
John von Neumann Institute Viandnam National University-HCM

Stochastic Calculus applied in Finance, February 2014

We consider that we are on a �ltered probability space (Ω,A, (Ft), IP).
i(*) means exo i is di�cult to solve but its result is useful.

1 Prerequisites: conditional expectation, stopping time

0. Recall Borel-Cantelli and Fatou lemmas.

1. Let G be a sub-σ algebra of A and an almost surely positive random variable X. Prove
that the conditional expectation E[X/G] is also strictly positive.
Prove that the reciprocal is false given a contra-example (for instance use the trivial σ-algebra
G).

2. Let G ⊂ H ⊂ A and X ∈ L2(Ω,A, IP). Prove (Pythagore Theorem):

E[(X − E[X/G])2] = E[(X − E[X/H])2] + E[(E[X/H]− E[X/G])2].

3. Let O be an open sand in A and a F−adapted continuous process X. One notes

T0 = inf{t : Xt ∈ O}.

Prove that TO is a stopping time.

4. Let be stopping times S and T .
(i) Prove that S ∧ T is a stopping time.
(ii) Prove

FS∧T = FS ∩ FT .

5. Let be T a stopping time and A ∈ A. Prove that

TA = T sur A,

= +∞ sur Ac,

is a stopping time if and only if A ∈ FT .

6. A real random variable X is FT measurable if and only if ∀t ≥ 0, X1T≤t is Ft measurable.

7. Let X ∈ L1 and a family of σ-algebras Fα, α ∈ A. Then the family of conditional
expectations {E[X/Fα], α ∈ A} is uniformly integrable.

8. let X be a F -progressively measurable process and T a (Ft) stopping time. Then
(i) the application ω 7→ XT (ω)(ω) is FT -measurable
(ii) the process t 7→ Xt∧T is F -adapted.

9. IfX is an adapted measurable process admitting càd or càg trajectories, it is progressively
measurable.
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2 Martingales

1. Let X be a martingale, ϕ a function such that ∀t φ(Xt) ∈ L1.
(i) if ϕ is a convex function, then ϕ(X) is a sub-martingale ; if ϕ is a concave function ϕ(X)is
a super-martingale.
(ii) When X is a sub-martingale and ϕ an increasing convex function such that ∀t φ(Xt) ∈ L1,
then φ(X) is a sub-martingale.

2. Martingale convergence: admit the following: let X be a càd super (or sub)-martingale
such that suptE[|Xt|] <∞. Then limt→∞Xt exists almost surely and belongs to L1(Ω,A, IP).

And deduce the Corollary : if X is a càd bounded from below super-martingale, then
limt→∞Xt exists almost surely and belongs to L1(Ω,A, IP).

3. let X be a martingale. Prove the following are equivalent:
(i) X is uniformly integrable.
(ii) Xt converges almost surely to Y (which belongs to L1) when t goes to in�nity and
{Xt, t ∈ IR+} is a martingale.
(iii) Xt converges to Y in L1 when t goes to in�nity.

Indication: (i)→ (iii)→ (ii)→ (i)

4. let be (Xt)t≥0 a positive right continuous upper-martingale and

T = inf{t > 0 : Xt = 0}.

(i) Prove that almost surely ∀t ≥ T, Xt = 0. (First prove E(Xt1T≤t) = 0.)
(ii) Prove that almost surely X∞ = limt→∞Xt exists. Deduce:

{X∞ > 0} ⊂ {∀t, Xt > 0} = {T = +∞}.

Give a contra-example using
{X∞ > 0} 6= {T = +∞}.

5. If M ∈Mloc is such that E[M∗
t ] <∞∀t, then M is a 'true' martingale.

Moreover suppose E[M∗] <∞, then M is uniformly integrable.

6. If X is a closed martingale with Z, meaning Z is interable and ∀t, Xt = E[Z/Ft], prove
that it also closed with limt→∞Xt denoted as X∞ equal to E[Z/ ∨t≥0 Ft].
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3 Brownian motion

1. Prove that the real Brownian motion is a centered continuous Gaussian process with covari-
ance function ρ(s, t) = s ∧ .
Conversely a centered continuous Gaussian process with covariance function ρ(s, t) = s∧ is a
real Brownian motion.

2. Prove that the Brownian motion is martingale w.r.t. its proper �ltration, i.e. Ft =
σ(Bs, s ≤ t).
Prove that it is also a Markov process.

3. let be Gt = σ(Bs, s ≤ t) ∨N , t ≥ 0. Prove this �ltration is càd, meaning Gt+ = ∩s>tGs.
Indication: use
1. the Gt+-conditional characteristic of the vector (Bu, Bz), z, u > t is the limit of Gw-conditional
characteristic function of the vector (Bu, Bz), when w decreases to t,
2. this limit is equal to the Gt-conditional characteristic of the vector (Bu, Bz), z, u > t,
3. thus for any integrable Y E[Y/Gt+ ] = E[Y/Gt]. So any Gt+-measurable is Gt-measurable and
conclude.

4(*). On considère l'ensemble des zéros du mouvement brownien : X = {(t, ω) ∈ R+ × Ω :
Bt(ω) = 0} and les sections de celui-ci par trajectoire ω ∈ Ω : Xω = {t ∈ R+ : Bt(ω) = 0}.

Prove that P -presque sûrement en ω on a :
(i) la mesure de Lebesgue de Xω est nulle ,
(ii) Xω est fermé non borné ( preuve un peu di�cile...),
(iii) t = 0 est un point d'accumulation de Xω,
(iv) Xω n'a pas de point isolé, donc est dense dans lui-même.

5(*). Théorème de Paley-Wiener-Zygmund 1933, preuve pages 110-111, du Karatzas-Schreve.
Pour presque tout ω, l'application t 7→ Bt(ω) n'est pas di�érentiable. Plus précisément,
l'événement

IP{ω ∈ Ω : ∀t, limh→0+
(Bt+h − Bt)(ω)

h
= +∞ and limh→0+

(Bt+h − Bt)(ω)

h
= −∞} = 1.

6. Let be (Bt) a real Brownian motion.
a) Prove that the sequence Bn

n
goes to 0 almost surely.

b) Use that B is a martingale and a Doob inequality to deduce the majoration

E[ sup
σ≤t≤τ

(
Bt

t
)2] ≤ 4τ

σ2
.

c) Let be τ = 2σ = 2n+1, give a bound for IP{sup2n≤t≤2n+1 |Bt

t
| > ε} that proves the convergence

of this sequence, then apply Borel Cantelli lemma.
d) Deduce limt→∞

Bt

t
= 0 almost surely. (meaning the large numbers law, cf. problem 9.3,

correction pages 124-125, in Karatzas-Schreve.)

7. Let be Yt = t.B1/t ; Y0 = 0 and FYt the natural �ltration associated to the process Y.
Prove that (Yt,FYt ) is a Brownian motion (use the criterium in 1 and exercise 6 above).
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4 Stochastic integral

In this section and the following let be M square integrable martingale on the �ltered proba-
bility space (Ω,Ft, P ) such that d〈M〉t is absolutely continuous w.r.t. Lebesgue measure dt: ∃
an integrable measurable positive function on any [0, t] such that d〈M〉t = f(t)dt.
1. Let be LT (M) the set of adapted processes X on [0, T ] such that:

[X]2T = E[

∫ T

0

X2
sd < M >s] < +∞.

Prove that LT (M) is a metric space w.r.t. the distance d: d(X, Y ) =
√

[X − Y ]2T .
Actually it is a semi-norm which de�nes an equivalence relation X ∼ Y if d(X, Y ) = 0.
2. Prove the equivalence∑

j≥1

2−j inf(1, [X −Xn]j)→ 0⇐⇒ ∀T, [X −Xn]T → 0.

3. Let be S the set of simple processes for which is de�ned the stochastic integral w.r.t. M :

It(X) =
J−1∑
j=0

Xj(Mtj+1
−Mtj) +XJ(Mt −MtJ ) on the event {tJ ≤ t ≤ tJ+1}.

Prove that It satis�es the following:

(i) It is a linear application on S.
(ii) It(X) is Ft-measurable and square integrable.

(iii) E[It(X)] = 0.

(iv) It(X) is a continuous martingale.

(v) E[(It(X)− Is(X))2/Fs] = E[I2
t (X)− I2

s (X)/Fs] = E[
∫ t
s
X2
ud < M >u /Fs].

(vi) E[It(X)]2 = E[
∫ t

0
X2
sd < M >s] = [X]2t .

(vii) < I.(X) >t=
∫ t

0
X2
sd < M >s .

Indication: actually, (vi) and (vii) are consequence of (v).

4. Prove that stochastic integral is associative, meaning: if H is stochastically integrable
w.r.t. the martingale M, giving the integral H.M, and if G is stochastically integrable w.r.t.
the martingale H.M , then G.H is stochastically integrable w.r.t. the martingale M and:

G.(H.M) = (G.H).M.

5. Let be M a continuous martingale and X ∈ L(M). let be s < t and Z a Fs-measurable
bounded random variable. Compute E[

∫ t
s
ZXudMu − Z

∫ t
s
XudMu]

2 and prove:∫ t

s

ZXudMu = Z

∫ t

s

XudMu.

6. Let be T a stopping time, two processes X and Y such that XT = Y T , two martingalesM
andN such thatMT = NT . SupposeX ∈ L(M) and Y ∈ L(N). Prove that IM(X)T = IN(Y )T .
(Use that for any square integrable martingale: Mt = 0 p.s.⇐⇒< M >t= 0 p.s.)
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7. Let M and N square integrable continuous martingales, and processes X ∈ L∞(M),
Y ∈ L∞(N). Prove that
(i) X.M and Y.N are uniformly integrable, with terminal value

∫∞
0
XsdMs and

∫∞
0
YsdNs.

(ii) limt→∞〈X.M, Y.N〉t exists almost surely.
This is a direct application of Kunita-Watanabe's inequality.
(iii)E[X.M∞Y.N∞] = E[

∫∞
0
XsYsd〈M,N〉s].

Use the following theorem: if M is a continuous local martingale such that E[〈M〉∞] <∞,
then it is uniformly integrable and converges almost surely when t→∞. Moreover E[〈M〉∞] =
E[M2

∞].

8. Let be M and N two local continuous martingales and real numbers a and b, X ∈
L∞(M) ∩ L∞(N). Prove that the stochastic integration with respect to the local continuous
martingales is a linear application, meaning X.(aM + bN) = aX.M + bX.N

9. Let be M a local continuous martingale and X ∈ L∞(M). Prove there exists a sequence
of simple processes (Xn) such that ∀T > 0, IP-almost surely:

lim
n→∞

∫ T

0

|Xn
s −Xs|2d〈M〉s = 0,

and
lim
n→∞

sup
0≤t≤T

|It(Xn)− It(X)| = 0.

10. Let W a standard Brownian motion, ε a number in [0, 1], and Π = (t0, · · · , tm) a
partition of [0, 1] with 0 = t0 < · · · < tm = t). Consider the approximating sum :

Sε(Π) =
m−1∑
i=0

[(1− ε)Wti + εWti+1
](Wti+1

−Wti)

for the stochastic integral
∫ t

0
WsdWs. Show that :

lim
|Π|→0

Sε(Π) =
1

2
W 2
t + (ε− 1

2
)t,

where the limit is in probability. The right hand of the last limit is a martingale if and only
if ε = 0, so that W is evaluated at the left-hand endpoint of each interval [ti, ti+1] in the
approximating sum ; this corresponds to the Ito integral.

With ε = 1
2
we obtain the Stratonovitch integral, which obeys the usual rules of calculus

such as
∫ t

0
Ws ◦ dWs = 1

2
W 2
t .

indication: explicit an approximation of Ito integral
∫ t

0
Ws ◦ dWs and of W quadratic variation;

then apply Ito formula to W 2
t .

Or: write Sε(Π) with a combination of W 2
ti+1
−W 2

ti
and (Wti+1

−Wti)
2.
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5 Itô formula

1. The quadratic covariation of two continuoussquare integrable semi martingales X and Y is
the limit in probability, when supi |ti+1 − ti| → 0 of:

〈X, Y 〉t = lim
proba

n∑
i=1

(Xti+1
−Xti)(Yti+1

− Yti).

Prove this covariation is null when X is a continuous semi-martingale and Y a �nite variation
process.
2. Lévy Theorem : Let be X a continuous (semi-)martingale, X0 = 0 almost surely.
X is a real Brownian motion if and seulement ifX is a continuous local martingale s.t. 〈X〉t = t.
First step: compute the Fs-conditional characteristic function of Xt −Xs using Itô formula, ∀
s ≤ t.
3. Prove that the unique solution in C1,2

b (R+, Rd) of the partial di�erential equation (heat
equation)

∂tf =
1

2
∆f, f(0, x) = ϕ(x), ∀x ∈ Rd

where ϕ ∈ C2
b (R

d) is f(t, x) = E[ϕ(x+Bt)], B d−dimensional Brownian motion.
Peut-on se passer de l'hypothèse que les dérivées de f and φ sont bornées ?

4. Long and tedious proof... Let be M a d-dimensional vector of continuous martingales,
A an adapted contious d-dimensional vector with with �nite variation, X0 a F′-measurable
random variable; let be f ∈ C1,2(IR+, IRd) and Xt := X0 +Mt+At. Prove that IP almost surely:

f(t,Xt) = f(0, X0) +

∫ t

0

∂tf(s,Xs)ds+

∫ t

0

∑
i

∂if(s,Xs)dM
i
s +

∫ t

0

∑
i

∂if(s,Xs)dA
i
s

+
1

2

∫ t

0

∑
i,j

∂2
ijf(s,Xs)d〈M i,M j〉s

5.
a)Use exercise 4 with two semi-martingales X = X0 +M +A and Y = Y0 +N +C. Prove that∫ t

0
XsdYs = XtYt −X0Y0 −

∫ t
0
YsdXs − 〈X, Y 〉t.

This the integral by part formula.
b) Use Ito formula to get the stochastic di�erential of the processes

t 7→ X−1
t ; t 7→ exp(Xt) ; t 7→ Xt.Y

−1
t .

6. Prove that

(exp

∫ t

0

asds)(x+

∫ t

0

bs exp(−
∫ t

0

audu)dBs)

is solution to the SDE

dXt = a(t)Xtdt+ b(t)dBt, t ∈ [0, T ], X0 = x,

after justi�cation of any integral in the formula.
7. Stratonovitch integral is de�ned as:∫ t

0

Ys ◦ dXs =

∫ t

0

Ys ◦ dXs +
1

2
〈Y,X〉t.
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Let be ε = 1
2
. Prove that:

lim
‖π‖→0

Sε(Π) =
m−1∑
i=0

[(1− ε)Wti + εWti+1
](Wti+1

−Wti) =

∫ t

0

Ws ◦ dWs =
1

2
W 2
t

where ‖π‖ = supi(ti+1 − ti).
Let be X and Y two continuous semi-martingales,and π a partition [0,t]. Prove that

lim
‖π‖→0

m−1∑
i=0

1

2
(Yti+1

+ Yti)(Xti+1
−Xti) =

∫ t

0

Ys ◦ dXs.

Let be X a d-dimensional vector of continuous semi-martingales, and f a C2 function. Prove
that:

f(Xt)− f(X0) =

∫ t

0

∂if(Xs) ◦ dX i
s.
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6 Stochastic di�erential equations

1. Prove that the process t 7→ (exp
∫ t

0
asds)(x+

∫ t
0
bs exp(−

∫ s
0
audu)dBs) is solution to the SDE

dXt = a(t)Xtdt+ b(t)dBt, t ∈ [0, T ], X0 = x, after justi�cation of any integral in the formula.
(meaning specify useful hypotheses on parameters a and b.

2. Let be B a real Brownian motion. Prove that B2
t = 2

∫ t
0
BsdBs + t.

If ∀t X ∈ Lt(B), then:

(X.B)2
t = 2

∫ t

0

(X.B)sXsdBs +

∫ t

0

X2
sds.

Let be Zt = exp((X.B)t − 1
2

∫ t
0
X2
sds). Prove that Z is solution to the SDE:

Zt = 1 +

∫ t

0

ZsXsdBs.

Prove that Y = Z−1 is solution to the SDE:

dYt = Yt(Xtdt−XtdBt).

Prove that there exists a unique solution to the SDE dXt = Xtbtdt + XtσtdBt, Xt = x ∈ IR
when b, σ2 ∈ L1(IR+), computing the stochastic di�erential of two solutions ratio.
3. Let be Ornstein Uhlenbeck stochastic di�erential equation:

dXt = −αXtdt+ σdBt, X0 = x,

where x ∈ L1(F0).
(i) Prove that the following is the solution of this SDE:

Xt = e−αt(x+

∫ t

0

σeαsdBs).

(ii) Prove that the expectation m(t) = E[Xt] is solution of an ordinary di�erential equation
which is obtained by integration of Xt = x− α

∫ t
0
Xsds+ σBt. Deduce m(t) = m(0)e−αt.

(iii) Prove the covariance

V (t) = V ar[Xt] =
σ2

2α
+ (V (0)− σ2

2α
)e−2αt.

(iv) Let be x a F0-measurable variable, with law N (0, σ
2

2α
), Prove that X is a Gaussian

process with convariance function ρ(s, t) = σ2

2α
e−α|t−s|.
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7 Black-Scholes Model

1.Assume that a risky asset price process is solution to the SDE

dSt = Stbdt+ StσdWt, So = s, (1)

b is named �trend' and σ �volatility�. Prove that (??) admits a unique solution, using Ito
formula to compute the ratio S1

S2 with Si, i = 1, 2 two solutions to the SDE.

2. Assume that the portfolio θ value Vt(θ) is such that there exists a C1,2 regular function
C satisfying

Vt(θ) = C(t, St). (2)

Otherwise, θ is the pair (a, d) and

Vt(θ) = atS
0
t + dtSt = 〈θ0, p0〉+

∫ t

0

asdS
0
s +

∫ t

0

dsdSs. (3)

With this �self-�nancing� strategy θ the option seller (for instance option (ST − K)+) could
�hedge� the option with the initial price q = V0: VT (θ) = C(T, ST ).
Use two di�erent ways to compute the stochastic di�erential of Vt(θ) to get a PDE (partial
di�erential equation) the solution of which will be the researched function C.

3. Actually this PDE is solved using the change of (variable,function) :

x = ey, y ∈ IR ; D(t, y) = C(t, ey).

Thus, prove that we turn to the Dirichlet problem

∂tD(t, y) + r∂yD(t, y) +
1

2
∂2
y2D(t, y)σ2 = rD(t, y), y ∈ IR,

D(T, y) = (ey −K)+, y ∈ IR.

Now let be the SDE:
dXs = rds+ σdWs, s ∈ [t, T ], Xt = y.

Dedduce the solution
D(t, y) = Ey[e

−r(T−t)(eXT −K)+],

and the explicit formula, �Black-Scholes� formula, which uses the fact that the law of XT is a
Gaussian law.
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8 Change of probability measures, Girsanov theorem

1. Let be the probability measure Q equivalent to IP de�ned as Q = Z.P, Z ∈ L1(Ω,FT , IP)
meaning Q|Ft = Zt.P, Zt = EP [Z/Ft].
Prove that ∀t and ∀Y ∈ L∞(Ω,Ft, P ), EP [Y Zt/Fs] = ZsEQ[Y/Fs].
Indication: compute ∀A ∈ Fs, the expectations EP [1AY Zt] and EP [1AZsEQ[Y/Fs]].
2. Let be T ≥ 0, Z ∈ M(IP) and Q = ZT IP, 0 ≤ s ≤ t ≤ T and a Ft−measurable random
variable Y ∈ L1(Q). Prove (Bayes formula)

EQ(Y/Fs) =
EIP(Y Zt/Fs)

Zs
.

3. Let be M a IP-martingale, X ∈ L(B) such that Z = E(X.B) is a IP-martingale (remember:
dZt = ZtXtdBt, Z0 = 1). Let be Q := ZT IP an equivalent probability measure to IP on σ-
algebra FT .

(i) Prove that d〈M,Z〉 = ZXd〈M,B〉.
(ii) Use Itô formula to developp MtZt −MsZs, calculer EIP[MtZt/Fs].

(iii) Use Itô formula between s and t to process Z.
∫ .

0
Xud〈M,B〉u.

(iv) Deduce M. −
∫ .

0
Xud〈M,B〉u is a Q−martingale.

4. The following is a contra-example when Novikov condition is not satis�ed: let be the stopping
time T = inf{1 ≥ t ≥ 0, t+B2

t = 1} and

Xt = − 2

(1− t)2
Bt1{t≤T} ; 0 ≤ t < 1, X1 = 0.

(i) Prove that T < 1 almost surely, so
∫ 1

0
X2
t dt <∞ almost surely.

(ii) Apply Itô formula to the processt→ B2
t

(1−t)2 ; 0 ≤ t < 1 to prove:∫ 1

0

XtdBt −
1

2

∫ 1

0

X2
t dt = −1− 2

∫ T

0

t

(1− t)4
B2
t dt < −1.

(iii) The local martingale E(X.B) is not a martingale: we deduce from (ii) that E[Et(X.B)] ≤
exp(−1) < 1 and this fact contradicts that for any martingale E(Mt) = M0, here it could be 1....
Anyway, prove that ∀n ≥ 1 and σn = 1−(1/

√
n), the stopped process E(X.B)σn is a martingale.

5(*). Let be B the standard Brownian motion on the �ltered probability space (Ω, (Ft; t ∈
IR+),P) and H ∈ L2(Ω×[0, t]). ∀t, let beWt := Bt+

∫ t
0
Hsds. Prove that the law ofW is equiva-

lent to the Wiener measure according to the density on FT dµB
dµW

= exp[
∫ T

0
−HsdBs− 1

2

∫ T
0
−H2

sds

where (on the canonical space) µB(A) := IP{ω : t 7→ Bt(ω) ∈ A}.
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9 Representation theorems, martingale problem

Recall:
H2

0 = {M ∈M2,c,M0 = 0, 〈M〉∞ ∈ L1},
M and N are said to be orthogonal if E[M∞N∞] = 0, noted M⊥N ,
and strongly orthogonal if MN is a martingale, noted as M †N .
Let be A ⊂ H2

0: denote S(A) the smallest stable closed vectorial subspace which contains A.

1. Let be M ∈ H2
0 and Y a centered Bernoulli random variable independent on M . Let

be N := YM. Prove M⊥N but no M †N.
2. Let be M and N ∈ H2

0. Prove the equivalencies:

(i)M †N, (ii)S(M) †N
(iii)S(M) † S(N) (iv)S(M)⊥N

(v)S(M)⊥S(N)

3. Let be M(A) the set of probability measures Q on F∞, Q << IP, IP|F0 = Q|F0 , and such
that A ⊂ H2

0(Q). Prove thatM(A) is convex.
Study carefully the di�erence betweenM(A) andM(A) (cf. Def 6.1 and 6.17 in Lecture Notes).
4. Let be B a n−dimensional Brownian motion on (Ω,Ft, IP). Prove that ∀M ∈ Mc,2

loc, ∃H i ∈
P(Bi), i = 1, · · · , n, such that:

Mt = M0 +
n∑
i=1

(H i.Bi)t.

Indication: apply extremal probability measure theorem (th 6.14) to the set M(B) (actually the sin-

gleton {IP}) when B is the set of Brownian motion, then localize.

5. Prove that the above vector process H is unique, meaning ∀H ′ satisfyingMt = M0 +
∑n

i=1(H ′i.Bi)t
is such that : ∫ t

0

n∑
i=1

|H ′is −H i
s|2ds = 0 almost surely.

6. Let be M a vector martingale, the components of which are not strongly orthogonal two by two.

Prove the inclusion

{H, ∀iH i ∈ L(M i)} ⊂ L(M)

but the equality is false.
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10 Example: optimal strategy for a small investor

Let be a set of price processes: Snt = Et(Xn), t ∈ [0, T ], with:

dXn
t =

d∑
j=1

σnj (t)dW j
t + bn(t)dt, n = 1, · · · , N ; dX0

t = rtdt.

Suppose the matrix σ satis�es dt⊗ dIP almost surely : σσ∗ ≥ αI, σ∗ is the tranpose matrix of σ and

α > 0. The coe�cients b, σ, r areF−adapted bounded [0, T ]× Ω processes.

1. Look for a condition so that the market is viable, meaning a condition such that there is no arbitrage

opportunity.

(i) Prove that a market is viable as soon as there exists a risk neutral probability measure Q.

(ii) Propose some hypotheses on the above model, su�cient for the existence of Q.
2. Propose some hypotheses on the above model, su�cient for the market be complete, meaning any

contingent claim is �atteignable� (hedgeable).

Start with case N = d = 1, then N = d > 1.
Remark: If d < N and σ surjective, there is no uniqueness of vector u so that σdW+(b−r)dt = σdW̃ .
In this case, the market is not complete and the set QS is bijective with σ−1(r − b).

Recall: let be a set of price processes S, a risk neutral probability measure on(Ω, (Ft)) is a probability

measure Q equivalent to IP such that the discounted prices e−rtSn, denoted as S̃n, are uniformly integrable

Q-martingales; denote their set Qp.

3. Let be θ an admissible strategy. Prove it is self-�nancing if and only if the discounted portfolio

value Ṽt(p) = e−rtVt(p) satis�es:

Ṽt(p) = V0(p) +

∫ t

0
< θs, dp̃s > .

(use Ito formula)

4. Let be the relation de�ned as

c1 ≺ c2 si ψ(c1) ≤ ψ(c2)

where the application ψ is de�ned on the consumption set X by:

ψ(a, Y ) = a+ EQ[Y ].

Prove that it is a convex increasing continuous complete preference relation.

5. A su�cient and necessary condition for a strategy (π, c) to be admissible: let be �xed the discounted

�objective� consumption
∫ T

0 e−rscsds. Prove that

(∗) EQ[

∫ T

0
e−rscsds] ≤ x

is equivalent to the existence of an admissible stategy π such that XT = x+
∫ T

0 πs.dS̃s.
6. Optimal strategies.

Prove that actually the problem is as following: the small investor evaluates the quality of his invest-

ment with an �utility function� (Ui is positive, concave, strictly increasing, C1 class); he look for the

maximisation:

(c,XT )→ EIP[

∫ T

0
U1(cs)ds+ U2(XT )]

under the above constraint 5 (*). Solve this constrained optimisation problem using Lagrange method

and Kuhn and Tucker Theorem.
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