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Introduction

The classification of compact complex manifolds is based on the study of alge-
braic and analytic properties.

Algebraic aspects of compact complex manifolds can be described using co-
homology groups; in particular, the most used are the de Rham’s, the Dol-
beualt’s, the Bott-Chern’s and the Aeppli’s cohomology groups. The de Rham’s
cohomology is associated to the complex of differentiable forms and it depends
only on the topological structure of the manifold. Conversely, since the Dol-
beault’s cohomology is associated to the complex of holomorphic forms, it de-
pends both on the topology and on the complex structure of the manifold.
Although the definitions of those cohomology groups are similar, in general
there is no direct relation between them. This is one of the reasons because,
in [Sch07], Schweitzer introduced the other two cohomology groups. They pro-
vide, with the homomorphisms induced by the identity, a bridge between the de
Rham'’s and the Dolbeault’s cohomology. Other important algebraic tools in the
study of relations between cohomology groups are the 90-Lemma, the Frélicher
spectral sequence and the Varouchas spaces. The first is a result of Deligne,
Griffiths, Morgan and Sullivan ([DGMS75]) that provides a necessary and suffi-
cient condition such that all the cohomology groups (of the same bi-degree) are
isomorphic. The second is a sequence of complexes such that the first term is
the complex of C*®-forms associated to the operator 9. At every successive step
we take the cohomology of the previous complex. Then, at the second step,
we obtain the Dolbeault’s cohomology associated to the operator d. By the
construction of the Frélicher spectral sequence, after a finite number k of steps,
every complex is isomorphic to the successives and we said that the sequence
degenerates at the k-th level. We have that the k-th term of this sequence is
isomorphic to the de Rham’s cohomology. The last tool was introduced in [Var],
those auxiliary groups are used to construct exact sequences that involve the
Dolbeualt’s, Bott-Chern’s and Aeppli’s cohomology groups.

Among the analytic aspects of complex geometry there is the existence of
special Hermitian metrics on a compact complex manifold. A Hermitian metric g
is called special if its fundamental form w satisfies certain differential conditions.
The most famous among these metrics are the Kdahler, i.e., Hermitian metrics
such that dw = 0. Such metrics are the natural generalization of the flat metric
in the Euclidean space; moreover the presence of a Kéhler metric has a strong
influence on the topology of the manifold: for example the odds Betti’s numbers
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are even. More recently non-Kéahler metrics with important properties have been
studied. Omne of the first results is due to Michelson: in [Mic82] she defined the
balanced metrics. Such metrics are characterized by the vanishing of the (1,0)
torsion tensor and have been studied by several other authors ([AB93], [Sil]).
Another important class of metrics is the class of strong Kdhler with torsion
metrics (shortly SKT). They were introduced by Bismut in [Bis89] and have
found great applications in physics ([HP8S8], [Str86]). Moreover, in [FPS04], it
has been proved a characterization result for solvmanifolds that admits SKT
metrics.

Many authors have studied relations between algebraic and analytic proper-
ties of compact complex manifolds. For example, every Kéhler manifold satisfies
the 90-Lemma. Another important aspect is the isomorphism between the coho-
mology groups and the kernel of suitable differential operators. A similar result
is due to Popovici, in [Pop16] he proved that the second step of the Frolicher
spectral sequence is isomorphic to the kernel of an elliptic pseudo-differential
operator A.

Two are the main topics of this PhD thesis: the study of the cones of SKT
and super SKT metrics and the stability, under small deformations of the com-
plex structure, of the degeneration at the second step of the Frolicher spectral
sequence. First of all we prove, using Varouchas spaces, that the equality of
those two cones can be characterized in terms of cohomology groups (see Theo-
rem 1). Moreover we apply our result to the case of 6-dimensional solvmanifolds
(see Theorem 2). Concerning the second topic of our work, we deals with the the-
ory of pseudo-differential operators and the theory of C*° families of differential
operators (see [Kod06]). More precisely, we have proved an a priori estimate
for pseudo-differential operators (see Theorem 3). Starting from this result,
we have proved that the dimension of the kernels of a C*° family of pseudo-
differential operators varies upper-semicontinuously. Then we have considered
the family of pseudo-differential operators {At} over a family of compact com-
plex manifolds {(M, J;)} and we show that, if the dimension of the Dolbeault’s
cohomology is independent on ¢, then {At} is a C* family. Thus the dimension
of the kernel is an upper-semicontinuous function of ¢. This result implies that,
under the hypothesis of the independence of the dimension of the Dolbeault’s
cohomology from ¢, the degeneration at the second step of the Frolicher spectral
sequence is a property stable under small deformations of the complex structure
(see Theorem 4). Finally we have computed the Frolicher spectral sequence of
a suitable family of compact complex manifold and we have showed that the
Frolicher spectral sequence degenerates at second step only on the central fiber.
This example shows that the hypothesis of the independence of the dimension
of the Dolbeault’s cohomology groups from ¢ is necessary.

This thesis is structured in the following way.

In the first chapter we make a short introduction on compact complex mani-
folds. Following Egidi and Popovici, we recall some basic definitions and results
on forms and currents. Moreover we discuss about special Hermitian metrics
giving some motivations to the study of such metrics.

Chapter 2 is devoted to the study of the cones of SKT and super SKT



CONTENTS 7

metrics. We start with the basic notions about cohomology groups. We also
recall the construction of the Frolicher spectral sequence, such construction will
be used in the next chapters. In the last part, using the Varouchas spaces and
the theory of cones of metrics, we prove the following.

Theorem 1. Let M be a compact complex manifold admitting a SKT metric.
Then the following facts are equivalent:

1. s§=S8;
2. KerT = Hy' (M);

- AN M) = 1Y (M) = B2 (M);

3

4. A>Y(M) ~ B>1(M);
5. a>Y (M) = b>Y(M);
6. every smooth d-closed O-exact (2,1)-form on M is O-evact;
7. every SKT metric g is super SKT.

We conclude this chapter applying this theorem to the case of complex nil-
manifolds showing the following

Theorem 2. Let M be a non-torus compact complex 6-dimensional nilmanifold
with Lie algebra different from b7. If S # () then sS # S.

In Chapter 3 we discuss the theory of elliptic operators on complex manifolds.
This chapter is divided in three parts. In the first part we recall the theory of
differential operators. Using this as a starting point, we prove those results also
for pseudo-differential operators. To be more precise we obtain the following a
priori estimate.

Theorem 3. Let A(z, D) be an elliptic pseudo-differential operator of order m.
Then for any k € Z there exists a constant C depending only on k, 6 and My,
such that for any f € C(M;C)

[ lgm < C WA D) fll 4+ 1F1) - (1)

In the last section we report the results of Popovici about the relation be-
tween the second step of the Frolicher spectral sequence and the kernel of a
suitable pseudo-differential operator. This will be used in the next chapter
to prove a theorem of stability for the degeneration of the Frolicher spectral
sequence.

In the last chapter we recall the theory of deformations of the complex
structures of compact complex manifolds. Like the previous chapter we start
by recalling the standard theory for families of differential operators and, with
those results in our mind, we prove similar theorems using families of pseudo-
differential operators. In particular we prove that the dimension of the kernel of
a C* family of pseudo-differential operators is an upper-semicontinuous func-
tion. Using this result we prove the following.
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Theorem 4. Let (M, J;) be a family of complex manifolds and suppose that the
dimension of Ker Az N AP9(M, Jy) is independent of t for every (p,q) € Z>.
Then the degeneration at the second step of the Frélicher spectral sequence is
stable under small deformations of the complex structure.

In the last section, starting with the completely solvable Nakamura manifold
and taking the deformations of the complex structure studied in [TT14], we
show, by direct computations, that if the dimension of the kernel of Ag varies,
then the degeneration at second step of the Frolicher spectral sequence is not
stable under small deformations.



Chapter 1

Preliminaries on Complex
Geometry

In this first chapter we recall some basic definitions and well-known results on
the theory of compact complex manifolds. We begin with a brief introduction
about the consequences of the presence of a complex structure on a compact
manifolds: we give the definition of Hermitian metric and we recall the orthog-
onal decomposition of the tangent bundle. Then we give a description of the
spaces of (p, ¢)-forms and of (p, ¢)-currents. We recall some basic properties of
the spaces of metrics and currents that will be used in the next chapters.

Finally we examine in depth Hermitian metrics. In particular we focus on
special metrics such as Kahler or balanced metrics recalling some well-known
facts and motivations for their study.

1.1 Compact Complex Manifolds

A compact complex manifold is a pair (M, J) where M is a compact differentiable
manifold and J is a complex structure, i.e., J is a (1,1) integrable tensor field
such that J? = —Id. By [NN57], the integrable condition is equivalent to the
vanishing of the Nijenhuis tensor N; given by

Ny(X,Y) = [X,Y] + JJX,Y] + J[X, JY] - [JX, JY], (1.1)

where X,Y € TM and [e,e] is the usual Lee bracket. The presence of the
complex structure .J forced M to be orientable and even-dimensional.

Since M is orientable, it admits a Riemannian metric g, i.e., a family of
positive defined inner product {g,}pear such that, for all X, Y € TM, the map

p = 9p(X(p),Y(p))

is C*°. Moreover, using g and J, we can define an Hermitian metric h on M,
i.e., positive defined Hermitian product on 7}, M varying smoothly with respect

9
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to p. Namely
hy(X(p), Y (P)) = g(X(p), Y (p)) — V=19(JX(p),Y (p))

is an Hermitian metric. We will discuss further about Hermitian metrics in
section 1.4.

Finally we recall the decomposition of TM. Since J? = —Id it has only
v/—1 and —+/—1 as eigenvalue, thus it induces the following decomposition

TM® =T, oM & Ty M, (1.2)

where TM® = TM ®g C, Ty oM is the /—I-eigenspace and Ty M is the
—+/—1-eigenspace. Using local coordinates we denote a generic element of the
standard basis of T1 op M (resp. To1,M) as % (resp. %)

As notation, when there is no ambiguity, we write M instead of (M, J).

1.2 (p,q)-Forms

The decomposition (1.2) induces by duality the following decomposition of the
cotangent bundle T* M

T*M(C — Tl,OM @ TO,IM,

where, as before, T*MC is the complexification of T*M and T*°M (resp.
TO'M) is the v/—1 (resp.—y/—1) eigenspace of the application induced by .J
by duality and denoted again with J. We denote with {dz},...,dz"} (resp.
{dz},... dz"}) the standard local basis of T}:°M (resp. T2 M) on the open co-
ordinate U;. {dz},...,dz"} (vesp. {dz},...,dz}'}) is the dual basis of {521, ..., 3%
(resp. 8%’ e %})

Let A*(M) be the bundle of C* k-forms, then we have

AF (M) = @p+q:kAp’q(M>v

where
APUM) =T MA - AT MATO M A - AT M

p times q times

is the space of C* (p,q)-forms. As notation, if A and B are multi-indexes of
length a and b respectively, we put

AP = dz A Nd2e NdEP A N dEDY

Moreover if {¢'} is a set of forms indexed over N and A is a multi-index of
length a, then we write
dA = M A A e, (1.3)
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Given a (p, g)-form ¢ , we can express it in local coordinates on U; as a C*°-
combination of {dzP}, namely

Bo, = . > bapds®, (1.4)

|Al=p |B|=q

where ¢ 4,5 : U; — C are C*° functions.

Finally, also the external differential d splits in two component 0 := wP+1%0
d: AP9(M) — APTLY(M) and 0 = 7P9t o d : AP9(M) — AP9TL(M). The
integrable condition of J is equivalent to the splitting of the external differential
d= 0+ 0. Since d?> = 0 we have the following equations due to bi-degree

2?2 =0
90 = —00 (1.5)
7 =0

According to Demally [Dem97], there is a standard topology on the space of
differential (p, ¢)-forms on M. Let ¢ € AP%(M) and let U C M be a coordinate
open subset, then, using (1.4), for every K C U and every s € N we associate
the semi-norm

7 := sup max max |D% , 5/, 1.6

pL(9) xeg s AB D¢ 45 (1.6)

where a = (a1,...,a9,) is a multi-index and D® is a derivation of order |«|
in the local variables zil, . ,z;?,z; ..., 2. Since M is a compact manifold the

topology of A?*4(M) is induced by a finite number of those semi-norms, hence
AP9(M) is a Banach space.

We recall that the bundle of C* (p, ¢)-forms on M can be equipped with an
L? product. To define such a product we need the following definition

Definition 1 (Positive form). A (p,p)-form ¢ is said to be positive if, for every
point p € M, there exist an open coordinate U; and a local basis {dz{"} such that

Oy, = V—1dz} Ndzj - ANV —=1d2! A dzS.
An (n,n) positive form is called volume form.
In [Mic82], Michelson proved the following

Theorem 5. There exists a one-one correspondence between the (1,1) and the
(n —1,n — 1) positive forms.

The proof of this theorem is constructive, so we have also the notion of the
n — 1th root of a (n — 1,n — 1) positive form.

In Section 1.4 we will see that to every Hermitian metric g there exists a
(1,1) positive form w called fundamental form of g. The n-th power Q of w is
a volume form and it defines the following L? product on AP%(M)

<ou>=3 Y % /M 16 45 (L.7)

i |Al=p|B|=q
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where {U;} is a finite open covering of M made by open coordinates, {n;} is
a partition of unity subordinate to {U;} and ¢ 5, ¥ ,5 are the C* function
defined in 1.4. Shortly we write

< >= /M 6 A, (18)

where * is the Hodge star operator with respect to the metric g.

There is also an algebraic structure on the whole space of C* forms on M.
If we consider the double complex (Apvq(M ),6,5), then it has a structure of
differential bi-graded algebra. For forms of type (p,q) we define the sum as
follows: if ¢ = ZII\ZPZIK\:q ¢edz"K and 1 = le\:pZIK\:q Y edz' 5 are
(p, q)-forms, then we put

o= (b +vg)d' (1.9)

[I|=p|K|=q

If ¢ and v are forms of type (p,q) and (r,s) respectively, then we define the
external product or wedge product as

SN =" bt pda AP, (1.10)

Finally we have the two differential operators 9 and 9 of bi-degree (1,0) and
(0,1) respectively, that are the exterior derivatives.

Using the definitions above we have that (A*(M), d) has a structure of dif-
ferential graded algebra and that (AP9(M),d,d) has a structure of differential
bi-graded algebra.

1.3 Currents

The notion of current was introduced by Georges de Rham in [dR73]. It gener-
alizes the notion of distribution. In analysis, a distribution is an element of the
dual of a certain space of function (usually this space is C°, the space of C*
function with compact support).

Definition 2 (Current). A current of bi-degree (p,q) (or bi-dimension (n —
p,n—q)) on M is a linear continuous form T : AP9(M) — C. We denote with
D'P4(M) the space of (p,q)-currents on M.

Since AP9(M) is a Banach space, also DP?(M) is a Banach space with the
dual scalar product. A (p, g)-distribution T' can be view as a (p, ¢)-form with
coefficient distribution. In fact let ¢ € AP9(M) and T € DP9 then we have

T(¢) =<T,¢ >= / T A *¢. (1.11)
M
If {¢1,...,¢,} is a basis for AP9(M) and fi,..., f are distributions on M, we

write .
T:=> fiti.
=1
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Definition 3. Given a (p,q)-current T on M, the support of T supp(T) is
subset of M such that for every (p, q)-form ¢ on M with supp(¢) C M \supp(T),

T(¢) = 0.

Usually, when someone uses currents over manifolds, he requires that either
the currents or the test forms are compactly supported. Since we will work with
compact manifold both condition are obviously satisfied.

From a geometric point of view, currents can be seen as integration over
submanifolds.

Proposition 1. If N C M is a complex submanifold of complex dimension p.
Then the map
[N]: APP(M)—C

o> [y o (1.12)

defines an element of D'PP.

If T,S € D'P9(M) then T + S € D'P2(M) and for every (p, q)-form ¢ over
M we have

(T'+5)(¢) =T(9) + 5(). (1.13)

If T € D'»9(M) then T € D'P~19(M) and, for every ¢ € AP~14(M), we
have

(0T)(¢) = T(99). (1.14)

Similarly for 9 and d. Thus the space D'(M) := @D'P4(M) has a structure of
bi-graded differential algebra.

Conversly to case of forms, the wedge product between two currents is not
well defined. However it can be defined between a currents and form. If T' €
D'P4(M) and ¢ € A™(M) than T A ¢p € DPT7at$(M) and, for every ¢ €
AP=T9=5( M), we have

(T AY)(¢) = (1) TIC==0T () A ). (1.15)

1.4 Hermitian Metrics on Complex Manifolds

Let M be a compact complex manifold of complex dimension n and let TM be
the tangent vector bundle. As we said in previous section, TM® = TOM @
T M, a Hermitian metric on M is a smoothly varying positive-definite Her-
mitian form on each fiber of TM. Such a metric can be written as a smooth
section

g e F(TLQM (9 TO,lM)

such that, for every X, Y € TM

g(JX,JY) = g(X,Y), g(X,JX)>0if X #0.
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Given an Hermitian metric g over M, there is associated the (1,1)-form
w(X,Y) :=g(X,JY),

such form is called Kdhler form of g (some authors refer at it as fundamental
form of g). Using local holomorphic coordinates {d2*}, g can be written as

n
g e Z gagdza ® dzb,
a,b=1

where (g,7)a,b=1,...,n is a positive-definite Hermitian matrix. In same coordi-
nates, w can be expressed as

V-1

w:T

Z 9,542 N dz.

a,b=1

Combining the Hermitian metric g with its Kéhler form w one gets the complex

hermitian metric
h=g+Vv-1w.
Observation 1. A(JX,Y) =+/—-1h(X,Y) = —h(X,JY).

A connection on M is a map V : I'(TM) — I'(T*M ® T M) such that, for
every X,Y € TM and for every f € C>(M), the following equalities

Vx(fY) = X(/)Y + fVxY,
VixY = fVxY

hold. The torsion tensor TV € T'(A%(M) ® TM) associated to a connection V
is defined as
TYy =VxY —VyX —[X,Y],

for every X, T € TM.
We recall the following theorems that characterize special connections.

Theorem 6. Given a Hermitian metric g, there exists a unique connection V
over M such that:

e it preserves g, i.e., for every vector fields X,Y,Z € TM, Xg(Y,Z) =
9(VxY,Z) +g(Y,VxZ);

e its torsion vanishes.

This unique connection is called Levi-Civita connection and it is denoted with
vEe,

Theorem 7. Given a Hermitian metric g, there exists a unique connection V
over M such that:

e it preserves g, i.e., for every vector fields X,Y,Z € TM, Xg(Y,Z) =
9(VxY,Z) +g(Y,VxZ);
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e it preserves the complex structure J, i.e., for every vector fields X,Y €
TM Vx(JY)=J(VxY);
e the (1,1)-component of the torsion tensor vanishes.

This unique connection is called Hermitian connection and it is denoted with
v,

Proposition 2 ([Mic82]). The (2,0)-component of the torsion associated to the
Hermitian connection of the metric h =3 hzdz; ® dzy can be written as

0
_ E l =

Ohka .z Ohja ., =
T = Sptt - R
gk Z( 0z; Oz,
Definition 4. The torsion (1,0)-form of a complex hermitian metric h is de-
fined as 7 = i.dzi, where
T — Z TI%

The last part of this introduction is dedicated to the Hodge * operator. We
start with the following

where

Definition 5. The Hodge * operator on a complex manifold M, of complex
dimension n, related to a hermitian metric g s an anti-linear operator

*: APUM) — A" TP(M)
such that, for every (p,q)-forms ¢ and 1,
PN ¥ = (¢, )",

where W™ is the volume form associated to g and (¢,v) is the scalar product
induced by g.

Proposition 3. The Hodge * operator induces and isomorphism between AP*9(M)
and A"~9""P(M). Moreover x> = (—1)(Pta)(n=r=d) g

Definition 5 is formal; it is possible to provide an explicit formula for the
Hodge * operator in following way: let (p+q)!l¢ = > ¢ ,5dzE be a (p, ¢)-form,
then

1 =
*p = Kl(n — k) AV EBE |det(g)|¢ spd=" ",

e A B, A, B' are multi-indexes such that A" = (1,2,...,n)\ A and B’ =
(1,2,...,n)\ B;

e ca4s is the sign of the permutation (1,2,...,n)— AA’.
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Using the Hodge operator it is possible to define the adjoint of the usual
differential operators, namely

O i= — % Ok : APU(M) — AP (M)

and

K

F" = — % 9% 1 API(M) — AP~LI(M).

As we will see in the next chapters, they are used to define differential operators
over manifolds.

1.4.1 Special Metrics

In this section we will discuss about Hermitian metrics with particular proper-
ties. Such metrics provide information about the geometry of the manifold or
on the complex structure. We begin providing a list of special metrics. Let h
be a Hermitian metric and let w be its fundamental form. Then we call h

e Kdhler if dw = 0;
Balanced if dw™ ' = 0;

SKT if 00w = 0;

Gauduchon if 00w™~1 = 0;

super SKT if Ow is 0-exact;
o strongly Gauduchon if dw™~! is D-exact.

A manifold M is said to be Kéhler (resp. Balanced, SKT,...) if it admits
a Kéhler (resp. Balanced, SKT,...) metric. Moreover we have the following
relations between metrics

super SKT =——= SKT

Kahler Gauduchon

Balanced == strongly Gauduchon

We recall some results that characterize such manifolds in terms of currents:

Theorem 8. A compact complex manifold is Kdhler if and only if there exists
no non-zero positive (1,1)-current which is the (1,1)-component of a boundary.

Theorem 9. A compact complex manifold M of complex dimension n is bal-
anced if and only if there exists no positive non-zero current T of degree (1,1)
which is the component of a boundary (i.e., there exists a current S such that T
=dS + dS).
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Theorem 10. A compact complex manifold M is SK'T if and only if there exists
no non-zero positive (1,1)-current which is 00-exact.

We conclude this section giving some motivation for the study of the various
type of special metrics. Probably the most important class of metrics is the class
of Kéahler metrics. Such metrics are similar to the flat metric in the euclidean
space and they have been studied by several authors ([HL83]). The Kéhler
condition is quite strong and it reflects on the topology of M, in fact we have

Theorem 11. Let M be a compact Kahler manifold. Then the odds Betti’s
numbers of M are even.

This theorem follows directly from the Hodge decomposition (see [GH14]).
Moreover, on compact Kahler manifolds, we have the so called Kéhler identity:

Theoreirri 1%.*7Let M be a compact Kahler manifold. Let A := dd* + d*d and
Az := 00 +0 0 be the Laplacian operators associated to the cohomology groups
(see Chapter 2). Then A =2A5.

Another important results in Kéhler geometry is the following.

Theorem 13 (Hard Lefschetz Theorem). If (M,g) is a Kdhler manifold of
complex dimension n, then the homomorphism

L": H}."(M;C)— Hjt"(M;C)

la] = [w" Ad] (1.16)

18 an isomorphism.

The next class of metric is the class of Balanced metrics. In [Mic82], Michele-
son introduced the notion of balanced metric. It first was defined in terms of the
vanishing of the (1,0) torsion tensor of the metric. Our definition was given in
same paper as equivalent condition and it is now generally assumed as the nat-
ural definition. The exstistence of balanced metrics is related to modifications
of Kéhler manifold.

Definition 6. Let M and M be compact complez manifolds. A modification f :
M — M s proper bimeromorphic map that is holomorphic outside an analytic
subset of M.

If M is Kihler manifold, M is not necessarly Kihler but we have the following
results

Theorem 14. Let 7 : M — M be a proper modification of a compact complex
manifold M. Then M admits a balanced metric if and only if M admits a
balanced metric.

The unique connection V satisfying Vg = 0 and VJ = 0 for which ¢g(X, T(Y, Z))
([Gau97] [Yan65)) is totally skew-symmetric and it was used by Bismut in [Bis89]
to prove a local index formula in non-Kéahler geometry. If Jdw is closed but not
zero, then g is a strong Kéahler with torsion and have applications in type II
string theory [GHR84][HP88][Str86]. The presence of balanced or SKT metrics
provides no topological obstruction, but we have the following results
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Theorem 15. Let g be a Hermitian metric. Then g is Kdhler if and only if it
is both balanced and SKT.

Moreover Popovici made the following conjecture

Conjecture 1. Let M be a compact complex manifold. Then M is a Kdhler
manifold if and only if it is both balanced and SKT.

Gauduchon metrics have the property that they exists on every compact
manifold. Moreover

Theorem 16. There exists a Gauduchon metric (unique up to normalization)
in the conformal class of any Hermitian metric on M.

Strongly Gauduchon metrics were firstly introduced in [Pop09], Popovici
used such metrics to study the holomorphic deformation limit of projective
manifolds. Let ¢ : M — B(0,1) be a family of compact complex manifolds
over the unit disk, Popovici proved that if the fiber M; is projective for ¢t # 0
and the center fiber M is a strongly Gauduchon manifold, then My must be a
Moishezon manifold. Thus strongly Gauduchon metrics are useful in the study
of deformation limits of projective manifolds.

Theorem 17. [Pop13] Let i : M — M be a proper modification, then M is
strongly Gauduchon if and only if M is strongly Gauduchon.

The last type of metrics is the most recent. It was introduced in order
to study Conjecture 1. Super SKT metrics are used in place of Hermitian
symplectic metrics because the former property is not preserved in the same
cohomology class. We will use super SKT metrics in our study in the next
chapter.



Chapter 2

Cohomology

The aim of this chapter is to provide a characterization in cohomological terms
of the coincidence of certain cones of Hermitian metrics.

Cohomology is a very important tool in the study and classification of com-
pact complex manifolds. The most famous cohomology group is the de Rham’s
and it is the cohomology group associated to differential forms. This group
depends only from the differentiable structure (i.e. the topology) of the man-
ifold and it is independent from the complex structure. In [Dol53], Dolbeault
introduced the cohomology group that was named after him. It is the group
associated to the complex of holomorphic forms and it depends both from the
differentiable and the complex structures. Those two groups are very similar
in their construction, but there are no direct relations between them. This is
one of the reasons because, in [Sch07], Schweitzer introduced other two coho-
mology groups: the Bott-Chern’s and the Aeppli’s. They provide, with the
homomorphisms induced by the identity, a bridge between the de Rham’s and
the Dolbeault’s. All this four groups can be described algebraically, as the coho-
mology of a short sequence, or analytically, as the kernel of a suitable self-adjoint
elliptic differential operator.

Moreover, in this chapter, we recall three tools that relate the previous
groups: the Frolicher spectral sequence, the 90-lemma and the Varouchas’
spaces. The first was introduced in [Fro55] and it is a sequence of sequences
that provides a link between the Dolbeault’s and the de Rham’s chomology.
The second is a result of Deligne, Griffiths, Morgan and Sullivan ([DGMST75])
that provides a necessary and sufficient condition such that all the cohomology
groups (of the same bi-degree) are isomorphic. Finally, the Varouchas’ spaces,
introduced in [Var], are auxiliary groups that are used to construct exact se-
quences that involve the Dolbeualt’s, Bott-Chern’s and Aeppli’s cohomology
groups.

In the last section we introduce the cones of Hermitian metrics. In partic-
ular we exhibit our work on the cones of SKT and super SKT metrics and we
provide necessary and sufficient conditions, in terms of cohomology groups, of
the coincidence of such cones.

19
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2.1 de Rham Cohomology

The first cohomology group we recall is the de Rham’s. It was introduced by de
Rham and it is the cohomology of the complex (Ak (M;C), d) and it is associated
to the sequence

oo AN C) S AR(MGC) L ARTY(MC) — (2.1)
Definition 7. The k-th de Rham cohomology group is defined as

Kerd : A¥(M AFTL(M
Hip(M,C) := 3 Ak—(1(134)%—> Ak((M))' (2:2)

It is very important because it is not associated to the complex structure
and it is a topological invariant.
Fixed a Hermitian metric g on M, the elliptic operator associated to the de
Rham cohomology is
Ay :=dd* + d*d, (2.3)

where d is the external differential operator and d* = xdx is the adjoint operator
with respect to the metric g.

Theorem 18. Ay is an elliptic self-adjiont differential operator of the 2-nd
order.

By Theorem 18 and standard results about elliptic differential operators, we
have the following decomposition

AR(M) = (Ker Ag)F @ (Im Ay)F, (2.4)

where with (Ker Ag)¥, resp. (Im Ay)*, we mean Ker AgNA*(M), resp. ITm AgN
A¥(M). Moreover, we have that, for every k € Z dimc(Ker Ay)¥ < oo and we
denote (Ker Ay)* with HE calling it the space of d-harmonic k-th forms.

H* is characterized in the following way: let ¢ € H%, using the L? product
on A¥(M) induced by g we obatain

0=< Ao, ¢ >= ||do||” + [|d*¢||* ; (2.5)

so if a k-form is d-harmonic then it is both d-closed and d*-closed. Since the
converse is trivially true, we have that

HE = Kerd N Kerd* N AR (M). (2.6)
Similarly,
(ImAg)* = (Imd @ Tm d*) N A*(M). (2.7)

So
AF(M) = HE © (Imd)* @ (Im d*)*. (2.8)
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Since the kernel of the d operator is orthogonal to the image of the d*
operator, we have that (Kerd)* = H% & (Im d)*. Hence

HEo (M, C) ~ HE. (2.9)

As a notation, we denote with by, := dim H% (M, C) the k-th Betti’s number of
M. Moreover, the Hodge star operator * induces the following isomorphism

Hbp(M,C) ~ H3E%(M,C).

2.2 Dolbeault Cohomology

The Dolbeault cohomology is the cohomology of the complex (Ap’q (M; (C),g)
and it is associated to the sequence

oo AP D AP (M) & AP (M C) (2.10)

Definition 8. The (p,q)-th Dolbeault cohomology group is defined as

9 AP:a p,q+1
HPI(A) Ker 0 : AP4(M) — AP2+1(D])

= . (2.11)
2 md : Apa—L(M) — Ara(M)

Contrary to de Rham cohomology, Dolbeault’s dependes on the complex
structure.
Fixed a Hermitian metric ¢ on M, the elliptic operator associated to the
Dolbeault cohomology is
Ay =00 +90, (2.12)

where & = — * O« is the adjoint operator of 0.

Theorem 19. Ay is an elliptic self-adjiont differential operator of the 2-nd
order.

By Theorem 19, we have the following decomposition
APY(M) = (Ker Az)P? @ (Im Ag)P9, (2.13)

where with (Ker Az)P9, resp. (ImAgz)P9, we mean Ker Az N AP9(M), resp.
Im AzNAP2(M). Moreover we have that, for every (p, q) € Z? dime(Ker Az)P? <
co. We also denote (Ker Az)P? with H2? calling it the space of d-harmonic
(p, q)-th forms. Let ¢ € ?—[%’q, using the L? product on AP4(M) we obatain

e 12
99| ;

0 =< Ag6, 6 >= [[96]* + | (2.14)

so if a (p, q)-form is d-harmonic then it is both d-closed and 8" -closed. Since
the converse is trivially true, we have that

H%’q = Kerd NKerd NAPI(M). (2.15)
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Similarly,
(Im Ag)P? = (Im5€B Im5*> N AP(D). (2.16)

So
APA(M) = H2T @ (Im D)9 @ (Im D )", (2.17)

Since the kernel of the é operator is orthogonal to the image of the 9
operator, we have that (Kerd)* = Hp'? @ (Im 9)»%. Hence

HEI(M) = HE, (2.18)

As notation, we denote with h2* := dim HZ'(M) the (p, q)-th Hodge’s number
of M. Moreover, the Hodge star operator * and the conjiugation induce the
following isomorphisms

pP.q ~ n—q,n—p
HE(M) ~ H? (M)

and
Hg’q(M) ~ Hg’p(M),

where H?(M) is the (p,q)-th cohomology group obtained by substituie in
equation (2.11) the operator d with the operator 0.

2.3 Bott-Chern Cohomology

The Bott-Chern cohomology is not a cohomology in classical sense, it is associ-
ated to the short sequence

AP=Lta=1(pp) 90, Apa(pry 950, pptia(pgy @ AP (2.19)
Definition 9. The (p, q)-th Bott-Chern cohomology group is defined as

(Ker @ : AP4(M) — APTLI(M)) N (Ker 8 : AP9(M) — AP9TL(M))

HYL(M) = —
se) Im899 : Ar~La-1(M) — Ara(M)
(2.20)

This cohomology was introduced to provide a link between the de Rham’s
and the Dolbeault’s. Fixed a Hermitian metric g on M, the elliptic operator
associated to the Bott-Chern cohomology is

Apc = (99)(89)* + (99)*(99) + (E*a) (E*a) + (E*a) (é*a) 13D+ 0%0.
21)
This differential operator was firstly introduced in [KS60] for the study of the

stability of Ké&hler metrics under small deformation. As the other differential
operators introduced in the previous sections

Theorem 20. Apc is an elliptic self-adjoint differential operator of the 4-th
order.



2.4. AEPPLI COHOMOLOGY 23

By Theorem 20, we have the following decomposition
Ap’q(M) = (Ker ABC)p,q S5 (Im ABC)p,q, (222)

where with (Ker Agc)P?, resp. (Im Apc)??, we mean Ker AgcNAP4(M), resp.
Im Apc N AP4(M). Moreover, for every (p,q) € Z?, dimc(Ker Apc)P? < oo.
We also denote (Ker Apc)P? with H¢ calling it the space of BC-harmonic
(p, g)-th forms. Let ¢ € H;Z, using the L? product on AP4(M) we obatain

0 =< Apod, ¢ >= [09||" + ||(90)*8|” + ||5¢||” + l0g]1* (2.23)

so if a (p, ¢)-form is BC-harmonic then it is d-closed, d-closed and (99)*-closed.
Since the converse is trivially true, we have that

HE, = Ker & N Ker d N Ker(99)* N AP (M). (2.24)
Similarly,
(mApc)™t = (mod @ (mo" +1md") ) NAPI(M).  (2.25)
So
APA(M) = HBL & (Im 09)P7 @ ((Im 9Pt 4 (Imé*)m) . (2.26)

We have that (Ker d)?? = H3L & (Im 90)P9. Hence
HYL(M) ~ HEL. (2.27)

As notation, we denote with A3¢ := dim HZ (M) the (p, ¢)-th Hodge’s number
of M. Moreover, the conjiugation induces the following isomorphism

2.4 Aeppli Cohomology

The Aeppli cohomology is the dual of the Bott-Chern’s. It is associated to the
short sequence

AP=LI0N) @ APL (M) 2205 Apa(pr)y 20 APLa+ () (2.28)
Definition 10. The (p,q)-th Aeppli cohomology group is defined as

Ker 90 : AP9(M) — APTLaTL(M)
(Imd : Ap=1a(M) — Ara(M)) + (Imd : APa=L(M) — AP4(M))
(2.29)

HYY(M) =

Fixed a Hermitian metric g on M, the elliptic operator associated to the
Bott-Chern cohomology is

Ay = (90)(00)" +(90)* (99)+ (30°) (30")" +(30")" (30%) +0" +00". (2.30)
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Theorem 21. A, is an elliptic self-adjiont differential operator of the 4-th
order.

By Theorem 21, we have the following decomposition
APYM) = (Ker A)P? @ (Im A 4)PY, (2.31)

where with (Ker A 4)P?, resp. (ImA4)P9, we mean Ker Ay N AP9(M), resp.
Im A4 N AP9(M). Moreover, always by Theorem 21, we have that, for every
(p,q) € Z? dimc(Ker A 4)P9 < co. We also denote (Ker A 4)P? with H%? calling
it the space of A-harmonic (p,q)-th forms. Let ¢ € H%?, using the L? product
on AP4(M) we obatain

¢

_ _ 2
0 =< Aag, 6 >= 00| + [[@0) ol + |[0°¢|| +l06)*:  (232)

so if a (p, ¢)-form is BC-harmonic then it is 9*-closed, 9" -closed and 9d-closed.
Since the converse is trivially true, we have that

HEZ? = Ker " NKerd N Kerdd N AP (M). (2.33)
Similarly,
(ImA4)P9 = (Im(00)* ® (Im 0 + Im J)) N AP (M). (2.34)
So
APU(M) = HE? @ (Im(80) ") @ ((Im )77 + (Im D)P?) . (2.35)

We have that (Ker d)P? = H3? @ (Im d + Im §)P?. Hence
HYI(M) ~ HY. (2.36)

As notation, we denote with A%y? := dim H?}?(M) the (p, q)-th Hodge’s number
of M. Moreover, the Hodge star operator * and the conjiugation induce the
following isomorphisms

HYL(M) ~ HY 4" P (M)

and
Hf{q(M) ~ Hg’p(M).

2.5 Frolicher Spectral Sequence

The Frolicher spectral sequence (E24(M), d,) is the spectral sequence associated
to the double complex (AP9(M),d,d). It was introduced in [Fro55] as a link
between the Dolbeault’s and the de Rham’s cohomology groups. It is defined
in the following way, let

EPYM) := AP9(M) and do:= 0. (2.37)
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Then E7:Y, (M) is defined inductively as the (p,q)-th cohomology group of the
complex

e Epratr () 2y pra(pr) Loy gramarti () o (2.38)

and the differential d, is of type (r,—r + 1). In [COUV16], it is provided an
explicit description of both E?'9 and d,, namely they proved

Theorem 22. Let M be a complexr manifold. Then

EPY(M) ~ m, (2.39)
where
XPUM) ={o € AP9(M)|0a =0}, YPI(M) = dAPI(M), (2.40)
and for r > 2

XPUM) = {ap, € AP9(M)|0a =0 and there exist
Qptig—i € APTHITH(M) such that (2.41)
O0pti—1,q—it1 +504p+i,qﬂ' =0,0<i<r—1},

YPUM) = {0Bp-1.4+ 0Bpq-1 € AP9(M)| there exist
Bp—i,q+i—1 € Ap_i’Q+i_1(M), 2<1<r—1,
satisfying OBp—iqri-1 + OPBp—it1.q+i—2 =0,
8ﬁp—r+1,q+r—2 = O}

(2.42)

and
Theorem 23. For r > 1 the map d, : EP9(M) — EPT™4="FL(M) is given by
drlop.q] = [00p4r—1,g-r41]; (2.43)

for [ap 4] € EPU(M). Furthermore,

P,q . s +r,g—r+1
SA(M) Imd, : EPTITTTN M) — ERY(M)
By definition we have that, for every (p,q) € Z* and every r € N, EP9(M)

is a C-vector space and E?)Y, (M) is a subspace of EP4(M). Moreover, since
EP4(M) = HE(M) is finite dimensional, the dimension of EP¢(}M) is a non
increasing function of r. We say that the Frolicher spectral sequence of M
degenerates at the step r if  is the smallest integer such that, for every (p, ¢) € Z?
and every 1’ > r, EYY(M) ~ E¥;%,, when this happens we denote E?*9(M) with
EP:A(M) and we have the following isomorphism (see [Fro55])

Hp(M) =~ @y =i BRI (2.45)



26 CHAPTER 2. COHOMOLOGY

In this sense we say that (E?9(M), d,) measure the distance between the Dol-
beault and the de Rham chomologies. In particular we have that the complex
dimension of the k-th group of the de Rham cohomology of any compact com-
plex manifold is less or equal then the sum of the dimension of HZ'(M) with
p+ q = k. The equality holds if and only if the Frolicher spectral sequence
degenerates at the first step. This happens, for example, for compact Kéahler
manifolds or, more in general, for manifolds that satisfy the 9-Lemma.

2.6 The 09-Lemma

We recall a celebrated result due to Deligne, Grffiths, Morgan and Sullivan: the
00-Lemma.

Theorem 24. Let (K**,d',d") be a bounded double complex of vector spaces,
and let (K*,d) be the associated simplex complex (d =d' +d"). For each integer
n, the following conditions are equivalent:

e Kerd NKerd’ NImd =Imd'd";
e Kerd’NImd =Imd'd’ =Kerd NImd";

o Kerd NKerd’ N(Imd +Imd") =Imd'd";

Imd +Imd”" + Kerd = Kerd'd";
e Imd + Kerd’ =Kerd'd’ =Imd’ + Kerd';
e Imd +Imd’ + (Kerd NKerd”) =Kerd'd".

The importance of this theorem is due to the following fact: consider the
following diagram

HEé (M) (2.46)

RN

HEYM)  HER(QLC) HE(M)

~ 7

159 (M)

where k = p 4+ ¢ and the arrows denote the maps induced by the identity. In
general those maps are neither injective nor surjective, but if one of those is
injective, then all of them are isomorphisms (see [DGMS75]). Such a result
is equivalent, for example, to the first point of Theorem 24. We say that a
manifold M satisfies the 90-lemma if

Kerd N KerdNImd = Im 90. (2.47)
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Among the manifolds that verify this property there are, for example, the Kéhler
manifolds. However those two classes of manifolds does not coincide.

Many authors have studied the manifolds that satisfy the d9-lemma, among
the results of characterization we recall the following

Theorem 25 ([AT13]). Let M be a compact complex manifold of complex di-
mension n. Then, for every (p,q) € Z2, the following inequality holds:

Wgé + W5 > h2d + hi?. (2.48)
In particular, for evey k € N, the following inequality holds:
hho + hY > 20", (2.49)

where Ko = RpL and b5 =Y h%%?. Moreover, the equality

p+q=k p+q=k

Yo+ hk = 2v* (2.50)
holds if and only if M satisfies the 00-Lemma.

2.7 Varouchas spaces

The classical cohomology groups cited in the previous section are not enough
for our purposes. We will need some useful tools introduced by Varouchas in
[Var].

In this section we recall the definitions of certain C-vector spaces and exact
sequences related to cohomology groups and we prove some relations between
their dimensions.

The Varouchas spaces are finite dimensional C-vector spaces defined as
follow:

(Ima : APTLA(M) — Ap’q(M)) N (Img : APITL(M) — A”*q(M))

API(M) = _ ;
Im 90 : Ap=L.9=1(M) — AP-9(M)
BPA(A) = (Imo : AP~19(M) —>7AP"1(M)) N (Kerd : AP9(M) — AP7TH(M))
Im 99 : Ap—La=1(M) — APa(M) )
DPa() (Kerd : AP9(M) — Aj’“’q(M)) N (Imd : API~1 (M) — AP9(M)) ;
Im 99 : Ap=L.a=1(M) — AP (M)
CPa(Ar) = Ker 9 : AP4(M) — Apjlqu(M)
(Im 0 : Ar=1a(M) — AP(M)) + (Ker d : A»2(M) — APat1(M))’
BRI = Ker 90 : AP4(M) — APTLIL (M) .
(Ker @ : Apa(M) — AP+1a(M)) + (Im 9 : APa=1 (M) — AP4(M))’
FPa(M) = Ker 90 : AP4(M) — APHLaTL(D])

(Ker @ : Ap4(M) — Ap+1a(M)) + (Ker @ : AP4(M) — APat1(M))

Using the previous spaces, Varouchas proved that the sequences



28 CHAPTER 2. COHOMOLOGY

0 — APY(M) — BP(M) — HE(M) — HYY(M) — CP(M) —» 0 (2.51)
and

0 — DPU(M) — Hgd(M) — Hp(M) — EP9(M) — FPI(M) =0 (2.52)

are exact.

Proposition 4. For every p,q € {0,...,n}, the conjugation and the x-Hodge
linear operator give rise the following non-canonical isomorphisms:

1)AP9(M) ~ ATP(M); 2)BP1(M) ~ D9P(M);
3)CPY(M) ~ EYP(M); 4)FPI(M) ~ FTP(M).
Moreover Varouchas proved the following:

Proposition 5. The differential operator O induces an isomorphism between
EP9(M) and BPY19(M) and the differential operator 0 induces an isomorphism
between CP4(M) and DP9 (M).

For the sake of completeness, we give the proof.

Proof. We prove only the first statement due to its similarity of the second
proof. Using the same name we consider the operator

d: EP9(M) — BPTHA(M)

defined as
Ola)g := [0a]B.

The map 0 is well defined. Let a be a dd-closed (p, q)-form, then da is a d-exact,
O-closed (p+1, q)-form therefore it defines a class in BP*1:9(M). Moreover if we
consider another form in the same class in EP:4(M) of o, namely a+ 3+0v with
B and 7 of suitable bi-degrees and 98 = 0, then we have that d(a + 8 + 97) =
o+ 90y. Thus it defines the same class of da in BPYLA(M).

The map O is surjective. Let B be a representative of a class in BPT14(M),
then 8 = da for some (p,q)-form a. Now, by the O-closeness of 3, 90a = 0
therefore « defines a class in EP9(M).

The map O is injective. Take a representative 3 of the zero class of BPTH4(M),
then 8 = dda for some (p,q — 1)-form a. Moreover [0a]r = [0]z and 9[0a]r =
[8]5. This concludes the proof. O

From now on we denote with the lower case characters denote the dimension
of the respective Varouchas space, e.g. a?? := dim AP9(M).

In addition to the equalities given by the isomorphisms above, we have the
following:
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Proposition 6. Let M be a compact complex manifold. Then P4 = d"—Pn1
and bP4 = " TP,

Proof. Step one. We observe that if the theorem holds for a fixed pair (pg, qo) €
N2 then it holds for the pair (n — qo,n — po): in fact, using the isomorphisms
(7) and (6) of the Remark, we have the following:

M 90,n—Po n—po,n—qo — pP0,90 — J90:P0

=e
The same argument stands for the case b~ 2" P = e%P and so this step is
proved.

Step two. We prove by induction over k = 0,1, ...,2n that, if p+q = k we
have ¢P? = d" P"~1 and b»9 = " P74 If k = 0, from the definitions of the
spaces, we have that b%0 = ¢»" = d%0 = ¢™»" = (. By applying step one to
™" = d%0 we have that ¢®° = d™™ and thus we complete the base of induction.

Let k& > 0 and suppose the theorem holds for every (p,q) € N? such that
p+q < k. Let (pg,qo) € N? such that py + qo = k then, using the isomorphisms
of the Remark and Proposition (8), we have:

20,90 — oPo—1,90
&
— ¢90,po—1
dn—3%0:n—po+1

— ¢n—d0,n—Po

— e~ Po,m—q0
With the same argument one can prove the c¢P? = d" P9 case. O

We can summarize the results above in the following:
Corollary 1. Let M be a compact complex manifold. Then
elP = (P4 = qn—Pn—q — pn—a;n=p — gn—q-ln—p _ n-pn—q-1 _ gp.q+1 _ pat+lp
Similar relations can also be found between the dimensions of AP*4(M) and
FP9(M). More precisely:
Proposition 7. Let M be a compact complexr manifold. Then
aPl = frpn=a
and
aP? 4 fOP = BT 4 R, h%q _ h%’p.
Proof. By the exact sequences (2.51) and (2.52) we have that, for every p,q €
{0,...,n}:
al? — o9+ W2t — BT+ P = 0; (2.53)
dP9 — il + h%’q —ePd 4 fPd =, (2.54)
The first equality is obtained by subtracting the second equation in the case
(n — p,n — ¢) from the first equation in the case (p,q). The second equality

is obtained by summing the two equation, the first in the case (p,q) and the
second in the case (g, p). O
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2.8 Cones of Hermitian Metrics

In this section we report our study about the cones of SKT and super SKT
metrics. Before doing that we recall some results due to other authors about
cones of metrics. Given a special Hermitian metric as in Section 1.4, a cone of
such metric is a subset of a suitable cohomology group composed by classes that
have at least a positive form as a representative. We briefly recall the following
definitions

Definition 11. Let M be a compact compler manifold of complex dimension
n. Let g an Hermitian metric on M and let w be its fundamental form. Then
g 1s said to be:

e Kahler, if dw = 0;

o Gauduchon, if W' is 00-closed;

e strongly Gauduchon, if dw" ™! is O-exact;
o SKT, if w is O0-closed;

o sSKT, if Ow is O-exact.

Since w is a (1, 1)-form the Ké&hler condition is equivalent to impose dw =
Ow = 0. The Kdhler cone K was firstly studied by Demailly and Paun (see
[DP04] or [BDPP04]) and is defined as the subset of classes in H g5 (M, R) that
contain at least one positive form. Namely

K :={[¢9|sc € H]g’é(M, R) | Jw € [¢]sc s.t. w > 0}.

In [PU14] the cones G of Gauduchon metrics and SG of strongly Gauduchon
metrics were introduced. Namely

G :={[p|la € H} """ H(M,R)|F" """ € [¢]a st w >0}

and
SG:=GgnKerT,

where T : HY """ (M) — Hg’"_l(M) is defined as T'([¢]4) := [0¢]z. That
is, they are the cones of classes in Hzfl’”fl(M) that contain the (n — 1)-th
power of the fundamental of a Gauduchon (resp. strongly Gauduchon) metric.
In their work, Popovici and Ugarte called a manifold an sGG manifold if SG =
G. Moreover, since the kernel of T is a vector subspace of H™ " ! (M), its
intersection with the open convex cone G leave this latter unchanged if and
only if T" vanished identically. Using this observation, they proved the following
results of characterization.

Lemma 1. Let M be a compact complex manifold of complexr dimension n.
Then the following statements are equivalent:

e M is an sGG manifold;
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e the map T vanished identically;

e the following spacial case of the 0-lemma holds: for every d-closed (n,n—
1)-form ¢ on M, if ¢ is O-exact then ¢ is also D0-exact;

o cvery Gauduchon metric on M is strongly Gauduchon.

Theorem 26. Let M be a compact complex manifold of complex dimension n.
The well-defined canonical C-linear map induced by the identity

S:Hy" (M,C) - H"" (M, C)
18 surjective and we have an eract sequence
aytmt ) Lo Epr Y (M, ) S BTN (M, C) — 0.

In particular, M is an sGG manifold if and only if S is injective (i.e. if and
only if S is bijective).

Theorem 27. Let M be a compact complex manifold of complex dimension n.
Then there is a well-defined canonical C-linear map

F: Hjp(M,C) — Hy''(M,C) & Hy' (M, C),

such that F([¢lar) == ([¢”']3, [51’0]5). Moreover, the map F is injective. Con-

sequently, the following inequality
0,1
b1 < 2h5
holds on every compact complex manifold. The following equivalence holds

X is an sGG manifold < F is surjective.

This last result is the crucial point in the proof of the openness under small
deformations of the condition ”being an sGG manifold”.
Now we move to our work on the SKT and sSKT metrics. With the same
notation, we put
1,1 2,1
T:Hy (M)—>H5 (M)

as T([a]a) = [0alz. This map is well defined: let o be a representative of an
Aeppli cohomology class and consider o + 93 + 9, for some 3 and v of suitable
bi-degrees. Now

T(la+ B + 9]a) = [0(a + 0B + I7)]5 = [0a — D]z = [0alz = T([a]a).
We define the cones

S :={[pla € Hy' (M)|3w € [¢]a,w > 0} (2.55)
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and
s§:=8NKerT (2.56)

of SKT and sSKT metrics respectively.

We want to study when s§ = § .From now on, we will assume that M
admits at least one SKT metric; otherwise S = () and the equality is trivially
true. The following proposition follows from the above consideration about the
intersection of the convex cone S and the subspace KerT'.

Proposition 8. Let M be a compact complex manifold admitting a SK'T metric,
i.e., such that S # (). Then we have sS = SNKerT. Moreover sS = S if and
only if KerT = Hi’l(M) if and only if T = 0.

Proof. The first statement follows directly from the definitions. For the second
one we observe that sS is the intersection between a cone and a vector space,
so the equality s§S = § is equivalent to the KerT being the whole space. O

Now, since we are interested in the study of Ker T, we want to construct a
suitable exact sequence, we consider the following:

Proposition 9. Let M be a compact complex manifold. Then the sequence
HY (M) 5 H2' (M) 5 HY (M) 2 021 (M) — 0, (2.57)
1s exact, where v and j are the maps induced in cohomology by the identity.

Proof. We only need to prove the exactness at Hg’l(M). If [o]a € HY' (M),
then [dals +— [da]a = [0]4 € HY' (M), so ImT C Keri. Conversely, in order
to prove that Keri C Im T, we consider a (2, 1)-form a such that: da = 0 and
a = 0B + 0, for suitable forms S and ~. The two conditions mean respectively
that « defines a class in the Dolbeault cohomology and i([a]z) = [0]a. Now
[alg = [08 + 07]5 = [0B]7 so [a]5 has a §-exact representative; moreover 998 =
—0da = 0 thus 8 defines a class in the Aeppli cohomology. Hence KerT C
ImT. U

We can now prove the following:

Theorem 28. Let M be a compact complex manifold admitting a SKT metric.
Then the following facts are equivalent:

1. s§ =S;

2. KerT = Hy'(M);

3. AHM) = b5 (M) — k2 (M);
4. A2Y(M) ~ B2Y(M);

5. > (M) = b>'(M);
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6. every smooth d-closed 0-exact (2,1)-form on M is 0-exact;
7. every SKT metric g is super SKT.

Proof. 1 < 2: this is proved in Proposition 8.
2 = 3: if Ker T = H ' (M), then sequence (2.57) becomes

0— H2' (M) — H' (M) = C*>' (M) — 0.

Hence ¢>'(M) = h%' (M) — h%’l(M), i.e. 3 holds.
3 = 2 we recall that all the spaces in (8) are finite-dimensional so, by the
exactness of the sequence, we have:

dim(Im7T) = dim(Keri) = h2" — dim(Im )

= h2! — dim(Ker j) = h2" — h%" + dim(Im j)
=n2t = hy L

But, by hypothesis, h%l — hi’l +c*! = 0, then dim(Im7T') = 0, that implies
Ker T = Hy'(M).

2 & 4: if 2 holds we have that the map i in (5) is injective, so the sequence
(2.51) can be written as

0= A®H(M) = B¥H(M) = 0 — H' (M) — HE' (M) — C*!(M) - 0.

Hence we have the fourth statement. The converse still holds by the same
argument.

4 = 5: trivial.

5 = 4: using sequence (2.51), we have an injective map from A%! to B%1.
Since they have the same dimension that map must be an isomorphism.

4 = 6: let ¢ be a (2,1)-form such that ¢ € Kerd N Ima then it defines a
class in B>!. By the assumption it also defines a class in A%! and therefore it
is O-exact.

6 = 4: let [¢] € B>, then ¢ € Ker 9NIm d. Thus ¢ € Im d and consequently
¢ defines a class in A%,

1 = 7: given an SKT metric g, its fundamental form w defines a class in the
cone S. Since sS = S, there exists a € [w]4 such that a > 0 and da is J-exact.
Thus w = a + 9f + 0, for suitable 3 and 7. As a consequence dw = dor — DIy
is O-exact, therefore w is the fundamental form of a super SKT metric.

7 = 1: given a class [a]4 € S, there exists a (1,1)-form w € [a]4 such that
w > 0 and 90w = 0, namely w is the fundamental form of a SKT metric g.
By the assumption, g is a super SKT metric, thus dw is d-exact and therefore
[a]a = [w]a € sS.

O

We conclude this section by focusing on the case of compact complex sur-
faces, namely compact complex manifolds of complex dimension 2.
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Theorem 29. Let M be a compact complex surface admitting a SKT metric.
Then sS = S if and only if hi’l = h%’l.

Proof. Using Theorem 28, we have that sS = S if and only h%’l —hi’l +c>t =0.
By Corollary 1, ¢*! = ¢%0. By definition ¢®° = 0 because C°° is a group of
C*> function that are d0-closed, i.e., of constant function, quotiented by the
O-closed C* function (the d-exact are excluded for reason of bi-degree). But
every constant function is d-closed thus C%° = {0}. O

One interesting aspect in the case of the surfaces is that, in complex dimen-
sion 2, SKT and super SKT metrics satisfy respectively the Gauduchon and
strongly Gauduchon conditions.

Since, for n = 2, a metric is SKT (resp. sSKT) if and only if it is Gauduchon
(resp. strongly Gauduchon), we have that every compact complex surface ad-
mits a SKT metric (since every compact complex manifold admits a Gauduchon
metric) and we can omit this hypothesis from Theorem 29. Furthermore the &
and sS cones coincide respectively with the Gauduchon and strongly Gaudu-
chon cones studied in [PU14], thus Theorem 29 can be view as a special case
of

Theorem 30. 1[PU14, Theorem 1.3] On any compact complex manifold M we
have h%’é < h%’ . Moreover, M is an sGG manifold if and only if h%’lc = h%’l.
Here an sGG manifold is a manifold on which the cone of Gauduchon metrics
coincides with the cone of strongly Gauduchon metrics. Finally, using [PU14,
Theorem 1.5], we have the following
Remark: let M be a compact complex surface. M is Kéahler if and only if

s§S =8.

2.8.1 The equivalence s§ = S on Nilmanifolds

We asked ourselves if the equivalence of the cones sS and S is satisfied by every
compact complex manifold and we found out that this is not true. We will
provide a family of examples of compact complex manifolds such that sS #
S. As explicit examples we will use Theorem 28 in the case of 6-dimensional
nilmanifold. A complex nilmanifold is a compact quotient I' \ G of a connected
simply-connected nilpotent Lie group G by a co-compact discrete sub-group I,
endowed with a G-left-invariant complex structure J. In [FPS04] Fino, Parton
and Salamon classify 6-dimensional complex nilmanfolds admitting invariant
SKT metrics; moreover Angella and Kasuya (see [AK12, Theorem 1.3]) proved
that, in the case of 6-dimensional nilmanifolds endowed with SKT metrics, it is
possible to compute Bott-Chern cohomology groups using only invariant forms.
First we recall the result by Angella and Kasuya in its most general form:

Theorem 31. Let (A”’, 0, 5) be a bounded double complex of C-vector spaces,
and let (C**,0,0) < (A**,0,0) be a sub-complex. Fiz (p,q) € Z*. Suppose
that:
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o for everyr € 7 the induced map (CT", 5) — (A“ﬁg) 1$ a quasi-tsomorphism;
e for every s € Z the induced map (C**,0) — (A*,0) is a quasi-isomorphism;
e the induced map

Ker(d : TotPT4(C**) — TotPTaTL(C**)) . Ker(d : TotPT1(A®*) — TotPTIt1(A®*))
Im(d : Totrta=1(C**) — Totrta(C**)) Im(d : TotPta—1(A®®) — TotPta(A**))

is surjective, (here Tot*(A®*) := @pyq=rAPY).

Then the induced map
(Cp—l,q—l 99, cpa 040, op+la gy Cp,q+1> SN (Ap—Lq—l 99, ppa 949, pp+lg @Aan)

of complexes induces a surjective map in cohomology.

The previous theorem allows us to compute the cohomology groups in terms
of invariant forms. B ‘

From now on, we will use the following notation: ¢ stands for ¢ /\aj; more
generally, if I and J are multi-index of length [ and m respectively, with o1 we
denote ¢t A--- APt NG A AP

Then we recall a result by Fino, Parton and Salamon about the characteriza-
tion of 6-dimensional nilmanifold admitting SKT metrics (see [FPS04, Theorem
1.2)):

Theorem 32. Let M =T\ G be a 6-dimensional nilmanifold with an invariant
complex structure J. Then the SKT condition is satisfied by either all invariant
Hermitian metrics g or by none. Indeed, it is satisfied if and only if J has a
basis (¢°) of (1,0)-forms such that:

dpt =0
d¢* =0 ) B ) (2.58)
d¢3 :A¢12+B¢22—|—C¢11 +D¢12+E¢12

where A, B,C, D, E are complex numbers such that
|A|* + |D|? + |E|* + 2Re(BC) = 0. (2.59)

Using Theorems 28 and 31, 32 we will compute cohomology groups of com-
pact complex nilmanifolds of dimension 6 and we prove that:

Theorem 33. Let M be a non-torus compact complex 6-dimensional nilmani-
fold with Lie algebra different from b7. If S # () then sS # S.

Proof. We will show that hi’l — >l — h%’l # 0. Therefore, by Theorem 28,

we obtain that sS§ # S. First we will compute hjzg’é which is equal to hi’l
(see Remark in section 4). By Theorem 31, we only need to compute it using
invariant forms. By Theorem 32, we obtain the following table (see [AFR15] or



36 CHAPTER 2. COHOMOLOGY

[LUV14] for complete computation of cohomology groups of compact complex
manifolds)

(2, 1)-form invariant | d )

¢12T 0 0

¢12§ 0 0

¢12§ 0 F¢12E

¢13i 0 7B¢312

¢132 0 A¢1212

¢13§ _§¢123§ +ﬁ¢12ﬁ A(blzﬁi_ B¢12§+E¢13ﬁ
¢231 0 _D¢312

¢232 0 C¢1212

¢23§ Z¢123§ _ 6¢123T C¢12ﬁ + D¢12ﬁ +E¢23ﬁ

Moreover we have that Imdd : A}T’SJ — A?;le
Héé(M) ~ Ker 9 N Ker 0.

Obviously both ¢'21 and ¢'22 define a class in Héé(M ). Other d-closed
invariant forms of bidegree (2,1) are

= {0}. As a consequence

B¢12§+E¢13i. A¢12§_E¢13§. D¢12§+E¢23T. C¢12§_F¢23§. A¢13T+B¢13§
D(,Zsl?’T*Bd)Zﬁ' C¢13T+B¢)23§' D¢13§+A¢23T. C¢13§*A¢23§' C¢23T+D¢23§.

Since M is not a torus, at least one coefficient between A, B,C, D, E is not

zero, in particular both B and C must be different from zero, so the C-vector

space generated by the above (2,1) forms has complex dimension 4. In fact,

Bo'?3 + Ep3t Ap'3t + Bo'32, Dp13! — Bg?3! and C¢'3! + B¢?3? are C-linearly

indipendent and every other forms can be written as a linear combination of

two Of them, e.g., C¢231 +p¢232 :7+%(C¢131 + B¢232) _ %(D(b131 _ B¢231).
Finally, considering ¢33 + A¢?33, we obtain that

e if £#0 then h%' = 6;
o if =0

— and there exists A\ € C such that B = AMA = —\AD = —|)\|?C, then
2,1 .
hy =7
— otherwise hi’l = 6.
Now we compute c¢!. By Corollary (1), ¢>! = b%1. The latter is much

easier to compute, in fact every class in B>!(M) is a class in H]23(1;(M), SO we
only need to understand which class in H ?Bé(M ) has J-exact representative:

(0 ALL(M) — AZL(M) = € < Dgi? — Tgi®, -Cgi! + 4912,

E(ﬁlﬁ, E(ﬁlﬁ, E¢12§ + Z¢13§ + §¢23§ _ §¢23T _ 6(/51?5 > .

Then we have:
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e if £ # 0 then ¢*! = 3;
e if E=0and AD — BC # 0 then ¢*! = 3;
e if E=0and AD — CB = 0 then ¢*! = 2;

Finally we give a lower bound of h%’l using the third column of the table
and

Im(d: A7 (M) — AZL (M) = C < Ap*? + Bo'?2, C¢'?! + D22 > |
We have five cases:
e if £ # 0 and
— AD — BC #0, then h2' > 4;
- A=C=-B=-D, thenh%l > 6;
— otherwise hg’l > 5;
e if £ =0 and
— AD-BC;éo,thenhgl > 4;
— AD — BC #0, then h2' > 6.
Summing up results above, we have that ¢! — hi’l + h%’l # 0, in every case.

Therefore, by Theorem 28, this implies that sS # S. O

It is also possible to provide a metric w € S\sS. If we consider the (1,1)-form
¢33 we have that

aqf)s? _ E¢12§ + Z¢13§ + §¢23§ _ 6¢13T _ ﬁ¢23i (2.60)

and B .
009> = (|A]* + |D|? + |E|? + 2Re(BC))¢'*'? = 0 (2.61)

So ¢*3 is d0-closed, but d¢>3 is not J-exact, as a consequence we have that
%'(¢11 +¢22 _|_¢33) c 3\88.

Moreover, using the symmetrization process described in [Bel00], it is pos-
sible to adapt the arguments in [FG04, Theorem 2.1] to the complex case. In
particular it is easy to check that the second statement holds even if we change
the operator d with the operator d® := J~ ! od o J, where J is the complex
structure of our manifold. As an immediate consequence, the statement holds
if we substitute the operator d with the operators 0 or . Thus we have a result
anologous to [COUV16, Proposition 5.1], in fact we proved the following:

Proposition 10. Let M be a compact complex 6-dimensional nilmanifold. If M
admits a super SKT metric then it also admits an invariant super SKT metric.

Using the proposition above we prove the following
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Theorem 34. Let M be a compact complex 6-dimensional nilmanifold. Then
M admits super SKT metrics if and only if M is a torus.

Proof. First of all we observe that if M does not admit a SKT metric then it
does not admit a super SKT metric, and thus we can restrict the proof of the
Theorem to the case described by Theorem 32.

By Proposition 10 we only need to study the invariant case. Finally, by
[Uga07] we have that the fundamental form of a invariant Hermitian metric is
given by

w:7“¢>ﬁ+8¢2§+t(]§3§+u¢1§—ﬂ(éﬂ—l—v(blg—f(bﬁ—i—w(éﬁ—ﬁ(bgﬁ, (2.62)

where 7, s and t are positive real numbers and u, v, and w are complex numbers
which satisfy the following

rs > |ul?
rt > |v|?
st > |w|?
rst + 2R(iwvz) > tlul* + rjw|? + slv|?

By direct computation follows
Ow = t8¢> + (WD — TE — wC)¢"?" + (wA — vB — wE)¢'?2. (2.63)

While, for every fixed A, B, C, D and E, it is always possible to find two
complex numbers v and w such that the sum of the second and third terms of
(2.63) is 0-exact, 943 is J-exact if and only if A= B=C =D = FE = 0. That
is equivalent to M being a torus.

O



Chapter 3

Elliptic operators on
Manifolds

One of the subjects of this PhD thesis is the study of the stability of the degener-
ation at the second step of the Frolicher spectral sequence (see §2.5). The theory
of deformations was introduced in Kodaira and Spencer in [KS60]. Moreover,
in [Kod06], Kodaira presented a study of C>° families of differential operators
on compact manifolds. In the appendices of the aforementioned book, there
are proved the properties of differential operators on manifolds that are needed
to develope such theory. We recall those definitions and theorems in the first
section of this chapter.

In [Pop16], Popovici proved that there is an isomorphism between the second
step of the Frolicher spectral sequence and the kernel of a suitable pseudo-
differential operator A. For this reason we decided to study the theory of pseudo-
differential operators in order to provide the preliminary results needed to apply
the theory of deformations to C*° families of pseudo-differential operators. We
begin the second section giving the definition of pseudo-differential operator
and we recall some results, e.g., the Garding inequality and the finiteness of the
dimension of the kernel of a pseudo-differential operator. Moreover, we prove an
a priori estimate for this wider class of operators. This theorem will be crucial
in the next chapter in the proof of the upper-semicontinuity of the dimension
of the kernel of a C*° family of pseudo-differential operators.

In the last section, after having recalled the Hodge theory, we provide the
construction of A.

3.1 Sobolev’s Norm

We assume the following notations. Let M be a compact orientable differentiable
manifold of real dimension n (in this chapter we do not need the complex struc-
ture so we assume only the existence of a volume form). Let {Uj;, ¢;};=1,..m be
a finite covering of M made of coordinate open sets and let V; := ¢,(U;) C R™.

39
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We observe that, since M is compact, V; is a limited open set of R™. Let {n;}
be a partition of unity subordinate to {U;}. We fix a Riemannian metric g on
M and we denote with w” its volume form.

We recall the construction of C*° functions and C*> forms on M. A complex-
valued C* function f: M — C is defined as

an fiod;)(e), (3.1)

where f; € C*(V;;C). Since the behavior of f; at the boundary of V; has no
influence in this construction, we assume that f; is defined and differentiable
on V; which is compact. An [-form a on M can be locally defined as

= Z fldat, (3.2)

|I|=l

where I = (i1, ...,4;) is a multi-index, fjl is a C*° function and dle- = dmél ARRRVA
dx?.

In Chapter 1 we gave the definition of the L?-product associated to an Her-
mitian metric. Such a product does not involve the derivatives of the forms.
In this chapter we want to study the behavior of differential operators, thus we
need the following norm.

Definition 12 (Sobolev’s norm). Let f € C*°(M,C) and let k be a non negative
integer. Then the k-th Sobolev’s norm of f is

=3 5 [ s emfr,. (33)

i=1|a|<k

51 gon

where a = (a1, ...,ay) and D§ = 37T -+ pgmw 18 @ derivation in the local
51 in

coordinates {xj; }.
Let ¢ € A{(M), using the local expression (3.2), we put

S (3.4)

|I|=t

el = 3 e,

"¢‘Uj i:

and

We recall the following.

Proposition 11. Let f € C®(M,C) and let s < s’ < s then the following
interpolation inequalities hold for any t > 0.

I1£lly < anif —#)/e=") ||f||‘ffs Jo=s) (3.6)

8" - (s=5")/(s=5') || f|12
== £ 2 + t DR, 3

— g

2 S
If1ls <
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3.2 Differential operators

In this section we recall some notions about differential operators on manifolds
(for a complete disseretation see [Kod06]). We consider only operators acting
on C* functions, because the construction and properties of operators acting
on forms follow directly from (3.2). Since M is compact, we can assume always
that the functions we are using are compactly supported.

Definition 13 (Differential operator). A linear partial differential operator of
order m A(xz,D) : C*°(M,C) — C>*(M,C) is defined as following: for every
fe€C®(M,C) expressed as in (3.1),

A, D)f(x) == > ajala)n;(@)D5(f; 0 ¢;)(x), (3.8)

Jlal<m
where ajo € C*(U;,C) and o and D are as in Definition 12.

Shortly we write

Az, D)f(z) = Y aa(z)Df(2). (3.9)

laf<t

From Definition 13, A(z, D) is a polynomial function in the variable D with C*°
coefficient. We call principal part of A(xz, D) the homogeneous polynomial of
maximum degree. Namely, if A(x, D) is of order m,

Ap(z,D) = " aq(x)D* (3.10)

lal=m

is its principal part. The principal part of an operator carries important infor-
mations, for example the following definition relies only on A,,(x, D).

Definition 14. A(z, D) is said to be elliptic if for any x € M there exists a
positive constant & such that for any (, € R™ with (, # 0 and for any z € C the
iequality

[(Am (2, Ga)2)s)" = 622 (3.11)

The supremum of such & is called the constant of ellipticity of A(p, D) and we
denote it with dg.

Since elliptic operators are related to cohomology groups (see [Vo0i03]), they
have been largely studied in literature (see for example [BT13] or [WGP80]). We
recall some of the most important properties of elliptic operator (for complete
proofs see [Kod06]). First of all we define the following constant: for every

k € N let
M= Y supsye,
J

a |BI<k

Dfaja(a:j)‘ . (3.12)

Using M}, one can prove the following
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Theorem 35 (L? a priori Estimate). Let A(x, D) be an elliptic partial differ-
ential operator of order m. For any k € N, there exists a positive constant C
depending only on mn, m, k, § and My, such that for every f € C*(M,C), the
inequality

1 g < CUAD, D) fI + 115 (3.13)

holds.

Theorem 35 will be a fundamental tool in the next chapter since it provide
an upper estimate of the Sobolev’s norm of f. Other useful estimates are the
followings.

Lemma 2. Let A(x, D) be a linear differential operator of order m. Then, for
every k € N, there exists a constant C such that for any f € C*°(M,C) the
following inequality holds

[AGz, D) fll; < C NS llpam -

Lemma 3. Let A(x, D) be a linear partial differential operator of order m + 1.
Then there exists a positive constant C determined by m and l such that for any

1,9
|< A(p, D) f,g > < CM || f|l,,, lgll, (3.14)

holds, where < A(p,D)f,g > denotes the standard L* product associated to the

fized metric.

Let A(x, D) be a linear partial differential operator of order 2m. For any
x € M and any ¢, € Tx M with ¢, # 0, the principal part Ag,(z, ;) of A(x, D)
is a linear map C — C

Definition 15. A linear partial differential operator A(x, D) of order 2m is
said to be strongly elliptic if there exists a positive constant § such that for any
pE M, any ¢ € T M with ¢ #0 and any z € C\ {0}

(=1)"R (Azm (2, C2)2) Z > 0% [2]| G ™™ (3.15)

holds. The supremum of such § is called constant of strong ellipticity of A(x, D)
and it is denoted with dg.

Since all the operators we use are of this type, this stronger property provides
no burden in our study. Moreover, we have the following stronger estimate
([Eval0]).

Theorem 36 (Garding’s inequality). Let A(m, D) be a strongly elliptic par-
tial differential operator of order 2m. Then there are positive constants 01, do
depending on m, n, § and M, such that for any f € C>*(M,C)

R(A(z,D)f, )+ 6:1(f, ) = 6 | 112 (3.16)
holds.



3.2. DIFFERENTIAL OPERATORS 43

Theorem 35 and 36 are the estimates we need in our study. Given an operator
A(z, D) we want to construct the adjoint and the Green operators associated to
it. Fixed an Hermitian metric g the following Lemma guarantees the existence
of the adjoint operator.

Lemma 4. For a linear partial differential operator A(x, D) of order m, there
exists a unique linear partial differential operator A(x,D)* such that for any
f,9 € C*(M,C), the following inequality holds

< A(z,D)f,g >=< f,A(x,D)*g > . (3.17)

Moreover A(x,d)* is of order m. A(x,D)* is called the formal adjoint of
Az, D).
We also know how to construct A(z, D)* from A(z, D).

Lemma 5. Let x € M and {, € Ty M with (, # 0. If we write the principal
symbol of the differential operator A(x, D)* as Aj(x,(,)*, then it is the adjoint
of the linear map determined by the principal symbol of A(x, D) with respect to
the metric g,.

There is also a more abstract construction of the adjoint starting from the
following operator

Definition 16. We define a linear operator A in the Hilbert space L*(M,C) as
follows: The domain D(A) of A is given by

D(A) = {u € L*(M,C)|A(p,D)u € L*(M,C)} (3.18)
and for any u € D(A), we put Au = A(z, D)u.
The operator A has the following properties.

Theorem 37. D(A) = WY(M,C), and the topology of D(A) defined by the
graph norm coincides with the standard topology of W (MC).

Theorem 38. A is a closed operator.

Theorem 39. C>°(M,C) is dense in D(A) with respect to the graph norm, that
is, for uw € D(A) there is a sequence {¢r} C C>*°(M,C) such that ¢y, converges
to u in L*(M,C) and A(zx, D)¢y, converges to Au.

A can be used to construct the adjoint of A(x, D) in the following way

Theorem 40. Let A* be the adjoint of A in the sense of the operator on Hilbert
space. Then the domain D(A*) is given by D(A*) = WY M,C) and, for v €
D(A*), we have

A*v = A(z,D)*v (3.19)

In particular, if A(x, D) is formally self adjoint, A is self adjoint.

We recall a couple of other properties of A and A*.
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Theorem 41. Let A(z, D) be an elliptic partial differential operator of order
m. We define the operators A and its adjoint A* as in Definition (16). Then
we have the following

e Both Ker A and Ker A* are finite dimensional subspaces of C*°(M,C);

e the range R(A) of A and the range R(A*) of A* are closed subspaces of
L*(M,C);

o R(A) = (Ker A*)* and R(A*) = (Ker A)~.

Lemma 6. Let A(z, D) be an elliptic linear partial differential operator of order
m. We define the operator A as in Definition (16). Then

e Ker A is a closed subspace of L*(M,C).

o For any integer k > 0, there exists a positive constant Cy, such that for
any u € WFH(M,C) N (Ker A)*, the following estimate holds:

lullr < Cr l|Aully - (3.20)

One of the most important result in the theory of differential operators over
manifolds is the Hodge decomposition theorem ([Sch95]) that we will enunciate
in section. This theory involves both the kernel and the range of suitable el-
liptic differential operators. We have already discussed about the kernel of an
operator, now we want to study its range. In particular we want to solve

Az, D)u(z) = f(x) (3.21)
Formally we want find
u(z) = A~ x, D) f(x). (3.22)
The role of A=1(x, D) is fulfilled by the Green operator G(z, D) of A(x, D).

Definition 17 (Green operator). Let D(A) N (Ker A)t = H and let Q be the
orthogonal projection onto Ker A*. Since A is a bijection of H into R(A), let G
be its inverse. G is a bijection of R(A) into H. We define

G=G(1+Q), (3.23)

and call G the Green operator of A. G is a linear map of L?(M,C) to H which
coincides with G on R(A) and vanishes on Ker A*.

Theorem 42. The Green operator has the following properties
e G is defined on L?*(M,C) and its range R(G) is given by
R(G) = WM, C) N (Ker A)*. (3.24)

For any v € L?*(M,C), AGu = (I — Q)u and, for any v € W!(M,C),
GAv = (I — P)v;
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o for any integer k > 0 there exists a positive constant Cy, such that, for any
u € Wk(M,C), Gu e WFY(M,C) and

1Gullyyy < C llully (3.25)
holds;
e let F be the projection map from L*(M) into the Kernel of A then for ever
feL*(M)
AG(f) = GA(f) = [ — Ff (3.26)
holds.

Equation (3.21) is a classical problem. In order to solve it, the first step is
to find a weak solution. Namely,

Definition 18 (Weak solution). Let f € W*(M,C). u € W¥(M, C) is said to
be a weak solution of (3.21) if for any ¢ € C(M,C),

(u, A(z, D)"¢) = (f, ¢) (3.27)
holds

Given a weak solution we want to regularize it. This is a standard process in
analysis involving the Lax-Milgram theorem. We recall the main passages that
prove that, if there exists a weak solution, then there exists also a regular one.

Lemma 7. Let A(xz,D) be a partial differential operator of order . Then, by
Lemma 2, it is extended to a continuous map of W*(M,C) to W*={(M,C). if
u 1s a weak solution, in this sense, we have

A(z,D)yu=f (3.28)
in WE={(M, C).

Theorem 43 (Lax-Milgram [Shol3]). Let H be a complex Hilbert Space, let
(e, @) be its inner product and let | o | be its norm. Suppose that B(x,y) is
a Hermitian form on H satisfying the following condition: there exist positive
constants C1 < Cs such that for any x,y € H

|B(x,y)| < Calxllyl, (3.29)

RB(z,x) > Cy|x|*. (3.30)

Then, for any continuous conjugate line f(x) on H, there exists a unique element
Fp of H with
B(Fp,2) = 1(2) (3.31)

Lemma 8. Let 61 and 02 be the positive constants given in Theorem 36. Then
B(¢, ) defined on C°(M,C) extends uniquely by continuity to a continuous
Hermitian form on W™ (M, C) which we denote by the same notation B(¢,1)).
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Moreover there exists a positive constant Cy determined by n, m and My, such
that if ®X > 81, for any ¢,v» € W™ (M, C) the following inequalities hold

1B(¢,%)| <82 |6l [1¥]],, (3.32)
RB(¢, ¢) > Cy ||6]|2 . (3.33)

Theorem 44. Let A(p,D) be an elliptic linear partial differential operator
of order m with C* coefficients. Suppose that for some integers s, k, f €

Wes=m+k (M, C), then for a weak solution u € W*(M,C) of the equation
Az, D)u = f (3.34)
there exists a positive constant C such that

ull gy < CUS N s + lully) (3.35)

holds, where C' is independent of f and u.

Lemma 9. Let A(z, D) be an elliptic linear partial differential operator of order
m. Suppose that for f € C*(M,C), u € W*(M,C) is a weak solution of

Az, D)u = f. (3.36)
Then there exists v € C*°(M,C) such that in L?*(M,C)
u—v=0 (3.37)
holds.
Moreover, for elliptic operators, we have a result of existence of the solution.

Theorem 45. Let A(p, D) be a strongly elliptic linear partial differential oper-
ator of order 2m, and let 01,82 be the positive constants given in Theorem 36.
If R\ > 81, for any w € L2(M,C), there exists a weak solution of the equation

Az, Dyu+ Iu = f (3.38)
contained in W™ (M, C). Moreover the weak solution of this equation is unique.

Finally we study the spectrum of an ellptic operator. The spectrum of an
operator A(z, D) is the set {A € C|3f € C*°(M,C) s.t. A(x,D)f = Af}.

This is important in the thoery of deformations (see [KS60]) since it is the
basic tool to prove the upper-semicontinuity of the dimension of the kernel of
a C>° family of elliptic differential operators. The main theorems follow from
the construction of the Green operator associated to a suitable perturbation of
A(z, D). In particular we have

Theorem 46. Let A(x, D) be a strongly elliptic partial differential operator and
let 61 as in Theorem 36. If RA > 01, then A+ X is a linear isomorphism of
W2 (M, C) onto L*(M,C).



3.3. PSEUDO DIFFERENTIAL OPERATORS 47

Fix p > d; and put
Gui=A+p) " (3.39)

From Rellich’s theorem [Rel30], we have
Theorem 47. G, is a compact linear map of L*(M,C) to itself.

Theorem 48. A complex number X\ is contained in the spectrum of A if and
only if "1 = (A — p)~! is contained in the spectrum of G,,.

Since G, is a compact operator, we have the following results.

Theorem 49. Let A(x, D) be a strongly elliptic linear partial differential op-
erator. Then the spectrum of A is contained in the half space RA > —61 and
it consists only of the point spectrum which has no finite accumulation point.
Furthermore the generalized eigenspace belonging to each eigenvalue is finite
dimensional.

Theorem 50. Let A(x, D) be a strongly elliptic self adjoint operator. Then we
can choose eigenfunctions {e;} of A, with Ae; = \je;, such that

e {¢;} form a complete orthonormal system of L*(M);

o )\ ER, A < Ay and A 22 4o,

3.3 Pseudo differential operators

Pseudo-differential operators are the natural generalization of classical differen-
tial operators. They have non-polynomial behavior with respect to the deriva-
tion. In [Pop16], Popovici showed that, for a suitable pseudo-differential opera-
tor A, it is possible to develop an Hodge theory and he proved that the kernel
of A is isomorphic to the second step of the Frolicher spectral sequence. More-
over, pseudo-differential operators could be used to study Varouchas spaces (see
[Var]).

3.3.1 Abstract Theory

We begin with the theory of Fredholm operators since they are the abstract rep-
resentation of pseudo-differential operators. Fredholm operators were studied
by Hormander in order to prove the Atiyah-Singer theorem [AS63]. Here we re-
port only the few properties useful for our work. For more detailed information
see [HOr85).

Definition 19. Let By and By be Banach spaces. A linear operator T €
L(By; Bs) is called a Fredholm operator is dimKer T is finite and T(By) C Bs
1s closed and has finite co-dimension. In that case we define

ind(T') = dim Ker T' — dim Coker T (3.40)
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In the definition the condition that the image of T" must be closed is unnec-
essary, in fact we have the following.

Proposition 12. IIT € L(By; Bs) and the range T(By) has finite co-dimension
in Bsg, then T By is closed.

We can also give a characterization of the Fredhom condition in terms of the
topology of By and Bs.

Proposition 13. IfT € L(By; Ba), then the following conditions are equivalent:
o dimKerT < oo and T(By) is closed;

o Every sequence {f;} C By such that {T f;} is convergent and f; is bounded
has a convergent subsequence.

The following theorem is a result of stability for Fredhom operators.

Theorem 51. If T satisfies the conditions in Proposition 18 and S € L(B1; By)
has sufficiently small norm, then dimKer(T+S) < dimKer T, T+ S has closed
range and ind(T + S) = ind(T).

We conclude this survey about Fredhom operators with the following conse-
quences of Theorem 51. In particular Corollary 2 will be useful in the last part
of this chapter since it guaranties that A is a pseudo-differential operator.

Corollary 2. If T € L(By; Bz) is a Fredholm operator and K € L(By; Bs) is
compact, then T + K is a Fredholm operator and ind(T + K) = ind(T).

Corollary 3. If T € L(B1;Bs) and S1,S52 € L(Bay; B1) are such that TSy =
Id+ Ky and ST = Id+ K1, where K; are compact operators, then T', S1 and
Sy are Fredholm operators and ind(T') = —ind(S}).

3.3.2 Concrete construction

Now we proceed with a concrete construction of pseudo-differential operators
using symbols. Symbols are C* function that replace the role of the polynomial
function in (3.9). This construction starts with the Fourier transformation and
its properties related to the differentiation (see [Rud87]). As always we use the
theory in R™ and then we translate it to the manifold M using local charts. We
recall that the Fourier transform of a function f is defined as

Definition 20 (Fourier transform).

(€)= — z)e " dy
7€) = oy [ f@e . (3.41)

Definition 21 (Fourier inverse formula).

ﬂwz/ﬂ@wwg (3.42)
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If p(o,e) is a C* function, polynomial with respect to the second variable,
then we can describe a classical differential operator of order m as

p(z, D) := Z aq(x)D® (3.43)

la|<m

where a is a multi-index, D := D{* ... D& and D; := 52-. Using (3.41) we
have

p(a, D) f(x) = / P, €) ()i de. (3.44)

We want to generalize and study what happens when p(o, e) is not a poly-
nomial function.

Definition 22. Let m € R then the space of symbols of order m S™ = S™(R" x
R™) is the set of all a € C°(R™ x R™) such that, for every multi-indezes o and
B the following inequality

m—5|8]
2

IDgD{a(x,€)| < Cap(1 + [€) (3.45)

holds.

S™ is a Frechet space with semi-norms given by the smallest constant which
can be used in (3.45).

As for standard differential operators, we want to give the definition of prin-
cipal part. First we need the following.

Proposition 14. Let a; € S™i, j = 0,1,..., and assume that m; — —oo
as j — oo. Let m) = maz;>xm;. Then one can find a € S™° such that
suppa C Usuppa; and for every k
a3 €5 (3.46)
j<k

The function a is uniquely determined modulo S™°° := NS™ and has the same
property relative to any rearrangement of the series Y a;; we write

a ~ Z aj.
Given a symbol a € S™ we want to define the pseudo-differential operator
associated to it. The following theorem ensure us that the construction made

in (3.44) for ordinary differential operators can be used also when the symbol
is not of polynomial type. In fact we have

Theorem 52. Let a € S™ and u € C*(R"), then
Afw, Dyula) = (2" [ <€ aa, a(e)ag (3.47)
defines a function A(z, D)u(z) € C*°(R™). Moreover, the bilinear map (a,u) —

A(z, D)u(z) is continuous. One calls A(x, D) a pseudo-differential operator of
order m.
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Definition 23 (Principal part). Let A(x, D) be a pseudo-differential operator
of order m and let a be its symbol. The principal part of A(x, D) is the pseudo-
differential operator A, (x, D) associated to the symbol a,,, where a — a, is a
symbol of order less than m.

Definition 24. A pseudo-differential operator of order m on a C*>° manifold
M is a continuous linear map A(x, D) : C§°(M) — C>°(M) such that for every
local chart U with coordinate map ¢ : U — V C R™ and all f,g € C(V), the
map

ur (971" Alz, D)o" (gu)
is in OpS™. We shall then write A(x, D) € W™(M) and extend A(x, D) to a
map from &' (M) — D’.

Definition 25. Let E and F be complex C*° vector bundles over the C*° man-
ifold M. Then a pseudo-differential operator of order m from section of E to
sections F' is a continuous linear map

A:CP(M,E) = C (M, F)
such that for every open N C M where E and F are trivialized by
¢E1E|N—>N><Ce, ¢FZF|N—>N><(Cf,
there is a f x e matriz of pseudo-differential operators A;; € ¥™(N) such that,
for every u € C§°(N, E),

(9r(Au) |v); = > Aij(¢pu).

We shall write A € 9" (M; E, F).

We have proved that there is a (1,1) correspondence between symbols and
operators. Proceeding in same order of the previous section, we want to define
the adjoint operator of A(z, D). We recall the L? product

(u,v) = / wvdz.

Then we define the adjoint of A(x, D) in the usual way:

Definition 26 (Formal adjoint). Let A(x, D) and A*(x,D) be two pseudo-
differential operators of order m. Then A*(x,D) is called formal adjoint of
A(z, D) if
(A(z, D) f1, f2) = (f1, A%(z, D) f2). (3.48)
From the definition we can recover the construction of the adjoint operator.
Using the Fubini’s theorem we have

(A(x.D)f. f2) = / / < (e, ) fo(O @) deds  (3.49)

_ / 71(0) / e1<6>a(z, €) fo(x) dwdg.
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Then, using the Fourier inversion formula, we obtain

(A* (2, D) )(x) = / / <>l €) £ (y)dyde, (3.50)

which is a pseudo-differential operator of order m.
After the adjoint we construct the Green operator. The following Theorem
provide sufficient and necessary conditions to its existence.

Theorem 53. Let a € S™ and b € S™™. Then the conditions
o A(xz,D)B(z,D)— Id € OpS—;
o B(z,D)A(z,D) — Id € OpS—=°
are equivalent and a determines b mod S~ . They imply
a(x, &)b(z, &) —1€ 571 (3.51)
which implies in turn that for some positive constants ¢ and C
la(z, ©)[ > clg|™, if [§] > C. (3.52)

Conversely, if the last inequality is fulfilled then one can find b € S™™ satisfying
the other three conditions.

Now that we have recalled the basic notions, we focus on operators of elliptic
type.

Definition 27. A symbol a € S™ is called elliptic if there exist two positive
constant C' and R such that, for every |£| > R and every x € R™, the inequality

la(z, &) = ClE™ (3.53)

holds. An operator associated to an elliptic symbol is called elliptic.

The following is a characterization of elliptic operators
Theorem 54. Let a € S™. Then the following conditions are equivalent:

e a is elliptic;

e there existb € S™™ andr € S~ such that A(z, D)B(z, D) = Id+R(z, D);

e there existb € S™™ andr € S~ such that B(z, D)A(z, D) = Id+R(z, D),
where the capital letters denote the associated pseudo-differential operator.

The following theorem, that generalizes the Garding inequality, holds for
pseudo-differential operators of elliptic type.

Theorem 55 (Garding inequality). If a(xz, D) € S™ and Ra(z,§) > C|E|™ for
|€| large enough. Then, for any s € R, there exist constant Cy,C1 such that

R (a(z,D)f, f)+Crlflls > I1£1Z, (3.54)
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We recall that in the next chapter we will need two main results: the de-
composition of the spectrum and the a priori estimate. We begin with the first
result.

Theorem 56 ([?, Lemma 1.6.3]). Let A(z,D) : C*®(M,C) — C>®(M,V) be an
elliptic self-adjoint pseudo-differential operator of order mg 0. Then

e We can find a complete orthonormal basis {1, }°°, for L>(M) of eigen-
vectors of A(x, D). A(x, D), = A\ptby,.

e The eigenvectors v, are smooth and lim, . |A,| = 00

o [If we order the eigenvalues |A1| < [A2| < ... then there exists a constant
C > 0 and an exponent § > 0 such that |A\,| > Cnd if n > ng is large.

This theorem follows directly from this two Lemmas.

Lemma 10. A complex number X is contained in the spectrum of A(x, D) if and
only if (1 = (A= p) ™! is contained in the spectrum of G,, := (A(x, D)+ p)~ L.

Lemma 11. G, is a compact linear map of L*(M,C) into itself.

The second lemma is a consequence of the Rellich’s theorem.
In order to prove the a priori estimate we need some preliminay results.

Lemma 12. If a(xz,§) € S™ then the commutators with D; and multiplication
by z; are

[A(z, D), D;] = zaijA(a: D) (3.55)
and 9
[A(z,D),z;] = —ia—DjA(z,D). (3.56)

The proof of this lemma can be found in [H6r85]. We have generalized the
previous lemma and we have proved the following.

Lemma 13. Ifa(z,£) € S™ and f € C*(U;,C), where U; is an open coordinate
of M, then the commutator [A(x, D), f] defines a pseudo-differential operator
of order m — 1.

Proof. Let ¢; : U; — V; C R™ be the coordinate map related to U;, then
fo qb[l : V; = Cis a C™ function. Assuming that 0 € V;, we use the Taylor
formula with Lagrange’s remainder of f o ¢i_1 and we obtain

L L@

[l|=L+1

olll(fo
1)( %,y—(yl,...,yn)é

R, y' = yl'y2 ...yl and ¢ € V;. Putting (3.57) in the commutator formula,

n

where ! = (I1,...,1) is amulti-index, (fo¢;
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by the linearity of A(x, D) we have

L 0 o~ 1D
[A(z, D), f] = [A(z, D), f o 67" (0)] + > _ [A(, D), W(sbi(w))l]

[l|=1
o H®
+ lll_zL:+1[A(.’L',D), W((bz(x))l]

The first term of the right-hand side is zero, while the others are, up to a
constant, in the form [A(z, D),z!]. Then, using Lemma (12), we have that
[A(z, D), f] is a pseudo-differential operator of order m — 1. O

Another preliminary estimate we have proved is the following.

Lemma 14. Let A,,(D) be an elliptic pseudo-differential operator of order m,
which consists of only its principal part and does not depend on the variable x.
Let 6o be its constant of ellipticity. Then for any k € N and any f € C>°(M,C),
the following inequality holds:

1A (D) AU+ 85 1F 1l = 2785 15 - (3.58)
Proof. Let
fi=)" fee<nt> (3.59)
¢

be the Fourier expansion of f. Then

k
14Dl =>" > Z/U |D* A, (D) fee' 74> " dx (3.60)

Us la|=0 ¢

k
YN [ ledampere Pax

U la|=0 ¢

k
> YN [ sy <o [fax

Ui |a|=0 ¢&
— 2 2
> 327" 1l — N

We are ready to prove the following.

Theorem 57 (a priori estimates). Let A(xz, D) be an elliptic pseudo-differential
operator of order m. Then for any k € Z there exists a constant C depending

only on k, 6 and My such that for any f € C>(M;C)

[l < C WA, DYFIl + 1F15) - (3.61)
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Proof. Let {U;}, j = 1,...,1, be a finite open covering of M and let n; €
C> (M, C) such that suppn; C U; and, for every x € M, Y n?(z) = 1. For every
f € C®(M,C) there exists an index 4 such that

P2l < 106 i -
Fix f € C>*(M,C) and let f; := n;f. Let w; € C>°(M, C) such that suppw; C Uj,

Y w?(z) =1 and w; = 1 in some neighborhood of suppn;. Then we have

[A(z, D)flly, = llnAp, D)f I,
= || Ap, D)w; f|, (3.62)
> | A(p, D) filly, — [I1A(p, D), milwi f . -

By Lemma (14), we have that there exists a constant Cy > 0 such that

1[A(p, D), nilwi fll, < Crllwi fllym1 - (3.63)

We want to estimate ||A(p,D)fi||,. Let € > 0. Cover V; with open balls
By, ..., B, of radius ¢ and take a partition of unity {w;} subordinate to {B;}.
We set f; := w; f;, then there exists an integer [ such that

Let p; be the center of the ball B;. Let A,,(x, D) be the principal part of A(x, D)
and let A,,(p;, D) be the pseudo-differential operator obtained by computing
Ai(z, D) at the point p;. By Lemma 14 we have that there exists a constant C.
such that

[(Am (2, D) = A (pr, D)) filly < 26 My [ fillgym + CeMa || fillyym—s -

Moreover, by Lemma 14, we have that

|A(z, D) filly, < lwiA(z, D) fillx + I[A(z, D), wi] fill,
< (3 ||A($7D)fz||k + C2 My, ||fi||k+m—1 :

Therefore

[ Am (pe, D) filly, < [|A(z, D) filly + [|(Am(z, D) — A(z, D)) filly,
+ H(Am(pl7D) - Am(xﬂD))f%”k
< C3 || Az, D) filly + C1 l fillhm + Ca I fillpsmr -

By Lemma 14, we have that
27280 || fill g — 00 [l fill < 1A (o1 D) fill. - (3.64)
Then, since for € small enough we can take C; < 271/2§,, we obtain

Cs || fillyym < C3llAz, D) fillg + Crl fill g + Call fill g1 - (3.65)

The thesis follows by using Proposition 11 to replace || f;|l;,..,,, _y With Cg || fil 4+
Cr || filly- O
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We conclude this section with the following auxiliary results.

Definition 28. The pseudo-differential operator A(x,D) in M is said to be
properly supported if both projections from the support of the kernel in M x M
to M are proper maps, that is, for every compact set K C M there is a compact
set K' C M such that

suppu C K = supp A(z, D)u C K';u=0 at K' = A(z,D)u =0 at K.

Theorem 58. If A; € U™ (M) are properly supported for j = 1,2, then
A = AjAy € Y™ T ™m2(M) 4s properly supported and the principal symbol is
the product of those of Ay and of As.

Theorem 59. If A € V™ (M) is properly supported and elliptic in the sense
that the principal symbol a € S™(T*(M))/S™ Y(T*(M)) has an inverse in
S=m(T*(M))/S™™=1(T*(M)) then one can find B € W~™(M) properly sup-
ported such that

BA—-Ide V~>°(M), AB—Id¥~>°(M).
One calls B a parametriz for A.

Theorem 60. If P € V(X ;E® Q%,F ® Q%) is elliptic, then P defines a
Fredholm operator operator from H 4 (X; E ® Q%) to Hig_p) (X5 F ® Q%) with
Kernel contained in C°(X; E ® Q2) and with the Kernel of the adjoint P* €
(X, F* ® 0%, E* ® Q%) contained in C*°(X; F* ® Q%). The range is the
orthogonal space of Ker P*. Thus those spaces are independent of s and the
index of P is equal to the index of P as operator from C*(X;E ® Q%) to
C®(X;F ® Q2) (or from D' (X;E ® Q2) to D'(X;E ® Q2)) and it depends
only on the class of P modulo W™ ', If E = F* and P — P* € U™ ! then
ind(P) = 0.

3.4 Hodge Theory

One of the main results in the theory of differential operators over manifolds is
the following

Theorem 61 (Hodge decomposition). Let M be a compact oriented Rieman-
nian manifold and let A := dd*+d*d be the Laplace operator. Then, with respect
to the given metric, we have the following orthogonal decomposition

AF(M) = (Ker A @ Tmd @ Imd*) N A*(M).
Moreover Ker A N A¥(M) is a finite dimensional R-vector space for all k € N.

A similar result has been proved for the Beltrami-Laplace operator, namely
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Theorem 62. Let M be a compact complex Hermitian manifold and let A :=

09" + 00 be the Laplace-Beltrami operator. Then, with respect to the given
metric, we have the following orthogonal decomposition

AP9(M) = (Ker Ay ®Tmd @ Im5*> N AP(M).

Moreover Ker Ag N AP9(M) is a finite dimensional C-vector space for all p,q €
N.

Also operators as Apc and A4 (see [Sch07]) have a decomposition theorem.

Theorem 63. Let M be a Egmpcicf compleir*Her@z;tz’an %@fold and let Apc =
(00)(00)* + (00)*(90) + (0 0)(0 0)* + (0 0)*(0 0) + 0 0+ 0*0. Then, with

respect to the given metric, we have the following orthogonal decomposition
APAI(M) = (Ker Apc ® (Imd + Im ) & Im a*é*) N AP (D).

Moreover Ker ApcNAP9(M) is a finite dimensional C-vector space for allp,q €
N.

Theorem 64. Let M be a compact complex Hermitian manifold and let A 4 :=
(89)(99)* + (80)* (88) + (80* ) (80*)* + (00*)*(90*) + 8 D+ 8D be the Laplace-
Beltrami operator. Then, with respect to the given metric, we have the following
orthogonal decomposition

APA(M) = (KerAA ® Im 90 @ (Im O* —&—Img*)) NAP(M).

Moreover Ker Ay NAP9(M) is a finite dimensional C-vector space for all p,q €
N.

For pseudo-differential operators a decomposition result has been proved by
Popovici in a very special case. We recall the construction of this operator
and its properties, in particular we want to focus on the connection with the
Frolicher spectral sequence.

From Theorem 62, we know that Ker Az is finite dimensional as C-vector
space. Let p” : AP9(M) — Ker Az N AP9(M) be the orthogonal projection. We
define

A:=98 +0°9+ap"o" +9*p"0. (3.66)

The following Lemmas proved that A is a pseudo-differential operator.

Lemma 15. Let P and Q be the orthogonal projection to Ker A and Ker A* in
L?(M,C) respectively. Then for any integer k > 0 there exists a constant Cj,
such that for any u € L?>(M,C), the following estimates hold.

[Pull), < C Jul (3.67)

1Qull, < Cr ull (3.68)
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Lemma 16. Let A(p, D) be a formally self adjoint elliptic partial differential
operator, P the orthogonal projiection to Ker A, G the Green operator of A. If
u € C*®(M,C), then Gu € C°(M,C) and the equality

u=Pu+ AGu (3.69)
holds. By this, the orthogonal decomposition
C®(M,C) =ker A® AC*™(M,C) (3.70)
is given, where AC®(M,C) denotes the image of C>°(M,C) by A(p, D).
In [Pop16], Popovi introduced the following pseudo-differential operator:
A:=88" +9 8+ 0p" 0" + 00,

where p' is the natural projection of AP*?(M) onto Ker Az. Thus A is the sum
of a pseudo-differential regularizing operator and an elliptic differential operator
of order two (the classical 0-Laplacian Az).

Theorem 65. For all p,q, A : AP9(M) — AP9(M) behaves like an elliptic

self-adjoint differential operator in the sense that Ker A is a finite dimensional
C-vector space, Im A is closed and finite co-dimensional in AP*4(M), there is an
orthogonal (for the L? inner product induced by g) 2-dimensional decomposition

AP9(M) =Ker A ®ImA
giving rise to an orthogonal 3-space decomposition
APU(M) =Ker A® (Im0 + O )@ (Img* + Im(0* Op"))

in which

Ker A @ (Imd + 8|Kcr§) = Ker(p” 0 9) N Ker 9;

KerA @ (Img* + Im(0* op”)) = Ker(p” 0 0*) N Kerd ;

(md+9,,,) @ (Imd +Im(9* 0p")) =ImA.
Moreover, A has a compact resolvent which is a pseudo-differential operator G

of order —2, the Green’s operator of A, hence the spectrum ofA is discrete and
consists of non-negative eigenvalues that tend to +oo.

Proposition 15. For every (p,q) € N? let

Ker(p” 0 9) NKer d
Im5+1m(3|mr5) ’

lffp’q(M, C) =

Then, for every p,q, the following linear map
T=Tr9: HPI(M,C) — EPI(M)
[a] = [[0‘]5} dy

18 an isomorphism.
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The operator A is related to the Frélicher spectral sequence by the following.

Theorem 66. Let (M,g) be an Hermitian manifold with Dimc M = n. For
every p,q € N, let HP-? be the kernel of A acting on (p, q)-forms. Then the map

S =SP4 HPY(M,C) — HP(M,C), (3.71)
s an isomorphism, where

H”’q(M C) = Kerp” o 9N Kerd (3.72)
T Imd+Imd [, 5 '

and S(¢) = [(}5] In particular, its composition with the isomorphism T :
H?1(M,C) — EY? defined in Proposition 15 yields the Hodge isomorphism

ToS=TP08P: {PI(M,C) — E. (3.73)

Thus, every class [¢|gla, € E5? contains a unique A-harmonic representative

¢.



Chapter 4

Deformation Theory

In this chapter we discuss deformations of complex structure on a compact
complex manifold. Such theory was born with the celebrated work of Kodaira
and Spencer [KS60], in which they proved that the condition of being K&hler is
stable under small deformations of the complex structure.

We start with a brief recap of the work of Kodaira [KS60] about C* family
of elliptic differential operators.

The second section is devoted to our work on C* families of elliptic pseudo-
differential operators. We prove that most of the properties described in [Kod06]
still hold if we consider such more general case.

Then we recall when a property P is open (or close) under small deforma-
tions of the complex structure and we recall some properties that verify such
conditions. In the last part we expose our work on the degeneration at the
second step of the Frolicher spectral sequence and we prove that such property
is open under small deformation only if the dimension of the Dolbeault coho-
mology groups is independent on ¢ (see Theorem 82). We conclude this chapter
computing explicitly the first two step of the Frolicher spectral sequence for
a suitable curve compact complex manifolds obtained as deformations of the
Nakamura manifold; we show that in such case the dimension of the Dolbeault
cohomology is not constant and the degeneration at the second step is not pre-
served along the curve.

4.1 Introduction

We start recalling the Kodaira and Spencer’s theory of deformations. As for
the previous chapter, we prove the theorems only for C*° function. The general
case of forms can be obtained using (3.2). Let M be a differentiable manifold,
B a domain of R™ and 7 : M — B a C* map. Suppose that

e the rank of the Jacobian matrix of 7w is equal to m at every point of M;

e for each t € B, m~!(¢) is a compact connected subset of M;

99
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e there exists a locally finite open covering {U;} of M and there exist
complex-valued C*> functions {z;}, i = 1,...,n, defined on U; such that
for each t € B

{p = (25 (D), 2 (0))IUU; N7 (2) # 0} (4.1)
form a system of local complex coordinates of 7=1(¢).

Then we call M a C*>® family of compact complex manifolds.

The first two conditions imply that 7=1(t) is a compact differentiable man-
ifold of the same dimension for every ¢t € B. The third condition tells us that
7~1(t) admits a structure of complex manifold. Then we can denote 7 1(¢)
with the couple (M, J;). Moreover, for every ¢ € B, M; is diffeomorphic to a
differentiable manifold M that does not depends on t. As a consequence, we use
the notation (M, J;) instead of M and we think that the underlying manifold
M does not change while we take a C* family {J;} of complex structures on it.

Given a differentiable manifold M, a C* family of differential operators
{Ai(z,D)} on M is a collection of differential operators

Az, D): C=(M,C) — C=(M,C)
f(x) = Y jaj< Gal@, t) D f(2),

where we use the same notation of the previous chapter with the only exception
that a,(z,t) is a differentiable function of (z,t).

A classical example of a C*° family of differential operators is given by the
family {Ag, } of Beltrami-Laplace operators. In this case the variation of the
complex structure induces a different decomposition of the cotangent bundle
and, as a consequence, a different expression, in terms of the real coordinates,
of the differential 9.

In the previous chapters we have seen that there exist isomorphisms be-
tween the cohomology groups of a complex manifold and the kernels of suitable
differential operators; then it is natural to study the behavior of such kernels
under small deformation of the complex structure in order to understand how
the cohomology groups change.

Let {A;(x, D)} be a C* family of strongly elliptic formally self-adjoint dif-
ferential operators. For every t € B, let A, (t) be the h-th element (take in non
decreasing order and counted with its multiplicity) of the spectrum of A;(x, D).
The first result we recall is the following

(4.2)

Theorem 67. A\, (t) is a continuous function of t.

Let Fy := {f € C>°(M,C)|As(x, D)f = 0} be the kernel of A;(x, D). Then
the theorem above implies the following

Theorem 68. dimF; is upper-semicontinuous in t.

This is a very important result since it tells us that also the dimensions of
the Dolbeault, Bott-Chern and Aeppli cohomology are upper-semicontinuous in
t. Moreover, let F; be the orthogonal projection of C*°(M, C) on F;, then we
have
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Theorem 69. If dimF; is independent of t for every t, then F; is C*° differ-
entiable in t.

The proofs of those theorems are based on the construction of a suitable
Jordan curve C' around the origin of the complex plane, i.e., the first eigenvalue
of Ag(z, D). To do so we need some preliminary results. The first is a lower
estimate for the Sobolev’s norm of {A(z, D)} due to Friedrichs [Fri53].

Lemma 17. Let k € N. Then there exists a constant ¢, independent of t such
that the inequality

117 e < e (1417 +11517) (4.3)
holds for every f € C*(M,C).

Using this lemma it is possible to prove that also the Green operators of
certain C* family of differential operators form a C*° family.

Theorem 70. Assume that Ay : C°(M,C) — C>(M,C) is bijective for every
t € B. If there exists a constant ¢ > 0 independent of t, such that for every
fec=(M,C)

[Acfllo = cllfllo (4.4)

then At_1 is a C*° family differentiable in t

Now we want to show that, changing a bit the family {A:(x, D)}, one can
obtain a family that satisfies the hypothesis of the previous theorem. Let ( € C
be complex number different from every eigenvalue of A;(z, D) for a given ¢.
We define

At((E,D,C) = At(x,D)—C (45)

We have the following

Proposition 16. A.(z,D,() is a strongly elliptic differential operator acting
bijectively on C>°(M,C).

Moreover, for suitable ¢, the family {A;(z, D, ()} satisfies the hypothesis of
Theorem 70. In fact we have

Lemma 18. Suppose that are given to € A and (o € C with o different from
every eigenvalue of Ay,. If we take a sufficiently small § > 0, there exists
a constant ¢ > 0 such that, for |t —to| < 0 and | — (o] < 9§, the following
iequality

14:(C) fllo = cllfllo (4.6)
holds for every f € C*(M,C).
We fix ¢ # Ap(0) for every h € N. Then, by this Lemma, we have that

the family A:(x, D, () is bijective and, by Theorem 70, the operators G+({) :=
A; Yz, D,¢) form a C* family. We take a Jordan curve C' on C which does not
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pass through any of the A, (0). We denote with ((C)) the interior of C. For any
t sufficiently small, we define the linear operator F;(C') acting on C*>°(M,C) by

Ft(O)f = Z (f, eth)etiu (4-7)

An(t)e((C))

where e, is an eigenfunction relative to the eigenvalue A (t) and {e,} form a
complete orthonormal system of C*°(M, C). We put F;(C') as the image through
F(C) of C*(M,C). F¢(C) is a finite dimensional subspace of C*°(M,C) and
F;(C) is the orthogonal projection of C>°(M, C) onto F:(C).

Proposition 17. The operator Fy(C) can be written as

FO)f =2 [ Godc. (4.8)

2 /.
Lemma 19. Fi(C) is C™ differentiable in t for t close enough to tg.

Lemma 20. dimF.(C) is independent of t for t close enough to tg.

4.2 Deformation of Pseudo-differential operators

In this section we generalize the theory of deformations to pseudo-differential
operators. We prove the theorems of the previous section for this ampler class
of operators; most of the prove are similar to the classic case, but we do them
because there are some important details.

Lemma 21. Let k € N. Then there exists a constant ¢y independent of t such
that the inequality

117 < e (IAIE +1151E) (4.9)
holds.

Proof. By Theorem 35, for every t € B there exists a positive constant Cf ¢
such that

2 2 2
[t < Crt (1A (@, D) fll + 11£1]5)- (4.10)
Since {A:(z, D)} is differentiable in ¢, we can assume that, up to shrinking B,
the constant C}, + can be taken independent on .
We proceed by induction on k. For k = 0, (4.10) is exactly our thesis. Now
suppose that the thesis holds for £ — 1, then we have
17115 < CrlllAs(z, DYFIE + 1) < CrlllAue DIl + 11l 4m)
< G Au(w, D)7 + ex—1 (1 Au(@, D)f 7, + 1£1))
< Cilen—1 + V(| A, D)FIE + 1 £15)-
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Theorem 71. Assume that Ay (z,D) : C*°(M,C) — C>(M,C) is bijective for
every t € B. If there exists a constant ¢ > 0 independent of t, such that for
every f € C*(M,C)

[Ae(z, D) fllg = cllfllo (4.11)

then A7 (x,D) is a C>° family differentiable in t

Proof. Let {f(z,t)} € C*(M,C) be C*> differentiable in t. We prove by in-
duction on r € N that, putting g; := A; '(z,D)f, € C®(M,C), {g;} is C"
differentiable in t.

For r = 0, by the previous Lemma and the Sobolev’s inequality, we have
that, for every multi-index I, we can choose an integer k > — m +n/2 and a
positive constant ¢ such that

c| D' (ge(x) — gs(2))| < || Ae(w, D)(ge(x) — gs(X))lly (4.12)
< [|Ae(z, D)gi(z) — As(z, D)gsll + [[(Ae(x, D) — As(z, D))gs

= [lfi(@) = fs(@)l), + [[(As(z, D) = As(2, D))gs |l -

Since fi(x) and the coefficients of A;(x, D) are C* differentiable in ¢, the last
row converges uniformly to zero as t — s. So D'g;(z) converges to D!gy(z)
uniformly in z.

For r = 1, formally we have that, if g;(z) is C! differentiable in ¢, then by
differentiating we obtain

oft 0gi(z)  0A(z, D)
ot a0y 2) D) ) (113)
Thus we need to prove that
. 1 _ 0 aA (z,D)
i 40402, D) (o) = (o)) = 470, (St - 2250 D) ))

By direct computation we have that

Aeine D) (G avanle) = o) - 47 (o D) (G0t - 224520, ) )

FHfeen(@) = @) = B~ L(Aan(w, D) - Az, D))
D) (@)  (Avin(e, D) — Az, D))

where we put

oy (x) = A7 (z, D) (%{; — ‘%gg’mgt> .

Since fi(x) and the coefficients of A(x, D) are C* in ¢ we have that

|5 st - e - 22|

—0, (4.15)
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(’“)At(x, D)

Hlll(AHh(ﬁCyD) — As(z, D)) gi(x) — o gt(x) . m 0 (4.16)
and
[(Acss(z, D) — A, D))éx(a)]l, — 0 (4.17)

uniformly in z. The thesis follows immediately by putting (4.15), (4.16),
(4.17) in (4.14).
Suppose now by induction that g;(z) is C" differentiable. To prove that it

is C7t1 differentiable we consider the function h; := %tgﬁ, then we have

T r—1 o] r—1
6ft(x)_zaAt(x?D)6 gt

Aulw, Dhi(z) = 0 ot o

().

=0

By induction g; is O™ differentiable in ¢, so the right-hand side is C"* differentiable
in t. Thus, by the previous case, h; is C' differentiable in t. O

Lemma 22. Let {y € C, with (o different from every eigenvalue of Ag(z, D).
If we take a sufficiently small § > 0, there exists a constant ¢ > 0 such that, for
[t| < & and |¢ — (0| < 6, the following inequality

[4:(C) fllo = <l fllo (4.18)
holds for every f € C>°(M,C).

Proof. Suppose that, for any é > 0, there exists no such constant. Then, for
every ¢ € N there exist ¢, € B, {; € C and f, € C*°(M, C) such that

Itq] < %7 ICq — Gol < %7 ||Atq(<q)fq||o < %7 qu”o =1

Hence we have that ||A4y, () fq
Atq (Cq)a

||0 — 0 as ¢ — 400 and, by construction of

| A, (Cq) g = Ao(Co) folly = O- (4.19)

Then ||Ao(¢o)fqll, — 0, but, by Lemma 21, ||Atq(§q)f||0 > co || fll, for every
f€C>®(M,C). So | f4ll, — 0, which contradicts || fq||, = 1. O

We re-propose the construction of Jordan curve around the eigenvalues of
Ao(z, D). We fix ¢ # Ap(0) for every h € N. Then, by this Lemma, we
have that the family A;(x, D, () is bijective and, by Theorem 70, the operators
Gi(¢) == A (z, D, ¢) form a C*> family. We take a Jordan curve C' on C which
does not pass through any of the Ay (0). We denote with ((C)) the interior of
C. For any t sufficiently small, we define the linear operator F;(C) acting on
C>=(M,C) by

FC)f= > (femem (4.20)

Ar(B)e((C))
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where ey, is an eigenfunction relative to the eigenvalue A, (t) and {e;,} form a
complete orthonormal system of C*°(M, C). We put F;(C') as the image through
Fi(C) of C*(M,C). F¢(C) is a finite dimensional subspace of C*°(M,C) and
F;(C) is the orthogonal projection of C*>°(M, C) onto F:(C).

Proposition 18. The operator F,(C) can be written as

FO)f = —5- /C G(Q)dC. (4.21)

Lemma 23. F;(C) is C* differentiable in t for t close enough to tg.

Proof. This follows immediately from (4.21) since both fi(z) and G¢(¢) are C*™
differentiable in ¢. O

Lemma 24. dimF.(C) is independent of t for t close enough to tg.

Proof. Put DimFy(C) = d and let {ej,...,eq} be a basis of Fo(C) such that
Fy(C)(ex) = eg. Since F;(C) is C* differentiable in ¢, for sufficiently small § > 0
and |t| < d, we have that {Fi(C)(e1),...,F:(C)(eq)} are linearly independent.
Suppose that we can find a sequence tq, ¢ = 1,2,..., with |¢t| < 1/g, such that
Dim Fi,;(C) > d. Then at least d+ 1 eigenvalues A, (t;) must lie in the interior
of C. Then for each derivative D! we have

k
[Dlerg(@)* < Ci(l+ ) [Mnlte)*), (4.22)

a=1

where k is an integer greater than m + 1 4+ n/2. Since A (t,) is bounded, then
{D'e, 4}, is uniformly bounded in M, hence it is equicontinuous. So we can
find a uniformly convergent subsequence. Suppose that we have already taken
such a subsequence, then we have

lim D'e, ,(z) = D'e,(x).

q-}OO
Since (erq, €s,9) = Ors, also (e, e5) = dr5. Moreover

lim A; (2, D)eyq(x) = Ao(z, D)eq(x) = Arer(z),

q— 00
where A, =lim A, ;. So there are at least d + 1 linearly independent functions
in Fo(C), which contradicts the hypothesis. O

Theorem 72. A\, (t) is a continuous function of t.

Proof. We proceed by induction on h. If h = 1, then by Theorem 56, there
exists 4 € R such that, for every t € B, A\ (¢t) > 8. Moreover, for every
e > 0, consider the circle C. with center A;(¢yp) and radius £ and a Jordan
curve which intersects the real plane only in 8 and A;(tg) — . By Theorem
56, Dim F;(C) = 0, then A\ (t) > A1(to) — &. Since C; is a Jordan curve and
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Dim F;,(C:) > 0, by Lemma 24, there exists k € N such that A (t) € C.. Then
we have Al(to) —e< )\1(15) < )\k(t) < )\1(T0) + &, so limt*)to A1 (t) = )\1(f0).

For h > 1 we have two cases, first suppose that A;(tg) = -+ = Ay (¢0). Then
Dim F;,(C.) is at least h so, by the arguments above, A (¢),..., A\x(¢) are in the
interior of C.. Hence lim;_,, An(t) = An (o).

Otherwise, suppose that [ is the largest integer such that Ap(to) > Ai(to).
Then, for € small enough, the circle C. with center Aj(¢y) and radius € contains
only the eigenvalues of A (z, D) equal to A(tg). By hypothesis, for ¢ close

enough to tg, we can assume that A\ (t) lies in the exterior of C. for k =1,...,1.
Then we can use the arguments of the case h = 1 and find that Ap(t) — A (to)
as t — tg. O

Theorem 73. dim[F; is upper-semicontinuous in t.

Proof. Let A, # 0 be the eigenvalue of A (z, D) closest to zero. Since the
spectrum of A;,(x, D) is composed only by isolated points, |Ap| > € for some € >
0. Consider the circle C; of center 0 and radius €, then DimF;, = DimFy,(C¢).
By Lemma 24, DimF;,(C.) = DimF;(C:) for ¢ close enough to tg. Then, by
the definition of Fy, DimF; < DimF;(C.) = DimF¢, (C.) = DimFy,. O

Theorem 74. If dimF; is independent of t for every t, then F; is C* differ-
entiable in t.

Proof. Let C. as in the theorem above. Then Dim F;, = Dim F;,(C.) = DimF;(C;)
for t close enough to tg. Since, by hypothesis, DimF; is independent of ¢,
F, = Fe(Ce).

By definition F; is the orthogonal projection of C*°(M,C) onto F;. Since
F, =F.(C.), Fy = F(C.) that we know, by Lemma 23, to be C> differentiable
in t. O

4.3 Stability of Properties

Several authors have studied the behavior of properties under small deformation
of the complex structure. Let P be a property of complex manifold, e.g. being
a Kahler manifold.

Definition 29. P is said to be open under small deformations of complex struc-
ture if for every C* family (M, J;) of compact complex manifolds the implication

(M, Jo) satisfies P = (M, J;) satisfies P
holds for every t € B.

Definition 30. P is said to be close under small deformations of complex struc-
ture if for every C™ family (M, J;) of compact complex manifolds the implication

(M, Jy) satisfies P for every t € B\ {0} = (M, Jy) satisfies P
holds.
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We briefly recall some of the most results about the stability of properties.

Theorem 75. [KS60] Admitting a Kdhler metric is a property open under small
deformations.

Theorem 76. Satisfying the 00-lemma is a property open under small defor-
mations.

Theorem 77. [Hir62] Admitting a Kdhler metric is not a property closed under
small deformations.

Theorem 78. [Pop11] Admitting a strongly Gaudouchon metric is a property
open under small deformations.

Theorem 79. [AB90] Admitting a Balanced metric is a not property open under
small deformations.

Theorem 80. [KS60] The degeneration at the first step of the Frolicher spectral
sequence is a property open under small deformations.

Theorem 81. [EST 93] The degeneration at the first step of the Frélicher spec-
tral sequence is not a property closed under small deformations.

4.3.1 Degeneration of the Frolicher spectral sequence

During this PhD we have studied the degeneration at the second step of the
Frolicher spectral sequence. In particular we have analysed the behavior of such
property under small deformations of the complex structure and we have proved
the following

Theorem 82. Let (M, J;) be a family of complex manifolds and suppose that
the dimension of Ker Az, NAP9(M, Jy) is independent of t for every (p,q) € Z>.
Then the degeneration at the second step of the Frélicher spectral sequence is
stable under small deformations of the complex structure.

The proof of this theorem follows from Theorems 66 and 73. We only need
to prove the following.

Proposition 19. If Dim Ker Ay, is independent of t, then {A} is a C*® family
of pseudo differential operators.

Proof. From [Kod06], we have that all the derivative operators depend C* with
respect to ¢, hence we only need to prove that if {¢;} and {¢;} are C* family
of (p,q) forms over M and if {g;} is a C*° family of Hermitian metrics over M,
then the scalar product (¢, ¢:); varies in a C* way respect to t. By definition

(Vr, P1)e = /M Yi N *ey. (4.23)
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Let {U;} be a finite covering of M made by open coordinate neighborhood
and let {n;} be a partition of unity subordinate to {U;}. Then, for every t € B
we have

/M Vi A xppy = ZJ:/U] N A *4 Py (4.24)

Now, locally we have ¢y = > A,.B, ’(/J:‘ ‘jqdzA?jq and

)= 0 3 (5T ) e e

AT”BQ

(4.25)
Then we have

— B,—<ApB.
/ N N*e @y = Z UApo/ PG g da A A2 A A - NdE,
U; o) U;

(4.26)
where 04,5, is the sign of the permutation.

In order to prove that the scalar product is C*°, it suffices to show that it
is C* for every k € N. We begin proving that it is C°: by the continuity of
the integral operator, the coefficients of v, ¢; and g; and since n;¢; A %1 is
continuous and compactly supported in U; , we have the continuity of the scalar
product.

Now we prove by induction over » € N that (4.23) is C". Let r = 1 and
consider the following

(Y, D)t — (Y, Bs)s

t—s

1 — _
i s /M Vi N xey — Vs N s, (4.27)

Locally we can rewrite the integral above as

1
t—

B.,—A,B 5 —A,B
> / (njwf"’B%t P =y Pag,” g) dz' A NdZ"NdZA- - NZ"
S U
A,,B J

(4.28)
Now, for every multi-indexes A, and By, we consider the following construction

1 A B.—A,B 5 —A,B,
Tj (¢t TG gy _w?”Bq%p qu) =

1 ApBq —ApB, —Ap By A, B, B \—TApBg
R (wt (6" " = by Ngs + (7 — e Ba)g, gs> =

_ — _ FABy
ApBy7ApBe gt — g A,B, Pt

; _ afpgq TZJAPBQ _ wAPEq o
PR + 1y

t—s 95+ t—s




4.3. STABILITY OF PROPERTIES 69

When t tends to s, we obtain that

(wt’gbt) lt=s=(¥5s bs)s + (s, 8)s (4.29)
+Z Z / i Bq(;S vl gLzt Ao ANdZ ANdEE A - A dET
j Ap,Bg

where ¢, and ¢, denote the derivative along ¢ of the C* forms ¢(z,t) and ¢(z, t)
respectively. Using the same arguments of the C° case, we have the derivative
is continuous.

Suppose, by induction, that (4.23) is C". By reiteration of (4.29) we have
that the r-th derivative of (4.23) is made by two type of components

DR
i) [y g P A ¢l for some k € N.

In either case, using the same argument as above, we have the existence and
the continuity of the derivative of the r-th derivative of (¢(z,t), ¥ (z,t)):.

_ Since we are in the hypotesis of Theorem 73, the dimension of the kernel of
A; is an upper-semicontiuos function of ¢. Hence, by Theorem 66, we have the
following.

Proof of Theorem 82. We denote with by, the dimension of H¥.(M; C), with A
the complex dimension of Ker A, N AP4(M,.J;) and with €5%(t) the dimension
of EY'Y(M, J;). We recall the degeneration at the second step of { EP4(M, J;)}
is equivalent to

b= eyi(t); (4.30)
p+q=Fk
by Theorem [Pop16, Theorem 3.4] we have

St = " bt (4.31)

p+q=k p+q=Fk

finally, by Theorem 73, we know that ﬁf "% is an upper-semi continuous function
of t.

Suppose that the Frolicher spectral sequence of (M, Jy) degenerates at the
second step, then, summing up all the previous considerations, we have

Sooebt= N hpr> Y mi= > b >y (4.32)

p+q=k p+q=k p+q=k ptq=k

be= Y BPt= " ebi, (4.33)

p+q=k pt+q=k

Thus

that means that, for ¢ small enough, the Frolicher spectral sequence of M,
degenerates at the second step. O
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4.3.2 Example

In this section we provide an example of C* curve of compact complex man-
ifolds such that the Frolicher spectral sequence degenerate at the second step
for one of them and at higher steps for for the others. In this example the
dimension of Ker Agt is not constant with respect to t. Let X be the Nakamura
manifold, namely a compact complex three-dimensional holomorphically paral-
lelizable solvmanifold constructed in the following way: let G be the Lie group
defined as G := C x, C?, where

8(2) = ( oL ) (4.34)

Let I' := I" x4 I' be a lattice in G, where I'” is a lattice in C? and I :=
Z(a+ ib) + Z(c + id) is such that it is a lattice in C and ¢(a + ib) and ¢(c + id)
are conjugate elements in SL(4,Z). Then X :=T'\ G.

We consider the following deformation of X: let ¢ € C and consider the
(0,1)-form on X with value in 7%, 0X defined by

9]
P = te* dz @ ——.
32’2
For |t| < ¢, let X; be the small deformation of X associated to ¢;. We prove
the following

Theorem 9. The Frélicher spectral sequence of X; degenerates at the second
step for t = 0, while it degenerates at higher steps for t # 0.

First we recall that the Betti’s number of X are the following
bo=bg=1, by =0b5=2, by=0by=05, b3=8. (4.35)

Moreover it is a well-known fact that they do not change under deformations of
the complex structure. Now we explicitly compute E7'*(X;) and E3*(X;) and
we show that
b= > DimE}(Xo) (4.36)
p+q=k
for every k =1,...,6, while the equality is false for ¢ # 0.

We proceed in the following way: we begin with the computation of the Dol-
beault cohomology of X; since, as we recalled is Section 77, the first step of the
Frolicher spectral sequence is isomorphic to the Dolbeault cohomology, namely
EPY(X;) ~ Hg’q(Xt) for every (p,q) € Z*. By applying [AK12, Theorem 1.3],
in [TT14] Tomassini and Torelli found the AY-harmonic forms of X;; for every
(p,q) € Z, those forms are a basis for Hg’q(Xt) as C vector space. Then, as
proved in [CFUGY97|, EY%(X;) can be described as

EPT — ng(Xt)

= ————" 4.37
ST 437
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where

XPUXy) = {o € APY(X;)|0a = 0 and 3B € APTHI71(X,) s.t. da+ 0B =0},

YPU(Xy) = {0a+ 9B € AP(Xo)[0a = 0} . Eigzi
Namely, if « € X59(X;), [a]2 € EY?(X}) can be written as
[a]2 = {a + 0B + 07|08 = 0}. (4.40)
On the other hand, E¥?(Xj) is the cohomology group of the complex
EPTN(Xo) & EPY(X,) L EPYLI(X) (4.41)

where d; is the operator [a] — [0a]. Since it is well defined and every d-closed
form « belongs to a class in the Dolbeault cohomology, we need only to work
with A/-harmonic form. In fact if an harmonic form ¢ is such that d¢ is 0-
exact, then every form o = ¢ + 9f3 is such that Ja is 0-exact. Moreover, from
the decomposition

Ker9; = H**(X;) ® Im 0, (4.42)

we have that if ¢ is J-exact then it is the the image through 0 of another
harmonic form.

Now we proceed with the computation. We recall that in [TT14], the Dol-
beault cohomology of X; was computed using a suitable sub-complex (B, 9;) C
(T**X;,d;). Namely, let

By = A**(C < ¢ (), ¢ (), 657 (1) > @C < 671 (1), 9 (1), 83 (£) >,
where

V0 (t) == dz, 630 (t) == e *1dzy — tdZ, o3 °(t) == e*1dzs,
PV (t) = dz1, @O (1) =t A dz — e P dZy,  GyC(t) = e* dzZs.

We have the following structure equations

o) =0

d</>é 0(t) = —¢}’°< t) A <z>2 O(t) =ty (8) A BT (1)
(t)z 70 A gy (t)

d¢1 (t):
(t) =~ (t) A gy () + TP 2610 () A o) ()
51(t) = oy’ (t) A oY (8)

Then (By, 0;) is a finite sub-complex of (I'**X;,d;), which is smooth on X x
B(0,¢), closed with respect to the C-anti-linear Hodge star operator *; as-
sociated to the Hermitian metric g; := 2?21 610(t) © ¢,°(t) and such that

H2*(Bo) ~ H3*(X).
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We start with the computation of E7"?(X). For t = 0 we have that every
(p, q)-form of the type

AP (€ < 61°(0),05°(0),65°(0) > &€ < 67 (0), 43" (0), 65 (0) >)

is Ag-harmonic. Thus they form a basis for E7*?(X,). Next we compute the
image through 0 of every harmonic form. In Table 4.1 we report only the
harmonic forms that are not 0-closed.

With the same Table, we also know which harmonic form is d-exact and
so represents the zero class in EY?(X,). Let ¢ be a harmonic (p,¢)-form in
Table 4.1, we want to know if 0¢ is D-exact. To do so we consider the scalar
product of ¢ with every (p + 1,¢) harmonic form and, by straightforward
computation, we have that it is never zero. Then, again by the decomposition
Ker 9; = "H%"(Xo) @ Im 9,, they are not such that d¢ is d-exact. In Table 4.2
is listed a basis for E5?(X)).

Instead, for ¢ # 0, the A”-harmonic forms are listed in Table 4.3

Using the same arguments as in the case ¢ = 0, we obtain that E5?(X;) is
generated by the forms listed in Table 4.4

Let h?4(t) := DimHg’q(Xt) and €4(t) ;== Dim B4 (X;).

Then we have that, for ¢ = 0 and k € Z, >° . _, e5'?(0) = by and this is
equivalent to the degeneration at the second step of (E2*(Xy),d,). While, for
t#0and k=23, b <), e5?(t) (see Table 4.5).

So we have proved Theorem 9.

Observation 2. The dimensions of EYY(X};) do not vary, in general, nor up-
per semi-continuously neither lower semi-continuously with respect to t. For

2,1 . ) . ) 2,2 )
example ey (t) is a lower semi-continuous function of t and € (t) is upper
Semi-continuous.
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¢ 99
2" o1
1,0 1,0
3 13
(2),1 _qﬁ,o A ¢g,1
g,l 1,0 A ¢g,1
Ao | o Aer
2" Nyt | =200 A gy
A K Y
A K
25 N0y | —oism A0y
23 N5 | O A
it} —or° Aol
001y 1 A ey
2O NGy | 200 Aoty
2" Ny | —om Ay
UG | 2015 A Gy
D Ty

1,0 . 401
o3 N\ 15
1,0 , 40,1
03 N P13
1,0 . 401
2" NP1

1,0 0,1
3 N Piag

1,0 , 0,1
— 123 N P15
1,0 , 0,1
123 N\ P13

1,0 , 40,1
—¢15 N a3

1,0 0,1
13 N\ P13

Table 4.1: Image through 0 of Az-harmonic forms of Xj.
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(p,q) Basis for F5(Xy)
(0,0) 1
(1,0) ¢’
(0,1) .
(2,0) b3
(1,1) | 61" Ao, 030 A5, 050 A gt
(0,2) b3
(3,0) 1y
(2,1) | ¢15 A3, duy A S, doy Ay
(1,2) | 61° A%y, 030 Ay, 650 Aoy
(0,3) 153
(3,1) $roy N OY
(2,2) | o015 A oYy, o158 A DSy, by A Gy
(1,3) 61" A ¢l
(3,2) $1 N\ D2
(2,3) 5 A B
(3,3) i A\ Drog

Table 4.2: Basis for EL'?(Xj).
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Bi-degree | A”-Harmonic form

(0,0) 1

(1,0) $10(1), 63°(1)

(2,0) 15 (1), 613 (1)

(3,0) G133 (t)

(0.1) G (1), 03 (¢), 657 (1)

(1,1) G (8) A by (1), &1 (8) A B3 (1), 03 (8) A G (1)
&3 (1) A1 (E), ¢3°(8) A B9 (1), 63 (8) A 657 (1)

(2.1) b1y (1) AGY(E), b1 (8) A G (1), 5 (8) A 67 (1)
d1y (1) A0y (1), 15 (1) A by (1), doy (8) A ¢ (£)

(3,1) b1 (t) A AL (1), D1 (1) A G (1), brag(t) A gy (¢)

(0,2) $1a (1), 615 (1), db (1)

(1,2) S (8) A Dy (1), 02 (8) A By (1), 030 (8) A B (1)
&30 () A @Yy (1), 5 (1) A iy (1), 65" () A 6oy (£)

(2,2) b1y () A G5 (1), b1 (8) A Byy (1), b5 (£) A Gy (1)
b1y (8) A Boy (1), by (8) A G315 (E), o3 (8) A G153 (1)

(32) S1os(t) A By (1), Gras (1) A Bl (£), dras(t) A oy (1)

(0,3) $135(t)

(1.3) &2 (8) N Da3(1), &3°(8) A G155 (t)

(2.3) 315 (1) A $sa(t), b33 (8) A &y (¢)

(33) b1o(t) A Piag ()

Table 4.3: Az-Harmonic forms for X; with ¢ # 0.
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(r,q) Basis for EY7(X;)
(0,0) 1
(1,0) )
(0,1) o7 (1)
(2,0) 15 (1)
(1,1) 33 (8) N O (), 63 (8) A 057 (1)
0,2) 1y (1), 815 (1), o3 (1)
(3,0) 133 (t)
(2,1) 315 (1) A 63 (1), o1y (8) A @3 (1), o1 (8) A 657 (1)
(1,2) | ¢1°(0) A oy (1), 02 (8) A 03 (8), 657 (1) A B1y (1), &3 (8) A @13 (2)
(0,3) G133 (t)
(3,1) S1am(t) A ST (D), D (t) A 65 (¢)
(2,2) b1 (£) A G5 (1), 15 (1) A 6 (1)
(1,3) 35 (1) A B55(t)
(3,2) b1y () A 653 (1)
(2,3) b3 (1) N B35(1)
(3,3) 13 (t) A Pis (1)

Table 4.4: Basis for EY?(X;) with ¢ # 0.
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t=0 t#0
Bi-degree | by | h?2(0) €59(0) | hP(t) eb9(t)
(0,0) 1 1 1 1 1
2
(0,1) 3 1 3 1
(1,1) 5 9 3 6 2
(0,2) 3 1 3 3
(3,0) 1 1 1 1
(2,1) 9 3 6 3
8
(0,3) 1 1 1 1
(3,1) 3 1 3 2
(2,2) 5 9 3 6 2
(17 3) 3 1 2 1
2
(3,3) 1 1 1 1 1

Table 4.5: Comparison between dimensions of E*(Xy) and E2*(X;), with
r=1,2and t # 0.
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