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This is a collection of exercises related to the introductory courses in complex and
Kähler geometry. The selection is somewhat biased by my own preferences and certainly
has some blank spots with respect to the material covered. Also, it is possible that some
exercises use notation or even concepts which have not, or not fully, been introduced,
but which should easily be found online - and of course in case of doubt you can
always ask. I encourage you to try to do as many of these problems as possible; it
will be beneficial for your understanding of the material even if you don’t succeed in
finding the solution. Also, it is a good additional training to present your solutions (or
attempts) in class.

Exercise 1. Show that CPn = Cn+1\{0}/C∗ is a compact complex manifold. Show
that there is a diffeomorphism CP1 ∼= S2.

Exercise 2. Formulate and prove the following theorems for holomorphic functions
f : U → C with U ⊆ Cn:

1. Open mapping theorem

2. Maximum principle

3. Liouville’s theorem

Exercise 3 (Projective hypersurfaces).

1. Remind yourself of the definition of a smooth submanifold and of the theorem of
the regular value for smooth manifolds. Formulate the analogous definition and
theorem for complex manifolds and convince yourself that it still holds.

2. Let P ∈ C[X0, ..., Xn]k be a homogenous polynomial of degree k. Denote by Pi

the i-th dehomogenization, i.e. the polynomial in n variables, where we insert 1
for Xi. Show that 0 ∈ C is a regular value of the map Cn+1\{0}, z 7→ P (z) if and
only if 0 is a regular value for each Pi.
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3. Assuming P as before and 0 is a regular value for the induced map Cn+1\{0} →
{0}, deduce that the projective vanishing set

VCPn(P ) = {[z0 : ... : zn] | P (z0 : ... : zn) = 0}

is a complex submanifold of CPn and that the projection V (P ) ∩ Cn+1\{0} →
VCPn(P ) is a holomorphic fibre bundle with fibre C×.

Exercise 4 (Not every submanifold a complete intersection).
Show that the Veronese embedding

ν : CP1 −→ CP3

[z0 : z1] 7−→ [z30 : z20z1 : z0z
2
2 : z31 ]

is indeed an embedding. Find 2 or 3 homogenous polynomials in four variables such
that the image of ν is described as their (projective, as above) vanishing locus. Show
that 0 is not a regular value for the map C4\{0} → Ck (k = 2 or k = 3) arising from
your polynomials.

Exercise 5. Let (X, J) be an almost complex manifold. Show there is at most one
complex structure on X inducing J .

Exercise 6 (Many complex structures on the real 2-torus).

1. Let Λ,Λ′ ⊆ C be lattices. Use covering space theory to show that any biholomor-
phism

C/Λ → C/Λ′

has the form f([z]) = [a · z + b] for some a ∈ C× b ∈ C s.t. a · Λ ⊆ Λ′.

2. We say an elliptic curve is any manifold of the form C/Λ for Λ ⊆ C a lattice.

Consider the action of GL2(Z) on CP1 induced by the action of C2\{0}. Show
there is an isomorphism of sets

(CP1 \ RR1)/GL2(Z) ∼= {biholomorphism classes of elliptic curves}.

Exercise 7. A Hopf surface is a complex manifold of the form

Hλ = (C2\{0})/z∼λz

for some λ ∈ C×\S1.
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1. Show that every Hopf surface has the structure of a fibre bundle over CP1 with
fibres elliptic curves.

2. Show that Hλ is diffeomorphic to S1 × S3.

Exercise 8. Let X,Y be complex manifolds and φ : X → Y a smooth map. Show
that the following assertions are equivalent:

1. φ is holomorphic.

2. φ∗ = D(φ) : TCX → TCY respects the splitting into i and −i eigenspaces, i.e.
φ∗(T

1,0X) ⊆ T 1,0Y .

3. φ∗A(Y ) → A(X) is a map of double complexes, i.e. it respects the bigrading and
satisfies ∂φ∗ = φ∗∂ and ∂̄φ∗ = φ∗∂̄

4. For any holomorphic function f on an open subset U ⊆ Y , f ◦ φ is again holo-
morphic.

Exercise 9 (general Cauchy formula). Let f : C ⊇ Bε(0) → C be a continuously
differentiable function. Show that for any z ∈ Bε(0), we have the formula

f(z) =
1

2πi

[∫
∂Bε(0)

f(ξ)

ξ − z
dξ +

∫
Bε(0)

∂f(ξ)

∂ξ̄

dξdξ̄

ξ − z

]
Deduce Cauchy’s integral formula for holomorphic functions as a special case.

Exercise 10. Compute the cohomologiesHdR, HBC , HA, H∂1 andH∂2 for the following
four bi-complexes:

C C

C C

0

0 C 0

0

C C

C

C C

C C

where apart from the second picture, all drawn arrows are isomorphisms (say, ±id)
and all other maps are zero. Can you describe a general pattern for arbitrarily long
‘zigzags’ (generalizing the last cases)?

Exercise 11. Let B ⊆ Cn be a polydisc. Let (Ω(X), ∂) be the holomorphic de Rham
complex. Deduce from the ∂̄-Poincaré Lemma that for all k, there is an isomorphism

Hk(Ω(B), ∂) ∼= Hk
dR(B)

Is this true for an arbitrary complex manifold X?
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Exercise 12. Let X be a complex manifold. Show that there is a group isomorphism

Ȟ1(X,O×
X) ∼= Pic(X)

where Pic(X) denotes the group of holomorphic line bundles and the right hand side
denotes Cech cohomology with coefficients in the sheaf of invertible holomorphic func-
tions.

The proof should give analogous results for the sheaf of smooth functions and com-
plex vector bundles or of locally constant functions and flat vector bundles (i.e. with
locally constant transition functions)

Exercise 13 (Iwasawa manifold). Let H ⊆ GL3(C) be the subgroup of matrices of
the form

H =


1 z1 z3
0 1 z2
0 0 1

 ∈ GL3(C)


The group HZ = H ∩GL3(Z[i]) acts freely and properly discontinuously on H and the
quotient manifold X := H/HZ is called the Iwasawa manifold. Show that

1. X admits the structure of a holomorphic fibre bundle with base (C/Z[i])2 and
fibre C/Z[i].

2. X is holomorphically parallelizable, i.e. T 1,0X is, as a holomorphic vector bundle,
isomorphic to the trivial rank three bundle

(Hint: Look for sections on H which are invariant under the action of H on itself).

3. Does H admit a Kähler metric?

Exercise 14. Let X be a complex manifold of dimension 1. Establish a 1 : 1 cor-
respondence between meromorphic functions on X and holomorphic maps X → CP1

which are not constant equal to ∞.

Exercise 15. Show that a holomorphic line bundle L on a compact connected complex
manifold X is trivial if and only if both L and L−1 admit a nontrivial global section.

Exercise 16. Let Z ⊆ X be a hypersurface and IZ ⊆ OX the sheaf of ideals of
functions vanishing on X. Show that there is an isomorphism IZ ∼= O(−Z).

Exercise 17. Define meromorphic sections of line bundles. Show that on any connected
complex manifold X, the image of the map Div(X) → Pic(X) consists of isomorphism
classes of those line bundles which admit a nontrivial meromorphic section.
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Exercise 18. Show that the Fermat hypersurfaces, defined as the vanishing loci

V (
n∑

i=0

zdi ) ⊆ CPN

are complex manifolds. Show that for d = n+ 1 they are Calabi-Yau manifolds.

Exercise 19. Show that H0(CPn,Ωq) = 0 for all q > 0.

Exercise 20. Show that for any short exact sequence of holomorphic vector bundles

0 → L → E → F → 0

where L is a line bundle, there are induced short exact sequences of the form

0 → L⊗ Λi−1F → ΛiE → ΛiF → 0

Exercise 21 (Segre embedding). Consider X = CPn × CPm and the line bundle
L = p∗1O(1)⊗ p∗2O(1) on X (where pi denote the projection maps). Describe the map
associated with the linear system H0(X,L) explicitly and show it is an embedding.

Exercise 22. The surface given as the projectivized vector bundle Σn = P(OCP1 ⊕
OCP1(n)) is called the Hirzebruch surface. Show that Σn is biholomorphic to the hy-
persurface V (xn0y1 − xn1y2) ⊆ CP1 × CP2, where [x0 : x1] and [y0 : y1 : y2] are the
homogeneous coordinates on CP1, resp. CP2.

Exercise 23. Describe tangent, cotangent and canonical bundle of CPn and CPn ×
CPm.

Exercise 24. Use Serre duality and Kodaira vanishing theorem to computeHd(CPn,O(k))
for all d, n, k.

Exercise 25. Let D = {z ∈ Cn | ∥z∥ < 1}. Show:

1. The form ω := − i
2∂∂̄ log(1− ∥z∥2) is (the (1, 1)-form of) a Kähler metric on D.

2. Identify D with the set of points [z] ∈ CPn s.t. ⟨z, z, ⟩ > 0, where ⟨ , ⟩ denotes
(non-positive) the hermitian inner product given by the diagonal matrix with
Eigenvalues (1,−1, ...,−1). Show that ω is invariant under the corresponding
action of SU(1, n).
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Exercise 26. Let (X, J) be an almost complex manifold. Construct bijections between
the sets consisting of the objects in (1), (2), (3) below:

1. Hermitian metrics h on TX.

2. Riemannian metrics g on TX s.t. g(J , J ) = g( , )

3. positive real (1, 1)-forms ω

Hint: You can reduce this to a calculation at a single fibre of TX, and hence to linear
algebra on a complex vector space.

Exercise 27 (Products and the Kähler property). Show that a product X × Y of
complex manifolds is Kähler if and only if both factors are Kähler.

Exercise 28 (Conformal deformations of Kähler metrics are not Kähler). Show that
for a Kähler metric h on a connected complex manifold X of dimension ≥, and a
smooth function f : X → R>0, the form f · ω defines a Kähler metric if and only if f
is constant.

In the next two exericses, you may want to use the Weil identity on hermitian
manifolds:

∗Ljα = (−1)(
k+1
2 ) j!

(n− k − j)!
Ln−k−jI(α) ∀α ∈ P k.

Exercise 29. Let (V, ⟨ , ⟩, I) be a Euclidean vector space of real dimension 2n with
compatible complex structure. Let k ≤ n and

Q : ΛkV ∨
C × ΛkV ∨

C −→ C

(α, β) 7−→ (−1)(
k
2)α ∧ β ∧ ωn−k.

Show

1. Q(Λp,qV ∨
C ,Λr,sV ∨

C ) = 0 unless (p, q) = (s, r).

2. ip−qQ(α, ᾱ) = (n− (p+ q))⟨α, α⟩C > 0 if 0 ̸= α ∈ P p,q primitive.

Exercise 30. 1. With notation as above, show that the Lefschetz and type decom-
positions

ΛkV ∨ =
⊕
j≥0

LjP k−2j LjP k−2j =
⊕

p+q=k−2j

LjP p,q

are orthogonal with respect to the L2-pairing.
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2. Show that the intersection pairing on a compact Kähler surface has index (2h2,0+
1, h1,1(X)−1) and that restricted toH1,1(X) it has index (1, h1,1(X)−1). Harder:
Can you compute the signature intersection pairing on compact Kähler manifolds
of even complex dimension in general in terms of the Hodge numbers?

3. Deduce that CP2#CP2 does not admit the structure of a Kähler manifold.

Exercise 31. Let (A, ∂, ∂̄) be a double complex of complex vector spaces. Show that
the following assertions are equivalent:

1. The map Hp,q
BC(A) → Hp,q

A (A) is an isomorphism for all p, q ∈ Z.

2. A is isomorphic to a direct sum of dots and squares, i.e. to double complexes
isomorphic to one of the following

0

0 C 0

0

,

C C

C C

Exercise 32. For any complex manifold X, let

Pic0(X) := ker(Pic(X)
c1−→ H2(X;Z))

be the group of complex structures on the trivial line bundle.

1. Show that if X is compact Kähler, Pic0(X) is a complex torus of dimension
b1(X).

2. Find an example of a compact non-Kähler complex manifold, where Pic0(X) is
not a torus.

Exercise 33. Give three examples of compact Kähler manifolds and three examples
of compact manifolds which do not admit a Kähler structure.

Exercise 34. Let X be a compact complex manifold and CX ⊆ H2(X;R) the set of
all classes which can be represented by the (1, 1)-form associated to a Kähler metric.
Show that CX is an open convex cone in H1,1(X;R).
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Exercise 35. Show that the product of two projective manifolds is again projective,
using the Kodaira embedding theorem.

Exercise 36. For Riemann surfaces, give a direct proof of the Kodaira vanishing and
embedding theorem, using the notion of degree of a divisor deg :

∑
ax 7→

∑
axx

and that there is an equality deg(D) =
∫
X c1(O(D)). First show that on a compact

connected Riemann surface, a line bundle O(D) is positive if and only if deg(D) > 0.

Exercise 37. Let X be a compact Riemann surface. Show that c1(KX) = −χ(X) =
2g(X)− 2. Deduce the degree-genus formula: If X ⊆ CP2 is a smooth hypersurface of

degree d, then g(X) = (d−1)(d−2)
2 .

Some of these problems are taken from [1] and perhaps others (subconsciously) from
other texts.
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