John von Neumann Institute Viandnam National University-HCM
Stochastic Calculus applied in Finance, February 2014

We consider that we are on a filtered probability space (2, A, (F;),TP).
i(*) means exo i is difficult to solve but its result is useful.

1 Prerequisites: conditional expectation, stopping time

0. Recall Borel-Cantelli and Fatou lemmas.

1. Let G be a sub-o algebra of A and an almost surely positive random variable X. Prove
that the conditional expectation F[X/G] is also strictly positive.
Prove that the reciprocal is false given a contra-example (for instance use the trivial o-algebra

Gg).
2. Let G CH C Aand X € L*(Q, A, IP). Prove (Pythagore Theorem):

E[(X — E[X/G))*]) = E(X — E[X/H])*] + E[(E[X/H] — E[X/G])’]

3. Let O be an open sand in A and a F—adapted continuous process X. One notes
TO = mf{t : Xt € O}

Prove that Ty is a stopping time.

4. Let be stopping times S and 7.
(i) Prove that S AT is a stopping time.
(ii) Prove
Fsar = Fs N Fr.

5. Let be T a stopping time and A € A. Prove that

Tho=T sur A,
=400 sur A°
is a stopping time if and only if A € Fr.
6. A real random variable X is Fr measurable if and only if V¢ > 0, X117, is F; measurable.

7. Let X € L' and a family of o-algebras F*, a € A. Then the family of conditional
expectations { E[X/F*],a € A} is uniformly integrable.

8. let X be a F-progressively measurable process and T" a (F;) stopping time. Then
(i) the application w — Xy, (w) is Fp-measurable
(i) the process t — X;nr is F-adapted.

9. If X is an adapted measurable process admitting cad or cag trajectories, it is progressively
measurable.



2 Martingales

1. Let X be a martingale, ¢ a function such that V¢ ¢(X;) € L.

(i) if ¢ is a convex function, then ¢(X) is a sub-martingale ; if ¢ is a concave function ¢(X)is
a super-martingale.

(ii) When X is a sub-martingale and ¢ an increasing convex function such that Vt ¢(X;) € L,
then ¢(X) is a sub-martingale.

2. Martingale convergence: admit the following: let X be a cad super (or sub)-martingale
such that sup, E[|X;|] < co. Then lim; ., X; exists almost surely and belongs to L'(Q, A, IP).

And deduce the Corollary : if X is a cad bounded from below super-martingale, then
limy o, X; exists almost surely and belongs to L!(Q, A, IP).

3. let X be a martingale. Prove the following are equivalent:
(i) X is uniformly integrable.
(ii) X; converges almost surely to Y (which belongs to L') when ¢ goes to infinity and
{X,,t € R} is a martingale.
(iii) X, converges to Y in L' when ¢ goes to infinity.

Indication: (i) — (iti) — (i1) — (4)
4. let be (X;):>0 a positive right continuous upper-martingale and

T =inf{t >0 : X; =0}.

(i) Prove that almost surely V¢ > 7', X; = 0. (First prove E(X;17r<;) =0.)
(ii) Prove that almost surely X, = lim; .., X; exists. Deduce:

{Xo >0} C{Vt, X;>0}={T = +o0}.

Give a contra-example using

{Xo >0} # {T = +00}.

5. If M € My, is such that E[M;| < ooVt, then M is a ’true’ martingale.
Moreover suppose E[M*] < oo, then M is uniformly integrable.

6. If X is a closed martingale with Z, meaning Z is interable and V¢, X, = E[Z/F,], prove
that it also closed with lim; ., X; denoted as X, equal to E[Z/ V> F.



3 Brownian motion

1. Prove that the real Brownian motion is a centered continuous Gaussian process with covari-
ance function p(s,t) = s A.

Conversely a centered continuous Gaussian process with covariance function p(s,t) = sA is a
real Brownian motion.

2. Prove that the Brownian motion is martingale w.r.t. its proper filtration, i.e. F;, =
o(Bs,s < t).
Prove that it is also a Markov process.

3. let be G, = 0(Bs, s < t) VN, t > 0. Prove this filtration is cad, meaning G+ = Ny=¢Gs.
Indication: use
1. the G+ -conditional characteristic of the vector (By, B,), z,u > t is the limit of G,,-conditional
characteristic function of the vector (B,, B,), when w decreases to t,
2. this limit is equal to the G;-conditional characteristic of the vector (B, B,), z,u > t,
3. thus for any integrable Y E[Y /G| = E[Y/G]. So any G,+-measurable is G-measurable and
conclude.

4(*). On considére 'ensemble des zéros du mouvement brownien : X = {(t,w) € RT x Q:
Bi(w) = 0} and les sections de celui-ci par trajectoire w € Q : X, = {t € R" : B;(w) = 0}.

Prove that P-presque sirement en w on a :
(i) la mesure de Lebesgue de &, est nulle ,
(ii) X, est fermé non borné ( preuve un peu difficile...),
(iii) ¢ = 0 est un point d’accumulation de A,
(iv) X, n’a pas de point isolé, donc est dense dans lui-méme.

5(*). Théoréme de Paley-Wiener-Zygmund 1933, preuve pages 110-111, du Karatzas-Schreve.
Pour presque tout w, lapplication ¢ — By(w) n’est pas différentiable. Plus précisément,
I'événement

(Begn — By)(w)
h

Biyn — B
= +o0 and li_mh_>0+( s DIC) =—oo}=1.

P{w € Q: Vt, limy_o+ -

6. Let be (B;) a real Brownian motion.
a) Prove that the sequence % goes to 0 almost surely.
b) Use that B is a martingale and a Doob inequality to deduce the majoration
By
E[sup (—)°] <

o<t<T t

4Tt

o2

¢) Let be 7 = 20 = 2"*!, give a bound for IP{supgn<ynt1 |5t| > ¢} that proves the convergence
of this sequence, then apply Borel Cantelli lemma.

d) Deduce lim; o 2 = 0 almost surely. (meaning the large numbers law, ¢f. problem 9.3,
correction pages 124-125, in Karatzas-Schreve.)

7. Let be Y, = t.By), ; Yy = 0 and }?/ the natural filtration associated to the process Y.
Prove that (V;, FY) is a Brownian motion (use the criterium in 1 and exercise 6 above).



4 Stochastic integral

In this section and the following let be M square integrable martingale on the filtered proba-
bility space (€2, F;, P) such that d(M); is absolutely continuous w.r.t. Lebesgue measure dt: 3
an integrable measurable positive function on any [0, ¢] such that d(M); = f(t)dt.

1. Let be L7 (M) the set of adapted processes X on [0,7] such that:

T
(X]5 = E[/ X2id < M >,] < +oo.
0

Prove that Lr(M) is a metric space w.r.t. the distance d: d(X,Y) = /[X — Y]2.
Actually it is a semi-norm which defines an equivalence relation X ~Y if d(X,Y) = 0.
2. Prove the equivalence

> 27 inf(1,[X — X,];) = 0= VT, [X — X,]r — 0.

j>1

3. Let be S the set of simple processes for which is defined the stochastic integral w.r.t. M :

<
—_

L(X) = X;i(My, ., — M) + X;(M; — M,,) on the event {t; <t <t}

J+1

<.
Il
o

Prove that [, satisfies the following:

(i) I; is a linear application on S.

(ii) [;(X) is .Ft—measurable and square integrable.

(iii) E[L(X)] =

(iv) I;(X) is a continuous martingale.

(v) BIIL(X) = L(X)*/F] = BII}(X) = 2(X)/F] = E[[{ X2d < M >, | F.].
(vi) EIL(X) = Bf; Xid < M >] = [X];.

(vil) < I(X) >= [} X2d < M >,
Indication: actually, (vi) and (vii) are consequence of (v).

4. Prove that stochastic integral is associative, meaning: if H is stochastically integrable
w.r.t. the martingale M, giving the integral H.M, and if GG is stochastically integrable w.r.t.
the martingale H.M, then G.H is stochastically integrable w.r.t. the martingale M and:

G.(H.M) = (G.H).M

5. Let be M a continuous martingale and X € L£(M). let be s <t and Z a Fs;-measurable
bounded random variable. Compute E[fst ZX,dM, — Z fst X.dM,)? and prove:

t t
/ZXudMu—Z/ XudM,,.

6. Let be T a stopping time, two processes X and Y such that X7 = YT, two martingales M
and N such that M7 = NT. Suppose X € L(M) and Y € L(N). Prove that I;(X)" = Iy(Y)".
(Use that for any square integrable martingale: M; =0 p.s. <=< M >;,= 0 p.s.)
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7. Let M and N square integrable continuous martingales, and processes X € L. (M),
Y € L(N). Prove that
(i) X.M and Y.N are uniformly integrable, with terminal value fooo X,dM, and fooo Y. dN.
(i) limy—yoo (X. M, Y.N), exists almost surely.
This is a direct application of Kunita- Watanabe’s inequality.

(iii) E[X. M Y-Noo] = E[[° X,Y,d(M, N),].

Use the following theorem: if M is a continuous local martingale such that E[(M).] < oo,

then it is uniformly integrable and converges almost surely when t — 0o. Moreover E[(M )] =

8. Let be M and N two local continuous martingales and real numbers a and b, X €
Lo(M) N L(N). Prove that the stochastic integration with respect to the local continuous
martingales is a linear application, meaning X.(aM + bN) = aX.M + bX.N

9. Let be M a local continuous martingale and X € L,,(M). Prove there exists a sequence
of simple processes (X™) such that VI' > 0, IP-almost surely:

T
lim | X" — X, |*d(M), =0,
0

n—oo

and
lim sup |[;(X")— [(X)| =0.
10. Let W a standard Brownian motion, ¢ a number in [0,1], and II = (to, - ,t,) a

partition of [0,1] with 0 =t; < --- < t,,, = t). Consider the approximating sum :

=

m—

SE(H) = Z[(l - 5)Wti + 5Wti+1](Wti+1 o Wt‘)

i=0
for the stochastic integral fot W,dW,. Show that :

1 1
lim I = ZW?2 —Z
|H1|—>O SE( ) 9 't (6 2)t’

where the limit is in probability. The right hand of the last limit is a martingale if and only
if ¢ = 0, so that W is evaluated at the left-hand endpoint of each interval [t;, ;1] in the
approximating sum ; this corresponds to the Ito integral.

With ¢ = % we obtain the Stratonovitch integral, which obeys the usual rules of calculus

such as [ W, 0 dW, = 1 W2,
indication: explicit an approrimation of Ito integral fot WsodWy and of W quadratic variation;
then apply Ito formula to W7.

Or: write Sc(IT) with a combination of W7 — W7 and (W,,,, — W;,)*.

i+1



5 Ito6 formula

1. The quadratic covariation of two continuoussquare integrable semi martingales X and Y is
the limit in probability, when sup; |t;11 — t;] — 0 of:

(XYt_hmZXtH— )Y

proba 4

Y,).

i+1 - 7,

Prove this covariation is null when X is a continuous semi-martingale and Y a finite variation
process.

2. Lévy Theorem : Let be X a continuous (semi-)martingale, X, = 0 almost surely.

X is a real Brownian motion if and seulement if X is a continuous local martingale s.t. (X); = ¢.
First step: compute the F,-conditional characteristic function of X; — X using [t6 formula, V
s <t.

3. Prove that the unique solution in C;’Q(RJF,Rd) of the partial differential equation (heat
equation)

1
8tf = §Af,f(0,l’) - QO(.T), Vr € Rd
where ¢ € CZ(R?Y) is f(t,x) = E[¢(x + B;)], B d—dimensional Brownian motion.
Peut-on se passer de 'hypothése que les dérivées de f and ¢ sont bornées ¢

4. Long and tedious proof... Let be M a d-dimensional vector of continuous martingales,
A an adapted contious d-dimensional vector with with finite variation, X, a J,-measurable
random variable; let be f € CH?(IRT,IRY) and X, := X+ M, + A;. Prove that IP almost surely:

t = s at y “\s az y {\g ; t az y {\g Aé
Flt, Xy) £(0 X0)+/O f(s X)ds+/0 Z Fs, X,)dM +/O Z fs, X)d
+%/0 ;afjf(s,xs)dwi,Mm

5.

a)Use exercise 4 with two semi-martingales X = Xo+ M + A and Y = Yy + N + C. Prove that
3 XodY, = X,Y, — XoYo — [y Yed X, — (X, Y ).

This the integral by part formula.

b) Use Ito formula to get the stochastic differential of the processes

te X7t exp(Xy) st XY

t t t
(exp/ asds)(:er/ bs exp(—/ a,du)dBsy)
0 0 0

is solution to the SDE
dX; = a(t)X,dt + b(t)dBy, t € [0,T], Xo = =z,

6. Prove that

after justification of any integral in the formula.
7. Stratonovitch integral is defined as:

t t
1
/}fsodXs:/}/;odXs+§<Y,X>t.
0 0
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Let be € = % Prove that:
m—1

lim S.(IT) = Y [(1 =)W, + Wi, |(Wi,,, — W, /WodW —W?
1=0

where ||| = sup;(tii1 — ;).
Let be X and Y two continuous semi-martingales,and 7 a partition [0,t]. Prove that

m—1

1 t
lim )" 5 Vi +Y2) (Xo, — Xo) = / Y, 0 dX,.
0

[l7]|—0 “—
=0

Let be X a d-dimensional vector of continuous semi-martingales, and f a C? function. Prove
that:

f(X) = f(Xo) = /af )odX!.



6 Stochastic differential equations

1. Prove that the process t > (exp [ a.ds)(z+ [ bsexp(— [y a,du)dBy) is solution to the SDE
dX; = a(t)Xedt + b(t)dBy, t € [0,T], Xo = z, after justification of any integral in the formula.
(meaning specify useful hypotheses on parameters a and b.

2. Let be B a real Brownian motion. Prove that B? = 2 fot B,dB, +t.
If vt X € £,(B), then:

t t
(X.B)? =2 / (X.B),X,dB, + / X2ds.
0 0
Let be Z; = exp((X.B); — %fot X2ds). Prove that Z is solution to the SDE:
t
Zy=1 +/ Zs X dBsy.
0

Prove that Y = Z~! is solution to the SDE:

Prove that there exists a unique solution to the SDE dX; = X;bdt + X,00dB;, X; =z € R
when b, 0% € L'(IRT), computing the stochastic differential of two solutions ratio.
3. Let be Ornstein Uhlenbeck stochastic differential equation:

dXt = —OéXtdt + O'dBt, XO =X,

where x € L'(Fp).
(i) Prove that the following is the solution of this SDE:

t
X, =e "z +/ ce**dBy).
0

(ii) Prove that the expectation m(t) = E[X;] is solution of an ordinary differential equation
which is obtained by integration of X; = x — « fg Xds + 0 B;. Deduce m(t) = m(0)e~ .
(iii) Prove the covariance

2 2

V(t) = Var[X,] = g—a +(vo) - =

(iv) Let be z a Fy-measurable variable, with law A(0, %), Prove that X is a Gaussian

. . . 2 ol
process with convariance function p(s,t) = 5-e aft=sl,



7 Black-Scholes Model

1.Assume that a risky asset price process is solution to the SDE
dSt = Stbdt + StUth, SO =S, (1)
b is named “trend’ and o “volatility”. Prove that (??) admits a unique solution, using Ito

formula to compute the ratio g_; with S%, i = 1,2 two solutions to the SDE.

2. Assume that the portfolio 6 value V;(#) is such that there exists a C'1? regular function
C satisfying
Vi(0) = C(t, 5). (2)

Otherwise, 6 is the pair (a,d) and

t t
Vi(0) = a,S? + d,S; = (6o, po) + / asdSY + / dydS,. (3)
0 0

With this “self-financing” strategy 6 the option seller (for instance option (St — K)*) could
“hedge” the option with the initial price ¢ = Vi: Vp(0) = C(T', Sr).

Use two different ways to compute the stochastic differential of V() to get a PDE (partial
differential equation) the solution of which will be the researched function C.

3. Actually this PDE is solved using the change of (variable,function) :
r=¢eYy € R; D(t,y) = C(t,e).

Thus, prove that we turn to the Dirichlet problem

1
0D(t,y) + 10, D(t,y) + 50 D(t,y)o” = rD(ty),y € R,
D(T,y) = (¢ — K)",y e R.
Now let be the SDE:
dXs =rds+odW, s € [t,T], X, = .

Dedduce the solution
D(t,y) = E,[e" "D (eX — K)*],

and the explicit formula, “Black-Scholes” formula, which uses the fact that the law of X is a
Gaussian law.



8 Change of probability measures, Girsanov theorem

1. Let be the probability measure Q equivalent to P defined as Q = Z.P, Z € L'(Q, Fr,P)
meaning Q|.F, = Z,.P, Z, = Ep|Z/F].

Prove that V¢ and VY € L>*(Q, F;, P), Ep|Y Z;/ Fs| = Z;EqlY | Fy.

Indication: compute VA € Fy, the expectations Ep[laY Z;] and Ep[laZ,EqlY/Fs]].

2. Let be T'> 0, Z € M(IP) and Q = Z7IP, 0 < s < t < T and a F;—measurable random
variable Y € L'(Q). Prove (Bayes formula)

EQ(Y/.FS> _ EIP(YZZSt/fs)

3. Let be M a IP-martingale, X € £(B) such that Z = £(X.B) is a [P-martingale (remember:
dZ; = Z;XdBy, Zy = 1). Let be Q := ZrIP an equivalent probability measure to IP on o-
algebra Fr.

(i) Prove that d(M, Z) = ZXd(M, B).

(ii) Use Ito formula to developp M, Z; — My Z,, calculer Ep[M;Z;/F].

(iii) Use Ito formula between s and t to process Z. [; X d(M, B),,.
(iv) Deduce M. — [; X,d(M, B), is a Q—martingale.
4. The following is a contra-example when Novikov condition is not satisfied: let be the stopping
time T = inf{1 > ¢ > 0,¢t + B? = 1} and
2

Xt = _thl{tST} ; 0<t< 1, X1 =0.

(i) Prove that 7' < 1 almost surely, so fol X?2dt < oo almost surely.

(ii) Apply Itd formula to the processt — % ; 0<t<1to prove:

1 1 1 T t
X:dB;, — — X2t =—1—-2 Bt < —1.
/2/ /o<1—t>4f<

(iii) The local martingale £(X.B) is not a martingale: we deduce from (ii) that E[&(X.B)] <
exp(—1) < 1 and this fact contradicts that for any martingale F(M;) = My, here it could be 1....
Anyway, prove that Vn > 1 and 0,, = 1—(1/y/n), the stopped process E(X.B)°" is a martingale.

5(*). Let be B the standard Brownian motion on the filtered probability space (2, (F;;t €
IRT),P) and H € L*(Qx[0,t]). V¢, let be W, := Bt—i—fg Hgds. Prove that the law of W is equiva-

lent to the Wiener measure according to the density on Fr % = exp [fOT —H,dB,—3 fOT —H?2ds
where (on the canonical space) pup(A) :=P{w : t — By(w) € A}.
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9 Representation theorems, martingale problem

Recall:

HE={M € M*¢, My =0,(M) € L'},

M and N are said to be orthogonal if E[M.N| =0, noted M LN,

and strongly orthogonal if M N is a martingale, noted as M { N.

Let be A C H32: denote S(A) the smallest stable closed vectorial subspace which contains A.

1. Let be M € HZ and Y a centered Bernoulli random variable independent on M. Let
be N :=Y M. Prove M LN but no M  N.
2. Let be M and N € H3. Prove the equivalencies:

()M 1 N, (i9)S(M) t N
(1ii)S(M) t S(N)  (iv)S(M)LN
(0)S(M)LS(N)

3. Let be M(A) the set of probability measures @ on Fo, @ << IP, IP|z, = Q|5,, and such
that A C H2(Q). Prove that M(A) is convex.

Study carefully the difference between M(.A) and M (A) (cf. Def 6.1 and 6.17 in Lecture Notes).
4. Let be B a n—dimensional Brownian motion on (2, F;,IP). Prove that VM € Mlﬁ, JH' €
P(BY),i=1,--- ,n, such that:

n
Mt = M() + Z(HZBZ)t
i=1
Indication: apply extremal probability measure theorem (th 6.14) to the set M (B) (actually the sin-
gleton {IP}) when B is the set of Brownian motion, then localize.

5. Prove that the above vector process H is unique, meaning VH' satisfying My = Mo+ > 1 (H"".B");
is such that :

/ Z |H!" — H!|>ds = 0 almost surely.

6. Let be M a vector martingale, the components of which are not strongly orthogonal two by two.

Prove the inclusion A ‘
{H, ViH' € L(M")} C L(M)

but the equality is false.
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10 Example: optimal strategy for a small investor

Let be a set of price processes: S = &(X™),t € [0,T], with:
d .
dX[ =) o} ()dW] + 0" (t)dt,n = 1,--- | N;dX] = rdt.
j=1

Suppose the matrix ¢ satisfies dt ® dIP almost surely : go* > al, ¢* is the tranpose matrix of ¢ and
a > 0. The coefficients b, o, r areF—adapted bounded [0, T] x  processes.

1. Look for a condition so that the market is viable, meaning a condition such that there is no arbitrage
opportunity.

(i) Prove that a market is viable as soon as there exists a risk neutral probability measure Q.

(ii) Propose some hypotheses on the above model, sufficient for the existence of Q.

2. Propose some hypotheses on the above model, sufficient for the market be complete, meaning any
contingent claim is “atteignable” (hedgeable).

Start with case N =d =1, then N =d > 1.

Remark: If d < N and o surjective, there is no uniqueness of vector u so that odW + (b—r)dt = ocdW .
In this case, the market is not complete and the set Qg is bijective with o~!(r — b).

Recall: let be a set of price processes S, a risk neutral probability measure on(, (F;)) is a probability
measure @ equivalent to IP such that the discounted prices e~"*S™, denoted as 5'”, are uniformly integrable
Q-martingales; denote their set Q.

3. Let be 6 an admissible strategy. Prove it is self-financing if and only if the discounted portfolio
value V;(p) = e "V, (p) satisfies:

t
Vt<p)=vo<p>+/ < Oudpy > .
0

(use Ito formula)
4. Let be the relation defined as

c1 < cg8iY(er) < eq)

where the application ¢ is defined on the consumption set X by:
P(a,Y) = a+ EqQlY].

Prove that it is a convex increasing continuous complete preference relation.
5. A sufficient and necessary condition for a strategy (7, ¢) to be admissible: let be fixed the discounted
“objective” consumption fOT e "cgds. Prove that

T
(%) EQ[/O e "egds) <z

is equivalent to the existence of an admissible stategy m such that X7 =z + fOT 7s.dSs.

6. Optimal strategies.

Prove that actually the problem is as following: the small investor evaluates the quality of his invest-
ment with an “utility function” (U; is positive, concave, strictly increasing, C! class); he look for the
maximisation:

T
(¢, X1) — E]p[/o Ui(cs)ds + Ua(X7)]

under the above constraint 5 (*). Solve this constrained optimisation problem using Lagrange method
and Kuhn and Tucker Theorem.
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