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Abstract

The goal of this thesis is to introduce two new notions of hyperbolicity for compact
complex manifolds and two new notions of positivity for real De Rham cohomology
classes of degree 2 on such manifolds. According to S. Kobayashi, a complex manifold,
that need not be either Kähler or compact, is said to be hyperbolic if its Kobayashi
pseudo-distance is a distance. Using the distance-decreasing property of holomorphic
maps, one shows that any holomorphic map from the complex plane C to a Kobayashi
-hyperbolic manifold is constant. Conversely, Brody proved that a compact complex
manifold X is hyperbolic in the sense of Kobayashi if any holomorphic map from C to
X is constant. The Kobayshi-Lang conjecture predicts that the canonical bundle KX

of any Kobayashi-hyperbolic compact complex manifold X ought to be ample. In par-
ticular, the manifold X would be projective ecao in this case by Kodaira’s Embedding
Theorem. On the other hand, Gromov introduced the notion of Kähler hyperbolicity
for compact Kähler manifolds X. Whenever X is Kähler hyperbolic, he proved that
X is also Kobayashi hyperbolic and its canonical bundle KX is big. It is now known
that KX is even ample, hence X is projective, The main goal of this thesis is to pro-
pose a hyperbolicity theory for compact complex manifolds in which entire maps are
replaced by non-degenerate holomorphic maps from Cn−1 to n-dimensional compact
complex manifolds X and differential forms of bidegree (1, 1) on X are replaced by
(n − 1, n − 1)-forms. We start by introducing the notion of balanced hyperbolicity as
a generalisation of Kähler hyperbolicity. We go on to introduce the notion of diviso-
rial hyperbolicity as a generalisation of the Brody hyperbolicity. Our first main result
asserts that any balanced hyperbolic compact complex manifold is also divisorially hy-
perbolic. We also introduce the notions of divisorially Kähler and divisorially nef De
Rham cohomology classes of degree 2 and study their properties. They are intended
to kickstart a positivity theory in bidegree (n − 1, n − 1) for the compact complex n-
dimensional manifolds that are hyperbolic in our two new senses. In particular, we
conjecture that the canoncal bundle KX of any such hyperbolic manifold X ought to be
at least divisorially nef.
Keywords: Compact manifolds, Universal covering, Balanced metric, Kähler hyper-
bolicity, Brody hyperbolicity, Nef line bundel, Positivity, Hodge theory, Lefschetz the-
orem, Primitive forms, Cohomology, Balanced hyperbolicity, Divisorial hyperbolicity,
Cohomology De Rahm class divisorially nef.



Résumé

Cette thèse est consacrée à l’introduction de deux notions nouvelles d’hyperbolicité
pour les variétés complexes compactes lisses, ainsi qu’à l’introduction de deux notions
nouvelles de positivité pour les classes de cohomologie de De Rham.

D’aprés S. Kobayashi, toute variété complexe, qui n’est a priori supposée ni kählérienne
ni compacte, est appelée hyperbolique si sa pseudo-distance de Kobayashi est une dis-
tance. En utilisant la propriété de contraction des distances, on voit que toute appli-
cation holomorphe du plan complexe C dans une variété Kobayashi-hyperbolique est
constante. Réciproquement, Brody a démontré qu’une variété complexe compacte X
est hyperbolique au sens de Kobayashi si toute application holomorphe de C dans X
est constante. La conjecture de Kobayshi-Lang prédit que le fibré canonique KX de
toute variété complexe compacte Kobayashi-hyperbolique X devrait être ample. En
particulier, grâce au théoréme de plongement de Kodaira, toute telle variété devrait
être projective, donc aussi kählérienne.

M. Gromov a introduit en 1991 la notion de variété kählérienne hyperbolique en
demandant l’existence d’une métrique kählérienne dont le relévement au revêtement
universel est une forme différentielle d-exacte ayant un potentiel borné. Gromov mon-
tre, entre autres, que toute variété kählérienne hyperbolique est Kobayashi hyper-
bolique. De plus, il est maintenant connu que toute variété kählérienne hyperbolique
au sens de Gromov est projective. En prenant comme point de départ l’observation
de phénomènes d’hyperbolicité sur de nombreux exemples de variétés complexes com-
pactes non kählériennes, l’objectif principal de cette thése est d’étendre la théorie
de l’hyperbolicité au contexte non kählérien. Plus précisément, nous proposons une
théorie dans laquelle les courbes entiéres sont remplacées par des applications holomor-
phes de Cn−1 dans les variétés complexes n-dimensionnellesX et les formes différentielles
de bidegré (1, 1) sur X sont remplacées par de telles formes de bidegré (n− 1, n− 1).
Ainsi, on commence par introduire la notion d’hyperbolicité équilibrée généralisant
l’hyperbolicité kählérienne de Gromov au moyen des métriques équilibrées introduites
par Gauduchon en 1977. On généralise ensuite l’hyperbolicité au sens de Brody en
introduisant la notion d’hyperbolicité divisorielle. Pour ce faire, nous dégageons une
notion de croissance sous-exponentielle pour les applications holomorphes de Cn−1 dans
les variétés complexes compactes n-dimensionnelles X que nous considérons comme
l’une de nos principales observations. Notre premier résultat principal affirme que
toute variété équilibrée hyperbolique est divisoriellement hyperbolique. L’introduction
de deux notions de positivité pour les classes de cohomologie de De Rham de degré
2, que nous appelons classes divisoriellement kählériennes et divisoriellement nef et
dont nous étudions les propriétés de base, a pour but d’initier la construction d’une
théorie de la positivité pour les variétés complexes compactes hyperboliques dans un
ou l’autre de nos deux sens nouveaux introduits dans cette thèse. En particulier, nous
conjecturons que le fibré canonique KX de toute variété hyperbolique X devrait être
au moins divisoriellement nef.
Mots clés: Variétés compactes, Revêtement universel, Métrique équilibrée, Hyper-
bolicité kählérienne, Brody hyperbolicité, Fibré en droite nef, Positivité, Théorie de
Hodge, Théorème de Lefschetz, Forme primitive, Cohomologie, Hyperbolicité équilibrée,
Hyperbolicité divisorielle, Classe de cohomologie de De Rahm divisoriellement nef.
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General Introduction

The main objective of this work is to introduce and study two notions of hyperbolicity
for not necessarily Kähler compact complex manifolds.

S. Kobayashi called a complex manifold X, that need not be either Kähler or
compact, hyperbolic if the pseudo-distance he had introduced on X is actually a dis-
tance. Using the mapping decreasing proprety of this distance, one can show that
every holomorphic map from the complex plane C to a Kobayashi hyperbolic mani-
fold is constant. Conversely, Brody observed that a compact complex manifold X is
Kobayashi hyperbolic if every holomorphic map from C to X is constant. The long
standing Kobayashi-Lang conjecture predicts that, for a compact Kähler manifold X,
if X is Kobayashi hyperbolic then its canonical bundle KX is ample. In particular,
the manifold X is projective in this case by Kodaira’s embedding theorem.

Gromov introduced the notion of Kähler hyperbolicty for a compact Kähler manifold
X. The manifold X is called Kähler hyperbolic if X admits a Kähler metric ω whose
lift ω̃ to the universal cover X̃ of X can be expressed as

ω̃ = dα

for a bounded 1-form α on X̃. As pointed out by Gromov, it is not hard to see that
the Kähler hyperbolicity implies the Kobayashi hyperbolicity.

The first result of this thesis generalizes this observation by Gromov to its ana-
logue in dimension n−1 on a compact complex n-dimensional manifold X. To achieve
this, we start by introducing two new notions of hyperbolicity suitable for this context.

The Kähler hyperbolicity is generalized to what we call balanced hyperbolicity.
This is done by replacing the Kähler metric in the Kähler hyperbolicity by a balanced
metric. Recall that a Hermitian metric on a complex n-dimensional manifold is called
a balanced metric if dωn−1 = 0.

The Brody hyperbolicity is replaced by what we call divisorial hyperbolicity.
A compact complex manifold X is called divisorially hyperbolic if there exists no
non-trivial holomorphic map from Cn−1 to X satisfying certain subexponential vol-
ume growth condition. The indispensability of this volume growth condition is one
of our main findings in this thesis and emphasises the contrast between holomorphic
maps from C and holomorphic maps from Cn−1. In particular, the divisorial hyper-
bolicity allows the existence of a nondegenerate holomorphic map from Cn−1 to X as
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long as this map does note have a subexponential volume growth.

We also introduce a notions of divisorially Kähler and divisorially nef De
Rahm cohomology classes of degree 2 as generalizations of Kähler, respectively nef
cohomology classes. We then go on to establish a number of basic properties of these
notions and raise a number of questions.

This thesis is structured as follows.

In the first chapter, several basic definitions and useful results on different con-
cepts that we need in the next two chapters are recalled. Outstanding details upon
special Hermitian metrics are provided. Afterwardes, some basic definitions and per-
tinent results on forms and currents, as well as on the different concepts of positivity
are displayed. Subsequently, we address briefly Kähler hyperbolicity in the sense of
Gromov and Brody’s hyperbolicity and we close this chapter with some reminders on
simple and semi-simple Lie algebras and Lie groups.

In the second chapter, two notions of hyperbolicity for not necessarily Kähler n-
dimensional compact complex manifolds X are introduced. The first, called balanced
hyperbolicity, generalises Gromov’s Kähler hyperbolicity by means of Gauduchon’s
balanced metrics. The second, called divisorial hyperbolicity, generalises the Brody
hyperbolicity by ruling out the existence of non-degenerate holomorphic maps from
Cn−1 to X having what we call a subexponential growth. Our main result in the
first part of this chapter asserts that every balanced hyperbolic X is also divisorially
hyperbolic, and therfore the following implication holds:

X is Kähler hyperbolic =⇒ X is Kobayashi/Brody hyperbolic

=⇒ =⇒

X is balanced hyperbolic =⇒ X is divisorially hyperbolic

=
⇒

X is degenerate balanced

where our main result proves the bottom horizontal implication. Next, we provide
certain expressive examples of Kähler and no Kähler manifold that are balanced hy-
perbolic and hence divisorial hyperbolic, in addition to some examples which are not
divisorial hyperbolic. Further more, we identify and describe various properties of
these manifolds.

The second part of this chapter is devoted to introducing notions of divisorially
Kähler and nef classes enacting an analogy with Kähler and nef classes in complex
codimension 1.

We elaborate two definitions of projectively divisorially and divisorially nef coho-
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mology class, in the case of projective manifolds and in the case of arbitrary com-
pact complex manifolds, where in the particular case of projective manifold, a class
{α}DR ∈ H2

DR(X, R) is projectively divisorially nef whenever {α}DR ∈ H2
DR(X, R) is

divisorially nef.
In the projective case, A cohomology class {α}DR ∈ H2

DR(X, R) is said to be projec-
tively divisorially nef if

P ({α}DR).{[D]}BC :=

∫
D

(αn−1)n−1, n−1 ≥ 0

for all effective divisors D ≥ 0 on X and some (hence any) representative α ∈
C∞2 (X, R) of {α}DR, where the map:

P = P n−1
n−1, n−1 : H2

DR(X, R) −→ Hn−1, n−1
A (X, R), {α}DR 7−→ {(αn−1)n−1, n−1}A,

is well defined in the sense that it is independent of the choice of a C∞ representative
α of its De Rham cohomology class, where (αn−1)n−1, n−1 is the component of bidegree
(n− 1, n− 1) of the (2n− 2)-form αn−1.
In an arbitrary compact complex n-dimensional manifolds, a cohomology class {α}DR ∈
H2
DR(X, R) is said to be divisorially nef if P ({α}DR) ∈ GX , where GX is the closure

of the Gauduchon cone in Hn−1, n−1
A (X, R) that was defined in [Pop15a] as:

GX :=

{
{ωn−1}A ∈ Hn−1, n−1

A (X, R) | ω is a Gauduchon metric on X

}
⊂ Hn−1, n−1

A (X, R).

It will be said divisorially Kähler if P ({α}DR) ∈ GX .
We obtain an altenative definition of nef class provided in [Dem92] as the following:
A class {α}DR ∈ H2

DR(X, R) is divisorially nef if and only if for every constant
ε > 0, there exists a representative Ωε ∈ C∞n−1, n−1(X, R) of the class P ({α}DR) such
that

Ωε ≥ −ε ωn−1,

where ω > 0 is an arbitrary Hermitian metric on a compact complex n-dimensional
manifold X fixed beforehand. Therfore, we establish a number of basic properties
thereof, and raise a number of questions.

In the third chapter, we proceed the study of hyperbilic balanced manifolds.
Indeed, we corroborate several vanishing theorems for the cohomology of balanced
hyperbolic manifolds that we have already introduced in the previous chapter and for
the L2 harmonic spaces on the universal cover of these manifolds. Other prominent
results involve a Hard Lefschetz-type theorem for certain compact complex balanced
manifolds and the non-existence of certain L1 currents on the universal covering space
of a balanced hyperbolic manifold. We obtained a Hard Lefschetz Isomorphism
between the De Rahm cohomologies of degree 1 and 2n − 1. Our first main result in
this section is the following:
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Theorem 0.0.1. Let X be a compact complex manifold with dimCX = n.

(i) If ω is a balanced metric on X, the linear map:

{ωn−1}DR ∧ · : H1
DR(X, C) −→ H2n−1

DR (X, C), {u}DR 7−→ {ωn−1 ∧ u}DR (1)

is well defined and depends only on the cohomology class {ωn−1}DR ∈ H2n−2
DR (X, C).

(ii) If, moreover, X has the following additional property: for every form v ∈
C∞1, 1(X, C) such that dv = 0, the following implication holds:

v ∈ Im ∂ =⇒ v ∈ Im (∂∂̄),

the map (1) is an isomorphism.

Afterwards, the central focus of our work is upon a few studies on the universal
cover of balanced manifolds where we obtain vanishing theorems for the L2 harmonic
cohomology on the univesal cover. Our first main result in degree 1 and the dual 2n−1
is expressed as follows:

Theorem 0.0.2. Let X be a compact complex balanced hyperbolic manifold with
dimCX = n. Let π : X̃ −→ X be the universal cover of X and ω̃ := π?ω, the lift to X̃
of a balanced hyperbolic metric ω on X.

There are no non-zero ∆ω̃-harmonic L2
ω̃-forms of pure types and of degrees 1 and

2n− 1 on X̃:

H1, 0
∆ω̃

(X̃, C) = H0, 1
∆ω̃

(X̃, C) = 0 and Hn, n−1
∆ω̃

(X̃, C) = Hn−1, n
∆ω̃

(X̃, C) = 0,

where ∆ω̃ := dd?ω̃ + d?ω̃d is the d-Laplacian induced by the metric ω̃.

The second main result in this section in degree 2 is indicated as follows:

Theorem 0.0.3. Let X be a compact complex balanced hyperbolic manifold with
dimCX = n. Let π : X̃ −→ X be the universal cover of X and ω̃ := π?ω, the lift to X̃
of a balanced hyperbolic metric ω on X.

There are no non-zero semi-positive ∆τ̃ -harmonic L2
ω̃-forms of pure type (1, 1) on

X̃: {
α1, 1 ∈ H1, 1

∆τ̃
(X̃, C) | α1, 1 ≥ 0

}
= {0},

where τ̃ = τ̃ω̃ := [Λω̃, ∂ω̃ ∧ ·].

Eventually, the closing part of our thesis displays an appendix chapter which in-
corporates some promising results which shall be invested in the third chapter.
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Chapter 1

Preliminaries

1.1 Special Hermitian Metrics on Compact Com-

plex Manifolds

1.1.1 Hermitian metrics

Definition 1.1.1. A Hermitian metric ω on X is a family (〈·, ·〉ω(x))x∈X , where,
for every point x ∈ X,

〈·, ·〉ω(x) : T 1,0
x X × T 1,0

x X → C

is an inner product on the holomorphic tangent space to X at x, such that the inner
products 〈·, ·〉ω(x) depend in a C∞ way on x ∈ X.

By an inner product on a C-vector space we mean a positive definite sesquilinear
map. It isstandard that any Hermitian metric ω on X identifies canonically with
a unique C∞ (1, 1)-form ω (denoted henceforth by the same letter) that is positive
definite at every point x ∈ X. Some authors call it the Kähler form associated with
the Hermitian metric and denote these two objects differently, but we will not use this
terminology. In local holomorphic coordinates z1, ..., zn on some open subset U ⊂ X,
any such object is of the shape

ω =
n∑
j,k

ωj,kidzj ∧ dzk, (1, 1)

where the coefficients ωj,k : U → C are C∞ functions such that the matrix (ωj,k(x))j,k
is positive definite (equivalently, its eigenvalues are all positive) at every point x ∈ X.

In fact, an equivalent definition for a Hermitian metric ω on X is as a family
(ω(α))α∈Λ) of locally defined, positive definite C∞ forms ω(α), defined respectively by
the analogues of (1.1) on open coordinate subsets Uα ⊂ X that cover X, such that
ω(α) = ω(β) on Uα∩Uβ whenever this intersectionis non-empty. In particular, Hermitian
metrics always exist on any given X. Indeed, take any open cover of X by coordinate
patches, take any locally defined Hermitian metrics on these patches and glue them
together into a global Hermitian metric on X using a partition of unity.
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1.1.2 Gauduchon metrics

Definition 1.1.2. Let X be a compact complex manifold with dimCX = n. A C∞

positive definite (1, 1)-form ω on X is said to be a Gauduchon metric if ∂∂ωn−1 = 0.

The fundamental fact of life about Gauduchon metrics is the following statement
that is a special case of Gauduchon’s main result in [Gau77]

Theorem 1.1.3. Every compact complex manifold carries Gauduchon metrics.

1.1.3 Kähler metrics and manifolds

Definition 1.1.4. Let X be a compact complex manifold with dimCX = n. A C∞

positive definite (1, 1)-form ω on X is said to be a Kähler metric if dω = 0. If X
carries such a metric, X is said to be a Kähler manifold.

1.1.4 Balanced metrics and manifolds

The notion that will be discussed in this section was introduced by Gauduchon in
[Gau77] under the name of semi-Kähler metric. These metrics were renamed bal-
anced by Michelsohn in [Mic83] and this latter terminology is now widely used in the
literature.

Definition 1.1.5. ([Gau77], [Mic83]) Let X be a complex manifold with dimCX =
n ≥ 2.

1. A C∞ positive definite (1, 1)-form ω on X is said to be a balanced metric if
dωn−1 = 0.

2. If X carries such a metric, X is said to be a balanced manifold.

Obviously, when n = 2, balanced metrics coincide with Kähler metric.

Lemma 1.1.6. Let ω be a Hermitian metric on a complex manifold X with dimCX =
n ≥ 2.

1. If ω is Kähler, then ω is balanced.

2. The metric ω is balanced if and only if it is co-closed. Specifically, the following
equivalences hold:

ω is balanced ⇔ d?ω = 0⇔ ∂?ω = 0⇔ ∂
?
ω = 0

Theorem 1.1.7. Let X be a complex n-dimensional manifold, and let ω be C∞ positive
definite (1, 1)-form on X. Then ω is a balanced metric if and only if, for every x ∈ X,
there is a holomorphic coordinate system (z1, ..., zn) centered at x such that

ωn−1 = σn−1

n∑
i,j=1

ai,j
︷︸︸︷
dzi ∧

︷︸︸︷
dzj

with
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(i) ai,j(0) = δi,j

(ii) ai,j(z) does not contain linear terms involving zi, zj, zi, zj

(iii) d(tr(ai,j)(0) = 0.

1.1.5 SKT metrics and manifolds

The definition of SKT metric was introduced by Streets and Tian.

Definition 1.1.8. A C∞ positive definite (1, 1)-form ω on a complex n-dimensional
manifold X is said to be a SKT metric if ∂∂ω = 0. If X carries such a metric, X is
said to be a SKT manifold.

Proposition 1.1.9. If ω is both SKT and balanced, then ω is Kähler.

Conjecture 1.1.10. (Streets and Tian) A compact complex manifold cannot admit
a balanced metric and an SKT metric unless it is a Kähler manifold.

1.2 Basic Concepts of Positivity

1.2.1 Positive and Strongly Positive Forms

Let V be a complex vector space of dimension n and (z1, ..., zn) coordinates on V . We
denote by (∂/∂z1, ..., ∂/∂zn) the corresponding basis of V , by (dz1, ..., dzn) its dual
basis in V ? and consider the exterior algebra

ΛV ?
C =

⊕
Λp,qV ?, Λp,qV ? = ΛpV ? ⊗ ΛqV ?

We are of course especially interested in the case where V = TxX is the tangent space
to a complex manifold X, but we want to emphasize here that our considerations only
involve linear algebra. Let us first observe that V has a canonical orientation, given
by the (n, n)−form

τ(z) = idz1 ∧ dz1 ∧ ... ∧ idzn ∧ dzn = 2ndx1 ∧ dy1 ∧ ... ∧ dxn ∧ dyn

where zj = xj + iyj . In fact, if (w1, ..., wn) are other coordinates, we find

dw1 ∧ . . . ∧ dwn = det(∂wj/∂zk)dz1 ∧ . . . ∧ dzn,
τ(w) = |det(∂wj/∂zk)|2τ(z)

In particular, a complex manifold always has a canonical orientation. More generally,
natural positivity concepts for (p, p)−forms can be defined.

Definition 1.2.1. A (p, p)−forms u ∈ Λp,pV ? is said to be positive if for all αj ∈
V ?, 1 ≤ j ≤ q = n− p, then

u ∧ iα1 ∧ α1 ∧ . . . ∧ iαq ∧ αq

12



is a positive (n, n)−form. A (q, q)−form v ∈ Λp,qV ? is said to be strongly positive if v
is a convex combination

V =
∑

γsiαs,1 ∧ αs,1 ∧ . . . ∧ iαs,q ∧ αs,q

where αs,j ∈ V ? and γs ≥ 0.

Example 1.2.2. Since ip(−1)p(p−1)/2 = ip
2
, we have the commutation rules

iα1 ∧ α1 ∧ . . . ∧ iαp ∧ αp = ip
2

α ∧ α, ∀α = α1 ∧ . . . ∧ αp ∈ Λp,0V ?,

ip
2
β ∧ β ∧ im2

γ ∧ γ = i(p+m)2

β ∧ γ ∧ β ∧ γ, ∀β ∈ Λp,0V ?, γ ∈ Λm,0V ?.

Take m = q to be the complementary degree of p. Then β ∧ γ = λdz1 ∧ . . . ∧ dzn for
some λ ∈ C and in

2
β ∧ γ ∧ β ∧ γ = |λ|2τ(z). If we set γ = α1 ∧ . . . ∧ αq, we find that

in
2
β ∧ β is a positive (p, p)-form for every β ∈ Λp,0V ? ; in particular, strongly positive

forms are positive.

The sets of positive and strongly positive forms are closed convex cones, i.e.closed
and stable under convex combinations. By definition, the positive cone is dual to the
strongly positive cone via the pairing

Λp,pV ? × Λq,qV ? −→ C
(u, v) 7−→ u ∧ v/τ. (1.1)

that is, u ∈ Λp,qV ? is positive if and only if u∧v all strongly positive forms v ∈ Λp,qV ?.
Since the bidual of an arbitrary convex cone Γ is equal to its closure Γ, we also obtain
that v is strongly positive if and only if v ∧ u = u ∧ v is ≥ 0 for all positive forms u.
Later on, we will need the following elementary lemma.

Lemma 1.2.3. Let (z1, . . . , zn) be arbitrary coordinates on V . Then admits Λp,qV ? a
basis consisting of strongly positive forms

βs = iβs,1 ∧ βs,1 ∧ . . . ∧ iβs,p ∧ βs,p 1 ≤ s ≤ (Cnp )2

where each βs,1 is of the type dzj ± dzk or dzj ± idzk, 1 ≤ j, k ≤ n.

Remarks 1.2.4. 1. All positive forms u are real, i.e. satisfy u = u. In terms of
coordinates, if u = ip

2 ∑
|I|=|J |=p uI,JdzI ∧ ddzJ , then the coefficients satisfy the

hermitian symmetry relation uI,J = uI,J .

2. A from u = i
∑

j,k ujkdzI ∧ dzJ of bidegree (1, 1) is positive if and only if ξ 7→∑
ujkξjξk is a semi-positive hermitian form on C.

3. The notions of positive and strongly positive (p, p)-forms coincide for p = 0, 1, n−
1, n.

4. If u1, . . . , us are positive forms, all of them strongly positive (resp. all except
perhaps one), then u1 ∧ . . . ∧ us is strongly positive (resp. positive).

5. if Φ : W −→ V is a complex linear map and u ∈ Λp,qV ? is (strongly) positive,
Then Φ?u ∈ Λp,qW ? is (strongly) positive.
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1.2.2 Positive Currents

The duality between the positive and strongly positive cones of forms can be used to
define corresponding positivity notions for currents.

Definition 1.2.5. A current T ∈ D′p,p(X) is said to be positive (resp. strongly positive)
if 〈T, u〉 ≥ 0 for all test forms u ∈ Dp,p(X) that are strongly positive (resp. positive)
at each point.

Another way of stating Definition 1.2.5 is: T is positive (strongly positive) if and
only if T ∧ u ∈ D′p,p(X) is a positive measure for all strongly positive (positive) forms
u ∈ C∞p,p(X). This is so because a distribution S ∈ D′(X) such that S(f) ≥ 0 for every
non-negative function f ∈ D(X) is a positive measure

Proposition 1.2.6. Every positive current T = i(n−p)
2 ∑

TI,JdzI ∧ dzJ in D′+p,p(X) is

real and of order 0, i.e. its coefficients TI,J are complex measures and satisfy TI,J = TJ,I
for all multi-indices |I| = |J | = n − p. Moreover TI,I ≥ 0, and the absolute values
|TI,J | of the measures TI,J satisfy the inequality

λIλJ |TI,J | ≤ 2p
∑
m

λ2
MTM,M , I ∩ J ⊂M ⊂ I ∪ J

where λk ≥ 0 are arbitrary coefficients and λI =
∏

k∈I λk.

Example 1.2.7. Let X be a complex manifold and u ∈ Psh(X) ∩ L1
loc(X) a plurisub-

harmonic function then,

T = i∂∂u = i
n∑

j,k=1

∂2u

∂zj∂zk
dzj ∧ dzk

is a positive current of bidegree (1, 1).

1.2.3 Hermitian Vector Bundles and Connections

Let X be a C∞ differentiable manifold of dimension n and let K = R or K = C be
the scalar field. A (real, complex) vector bundle of rank r over X is a C∞ manifold E
together with

i) a C∞ map π : E → X called the projection,

ii) a K-vector space structure of dimension r on each fiber Ex = π−1(x)

such that there exists an open covering (Vα)α∈I of X and C∞ diffeomorphisms called
trivializations

φα : E|Vα → Vα ×K, where E|Vα = π−1(Vα)

such that for every x ∈ Vα the map φα : Ex → {x} ×K→ K is a linear isomorphism.
A holomrophic vector bundle is a complex vector bundle over a complex manifold

X such that the totale space E is a complex manifold, the projective mup π : E → X
is holomorphic, there exists an open covering (Vα)α∈I of X and a family of holomorphic
trivializations φα : E|Vα → Vα × Cr.
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Example 1.2.8. if ϕα : Vα → X is a collection of coordinate charts on X, then
φα = π × dφα : TX|V α → Vα × R define trivializations of the tangent bundle TX and
the transition matrices are given by gαβ(x) = dϕαβ(xβ) where ϕαβ = ϕα ◦ ϕ−1

β and

xβ = ϕβ(x). The dual T ?X of TX is called the cotangent bundle and the p-th exterior
power ΛpT ?X is called the bundle of differential forms of degree p on X.

A section of a vector bundle π : E → X is a map s : X → E such that π ◦s = IdX .
This section is said to be continuous, resp. differentiable, resp. Ck differentiable, if s
is continuous, resp. differentiable, resp.

A holomorphic section of a holomorphic vector bundle π : E → X over an open
set V of X is a section s : X → E of π which is a holomorphic map. For example, a
holomorphic local trivialisation φ of E as above is given by the choice of a family of
holomorphic sections of E, whose values at each point x of Vj form a basis of the fibre
Ex over C.

Definition 1.2.9. A (real, complex, holomorphic) line bundle is a (real, complex,
holomorphic) vector bundle of rank 1.

Let φ : E|V → V ×K be a trivialization of E|V . To φ, we associate the C∞ frame
(e1, ..., er) of E|V defined by

eλ(x) = φ−1(x, ξλ), x ∈ V,

where (ξλ) is the standard basis of K. A section s ∈ Ck(V,E) can then be represented
in terms of its components φ(s) = σ = (σ1, ..., σr) by

s =
r∑

λ=1

σλeλ on V σλ ∈ Ck(V,K).

Let φα be a family of trivializations relative to a covering (Vα) of X. Given a global
section s ∈ C∞(E,X), the components φα(s) = σα = (σα1 , ..., σ

α
r ) satisfy the transition

relations
σα = gαβσ

β on Vα ∩ Vβ.
Conversely, any collection of vector valued functions σα : Vα → Kr satisfying the
transition relations defines a global section s of E.

A complex vector bundle E is said to be hermitian if a positive definite hermitian
form | |2 is given on each fiber Ex in such a way that the map E → R+, ξ →
|ξ|2 is smooth. Let φ : E|V → V × Cr be a trivialization and let (e1, ..., er) be the
corresponding frame of E|V . The associated inner product of E is given by a positive
definite hermitian matrix (hλµ) with C∞ coefficients on V , such that

〈eλ(x), eµ(x)〉 = hλµ(x),∀x ∈ V.

Definition 1.2.10. A (linear) connection D on the bundle E is a linear differential
operator of order 1 acting on C∞• (X,E) and satisfying the following properties:

D : C∞q (X,E)→ C∞q+1(X,E) (1.2)

D(f ∧ s) = df ∧ s+ (−1)pf ∧Ds (1.3)

for any f ∈ C∞p (X,K) and s ∈ C∞q (X,E), where df stands for the usual exterior
derivative of f .
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The curvature of a connectionD on E → X is a 2-forme Θ(D) ∈ C∞2 (X,Hom(E,E))
such that

D2s = Θ(D) ∧ s.

given with respect to any trivialization φ by

Θ(D) 'φ dA+ A ∧ A

where A = (aλµ) ∈ C∞1 (V,Hom(K,Kr)).
Let X be a complex manifold, dimCX = n and E a C∞ vector bundle of rank r

over X, a connection of type (1, 0) on E is a differential operator D′ of order 1 acting
on C∞•,•(X,E) and satisfying the following two properties:

D′ : C∞p,q(X,E)→ C∞p+1,q(X,E) (1.4)

D′(f ∧ s) = ∂f ∧ s+ (−1)degff ∧ ∂s (1.5)

for any f ∈ C∞p1,q1
(X,C), s ∈ C∞p2,q2

(X,E). The definition of a connection D′′ of type
(0, 1) is similar.

Proposition 1.2.11. Let D′′0 be a given (0, 1)-connection on a hermitian bundle π :
E → X. Then there exists a unique hermitian connection D = D′ + D′′ such that
D′′0 = D′′

The unique hermitian connection D such that D′′ = ∂ is called the Chern connec-
tion of E. The curvature tensor of this connection will be denoted by Θ(E) and is
called the Chern curvature tensor of E.

Theorem 1.2.12. Let X be an arbitrary complex manifold.

1. For any hermitian line bundle E over X, the Chern curvature form i
2π

Θ(E) is
a closed real (1,1)-form whose De Rham cohomology class is the image of an
integral class.

1.2.3.1 Positivity Concepts for Vector Bundles

Definition 1.2.13. Let E be a hermitian holomorphic vector bundle of rank r over
X, where dimCX = n.

1. E is said to be Nakano positive (resp. Nakano semi- negative) if Θ(E) is positive
definite (resp. semi-negative) as a hermitian form on TX ⊗ E, i.e. if for every
u ∈ TX ⊗ E, u 6= 0, we have

Θ(E)(u, u) > 0 (resp. ≤ 0).

2. E is said to be Griffiths positive (resp. Griffiths semi-negative) if for all ξ ∈
TxX, ξ 6= 0 and s ∈ Ex, s 6= 0 we have

Θ(E)(ξ ⊗ s, ξ ⊗ s) > 0 (resp. ≤ 0).
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It is clear that Nakano positivity implies Griffiths positivity and that both concepts
coincide if r = 1. In the case of a line bundle, E is merely said to be positive.

Definition 1.2.14. Let X be a compact complex manifold with a fixed hermitian metric
ω. A line bundle L over X is nef if for every ε > 0 there exists a smooth hermitian
metric hε on L such that the curvature satisfies

Θhε ≥ −εω.

Clearly a nef line bundle L satisfies L.C ≥ 0 for all curves C ⊂ X, but the converse
is not true. For projective algebraic X both notions coincide.

1.3 Brody’s Criterion for Hyperbolicity and Kähler

Hyperbolicity in the sense of Gromove

1.3.1 Brody’s and Kobayashi’s Hyperbolicity

Let X be a complex manifold. We shall say that X is Brody hyperbolic if every holo-
morphic map f : C→ X is constant. Similarly, if X is a subset of a complex manifold
Y , we say that X is Brody hyperbolic in Y (or relative to Y ) if every holomorphic
map f : C→ Y whose image is contained in X is constant.

Lemma 1.3.1. (Brody’s reparametrization lemma). Let X be a subset of a complex
manifold with a length function. Let

f : Dr → X

be holomorphic. Let c > 0, and for 0 ≤ t ≤ 1 let

ft(z) = f(tz)

1. If |df(0)| > c then there exists t < 1 and an automorphism h of D such that if
we put

g = ft ◦ h
then

supz∈Dr |dg(z)| = |dg(0)| = c

2. If |df(0)| = c then we get the same conclusion allowing t ≤ 1.

Proof. Let mt : Dr → Dr be multiplication by t, so that ft can be factored

Dr →mt Dr →f X

Then dmt(z)v = tv so

|dft(z)| = |df(tz)|t 1− |z|2/r2

1− |tz|2/r2

Let
s(t) = supz∈Dr |dft(z)|
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Note that if t < 1 then |dft(z)| → 0 for |z| → r so |dft(z)| has a maximum for z ∈ Dr

and thus for t < 1,
s(t) = maxz∈Dr |dft(z)|.

We have s(0) = 0. Also we can write tz = w. Taking the sup for z ∈ Dr amounts to
taking the sup for w ∈ tDr. If t < 1, we can even take the sup over the closure tDr.
It follows that s(t) is continuous for

0 ≤ t < 1.

Also s(t) → s(1) as t → 1, even if s(1) = ∞. By assumption in the first part,
|df(0)| > c, and hence s(1) > c. Hence there exists 0 ≤ t < 1 such that s(t) = c.
Hence there is some z0 ∈ tDr such that |dft(z0)| = c. Now let h : Dr → Dr be an
automorphism such that h(0) = z0 and let g = ft ◦ h. Then

|dg(0)| = |dft(z0)||dh(0)| = |dft(z0)| = c,

thus proving the first part. The second part is proved similarly, allowing t = 1. This
concludes the proof of the Lemma. �

Theorem 1.3.2. Let X be a complex manifold with a length function. Let f : C→ X
be a holomorphic non-constant map, whose image is contained in a relatively compact
subset S. Then there exists a non-constant holomorphic map g : C→ X whose image
is contained in the closure of S, and such that

|dg(0)| = sup|dg(z)| = 1.

For each disc Drn with increasing radius rn , we let fn be the restriction of f
to this disc. Then the same proof as above works. We observe that in Brody’s
reparametrization, the image of gn is contained in the image of fn and so the image of
the limit is contained in S. This proves the theorem.

Remark 1.3.3. Suppose that the length function on X comes from a hermitian metric
on some ambient complex manifold, and let ω be the associated positive (1, 1)− form.
Then we see that ∫

Dr

g?ω ≤ πr2

This is usually expressed by saying that g is of order ≤ 2, and in particular is of
finite order.

Definition 1.3.4. Let X be a complex manifold. Given an arbitrary holomorphic tan-
gent vector ξ ∈ TxX, the infinitesimal Kobayashi-Royden pseudometric is the pseudo-
Finsler metric defined as

kX(ξ) = inf{λ > 0; ∃f : δ → X, f(0) = x, λf ′(0) = ξ}.

Given a piecewise smooth C1 curve : γ : [0, 1]→ X, the length of γ is:

lX(γ) =

∫ 1

0

KX(γ′(t))dt.
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The Kobayashi pseudometric is the integrated form of the infinitesimal Kobayashi-
Royden pseudometric.

dX(p, q) = inf{lX(γ), γ(0) = p, γ(1) = q}

A complex manifold X is said to be Kobayashi hyperbolic,if dX is a distance.

Recall that the Kobayashi-Royden pseudometric is identically zero in C. Moreover,
if X is a compact complex manifold then, X is Kobayashi hyperbolic if and only if,
there is no non-constant holomorphic function f : C→ X.

1.3.2 Kähler Hyperbolicity in the sense of Gromov

Definition 1.3.5 (Gro91). A form α on a complex manifold (X,ω) is called d̃-
bounded if the lift α̃ of α to the universal covering X̃ → X is d-bounded over
(X̃, π∗(ω)).

Recall that if X is compact, then every smooth form α is bounded and α is d-
bounded if and only if it is d-exact. However, if X is non-compact, then an exact
bounded form is not necessarily d-bounded.

Definition 1.3.6. A compact Kähler complex n-dimensional manifold (X,ω) is called
Kähler hyperbolic if ω is d̃-bounded.

1.4 Simple and Semisimple Lie Algebras and Lie

Groups

Definition 1.4.1. A subset H of a Lie algebra G is a Lie subalgebra if it is a subspace
of G (as a vector space) and if it is closed under the bracket operation on G .

Definition 1.4.2. 1. A subalgebra H of G is abelian if [x, y] = 0 for all x, y ∈ H.

2. An ideal in G is a Lie subalgebra H such that

[h, g] ∈ H, for all h ∈ H, and all g ∈ G

The center Z(G) of a Lie algebra G is the set of all elements u ∈ G such that
[u, v] = 0 for all v ∈ G, or equivalently, such that ad(u) = 0

3. A Lie algebra G is simple if it is non-abelian and if it has no ideal other than
(0) and G.

4. A Lie algebra G is semisimple if it has no abelian ideal other than (0).

5. A Lie group is simple (resp. semisimple) if its Lie algebra is simple (resp.
semisimple).
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Clearly, the trivial subalgebras (0) and G itself are ideals, and the center of a Lie
algebra is an abelian ideal. It follows that the center Z(G) of a semisimple Lie algebra
must be the trivial ideal (0). Given two subsets a and b of a Lie algebra G, we let
[a,b] be the subspace of G consisting of all linear combinations [a, b], with a ∈ a and
b ∈ G. If a and b are ideals in G, then a+b, a∩b, and [a,b],are also ideals (for [a,b],
use the Jacobi identity). In particular, [G,G] is an ideal in G called the commutator
ideal G. The commutator ideal [G,G] is also denoted by D1G (or DG). If G is a
simple Lie algebra, then [G,G] = G.

Definition 1.4.3. The derived series (or commutator series) (DkG) of G is defined
as follows:

D0G = G

Dk+1G = [DkG,DkG], k ≥ 0

We have a decreasing sequence

G = D0G ⊇ D1 ⊇ D2 ⊇ . . .

We say that G is solvable iff DkG = (0) for some k.

If G is abelian, then [G,G] = 0, so G is solvable.
Observe that a nonzero solvable Lie algebra has a nonzero abelian ideal, namely, the
last nonzero DjG.
As a consequence, a Lie algebra is semisimple iff it has no nonzero solvable ideal.

It can be shown that every Lie algebra G has a largest solvable ideal r, called the
radical of G.
The radical of G is also denoted rad G.
Then a Lie algebra is semisimple iff radG = (0).

Definition 1.4.4. 1. The lower central series (CkG) of G is defined as follows:

C0G = G

Ck+1G = [G,CkG], k ≥ 0

We have a decreasing sequence

G = C0G ⊇ C1 ⊇ C2 ⊇ ...

2. We say that G is nilpotent if CkG = (0) for some k. By induction, it is easy to
show that

DkG ⊆ CkG k ≥ 0.
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Consequently, every nilpotent Lie algebra is solvable. Note that, by definition, sim-
ple and semisimple Lie algebras are non-abelian, and a simple algebra is a semisimple
algebra.
It turns out that a Lie algebra G is semisimple iff it can be expressed as a direct sum
of ideals gi, with each gi a simple algebra.

As a consequence, if G is semisimple, then we also have [G,G] = G.
If we drop the requirement that a simple Lie algebra be non-abelian, thereby allow-

ing one dimensional Lie algebras to be simple, we run into the trouble that a simple
Lie algebra is no longer semisimple, and the above theorem statement for this reason.
Thus, it seems technically advantageous to require that simple Lie algebras be non-
abelian. Nevertheless, in certain situations, it is desirable to drop the requirement
that a simple Lie algebra be non-abelian and this is what Milnor does in his paper
because it is more convenient for one of his proofs. This is a minor point but it could
be confusing for uninitiated readers.

Proposition 1.4.5. Let G be a Lie algebra with an inner product such that the linear
map ad(u) is skew-adjoint for every u ∈ G. Then, the orthogonal complement a⊥ of
any ideal a is itself an ideal. Consequently, G can be expressed as an orthogonal direct
sum

G = G1 ⊕G2 ⊕ ...⊕Gk

where each Gi is either a simple ideal or a one-dimensional abelian ideal (gi
∼= R).

21



Chapter 2

Balanced Hyperbolic and
Divisorially Hyperbolic Compact
Complex Manifolds

2.1 Introduction

We propose a hyperbolicity theory in which curves are replaced by divisors and the
bidegree (1, 1) is replaced by the bidegree (n − 1, n − 1) on n-dimensional compact
complex manifolds. The notions we introduce are weaker, hence more inclusive, than
their classical counterparts. In particular, the setting need not be projective or even
Kähler. Recall that, by contrast, the classical notions of Kähler and Brody/Kobayashi
hyperbolicity cannot occur in the context of compact manifolds, at least conjecturally
for the latter, outside the projective context. Our motivation stems from the existence
of many interesting examples of non-Kähler compact complex manifolds that display
hyperbolicity features in the generalised sense that we now set out to explain.

(I) Let X be a compact complex manifold with dimCX = n ≥ 2. Recall that

(a) X is said to be Kähler hyperbolic in the sense of Gromov (see [Gro91]) if there

exists a Kähler metric ω on X whose lift ω̃ to the universal covering space X̃ of X is
d-exact with an ω̃-bounded d-potential on X̃.

Meanwhile, it is well known that balanced metrics (i.e. Hermitian metrics ω on X
such that dωn−1 = 0) may exist on certain compact complex n-dimensional manifolds
X such that ωn−1 is even d-exact on X. These manifolds are called degenerate balanced.
There is no analogue of this phenomenon in the Kähler setting. Building on this fact,
we propose in Definition 2.2.1 the balanced analogue of Gromov’s Kähler hyperbolicity
by requiring the existence of a balanced metric ω on X such that ω̃n−1 is d-exact with
an ω̃-bounded d-potential on X̃. We call any compact manifold X admitting such a
metric ω a balanced hyperbolic manifold. We immediately get our first examples:
any degenerate balanced manifold X is automatically balanced hyperbolic.

(b) X is said to be Kobayashi hyperbolic (see e.g. [Kob70]) if the Kobayashi
pseudo-distance on X is actually a distance. By Brody’s Theorem 4.1. in [Bro78],
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this is equivalent to the non-existence of entire curves in X, namely the non-existence
of non-constant holomorphic maps f : C −→ X. This latter property has come to
be known as the Brody hyperbolicity of X. Thus, a compact manifold X is Brody
hyperbolic if and only if it is Kobayashi hyperbolic. (The equivalence is known to
fail when X is non-compact.) In Definition 2.2.7, we propose the (n− 1)-dimensional
analogue of the Brody hyperbolicity, that we call divisorial hyperbolicity. However,
due to the absence of a higher-dimensional analogue of Brody’s Reparametrisation
Lemma [Bro78, Lemma 2.1.], there is a surprising twist: to ensure that the balanced
hyperbolicity of X implies its divisorial hyperbolicity, it does not suffice to rule out
the existence of non-degenerate (at some point) holomorphic maps f : Cn−1 −→ X in
Definition 2.2.7 when dimCX = n ≥ 3, but the non-existence has to be confined to
such maps of subexponential growth in the sense of Definition 2.2.3.

This restriction is also warranted by the trivial existence of a non-degenerate (at
some point) holomorphic map f : Cn−1 −→ X whenever X = G/Γ is the quotient of an
n-dimensional complex Lie group G by a discrete co-compact subgroup Γ. Indeed, such
a map is obtained by composing two obvious maps with the exponential exp : g −→ G
from the Lie algebra g ofG. However, we will see that some of these quotientsX = G/Γ
deserve to be called divisorially hyperbolic.

To put our balanced hyperbolicity and divisorial hyperbolicity into perspective, we
sum up below the relations among the various hyperbolicity notions mentioned above.

Theorem 2.1.1. Let X be a compact complex manifold. The following implications
hold:

X is Kähler hyperbolic =⇒ X is Kobayashi/Brody hyperbolic

=⇒ =⇒

X is balanced hyperbolic =⇒ X is divisorially hyperbolic

=
⇒

X is degenerate balanced

The vertical implications in Theorem 2.1.1 are obvious, while the top horizontal
implication has been known since [Gro91, 0.3.B.]. (See also [CY17, Theorem 4.1.] for
a proof.) Our main result of §.2.2 is Theorem 2.2.8 proving the bottom horizontal
implication of Theorem 2.1.1.

We now collect a few results from §.2.2.3. They contain various examples and
counter-examples illustrating our balanced hyperbolicity and divisorial hyperbolicity
notions, as well as a method for constructing new examples from existing ones.

Theorem 2.1.2. (i) The following two classes of compact complex manifolds X con-
sist exclusively of degenerate balanced (hence also balanced hyperbolic, hence
also divisorially hyperbolic) manifolds:
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(a) the connected sums X = ]k(S
3×S3) of k copies (with k ≥ 2) of S3×S3 endowed

with the Friedman-Lu-Tian complex structure Jk constructed via conifold transitions,
where S3 is the 3-sphere;

(b) the Yachou manifolds X = G/Γ arising as the quotient of any semi-simple
complex Lie group G by a lattice Γ ⊂ G.

(ii) If X1 and X2 are balanced hyperbolic manifolds, so is X1 ×X2.

(iii) The non-divisorially hyperbolic manifolds include: all the complex pro-
jective spaces Pn, all the complex tori Cn/Γ, the 3-dimensional Iwasawa manifold and
all the 3-dimensional Nakamura solvmanifolds.

A key feature of the Friedman-Lu-Tian manifolds (X = ]k(S
3 × S3, Jk) and

the Yachou manifolds X = G/Γ is that their canonical bundle KX is trivial. By
Kobayashi’s Conjecture 2.1.3, this is not expected to be the case in the classical con-
text of Kobayashi/Brody hyperbolic compact complex manifolds X. We hope that
examples of projective balanced hyperbolic or divisorially hyperbolic manifolds X with
KX trivial can be found in the future. Such an extension of the hyperbolicity theory
into Calabi-Yau territory would be one of the spin-offs of our approach.

(II) A fundamental problem in complex geometry is to prove positivity properties
of various objects, notably the canonical bundle KX , associated with a compact hy-
perbolic manifold X, as a way of emphasising the links between the complex analytic
and the metric aspects of the theory.

In this vein, Gromov showed in [Gro91, Corollary 0.4.C] that KX is a big line bundle
whenever X is a compact Kähler hyperbolic manifold. Building on Gromov’s result
and on several classical results in birational geometry (including Mori’s Cone Theorem
implying that KX is nef whenever X contains no rational curves, the Kawamata-Reid-
Shokurov Base-Point-Free Theorem to the effect that KX is semi-ample whenever
it is big and nef, and the Relative Cone Theorem for log pairs), Chen and Yang
showed in [CY17, Theorem 2.11] that KX is even ample under the Kähler hyperbolicity
assumption on the compact X.

This answers affirmatively, in the special case of a compact Kähler hyperbolic
manifold X, the following

Conjecture 2.1.3. (Kobayashi, see e.g. [CY17, Conjecture 2.8] or Lang’s survey
cited therein)

If X is a Kobayashi hyperbolic compact complex manifold, its canonical bundle
KX is ample.

Our undertaking in §.2.3 is motivated by a desire to prove positivity properties of
KX under the weaker hyperbolicity assumptions on X introduced in this chapter, the
balanced hyperbolicity and the divisorial hyperbolicity. Since there are quite a few non-
projective and even non-Kähler compact complex manifolds X that are hyperbolic in
our two senses (see e.g. Theorem 2.1.2), KX cannot be positive in the usual big/ample
senses for those X’s. Therefore, it seems natural to introduce positivity concepts
relative to the complex codimension 1 (rather than the usual complex dimension 1)
that hopefully match our codimension-1 hyperbolicity notions.
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This is precisely what we propose in §.2.3. Given a compact complex n-dimensional
manifold X, recall that the Bott-Chern and Aeppli cohomology groups of any bidegree
(p, q) of X are classically defined, using the spaces Cr, s(X) = Cr, s(X, C) of smooth
C-valued (r, s)-forms on X, as

Hp, q
BC(X, C) =

ker(∂ : Cp, q(X)→ Cp+1, q(X)) ∩ ker(∂̄ : Cp, q(X)→ Cp, q+1(X))

Im (∂∂̄ : Cp−1, q−1(X)→ Cp, q(X))

Hp, q
A (X, C) =

ker(∂∂̄ : Cp, q(X)→ Cp+1, q+1(X))

Im (∂ : Cp−1, q(X)→ Cp, q(X)) + Im (∂̄ : Cp, q−1(X)→ Cp, q(X))
.

We will use the Serre-type duality (see e.g. [Sch07]):

H1, 1
BC(X, C)×Hn−1, n−1

A (X, C) −→ C, ({u}BC , {v}A) 7→ {u}BC .{v}A :=

∫
X

u ∧ v,

(2.1)
as well as the strongly Gauduchon (sG) cone SGX and the Gauduchon cone GX of X
that were defined in [Pop15a] as:

SGX :=

{
{ωn−1}A ∈ Hn−1, n−1

A (X, R) | ω is an sG metric on X

}
⊂ Hn−1, n−1

A (X, R);

GX :=

{
{ωn−1}A ∈ Hn−1, n−1

A (X, R) | ω is a Gauduchon metric on X

}
⊂ Hn−1, n−1

A (X, R).

Recall that a Hermitian metric ω on X is said to be a Gauduchon metric (cf. [Gau77a]),
resp. a strongly Gauduchon (sG) metric (cf. [Pop13]), if ∂∂̄ωn−1 = 0, resp. if ∂ωn−1 ∈
Im ∂̄. Obviously, SGX ⊂ GX .

Now, given a real De Rham cohomology class {α} ∈ H2
DR(X, R) (not necessarily

of type (1, 1)), we say (see Definition 2.3.6) that {α} is divisorially Kähler, resp.
divisorially nef, if its image under the canonically defined map (see (2.28) of Lemma
2.3.1):

P : H2
DR(X, R) −→ Hn−1, n−1

A (X, R), {α}DR 7−→ {(αn−1)n−1, n−1}A,

lies in the Gauduchon cone GX of X, respectively in the closure GX of this cone in
Hn−1, n−1
A (X, R).

We say that a C∞ complex line bundle L on X is divisorially nef if its first Chern
class c1(L) is. An example of result in the special projective setting is the following
immediate consequence of Propositions 2.3.4 and 2.3.8 (see (4) of §.2.3.3):

Proposition 2.1.4. Let L be a holomorphic line bundle on an n-dimensional projec-
tive manifold X. The following implication holds:

L is divisorially nef =⇒ Ln−1.D ≥ 0 for all effective divisors D ≥ 0 on X,

where

Ln−1.D :=

∫
D

(
i

2π
Θh(L)

)n−1

and (i/2π) Θh(L) is the curvature form of L with respect to any Hermitian fibre metric
h.
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If L satisfies the last property above, we say that L is projectively divisorially nef.
This property is the divisorial analogue of the classical nefness property on projective
manifolds X: L is nef ⇐⇒ L.C ≥ 0 for every curve C ⊂ X.

We also introduce the divisorially Kähler cone DKX and the divisorially nef
cone DNX of X in Definition 2.3.6 and discuss various properties of these notions
in §.2.3.1 and §.2.3.2. In §.2.3.3, we point out examples of divisorially Kähler and
divisorially nef cohomology classes.

Our hope is that we are able to take up the following problem in future work.

Question 2.1.5. Let X be a compact complex manifold. If X is balanced hyper-
bolic or, more generally, divisorially hyperbolic, does it follow that its canonical
bundle KX is divisorially nef or even divisorially Kähler?

2.2 Balanced and divisorial hyperbolicity

In this section, we introduce and discuss two hyperbolicity notions that generalise
Gromov’s Kähler hyperbolicity and the Kobayashi/Brody hyperbolicity respectively.

2.2.1 Balanced hyperbolic manifolds

Let X be a compact complex manifold with dimCX = n. Fix an arbitrary Hermitian
metric (i.e. a C∞ positive definite (1, 1)-form) ω on X. Throughout the text, πX :

X̃ −→ X will stand for the universal cover of X and ω̃ = π?Xω will be the Hermitian

metric on X̃ that is the lift of ω. Recall that a C∞ k-form α on X is said to be
d̃(bounded) with respect to ω if π?Xα = dβ on X̃ for some C∞ (k − 1)-form β on X̃
that is bounded w.r.t. ω̃. (See [Gro91].)

Recall two standard notions introduced by Gauduchon and Gromov respectively.

(1) The metric ω is said to be balanced if dωn−1 = 0. The manifold X is said
to be balanced if it carries a balanced metric. (See [Gau77b], where these metrics were
called semi-Kähler.)

(2) The metric ω is said to be Kähler hyperbolic if ω is Kähler (i.e. dω = 0)

and d̃(bounded) with respect to itself. The manifold X is said to be Kähler hyperbolic
if it carries a Kähler hyperbolic metric. (See [Gro91].)

The first notion that we introduce in this work combines the above two classical
ones.

Definition 2.2.1. Let X be a compact complex manifold with dimCX = n. A Hermi-
tian metric ω on X is said to be balanced hyperbolic if ω is balanced and ωn−1 is
d̃(bounded) with respect to ω.

The manifold X is said to be balanced hyperbolic if it carries a balanced hyperbolic
metric.
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Let us first notice the following implication:

X is Kähler hyperbolic =⇒ X is balanced hyperbolic.

To see this, besides the obvious fact that every Kähler metric is balanced, we need
the following

Lemma 2.2.2. Let (X, ω) be a compact complex Hermitian manifold with dimCX = n.

Let k ∈ {1, . . . , 2n} and α ∈ C∞k (X, C). If α is d̃(bounded) (with respect to ω), then

αp is d̃(bounded) (with respect to ω) for every non-negative integer p.

Proof. By the d̃(boundedness) assumption on α, π?Xα = dβ on X̃ for some smooth

ω̃-bounded (k − 1)-form β on X̃. Note that dβ is trivially ω̃-bounded on X̃ since it
equals π?Xα and α is ω-bounded on X thanks to X being compact.

We get: π?Xα
p = d(β ∧ (dβ)p−1) on X̃, where both β and dβ are ω̃-bounded, hence

so is β ∧ (dβ)p−1. �

2.2.2 Divisorially hyperbolic manifolds

We begin with a few preliminaries. Fix an arbitrary integer n ≥ 2. For any r > 0, let
Br := {z ∈ Cn−1 | |z| < r} and Sr := {z ∈ Cn−1 | |z| = r} stand for the open ball,
resp. the sphere, of radius r centred at 0 ∈ Cn−1. Moreover, for any (1, 1)-form γ ≥ 0
on a complex manifold and any positive integer p, we will use the notation:

γp :=
γp

p!
.

If X is a compact complex manifold with dimCX = n ≥ 2 and ω is a Hermitian
metric on X, for any holomorphic map f : Cn−1 → X that is non-degenerate at some
point x ∈ Cn−1 (in the sense that its differential map dxf : Cn−1 −→ Tf(x)X at x is
of maximal rank), we consider the smooth (1, 1)-form f ?ω on Cn−1. The assumptions
made on f imply that the differential map dzf is of maximal rank for every point
z ∈ Cn−1 \Σ, where Σ ⊂ Cn−1 is an analytic subset. Thus, f ?ω is ≥ 0 on Cn−1 and is
> 0 on Cn−1 \Σ. Consequently, f ?ω can be regarded as a degenerate metric on Cn−1.
Its degeneration locus, Σ, is empty if f is non-degenerate at every point of Cn−1, in
which case f ?ω is a genuine Hermitian metric on Cn−1. However, in our case, Σ will
be non-empty in general, so f ?ω will only be a genuine Hermitian metric on Cn−1 \Σ.

For a holomorphic map f : Cn−1 → (X, ω) in the above setting and for r > 0, we
consider the (ω, f)-volume of the ball Br ⊂ Cn−1:

Volω, f (Br) :=

∫
Br

f ?ωn−1 > 0.

Meanwhile, for z ∈ Cn−1, let τ(z) := |z|2 be its squared Euclidean norm. At every
point z ∈ Cn−1 \ Σ, we have:

dτ

|dτ |f?ω
∧ ?f?ω

(
dτ

|dτ |f?ω

)
= f ?ωn−1, (2.2)
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where ?f?ω is the Hodge star operator induced by f ?ω. Thus, the (2n− 3)-form

dσω, f := ?f?ω

(
dτ

|dτ |f?ω

)
on Cn−1 \ Σ is the area measure induced by f ?ω on the spheres of Cn−1. This means
that its restriction

dσω, f, t :=

(
?f?ω

(
dτ

|dτ |f?ω

))
|St

(2.3)

is the area measure induced by the degenerate metric f ?ω on the sphere St = {τ(z) =
t2} ⊂ Cn−1 for every t > 0. In particular, the area of the sphere Sr ⊂ Cn−1 w.r.t.
dσω, f, r is

Aω, f (Sr) =

∫
Sr

dσω, f, r > 0, r > 0.

Definition 2.2.3. Let (X, ω) be a compact complex Hermitian manifold with dimCX =
n ≥ 2 and let f : Cn−1 → X be a holomorphic map that is non-degenerate at some
point x ∈ Cn−1.

We say that f has subexponential growth if the following two conditions are
satisfied:

(i) there exist constants C1 > 0 and r0 > 0 such that∫
St

|dτ |f?ω dσω, f, t ≤ C1tVolω, f (Bt), t > r0; (2.4)

(ii) for every constant C > 0, we have:

lim sup
b→+∞

(
b

C
− logF (b)

)
= +∞, (2.5)

where

F (b) :=

b∫
0

Volω, f (Bt) dt =

b∫
0

(∫
Bt

f ?ωn−1

)
dt, b > 0.

Note that (i), imposing a relative growth condition of the spheres St w.r.t. the
balls Bt as measured by the degenerate metric f ?ω, is of a known type in this context.
See, e.g. [dTh10]. The subexponential growth is expressed by condition (ii).

In a bid to shed light on the subexponential growth condition, we now spell out
the very particular case where f ?ω is the standard Kähler metric (i.e. the Euclidean

metric) β = (1/2)
n−1∑
j=1

idzj∧dz̄j of Cn−1. It will come in handy when we discuss certain

examples in §.2.2.3.
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Lemma 2.2.4. Let

dσβ := ?β

(
dτ

|dτ |β

)
be the (2n − 3)-form on Cn−1 defining the area measure induced by β on the spheres
of Cn−1. Then

|dτ |β dσβ = 2
√
τ dσβ on Cn−1. (2.6)

In particular, ∫
St

|dτ |β dσβ = 2A2n−3 t
2n−2, t > 0, (2.7)

where A2n−3 is the area of the unit sphere S1 ⊂ Cn−1 w.r.t. the measure (dσβ)|S1

induced by the Euclidean metric β.
In particular, any holomorphic map f : Cn−1 −→ (X, ω) such that f ?ω = β has

subexponential growth in the sense of Definition 2.2.3.

Proof. Since dτ = ∂τ+∂̄τ =
n−1∑
j=1

z̄j dzj+
n−1∑
j=1

zj dz̄j and 〈dzj, dzk〉β = 〈dz̄j, dz̄k〉β = 2δjk,

we get |dτ |2β = 4|z|2 = 4τ . This proves (2.6). Meanwhile, τ(z) = |z|2 = t2 for z ∈ St,
so we get (2.7).

On the other hand, Volβ(Bt) = V2n−2 t
2n−2 for every t > 0, so, when f ?ω = β, (2.4)

amounts to
2A2n−3 t

2n−2 ≤ C1 V2n−2 t
2n−1, t > r0,

which obviously holds for some constants C1, r0 > 0. Property (2.5) also holds in an
obvious way. �

To further demystify condition (i) in Definition 2.2.3, we give an alternative ex-
pression for the integral on the sphere St = {|z| = t} ⊂ Cn−1 featuring on the l.h.s. of
(2.4) in terms of integrals on the ball Bt = {|z| < t} ⊂ Cn−1.

Lemma 2.2.5. In the context of Definition 2.2.3, the following identities hold for all
t > 0:∫

St

|dτ |f?ω dσω, f, t = 2

∫
Bt

i∂∂̄τ ∧ f ?ωn−2 −
∫
Bt

i(∂̄τ − ∂τ) ∧ d(f ?ωn−2) (2.8)

= 2

∫
Bt

Λf?ω(i∂∂̄τ) f ?ωn−1 −
∫
Bt

i(∂̄τ − ∂τ) ∧ d(f ?ωn−2),

where Λf?ω is the trace w.r.t. f ?ω or, equivalently, the pointwise adjoint of the operator
of multiplication by f ?ω, while

i∂∂̄τ = i∂∂̄|z|2 =
n−1∑
j=1

idzj ∧ dz̄j := β

is the standard metric of Cn−1.
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Proof. The pointwise identity i∂∂̄τ ∧ (f ?ω)n−2 = Λf?ω(i∂∂̄τ) (f ?ω)n−1 is standard on
any (n − 1)-dimensional complex manifold (which happens to be Cn−1 in this case),
so it suffices to prove the first equality in (2.8).

We saw just above (2.3) that |dτ |f?ω dσω, f = ?f?ω(dτ). Meanwhile, dτ = ∂τ + ∂̄τ
and the 1-forms ∂τ and ∂̄τ are primitive w.r.t. to any metric (in particular, w.r.t.
f ?ω), as any 1-form is. Consequently, the standard formula (3.7) yields:

?f?ω(∂τ) = −i∂τ ∧ f ?ωn−2 and ?f?ω (∂̄τ) = i∂̄τ ∧ f ?ωn−2.

Hence, we get the first equality below, where the second one follows from Stokes’s
theorem:∫

St

|dτ |f?ω dσω, f, t =

∫
St

i(∂̄τ − ∂τ) ∧ f ?ωn−2 =

∫
Bt

d

(
i(∂̄τ − ∂τ) ∧ f ?ωn−2

)

=

∫
Bt

i d(∂̄τ − ∂τ) ∧ f ?ωn−2 −
∫
Bt

i (∂̄τ − ∂τ) ∧ d(f ?ωn−2),

which is nothing but (2.8). �

Another immediate observation is that, due to X being compact, we have

Lemma 2.2.6. In the setting of Definition 2.2.3, the subexponential growth condition
on f is independent of the choice of Hermitian metric ω on X.

Proof. Let ω1 and ω2 be arbitrary Hermitian metrics on X. Since X is compact, there
exists a constant A > 0 such that (1/A)ω2 ≤ ω1 ≤ Aω2 on X. Hence, (1/A) f ?ω2 ≤
f ?ω1 ≤ Af ?ω2 on Cn−1 for any holomorphic map f : Cn−1 → X. The contention
follows. �

Recall that a holomorphic map f : Cn−1 → (X, ω) is standardly said to be of finite
order if there exist constants C1, C2, r0 > 0 such that

Volω, f (Br) ≤ C1 r
C2 for all r ≥ r0. (2.9)

By the proof of Lemma 2.2.6, f being of finite order does not depend on the choice
of Hermitian metric ω on X. Moreover, any f of finite order satisfies condition (ii) in
the definition 2.2.3 of a subexponential growth. Furthermore, in the special case where
n − 1 = 1, it is a standard consequence of Brody’s Renormalisation Lemma [Bro78,
Lemma 2.1.] that any non-constant holomorphic map f : C→ X can be modified to a
non-constant holomorphic map f̃ : C→ X of finite order. (See e.g. [Lan87, Theorem
2.6., p. 72].)

However, one of the key differences between C and Cp with p ≥ 2 is that a holo-
morphic map f̃ that is non-degenerate at some point (the higher dimensional analogue
of the non-constancy of maps from C) and has subexponential growth need not exist
from Cn−1 to a given compact n-dimensional X when n − 1 ≥ 2 even if a holomor-
phic map f : Cn−1 → X that is non-degenerate at some point exists. Based on this
observation, we propose the following notion that generalises that of Kobayashi/Brody
hyperbolicity.
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Definition 2.2.7. Let n ≥ 2 be an integer. An n-dimensional compact complex
manifold X is said to be divisorially hyperbolic if there is no holomorphic map
f : Cn−1 −→ X such that f is non-degenerate at some point x ∈ Cn−1 and f has
subexponential growth in the sense of Definition 2.2.3.

The following implication is obvious:

X is Kobayashi/Brody hyperbolic =⇒ X is divisorially hyperbolic.

Indeed, if there is a holomorphic map f : Cn−1 −→ X (of any growth) such that f
is non-degenerate at some point x ∈ Cn−1, the restriction of f to every complex line
through x in Cn−1 is non-constant.

Meanwhile, the following implication is standard (see [Gro91, 0.3.B.]):

X is Kähler hyperbolic =⇒ X is Kobayashi/Brody hyperbolic.

Taking our cue from the proof of Theorem 4.1 in [CY17], we now complete the
diagram of implications in Theorem 2.1.1 by proving its bottom row.

Theorem 2.2.8. Every balanced hyperbolic compact complex manifold is diviso-
rially hyperbolic.

Proof. Let X be a compact complex manifold, with dimCX = n, equipped with a
balanced hyperbolic metric ω. This means that, if πX : X̃ −→ X is the universal cover
of X, we have

π?Xω
n−1 = dΓ on X̃,

where Γ is an ω̃-bounded C∞ (2n−3)-form on X̃ and ω̃ = π?Xω is the lift of the metric

ω to X̃.
Suppose there exists a holomorphic map f : Cn−1 −→ X that is non-degenerate

at some point x ∈ Cn−1 and has subexponential growth in the sense of Definition
2.2.3. We will prove that f ?ωn−1 = 0 on Cn−1, in contradiction to the non-degeneracy
assumption made on f at x.

Since Cn−1 is simply connected, there exists a lift f̃ of f to X̃, namely a holomorphic
map f̃ : Cn−1 −→ X̃ such that f = πX ◦ f̃ . In particular, dxf̃ is injective since dxf is.

The smooth (n−1, n−1)-form f ?ωn−1 is ≥ 0 on Cn−1 and > 0 on Cn−1 \Σ, where
Σ ⊂ Cn−1 is the proper analytic subset of all points z ∈ Cn−1 such that dzf is not of
maximal rank. We have:

f ?ωn−1 = f̃ ?(π?Xω
n−1) = d(f̃ ?Γ) on Cn−1.

With respect to the degenerate metric f ?ω on Cn−1, we have the following

Claim 2.2.9. The (2n− 3)-form f̃ ?Γ is (f ?ω)-bounded on Cn−1.

Proof of Claim. For any tangent vectors v1, . . . , v2n−3 in Cn−1, we have:

|(f̃ ?Γ)(v1, . . . , v2n−3)|2 = |Γ(f̃?v1, . . . , f̃?v2n−3)|2
(a)

≤ C |f̃?v1|2ω̃ . . . |f̃?v2n−3|2ω̃
= C |v1|2f̃?ω̃ . . . |v2n−3|2f̃?ω̃

(b)
= C |v1|2f?ω . . . |v2n−3|2f?ω,
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where C > 0 is a constant independent of the vj’s that exists such that inequality (a)

holds thanks to the ω̃-boundedness of Γ on X̃, while (b) follows from f̃ ?ω̃ = f ?ω. �

End of Proof of Theorem 2.2.8. We use the notation in the preliminaries of this §.2.2.2.

• On the one hand, we have dτ = 2t dt and

Volω, f (Br) =

∫
Br

f ?ωn−1 =

r∫
0

(∫
St

dµω, f, t

)
dt =

∫
Br

dµω, f, t ∧
dτ

2t
, (2.10)

where dµω, f, t is the positive measure on St defined by

1

2t
dµω, f, t ∧ (dτ)|St = (f ?ωn−1)|St , t > 0.

Comparing with (2.2) and (2.3), this means that the measures dµω, f, t and dσω, f, t
on St are related by

1

2t
dµω, f, t =

1

|dτ |f?ω
dσω, f, t, t > 0. (2.11)

Now, the Hölder inequality yields:∫
St

1

|dτ |f?ω
dσω, f, t ≥

A2
ω, f (St)∫

St
|dτ |f?ω dσω, f, t

,

so together with (2.10) and (2.11) this leads to:

Volω, f (Br) =

r∫
0

(∫
St

1

2t
dµω, f, t

)
dτ =

r∫
0

(∫
St

1

|dτ |f?ω
dσω, f, t

)
dτ

≥ 2

r∫
0

A2
ω, f (St)∫

St
|dτ |f?ω dσω, f, t

t dt, r > 0. (2.12)

• On the other hand, for every r > 0, we have:

Volω, f (Br) =

∫
Br

f ?ωn−1 =

∫
Br

d(f̃ ?Γ) =

∫
Sr

f̃ ?Γ
(a)

≤ C

∫
Sr

dσω, f = C Aω, f (Sr), (2.13)

where C > 0 is a constant that exists such that inequality (a) holds thanks to Claim
2.2.9.

Putting (2.12) and (2.13) together, we get for every r > r0:

Volω, f (Br) ≥
2

C2

r∫
0

Volω, f (Bt)
tVolω, f (Bt)∫

St
|dτ |f?ω dσω, f, t

dt

(a)

≥ 2

C1C2

r∫
r0

Volω, f (Bt) dt
(b)
:= C2 F (r), (2.14)
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where (a) follows from the growth assumption (2.4) and (b) is the definition of a
function F : (r0, +∞) −→ (0, +∞) with C2 := 2/(C1C

2).
By taking the derivative of F , we get for every r > r0:

F ′(r) = Volω, f (Br) ≥ C2 F (r),

where the last inequality is (2.14). This amounts to

d

dt

(
logF (t)

)
≥ C2, t > r0.

Integrating this over t ∈ [a, b], with r0 < a < b arbitrary, we get:

− logF (a) ≥ − logF (b) + C2 (b− a), r0 < a < b. (2.15)

Now, fix an arbitrary a > r0 and let b→ +∞. Thanks to the subexponential growth
assumption (2.5) made on f , there exists a sequence of reals bj → +∞ such that the
right-hand side of inequality (2.15) for b = bj tends to +∞ as j → +∞. This forces
F (a) = 0 for every a > r0, hence Volω, f (Br) = 0 for every r > r0. This amounts to
f ?ωn−1 = 0 on Cn−1, in contradiction to the non-degeneracy assumption made on f
at a point x ∈ Cn−1. �

We now adapt in a straightforward way to our context the first part of the proof
of [CY17, Proposition 2.11], where the non-existence of rational curves in compact
Kähler hyperbolic manifolds was proved, and get the following analogous result.

Proposition 2.2.10. Let X be a compact complex manifold with dimCX = n. Suppose
that X carries a balanced hyperbolic metric ω. Then, there is no holomorphic map
f : Pn−1 −→ X such that f is non-degenerate at some point x ∈ Pn−1.

Proof. Let π?Xωn−1 = dΓ for some smooth (2n− 3)-form Γ on X̃, where πX : X̃ → X

is the universal covering map of X. (We can even choose Γ to be ω̃-bounded on X̃,
but we do not need this here.)

Suppose there exists a holomorphic map f : Pn−1 −→ X that is non-degenerate at
some point. We will show that f ?ωn−1 = 0 on Pn−1, contradicting the non-degeneracy
assumption on f .

Let f̃ : Pn−1 −→ X̃ be a lift of f to X̃, namely a holomorphic map such that
f = πX ◦ f̃ . From

f ?ωn−1 = f̃ ?(π?Xωn−1) = d(f̃ ?Γ),

we get by integration: ∫
Pn−1

f ?ωn−1 =

∫
Pn−1

d(f̃ ?Γ) = 0,

where the last identity follows from Stokes’s theorem.
Meanwhile, f ?ωn−1 ≥ 0 at every point of Pn−1. Therefore, f ?ωn−1 = 0 on Pn−1, a

contradiction. �
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2.2.3 Examples

(I) The following definition was given in [Pop15a].

Definition 2.2.11. Let X be an n-dimensional complex manifold.
A C∞ positive definite (1, 1)-form ω on X is said to be a degenerate balanced

metric if ωn−1 is d-exact. Any X carrying such a metric is called a degenerate
balanced manifold.

Degenerate balanced manifolds are characterised as follows.

Proposition 2.2.12. ([Pop15a, Proposition 5.4]) Let X be a compact complex man-
ifold with dimCX = n. The following statements are equivalent.

(i) The manifold X is degenerate balanced.

(ii) There exists no non-zero d-closed (1, 1)-current T ≥ 0 on X.

(iii) The Gauduchon cone of X degenerates in the following sense: GX = Hn−1, n−1
A (X, R).

We are aware of two classes of degenerate balanced manifolds:

(a) connected sums Xk := ]k(S
3 × S3) of k ≥ 2 copies of S3 × S3, where S3 is

the unit sphere of R4 and each Xk is endowed with the complex structure constructed
by Friedman in [Fri89] and by Lu and Tian in [LT93] via conifold transitions. These
complex structures were shown to be balanced in [FLY12]. Since dimCXk = 3 for every
k and since H4

DR(Xk, C) = 0, any balanced metric ωk on Xk is necessarily degenerate
balanced. Thus, Xk is a degenerate balanced manifold for every k ≥ 2. Note that every
such Xk is simply connected.

(b) quotients X = G/Γ of a semi-simple complex Lie group G by a lattice (i.e. a
discrete co-compact subgroup) Γ ⊂ G. It was shown by Yachou in [Yac98, Proposi-
tions 17 and 18] that every left-invariant Hermitian metric on G induces a degenerate
balanced metric on X. Thus, any such X (henceforth termed a Yachou manifold)
is a degenerate balanced manifold. Note that X = G/Γ is not simply connected if G is
simply connected.

The immediate observation that provides the first class of examples of balanced
hyperbolic manifolds is the following

Lemma 2.2.13. Every degenerate balanced compact complex manifold is bal-
anced hyperbolic.

Proof. If ω is a degenerate balanced metric on an n-dimensional X, then ωn−1 = dΓ
for some smooth (2n − 3)-form Γ on X. Then, π?X(ωn−1) = d(π?XΓ) on the universal

covering manifold X̃, while π?XΓ is ω̃-bounded on X̃ since Γ is ω-bounded on the

compact manifold X as any smooth form is. As usual, πX : X̃ −→ X stands for the
universal covering map and ω̃ := π?Xω.

Thus, ωn−1 is d̃(bounded) on X, so ω is a balanced hyperbolic metric. �

Thus, for every compact complex manifold X, the following implications hold:
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X is degenerate balanced =⇒ X is balanced hyperbolic =⇒ X is divisorially
hyperbolic.

Recall that a compact complex manifold X is said to be complex parallelisable if
its holomorphic tangent bundle T 1, 0X is trivial. By a result of Wang in [Wan54], X is
complex parallelisable if and only if X is the compact quotient X = G/Γ of a simply
connected, connected complex Lie group G by a discrete subgroup Γ ⊂ G.

Meanwhile, it is standard that no complex Lie group G is Brody hyperbolic. Indeed,
the complex one-parameter subgroup generated by any given element ξ in the Lie
algebra of G provides an example of an entire curve in G. (In other words, take
any tangent vector ξ of type (1, 0) in the tangent space TeG at the identity element
e ∈ G seen as the Lie algebra g of G, then compose the linear map from C to g that
maps 1 to ξ with the exponential map exp : g → G, which is holomorphic since G
is a complex Lie group, to get an entire curve in G.) Together with Wang’s result
mentioned above, this shows that no complex parallelisable compact complex manifold
X is Brody hyperbolic (or, equivalently, since X is compact, Kobayashi hyperbolic).

Now, note that the Yachou manifolds X = G/Γ mentioned above are complex
parallelisable manifolds since G is a complex Lie group. So, they are not Kobayashi
hyperbolic. In particular, they are not Kähler hyperbolic. However, they are degener-
ate balanced, hence also balanced hyperbolic (by Lemma 2.2.13), hence also divisorially
hyperbolic (by Theorem 2.2.8). On the other hand, the Yachou manifolds X = G/Γ
are not Kähler (since, for example, they do not even support non-zero d-closed pos-
itive (1, 1)-currents, by Proposition 2.2.12). Hence, we get the following observation
showing that the notions of balanced hyperbolic manifolds and divisorially hyperbolic
manifolds are new and propose a hyperbolicity theory in the possibly non-Kähler con-
text.

Proposition 2.2.14. There exist compact complex non-Kähler manifolds that are bal-
anced hyperbolic but are not Kobayashi hyperbolic.

It seems natural to ask the following

Question 2.2.15. Which compact quotients X = G/Γ of a complex Lie group G by
a lattice Γ are balanced hyperbolic or, at least, divisorially hyperbolic?

We know from [Yac98] that all these quotients are even degenerate balanced (hence
also balanced hyperbolic, hence also divisorially hyperbolic) when G is semi-simple.
On the other hand, there is always a holomorphic map f : Cn−1 → X = G/Γ, non-
degenerate at some point x ∈ Cn−1, whenever G is an n-dimensional complex Lie group
and Γ ⊂ G is a discrete co-compact subgroup. Indeed, let ξ1, . . . , ξn−1 ∈ TeG = g be C-
linearly independent vectors of type (1, 0) in the Lie algebra of G and let h : Cn−1 → g
be the C-linear map that takes the vectors e1, . . . , en−1 forming the canonical basis of
Cn−1 to ξ1, . . . , ξn−1 respectively. The desired map f : Cn−1 → X = G/Γ is obtained
by composing h with the exponential map exp : g→ G (which is holomorphic, due to
G being a complex Lie group, and non-degenerate at least at 0 ∈ g, hence at least on
a neighbourhood of it, since its differential map at 0 is the identity map) and with the
projection map G→ G/Γ.
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Thus, part of Question 2.2.15 reduces to determining the complex Lie groups G
and their lattices Γ for which no map as above that also has subexponential growth in
the sense of Definition 2.2.3 exists. Meanwhile, we point to (a), (b), (c) under (VI) in
this §.2.2.3 for examples of non-hyperbolic compact quotients G/Γ of a complex Lie
group by a lattice.

(II) The other obvious class of balanced hyperbolic manifolds consists of all the
Kähler hyperbolic manifolds. (See §.2.2.)

(III) We shall now point out examples of balanced hyperbolic manifolds that are
neither degenerate balanced, nor Kähler hyperbolic. We first recall the following result
of Michelsohn.

Proposition 2.2.16. ([Mic83, Proposition 1.9]) Let X and Y be complex manifolds.

(i) If X and Y are balanced, the product manifold X × Y is balanced.

(ii) Let σX and σY be the projections of X × Y onto X, resp. Y . If ωX and ωY
are balanced metrics on X, resp. Y , the induced product metric ω = σ?XωX + σ?Y ωY is
a balanced metric on X × Y .

Using this, we notice the following simple way of producing new balanced hyper-
bolic manifolds from existing ones.

Proposition 2.2.17. The Cartesian product of balanced hyperbolic manifolds is
balanced hyperbolic.

Proof. Let (X1, ω1) and (X2, ω2) be balanced hyperbolic manifolds of respective dimen-

sions n and m, and let π1 : X̃1 −→ X1, π2 : X̃2 −→ X2 be their respective universal
covers. By hypothesis, we have:

• ωn−1
1 is d̃(bounded) on (X1, ω1), so there exists an ω̃1-bounded (2n− 3)-form Θ1

on X̃1 such that π∗1(ωn−1
1 ) = dΘ1, where ω̃1 := π?1ω1;

• ωm−1
2 is d̃(bounded) on (X2, ω2), so there exists an ω̃2-bounded (2m− 3)-form Θ2

on X̃2 such that π∗2(ωm−1
2 ) = dΘ2, where ω̃2 := π?2ω2.

The product map

π := π1 × π2 : X̃1 × X̃2 −→ X1 ×X2

is the universal cover of X1×X2. Meanwhile, by (ii) of Proposition 2.2.16, the product
metric

ω = σ?1ω1 + σ?2ω2

on X1 × X2 is balanced, where σ1 : X1 × X2 → X1 and σ2 : X1 × X2 → X2 are the
projections on the two factors. From the equality

ωn+m−1 =

(
n+m− 1

n− 1

)
σ?1ω

n−1
1 ∧ σ?2ωm2 +

(
n+m− 1

n

)
σ?1ω

n
1 ∧ σ?2ωm−1

2

on X1 ×X2, we infer the following equalities on X̃1 × X̃2:
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π?(ωn+m−1) =

(
n+m− 1

n− 1

)
π?(σ?1(ωn−1

1 )) ∧ π?(σ?2(ωm2 )) +

(
n+m− 1

n

)
π?(σ?1(ωn1 )) ∧ π?(σ?2(ωm−1

2 ))

(a)
=

(
n+m− 1

n− 1

)
σ̃1

?(π?1(ωn−1
1 )) ∧ σ̃2

?(π?2(ωm2 )) +

(
n+m− 1

n

)
σ̃1

?(π?1(ωn1 )) ∧ σ̃2
?(π?2(ωm−1

2 ))

=

(
n+m− 1

n− 1

)
σ̃1

?(dΘ1) ∧ σ̃2
?(π?2(ωm2 )) +

(
n+m− 1

n

)
σ̃1

?(π?1(ωn1 )) ∧ σ̃2
?(dΘ2)

=

(
n+m− 1

n− 1

)
d(σ̃1

?Θ1 ∧ σ̃2
?(π?2(ωm2 ))) +

(
n+m− 1

n

)
d (σ̃1

?(π?1(ωn1 )) ∧ σ̃2
?Θ2)

= d

[(
n+m− 1

n− 1

)
σ̃1

?Θ1 ∧ σ̃2
?(π?2(ωm2 )) +

(
n+m− 1

n

)
σ̃1

?(π?1(ωn1 )) ∧ σ̃2
?Θ2

]
(2.16)

where σ̃1 : X̃1 × X̃2 → X̃1 and σ̃2 : X̃1 × X̃2 → X̃2 are the projections on the two
factors. Note that the equalities σj ◦ π = πj ◦ σ̃j for j = 1, 2 were used to get equality
(a) in (2.16).

Now, for every j ∈ {1, 2}, Θj is ω̃j-bounded on X̃j. Therefore, σ̃j
?Θj is σ̃j

?ω̃j-

bounded, hence also ω̃-bounded, on X̃1 × X̃2, where ω̃ is the product metric

ω̃ = σ̃?1ω̃1 + σ̃?2ω̃2

on X̃1× X̃2. We infer that the forms σ̃1
?Θ1∧ σ̃2

?(π?2(ωm2 )) and σ̃1
?(π?1(ωn1 ))∧ σ̃2

?Θ2 are

ω̃-bounded on X̃1×X̃2, hence so is their linear combination featuring in the d-potential
of the form on the r.h.s. of the last line in (2.16).

Consequently, the form ωn+m−1 is d̃(bounded) on (X1 ×X2, ω). (Note that π?ω =
ω̃.) This means that the metric ω of the (n+m)-dimensional complex manifold X1×X2

is balanced hyperbolic. Hence, the manifold X1 ×X2 is balanced hyperbolic. �

In particular, using the above result, we can construct examples of non-Kähler
balanced hyperbolic manifolds.

Corollary 2.2.18. If X1 is any degenerate balanced manifold and X2 is any
Kähler hyperbolic manifold, X1 × X2 is a balanced hyperbolic manifold that
need not be either degenerate balanced, or Kähler hyperbolic, or even Kähler.

On the other hand, we can also construct examples of Kähler balanced hyperbolic
manifolds that are neither Kähler hyperbolic, nor degenerate balanced.

Proposition 2.2.19. Let X1 be a Kähler hyperbolic manifold with dimCX1 = n > 1
and let X2 be a compact Kähler manifold. Then, X1×X2 is a balanced hyperbolic
Kähler manifold.

Proof. Let ω1 be a Kähler hyperbolic metric on X1, ω2 a Kähler metric on X2 and
m = dimCX2. We will keep the notation used in the proof of Proposition 2.2.17, except
for the differences that will be pointed out.
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Since ω1 is d̃(bounded), so are ωn−1
1 and ωn1 , by Lemma 2.2.2. Thus, there exist

ω̃1-bounded forms Θ1 and Γ1 on X̃1, of respective degrees (2n− 3) and (2n− 1), such
that

π∗1(ωn−1
1 ) = dΘ1 and π∗1(ωn1 ) = dΓ1.

The only differences from the proof of Proposition 2.2.17 are the disappearance of
Θ2 and the appearance of Γ1, together with the different properties that ω1 and ω2

now have. Running the equalities (2.16) with these differences incorporated, we get

on X̃1 × X̃2:

π?(ωn+m−1) = d

[(
n+m− 1

n− 1

)
σ̃1

?Θ1 ∧ σ̃2
?(π?2(ωm2 )) +

(
n+m− 1

n

)
σ̃1

?Γ1 ∧ σ̃2
?(π?2(ωm−1

2 ))

]
after using the fact that dω2 = 0 (the Kähler assumption on ω2).

We conclude in the same way as in the proof of Proposition 2.2.17 that the d-
potential on the r.h.s. of the last line above is ω̃-bounded on X̃1 × X̃2. Thus, the
form ωn+m−1 is d̃(bounded) on (X1 ×X2, ω), so ω is a balanced hyperbolic metric on
X1 ×X2. �

(IV) We now discuss in some detail the case of the semi-simple complex Lie group
G = SL(2, C), where several of the above constructions can be described explicitly.

As a complex manifold, G = SL(2, C) is of complex dimension 3. Its complex
structure is described by three holomorphic (1, 0)-forms α, β, γ that satisfy the struc-
ture equations:

dα = β ∧ γ, dβ = γ ∧ α, dγ = α ∧ β. (2.17)

Moreover, the dual of the Lie algebra g = TeG of G is generated, as an R-vector space,
by these forms and their conjugates:

(TeG)? = 〈α, β, γ, α, β, γ〉.

The C∞ positive definite (1, 1)-form

ω :=
i

2
α ∧ α +

i

2
β ∧ β +

i

2
γ ∧ γ

defines a left-invariant (under the action of G on itself) Hermitian metric on G. From
this, using (2.17), we get

ω2 =
1

2
d(α ∧ dα + β ∧ dβ + γ ∧ dγ) ∈ Im d.

So, ω is a degenerate balanced metric on G (see Definition 2.2.11). Since it is left-
invariant under the G-action, ω descends to a degenerate balanced metric on the com-
pact quotient X = G/Γ of G by any lattice Γ. In particular, this example illustrates
Yachou’s result [Yac98, Propositions 17 and 18] in the special case of G = SL(2, C).

Now, consider the holomorphic map

f : C2 → G = SL(2, C), f(z1, z2) =

(
ez1 z2

0 e−z1

)
. (2.18)
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This map is non-degenerate at every point z = (z1, z2) ∈ C2, as can be seen at once.
However, f is not of subexponential growth in the sense of Definition 2.2.3, as we will
now see. Actually, there is no non-degenerate holomorphic map g : C2 → X = G/Γ
of subexponential growth thanks to X being degenerate balanced (hence also balanced
hyperbolic) and to our Theorem 2.2.8.

Lemma 2.2.20. 1 In C2, we have

f ?ω = (|z2|2e−2Re z1 + 2) idz1 ∧ dz̄1 + e−2Re z1 idz2 ∧ dz̄2

+ z2 e
−2Re z1 idz1 ∧ dz̄2 + z̄2 e

−2Re z1 idz2 ∧ dz̄1.

Proof. • Calculations at (0, 0) ∈ C2.

f?

(
∂

∂z1 |(0, 0)

)
=

d

dt |t=0
f(t, 0) =

d

dt |t=0

(
et 0
0 e−t

)
=

(
1 0
0 −1

)
:= H

f?

(
∂

∂z2 |(0, 0)

)
=

d

dt |t=0
f(0, t) =

d

dt |t=0

(
1 t
0 1

)
=

(
0 1
0 0

)
:= X.

Note that H,X ∈ TI2SL(2, C) = sl(2, C). A basis of the Lie algebra sl(2, C) is given
by {H,X, Y }, where

Y :=

(
0 0
1 0

)
.

The Lie brackets linking the elements of this basis are

[X, Y ] = H; [Y, H] = 2Y ; [X, H] = −2X. (2.19)

Rather than being dual to the basis {H,X, Y }, the basis {α, β, γ} of left-invariant
(1, 0)-forms that satisfy equations (2.17) is dual to the following basis of tangent
vectors of type (1, 0) at I2 ∈ SL(2, C):

A :=
i

2
(X + Y ) =

i

2

(
0 1
1 0

)
, B :=

1

2
(X − Y ) =

1

2

(
0 1
−1 0

)
, C :=

i

2
H =

i

2

(
1 0
0 −1

)
.

This amounts to

X = −iA+B, Y = −iA−B, H = −2iC.

From (2.19), we get

[A, B] = −C; [A, C] = B; [B, C] = −A. (2.20)

(To see this, observe, for example, that [A, B] = −(i/2) [X, Y ] = −(i/2)H = −C.)

• Calculations at an arbitrary point (z0
1 , z

0
2) ∈ C2.

1The authors are very grateful to L. Ugarte for pointing out to them the calculations leading to
the result of this lemma and most of the discussion of SL(2, C) preceding it under (IV).
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Since TI2SL(2, C) = 〈H, X, Y 〉 = 〈A, B, C〉, for every g ∈ SL(2, C), the tangent
space at g is generated as

TgSL(2, C) = 〈(Lg)?H, (Lg)?X, (Lg)?Y 〉 = 〈(Lg)?A, (Lg)?B, (Lg)?C〉,

where Lg : G → G is the left translation by g, namely Lg(h) = gh for every h ∈ G.
Since Lg is a linear map, (Lg)? = Lg. Therefore, for every

g =

(
a b
c d

)
∈ SL(2, C) (with ad− bc = 1),

we get:

(Lg)?A = (Lg)A =
i

2

(
a b
c d

)(
0 1
1 0

)
=
i

2

(
b a
d c

)
:= Ag

(Lg)?B = (Lg)B =
1

2

(
a b
c d

)(
0 1
−1 0

)
=

1

2

(
−b a
−d c

)
:= Bg

(Lg)?C = (Lg)C =
i

2

(
a b
c d

)(
1 0
0 −1

)
=
i

2

(
a −b
c −d

)
:= Cg.

We now fix an arbitrary point (z0
1 , z

0
2) ∈ C2 and we let

g0 := f(z0
1 , z

0
2) =

(
ez

0
1 z0

2

0 e−z
0
1

)
∈ SL(2, C).

(Thus, for g0, we have: a = ez
0
1 , b = z0

2 , c = 0, d = e−z
0
1 .) We get:

f?

(
∂

∂z1 |(z0
1 , z

0
2)

)
=

d

dt |t=0
f((z0

1 , z
0
2) + (t, 0)) =

d

dt |t=0

(
ez

0
1+t z0

2

0 e−z
0
1−t

)
=

(
ez

0
1 0

0 −e−z0
1

)
=

(
ez

0
1 −z0

2

0 −e−z0
1

)
+ e−z

0
1z0

2

(
0 ez

0
1

0 0

)
= −2iCg0 + e−z

0
1z0

2 (−iAg0 +Bg0). (2.21)

Similarly, we get

f?

(
∂

∂z2 |(z0
1 , z

0
2)

)
=

d

dt |t=0
f((z0

1 , z
0
2) + (0, t)) =

d

dt |t=0

(
ez

0
1 z0

2 + t

0 e−z
0
1

)
=

(
0 1
0 0

)
= e−z

0
1

(
0 ez

0
1

0 0

)
= e−z

0
1 (−iAg0 +Bg0). (2.22)

We now use the general formula (f ?ω)(V, W ) = ω(f?V, f?W ) (for all vector fields
V,W ) to deduce expressions for (f ?ω)(∂/∂zj, ∂/∂z̄k) (for all j, k = 1, 2) from (2.21)
and (2.22).
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From (2.21), we get:

(f ?ω)

(
∂

∂z1 |(z0
1 , z

0
2)

,
∂

∂z̄1 |(z0
1 , z

0
2)

)
=

i

2
(α ∧ ᾱ + β ∧ β̄ + γ ∧ γ̄)

(
− ie−z0

1z0
2 Ag0 + e−z

0
1z0

2 Bg0 − 2iCg0 , ie
−z0

1z0
2 Āg0 + e−z

0
1z0

2 B̄g0 + 2iC̄g0

)
= i (|z0

2 |2 e−2Re (z0
1) + 2). (2.23)

From (2.22), we get:

(f ?ω)

(
∂

∂z2 |(z0
1 , z

0
2)

,
∂

∂z̄2 |(z0
1 , z

0
2)

)
(2.24)

=
i

2
(α ∧ ᾱ + β ∧ β̄ + γ ∧ γ̄)

(
− ie−z0

1 Ag0 + e−z
0
1 Bg0 , ie

−z0
1 Āg0 + e−z

0
1 B̄g0

)
= i e−2Re (z0

1).

From (2.21) and (2.22), we get:

(f ?ω)

(
∂

∂z1 |(z0
1 , z

0
2)

,
∂

∂z̄2 |(z0
1 , z

0
2)

)
=

i

2
(α ∧ ᾱ + β ∧ β̄ + γ ∧ γ̄)

(
− ie−z0

1z0
2 Ag0 + e−z

0
1z0

2 Bg0 − 2iCg0 , ie
−z0

1 Āg0 + e−z
0
1 B̄g0

)
= i z0

2 e
−2Re (z0

1). (2.25)

Finally, from (2.21) and (2.22) we also get:

(f ?ω)

(
∂

∂z2 |(z0
1 , z

0
2)

,
∂

∂z̄1 |(z0
1 , z

0
2)

)
=

i

2
(α ∧ ᾱ + β ∧ β̄ + γ ∧ γ̄)

(
− ie−z0

1 Ag0 + e−z
0
1 Bg0 , ie

−z0
1 z0

2 Āg0 + e−z
0
1 z0

2 B̄g0 + 2i Cg0

)
= i z0

2 e
−2Re (z0

1). (2.26)

All that is left to do is to put (2.23), (2.24), (2.25) and (2.26) together and get the
contention. �

Based on this, an elementary calculation, spelt out in the proof of the following
statement, shows that f is not of subexponential growth.

Lemma 2.2.21. The map f defined in (2.18) has the following property:

log

b∫
0

Volω, f (Bt) dt ≥
√

2 b, b� 1.

Proof. Taking squares in the expression for f ?ω of Lemma 2.2.20, we get in C2 ' R4:

f ?ω2 = 4e−2Re z1 idz1 ∧ dz̄1 ∧ idz2 ∧ dz̄2 = 16e−2x1 dx1 ∧ dy1 ∧ dx2 ∧ dy2,
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where z1 = x1 + iy1 and z2 = x2 + iy2.
Passing to spherical coordinates (ρ, θ1, θ2, θ3) in R4, with ρ ≥ 0, θ1, θ2 ∈ [0, π],

θ3 ∈ [0, 2π), such that x1 = ρ cos θ1, y1 = ρ(sin θ1)(cos θ2), x2 = ρ(sin θ1)(sin θ2)(cos θ3)
and y2 = ρ(sin θ1)(sin θ2)(sin θ3), we get:

Volω, f (Bt) =
1

2

∫
Bt

f ?ω2 = 8(2π2)

π∫
0

( t∫
0

e−2ρ cos θ1 dρ

)
dθ1

≥ 16π2

π∫
3π
4

( t∫
0

e−2ρ cos θ1 dρ

)
dθ1 = −8π2

π∫
3π
4

e−2t cos θ1

cos θ1

dθ1 + a,

where a ∈ R is independent of t. Since −1 ≤ cos θ1 ≤ −
√

2/2 (hence also 1 ≤
−1/ cos θ1 ≤

√
2) for θ1 ∈ [3π/4, π], we get:

Volω, f (Bt) =
1

2

∫
Bt

f ?ω2 ≥ 8π2π

4
e
√

2 t + a, t > 0.

Integrating over t ∈ [0, b], with b > 0, we get:

b∫
0

Volω, f (Bt) dt ≥
2π3

√
2

(e
√

2 b − 1) + a b ≥ e
√

2 b, b� 1.

This proves the contention. �

We conclude that, for any constant C > 0, we have:

b

C
− log

b∫
0

Volω, f (Bt) dt ≤
(

1

C
−
√

2

)
b −→ −∞ as b→ +∞

if the constant C is chosen such that C > 1/
√

2.
Thus, for any lattice Γ ⊂ G = SL(2, C), the map f : C2 → X = G/Γ is not of

subexponential growth in the sense of Definition 2.2.3.

(V) We now discuss the rather curious example of the n-dimensional complex
projective space Pn for an arbitrary integer n ≥ 2. We will see that an obvious
map Cn−1 → Pn easily satisfies condition (ii) but may not satisfy condition (i) in the
definition 2.2.3 of the subexponential growth.

Let j : Cn−1 → Pn be the holomorphic embedding obtained by composing the inclu-
sions Cn−1 ↪→ Cn and Cn ↪→ Pn given respectively by (z1, . . . , zn−1) 7→ (z1, . . . , zn−1, 0)
and (z1, . . . , zn) 7→ [1 : z1 : · · · : zn].

As is well known, the restriction to Cn of the Fubini-Study metric ωFS of Pn under
the above inclusion Cn ↪→ Pn is

ωFS = i∂∂̄ log(1 + |z|2) =
1

1 + |z|2
i∂∂̄|z|2 − 1

(1 + |z|2)2
i∂|z|2 ∧ ∂̄|z|2,
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where |z|2 =
∑n

l=1 |zl|2. Since i∂|z|2∧ ∂̄|z|2 ≥ 0 as a (1, 1)-form and ω0 := (i/2) ∂∂̄|z|2
is the Euclidean metric on Cn, we get:

ωFS ≤
2

1 + |z|2
ω0 ≤ 2ω0 on Cn.

Restricting to Cn−1 under the above inclusion Cn−1 ↪→ Cn, we get

j?ωFS ≤ 2β0 on Cn−1,

where β0 = (ω0)|Cn−1 is the Euclidean metric on Cn−1. Hence, the (ωFS, j)-volume of
the ball Br ⊂ Cn−1 of radius r centred at 0 is estimated as:

VolωFS , j(Br) =
1

(n− 1)!

∫
Br

j?ωn−1
FS ≤

2n−1

(n− 1)!

∫
Br

βn−1
0 = cn r

2n−2, r > 0,

where cn > 0 is a constant depending only on n.
This shows that the embedding j : Cn−1 → (Pn, ωFS) is of finite order, so it satisfies

property (ii) in Definition 2.2.3.

As for property (i) in Definition 2.2.3, j?ωFS is a Kähler metric on Cn−1, hence the
second term in formula (2.8) for

∫
St
|dτ |j?ωFS dσωFS , j, t vanishes. To compute the first

term, we deduce from

j?ωFS =
1

(1 + |z|2)2

∑
j, k

(
δjk (1 + |z|2)− z̄j zk

)
idzj ∧ dz̄k on Cn−1

that

Λj?ωFS(i∂∂̄τ) = (1 + |z|2)2

n−1∑
j=1

1

1 + |z|2 − |zj|2
.

Hence, using (2.8) for the equality below, we get:∫
St

|dτ |j?ωFS dσωFS , j, t = 2

∫
Bt

(1 + |z|2)2

( n−1∑
j=1

1

1 + |z|2 − |zj|2

)
(j?ωFS)n−1

≤ 2(n− 1)(1 + t2)2 VolωFS , j(Bt), t > 0.

The last inequality falls far short of the required (2.4), so we cannot say anything at
this stage about whether Pn is divisorially hyperbolic or not.

(VI) (a) A prototypical example of a compact complex manifold that is not diviso-
rially hyperbolic is any complex torus X = Cn/Γ, where Γ ⊂ (Cn, +) is any lattice. Any
Hermitian metric with constant coefficients on Cn (for example, the Euclidean metric
β = (1/2)

∑
j idzj ∧dz̄j) defines a Kähler metric ω on X: π?ω = β, where π : Cn → X

is the projection. If j : Cn−1 −→ Cn is the obvious inclusion (z1, . . . , , zn−1) 7→
(z1, . . . , , zn), the non-degenerate holomorphic map f = π ◦ j : Cn−1 → X has subex-
ponential growth thanks to Lemma 2.2.4 because f ?ω = j?β = β0, where β0 is the
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Euclidean metric of Cn−1. This shows that the complex torus X = Cn/Γ is not
divisorially hyperbolic.

(b) Similarly, the Iwasawa manifold X = G/Γ is not divisorially hyperbolic, where
G = (C3, ?) is the nilpotent complex Lie group (called the Heisenberg group) whose
group operation is defined as

(ζ1, ζ2, ζ3) ? (z1, z2, z3) = (ζ1 + z1, ζ2 + z2, ζ3 + z3 + ζ1 z2),

while the lattice Γ ⊂ G consists of the elements (z1, z2, z3) ∈ G with z1, z2, z3 ∈ Z[i].
(See e.g. [Nak75].)

Indeed, the holomorphic (1, 0)-forms dz1, dz2, dz3 − z1 dz2 on C3 induce holomor-
phic (1, 0)-forms α, β, γ on X. The Hermitian metric

ω0 = iα ∧ ᾱ + iβ ∧ β̄ + iγ ∧ γ̄

on X lifts to the Hermitian metric

ω = π?ω0 = idz1 ∧ dz̄1 + (1 + |z1|2) idz2 ∧ dz̄2 + idz3 ∧ dz̄3− z̄1 idz3 ∧ dz̄2− z1 idz2 ∧ dz̄3

on G = C3, where π : G→ X is the projection.
Considering the non-degenerate holomorphic map f = π ◦ j : C2 −→ X, where

j : C2 −→ C3 is the obvious inclusion (z1, z2) 7→ (z1, z2, 0), we get

f ?ω0 = j?ω = ω|C2 = idz1 ∧ dz̄1 + (1 + |z1|2) idz2 ∧ dz̄2

on C2. Hence,
f ?ω2

0 = 2(1 + |z1|2) dV0

on C2, where we put dV0 := idz1 ∧ dz̄1 ∧ idz2 ∧ dz̄2.. Thus, for the ball Br ⊂ C2 of
radius r centred at 0, we get

Volω0, f (Br) =
1

2

∫
Br

f ?ω2
0 =

∫
Br

(1 + |z1|2) dV0 ≤ c2 r
4(1 + r2), r > 0, (2.27)

where c2 > 0 is a constant independent of r. This shows that f is of finite order, hence
f satisfies property (ii) in Definition 2.2.3.

To show that f has subexponential growth, it remains to check that it also satisfies
property (i) in Definition 2.2.3. We will first compute the integral on the left of (2.4)
in this case. Recall that n = 3. Then, note that

d(f ?ω0) = ∂|z1|2 ∧ idz2 ∧ dz̄2 + ∂̄|z1|2 ∧ idz2 ∧ dz̄2 = (∂τ + ∂̄τ) ∧ idz2 ∧ dz̄2.

Thus, we get the following equalities on C2:

i(∂̄τ − ∂τ) ∧ d(f ?ω0) = i(∂̄τ − ∂τ) ∧ (∂τ + ∂̄τ) ∧ idz2 ∧ dz̄2 = −2i∂τ ∧ ∂̄τ ∧ idz2 ∧ dz̄2

= −2|z1|2 idz1 ∧ dz̄1 ∧ idz2 ∧ dz̄2 = −2|z1|2 dV0,

where we put dV0 := idz1 ∧ dz̄1 ∧ idz2 ∧ dz̄2.
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On the other hand, since i∂∂̄τ = idz1 ∧ dz̄1 + idz2 ∧ dz̄2, we have

Λf?ω0(i∂∂̄τ) = 1 +
1

1 + |z1|2
.

Therefore, the integral on the left of (2.4) reads in this case:∫
St

|dτ |f?ω0 dσω0, f, t = 2

∫
Bt

(
1 +

1

1 + |z1|2

)
(1 + |z1|2) dV0 + 2

∫
Bt

|z1|2 dV0

= 4

∫
Bt

(1 + |z1|2) dV0 = 4 Volω0, f (Bt), t > 0,

where the last equality was seen in (2.27).
This proves that f satisfies property (i) in Definition 2.2.3. We conclude that the

map f has subexponential growth, proving that the 3-dimensional Iwasawa manifold
X is not divisorially hyperbolic.

(c) Finally, we point out that no Nakamura manifold X = G/Γ is divisorially
hyperbolic, where G = (C3, ?) is the solvable, non-nilpotent complex Lie group whose
group operation is defined as

(ζ1, ζ2, ζ3) ? (z1, z2, z3) = (ζ1 + z1, ζ2 + e−ζ1z2, ζ3 + eζ1z3),

while Γ ⊂ G is a lattice. (See e.g. [Nak75].)
We equip X with the metric

ω0 = iη1 ∧ η̄1 + iη2 ∧ η̄2 + iη3 ∧ η̄3,

where η1, η2, η3 are the holomorphic (1, 0)-forms on X induced respectively by the
left-invariant holomorphic (1, 0)-forms dz1, e

−z1dz2, e
z1dz3 on G. If π : G −→ X is

the projection, we see that ω0 lifts to the Hermitian metric

ω = π?ω0 = idz1 ∧ dz̄1 + e−2Re(z1) idz2 ∧ dz̄2 + e2Re(z1) idz3 ∧ dz̄3

on G = C3.
Let j : C2 −→ G ' C3 be the obvious inclusion (z2, z3) 7→ (0, z2, z3). Then, for

the non-degenerate holomorphic map f = π ◦ j : C2 −→ X, we get

f ?ω0 = j?(π?ω0) = idz2 ∧ dz̄2 + idz3 ∧ dz̄3

on C2. Thus, f ?ω0 is the Euclidean metric of C2, so f has subexponential growth by
Lemma 2.2.4, proving that the Nakamura manifold X is not divisorially hyperbolic.

2.3 Divisorially Kähler and divisorially nef classes

The starting point is the following simple, but key observation.
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Lemma 2.3.1. Let X be a compact complex manifold with dimCX = n. The map:

P = P n−1
n−1, n−1 : H2

DR(X, R) −→ Hn−1, n−1
A (X, R), {α}DR 7−→ {(αn−1)n−1, n−1}A,

(2.28)
is well defined in the sense that it is independent of the choice of a C∞ representative
α of its De Rham cohomology class, where (αn−1)n−1, n−1 is the component of bidegree
(n− 1, n− 1) of the (2n− 2)-form αn−1.

This follows from the following

Lemma 2.3.2. Let X be a compact complex manifold with dimCX = n.

(i) For any k ∈ {0, . . . , 2n}, any form α ∈ C∞k (X, C) such that dα = 0 and any
bidegree (p, q) with p+ q = k, we have

∂∂̄αp, q = 0,

where αp, q is the (p, q)-type component of α.
In particular, for every 2-form α such that dα = 0, we have ∂∂̄(αn−1)n−1, n−1 = 0,

so (αn−1)n−1, n−1 defines an Aeppli cohomology class {(αn−1)n−1, n−1}A ∈ Hn−1, n−1
A (X, C).

(ii) For any 2-forms α1 and α2 such that dα1 = dα2 = 0 and α1 = α2 + dβ for
some 1-form β, we have

{(αn−1
1 )n−1, n−1}A = {(αn−1

2 )n−1, n−1}A.

Proof. (i) Writing the decomposition α =
∑

r+s=k

αr, s of α into pure-type forms, we

see that the hypothesis dα = 0 is equivalent to ∂αr, s + ∂̄αr+1, s−1 = 0 for all (r, s).
Applying ∂̄, this implies that ∂∂̄αr, s = 0 for all (r, s).

(ii) Taking the (n− 1)-st power in α1 = α2 + dβ and using the fact that dα2 = 0,
we get:

αn−1
1 = αn−1

2 +
n−1∑
k=1

(
n− 1

k

)
d(αn−1−k

2 ∧ β ∧ (dβ)k−1).

Hence, αn−1
1 −αn−1

2 ∈ Im d, which implies that (αn−1
1 )n−1, n−1− (αn−1

2 )n−1, n−1 ∈ Im ∂+
Im ∂̄. �

2.3.1 Case of projective manifolds

Let X be a projective manifold with dimCX = n. As is well known (see e. g. [Ha70]),
a holomorphic line bundle L −→ X is said to be nef if

L.C :=

∫
C

c1(L) ≥ 0

for every curve C ⊂ X, where c1(L) = { i
2π

Θh(L)}DR ∈ H1, 1(X, R) ∩H2(X, Z) is the
first Chern class of L, namely the De Rham cohomology class of the curvature form
of L with respect to any Hermitian metric h on L.
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We now generalise this notion in the context of divisors (rather than curves) and
of possibly non-integral and non-type (1, 1) real De Rham cohomology classes using
the Serre-type duality (3.6).

Definition 2.3.3. Let X be a projective manifold with dimCX = n. A cohomology
class {α}DR ∈ H2

DR(X, R) is said to be projectively divisorially nef if

P ({α}DR).{[D]}BC :=

∫
D

(αn−1)n−1, n−1 ≥ 0

for all effective divisors D ≥ 0 on X and some (hence any) representative α ∈
C∞2 (X, R) of {α}DR.

As is well known, the current of integration [D] on an effective divisor D is a closed
positive (1, 1)-current. (By a (1, 1)-current we mean a current of bidegree (1, 1).)
However, not every such current T is the current of integration on an effective divisor
D. Nevertheless, we notice that Definition 2.3.3 does not change if divisors are replaced
by currents whose cohomology classes lie in the real vector space NSR(X) spanned by
integral (1, 1)-cohomology classes, known as the Neron-Severi subspace of H2

DR(X, R).

Proposition 2.3.4. Let X be a projective manifold with dimCX = n. Fix any
cohomology class {α}DR ∈ H2

DR(X, R). Then, {α}DR is projectively divisorially
nef if and only if

{(αn−1)n−1, n−1}A.{T}BC :=

∫
X

(αn−1)n−1, n−1 ∧ T ≥ 0

for all closed positive (1, 1)-currents T ≥ 0 on X such that {T}DR ∈ NSR(X) and
some (hence any) representative α ∈ C∞2 (X, R) of {α}DR.

Proof. It is proved in (b) of Proposition 6.6. in [Dem00], as a consequence of Nadel’s
Vanishing Theorem, that the integral part of the pseudo-effective cone of X (i.e. the
set of cohomology classes of closed positive (1, 1)-currents that are linear combinations
with real coefficients of integral classes) is the closure of the effective cone of X (i.e.
the set of cohomology classes of effective divisors). This means that, for every closed
positive (1, 1)-current T ≥ 0 on X such that {T}DR ∈ NSR(X), the class {T}BC
is a limit of classes {[Dj]}BC with (Dj)j∈N effective divisors on X. This suffices to
conclude. �

We now observe a useful property of the set of projectively divisorially nef classes.

Proposition 2.3.5. Let X be a projective manifold. The set

PDNX :=

{
{α}DR ∈ H2

DR(X, R) | {α}DR is projectively divisorially nef

}
is a closed cone in H2

DR(X, R).
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Proof. To show that PDNX is a cone, we have to show that it is stable under
multiplications by non-negative reals, which is obvious.

To show closedness, let {α}DR ∈ H2
DR(X, R) be a limit of classes {αj}DR ∈ PDNX .

Then, the class {αj}DR − {α}DR converges to 0 in H2
DR(X, R) as j → +∞. By the

definition of the quotient topology of H2
DR(X, R), there exists a sequence of C∞ d-

closed 2-forms βj ∈ {αj}DR − {α}DR such that βj −→ 0 in the C∞ topology as
j → +∞. Now, pick an arbitrary C∞ representative α of the class {α}DR. We infer
that αj := α + βj represents the class {αj}DR for every j and limj→+∞ αj = α in the
C∞ topology.

Thus, for every effective divisor D on X, we have:∫
D

(αn−1
j )n−1, n−1 ≥ 0 for all j ∈ N and lim

j→+∞

∫
D

(αn−1
j )n−1, n−1 =

∫
D

(αn−1)n−1, n−1,

where the first inequality follows from the assumption {αj}DR ∈ PDNX for all j.
Therefore,

∫
D

(αn−1)n−1, n−1 ≥ 0 for every effective divisor D, proving that the class
{α}DR is projectively divisorially nef. �

2.3.2 Case of arbitrary compact complex manifolds

Let X be a compact complex n-dimensional manifold. Recall the obvious inclusion
SGX ⊂ GX of the strongly Gauduchon (sG) cone of X in the Gauduchon cone. (See the
introduction for a reminder of the definitions.) The equality SGX = GX is equivalent
to every Gauduchon metric on X being sG (see [PU18, Lemma 1.3]). Manifolds X
with this property are called sGG manifolds; they were studied in [PU18].

The definition of divisorially nef classes given in (ii) of the next Definition 2.3.6
on an arbitrary compact complex manifold will be shown in (b) of Proposition 2.3.8
to imply the projectively divisorially nef property defined on projective manifolds in
Definition 2.3.3.

Definition 2.3.6. Let X be a compact complex manifold with dimCX = n and let

P : H2
DR(X, R) −→ Hn−1, n−1

A (X, R), {α}DR 7−→ {(αn−1)n−1, n−1}A,

be the map of Lemma 2.3.1.

(i) A cohomology class {α}DR ∈ H2
DR(X, R) is said to be divisorially Kähler if

P ({α}DR) ∈ GX . The set

DKX :=

{
{α}DR ∈ H2

DR(X, R) | {α}DR is divisorially Kähler

}
is called the divisorially Kähler cone of X.

(ii) A cohomology class {α}DR ∈ H2
DR(X, R) is said to be divisorially nef if

P ({α}DR) ∈ GX , where GX is the closure of the Gauduchon cone in Hn−1, n−1
A (X, R).

The set

DNX :=

{
{α}DR ∈ H2

DR(X, R) | {α}DR is divisorially nef

}
is called the divisorially nef cone of X.
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Note that DKX and DNX are cones in H2
DR(X, R) in the sense that they are

stable under multiplications by positive reals. However, they are not convex and are
not stable under additions since the map P is not linear.

Proposition 2.3.7. Let X be a compact complex manifold with dimCX = n. The
divisorially Kähler cone of X can be described as

DKX = P−1(SGX) = P−1(GX) ⊂ H2
DR(X, R). (2.29)

In particular, DKX is open in H2
DR(X, R) and the following implication holds:

DKX 6= ∅ =⇒ X is an sG manifold. (2.30)

Proof. The identity DKX = P−1(GX) holds by the definition of DKX . Meanwhile,
P−1(SGX) ⊂ P−1(GX) since SGX ⊂ GX . So, it suffices to prove the inclusion DKX ⊂
P−1(SGX).

Let {α}DR ∈ DKX . Pick an arbitrary smooth representative α ∈ {α}DR. Since
P ({α}DR) ∈ GX , there exists a Gauduchon metric ω on X such that

(αn−1)n−1, n−1 = ωn−1 + ∂un−2, n−1 + ∂̄un−1, n−2

for some smooth forms un−2, n−1 and un−1, n−2 of the displayed bidegrees. These forms
can be chosen to be conjugate to each other since α and ω are real. We get:

(αn−1)n−1, n−1 = ωn−1 + (d(un−2, n−1 + un−1, n−2))n−1, n−1,

so ωn−1 is the (n − 1, n − 1)-component of the smooth real d-closed (2n − 2)-form
αn−1− d(un−2, n−1 +un−1, n−2). This proves that ω is strongly Gauduchon (see [Pop13,
Proposition 4.2.]). Since {ωn−1}A = {(αn−1)n−1, n−1}A = P ({α}DR), we infer that
P ({α}DR) ∈ SGX . This proves the inclusion DKX ⊂ P−1(SGX).

The openness ofDKX inH2
DR(X, R) follows from the openness of GX inHn−1, n−1

A (X, R)
and from the continuity of the map P .

Finally, to prove implication (2.30), suppose there exists {α}DR ∈ DKX . Then
P ({α}DR) ∈ SGX , so SGX 6= ∅. The last piece of information is equivalent to X being
an sG manifold. �

Part (c) of the following result gives, on any compact complex manifold, an alter-
native definition of a divisorially nef class that is analogous to the classical analytic
definition of a nef class given in [Dem92].

Proposition 2.3.8. Let X be a compact complex manifold with dimCX = n.

(a) The divisorially nef cone DNX is closed in H2
DR(X, R). In particular,

DKX ⊂ DNX , (2.31)

where DKX is the closure of the divisorially Kähler cone in H2
DR(X, R).

(b) For every class {α}DR ∈ H2
DR(X, R), the following equivalence holds:

{α}DR ∈ DNX ⇐⇒ P ({α}DR).{T}BC ≥ 0 for every {T}BC ∈ EX , (2.32)
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where EX ⊂ H1, 1
BC(X, R) is the pseudo-effective cone of X consisting of the Bott-Chern

cohomology classes of all closed positive (1, 1)-currents T ≥ 0 on X.
In particular, if X is projective, a class {α}DR ∈ H2

DR(X, R) is projectively diviso-
rially nef in the sense of Definition 2.3.3 whenever {α}DR ∈ H2

DR(X, R) is divisorially
nef in the sense of Definition 2.3.6.

(c) A class {α}DR ∈ H2
DR(X, R) is divisorially nef if and only if for every con-

stant ε > 0, there exists a representative Ωε ∈ C∞n−1, n−1(X, R) of the class P ({α}DR)
such that

Ωε ≥ −ε ωn−1,

where ω > 0 is an arbitrary Hermitian metric on X fixed beforehand.

Proof. Since X is compact, any two Hermitian metrics on X are comparable. Mean-
while, a Gauduchon metric always exists on X by [Gau77a], so we may assume that
the background metric ω on X is actually Gauduchon.

(a) The first statement is an immediate consequence of the continuity of P and
of the identity DNX = P−1(GX) defining the divisorially nef cone. Inclusion (2.31)
follows from the closedness of DNX and from the obvious inclusion DKX ⊂ DNX .

(b) The first statement follows from the duality between the pseudo-effective cone
EX ⊂ H1, 1

BC(X, R) and the closure of the Gauduchon cone GX ⊂ Hn−1, n−1
A (X, R) under

duality (3.6) between H1, 1
BC(X, C) and Hn−1, n−1

A (X, C). This cone duality, observed in
[Pop15b] as a reformulation of Lamari’s duality Lemma 3.3 in [Lam99], implies that,
given any class cn−1, n−1

A ∈ Hn−1, n−1
A (X, R), the following equivalence holds:

cn−1, n−1
A ∈ GX ⇐⇒ c1, 1

BC .c
n−1, n−1
A ≥ 0 for every class c1, 1

BC ∈ EX .

In our case, it suffices to apply this duality to cn−1, n−1
A := P ({α}DR) to get equiv-

alence (2.32).
When X is projective, the second statement follows from (2.32) and from Propo-

sition 2.3.4.

(c) “⇐=” Fix a Gauduchon metric ω on X and a class {α}DR ∈ H2
DR(X, R).

Suppose that, for every ε > 0, the class P ({α}DR) can be represented by a form
Ωε ∈ C∞n−1, n−1(X, R) such that Ωε ≥ −ε ωn−1. Then, Ωε + 2ε ωn−1 ≥ ε ωn−1 > 0
and Ωε + 2ε ωn−1 is ∂∂̄-closed, so it is the (n − 1)-st power of a Gauduchon metric.
(See [Mic83] for the existence of a unique (n − 1)-st root for any positive definite
(n− 1, n− 1)-form on an n-dimensional complex manifold.) Hence,

cε := {Ωε}A + 2ε {ωn−1}A = P ({α}DR) + 2ε {ωn−1}A ∈ GX , ε > 0,

so cε −→ P ({α}DR) as ε → 0. Therefore, P ({α}DR) ∈ GX , which amounts to {α}DR
being divisorially nef.

“=⇒” Suppose {α}DR ∈ H2
DR(X, R) is divisorially nef. Then P ({α}DR) ∈ GX ,

so there exists a sequence of classes ck ∈ GX such that ck −→ P ({α}DR) as k →
+∞. Thus, P ({α}DR) − ck −→ 0 in Hn−1, n−1

A (X, R), so, from the definition of the
quotient topology, we infer the existence of a sequence of real C∞ representatives
Γk ∈ P ({α}DR) − ck such that Γk −→ 0 in the C∞ topology (hence also in the C0
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topology) as k → +∞. This implies that, for every ε > 0, there exists kε ∈ N such
that

Γk ≥ −ε ωn−1, k ≥ kε,

where ω is an arbitrarily fixed Gauduchon metric on X.
On the other hand, for every k ∈ N, pick a Gauduchon metric ωk on X such that

ωn−1
k ∈ ck. (This is possible since ck ∈ GX .) We infer that

P ({α}DR) 3 Ωε := Γkε + ωn−1
kε
≥ −ε ωn−1, ε > 0.

This proves the contention. �

Question 2.3.9. If DKX 6= ∅, is (2.31) an equality?

2.3.3 Examples

(1) Let X be a compact complex manifold with dimCX = n. Suppose there exists a
Hermitian-symplectic (H-S) structure on X. According to [ST10, Definition 1.5], this is
a real C∞ d-closed 2-form ω̃ on X whose component ω of type (1, 1) is positive definite.
It is easy to see that the (n−1, n−1)-component (ω̃n−1)n−1, n−1 of the (n−1)-st power
of ω̃ is positive definite on X. (See [YZZ19, §.2, Lemma 1] or [DP20, Proposition 2.1].)
Since it is also ∂∂̄-closed, it defines an element P ({ω̃}DR) = {(ω̃n−1)n−1, n−1}A in the
Gauduchon cone GX . Thus, we get

Proposition 2.3.10. If ω̃ is a Hermitian-symplectic structure on a compact com-
plex manifold X, the cohomology class {ω̃}DR ∈ H2

DR(X, R) is divisorially Kähler.

(2) From the equivalence of (i) and (iii) in Proposition 2.2.12, we deduce the
following

Proposition 2.3.11. If X is a degenerate balanced compact complex manifold,
DKX = H2

DR(X, R).

(3) Let L −→ X be a C∞ (not necessarily holomorphic) complex line bundle over
an n-dimensional compact complex manifold X. For any C∞ Hermitian metric h on L,
the curvature form α = i

2π
Θh(L) is a C∞ real d-closed 2-form on X which represents

the first Chern class c1(L) ∈ H2(X, Z) of X. Moreover, c1(L) is of type (1, 1) if and
only if L is holomorphic. We say that L is divisorially nef if c1(L) is.

Similarly, when X is projective, we say that L is projectively divisorially nef if c1(L)
is. In this case, we have:

L is projectively divisorially nef ⇐⇒

P (c1(L)).{[D]}BC :=

∫
D

((
i

2π
Θh(L)

)n−1)n−1, n−1

≥ 0

for all effective divisors D on X, where P : H2
DR(X, R) −→ Hn−1, n−1

A (X, R) is the
map (2.28).
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(4) If L −→ X is a holomorphic line bundle over an n-dimensional compact complex
manifold X, then its curvature form i

2π
Θh(L) with respect to any C∞ Hermitian metric

h on L is of type (1, 1). Hence, if X is projective, we have:

L is projectively divisorially nef ⇐⇒ c1(L)n−1.{[D]}BC :=

∫
D

(
i

2π
Θh(L)

)n−1

≥ 0

for all effective divisors D ≥ 0 on X.

A well-known result (see e.g. [Ha70, §.6, p. 34-36]) tells us that projectively divi-
sorially nef holomorphic line bundles are, indeed, generalisations of nef such bundles.

Theorem 2.3.12. Let L −→ X be a holomorphic line bundle over a projective
manifold X. The following implication holds:

L is nef =⇒ L is projectively divisorially nef.

Proof. This follows at once from Kleiman’s Theorem 6.1. in [Ha70, p. 34-36] which
states that L being nef is equivalent to Lp.Y :=

∫
Y
c1(L)p ≥ 0 for every p-dimensional

subvariety Y ⊂ X, for all 1 ≤ p ≤ dimCX. �
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Chapter 3

Some Properties of Balanced
Hyperbolic Compact Complex
Manifolds

3.1 Introduction

In this chapter, we continue the study of compact complex balanced hyperbolic man-
ifolds that we talk about in the previous chapter as generalisations in the possibly
non-projective and even non-Kähler context of the classical notions of Kähler hyper-
bolic (in the sense of Gromov) and Kobayashi/Brody hyperbolic manifolds.

We now outline the specific properties of these classes of manifolds.

(I) Case of balanced and degenerate balanced manifolds

In the first part of the chapter, we obtain some general results on compact complex
manifolds carrying balanced metrics (and, in some cases, results on Gauduchon metrics)
and then we use them to infer vanishing results for degenerate balanced manifolds. See
§.3.2.1 for a reminder of the terminology used in what follows.

(a) Our first main result, obtained as a consequence of the computation in Lemma
3.2.1, is a Hard Lefschetz Isomorphism between the De Rham cohomologies of
degrees 1 and 2n-1 that holds on any compact complex balanced manifold satisfying
a mild ∂∂̄-type condition.

Theorem 3.1.1. Let X be a compact complex manifold with dimCX = n.

(i) If ω is a balanced metric on X, the linear map:

{ωn−1}DR ∧ · : H1
DR(X, C) −→ H2n−1

DR (X, C), {u}DR 7−→ {ωn−1 ∧ u}DR, (3.1)

is well defined and depends only on the cohomology class {ωn−1}DR ∈ H2n−2
DR (X, C),

where ωn−1 := ωn−1/(n− 1)!.

(ii) If, moreover, X has the following additional property: for every form v ∈
C∞1, 1(X, C) such that dv = 0, the following implication holds:

v ∈ Im ∂ =⇒ v ∈ Im (∂∂̄), (3.2)
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the map (3.1) is an isomorphism.

As a consequence of this discussion, we obtain the following vanishing properties
for the cohomology of degenerate balanced manifolds.

Proposition 3.1.2. Let X be a compact degenerate balanced manifold.

(i) The Bott-Chern cohomology groups of types (1, 0) and (0, 1) of X vanish:
H1, 0
BC(X, C) = 0 and H0, 1

BC(X, C) = 0.

(ii) If, moreover, X satisfies hypothesis (3.2), its De Rham cohomology group of
degree 1 vanishes: H1

DR(X, C) = 0.

Note that degenerate balanced manifolds that satisfy hypothesis (3.2) do exist.
Indeed, Friedman showed in [Fri17] that the manifolds X = ]k(S

3 × S3), with k ≥
2, endowed with the Friedman-Lu-Tian complex structure constructed via conifold
transitions ([Fri89], [LT93], [FLY12]) are even ∂∂̄-manifolds.

(b) Our study of the cohomology of degree 2 in this setting centres on seeking
out possible positivity properties of balanced hyperbolic manifolds. As an alternative
to question 2.1.5, wondering about possible positivity properties, in the senses defined
therein, of the canonical bundle KX of any balanced hyperbolic manifold X, we con-
centrate this time on whether there are “many” (in a sense to be determined) closed
positive currents T of bidegree (1, 1) on such a manifold.

The starting point of this investigation is Proposition 5.4 in [Pop15a], reproduced
as Proposition 2.2.12 a compact complex manifold X is degenerate balanced if and only
if there exists no non-zero d-closed (1, 1)-current T ≥ 0 on X. In other words, the
compact degenerate balanced manifolds X are characterised by their pseudo-effective
cone EX (namely, the set of Bott-Chern cohomology classes of d-closed positive (1, 1)-
currents on X) being reduced to the zero class.

This prompts one to ask the following

Question 3.1.3. Let X be a compact complex manifold. Is it true that X is balanced
hyperbolic if and only if its pseudo-effective cone EX is small (in a sense to be
determined)?

In §.3.2.3 and §.3.2.4 we provide some evidence for this by first showing that both
the balanced hypothesis on a given Hermitian metric ω (see Lemma and Definition
3.2.2) and the Gauduchon hypothesis (see Lemma and Definition 3.2.12) enable one
to define a notion of ω-primitive De Rham cohomology classes of degree 2 (resp. ω-
primitive Bott-Chern cohomology classes of bidegree (1, 1)). For example, if ω is
balanced, we set

H2
DR(X, C)ω-prim := ker

(
{ωn−1}DR ∧ ·

)
⊂ H2

DR(X, C),

after we have showed that the linear map:

{ωn−1}DR ∧ · : H2
DR(X, C) −→ H2n

DR(X, C) ' C, {α}DR 7−→ {ωn−1 ∧ α}DR,
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is well defined and depends only on the cohomology class {ωn−1}DR ∈ H2n−2
DR (X, C).

We go on to show that a class c ∈ H2
DR(X, C) is ω-primitive if and only if it can

be represented by an ω-primitive form (cf. Lemma 3.2.3), a fact that does not seem
to hold in the Gauduchon context of §.3.2.4. We then show that, when the balanced
metric ω is not degenerate balanced, the ω-primitive classes form a complex hyperplane
H2
DR(X, C)ω-prim in H2

DR(X, C) that depends only on the balanced class {ωn−1}DR.
(See Corollary 3.2.5.) Finaly, we are able to define a positive side H2

DR(X, R)+
ω and a

negative side H2
DR(X, R)−ω of the hyperplane H2

DR(X, R)ω-prim := H2
DR(X, C)ω-prim ∩

H2
DR(X, R) in H2

DR(X, R) and get a partition of H2
DR(X, R):

H2
DR(X, R) = H2

DR(X, R)+
ω ∪H2

DR(X, R)ω-prim ∪H2
DR(X, R)−ω .

A similar study of the case where ω is only a Gauduchon metric in §.3.2.4 leads to
the characterisation of the pseudo-effective cone as the intersection of the non-negative
sides of all the hyperplanes H1, 1

BC(X, R)ω-prim determined by Aeppli cohomology classes
[ωn−1]A of Gauduchon metrics ω on X:

EX =
⋂

[ωn−1]A∈GX

H1, 1
BC(X, R)≥0

ω , (3.3)

where GX is the Gauduchon cone of X (introduced in [Pop15a] as the set of all such
Aeppli cohomology classes, see §.3.2.1 for a reminder of the terminology).

In §.3.3.1, we answer a version of Question 3.1.3 on the universal covering space
of a balanced hyperbolic manifold in the following form. Throughout the chapter, Lpω̃,
Lpω, resp. Lpg will stand for the space of objects that are Lp with respect to the metric
ω̃, ω, resp. g.

Proposition 3.1.4. Let (X, ω) be a balanced hyperbolic manifold and let π :

X̃ −→ X be the universal cover of X. There exists no non-zero d-closed positive
(1, 1)-current T̃ ≥ 0 on X̃ such that T̃ is L1

ω̃, where ω̃ := π?ω is the lift of ω to X̃.

This result provides the link with the second part of this chapter that we now
briefly outline.

(II) Case of balanced hyperbolic manifolds

The results in the second part of the chapter mirror, to some extent, those in
the first part. The main difference is that the stage changes from X to its universal
covering space X̃. Specifically, when X is supposed to be balanced hyperbolic, we
obtain vanishing theorems for the L2 harmonic cohomology of X̃.

(a) In this setting, our main result in degree 1 and its dual degree 2n− 1 is the
following

Theorem 3.1.5. Let X be a compact complex balanced hyperbolic manifold with
dimCX = n. Let π : X̃ −→ X be the universal cover of X and ω̃ := π?ω the lift to X̃
of a balanced hyperbolic metric ω on X.
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There are no non-zero ∆ω̃-harmonic L2
ω̃-forms of pure types and of degrees 1 and

2n− 1 on X̃:

H1, 0
∆ω̃

(X̃, C) = H0, 1
∆ω̃

(X̃, C) = 0 and Hn, n−1
∆ω̃

(X̃, C) = Hn−1, n
∆ω̃

(X̃, C) = 0,

where ∆ω̃ := dd?ω̃ + d?ω̃d is the d-Laplacian induced by the metric ω̃.

The differential operators d, d?ω̃,∆ω̃ and all the similar ones are considered as closed

and densely defined unbounded operators on the spaces L2
k(X̃, C) of L2

ω̃-forms of degree

k on the complete complex manifold (X̃, ω̃). (See reminder of some basic results on
complete Riemannian manifolds and unbounded operators in §.3.3.1.)

(b) To introduce our results in degree 2, we start by reminding the reader of
the following facts of [Dem84] (see also [Dem97, VII, §.1]). For any Hermitian metric
ω on a complex manifold X with dimCX = n, one defines the torsion operator τ =
τω := [Λω, ∂ω ∧ · ] of order 0 and of type (1, 0) acting on the differential forms of
X, where Λω is the adjoint of the multiplication operator ω ∧ · w.r.t. the pointwise
inner product 〈 , 〉ω defined by ω. The Kähler commutation relations generalise to
the arbitrary Hermitian context as

i[Λω, ∂̄] = ∂? + τ ? (3.4)

and the three other relations obtained from this one by conjugation and/or adjunc-
tion. (See [Dem97, VII, §.1, Theorem 1.1.].) Moreover, considering the torsion-twisted
Laplacians

∆τ := [d+ τ, d? + τ ?] and ∆′τ := [∂ + τ, ∂? + τ ?],

the following formula holds (see [Dem97, VII, §.1, Proposition 1.16.]):

∆τ = ∆′τ + ∆′′. (3.5)

When the metric ω is Kähler, one has τ = 0 and one recovers the classical formula
∆ = ∆′ + ∆′′. However, we will deal with a more general, possibly non-Kähler, case.

In the context of balanced hyperbolic manifolds, our main result in degree 2 is
the following

Theorem 3.1.6. Let X be a compact complex balanced hyperbolic manifold with
dimCX = n. Let π : X̃ −→ X be the universal cover of X and ω̃ := π?ω the lift to X̃
of a balanced hyperbolic metric ω on X.

There are no non-zero semi-positive ∆τ̃ -harmonic L2
ω̃-forms of pure type (1, 1) on

X̃: {
α1, 1 ∈ H1, 1

∆τ̃
(X̃, C) | α1, 1 ≥ 0

}
= {0},

where τ̃ = τ̃ω̃ := [Λω̃, ∂ω̃ ∧ ·]

As a piece of notation that will be used throughout the text, whenever u is a k-
form and (p, q) is a bidegree with p+ q = k, up, q will stand for the component of u of
bidegree (p, q).
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3.2 Properties of degenerate balanced manifolds

In this section, we investigate the effect of the balanced condition on the cohomology
of degrees 1 and 2, while pointing out the peculiarities of the degenerate balanced case.

3.2.1 Background

Given a complex manifoldX with dimCX = n ≥ 2 and a Hermitian metric ω (identified
with its underlying C∞ positive definite (1, 1)-form ω) on X, we will put ωr := ωr/r!
for r = 1, . . . , n. Moreover, we denote by Cr, s(X) = Cr, s(X, C) the space of smooth
C-valued (r, s)-forms on X for r, s = 1, . . . , n. If X is compact, recall the classical
definitions of the Bott-Chern and Aeppli cohomology groups of X of any bidegree
(p, q):

Hp, q
BC(X, C) =

ker(∂ : Cp, q(X)→ Cp+1, q(X)) ∩ ker(∂̄ : Cp, q(X)→ Cp, q+1(X))

Im (∂∂̄ : Cp−1, q−1(X)→ Cp, q(X))

Hp, q
A (X, C) =

ker(∂∂̄ : Cp, q(X)→ Cp+1, q+1(X))

Im (∂ : Cp−1, q(X)→ Cp, q(X)) + Im (∂̄ : Cp, q−1(X)→ Cp, q(X))
.

We will use the Serre-type duality (see e.g. [Sch07]):

H1, 1
BC(X, C)×Hn−1, n−1

A (X, C) −→ C, ({u}BC , {v}A) 7→ {u}BC .{v}A :=

∫
X

u ∧ v,

(3.6)
as well as the pseudo-effective cone of X introduced in [Dem92, Definition 1.3] as the
set

EX :=

{
[T ]BC ∈ H1, 1

BC(X, R) / T ≥ 0 d-closed (1, 1)-current on X

}
.

Recall that a Hermitian metric ω on X is said to be a Gauduchon metric (cf.
[Gau77]) if ∂∂̄ωn−1 = 0. For any such metric ω, ωn−1 defines an Aeppli cohomology
class and the set of all these cohomology classes is called the Gauduchon cone of X
(cf. [Pop15a]):

GX :=

{
{ωn−1}A ∈ Hn−1, n−1

A (X, R) | ω is a Gauduchon metric on X

}
⊂ Hn−1, n−1

A (X, R).

The main link between the cones GX and EX on a compact n-dimensional X is
provided by the following reformulation observed in [Pop15b] of a result of Lamari’s
from [Lam99]. The pseudo-effective cone EX ⊂ H1, 1

BC(X, R) and the closure of the
Gauduchon cone GX ⊂ Hn−1, n−1

A (X, R) are dual to each other under the duality
(3.6). This means that the following two statements hold.

(1) Given any class c1, 1
BC ∈ H

1, 1
BC(X, R), the following equivalence holds:

c1, 1
BC ∈ EX ⇐⇒ c1, 1

BC .c
n−1, n−1
A ≥ 0 for every class cn−1, n−1

A ∈ GX .
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(2) Given any class cn−1, n−1
A ∈ Hn−1, n−1

A (X, R), the following equivalence holds:

cn−1, n−1
A ∈ GX ⇐⇒ c1, 1

BC .c
n−1, n−1
A ≥ 0 for every class c1, 1

BC ∈ EX .

Finally, recall that a compact complex manifold X is said to be a ∂∂̄-manifold
(see [DGMS75] for the notion, [Pop14] for the name) if for any d-closed pure-type form
u on X, the following exactness properties are equivalent:

u is d-exact ⇐⇒ u is ∂-exact ⇐⇒ u is ∂̄-exact ⇐⇒ u is ∂∂̄-exact.

On a complex manifoldX with dimCX = n, we will often use the following standard
formula (cf. e.g. [Voi02, Proposition 6.29, p. 150]) for the Hodge star operator ? = ?ω
of any Hermitian metric ω applied to ω-primitive forms v of arbitrary bidegree (p, q):

? v = (−1)k(k+1)/2 ip−q ωn−p−q ∧ v, where k := p+ q. (3.7)

Recall that, for any k = 0, 1, . . . , n, a k-form v is said to be (ω)-primitive if ωn−k+1∧v =
0 and that this condition is equivalent to Λωv = 0, where Λω is the adjoint of the
operator ω∧· (of multiplication by ω) w.r.t. the pointwise inner product 〈 , 〉ω defined
by ω.

We will also often deal with C∞ (1, 1)-forms α. If α = αprim + fω is the Lefschetz
decomposition, where αprim is primitive and f is a smooth function on X, we get
Λωα = nf , hence

α = αprim +
1

n
(Λωα)ω. (3.8)

We will often write (1, 1)-forms in this form.
On the other hand, we will often indicate the metric with respect to which certain

operators are calculated. For example, d?ω and ∆ω := dd?ω + d?ωd are the adjoint of d,
resp. the d-Laplacian, induced by the metric ω.

3.2.2 Case of degree 1

The starting point is the following

Lemma 3.2.1. Let ω be a Hermitian metric on a complex manifold X with dimCX =
n. Fix a form u = u1, 0 + u0, 1 ∈ C∞1 (X, C).

(i) The following formula holds:

d?(ωn−1 ∧ u) = i(∂u1, 0 − ∂̄u0, 1) ∧ ωn−2 + i

(
(∂u0, 1)prim − (∂̄u1, 0)prim

)
∧ ωn−2

+
i

n

(
Λω(∂̄u1, 0)− Λω(∂u0, 1)

)
ωn−1, (3.9)

where d? = d?ω is the formal adjoint of d w.r.t. the L2
ω inner product, while the subscript

prim indicates the ω-primitive part in the Lefschetz decomposition of the form to which
it is applied.
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In particular, if du1, 0 = 0 and du0, 1 = 0, we get

d?(ωn−1 ∧ u) = 0.

(ii) If ω is balanced and du1, 0 = 0 and du0, 1 = 0, then

∆(ωn−1 ∧ u) = 0,

where ∆ = ∆ω = dd? + d?d is the d-Laplacian induced by ω.
(iii) If X is compact, ω is degenerate balanced and du1, 0 = du0, 1 = 0, then

u = 0.

Proof. (i) All 1-forms are primitive, so from the standard formula (3.7) we get: ? u1, 0 =
−iωn−1 ∧ u1, 0, hence ? (ωn−1 ∧ u1, 0) = −iu1, 0. Meanwhile, d? = − ? d?, so applying
− ? d to the previous identity and writing the (1, 1)-form ∂̄u1, 0 in the form (3.8), we
get the first line below:

d?(ωn−1 ∧ u1, 0) = i ? ∂u1, 0 + i ? (∂̄u1, 0)prim +
i

n
(Λω∂̄u

1, 0) ? ω

= i∂u1, 0 ∧ ωn−2 − i(∂̄u1, 0)prim ∧ ωn−2 +
i

n
(Λω∂̄u

1, 0)ωn−1,

where the second line follows from the standard formula (3.7).
Running the analogous computations for u0, 1 or taking conjugates, we get:

d?(ωn−1 ∧ u0, 1) = −i∂̄u0, 1 ∧ ωn−2 + i(∂u0, 1)prim ∧ ωn−2 −
i

n
(Λω∂u

0, 1)ωn−1.

Formula (3.9) follows by adding up the above expressions for d?(ωn−1 ∧ u1, 0) and
d?(ωn−1 ∧ u0, 1).

(ii) If ω is balanced, we get d(ωn−1 ∧ u) = ωn−1 ∧ du = 0 since du = 0 under the
assumptions. Since we also have d?(ωn−1 ∧ u) = 0 by (i), the contention follows.

(iii) If ω is degenerate balanced, there exists a smooth (2n− 3)-form Γ such that
ωn−1 = dΓ. Hence, ωn−1 ∧ u = d(Γ ∧ u) ∈ Im d because we also have du = 0 by our
assumptions. However, ωn−1 ∧ u ∈ ker ∆ by (ii) and ker ∆ ⊥ Im d by the compactness
assumption on X. Thus, the form ωn−1 ∧ u ∈ ker ∆ ∩ Im d = {0} must vanish.

On the other hand, the pointwise map ωn−1∧· : Λ1T ?X −→ Λ2n−1T ?X is bijective,
so we get u = 0 from ωn−1 ∧ u = 0. �

We now use Lemma 3.2.1 to infer its consequences announced in the introduction.

• Proof of (i) of Proposition 3.1.2. This follows at once from (iii) of Lemma 3.2.1.
�

Another consequence of Lemma 3.2.1 is that the balanced condition, combined
with the mild ∂∂̄-type condition in (ii) of Theorem 3.1.1, enables one to get a Hard
Lefschetz Isomorphism between the De Rham cohomology spaces of degrees 1 and
2n− 1.
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• Proof of Theorem 3.1.1. (i) Lemma 3.2.1 is not needed here. Let u be a smooth
1-form. Since dωn−1 = 0, d(ωn−1∧u) = 0 whenever du = 0, while ωn−1∧u = d(fωn−1)
whenever u = df for some smooth function f on X. This proves the well-definedness
of the map (3.1).

Similarly, if ωn−1 = γn−1 + dΓ for some smooth (2n − 2)-form γn−1 and some
smooth (2n− 3)-form Γ, then ωn−1 ∧u = γn−1 ∧u+ d(Γ∧u) for every d-closed 1-form
u. Hence, {ωn−1 ∧ u}DR = {γn−1 ∧ u}DR whenever {ωn−1}DR = {γn−1}DR, so the map
(3.1) depends only on {ωn−1}DR.

(ii) SinceH1
DR(X, C) andH2n−1

DR (X, C) have equal dimensions, by Poincaré duality,
it suffices to prove that the map (3.1) is injective.

Let u be an arbitrary smooth d-closed 1-form on X. We start by showing that
there exists a smooth function f : X → C such that ∂u0, 1 = ∂∂̄f on X. To see this,
notice that the property du = 0 translates to the following three relations holding:

(a) ∂u1, 0 = 0; (b) ∂u0, 1 + ∂̄u1, 0 = 0; (c) ∂̄u0, 1 = 0. (3.10)

Thus, the (1, 1)-form ∂u0, 1 is d-closed (since it is ∂̄-closed by (c) of (3.10)) and ∂-
exact. Thanks to hypothesis (3.2), we infer that ∂u0, 1 is ∂∂̄-exact. Thus, there exists
a smooth function f as stated.

Using (b) of (3.10), we further infer that ∂̄u1, 0 = −∂u0, 1 = −∂∂̄f , so ∂̄(u1, 0−∂f) =
0. From the identities ∂(u0, 1 − ∂̄f) = 0 and ∂̄(u1, 0 − ∂f) = 0 and from (a) and (c) of
(3.10), we get:

d(u1, 0 − ∂f) = 0 and d(u0, 1 − ∂̄f) = 0.

This means that

(u− df)1, 0 ∈ ker d and (u− df)0, 1 ∈ ker d.

From this and from (i) of Lemma 3.2.1, we deduce that

ωn−1 ∧ (u− df) ∈ ker d?. (3.11)

On the other hand, if ω is balanced and if {ωn−1 ∧ u}DR = 0 ∈ H2n−1
DR (X, C) (i.e.

ωn−1 ∧ u ∈ Im d), then
ωn−1 ∧ (u− df) ∈ Im d. (3.12)

From (3.11), (3.12) and ker d? ⊥ Im d, we infer that ωn−1 ∧ (u − df) = 0. Since
u− df is a smooth 1-form on X and the pointwise-defined linear map:

ωn−1 ∧ · : C∞1 (X, C) −→ C∞2n−1(X, C), α 7→ ωn−1 ∧ α,

is bijective, we finally get u− df = 0, so {u}DR = 0 ∈ H1
DR(X, C).

This proves the injectivity of the map (3.1) whenever ω is balanced and X satisfies
hypothesis (3.2). �

In the degenerate balanced case, we get the vanishing of the first Betti number of
the manifold.

• Proof of (ii) of Proposition 3.1.2. If ω is degenerate balanced, the map (3.1)
vanishes identically. Meanwhile, by Theorem 3.1.1, the map (3.1) is an isomorphism.
We get H1

DR(X, C) = 0. �
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3.2.3 Case of degree 2: De Rham cohomology

The balanced property of a metric enables one to define a notion of primitivity for
2-forms.

Lemma and Definition 3.2.2. Let ω be a balanced metric on a compact complex
manifold X with dimCX = n. The linear map:

{ωn−1}DR∧ · : H2
DR(X, C) −→ H2n

DR(X, C) ' C, {α}DR 7−→ {ωn−1∧α}DR, (3.13)

is well defined and depends only on the cohomology class {ωn−1}DR ∈ H2n−2
DR (X, C).

We set:

H2
DR(X, C)ω-prim := ker

(
{ωn−1}DR ∧ ·

)
⊂ H2

DR(X, C)

and we call its elements (ω-)primitive De Rham 2-classes.

Proof. Since dωn−1 = 0, for every d-closed (resp. d-exact) 2-form α, ωn−1∧α is d-closed
(resp. d-exact). This proves the well-definedness of the map.

Meanwhile, if Ω ∈ C∞n−1, n−1(X, C) is such that Ω = ωn−1 + dΓ for some smooth
(2n − 3)-form Γ, then, for every d-closed 2-form α, Ω ∧ α = ωn−1 ∧ α + d(Γ ∧ α).
Hence, {Ω ∧ α}DR = {ωn−1 ∧ α}DR whenever {Ω}DR = {ωn−1}DR. This proves the
independence of the map {ωn−1}DR ∧ · of the choice of representative of the class
{ωn−1}DR. �

We now observe a link between primitive 2-classes and primitive 2-forms.

Lemma 3.2.3. Let ω be a balanced metric on a compact complex manifold X with
dimCX = n. For any class c ∈ H2

DR(X, C), the following equivalence holds:

c is ω-primitive ⇐⇒ ∃α ∈ c such that α is ω-primitive.

Proof. “⇐=” Suppose α ∈ C∞2 (X, C) such that dα = 0, α ∈ c and α is ω-primitive.
Then, ωn−1 ∧ α = 0, hence {ωn−1 ∧ α}DR = 0. This means that the class c = {α}DR
is ω-primitive.

“ =⇒ ” Suppose the class c is ω-primitive. Pick an arbitrary representative β ∈ c.
The ω-primitivity of c = {β}DR translates to {ωn−1∧β}DR = 0 ∈ H2n

DR(X, C). This, in
turn, is equivalent to the existence of a form Γ ∈ C∞2n−1(X, C) such that ωn−1∧β = dΓ.

Meanwhile, we know from the general theory that the map

ωn−1 ∧ · : C∞1 (X, C) −→ C∞2n−1(X, C)

is an isomorphism. Hence, there exists a unique u ∈ C∞1 (X, C) such that Γ = ωn−1∧u.
We get:

ωn−1 ∧ β = dΓ = ωn−1 ∧ du,

where the last identity follows from the balanced property of ω. Consequently,

ωn−1 ∧ (β − du) = 0,

proving that α := β − du is a primitive representative of the class c = {β}DR. �

Finally, we can characterise the degenerate balanced property of a given balanced
metric in terms of primitivity for 2-classes.
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Lemma 3.2.4. Let ω be a balanced metric on a compact complex manifold X with
dimCX = n. The following equivalence holds:

H2
DR(X, C)ω-prim = H2

DR(X, C) ⇐⇒ ω is degenerate balanced.

Proof. “⇐=” Suppose that ω is degenerate balanced. Then ωn−1 is d-exact, hence
ωn−1 ∧ α is d-exact (or equivalently {ωn−1 ∧ α}DR = 0 ∈ H2n

DR(X, C)) for every d-
closed 2-form α. This means that the map {ωn−1}DR∧ · : H2

DR(X, C) −→ H2n
DR(X, C)

vanishes identically, so H2
DR(X, C)ω-prim = H2

DR(X, C).

“ =⇒ ” Suppose that H2
DR(X, C)ω-prim = H2

DR(X, C). This translates to

ωn−1 ∧ α ∈ Im d, ∀α ∈ C∞2 (X, C) ∩ ker d. (3.14)

Since both ωn−1 and α are d-closed, they both have unique L2
ω-orthogonal decom-

positions:

ωn−1 = (ωn−1)h + dΓ and α = αh + du,

where (ωn−1)h and αh are ∆ω-harmonic, while Γ and u are smooth forms of respective
degrees 2n− 3 and 1. We get:

ωn−1∧α = (ωn−1)h∧αh+d

(
(ωn−1)h∧u+Γ∧αh+Γ∧du

)
, ∀α ∈ C∞2 (X, C)∩ker d.

Together with (3.14), this implies that

(ωn−1)h ∧ αh ∈ Im d, ∀αh ∈ ker ∆ω ∩ C∞2 (X, C). (3.15)

Meanwhile, since (ωn−1)h is ∆ω-harmonic (and real), ?ω(ωn−1)h is again ∆ω-harmonic
(and real). Hence,

Im d 3 (ωn−1)h ∧ ?ω(ωn−1)h = |(ωn−1)h|2ω dVω ≥ 0,

where the first relation follows from (3.15) by choosing αh = ?ω(ωn−1)h. Consequently,
from Stokes’s Theorem we get: ∫

X

|(ωn−1)h|2ω dVω = 0,

hence (ωn−1)h = 0. This implies that ωn−1 is d-exact, which means that ω is degenerate
balanced. �

Corollary 3.2.5. Let ω be a balanced metric on a compact complex manifold X with
dimCX = n. The following dichotomy holds:

(a) if ω is not degenerate balanced, H2
DR(X, C)ω-prim is a complex hyperplane

in H2
DR(X, C) depending only on the balanced class {ωn−1}DR;

(b) if ω is degenerate balanced, H2
DR(X, C)ω-prim = H2

DR(X, C).
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Proof. This follows immediately from Lemma and Definition 3.2.2, from Lemma 3.2.4
and from H2n

DR(X, C) ' C. �

We shall now get a Lefschetz-type decomposition of H2
DR(X, C), induced by an

arbitrary balanced metric ω, with H2
DR(X, C)ω-prim as a direct factor. Recall that the

balanced condition dωn−1 = 0 is equivalent to d?ωω = 0.
Thanks to the orthogonal 3-space decompositions:

C∞k (X, C) = ker ∆ω ⊕ Im d⊕ Im d?ω, k ∈ {0, . . . , 2n},

where ker ∆ω ⊕ Im d = ker d and ker ∆ω ⊕ Im d?ω = ker d?ω, applied with k = 2 and
k = 2n− 2, we get unique decompositions of ω, resp. ωn−1:

ker d?ω 3 ω = ωh + d?ωηω and ker d 3 ωn−1 = (ωn−1)h + dΓω, (3.16)

where ωh ∈ ker ∆ω as a 2-form, (ωn−1)h ∈ ker ∆ω as a (2n− 2)-form, while ηω and Γω
are smooth forms of respective degrees 3 and 2n− 3. Since ω and ωn−1 are real, so are
their harmonic components ωh and (ωn−1)h.

Moreover, it is well known that ?ωω = ωn−1 and that the Hodge star operator ?ω
maps d-exact forms to d?ω-exact forms and vice-versa. Hence, we get:

?ω ωh = (ωn−1)h and ?ω (d?ωηω) = dΓω. (3.17)

Thus, ωh is uniquely determined by ω and is d-closed (because it is even ∆ω-
harmonic). Therefore, it represents a class in H2

DR(X, R).

Definition 3.2.6. For any balanced metric ω on a compact complex manifold X, the
De Rham cohomology class {ωh}DR ∈ H2

DR(X, R) is called the cohomology class of
ω.

Of course, if ω is Kähler, ωh = ω, so {ωh}DR is the usual Kähler class {ω}DR.

Lemma 3.2.7. Suppose there exists a balanced metric ω on a compact complex mani-
fold X. Then, for every α ∈ C∞2 (X, C) such that dα = 0 and {α}DR ∈ H2

DR(X, C)ω-prim,
we have:

〈〈ωh, α〉〉ω = 0,

where 〈〈 , 〉〉ω is the L2 inner product induced by ω.

Proof. Since {α}DR ∈ H2
DR(X, C)ω-prim, there exists a form Ω ∈ C∞2n−1 such that

ωn−1 ∧ α = du. We get:

〈〈α, ωh〉〉ω =

∫
X

α ∧ ?ωωh
(a)
=

∫
X

α ∧ (ωn−1)h
(b)
=

∫
X

α ∧ (ωn−1 − dΓω)

=

∫
X

α ∧ ωn−1 =

∫
X

du = 0,

where Stokes implies two of the last three equalities (note that α ∧ dΓω = d(α ∧ Γω)),
while (a) follows from (3.17) and (b) follows from (3.16). �
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Conclusion 3.2.8. Let X be a compact complex manifold with dimCX = n. Sup-
pose there exists a non-degenerate balanced metric ω on X. Then, the De Rham
cohomology space of degree 2 has a Lefschetz-type L2

ω-orthogonal decomposition:

H2
DR(X, C) = H2

DR(X, C)ω-prim ⊕ C · {ωh}DR, (3.18)

where the ω-primitive subspace H2
DR(X, C)ω-prim is a complex hyperplane of H2

DR(X, C)
depending only on the cohomology class {ωn−1}DR ∈ H2n−2

DR (X, C), while ωh is the ∆ω-
harmonic component of ω and the complex line C · {ωh}DR depends on the choice of
the balanced metric ω.

If ω is Kähler, the Lefschetz-type decomposition (3.18) depends only on the Kähler
class {ω}DR ∈ H2

DR(X, C) since ωh = ω in that case.

Lemma 3.2.9. The assumptions are the same as in Conclusion 3.2.8. For every
α ∈ C∞2 (X, C) ∩ ker d, the coefficient of {ωh}DR in the Lefschetz-type decomposition
of {α}DR ∈ H2

DR(X, C) according to (3.18), namely in

{α}DR = {α}DR, prim + λ {ωh}DR, (3.19)

is given by

λ = λω({α}DR) =
{ωn−1}DR.{α}DR

||ωh||2ω
=

1

||ωh||2ω

∫
X

α ∧ ωn−1. (3.20)

Proof. Since {α}DR, prim ∈ H2
DR(X, C)ω-prim, we have {ωn−1}DR.{α}DR, prim = 0, so

{ωn−1}DR.{α}DR = λ

∫
ωn−1 ∧ ωh = λ

∫
(ωn−1)h ∧ ωh = λ

∫
(ωn−1)h ∧ ?ω(ωn−1)h

= λ ||(ωn−1)h||2ω = λ ||ωh||2ω.

This gives (3.20). �

Formula (3.20) implies that λω({α}DR) is real if the class {α}DR ∈ H2
DR(X, R) is

real. This enables one to define a positive side and a negative side of the hyperplane
H2
DR(X, R)ω-prim := H2

DR(X, C)ω-prim ∩H2
DR(X, R) in H2

DR(X, R) by

H2
DR(X, R)+

ω :=

{
{α}DR ∈ H2

DR(X, R) | λω({α}DR) > 0

}
,

H2
DR(X, R)−ω :=

{
{α}DR ∈ H2

DR(X, R) | λω({α}DR) < 0

}
. (3.21)

These open subsets of H2
DR(X, R) depend only on the cohomology class {ωn−1}DR ∈

H2n−2
DR (X, R).

Since {α}DR is ω-primitive if and only if λω({α}DR) = 0, we get a partition of
H2
DR(X, R):

H2
DR(X, R) = H2

DR(X, R)+
ω ∪H2

DR(X, R)ω-prim ∪H2
DR(X, R)−ω (3.22)

64



depending only on the cohomology class {ωn−1}DR ∈ H2n−2
DR (X, R).

The next (trivial) observation is that the ω-primitive hyperplaneH2
DR(X, C)ω-prim ⊂

H2
DR(X, C) depends only on the ray R>0 · {ωn−1}DR generated by the De Rham

cohomology class of ωn−1 in the De Rham version of the balanced cone BX,DR ⊂
H2n−2
DR (X, R) of X. (We denote by BX,DR the set of De Rham cohomology classes
{ωn−1}DR induced by balanced metrics ω.)

Lemma 3.2.10. Let X be a compact complex non-degenerate balanced manifold with
dimCX = n. Let ω and γ be balanced metrics on X. The following equivalence
holds:

H2
DR(X, C)ω-prim = H2

DR(X, C)γ-prim ⇐⇒ ∃ c > 0 such that {ωn−1}DR = c {γn−1}DR.

Proof. “⇐=” This implication follows from proportional linear maps having the same
kernel.

“=⇒” This implication follows from the following elementary fact. Suppose T, S :
E −→ C are C-linear maps on a C-vector space E such that kerT = kerS ⊂ E is of
C-codimension 1 in E. Then, there exists c ∈ C\{0} such that T = cS. To see this, let
{ej | j ∈ J} be a C-basis of kerT = kerS and let e ∈ E such that {e} ∪ {ej | j ∈ J}
is a C-basis of E. Then, T (e) and S(e) are non-zero complex numbers, so there exists
a unique c ∈ C \ {0} such that T (e) = c S(e). Now, fix an arbitrary u ∈ E. We will
show that T (u) = c S(u). There is a unique choice of λ ∈ C and v ∈ kerT = kerS
such that u = λ e+ v. Hence, T (u) = λT (e) = c (λS(e)) = c S(u).

In our case, the assumption H2
DR(X, C)ω-prim = H2

DR(X, C)γ-prim amounts to
ker({ωn−1}DR∧·) = ker({γn−1}DR∧·). Hence, by the above elementary fact, it amounts
to the exietence of a constant c ∈ C \ {0} such that {ωn−1}DR ∧ · = c {γn−1}DR ∧ ·
as C-linear maps on H2

DR(X, C). By the non-degeneracy of the Poincaré duality
H2
DR(X, C)×H2n−2

DR (X, C) −→ C, this further amounts to the existence of a constant
c ∈ C \ {0} such that {ωn−1}DR = c {γn−1}DR.

Now, since the forms ωn−1 and γn−1 are real, the constant c can be chosen real.
(Replace c with (c+ c̄)/2 if necessary.) Since the balanced metric ω is non-degenerate,
c 6= 0. If c < 0, then ωn−1− c γn−1 > 0 would be the d-exact (n− 1)-st power of a bal-
anced metric. This balanced metric would then be degenerate balanced, contradicting
the assumption on X. Thus, c must be positive. �

We will now see that not only do proportional balanced classes {ωn−1}DR and
{γn−1}DR induce the same hyperplane of primitive classes in H2

DR(X, C), but they
can be made to also induce the same Lefschetz-type decomposition (3.18). This is
fortunate since, in general, the complex line C · {ωh}DR depends on the choice of the
balanced metric ω, unlike H2

DR(X, C)ω-prim which depends only on the balanced class
{ωn−1}DR ∈ H2n−2

DR (X, C).

Lemma 3.2.11. Let X be a compact complex non-degenerate balanced manifold with
dimCX = n.

(i) If ω and γ are balanced metrics on X such that ωn−1 = c γn−1 for some
constant c > 0, there exists a constant a > 0 such that ωh = a γh.
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(ii) For every ray R>0 · {ωn−1}DR in the De Rham version of the balanced cone
BX,DR ⊂ H2n−2

DR (X, R) of X, the balanced metrics representing the classes on this ray
can be chosen such that they induce the same Lefschetz-type decomposition (3.18).

Proof. (i) Since ω = c
1

n−1 γ, we get ?ω = const · ?γ and d?ω = const · d?γ. The latter
identity implies ∆ω = const · ∆γ, hence ker ∆ω = ker ∆γ. In particular, (ωn−1)h =
c (γn−1)h and thus

ωh = ?ω(ωn−1)h = const · ?γ(γn−1)h = const · γh,

where in all the above identities const stands for a positive constant that may change
from one occurrence to another.

(ii) Fix a balanced De Rham class {γn−1}DR ∈ BX,DR ⊂ H2n−2
DR (X, R) and fix

a balanced metric γ (whose choice is arbitrary) such that γn−1 represents the class
{γn−1}DR. For every constant c > 0, the balanced class c {γn−1}DR can be represented

by the form ωn−1 := c γn−1 which is induced by the balanced metric ω := c
1

n−1 γ.
From (i), we get C {ωh}DR = C {γh}DR. Since we also have H2

DR(X, C)ω-prim =
H2
DR(X, C)γ-prim by Lemma 3.2.10, the contention follows. �

The proof of (ii) of the above Lemma 3.2.11 shows that the line C {ωh}DR in the
Lefschetz-type decomposition (3.18) induced by a given ray R>0 · {ωn−1}DR in the De
Rham version of the balanced cone BX,DR ⊂ H2n−2

DR (X, R) of X still depends on the ar-
bitrary choice of a balanced metric γ such that γn−1 represents a given class {γn−1}DR
on this ray. To tame this dependence, we can fix an arbitrary Hermitian (not neces-
sarily balanced) metric ρ on X and make all the choices of harmonic representatives
and projections be induced by ρ. Thus, we get L2

ρ-orthogonal decompositions:

ω = ωh, ρ + d?ρ ηω, ρ and ωn−1 = (ωn−1)h, ρ + dΓω, ρ, (3.23)

where ωh, ρ ∈ ker ∆ρ as a 2-form, (ωn−1)h, ρ ∈ ker ∆ρ as a (2n− 2)-form, while ηω, ρ and
Γω, ρ are smooth forms of respective degrees 3 and 2n− 3. Since ω and ωn−1 are real,
so are their ∆ρ-harmonic components ωh, ρ and (ωn−1)h, ρ.

In this way, every non-zero balanced class {ωn−1}DR induces a Lefschetz-type de-
composition analogous to (3.18) that depends only on the class {ωn−1}DR and on the
background metric ρ:

H2
DR(X, C) = H2

DR(X, C)ω-prim ⊕ C · {ωh, ρ}DR, (3.24)

where the hyperplane H2
DR(X, C)ω-prim depends only on the class {ωn−1}DR.

In other words, we remove the dependence of the line C {ωh}DR in the Lefschetz-
type decomposition (3.18) on a representative of the class {ωn−1}DR and replace it
with the dependence on a fixed background metric ρ.

3.2.4 Case of degree 2: Bott-Chern and Aeppli cohomologies

Let us finally point out that the theory developed in §.3.2.3 in the context of the
Poincaré duality for the De Rham cohomology spaces of degrees 2 and 2n− 2 can be
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rerun in the context of the duality (3.6) between the Bott-Chern and Aeppli cohomol-
ogy spaces of bidegrees (1, 1), resp. (n− 1, n− 1).

Since all the results and constructions of §.3.2.3, except for Lemma 3.2.3, have
analogues in the new context with very similar proofs, we will leave most of these
proofs to the reader.

In fact, the new cohomological setting allows for the theory of §.3.2.3 to be repeated
in the more general context of Gauduchon (not necessarily balanced) metrics and the
Aeppli cohomology classes they define in Hn−1, n−1

A (X, R). We start with the following
analogue of Lemma and Definition 3.2.2.

Lemma and Definition 3.2.12. Let ω be a Gauduchon metric on a compact com-
plex manifold X with dimCX = n. The linear map:

[ωn−1]A ∧ · : H1, 1
BC(X, C) −→ Hn, n

A (X, C) ' C, [α]BC 7−→ [ωn−1 ∧ α]A, (3.25)

is well defined and depends only on the cohomology class [ωn−1]A ∈ Hn−1, n−1
A (X, C).

We set:

H1, 1
BC(X, C)ω-prim := ker

(
[ωn−1]A ∧ ·

)
⊂ H1, 1

BC(X, C)

and we call its elements (ω-)primitive Bott-Chern (1, 1)-classes.

Proof. The well-definedness follows at once from the identities:

∂∂̄(ωn−1 ∧ α) = ∂∂̄ωn−1 ∧ α = 0, α ∈ C∞1, 1(X, C) ∩ ker d,

ωn−1 ∧ ∂∂̄ϕ = ∂(ωn−1 ∧ ∂̄ϕ) + ∂̄(ϕ∂ωn−1) ∈ Im ∂ + Im ∂̄, ϕ ∈ C∞0, 0(X, C),

where the latter takes into account the fact that ∂∂̄ωn−1 = 0.
That the map [ωn−1]A ∧ · depends only on the Aeppli cohomology class [ωn−1]A

follows from:

(ωn−1 + ∂Γ̄ + ∂̄Γ) ∧ α− ωn−1 ∧ α = ∂(Γ̄ ∧ α) + ∂̄(Γ ∧ α) ∈ Im ∂ + Im ∂̄, α ∈ C∞1, 1(X, C) ∩ ker d.

�
The following result is the analogue of Lemma 3.2.4.

Lemma 3.2.13. Let ω be a Gauduchon metric on a compact complex manifold X
with dimCX = n. The following equivalence holds:

H1, 1
BC(X, C)ω-prim = H1, 1

BC(X, C) ⇐⇒ ωn−1 ∈ Im ∂+Im ∂̄ (i.e. ωn−1 is Aeppli-exact).

Proof. “⇐=” If ωn−1 ∈ Im ∂ + Im ∂̄, [ωn−1]A = 0, so the map [ωn−1]A ∧ · vanishes
identically.

“ =⇒ ” Suppose that H1, 1
BC(X, C)ω-prim = H1, 1

BC(X, C). This translates to

ωn−1 ∧ α ∈ Im ∂ + Im ∂̄, ∀α ∈ C∞1, 1(X, C) ∩ ker d. (3.26)

Since ωn−1 is (∂∂̄)-closed, it has a unique L2
ω-orthogonal decomposition:

ωn−1 = (ωn−1)h + (∂Γ̄ω + ∂̄Γω),
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with an (n − 1, n − 1)-form (ωn−1)h ∈ ker ∆A,ω and an (n − 1, n − 2)-form Γω. (See
(3.28) below.)

On the other hand, α is d-closed, so it has a unique L2
ω-orthogonal decomposition:

α = αh + ∂∂̄ϕ,

where αh is ∆BC,ω-harmonic and ϕ is a smooth function on X. (See again (3.28)
below.)

Thus, for every α ∈ C∞1, 1(X, C) ∩ ker d, we get:

ωn−1 ∧ α = (ωn−1)h ∧ α + ∂(Γ̄ω ∧ α) + ∂̄(Γω ∧ α)

= (ωn−1)h ∧ αh + ∂

(
(ωn−1)h ∧ ∂̄ϕ

)
+ ∂̄

(
ϕ∂(ωn−1)h

)
+ ∂(Γ̄ω ∧ α) + ∂̄(Γω ∧ α),

where for the last identity we used the fact that ∂̄∂(ωn−1)h = 0.
Thanks to assumption (3.26), the last identity implies that

(ωn−1)h ∧ αh ∈ Im ∂ + Im ∂̄, ∀αh ∈ C∞1, 1(X, C) ∩ ker ∆BC,ω. (3.27)

Meanwhile, since (ωn−1)h is ∆A,ω-harmonic (and real), ?ω(ωn−1)h is ∆BC,ω-harmonic
(and real). Hence,

Im ∂ + Im ∂̄ 3 (ωn−1)h ∧ ?ω(ωn−1)h = |(ωn−1)h|2ω dVω ≥ 0,

where the first relation follows from (3.27) by choosing αh = ?ω(ωn−1)h. Consequently,
from Stokes’s Theorem we get: ∫

X

|(ωn−1)h|2ω dVω = 0,

hence (ωn−1)h = 0. This implies that ωn−1 ∈ Im ∂ + Im ∂̄ and we are done. �

The analogue in this context of Corollary 3.2.5 is the following

Corollary 3.2.14. Let ω be a Gauduchon metric on a compact complex manifold X
with dimCX = n. The following dichotomy holds:

(a) if ωn−1 is not Aeppli exact, H1, 1
BC(X, C)ω-prim is a complex hyperplane of

H1, 1
BC(X, C) depending only on the Aeppli-Gauduchon class {ωn−1}DR ∈ G;

(b) if ωn−1 is Aeppli exact, H1, 1
BC(X, C)ω-prim = H1, 1

BC(X, C).

To get a Lefschetz-type decomposition ofH1, 1
BC(X, C) induced by an arbitrary Gaudu-

chon metric ω, we use the orthogonal 3-space decompositions featuring the Aeppli-,
resp. Bott-Chern-Laplacians induced by the metric ω:

C∞n−1, n−1(X, C) = ker ∆A,ω ⊕ (Im ∂ + Im ∂̄)⊕ Im (∂∂̄)?,

C∞1, 1(X, C) = ker ∆BC,ω ⊕ Im (∂∂̄)⊕ (Im ∂? + Im ∂̄?), (3.28)
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where ker ∆A,ω⊕ (Im ∂+Im ∂̄) = ker(∂∂̄) and ker ∆BC,ω⊕ (Im ∂?+Im ∂̄?) = ker(∂∂̄)?.
Thus, we get unique decompositions of ω, resp. ωn−1:

ker(∂∂̄)? 3 ω = ωh+(∂?ωūω+ ∂̄?ωuω) and ker(∂∂̄) 3 ωn−1 = (ωn−1)h+(∂Γ̄ω+ ∂̄Γω),
(3.29)

where ωh ∈ ker ∆BC,ω as a (1, 1)-form, (ωn−1)h ∈ ker ∆A,ω as an (n− 1, n− 1)-form,
while uω and Γω are smooth forms of respective bidegrees (1, 2) and (n − 1, n − 2).
Since ω and ωn−1 are real, so are their harmonic components ωh and (ωn−1)h. Since
?ωω = ωn−1 and since the Hodge star operator ?ω maps Aeppli-harmonic forms to
Bott-Chern-harmonic forms and vice-versa, we get:

?ω ωh = (ωn−1)h and ?ω (∂?ωūω + ∂̄?ωuω) = ∂Γ̄ω + ∂̄Γω. (3.30)

Thus, ωh is uniquely determined by ω and is d-closed (because it is even ∆BC,ω-
harmonic). Therefore, it represents a class in H1, 1

BC(X, R).

Definition 3.2.15. For any Gauduchon metric ω on a compact complex manifold
X, the Bott-Chern cohomology class [ωh]BC ∈ H1, 1

BC(X, R) is called the cohomology
class of ω.

Of course, if ω is Kähler, ωh = ω, so {ωh}BC is the usual Bott-Chern Kähler class
{ω}BC .

The analogue of Lemma 3.2.7 is the following

Lemma 3.2.16. Suppose there exists a Gauduchon metric ω on a compact com-
plex manifold X. Then, for every α ∈ C∞1, 1(X, C) such that dα = 0 and [α]BC ∈
H1, 1
BC(X, C)ω-prim, we have:

〈〈ωh, α〉〉ω = 0,

where 〈〈 , 〉〉ω is the L2 inner product induced by ω.

The analogue in this context of Conclusion 3.2.8 is the following

Conclusion 3.2.17. Let X be a compact complex manifold with dimCX = n. Let
ω be a Gauduchon metric on X such that ωn−1 is not Aeppli-exact. Then, the
Bott-Chern cohomology space of bidegree (1, 1) has a Lefschetz-type L2

ω-orthogonal
decomposition:

H1, 1
BC(X, C) = H1, 1

BC(X, C)ω-prim ⊕ C · [ωh]BC , (3.31)

where the ω-primitive subspace H1, 1
BC(X, C)ω-prim is a complex hyperplane of H1, 1

BC(X, C)
depending only on the cohomology class [ωn−1]A ∈ Hn−1, n−1

A (X, C), while ωh is the
∆BC,ω-harmonic component of ω and the complex line C · [ωh]BC depends on the choice
of the Gauduchon metric ω.

We also have the following analogue of Lemma 3.2.9.
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Lemma 3.2.18. The assumptions are the same as in Conclusion 3.2.17. For every
α ∈ C∞1, 1(X, C)∩ ker d, the coefficient of [ωh]BC in the Lefschetz-type decomposition of

[α]BC ∈ H1, 1
BC(X, C) according to (3.31), namely in

[α]BC = [α]BC, prim + λ [ωh]BC , (3.32)

is given by

λ = λω([α]BC) =
[ωn−1]A.[α]BC
||ωh||2ω

=
1

||ωh||2ω

∫
X

α ∧ ωn−1. (3.33)

As in §.3.2.3, formula (3.33) implies that λω([α]BC) is real if the class [α]BC ∈
H1, 1
BC(X, C) is real. Thus, we can define a positive side and a negative side of the

hyperplane H1, 1
BC(X, R)ω-prim := H1, 1

BC(X, C)ω-prim ∩H1, 1
BC(X, R) in H1, 1

BC(X, R) by

H1, 1
BC(X, R)+

ω :=

{
[α]BC ∈ H1, 1

BC(X, R) | λω([α]BC) > 0

}
,

H1, 1
BC(X, R)−ω :=

{
[α]BC ∈ H1, 1

BC(X, R) | λω([α]BC) < 0

}
. (3.34)

These are open subsets of H1, 1
BC(X, R) that depend only on the cohomology class

[ωn−1]A ∈ Hn−1, n−1
A (X, R).

Since [α]BC is ω-primitive if and only if λω([α]BC) = 0, we get a partition of
H1, 1
BC(X, R):

H1, 1
BC(X, R) = H1, 1

BC(X, R)+
ω ∪H

1, 1
BC(X, R)ω-prim ∪H1, 1

BC(X, R)−ω (3.35)

depending only on the cohomology class [ωn−1]A ∈ Hn−1, n−1
A (X, R).

As a consequence of these considerations, we get

Proposition 3.2.19. Let X be a compact complex manifold with dimCX = n. The
pseudo-effective cone EX ⊂ H1, 1

BC(X, R) of X is the intersection of all the non-
negative sides

H1, 1
BC(X, R)≥0

ω := H1, 1
BC(X, R)+

ω ∪H
1, 1
BC(X, R)ω-prim

of hyperplanes H1, 1
BC(X, R)ω-prim determined by Aeppli-Gauduchon classes [ωn−1]A ∈

GX :
EX =

⋂
[ωn−1]A∈GX

H1, 1
BC(X, R)≥0

ω , (3.36)

Proof. By the duality between the pseudo-effective cone EX and the closure GX of the
Gauduchon cone (see §.3.2.1), we know that a given class [T ]BC ∈ H1, 1

BC(X, R) lies in
EX (i.e. [T ]BC can be represented by a closed semi-positive (1, 1)-current) if and only
if ∫

X

T ∧ ωn−1 ≥ 0 for all [ωn−1]A ∈ GX .

The last condition is equivalent to λω([T ]BC) ≥ 0, hence to [T ]BC ∈ H1, 1
BC(X, R)≥0

ω , for
all [ωn−1]A ∈ GX , so the contention follows. �

Question 3.2.20. Is it true that the pseudo-effective cone EX is small (in a sense to
be determined) if (and only if) X is balanced hyperbolic?
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3.3 Properties of balanced hyperbolic manifolds

The discussion of balanced hyperbolic manifolds featured in this section will mirror
that of degenerate balanced manifolds of the previous section.

3.3.1 Background and L1 currents on the universal cover

It is a classical fact due to Gaffney [Gaf54] that certain basic facts in the Hodge Theory
of compact Riemannian manifolds remain valid on complete such manifolds. The main
ingredient in the proof of this fact is the following cut-off trick of Gaffney’s that played
a key role in [Gro91, §.1]. It also appears in [Dem97, VIII, Lemma 2.4].

Lemma 3.3.1. ([Gaf54]) Let (X, g) be a Riemannian manifold. Then, (X, g) is
complete if and only if there exists an exhaustive sequence (Kν)ν∈N of compact
subsets of X:

Kν ⊂ K̊ν+1 for all ν ∈ N and X =
⋃
ν∈N

Kν ,

and a sequence (ψν)ν∈N of C∞ functions ψν : X −→ [0, 1] satisfying, for every ν ∈ N,
the conditions:

ψν = 1 in a neighbourhood of Kν, Suppψν ⊂ K̊ν+1 and

||dψν ||L∞g := sup
x∈X
|(dψν)(x)|g ≤ εν,

for some constants εν > 0 such that εν ↓ 0 as ν tends to +∞.

In particular, the cut-off functions ψν are compactly supported. One can choose
εν = 2−ν for each ν (see e.g. [Dem97, VIII, Lemma 2.4]), but this will play no role
here.

An immediate consequence of Gaffney’s cut-off trick is the following classical gen-
eralisation of Stokes’s Theorem to possibly non-compact, but complete Riemannian
manifolds when the forms involved are L1.

Lemma 3.3.2. ([Gro91, Lemma 1.1.A.]) Let (X, g) be a complete Riemannian man-
ifold of real dimension m. Let η be an L1

g-form on X of degree m− 1 such that dη is
again L1

g. Then ∫
X

dη = 0.

By the form η being L1 with respect to the Riemannian metric g (L1
g for short) we

mean that its L1-norm is finite:

||η||L1
g

:=

∫
X

|η(x)|g dVg(x) < +∞,

where dVg is the volume form induced by g.
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Proof of Lemma 3.3.2. Let (ψν)ν∈N be a sequence of cut-off functions as in Lemma
3.3.1 whose existence is guaranteed by the completeness of (X, g). The (m− 1)-form
ψνη is compactly supported for every ν ∈ N?, so the usual Stokes’s Theorem yields:∫

X

d(ψνη) = 0, ν ∈ N?.

Meanwhile, d(ψνη) = dψν ∧ η + ψν dη, so we get:∣∣∣∣ ∫
X

ψν dη

∣∣∣∣ =

∣∣∣∣ ∫
X

dψν ∧ η
∣∣∣∣ ≤ ||dψν ||L∞g ||η||L1

g
≤ εν ||η||L1

g
, ν ∈ N, (3.37)

for some sequence of constants εν ↓ 0.
Since η is L1

g, εν ||η||L1
g
↓ 0 as ν → +∞. On the other hand, since dη is L1

g, the
properties of the functions ψν imply that

lim
ν→+∞

∫
X

ψνdη =

∫
X

dη.

Together with (3.37), these arguments yield
∫
X
dη = 0, as desired. �

We now apply this standard cut-off function technique to prove Proposition 3.1.4
stated in the introduction. It is an analogue in our more general context of balanced
hyperbolic manifolds of Proposition 5.4 in [Pop15a] according to which compact degen-
erate balanced manifolds are characterised by the absence of non-zero d-closed positive
(1, 1)-currents.

Note that, due to X being compact, any pair of Hermitian metrics ω1 and ω2 on X
are comparable in the sense that there exists a constant C > 0 such that (1/C)ω1 ≤
ω2 ≤ C ω1. Thus, their lifts ω̃1 := π?ω1 and ω̃2 := π?ω2 are again comparable on X̃ by
means of the same constant: (1/C) ω̃1 ≤ ω̃2 ≤ C ω̃1. Therefore, the L1

ω̃-assumption on

T̃ is independent of the choice of Hermitian metric on X̃ if this metric is obtained by
lifting a metric on X. However, the L1-condition changes for metrics on X̃ that are
not lifts of metrics on X. But we will not deal with the latter type of metrics.

Proof of Proposition 3.1.4. Let n = dimCX. The balanced hyperbolic assumption on
X means that π?ωn−1 = dΓ̃ on X̃ for some smooth L∞ω̃ -form Γ̃ of degree (2n − 3) on

X̃.
If a current T̃ as in the statement existed on X̃, we would have

0 <

∫
X̃

T̃ ∧ π?ωn−1 =

∫
X̃

d(T̃ ∧ Γ̃) = 0, (3.38)

which is contradictory.
The last identity in (3.38) follows from Lemma 3.3.2 applied on the complete

manifold (X̃, ω̃) to the L1
ω̃-current η := T̃ ∧ Γ̃ of degree 2n − 1 whose differential

dη = T̃ ∧ π?ωn−1 is again L1
ω̃. That η is L1

ω̃ follows from T̃ being L1
ω̃ (by hypothesis)

and from Γ̃ being L∞ω̃ , while dη being L1
ω̃ follows from T̃ being L1

ω̃ and from π?ωn−1
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being L∞ω̃ (as a lift of the smooth, hence bounded, form ωn−1 on the compact manifold
X). �

We now recall the following standard result saying that some further key facts in
the Hodge Theory of compact Riemannian manifolds remain valid on complete such
manifolds X when the differential operators involved (e.g. d, d?, ∆) are considered as
closed and densely defined unbounded operators on the spaces L2

k(X, C) of L2-forms of
degree k on X. The only major property that is lost in passing to complete manifolds
is the closedness of the images of these operators. As usual, any differential operator
P originally defined on C∞• (X, C) is extended to an unbounded operator on L2

•(X, C)
by defining its domain DomP as the space of L2-forms u such that Pu, computed in
the sense of distributions, is again L2.

Theorem 3.3.3. (see e.g. [Dem97, VIII, Theorem 3.2.]) Let (X, g) be a complete
Riemannian manifold of real dimension m. Then:

(a) The space D•(X, C) of compactly supported C∞ forms of any degree (indicated
by a •) on X is dense in the domains Dom d, Dom d? and in Dom d∩Dom d? for the
respective graph norms:

u 7→ ||u||+ ||du||, u 7→ ||u||+ ||d?u||, u 7→ ||u||+ ||du||+ ||d?u||.

(b) The extension d? of the formal adjoint of d to the L2-space coincides with the
Hilbert space adjoint of the extension of d.

(c) The d-Laplacian ∆ = ∆g := dd? + d?d has the following property :

〈〈∆u, u〉〉 = ||du||2 + ||d?u||2 (3.39)

for every form u ∈ Dom ∆. In particular, Dom ∆ ⊂ Dom d ∩ Dom d? and ker ∆ =
ker d ∩ ker d?.

(d) There are L2-orthogonal decompositions in every degree (indicated by a
•):

L2
•(X, C) = H•∆(X, C)⊕ Im d⊕ Im d?

ker d = H•∆(X, C)⊕ Im d and ker d? = H•∆(X, C)⊕ Im d?, (3.40)

where H•∆(X, C) := {u ∈ L2
•(X, C) | ∆u = 0} is the space of ∆-harmonic L2-forms,

while

Im d := L2
•(X, C) ∩ d(L2

•−1(X, C)) and Im d? := L2
•(X, C) ∩ d?(L2

•+1(X, C)).

An immediate consequence of (3.39) applied in degree 0 is that on a connected
complete Riemannian manifold (X, g), every ∆-harmonic L2-function is constant:

H0
∆(X, C) ⊂ C. (3.41)
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3.3.2 Harmonic L2-forms of degree 1 on the universal cover
of a balanced hyperbolic manifold

Let X be a possibly non-compact complex manifold with dimCX = n, supposed to
carry a complete balanced metric ω. In subsequent applications, the roles of X and ω
will be played by X̃, the universal cover π : X̃ −→ X of a compact balanced hyperbolic
manifold (X, ω), resp. ω̃ := π?ω.

A well-known consequence of the Kähler commutation relations is the fact that,
if ω is Kähler, the induced d-Laplacian ∆ = ∆ω commutes with the multiplication
operator ωl ∧ · acting on differential forms of any degree on X, for every l.

We will see that, when ω is merely balanced, the commutation of ∆ with the
multiplication operator ωn−1∧ · acting on differential forms no longer holds. However,
we will now compute this commutation defect on 1-forms.

The computation will continue that of (i) in Lemma 3.2.1. For the sake of generality
and for a reason that will become apparent later on, we will work with the more general
operators

dh := h∂ + ∂̄, h ∈ C?,

acting on C-valued differential forms on X and the associated Laplacians ∆h := dhd
?
h+

d?hdh.
The first stages of the computation lead to the following result in which no com-

pleteness assumption is necessary.

Lemma 3.3.4. Let X be a complex manifold with dimCX = n. Suppose there exists
a balanced metric ω on X. Then, for any h ∈ C? and any 1-form ϕ on X, the
following identity holds:

[∆h, Lωn−1 ]ϕ =

(
|h|2d− 1

h̄
d?− 1

h̄

− d?hdh
)
ϕ ∧ ωn−1 − ih̄ d− 1

h̄
ϕ ∧ dhωn−2 − i(|h|2 + 1) ∂∂̄ϕ ∧ ωn−2.(3.42)

Proof. • The Jacobi identity yields:

[[dh, d
?
h], Lωn−1 ]− [[d?h, Lωn−1 ], dh] + [[Lωn−1 , dh], d

?
h] = 0.

Since ω is balanced, [Lωn−1 , dh] = 0. Writing ∆h = [dh, d
?
h], the above equality reduces

to

[∆h, Lωn−1 ] = [d?h, Lωn−1 ] dh + dh [d?h, Lωn−1 ]. (3.43)

• Note also the following formula for the formal adjoint of dh involving the Hodge
star operator:

d?h = −h̄ ? d 1
h̄
? . (3.44)

Indeed, d?h = (h∂ + ∂̄)? = h̄ (− ? ∂̄?) + (− ? ∂?) = −h̄ ? ( 1
h̄
∂ + ∂̄)? = −h̄ ? d 1

h̄
?. No

assumption on ω is needed here.

• As an application of (3.44), we observe the following formula for every (1, 1)-form
α:

d?h(ωn−1 ∧ α) = −ih̄ d− 1
h̄
(Λωα) ∧ ωn−1. (3.45)
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Again, no assumption on ω is needed.
To see this, we first multiply the Lefschetz decomposition (3.8) of α by ωn−1 and

we get: ωn−1 ∧ α = (Λωα)ωn. Hence, ?(ωn−1 ∧ α) = Λωα, so we get the first equality
below:

−h̄ ? d 1
h̄
? (ωn−1 ∧ α) = −h̄ ? d 1

h̄
(Λωα) = −h̄ ?

(
1

h̄
∂(Λωα)

)
− h̄ ? ∂̄(Λωα).

Applying (3.44) to the l.h.s. term above and the standard formula (3.7) to the r.h.s.
term, we get:

d?h(ωn−1 ∧ α) = i∂(Λωα) ∧ ωn−1 − ih̄ ∂̄(Λωα) ∧ ωn−1.

Since i∂ − ih̄ ∂̄ = −ih̄ d− 1
h̄
, the above equality is nothing but (3.45).

• Computation of the first term on the r.h.s. of (3.43) on 1-forms ϕ = ϕ1, 0 +ϕ0, 1.

Using formula (3.45) with α := h∂ϕ0, 1 + ∂̄ϕ1, 0, we get the second equality below:

[d?h, Lωn−1 ] dhϕ = d?h(ωn−1 ∧ (h∂ϕ0, 1 + ∂̄ϕ1, 0))− ωn−1 ∧ d?hdhϕ

= −ih̄ d− 1
h̄

(
hΛω(∂ϕ0, 1) + Λω(∂̄ϕ1, 0)

)
∧ ωn−1 − d?hdhϕ ∧ ωn−1.(3.46)

On the other hand, the standard formula (3.7) yields:

?ϕ = i(ϕ0, 1 − ϕ1, 0) ∧ ωn−1.

Since ω is balanced, this implies the first equality on each of the two rows below:

∂ ? ϕ = i∂(ϕ0, 1 − ϕ1, 0) ∧ ωn−1 = i∂ϕ0, 1 ∧ ωn−1 = iΛω(∂ϕ0, 1)ωn

∂̄ ? ϕ = i∂̄(ϕ0, 1 − ϕ1, 0) ∧ ωn−1 = −i∂̄ϕ1, 0 ∧ ωn−1 = −iΛω(∂̄ϕ1, 0)ωn.

Taking−? in each of the above two equalities and using the standard identities−?∂? =
∂̄?, − ? ∂̄? = ∂?, we get:

∂̄?ϕ = −iΛω(∂ϕ0, 1) and ∂?ϕ = iΛω(∂̄ϕ1, 0). (3.47)

Putting together (3.46) and (3.47), we get:

[d?h, Lωn−1 ] dhϕ = −ih̄ d− 1
h̄
(ih∂̄?ϕ− i∂?ϕ) ∧ ωn−1 − d?hdhϕ ∧ ωn−1

= hh̄ d− 1
h̄
d?− 1

h̄

ϕ ∧ ωn−1 − d?hdhϕ ∧ ωn−1.

We have thus obtained the following formula:

[d?h, Lωn−1 ] dhϕ =

(
|h|2d− 1

h̄
d?− 1

h̄

− d?hdh
)
ϕ ∧ ωn−1 (3.48)

for every smooth 1-form ϕ whenever the metric ω is balanced.

• Computation of the second term on the r.h.s. of (3.43) on 1-forms ϕ = ϕ1, 0+ϕ0, 1.
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We start by computing

[d?h, Lωn−1 ]ϕ = d?h(ωn−1 ∧ ϕ)− (d?hϕ)ωn−1. (3.49)

Since ωn−1 ∧ ϕ1, 0 = i ? ϕ1, 0 and ωn−1 ∧ ϕ0, 1 = −i ? ϕ0, 1, formula (3.44) yields the
first line below:

d?h(ωn−1 ∧ ϕ) = ih̄ ? d 1
h̄
(ϕ1, 0 − ϕ0, 1) = i ? (∂ϕ1, 0 + h̄∂̄ϕ1, 0 − ∂ϕ0, 1 − h̄∂̄ϕ0, 1)

=
i

n
Λω(h̄∂̄ϕ1, 0 − ∂ϕ0, 1)ωn−1 − i(h̄∂̄ϕ1, 0 − ∂ϕ0, 1)prim ∧ ωn−2

+ i(∂ϕ1, 0 − h̄∂̄ϕ0, 1) ∧ ωn−2, (3.50)

where we used the Lefschetz decomposition (3.8) of the (1, 1)-form h̄∂̄ϕ1, 0−∂ϕ0, 1 and
then the standard formula (3.7) to express the value of ? on the primitive forms ∂ϕ1, 0

(of type (2, 0)), ∂̄ϕ0, 1 (of type (0, 2)) and (h̄∂̄ϕ1, 0 − ∂ϕ0, 1)prim (of type (1, 1)) and
got ?(∂ϕ1, 0) = ∂ϕ1, 0 ∧ ωn−2 and

?(∂̄ϕ0, 1) = ∂̄ϕ0, 1 ∧ ωn−2, ?(h̄∂̄ϕ1, 0 − ∂ϕ0, 1)prim = −(h̄∂̄ϕ1, 0 − ∂ϕ0, 1)prim ∧ ωn−2.

On the other hand, we get

d?hϕ = −h̄ ? d 1
h̄
(?ϕ1, 0 + ?ϕ0, 1) = −h̄ ? (

1

h̄
∂ + ∂̄)(−iϕ1, 0 ∧ ωn−1 + iϕ0, 1 ∧ ωn−1)

(i)
= −h̄ ?

(
− i

h̄
∂ϕ1, 0 ∧ ωn−1 +

i

h̄
∂ϕ0, 1 ∧ ωn−1 − i∂̄ϕ1, 0 ∧ ωn−1 + i∂̄ϕ0, 1 ∧ ωn−1

)
(ii)
= −h̄ ?

(
i

(
1

h̄
∂ϕ0, 1 − ∂̄ϕ1, 0

)
∧ ωn−1

)
= −h̄ ?

(
iΛω

(
1

h̄
∂ϕ0, 1 − ∂̄ϕ1, 0

)
ωn

)
= iΛω(h̄∂̄ϕ1, 0 − ∂ϕ0, 1), (3.51)

where the balanced assumption on ω was used to get (i) and the equalities ∂ϕ1, 0 ∧
ωn−1 = ∂̄ϕ0, 1 ∧ ωn−1 = 0, that hold for bidegree reasons, were used to get (ii).

Noticing that the last term in (3.51) also features within the first term on the
second line in (3.50), the conclusion of (3.50) can be re-written as

d?h(ωn−1 ∧ ϕ) =
1

n
(d?hϕ)ωn−1 − i(h̄∂̄ϕ1, 0 − ∂ϕ0, 1)prim ∧ ωn−2 + i(∂ϕ1, 0 − h̄∂̄ϕ0, 1) ∧ ωn−2.(3.52)

From this and from (3.49), we get:

[d?h, Lωn−1 ]ϕ =

(
1

n
− 1

)
(d?hϕ)ωn−1 − i(h̄∂̄ϕ1, 0 − ∂ϕ0, 1)prim ∧ ωn−2 + i(∂ϕ1, 0 − h̄∂̄ϕ0, 1) ∧ ωn−2.

Hence, using the balanced hypothesis dhω = 0, we get the first two lines below:

dh[d
?
h, Lωn−1 ]ϕ =

(
1

n
− 1

)
dd?hϕ ∧ ωn−1 − idh

(
(h̄∂̄ϕ1, 0 − ∂ϕ0, 1) ∧ ωn−2

)
+

n− 1

n
i dh

(
Λω(h̄∂̄ϕ1, 0 − ∂ϕ0, 1)

)
∧ ωn−1

+ i(∂ϕ1, 0 − h̄∂̄ϕ0, 1) ∧ dhωn−2 − i(|h|2 ∂∂̄ϕ0, 1 + ∂∂̄ϕ1, 0) ∧ ωn−2.
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Now, formula (3.51) shows that the term on the second line above equals minus the
first term on the r.h.s. of the first line. Hence, the sum of these two terms vanishes
and we get:

dh[d
?
h, Lωn−1 ]ϕ = i

(
∂ϕ1, 0 + (∂ϕ0, 1 − h̄∂̄ϕ1, 0)− h̄∂̄ϕ0, 1

)
∧ dhωn−2 − i(|h|2 + 1) ∂∂̄ϕ ∧ ωn−2

= −ih̄ d− 1
h̄
ϕ ∧ dhωn−2 − i(|h|2 + 1) ∂∂̄ϕ ∧ ωn−2. (3.53)

• Conclusion.

Putting together (3.43), (3.48) and (3.53), we get (3.42). The proof of Lemma 3.3.4
is complete. �

Recall that for any Hermitian metric ω on an n-dimensional complex manifold X,
the pointwise Lefschetz map:

Lωn−1 : Λ1T ?X −→ Λ2n−1T ?X, ϕ 7−→ ψ := ωn−1 ∧ ϕ,

is bijective and a quasi-isometry (in the sense of Lemma 4.0.14).
We will now integrate the result of Lemma 3.3.4 expressing the commutation defect

between ∆h and Lωn−1 on 1-forms. We need to assume our balanced metric ω to be
complete to ensure that the two meanings of d?h coincide and the L2

ω-inner products
can be handled as in the compact case (see (b) and (c) of Theorem 3.3.3).

Proposition 3.3.5. Let X be a complex manifold with dimCX = n. Suppose there
exists a complete balanced metric ω on X.

Then, for any h ∈ C? and any 1-form ϕ ∈ Dom (∆− 1
h̄
) on X, the following identity

holds:

〈〈∆h(ωn−1 ∧ ϕ), ωn−1 ∧ ϕ〉〉 = |h|2 〈〈∆− 1
h̄
ϕ, ϕ〉〉. (3.54)

Proof. Throughout the proof, ϕ will stand for an arbitrary smooth 1-form on X.

• We first notice that dhd− 1
h̄
ϕ = ((|h|2 + 1)/h̄) ∂∂̄ϕ, hence

dh

(
− ih̄ d− 1

h̄
ϕ ∧ ωn−2

)
= −ih̄ d− 1

h̄
ϕ ∧ dhωn−2 − i(|h|2 + 1) ∂∂̄ϕ ∧ ωn−2.

These are the last two terms of formula (3.42).
Putting ψ := ωn−1 ∧ ϕ and using (3.42) with its last two terms transformed as

above, we get:

〈〈∆hψ, ψ〉〉 = 〈〈∆hϕ ∧ ωn−1, ϕ ∧ ωn−1〉〉+ 〈〈(|h|2d− 1
h̄
d?− 1

h̄

− d?hdh)ϕ ∧ ωn−1, ϕ ∧ ωn−1〉〉

−ih̄ 〈〈d− 1
h̄
ϕ ∧ ωn−2, d

?
h(ωn−1 ∧ ϕ)〉〉

= 〈〈dhd?hϕ ∧ ωn−1, ϕ ∧ ωn−1〉〉+ 〈〈|h|2d− 1
h̄
d?− 1

h̄

ϕ ∧ ωn−1, ϕ ∧ ωn−1〉〉

−ih̄ 〈〈d− 1
h̄
ϕ ∧ ωn−2, d

?
h(ωn−1 ∧ ϕ)〉〉

(i)
= 〈〈dhd?hϕ, ϕ〉〉+ |h|2 〈〈d− 1

h̄
d?− 1

h̄

ϕ, ϕ〉〉 − ih̄ 〈〈d− 1
h̄
ϕ ∧ ωn−2, d

?
h(ωn−1 ∧ ϕ)〉〉

= ||d?hϕ||2 + |h|2 ||d?− 1
h̄

ϕ||2 − ih̄ 〈〈d− 1
h̄
ϕ ∧ ωn−2, d

?
h(ωn−1 ∧ ϕ)〉〉, (3.55)
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where (i) followed from Lemma 4.0.12 applied to the (necessarily primitive) 1-forms
ϕ, dhd

?
hϕ and d− 1

h̄
d?− 1

h̄

ϕ.

•We now transform the last term in (3.55), namely T (ϕ) := −ih̄ 〈〈d− 1
h̄
ϕ∧ωn−2, d

?
h(ωn−1∧

ϕ)〉〉.
Since the multiplication map ωn−2 ∧ · : Λ2T ?X −→ Λ2n−2T ?X is bijective, there

exists a unique 2-form β such that d?h(ωn−1 ∧ ϕ) = ωn−2 ∧ β. Thus, using (3.52) for
the second equality below, we get:

ωn−2 ∧ β = d?h(ωn−1 ∧ ϕ) = ωn−2 ∧
(

1

n(n− 1)
(d?hϕ)ω − i(h̄∂̄ϕ1, 0 − ∂ϕ0, 1)prim + i(∂ϕ1, 0 − h̄∂̄ϕ0, 1)

)
.

The uniqueness of β implies that

β =

(
− i(h̄∂̄ϕ1, 0 − ∂ϕ0, 1)prim + i(∂ϕ1, 0 − h̄∂̄ϕ0, 1)

)
+

1

n(n− 1)
(d?hϕ)ω. (3.56)

In particular, the primitive part βprim of β in the Lefschetz decomposition is the form
inside the large parenthesis and Λωβ = 1

n−1
d?hϕ.

On the other hand, we have

d− 1
h̄
ϕ = −1

h̄
∂ϕ1, 0 + (−1

h̄
∂ϕ0, 1 + ∂̄ϕ1, 0)prim + ∂̄ϕ0, 1 +

1

nih̄
(d?hϕ)ω, (3.57)

where the value of the last term follows from formula (3.51). This implies that β and
−ih̄ d− 1

h̄
ϕ have the same primitive part:

βprim = −ih̄ (d− 1
h̄
ϕ)prim. (3.58)

We get:

〈d− 1
h̄
ϕ ∧ ωn−2, d

?
h(ωn−1 ∧ ϕ)〉 = 〈d− 1

h̄
ϕ ∧ ωn−2, β ∧ ωn−2〉

= 〈(d− 1
h̄
ϕ)prim, βprim〉+ (n− 1)2n

〈
1

nih̄
d?hϕ,

1

n(n− 1)
d?hϕ

〉
,

where the last equality follows from formula (4.6) in the Appendix.
From this and from (3.56)-(3.58), we get:

T (ϕ) = −ih̄ 〈〈d− 1
h̄
ϕ ∧ ωn−2, d

?
h(ωn−1 ∧ ϕ)〉〉

= ||∂ϕ1, 0||2 + ||(∂ϕ0, 1 − h̄ ∂̄ϕ1, 0)prim||2 + |h|2 ||∂̄ϕ0, 1||2 − (1− 1

n
) ||d?hϕ||2.(3.59)

• Putting (3.55) and (3.59) together and writing 1
n
||d?hϕ||2 = |h|2 1

n
|| 1
ih̄
d?hϕ||2, we

get:

〈〈∆hψ, ψ〉〉 = |h|2 ||d?− 1
h̄

ϕ||2 + |h|2 1

n
|| 1
ih̄
d?hϕ||2

+ |h|2
(
|| − 1

h̄
∂ϕ1, 0||2 + ||(−1

h̄
∂ϕ0, 1 + ∂̄ϕ1, 0)prim||2 + ||∂̄ϕ0, 1||2

)
.
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Thanks to the expression of d− 1
h̄
ϕ obtained in (3.57), this translates to

〈〈∆hψ, ψ〉〉 = |h|2
(
||d?− 1

h̄

ϕ||2 + ||d− 1
h̄
ϕ||2

)
= |h|2 〈〈∆− 1

h̄
ϕ, ϕ〉〉,

which is (3.54).
Proposition 3.3.5 is proved. �

An immediate consequence of Proposition 3.3.5 is the following Hard Lefschetz-type
result for spaces of harmonic L2

ω-forms induced by a given complete balanced metric ω
and different operators ∆− 1

h̄
and ∆h. Note that h 6= − 1

h̄
for all h ∈ C?. This is the

price we have to pay in the non-Kähler balanced context to get this kind of results.

Corollary 3.3.6. Let X be a complex manifold with dimCX = n. Suppose there exists
a complete balanced metric ω on X. Then, for any h ∈ C?, the map

ωn−1 ∧ · : H1
∆− 1

h̄

(X, C) −→ H2n−1
∆h

(X, C), ϕ 7−→ ωn−1 ∧ ϕ,

is well-defined and an isomorphism.

Proof. The well-definedness, namely the fact that this map takes ∆− 1
h̄
-harmonic L2

ω-

forms to ∆h-harmonic L2
ω-forms, follows at once from Proposition 3.3.5 and from the

form ωn−1 being ω-bounded. The fact that this map is an isomorphism follows from
the standard fact that the corresponding pointwise map is bijective. �

Corollary 3.3.7. Let X be a complex manifold with dimCX = n. Suppose there exists
a complete balanced metric ω on X such that ωn−1 = dΓ for an ω-bounded
smooth (2n− 3)-form Γ. Then

〈〈∆ψ, ψ〉〉 ≥ 1

4||Γ||2L∞ω
||ψ||2 (3.60)

for every pure-type form ψ ∈ Dom(∆) of degree 2n− 1.

Proof. Taking h = 1 in Proposition 3.3.5, (3.54) gives:

〈〈∆ψ, ψ〉〉 = 〈〈∆−1ϕ, ϕ〉〉 = ||(∂ − ∂̄)ϕ||2 + ||(∂ − ∂̄)?ϕ||2 ≥ ||(∂ − ∂̄)ϕ||2,

for every (2n − 1)-form ψ, where ϕ is the unique 1-form such that ψ = ωn−1 ∧ ϕ.
(See isomorphism (4.1) for r = 1.) Meanwhile, ψ is of pure type (either (n, n− 1) or
(n − 1, n)) if and only if ϕ is of pure type (respectively, either (1, 0) or (0, 1)). In
this case, ∂ϕ and ∂̄ϕ are of different pure types, hence orthogonal to each other, hence
||(∂ − ∂̄)ϕ||2 = ||(∂ + ∂̄)ϕ||2. Thus, we get:

〈〈∆ψ, ψ〉〉 ≥ ||dϕ||2, (3.61)

for every pure-type (2n− 1)-form ψ ∈ Dom(∆).
To complete the proof, we adapt the proof of Theorem 1.4.A. in [Gro91] to our

context.
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Since any 1-form ϕ is primitive, Lemma 4.0.12 gives: |ψ|2 = |ωn−1 ∧ ϕ|2 = |ϕ|2. In
particular,

||ψ|| = ||ϕ||. (3.62)

Meanwhile, we have: ψ = ωn−1 ∧ϕ = dΓ∧ϕ = d(Γ∧ϕ) + Γ∧ dϕ. In other words,

ψ = dθ + ψ′, where θ := Γ ∧ ϕ and ψ′ := Γ ∧ dϕ. (3.63)

To estimate θ, we write:

||θ|| ≤ ||Γ||L∞ω ||ϕ|| = ||Γ||L∞ω ||ψ||, (3.64)

where (3.62) was used to get the last equality.
To estimate ψ′, we write:

||ψ′|| ≤ ||Γ||L∞ω ||dϕ|| ≤ ||Γ||L∞ω 〈〈∆ψ, ψ〉〉
1
2 , (3.65)

where (3.61) and the fact that ϕ is of pure type were used to get the last inequality.
To find an upper bound for ||ψ||, we write:

||ψ||2 = 〈〈ψ, dθ + ψ′〉〉 ≤ |〈〈ψ, dθ〉〉|+ |〈〈ψ, ψ′〉〉|, (3.66)

where (3.63) was used to get the first equality.
For the first term on the r.h.s. of (3.66), we get:

|〈〈ψ, dθ〉〉| = |〈〈d?ψ, θ〉〉| ≤ ||d?ψ|| ||θ|| ≤ 〈〈∆ψ, ψ〉〉
1
2 ||Γ||L∞ω ||ψ||, (3.67)

where (3.64) was used to get the last inequality.
For the second term on the r.h.s. of (3.66), we get:

|〈〈ψ, ψ′〉〉| ≤ ||ψ′|| ||ψ|| ≤ ||Γ||L∞ω 〈〈∆ψ, ψ〉〉
1
2 ||ψ||, (3.68)

where (3.65) was used to get the last inequality.
Adding up (3.67) and (3.68) and using (3.66), we get

||ψ|| ≤ 2 ||Γ||L∞ω 〈〈∆ψ, ψ〉〉
1
2 ,

which is (3.60). The proof is complete. �

For the record, if we do not assume ψ to be of pure type and use the full force
of (3.54) rather than (3.61), we can run the argument in the proof of Corollary 3.3.7
with minor modifications starting from the observation that ωn−1 = d− 1

h̄
Γ− 1

h̄
, where

Γh := hΓn, n−3 + Γn−1, n−2 + (1/h) Γn−2, n−1 + (1/h2) Γn−3, n for every h ∈ C? and the
Γp, q’s are the pure-type components of Γ. Then, we get the following analogue of
(3.60):

||ψ|| ≤ Ch ||Γ− 1
h̄
||
(
〈〈∆hψ, ψ〉〉

1
2 + 〈〈∆− 1

h̄
ψ, ψ〉〉

1
2

)
(3.69)
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for every form ψ ∈ Dom(∆h) ∩ Dom(∆− 1
h̄
) (not necessarily of pure type) of degree

2n− 1, where Ch := max(1, 1/|h|).
The occurrence of two different Laplacians on the r.h.s. of (3.69) (recall that

h 6= − 1
h̄

for every h ∈ C?) is the downside of that estimate that we avoided in
Corollary 3.3.7 by restricting attention to pure-type forms. The advantage of dealing
with a single Laplacian is demonstrated by Theorem 3.1.5 in the introduction that we
now prove as a consequence of the above discussion.

Proof of Theorem 3.1.5. The pair (X̃, ω̃) satisfies the hypotheses of Corollary 3.3.7
(playing the role of the pair (X, ω) therein). When applied to (n, n− 1)-forms and to
(n− 1, n)-forms ψ ∈ Dom(∆ω̃), inequality (3.60) gives the following implication:

∆ω̃ψ = 0 =⇒ ψ = 0.

This proves the vanishing of Hn, n−1
∆ω̃

(X̃, C) and Hn−1, n
∆ω̃

(X̃, C).
Meanwhile, the Hodge star operator ? = ?ω̃ commutes with ∆ω̃, so it induces

isomorphisms

?ω̃ : H1, 0
∆ω̃

(X̃, C) −→ Hn, n−1
∆ω̃

(X̃, C) and ?ω̃ : H0, 1
∆ω̃

(X̃, C) −→ Hn−1, n
∆ω̃

(X̃, C).

Therefore, the spaces H1, 0
∆ω̃

(X̃, C) and H0, 1
∆ω̃

(X̃, C) must vanish as well. �

3.3.3 Harmonic L2-forms of degree 2 on the universal cover
of a balanced hyperbolic manifold

We will discuss 2-forms in a way analogous to the discussion of 1-forms we had in
§.3.3.2. The context and the notation are the same. The analogue of Lemma 3.3.4 is

Lemma 3.3.8. Let X be a complex manifold with dimCX = n. Suppose there exists
a balanced metric ω on X. Then, for any h ∈ C? and any 2-form α on X, the
following identity holds:

[∆h, Lωn−1 ]α = −(|h|2 + 1) i∂∂̄(Λωα) ∧ ωn−1 − ωn−1 ∧∆hα. (3.70)

Proof. We compute separately the two terms applied to α on the r.h.s. of the conse-
quence (3.43) of the Jacobi identity and the balanced hypothesis on ω.

The first term is

[d?h, Lωn−1 ] dhα = −ωn−1 ∧ d?hdhα, (3.71)

since d?h(ωn−1 ∧ dhα) = 0 owing to the vanishing of ωn−1 ∧ dhα for degree reasons.
To compute dh [d?h, Lωn−1 ]α, we notice that

[d?h, Lωn−1 ]α = d?h(ωn−1 ∧ α)− ωn−1 ∧ d?hα = −ih̄ d− 1
h̄
(Λωα) ∧ ωn−1 − ωn−1 ∧ d?hα,

where the last identity follows from (3.45). Thus, using the balanced hypothesis on ω,
we get:

dh [d?h, Lωn−1 ]α = −ih̄dh d− 1
h̄
(Λωα) ∧ ωn−1 − ωn−1 ∧ dhd?hα. (3.72)
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Finally, dh d− 1
h̄

= ((|h|2 + 1)/h̄) ∂∂̄, so (3.70) follows from (3.71) and (3.72). �

We now deduce the following analogue of Proposition 3.3.5.

Proposition 3.3.9. Let (X, ω) be a complete balanced manifold, dimCX = n ≥ 2.
For any h ∈ C? and any 2-form ϕ ∈ Dom (∆h) on X, the following identity holds:

〈〈∆h(ωn−1 ∧ α), ωn−1 ∧ α〉〉 = (|h|2 + 1) ||∂̄(Λωα)||2. (3.73)

Proof. An immediate consequence of (3.70) is the identity

∆h(ωn−1 ∧ α) = −(|h|2 + 1) i∂∂̄(Λωα) ∧ ωn−1.

Taking the pointwise inner product (w.r.t. ω) against ωn−1∧α and using the Lefschetz
decomposition α1, 1 = α1, 1

prim + (1/n) (Λωα
1, 1)ω of the (1, 1)-type component of α, its

analogue for the (1, 1)-form i∂∂̄(Λωα) and the fact that the product of any primitive
2-form with ωn−1 vanishes, we get:

〈∆h(ωn−1 ∧ α), ωn−1 ∧ α〉 = −(|h|2 + 1) 〈∆̃ω(Λωα)ωn, (Λωα)ωn〉
= −(|h|2 + 1) 〈∆̃ω(Λωα), Λωα〉, (3.74)

where ∆̃ωf := Λω(i∂∂̄f) for any function f on X. It is standard that the Laplacian

∆̃ω is a non-positive operator on functions. Identity (4.3) in Lemma 4.0.12 with k = 0
and r = n was used to get the last equality in (3.74).

Now, we need the following simple observation.

Lemma 3.3.10. Let (X, ω) be a complete balanced manifold, dimCX = n ≥ 2.

For any function f ∈ Dom (∆̃ω), we have: 〈〈∆̃ωf, f〉〉 = −||∂̄f ||2.

Proof of Lemma 3.3.10. The formula ∂? = − ? ∂̄? gives the third equality below:

〈〈∆̃ωf, f〉〉 = 〈〈Λω(i∂∂̄f), f〉〉 = 〈〈i∂̄f, ∂?(fω)〉〉 = −i 〈〈∂̄f, ? ∂̄(f ωn−1)〉〉
= −i 〈〈∂̄f, ?(∂̄f ∧ ωn−1)〉〉,

where we used the balanced hypothesis on ω to get the last equality.
Now, ∂̄f is a (0, 1)-form, hence primitive, so the standard formula (3.7) yields:

?(i∂̄f) = −∂̄f ∧ ωn−1, or equivalently ? (∂̄f ∧ ωn−1) = i∂̄f,

since ?? = −Id on forms of odd degree.
The contention follows. �

End of proof of Proposition 3.3.9. Integrating (3.74) and applying Lemma 3.3.10 with
f = Λωα, we get (3.73). �

The next consequence of the above discussion can be conveniently worded in terms
of Demailly’s torsion operator τ = τω := [Λω, ∂ω ∧ ·] and the induced Laplacian
∆τ := [d+ τ, d? + τ ?] mentioned in the introduction.
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Corollary 3.3.11. Let (X, ω) be a connected complete balanced manifold, dimCX =
n ≥ 2. For any (1, 1)-form α1, 1 ∈ Dom (∆τ ), the following implication holds:

∆τα
1, 1 = 0 =⇒ Λωα

1, 1 is constant. (3.75)

Proof. Thanks to (3.5) and to ∆′τ ≥ 0 and ∆′′ ≥ 0, the hypothesis ∆τα
1, 1 = 0

translates to ∆′τα
1, 1 = 0 and ∆′′α1, 1 = 0. Since ω is complete, these conditions are

further equivalent to

(i) (∂ + τ)α1, 1 = 0, (iii) ∂̄α1, 1 = 0

(ii) (∂? + τ ?)α1, 1 = 0, (iv) ∂̄?α1, 1 = 0. (3.76)

Thus, we get:

∂̄(Λωα
1, 1) = [∂̄, Λω]α1, 1 = i(∂? + τ ?)α1, 1 = 0,

where the first equality follows from (iii) of (3.76), the second equality follows from
Demailly’s Hermitian commutation relation (3.4) and the third equality follows from
(ii) of (3.76).

We conclude that the hypothesis ∆τα
1, 1 = 0 implies ∂̄(Λωα

1, 1) = 0. This implies,
thanks to Proposition 3.3.9 applied with h = 1, that ∆(ωn−1 ∧ α1, 1) = 0, where
∆ = ∆ω = dd?+d?d is the d-Laplacian induced by ω. Since ωn−1∧α1, 1 = (Λωα

1, 1)ωn =
?(Λωα

1, 1) and since ∆ commutes with ?, we get ∆(Λωα
1, 1) = 0. By completeness of

ω, this means that d(Λωα
1, 1) = 0 on X, hence Λωα

1, 1 must be constant since X is
connected. �

An immediate consequence of Corollary 3.3.11 is that the following linear map is
well defined:

Tωn : H1, 1
∆τ

(X, C) −→ C, α1, 1 7−→ Λωα
1, 1 =

α1, 1 ∧ ωn−1

ωn
, (3.77)

under those assumptions, where H1, 1
∆τ

(X, C) is the space of ∆τ -harmonic L2
ω-forms of

type (1, 1).

Proof of Theorem 3.1.6. The pair (X̃, ω̃) satisfies the hypotheses of Corollary 3.3.11
(playing the role of the pair (X, ω) therein). By the balanced hyperbolic hypothesis on

(X, ω), there exists an ω̃-bounded smooth (2n−3)-form Γ̃ on X̃ such that ω̃n−1 = dΓ̃.

Let α1, 1 ∈ H1, 1
∆τ̃

(X̃, C) such that α1, 1 ≥ 0. Then, ∂̄α1, 1 = 0 (by (iii) of (3.76) and
real, hence we also have ∂α1, 1 = 0. Thus, α1, 1 is d-closed, so

ω̃n−1 ∧ α1, 1 = d(Γ̃ ∧ α1, 1) ∈ Im d (3.78)

because Γ̃ ∧ α1, 1 is L2
ω̃ and d(Γ̃ ∧ α1, 1) is again L2

ω̃.
On the other hand,

ω̃n−1 ∧ α1, 1 = (Λω̃α
1, 1) ω̃n ∈ H2n

∆ω̃
(X̃, C) (3.79)

because Λω̃α
1, 1 is constant by Corollary 3.3.11.

Since the subspaces H2n
∆ω̃

(X̃, C) and Im d of the space of L2
ω̃-forms of degree 2n

on X̃ are orthogonal (see (d) of Theorem 3.3.3), we deduce that ω̃n−1 ∧ α1, 1 = 0.
Equivalently, Λω̃α

1, 1 = 0. This implies that α1, 1 = 0 since α1, 1 ≥ 0 by hypothesis. �
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Chapter 4

Appendix

A key classical fact used by Gromov in [Gro91] is that some of the Lefschetz maps
at the level of differential forms are quasi-isometries w.r.t. the L2-inner product. We
spell out the equalities involving pointwise inner products that lead to more precise
statements that were used in earlier parts of our text.

Let ω be an arbitrary Hermitian metric on an arbitrary complex manifold X with
dimCX = n. As usual, for any r = 1, . . . , n, we put ωr := ωr/r!. Recall the following
standard fact.

For every k ≤ n and every r ≤ n− k, the pointwise Lefschetz operator:

Lrω : ΛkT ?X −→ Λk+2rT ?X, Lrω(ϕ) = ωr ∧ ϕ, (4.1)

is injective. When r = n− k, Ln−kω is even bijective.

We will compare the pointwise inner products 〈ωr ∧ ϕ1, ωr ∧ ϕ2〉ω and 〈ϕ1, ϕ2〉ω
for arbitrary k-forms ϕ1, ϕ2 ∈ ΛkT ?X. We will use the following standard formula (cf.
e.g. [Voi02]):

[Lrω, Λω] = r(k − n+ r − 1)Lr−1
ω on k-forms, (4.2)

for any integer r ≥ 1, where Λ = Λω = (ω∧ ·)? is the adjoint of the Lefschetz operator
Lω w.r.t. the pointwise inner product 〈 , 〉ω induced by ω.

(1) Case of primitive forms

Recall that for any non-negative integer k ≤ n, a k-form ϕ is said to be primitive
w.r.t. ω (or ω-primitive, or simply primitive when no confusion is likely) if it satisfies
any of the following equivalent two conditions:

ωn−k+1 ∧ ϕ = 0 ⇐⇒ Λωϕ = 0.

Lemma 4.0.12. For every k ≤ n, every r ≤ n − k and any k-forms ϕ1, ϕ2 one of
which is ω-primitive, the following identity holds:

〈ωr ∧ ϕ1, ω
r ∧ ϕ2〉ω = (r!)2

(
n− k
r

)
〈ϕ1, ϕ2〉ω. (4.3)

In particular, the analogous equality holds for the L2
ω-inner product 〈〈 , 〉〉ω.
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Proof. To make a choice, let us suppose that ϕ1 is primitive. We get:

〈ωr ∧ ϕ1, ω
r ∧ ϕ2〉ω = 〈Λω(ωr ∧ ϕ1), ωr−1 ∧ ϕ2〉ω

(i)
= 〈[Λω, L

r
ω]ϕ1, ω

r−1 ∧ ϕ2〉ω
(ii)
= r(n− k − r + 1) 〈ωr−1 ∧ ϕ1, ω

r−1 ∧ ϕ2〉ω
...

= r(r − 1) . . . 1 (n− k − r + 1) (n− k − r + 2) . . . (n− k) 〈ϕ1, ϕ2〉ω

= r!
(n− k)!

(n− k − r)!
〈ϕ1, ϕ2〉ω,

where (i) follows from ϕ1 being primitive, (ii) follows from the standard formula (4.2),
the remaining equalities except for the last one follow from analogues of (i) and (ii),
while the last equality proves (4.3). �

Let us also notice that, when the powers of ω are distinct, the products involved
in the analogue of (4.3) are actually orthogonal to each other.

Lemma 4.0.13. Let r, s, k ∈ N with s > 0 and k ≤ n. For any (k − 2s)-form u and
any ω-primitive k-form v, the following identity holds:

〈ωr+s ∧ u, ωr ∧ v〉ω = 0. (4.4)

In particular, the analogous equality holds for the L2
ω-inner product 〈〈 , 〉〉ω.

Proof. We have:

〈ωr+s ∧ u, ωr ∧ v〉ω = 〈ωr+s−1 ∧ u, Λω(ωr ∧ v)〉ω
(i)
= 〈ωr+s−1 ∧ u, [Λω, L

r
ω] v〉ω

(ii)
= c1 〈ωr+s−1 ∧ u, ωr−1 ∧ v〉ω = · · · = c1 . . . cr 〈ωs ∧ u, v〉ω
= c1 . . . cr 〈ωs−1 ∧ u, Λωv〉ω = 0,

where (i) follows from v being primitive, (ii) follows from the standard formula (4.2)
with the appropriate constant c1 (whose actual value is irrelevant here), the remaining
equalities except for the last one follow from analogues of (i) and (ii) with the appro-
priate constants c2, . . . , cr, while the last equality follows again from v being primitive
and proves (4.4). �

(2) Case of arbitrary forms

Let ϕ1, ϕ2 be arbitrary k-forms and let

ϕ1 = ϕ1, prim + ω ∧ ϕ1, 1 + · · ·+ ωl ∧ ϕ1, l and ϕ2 = ϕ2, prim + ω ∧ ϕ2, 1 + · · ·+ ωl ∧ ϕ2, l(4.5)

be their respective Lefschetz decompositions, where l is the non-negative integer de-
fined by requiring 2l = k if k is even and 2l = k − 1 if k is odd, while the forms
ϕj, prim, ϕj, 1, . . . , ϕj, l are primitive of respective degrees k, k − 2, . . . , k − 2l for every
j ∈ {1, 2}.

The sense in which the Lefschetz operator (4.1) is a quasi-isometry for the pointwise
inner product (hence also the L2-inner product) induced by ω is made explicit in the
following
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Lemma 4.0.14. Fix integers 0 ≤ k ≤ n, 0 ≤ r ≤ n− k and arbitrary k-forms ϕ1, ϕ2.

(i) The following identity holds:

〈ωr ∧ ϕ1, ω
r ∧ ϕ2〉ω = (r!)2

(
n− k
r

)
〈ϕ1, prim, ϕ2, prim〉ω (4.6)

+ ((r + 1)!)2

(
n− k + 2

r + 1

)
〈ϕ1, 1, ϕ2, 1〉ω + ((r + l)!)2

(
n− k + 2l

r + l

)
〈ϕ1, l, ϕ2, l〉ω.

(ii) Putting Cn, k, r, s := ((r + s)!(n− k + s)!)/(s!(n− k − r + s)!) and

An, k, r := min
s=0,...,l

Cn, k, r, s, Bn, k, r := max
s=0,...,l

Cn, k, r, s,

the following inequalities hold:

An, k, r |ϕ|2ω ≤ |ωr ∧ ϕ|2ω ≤ Bn, k, r |ϕ|2ω. (4.7)

(iii) With the notation of (ii), if 〈ϕ1, s, ϕ2, s〉ω ≥ 0 for every s ∈ {0, 1, . . . , l}, the
following inequalities hold:

An, k, r 〈ϕ1, ϕ2〉ω ≤ 〈ωr ∧ ϕ1, ω
r ∧ ϕ2〉ω ≤ Bn, k, r 〈ϕ1, ϕ2〉ω. (4.8)

Proof. (i) Using the Lefschetz decompositions (4.5) and Lemma 4.0.13, we get:

〈ωr ∧ ϕ1, ω
r ∧ ϕ2〉ω = 〈ωr ∧ ϕ1, prim, ω

r ∧ ϕ2, prim〉ω +
l∑

s=1

〈ωr+s ∧ ϕ1, s, ω
r+s ∧ ϕ2, s〉ω.

Identity (4.6) follows from this and from Lemma 4.0.12.
(ii) and (iii) follow at once from (i) applied twice, with a given 1 ≤ r ≤ n− k and

with r = 0. �
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