norm of
the differential of the map fr : z 7→ f(rz) (which is holomorphic in D and continuous in D)
with respect to the Poincaré metric ϱ and the metric h is maximal .
Let φ(t) = r t+Rz0

R+z̄0t
= rgz0(t/R), where gz0(t) =

t+z0
1+z̄0t

is a Möbius transformation and an isometry

for the Poincaré metric ϱ. φ(0) = rz0 and φ′(0) = r 1−|z0|2
R

. We have

||(f ◦ φ)′(0)||h = |φ′(0)|.||f ′(rz0)||h = (1− |z0|2)
r

R
||f ′(rz0)||h.

If we choose R = r(1− |z0|2)||f ′(rz0)||h ≥ r||f ′(0)||h, we obtain (i).(
1− |t/R|2

)
||(f ◦ φ)′(t)||h is the norm of the differential of f ◦ φ at t, with respect to the
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Poincaré metric ϱ and the metric h.
Since gz0 is an isometry for ϱ, there exists a constant C > 0 such that C.

(
1− |t/R|2

)
||(f ◦

φ)′(t)||h is the norm of the differential of the map fr at gz0(t/R), with respect to the Poincaré
metric and the metric h.
Since this last one is maximal for t = 0,

(
1− |t/R|2

)
||(f ◦φ)′(t)||h is also maximal for t = 0. □

Lemma 4.2.6 Let X be a compact complex manifold (with a hermitian metric h and the as-
sociated distance d with respect to this metric). Then X is Kobayashi hyperbolic if and only if
sup |f ′(0)|h <∞, where the supremum is taken over any f ∈ O(D, X).

Proof. sup |f ′(0)|h = sup |f∗(v)|ϱ, where v ∈ TD with |v|ϱ = 1.
If there exists 0 < c < ∞ such that sup |f ′(0)|h = c. Then dh(x, y) ≤ cdKX(x, y) for any
x, y ∈ X. Then X is Kobayashi hyperbolic.
Conversely, if this supremum is infinite, there is a sequence of mappings fn ∈ O(D, X) with
|f ′

n(0)|h → ∞. By compactness, there exists a subsequence (we call it again (fn)) such that
(fn(0)) converges to a point p ∈ X. Let U be a little coordinate neighborhood of p. According
to the Cauchy estimates, for any m large enough there exists nm (the sequence (nm) → ∞) such
that fnm(D1/m)∩ ∂U ̸= ∅. There exists a sequence (xm) ⊂ ∂U such that each xm ∈ fnm(D1/m),
and therefore

dKX(fnm(0), xm) ≤ ϱ(0, 1/m) → 0, as m→ ∞.

By the continuity of dKX and the compactness of ∂U , there exists x ∈ ∂U with dKX(p, x) = 0.
Then X is not Kobayashi hyperbolic. □

Proof of the Theorem. Let suppose thatX is a compact complex manifold not Kobayashi hy-
perbolic. Then there exists a sequence (fn) ⊂ O(D, X) such that (||f ′

n(0)||h) is unbounded. Ac-
cording to Brody’s reparametrization lemma, we obtain a sequence (gn) such that gn : D(Rn) →
X, Rn ≥ 1

2
||f ′

n(0)||h, ||g′n(0)||h = 1 and ||g′n(z)||h ≤ 1
1−| z

Rn
|2 for any z ∈ D(Rn).

The sequence (Rn) → ∞. We can assume that it increases.
For any N , the family

{gn|D(RN ) : D(RN) → X, n ≥ N}

is equicontinuous on D(RN) with respect to the Poincaré distance and the distance onX induced
by h. Therefore, this family is also equicontinuous on D(RN) with respect to the Euclidean
metric on D(RN) and the distance on X induced by h.
According to Ascoli’s theorem, there exists a subsequence (with a diagonal extraction. We call
it again (gn)) which converges uniformly on any compact subset in C to a map g : C→ X such
that ||g′(z)||h ≤ ||g′(0)||h = 1 for any z ∈ C. In particular g is not constant and X is not Brody
hyperbolic. □
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