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INTRODUCTION

We can consider this problem as a particular case of a control problem : some agents
trade financial assets on the market. They want to choose an optimal strategy, they know
some information on the market, the political and economical situation, and so on. This
world is a random world, and it is modeled with respect to some elements :

- alea (for instance underlying the prices ) : Ω.

- daily information (observable filtration) : (Ft, t ≥ 0) where Ft is the natural filtration
associated to the observed prices at time t.

- goods consumption, exogeneous endowments.

- portfolio, i.e. decisions D taking their values in R, with respect to some constraint
to define admissible controls.

- agents’ preference ordering so that D is ordered ; actually the wealth-consumption
utility.

Vocabulary :

- exchange goods

- securities, stocks...

- traders

- endowments, for instance wages.

First, a simple model (chapter 1) :

. one time period, two dates : 0 and 1

. finite alea at time 1 : Ω = {ω1, · · · , ωK}, and firstly, Ω = {ω1, ω2}.

. trading at times 0 and 1

We can generalize to n times ti, i = 1, · · · , n with a finite Ω, endowed with a filtra-
tion, sigma-algebras increasing sequence Fti , i.e. the information at time ti, and trading
at time ti. Generally, F0 = {∅, Ω} and FT = P(Ω), chapter 2.

Finally, a continuous model is a larger generalization: card(Ω) = ∞ and t ∈ [0, T ]. It
is out of our purpose.

1 Two periods market

Cf. R.A. Dana and M. Jeanblanc [1], chapter 1. Dothan [2], chapters 1 and 2.
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1.1 Two times, two states, two assets

1.1.1 Model

At time 0, the asset price is S0, at time 1, it is denoted as S1 and its values are Sh, or Sb.
Sh and Sb are the two states for this risky asset. At time 0, the bond price is 1, at time
1, it is 1 + r,r is the bond return.

Definition 1.1 A “call option” is the following contract: at time 0, the buyer pays q so
that he has the right at time 1 to buy the asset at price K even if S1 > K. It is not an
obligation, only a right.... When at time 1 S1 > K he buys, so that he wins S1 −K − q.
In the other case, and if he does nothing, he loses q. Globally, he wins (S1 −K)+ − q.

A “put option ” is the following contract: at time 0, the buyer pays q so he has the
right at time 1 to sell the asset at price K even if S1 < K. It is not an obligation, only a
right.... When at time 1 S1 < K he buys, so he wins K − S1 − q. In the other case, and
if he does nothing, he loses q. Globally, he wins (K − S1)

+ − q.

Then the problem is to fix a “fair price” q, between the buyer and the seller, of this
contract.

1.1.2 Hedging portfolio, option pricing

Option pricing means what is the fair price q.

. Obviously, the only interesting case is K ∈]Sb, Sh[ and E(S1) ≥ S0(1+ r): if not, the
best is to only buy bond ! We look for a portfolio (α, β), α is the amount on the bond, β
on the risky asset, which “hedges” the option, i.e. its value at time 1 is the same as the
option value: α → (1 + r)α; βS0 → βS1.

This portfolio terminal value is (1 + r)α + βS1.

The couple (α, β) is solution to the system:

(1 + r)α + βSh = Sh −K; (1 + r)α + βSb = 0

with the initial condition q = α + S0β.
Exercise: solve the system and compute the price q

α = −
Sb(Sh −K)

(Sh − Sb)(1 + r)
; β =

Sh −K

Sh − Sb

.

The option price, (the fair price) is

q = α + S0β =
Sh −K

Sh − Sb

(S0 −
Sb

1 + r
).
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Interpretation : with as least q, the seller can obtain the portfolio (α, β) which induces
(S1 −K)+ ∀ω and so he can pay the buyer.
The buyer doesn’t want to pay more than q, because in other case with such a portfolio,
he could win more than (S1 −K)+.

. When K is not in ]Sb, Sh[, the system is:

(1 + r)α + βSh = (Sh −K)+ denoted as Ch; (1 + r)α + βSb = (Sb −K)+ denoted as Cb

thus

α =
CbSh − SbCh

(Sh − Sb)(1 + r)
; β =

Ch − Cb

Sh − Sb

,

and the option price is

q =
ShCb − SbCh + (1 + r)S0(Ch − Cb)

(Sh − Sb)(1 + r)
.

This could be written as:

(1 + r)q = πCh + (1− π)Cb, with π =
(1 + r)S0 − Sb

Sh − Sb

.(1)

Exercise: (i) prove that π ∈ [0, 1] ↔ Sb ≤ (1 + r)S0 ≤ Sh

(1 + r)p = πPh + (1− π)Pb, avec P. = (K − S.)
+,

(ii) compute the put option price.

1.1.3 Risk neutral probability

The π definition yields the relation S0(1+ r) = πSh +(1−π)Sb. When π belongs to [0, 1],
which is equivalent to Sb ≤ (1+r)S0 ≤ Sh (exercise), π can be looked as a new probability
on space Ω and the price equation is now

(1 + r)q = Eπ[(S1 −K)+] respectively (1 + r)p = Eπ[(K − S1)
+]

Definition 1.2 This probability is called “Risk neutral probability”.

Interpretation : under this probability, on an average it is equivalent to buy risk-less or
risky asset.....

Proposition 1.3 The option fair price is the discounted profit mean computed under the
risk neutral probability: q = Eπ[ 1

1+r
(S1 −K)+].

Proof: the remark above the definition.
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1.1.4 Put-call parity

Let us notice that (S1 −K)+ − (K − S1)
+ = S1 −K and (1 + r)S0 = Eπ(S1).

So Eπ[(S1 − K)+] − Eπ[(K − S1)
+] = (1 + r)S0 − K, i.e. the call price is the put price

plus S0 −K : (1 + r): q = p + S0 −K/(1 + r)

1.1.5 Arbitrage opportunity

Definition 1.4 An “arbitrage opportunity” is the opportunity to have a portfolio such
that the initial wealth X0 < 0 and the terminal wealth X1 ≥ 0, or X0 ≤ 0, X1 ≥ 0 with
X1(ω1) or X1(ω2) > 0.

Exercise: Sb ≤ (1 + r)S0 ≤ Sh is equivalent to the absence of arbitrage opportunities.

. On one hand, if (1 + r)S0 < Sb, obviously it is better to borrow S0 on the bond and
to buy risky asset (α = −S0, β = 1). Thus X0 = 0 and X1 = −(1 + r)S0 + S1 which is
strictly positive (cf. hypothesis): then (α = −S0, β = 1) is an arbitrage opportunity.
Similarly if Sh > (1 + r)S0, it is better to borrow risky asset S1 and to buy some bond,
once again, (α = S0, β = −1) is an arbitrage opportunity.

.. Conversely if we assume that Sb ≤ (1 + r)S0 ≤ Sh, we found π = (1+r)S0−Sb

Sh−Sb
,

risk neutral probability, which satisfies Eπ[X1] = (1 + r)X0 for any portfolio since S0
1 =

(1 + r)S0
0 , Eπ[S

1
1 ] = (1 + r)S1

0 . If there exists an arbitrage opportunity, a portfolio (α, β)
could exist which would induce an initial wealth X0 = α+βS0 < 0, and a terminal wealth
X1 = α(1 + r) + βS1 ≥ 0.
We compute Eπ[X1] under the probability measure π i.e. Eπ[X1] = α(1 + r) + βS0(1 + r)
which is nonnegative, so it is a contradiction.

1.1.6 Risk of an option

Let be p the probability of the event {S1 = Sh}. The mean return of the asset is pSh+(1−p)Sb

S0

denoted as mS. This return variance is

E[(
S1

S0

−mS)2] = p(1− p)
(Sh − Sb)

2

S2
0

.

Definition 1.5 The volatility of an asset is its standard deviation:
√

p(1− p)Sh−Sb

S0
,

denoted as vS. It is a measure of the mean risk.

Concerning the option, let ∆ be the quantity β to put on the risky asset to hedge the
contract: ∆ = Ch−Cb

Sh−Sb
. Recall that the part β in the portfolio is used to hedge the option.

Economists call it the “sensibility” of C to S, roughly speaking the relative variation of
the C range (option price) with respect to this of the asset price S.
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Definition 1.6 The option elasticity is Ω = S0

q
∆.

Proposition 1.7 The option mean return is mC = pCh

q
+ (1 − p)Cb

q
and its volatility is

√

p(1− p)Ch−Cb

q
, denoted as vC .

Let us notice that vC = vS × Ω.

Here we assume that mS ≥ 1 + r, if not it could be better to only buy bond...

Proposition 1.8 We assume that mS ≥ 1 + r. Then:

(i) vC ≥ vS.

(ii) The call excess return is more than the asset one i.e. :

mC − (1 + r) ≥ mS − (1 + r).

Proof:
1. Actually we have to prove Ω ≥ 1, i.e. S0

q
Ch−Cb

Sh−Sb
≥ 1.

But recall that q = ShCb−SbCh+(1+r)S0(Ch−Cb)
(1+r)(Sh−Sb)

, so we have to compare (1 + r)S0(Ch − Cb)

and ShCb − SbCh + (1 + r)S0(Ch − Cb).
Otherwise, ShCb − SbCh ≤ 0 is easy to verify so the first assertion is proved.
2. Let us recall mS = pSh+(1−p)Sb

S0
and mC = pCh+(1−p)Cb

q
; so yields

(mS − (1 + r))S0 = pSh + (1− p)Sb − πSh − (1− π)Sb = (p− π)(Sh − Sb)

and similarly

(mC − (1 + r))q = pCh + (1− p)Cb − πCh + (1− π)Cb = (p− π)(Ch − Cb).

Thus yields the equality :

mC − (1 + r)

mS − (1 + r)
=

S0(Ch − Cb)

q(Sh − Sb)
,

i.e. exactly Ω which we know to be more than 1.

The interpretation is that the option return is larger than the underlying asset one ;
the risk (variance, volatility) is larger. My comment is: if you take more risks, don’t be
surprised to loose money.... the probability of such an event is non null....
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1.2 Two times, N assets, K states, several agents.

We have two times 0 and 1 where exchanges occur and goods are consumed. But at
time 1, Ω = {ω1, · · · , ωK}, the nature states set, endowed with the probability measure
P. There exists only a perishable good, we can’t stock it.

Otherwise now there exist N assets to be traded at time 0. If one of them is risk-less,
we index them from 0 to N ; the risk-less asset is not necessarily with the initial value 1.

Let us assume:

- no transaction cost.

- the nth action at time 1 is a random variable on (Ω,P(Ω), P).

- there are I traders; everything is deterministic at time 0, and at time 1, they know
the precise ω to be observed. They are characterized by
. endowments : ei(0), ei(1, ω), i = 1, ..., I ,
. consumption processes : ci = (ci(0), ci(1, ω))
(random variables as the prices, taking their values in X = R × R

K, not necessarily
positive contradicting the intuition!!)

- X is endowed with a preference ≺ i.e. a total binar relation, and satisfying:
c ∈ X implies {c′ ≺ c} are {c ≺ c′} are closed subset in X.
if all the coordinates of c′ are ≥ these of c, then c ≺ c′.
if c ≺ c′ and c ≺ c′′, then ∀α ∈ [0, 1], c ≺ αc′ + (1− α)c”

1.2.1 Budget set

Let S0 = (S1
0 , ..., S

N
0 ) be the N assets prices at time 0 and denote as 〈x, y〉 the scalar

product in R
N , D the prices matrix at time 1: D = [dn(ωk) n = 1, ...N ; k = 1, ...K] and

finally S is the price system (S0, D).

If there exists a risk-less asset: S0 = (S0
0 , S

1
0 , ..., S

N
0 ), we get S0

1(ωk) = S0
0(1 + r), ∀k.

Definition 1.9 The i−th agent’s budget set is the set

B(ei, S) = {c ∈ X/∃θ1, ..., θN : c(0) = ei(0)− < θ, S0 >; c(1) = ei(1) + Dθ}

i.e. there exists a buying strategy which can finance the terminal consumption.

There are several agents, so we say “trading strategies”, and we say that c is generated
by (ei, θ).
Exercise: Let the prices system for K = 2, N = 4

S0 50 4 22 44

d.(ω1) 100 40 60 120

d.(ω2) 100 0 40 80
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Does a risk-less asset exists ? if yes, what is its rate ?
The agent’s endowment being e(0) = 9, e(1, ω1) = 10, e(1, ω2) = 20, describe the budget
set.
In X = R

3, B(e, S) is the set of all c ∈ R
3 such that there exists a portfolio θ ∈ R

4 which
is solution to the following system:

c(0)− 9 = −50θ1 − 4θ2 − 22θ3 − 44θ4

c(1, ω1)− 10 = 100θ1 + 40θ2 + 60θ3 + 120θ4(2)

c(1, ω2)− 20 = 100θ1 + 0θ2 + 40θ3 + 80θ4

(3)

To find c in R
3 is obtained after cancelling θ; after some computations we get:

c(0) +
1

10
c(1, ω1) +

4

10
c(1, ω2) = 18

i.e. the budget set B(e, S) is a plane in R
3.

1.2.2 Equilibrium

The agents’aim is obviously to optimize their preferences! But the trading occur only if
there exists an “equilibrium”. More precisely, we need that the markets are “clear”,i.e.
for any asset n, n = 1, ..., N :

I
∑

i=1

θi
n = 0

in other words..... “rien ne se perd, rien ne se crée”...

Definition 1.10 There exists an equilibrium (Arrow-Debreu : cf [1]) with respect to the
prices system S if (S, θ) satisfies ∀e, ∀i, the consumption process ci in B(ei, S) generated
by (ei, θi) is optimal for each agent and if the market is “clear”.

Such a set of consumption processes {ci, i = 1, ...I} associated with the equilibrium trading
is called the equilibrium allocation w.r.t. (e, S).

1.2.3 Pareto efficiency

It is a weak normative criterion for the social “desiderability” of an allocation of con-
sumption w.r. t. endowments e in price system S.
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Definition 1.11 An allocation {ci, i = 1, ...I} is feasible in this system if

I
∑

i=1

ci(t) =
I

∑

i=1

ei(t), t = 0, 1.

Comparing the definitions, remark that an equilibrium allocation is always feasible.

Definition 1.12 Let the system (e, S): the feasible allocation {ci, i = 1, ...I} is Pareto
efficient if there is no other feasible allocation strictly better, i.e. there is no other feasible
allocation {bi, i = 1, ...I} such that ∀i, ci ≺ bi and at least one of bi differs from ci.

Definition 1.13 A consumption process c is accessible (or simulable) in the price sys-
tem (S0, D) if there is an endowment process e such that:

e(0) > 0, e(1) = 0 ; c ∈ B(e, (S0, D)).

Let us denote M the set of accessible/simulable consumption processes.
The following are equivalent:

c ∈ M ⇔ ∃e : c ∈ B(e, S), e(1) = 0 ⇔ ∃θ, e : c(0) = e(0)− < θ, S0 > ; c(1) = Dθ,

i.e. there is a portfolio which allows to attain this consumption process.
We now prove:

Theorem 1.14 If every consumption process is accessible, then every equilibrium alloca-
tion is Pareto efficient.

Proof:
(i) Assume that the equilibrium allocation (ci, i = 1, · · · , I) is not Pareto efficient , i.e.
there exists another feasible allocation (bi, i = 1, · · · , I) which is strictly better; so

(∗)
∑

i

ci =
∑

i

ei =
∑

i

bi, ci ≺ bi, ∀i = 1, · · · , I and there exists i0 such that ci0 6= bi0 .

Let us denote ai = bi − ci : the hypothesis yields that this allocation is accessible and
there exists (θ, α) such that ∀i = 1, · · · , I :

bi(0)− ci(0) = ai(0) = αi − 〈θi, S0〉 ; ai(1) = Dθi.

(*) proves that
∑

i a
i(t) = 0, t = 0, 1, i.e.

∑

i

∑

n θi
ndn =

∑

i Dθi = 0, ∀ω, and
∑

i α
i =

∑

i〈θ
i, S0〉 =

∑

i

∑

n θi
nSn

0 .
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(ii) Assume that this sum
∑

i α
i is strictly positive. Suppose that one agent in the equi-

librium changes his strategy θ in the strategy : θ′ = θ −
∑

i θ
i so this is an equilibrium

and his consumption becomes

c′(0) = c(0) + 〈
∑

i

θi, S0〉 > c(0) ; c′(1) = Dθ′ = Dθ −
∑

i

Dθi = c(1)

which is a strictly better consumption than c, and which belongs to the budget set thanks
the portfolio θ′. This is impossible because of the optimality hypothesis of allocation c at
equilibrium: by definition, c is optimal in B(e, S) so

∑

i α
i ≤ 0.

Similarly, using the portfolio θ′ = θ +
∑

i θ
i when the sum is strictly negative yields a

contradiction thus actually
∑

i α
i = 0.

(iii) Now assume that there exists i such that αi < 0 : denoting ηi the optimal port-
folio associated to ci, we get

bi(0)− αi = ci(0)− 〈θi, S0〉,

bi(1) = ai(1) + ci(1) = D(ηi + θi).

Then the couple (bi(0)− αi, bi(1)) is a consumption belonging to the budget set B(ei, S)
via the strategy θi + ηi; moreover

bi(0)− αi > bi(0) ≥ ci(0),

so this consumption in B(ei, S) is better than bi so better than ci, and this is a contra-
diction to the optimality of ci in B(ei, S): thus αi ≥ 0, ∀i and since their sum is null all
αi are null.
But then the previous equations show that bi ∈ B(ei, S) ; the hypothesis shows that bi

is strictly better than ci, this fact contradicts that ci is the optimal consumption (cf.(*))
in the budget set B(ei, S) at the equilibrium: so the allocation (bi) doesn’t exist and the
allocation (ci, i = 1, · · · , I) is Pareto efficient. 2

Theorem 1.15 Assume the matrix D rank is equal to K, then every consumption process
is accessible and every equilibrium allocation is Pareto efficient.

Proof: The consumption c is accessible if and only if ∀ω the system c(1, ω) = 〈D(ω), θ〉
admits a solution, this is equivalent to the fact that the matrix D rank is equal to K. In
such a case e(0) = c(0) + 〈θ, S0〉. 2

The conclusion is the following : we need enough independent assets to hedge the alea,
the hazard....
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1.2.4 Accessible set

It is a similar notion, analogue to the budget set, but without endowments.
Let D : R

N −→ R
K such that D(θ) = D.θ.

Theorem 1.16 The accessible consumption processes set M is R× Im(D).

Actually it is the set generated by c(0), c(1) = D.θ, so we get
c(0) ∈ R ; c(1) ∈ Im D.

Theorem 1.17 For every endowment process e and every price system S = (S0, D) :

c ∈ B(e, (S0, D)) ⇔ c−e is accessible with initial endowment 0, i.e. c−e ∈ B(0, (S0, D)).

Proof: We use a sequence of equivalence:

c ∈ B(e, S) ⇔ ∃θ/c(0) = e(0)− < θ, S0 >; c(1) = e(1) + Dθ on one hand,(4)

c− e ∈ B(0, S) ⇔ ∃θ/c(0)− e(0) = − < θ, S0 >; c(1)− e(1) = Dθ on the other hand

1.2.5 Arbitrage strategies

As in the previous section, the key is as following: a trader who uses an arbitrage strategy
is sure to obtain a return without any initial investment.

Definition 1.18 An arbitrage strategy θ is a trading strategy which allows to get a
strictly positive consumption with a null initial wealth; more precisely:

- either < θ, S0 >≤ 0 ; D(ω)θ ≥ 0 and ∃ω/D(ω)θ > 0,

- or < θ, S0 >< 0 and ∀ωD(ω)θ ≥ 0

Such a strategy allows to win something without any initial wealth.

Example : Let a system with three states and three assets. The initial price is
S0 = (8, 10, 3) ; the matrix D is :

6 11 3

5 11 3

12 9 3

We can prove that the portfolio θ = (1, 7/2,−87/6) is an arbitrage strategy:

< θ, S0 >= −
1

2
; < θ, D(ω1) >= 1; < θ, D(ω2) >= 0; < θ, D(ω3) >= 0.

Usually we assume the arbitrage free hypothesis (denoted below as A.O.A.). We
can prove the useful result (Farkas lemma):
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Theorem 1.19 The hypothesis A.O.A. is equivalent to the existence of β ∈ (R+
∗ )K , called

state price, such that Si
0 =

∑K
j=1 Si

1(ωj)βj, ∀i = 0, ...N.

The key proof is the Minkowski separation theorem: if C1 C2 are non empty convex subset
of R

k, C1 being closed and C2 being compact, there exists a ∈ R
k, non null, b1, b2 ∈ R

such that 〈a, x〉 ≤ b1 < b2 ≤ 〈a, y〉, ∀x ∈ C1, y ∈ C2.
Let us denote the simplex ∆n = {y ∈ (R+)n+1,

∑

i yi = 1}.

Proof: let U = {z ∈ R
K+1, z0 = −〈S0, x〉, ; (z1, · · · , zK) = D.x, x ∈ R

N} = C1. Oth-
erwise, ∆K = C2 ⊂ R

K+1.
(i) Assume AOA. Then U ∩ (R+)K+1 = {0} because if not, when ∃z 6= 0 belonging to this
intersection, it could be z0 = −〈S0, x〉 ≥ 0 i.e. 〈S0, x〉 ≤ 0, and the other coordinates D.xj

could be positive, and this is an arbitrage except if z = 0. Please note that U ∩∆K = ∅,
U is a closed convex subset, ∆K is a convex compact subset. So we apply Minkowski
theorem: ∃β ∈ (RK+1)∗, 〈β, z〉 ≤ b1 < b2 ≤ 〈β, y〉, ∀z ∈ U, ∀y ∈ ∆K.

Using 0 ∈ U, then b1 ≥ 0, b2 > 0 and y = (0, ...0, 1, 0, ..., 0) ∈ ∆K , βj > 0. We can
suppose β0 = 1 and (β1, · · · , βK) ∈ (R+

∗ )K. Then ∀z ∈ U, 〈β, z〉 = −〈S, x〉 + βt.D.x ≤
b1, ∀x ∈ R

N . But this is possible only if S0 = Dt.β : Si
0 =

∑k
j=1 Si

1(ωj)βj.

(ii) Conversely, if there exists β ∈ (R+
∗ )K such that S0 = Dtβ, we compute the port-

folio θ value:

X0 = 〈θ, S0〉, X1 = D.θ. So X0 = θtDtβ = 〈X1, β〉. Any portfolio can’t to be an ar-
bitrage strategy , since this last equation shows that one can’t have X0 < 0 and X1 ≥ 0
together. 2

The probabilistic interpretation is the following: ∀i = 1, · · · , N, S i
0 =

∑

j βjS
i
1(ωj) and

if there exists a risk-less asset (number 0) j, d0(ωj) = 1 + r then
1 =

∑

j βj(1 + r), and this defines a probability measure:

Π on Ω : πj = βj(1 + r), j = 1, · · · , K.

Please remark that Si
0 =

∑

j
πj

1+r
Si

1(ωj) = 1
1+r

Eπ[Si
1]. It yields

(1+r)〈θ, S0〉 = (1+r)
∑

i,j θiβjS
i
1(ωj) = Eπ[〈θ, Si

1〉]: the portfolio initial value, discounted
at time 1, is equal to the portfolio mean value at time 1 under the probability Π.

Definition 1.20 Π is called a risk neutral probability measure if it satisfies: under
Π, it is equivalent to buy only the bond (risk-less) or to buy only risky assets.

The asset i return under the state ωj is
Si

1
(ωj)

Si
0

and its Π−mean is equal to
∑

j(1 + r)βj
Si

1
(ωj)

Si
0

= 1 + r.

Proposition 1.21 Assume AOA, then there exists a risk neutral probability measure un-
der which the assets prices at time 0 are the mean of the assets discounted prices at time
1.
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Theorem 1.22 When the situation is an equilibrium there exists no arbitrage strategy.

Proof: ∀i, let (θi
1, ..., θ

i
N ) the strategy which finances the i-th agent equilibrium consump-

tion process. We suppose that there exists an arbitrage strategy θ (first definition in Def-
inition 1.18). Then, θ′ = θi +θ allows the consumption c′(1) = Dθi +Dθ and c′(1) > ci(1)
for at least one ω whereas c′(0) = ci(0)− < θ, S0 >≥ ci(0). But c′ ∈ B(ei, S). This
contradicts the fact that ci could be the ith agent’s optimal consumption in B(ei, S).

Please, do the proof for the second definition in Definition 1.18 as an exercise. 2

1.2.6 Complete markets

Theorem 1.15 in Section 1.2.3 tells us that if the matrix D rank is equal to K, every
equilibrium allocation is Pareto efficient.

Let us add an asset of price SN+1
0 at time 0 and SN+1

1 at time 1. In such a case
we get an important consequence. Let us consider the equilibrium of the market with
prices((S1

0 , ..., S
N+1
0 ), D). Otherwise the matrix DN , gathering the first N assets is of

rank K. Then
DN .θ = SN+1

1 admits a solution (θ1, ..., θN)

Necessarily, SN+1
0 =

∑N
n=1 θnSn

0 , because if SN+1
0 >

∑N
n=1 θnSn

0 , then the strategy θ′ =
(θ1, ..., θN ,−1) could be an arbitrage strategy: indeed θ′ initial value is < θ, S0 > −SN+1

0 <
0 and the terminal value Dθ−SN+1

1 = 0. But there exists no arbitrage when the situation
is an equilibrium (cf 1.22).
If SN+1

0 <
∑N

n=1 θnSn
0 , using symmetry, the strategy θ′′ = (−θ1, ...,−θN , 1) could be an

arbitrage strategy.

In such a case , any more asset price is obtained as a linear combination of the previous
assets prices.

Definition 1.23 We say that a market is complete if every consumption process is
accessible, i.e. if for every contingent claim C ∈ R

K, there exists a portfolio θ which
finances this claim:

D.θ = C,
N

∑

i=1

θiS
i
1(ωj) = C(ωj), j = 1, · · · , K.

Proposition 1.24 A market is complete if and only if the matrix D rank is equal to K,
the cardinal of Ω .

12



The proof is : the application f : θ 7→ D.θ is surjective onto R
K.

Economical interpretation of the state price in a complete market :

. If the contingent claim C coordinates are null except the jth equal to 1, and if there
exists a portfolio θj which finances C, compute the following scalar product with beta (cf.
Theorem 1.19) : 〈β, C〉 = βj = βtDθj = 〈So, θ

j〉: we get that βj is the price to pay at
time 0 to earn 1F at time 1 if the world state is then ωj.
This is the reason of the word ”state price”.

Theorem 1.25 On a complete market, every equilibrium allocation is Pareto efficient.

The proof is the same as this of Theorem 1.14 in Section 1.2.3 2

1.2.7 Equilibrium measure, or risk neutral probability measure

Let us consider a complete market and the portfolio θ = (θ1, · · · , θN) such that Dθ(ω) =
1 ∀ω. Then the initial portfolio value is 〈S0, θ〉 = St

0Dθ =
∑K

j=1 Sj
0. Without missing

generality, we can suppose that the asset 1 is risk-less: with this asset we get
∑K

j=1 Sj
0 =

1
1+r

, that is the amount obtained with this portfolio.

Let us assume that the coordinates of the state price are strictly positive and define
πj = (1 + r)βj: this is the risk neutral probability measure on Ω.
Hypothesis: the asset number 0 is risk-less with initial price 1, i.e. it is a “bond”

S0
1(ω) = (1 + r), ∀ω ∈ Ω.

Definition 1.26 Let S a price system. If the system Dt.Q = (1+ r)S0 admits a solution
in R

K with all its coordinates > 0, Q is said to be an equilibrium price measure.

The index bond is o: So
1 = (1 + r), (1 + r) > 0 and S0 denotes the vector (1, S1

0 , ..., S
N
0 ).

So yields the system:

K
∑

k=1

Sj
1(ωk)Q(ωk) = (1 + r)Sj

0, j = 0, ...N.

Thus, if Q(ωk) > 0, ∀k, a measure is defined on Ω and this measure is a probability
measure : for j = 0, S0

1(ωk) = (1 + r) ∀k, so for j = 0 the system equation becomes:

K
∑

k=1

(1 + r)Q(ωk) = (1 + r),

i.e.
∑K

k=1 Q(ωk) = 1.

13



Theorem 1.27 Q exists if and only if the price system S forbids any arbitrage.

Proof: actually it is another proof of Theorem 1.19, to skip for a first lecture.

Corollary 1.28 An equilibrium price measure exists if and only if the price system (S0, D)
admits an equilibrium with respect to a population of traders the preferences of who are
convex increasing continuous.

Recall :
. ≺ is continuous on R

K+1 if {c′ ≺ c} and {c ≺ c′} are closed.
. ≺ is increasing if we have the implication: every coordinates of c′ ≤ coordinates of c
implies c′ ≺ c.
. ≺ is convex if c ≺ c′ and ≺ c′′ implies ∀α ∈]0, 1[, c ≺ αc′ + (1− α)c”
Proof: Using Theorem 1.22, when there exists an equilibrium the situation is arbitrage
free. Theorem 1.27 then says that an equilibrium price measure exists.

Conversely suppose that there exists an equilibrium price measure Q and let (e1, · · · , eI)
an endowments set. We define a preference as following:

b ≺ c : c(0) +
1

1 + r
EQ(c(1)) ≥ b(0) +

1

1 + r
EQ(b(1)).

Exercise: this is a convex increasing continuous relation.

Then we verify that the situation is an equilibrium. Let for the agent i a consumption
process ci ∈ B(ei, S) financed by a strategy θi :

ci(0) = ei(0)− < θi, S0 >; ci(1) = ei(1) + Dθi.

One computes the preference criterium for this consumption process:

ci(0) +
EQ(ci(1))

1 + r
= ei(0) +

EQ(ei(1))

1 + r
+

1

1 + r

∑

k,n

Q(ωk)θ
i
nSn

1 (ωk)− 〈θ
i, S0〉.(5)

The fact that Q is an equilibrium price measure implies ∀n,
∑

k Q(ωk)S
n
1 (ωk) = (1 + r)Sn

0 , so for all trader i, yields:

ci(0) +
1

1 + r
EQ(ci(1)) = ei(0) +

1

1 + r
EQ(ei(1)).

But ei ∈ B(ei, S) for the null strategy with which the market is clear! Thus ei and ci

are equivalent, ei is optimal in B(ei, S) and attained thanks to a strategy with which the
market is clear: so we exhibited the equilibrium (S0, e, c = e). 2

Theorem 1.29 When there exists an equilibrium price measure, Q is unique if and only
if the market is complete.

14



Preuve : The hypothesis is that the system DtQ = (1 + r)S0 admits a solution with all
the coordinates > 0. Then, classically, the uniqueness of the solution is equivalent to the
fact that the matrix D rank = K and this is equivalent to the fact that the market is
complete (cf. 1.2.6). 2

Exercise: let us the initial prices vector: S0 = (1, 3, 9) and the following prices matrix

1 3 9

D = 1 1 5

1 5 13

Show that the market is not complete, that there exists an equilibrium price measure, that
all the accessible consumption processes verify c3 = 2c1− c2. Finally, define the set of risk
neutral probability measures.

1.2.8 Arbitrage pricing in a complete market

Proposition 1.30 Under the arbitrage free hypothesis and if the market is complete, to
finance a contingent claim C ∈ R

K, at time 1 we need to start with the initial wealth
1

1+r

∑K
j=1 πjC(ωj) i.e. the average of discounted C under the risk neutral probability mea-

sure.

Proof: assuming these two hypotheses (and using Exercise 1.2.8. Feuille 1), it is known
that the application defined by the matrix D is surjective and that there exists a portfolio
θ which allows to attain C and the initial value of this portfolio 〈θ, S0〉 doesn’t depend
on the chosen θ. (Such a portfolio is called a “hedging portfolio”). Finally we show that
this initial value satisfies: 〈θ, S0〉 = θtDtβ = 1

1+r
EΠ[C]. 2

Such a process is called “pricing” since the initial value (price) of an asset is computed
using the arbitrage free hypothesis.
Exercise: let a contingent claim equal to a “call” option value: C = (S i

1−K)+. Compute
this option price.

1.2.9 Optimization problem

We now go to look for an optimal strategy which maximizes the utility of the consumption:

F : B(e, S) → R
+ ; c 7→ U(c).

The function U is supposed to be positive, increasing w.r.t. each component, strictly
concave.
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We now define a particular budget set satisfying the constraint that the wealth has to
stay positive:

B = {c/X0 = e(0)− c(0)− 〈θ, S0〉 ≥ 0 ; XT = e(1)− c(1) + Dθ ≥ 0}.

Proposition 1.31 There exists an optimal consumption if and only if the market satisfies
the free arbitrage hypothesis. In such a case, the optimal solution belongs to the set
(R∗

+)K+1.

Proof: we here deliver the proof only in the case of injective matrix D, N + 1 ≤ K and
D rank is N + 1 (i.e. the number of assets on the market).
(i) Let us assume the existence of an optimal consumption c∗ : there exists a portfo-
lio θ such that the initial wealth X0 = e(0) − c∗(0) − 〈θ, S0〉 and the terminal wealth
X1 = e(1)−c∗(1)+Dθ. Let us suppose that there exists an arbitrage strategy: a portfolio
θ1, i.e. 〈θ1, S0〉 = 0 and Dθ1 ≥ 0 and non null. Then using the portfolio θ+θ1, the trader’s
consumption is always in the the budget set, the initial wealth X0 is the same and the ter-
minal wealth is more than X1 so he can obtain a consumption c1(1) = c∗(1)+Dθ1 ≥ c∗(1)
better than the optimal c∗: this is a contradiction and we conclude to arbitrage free.
(ii) Conversely, under the arbitrage free hypothesis, the hypotheses concerning U im-
ply that an optimum exists in the budget set B as soon as B is bounded. Suppose B
unbounded: there exists a sequence (cn, θn) satisfying the constraint and ‖θn‖ → ∞.

Let θ∗ be a ” valeur d’adhérence” of the sequence ( θn

‖θn‖
); the constraint implies ∀n the

following relations:

cn(0)

‖θn‖
+ 〈

θn

‖θn‖
, S0〉 ≤

e(0)

‖θn‖
;
cn(1)

‖θn‖
≤

e(1)

‖θn‖
+ D

θn

‖θn‖

finally let n goes to infinity:
〈θ∗, S0〉 ≤ 0 ; Dθ∗ ≥ 0

i.e. an arbitrage unless Dθ∗ = 0. But this is not possible since by definition the norm of
θ∗ is 1 and by hypothesis D is injective: the budget set is bounded and c∗ exists in B(e, S).

(iii) Finally we have to show that all the coordinates of this optimal consumption are
strictly positive. This is a convex optimization problem under linear constraint: at the
optimum, the constraint are equalized, i.e.

c∗(0) + 〈θ, S0〉 = e(0) ; c∗(1)−Dθ = e(1).(6)

This optimization problem is solved using the Lagrange multipliers method:

L(c, θ, λ) = U(c)− λ0[c(0) + 〈θ, S0〉 − e(0)]−
K

∑

j=1

λj[c1(ωj)Djθ − e1(ωj)].
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So we get the following differential system:

∇cL = ∇U − λ = 0 ∈ R
K+1

∇θL = λ0S0 −
K

∑

j=1

λjS1(ωj) = 0 ∈ R
N+1,(7)

plus the two last derivations which are the Lagrangian derivatives w.r.t. to λ, i.e. the
constraint saturation (6). The utility function U is strictly increasing so all the optimal
Lagrange multipliers satisfy λ∗j > 0.

Let us define βj = λj

λ0
= ∇jU

∇0U
: then (7) yields

Si
0 =

K
∑

j=1

βjS
i
1(ωj), i = 0, · · · , N

which is a pricing formula.

The saturation equations (6) prove that the optimal consumption c∗ is strictly positive
as following. There exists ε ∈]0, 1[ such that

c(0) = c∗(0) + ε〈θ, S0〉 > 0; c(1) = c∗(T )− εDθ > 0,

indeed, if one of c∗ coordinates is strictly positive, there exists ε small enough so that
the c correspondent component stays strictly positive; if one c∗ component is null, using
Equation (6), either (if c ∗ (0) = 0) 〈θ, S0〉 = e(0) > 0 or if there exists ω such that
c ∗ (1)−D(ω)θ = e(1, ω) > 0 so ε exists.

This consumption c belongs to the budget set via the portfolio (1 − ε)θ. Otherwise,
since the utility function U is concave:

U(c)− U(c∗) ≥
∑

j

(cj − c∗j)∇jU(c) = ε[〈θ, S0〉∇0U(c)−
∑

j

(Dθ)j∇jU(c)]

which, when ε goes to zero, goes to 〈θ, S0〉∇0U(c∗)−
∑

j(Dθ)j∇jU(c∗) which is null (7);
so c could be better than c∗ and this contradicts the optimality of c∗: c = c∗ which so is
strictly positive. 2

In the case of a complete market, we get more results since then the vector λ∗ is unique
and we get the relation :

c∗(0) + 〈β, c∗(T )〉 = e(0) + 〈β, e(T )〉.
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2 A discrete multi-period financial model

We extend the model of the previous chapter to T periods: (0, · · · , T ) instead of (0, 1).
The modeling principle is the same, but now there are random processes on Ω×(0, · · · , T )
instead of random variables for the consumption processes, the endowments and the prices.
The strategies are depending on the time and the concerned asset.

2.1 The model

As for any control models, the economical agents take in account the available information
on the prices and so the strategies (i.e. the controls) have to be adapted processes with
respect to the observations. Thus the model is defined with:

- time (0, · · · , T ),

- alea (usually underlying the prices): Ω = {ω1, · · · , ωK}, endowed with the “natural”
probability P,

- the daily informations (observable filtration): F generated by the observed prices
and let us suppose that F0 = {∅, Ω} and FT = P(Ω): finally, everything is known! This
sequence of increasing knowledge can be represented by an arborescence. This is well
modeled with the filtration, i.e. the increasing sequence of sigma-algebras on Ω which
model the daily information:

F0 = {Ω, ∅},

FT = P(Ω),

Ft = σ({Aj(t), j ∈ Ωt}

where Aj(t) are the atoms of Ft, union of atoms Al(t + 1) in Ft+1.

- only one, perishable, consumption good

- finite number of endogeneous securities): one bond and N risky assets the prices of
which are random variables

Sn(t); n = 1, · · · , N ; t = 1, · · · ; T, Sn(t) > 0 ;

let be S0 the initial prices vector and D the process of prices matrix which is a F -adapted
process (i.e. ∀t, the random vector Dt, sometimes denoted as St, is Ft-measurable):

S0 = (S1(0), · · · , Sn(0)) ; ∀t = 1, · · · , T, Dt = St = [Sn(ωk, t) n = 1, ...N ; k = 1, ...K].

Let us denote S = (S0, D) the prices system at the T + 1 times.

- the I agents (traders) who receive endowments (for instance salaries) ei(t) and con-
sume ci(t), e, c real adapted processes (∀t, et, ct are Ft-measurable).
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- no transaction cost.

- let us denote X the consumption set: R × {adapted processes }, endowed with a
preference ≺ complete, continuous, increasing and convex, i.e.:
. (X,≺) is totally ordered
. if c ∈ X, {c′ ∈ X : c′ ≺ c} and {c′ ∈ X : c ≺ c′} are closed sets.
. if any c coordinates are more than these of c′, then c ≺ c′.
. if c ≺ c′ and c ≺ c′′ then ∀α ∈ [0, 1], c ≺ αc′ + (1− α)c”.

2.2 Strategies and budget set

Moreover we suppose that there exists a risk-less asset, number 0, with initial price 1 and
deterministic price S0

t , for instance (1 + r)t.
The strategies (cf. Lamberton and Lapeyre p.13) are processes taking their values in
R

N+1:
θ = (θ0

t , ..., θ
N
t ) ; t = 1, ..., T.

The process θ has to be predictable, i.e. θt is Ft−1 measurable: the previous information
is used to change the portfolio, before knowing the next prices.

Using the strategy θt at time t, the agent’s wealth

Vt(θ) = Dtθt denoted as
N

∑

i=0

θi
t.S

i
t or 〈θt, St〉

is a random variable Ft-measurable. Let us denote Ṽt(θ) = (S0
t )
−1Vt(θ) the portfolio

discounted value, S̃t = (S0
t )
−1St the discounted prices, the bond is used as a reference

price. So we get S̃0
t = 1 at any time t. Let us denote Rt = (S0

t )
−1 the discount coefficient

on the market.

Definition 2.1 θ is a self-financing strategy if for all t = 1, ..., T − 1 :

〈θt, St〉 = 〈θt+1, St〉

(cf. Dothan page 69 and Lamberton and Lapeyre p.14: no transaction costs).

Interpretation : the new portfolio is only done thanks to an internal redistribution
between the assets; the consumption is only financed by the endowments.

Remark 2.2 θ is a self-financing strategy if and only if

Vt+1(θ)− Vt(θ) = 〈θt+1, St+1 − St〉,

i.e. the portfolio value variation is only a consequence of the prices variation.

Proof: exercise.
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Definition 2.3 Let us define a budget set with respect to an endowment process ei and
a prices S system:

B(ei, S) = {c ∈ X/∃θ predictable : c(t) = ei(t)+〈θt−θt+1, St〉; ∀t ∈ {0, ..., T} ; θo = θT+1 = 0}

This means that there exists a buying strategy which allows to finance the terminal
consumption. Let us remark that this definition doesn’t include constraint on the sign of
the consumption process.
Moreover, if θ is self-financing,

B(ei, S) = {c : c(0) = ei(0)−〈θ1, S0〉, c(t) = ei(t), t = 1, · · · , T−1, c(T ) = ei(T )+〈θi
T , ST 〉}.

In this situation with several agents, we call them trading strategies, c is generated
(or simulated, or attainable) by (ei, θ).

Proposition 2.4 The following are equivalent:

(i) θ is self-financing,

(ii) ∀t ∈ {1, ..., T}, Vt(θ) = V0(θ) +
∑t

s=1〈θs, Ss − Ss−1〉,

(iii) ∀t ∈ {1, ..., T}, Ṽt(θ) = V0(θ) +
∑t

s=1〈θs, S̃s − S̃s−1〉.

Proof: we show the first equivalence using the remark above:

Vs+1(θ)− Vs(θ) = 〈θs+1, Ss+1 − Ss〉

and we compute the sum.
To show (i) ⇐⇒ (iii), θ is self-financing ⇐⇒ 〈θt, S̃t〉 = 〈θt+1, S̃t〉 ⇐⇒
Ṽs+1(θ)− Ṽs(θ) = 〈θs+1, S̃s+1 − S̃s〉 ⇐⇒ (iii). 2

Proposition 2.5 (cf. [3] p.15) For any predictable process θ taking its values in R
N and

and for any V0 ∈ R, there exists a unique real predictable process θ0 such that the process
taking its values in R

N+1 θ̄ = (θ0, θ) is a self-financing strategy with initial value V0.

Proof(do it as an exercise) : the identity

Ṽt(θ̄) = θo
t +

N
∑

n=1

θn
t .S̃n

t = Vo +
t

∑

s=1

〈θ̄s, (S̃s − S̃s−1)〉

and the fact that ∀s, p̃o
s = 1, after some cancellations, yields:

θo
t = V0 +

t−1
∑

s=1

N
∑

n=1

θn
s .(S̃n

s − S̃n
s−1)−

N
∑

n=1

θn
t .S̃n

t−1, t > 1 and θ0
1 = V0 −

N
∑

n=1

θn
1 .S̃n

0 ,(8)

and this is a predictable expression.
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2.3 Equilibrium, Pareto efficiency

The agents’ aim is to optimize their preferences. But the trading can only be done in a
context of an “equilibrium”. To be more precise, the market needs to be “clear”, i.e. for
any asset n, n = 0, ..., N :

I
∑

i=1

θi
n = 0

meaning rien ne se perd, rien ne se crée... and in the same time anybody can optimize
his strategy in his budget set.

Definition 2.6 Let be an endowment set {ei, i = 1, · · · , I}, a prices system S and a
set of strategies {θi, i = 1, · · · , I} with which we can attain the consumption processes
{ci, i = 1, · · · , I}; we say that the situation is an equilibrium if
(i) ∀i, the consumption process ci is optimal in B(ei, S) endowed with the preference ≺
for the agent i,
(ii) the market is “clear” at any time t and for all ω, i.e. for any asset n, n = 0, ..., N :

I
∑

i=1

θi
n(t, ω) = 0, ∀n, ∀ω, ∀t.

Such a consumption processes set {ci, i = 1, ...I} is called the equilibrium allocation
with respect to (e, S). (Recall: S = (S0, D)).

Definition 2.7 An allocation {ci, i = 1, ...I} is feasible if

∀i, ci ∈ X and
I

∑

i=1

ci(t) =
I

∑

i=1

ei(t), ∀t = 0, · · · , T.

Definition 2.8 A feasible allocation {ci, i = 1, ...I} is Pareto efficient if there doesn’t
exist another feasible allocation {bi, i = 1, ...I} which could be better (w.r.t. the preference
relation) for each agent.

Definition 2.9 A consumption process is accessible in the prices system S if there exists
an endowment process e such that:

e(0) > 0 ; e(t) = 0, t = 1, ..., T ; c ∈ B(e, S).

Let be S fixed, and denote M(S) the feasible consumption processes set. Then yields the
equivalence:

c ∈ M(S) ⇔ ∃θ which finances c.

Then we get the following theorem.

Theorem 2.10 (cf. [2] p.57) If any consumption process is accessible, then any equilib-
rium allocation is Pareto efficient.

Exercise: The proof is the same as this in two periods case, cf. theorem 1.14), do it as an
exercise.
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2.4 Arbitrage and admissible strategies

This section comes from [3] page 15 and [2] 3.7, pages 69-71.

Definition 2.11 A strategy θ is said to be admissible if it is self-financing and if the
portfolio value Vt(θ) ≥ 0 ∀t ; meaning that the investor can at any time repay his borrow-
ing, for instance selling his portfolio.

Another version is to allow a given deficit: Vt(θ) ≥ a where a is a non positive real number.
This could be considered as a “limit position”.

As in the previous chapter, the arbitrage is the possibility for an economical agent to
get a return without any initial investment

Definition 2.12 An arbitrage strategy is an admissible trading strategy which allows
an agent with a null initial wealth to obtain a strictly positive consumption; more precisely:

- 〈θ, S0〉(0) = 0 ; DT θ(ω) ≥ 0 and ∃ω/DTθ(ω) > 0.
With the admissibility extended definition ( Vt(θ) ≥ a where a is non positive real number),
yields

- either 〈θ, S0〉(0) ≤ 0 ; DT θ(ω) ≥ 0 and ∃ω/DT θ(ω) > 0.

- or 〈θ, S0〉(0) < 0 and ∀ω, Dθ(ω) ≥ 0

It is easy to prove that if there exists a risk-less asset, the existence of such strategies
is equivalent to the existence of strategies satisfying:

- 〈θ, S0〉(0) = 0 ; DT θ(ω) ≥ 0 and ∃ω/DTθ(ω) > 0.

The absence of arbitrage is characterized by martingales properties (cf. J. Neveu [4]),
so we need some “recalls” . Let a filtered probability space (Ω,A, P,Ft) and an adapted
process M : M is a martingale if ∀t, Mt ∈ L1(Ω,A, P) and if the conditional expectation
satisfies EP[Mt+1/Ft] = Mt. The main properties to be known are (cf. for instance [4]):

- M is a martingale ⇔ ∀s ≤ t E
P

[Mt/Fs] = Ms.

- EP[Mt] = EP[M0].

- the sum of two martingales is a martingale.

Definition 2.13 A market is said to be viable if there doesn’t exist any arbitrage strategy.

Theorem 2.14 A market is viable if and only if one of the two equivalent following
conditions:

(i) ∃Q probability equivalent to P such that the discounted prices are Q−martingales,
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(ii) ∀t = 1, · · · , T for all atom At−1
j in the sigma-algebra Ft−1, the linear system

∑

At
k
∈At−1

j

Di
t(A

t
k)Qt(A

t
k) = (1 + r)Di

t−1(A
t−1
j ), i = 1, · · · , N,

where At
k are the atoms of Ft the union of which is At−1

j , admits a solution with strictly
positive components.

Definition 2.15 In such a case Q is said to be a equilibrium price measure (or :
risk neutral probability measure).

Actually the systems above have to be understood as following: the number of systems
is equal to the number of atoms of sigma-algebra Ft−1, denoted as At−1

j :

∀At−1
j atom of Ft−1,

∑

i

tD(t, Bi)Qt(Bi) = (1 + r)St−1(ω), ∀ω ∈ At−1
j ,(9)

where Bi are the atoms of Ft included in At−1
j , and this is exactly the equation which

defines the equilibrium price measures in the two periods case, between t − 1 and t. So
the assertion (ii) is equivalent to no arbitrage between t− 1 and t.
Proof: be cautious, this proof is not a definitive one, and a first lecture can skip it.
(i) ⇒ the market is viable : let θ an admissible (thus self-financing) portfolio; then
(cf. Proposition 2.4) the discounted value of the portfolio satisfies:

Ṽt(θ) = Vo(θ) +
t

∑

s=1

〈θs, S̃s − S̃s−1〉.

This is a finite sum of integrable random variables; thus Ṽt(θ) is integrable ; moreover θt

is Ft−1-measurable; we then compute the conditional expectation:

EQ[Ṽt(θ)/Ft−1] = Ṽt−1(θ) + EQ[〈θt, S̃t − S̃t−1〉/Ft−1]

= Ṽt−1(θ) + 〈θt, EQ[S̃t − S̃t−1/Ft−1]〉 = Ṽt−1(θ)

since the hypothesis yields that S̃ is Q−martingale. So Ṽt(θ) is Q−martingale and
EQ[Ṽt(θ)] = Vo(θ). If θ would be an arbitrage strategy (〈θo, So〉 = Vo(θ) = 0 and
VT (θ) ≥ 0), it would be EQ[ṼT (θ)] = 0, i.e. ṼT (θ) = 〈θT , St〉 = 0 i.e. arbitrage is
impossible and the market is viable.

To prove the reciprocal is difficult directly (cf. pages 18-19 in Lamberton and Lapeyre
[3]) but the proof is easier using (ii) and denoting that this reciprocal is equivalent to no
arbitrage between t− 1 and t.
the market is viable yields (ii).
Let us suppose that (ii) fails: there exists t and an admissible arbitrage strategy θ between
times t and t + 1, i.e.

〈θt+1, St〉 = 〈θt, St〉 = 0 ; 〈θt+1, St+1〉 > 0.
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We complete this portfolio to get a self-financing arbitrage strategy admissible between 0
and T. Let us propose:

θ1 = · · · = θt−2 = 0

θt−1 such that 〈θt−1, St−1〉 = 〈θt, St−1〉 and 〈θt−1, St−2〉 = 0

θo
j =

〈θt+1, St+1〉

So
t+1

∀j ≥ t + 2

θn
j = 0 ∀n = 0, · · · , N, ∀j ≥ t + 2

This strategy is admissible:
it is clearly predictable; it is moreover self-financing :

- ∀j ≥ t + 2, 〈θj, Sj〉 = 〈θj+1, Sj〉 since θj is constant,

- 〈θt+2, St+1〉 = θo
t+2.S

o
t+1 = 〈θt+1, St+1〉 by construction,

- 〈θt+1, St〉 = 〈θt, St〉 by hypothesis,

- 〈θt, St−1〉 = 〈θt−1, St−1〉 by construction,

- finally 〈θj, Sj−1〉 = 〈θj−1, Sj−1〉 = 0, ∀j ≥ t− 1 by construction.
In particular this last point shows that 〈θ1, S0〉 = 0, and otherwise we can easily verify

that 〈θT , St〉 = 〈θt+1, St+1〉
So

T

So
t+1

> 0. This says that θ is an arbitrage strategy and this

contradicts the hypothesis.
(ii) implies (i)
The hypothesis allows to built a probability Q equivalent to P under which the discounted
prices are Q-martingales. Indeed following (cf. Dothan [2], page 75 and sq.) we set:

Q(ω) =
T
∏

t=1

Qt(ft(ω)),

where ft(ω) is the atom in Ft such that ω ∈ ft(ω) and Qt is solution of system (ii):

tD(t, ω)Qt = (1 + r)St−1(ω),

thus Q is actually a probability measure and moreover the discounted prices are Q−martingales.
More precisely, the hypothesis is the following:
let t fixed between 1 and T and let the atoms A1, · · · , Ant−1

in Ft−1; ∀j = 1, · · · , nt−1, Aj =
∪Bk

j where Bk
j are atoms in Ft; the random variable Dt is constant on any Bk

j and the ran-
dom variable St−1 is constant on Aj and the system

∑

k Dt(B
k
j )Qt(B

k
j ) = (1 + r)St−1(Aj)

admits a solution (Qt(B
k
j ) > 0, j = 1, · · · , nt−1).

Now let ω ∈ Ω,FT = P(Ω): this singleton is included in a sequence of atoms for the
different filtrations as following: {ω} ⊂ fT−1(ω) ⊂ · · · ⊂ f1(ω). The definition is:

Q{ω} = QT{ω}QT−1(fT−1(ω)) · · ·Q1(f1(ω)).
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Property: let the system which gives Qt and write its 0-th coordinate: D0
t (B

k
j ) = (1+r)t

and S0
t−1 = (1 + r)t, thus

∀j = 1, · · · , nt−1,
∑

k

Qt(B
k
j ) = 1.

a) Q is probability measure: each Q{ω} is positive and we sum them recursively:
∑

ω

Q{ω} =
∑

atoms of FT−1

(
∑

ω∈fT−1(ω)

QT (ω)QT−1(fT−1(ω)) · · ·Q1(f1(ω)).

But remark that the atoms fi(ω) are fixed as soon as fT−1(ω) is fixed and that the product
QT−1(fT−1(ω)) · · ·Q1(f1(ω)) is one factor in the sum

∑

ω∈fT−1(ω) QT (ω) which is equal to
1. Then yields:

∑

ω

Q{ω} =
∑

atoms of FT−1

QT−1(A
j
T−1) · · ·Q1(f1(A

j
T−1)).

It is then easy to get recursively ∀t :
∑

ω

Q{ω} =
∑

atoms of Ft

Qt(A
j
t )Qt−1(ft−1(A

j
t)) · · ·Q1(f1(A

j
t)),

because when j is fixed, the atoms of the sigma-algebrae with an index less than t
ft−1(A

j
t), · · · , f1(A

j
t) are constant and we get the result with t = 1 since at the begin-

ning ∪jA
j
1 = Ω.

b) The discounted prices are martingales, i.e. we have to proof:

EQ[S̃n
t+1/Ft] = S̃n

t .

Let A be an atom of Ft and Aj atoms of Ft+1 such that A = ∪jAj:
∫

A
S̃n

t+1dQ =
∑

j

∫

Aj

S̃n
t+1dQ =

∑

j

S̃n
t+1(Aj)Q(Aj)

since by definition Sn
t+1 is Ft+1-measurable, so it is constant on the Ft+1-atoms. The

computation a) of Q(Ω) is done similarly to this of Q(Aj) so we get recursively:

Q(Aj) = Qt+1(Aj)Qt(A)Qt−1(ft−1(A)) · · ·Q1(f1(A)),

and:
Q(A) = Qt(A)Qt−1(ft−1(A)) · · ·Q1(f1(A)),

a substitution get:
∫

A
S̃n

t+1dQ =
∑

j

S̃n
t+1(Aj)Qt+1(Aj)Qt(A) · · ·Q1(f1(A)).

Using Qt definition and the starting hypothesis,
∑

j S̃n
t+1(Aj)Qt+1(Aj) = S̃n

t 1A, thus we
can conclude. 2
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2.5 Complete markets

(cf. Lamberton and Lapeyre [3], pages 19-21 ; Dothan [2], pages 57 and sq.)
This notion is defined with respect to the prices system, as is done the notion of “simu-
lability”.

Definition 2.16 A market with prices system S is said to be complete if any consump-
tion process is accessible with a self-financing strategy, meaning that

∃e0 > 0, ∃θ self-financing : c0 = E0 − 〈θ1, S0〉, cT = 〈θT , ST 〉.

Theorem 2.17 When a market is complete, any equilibrium allocation is Pareto efficient.

This is only Theorem 2.10 corollary. 2

Remark 2.18 When a market is viable, under a equilibrium prices measure Q, the dis-
counted prices, so the discounted self-financing portfolio value, are Q−martingales. Thus,
Ṽt(θ) = EQ[ṼT (θ)/Ft] is only defined via its terminal value.

Theorem 2.19 A viable market is complete if and only if there exists a unique equilibrium
prices measure.

Proof: Thanks to Theorem 2.14, there exists a risk neutral probability measure Q.
(i) If the market is complete, any random variable X FT−measurable and integrable is a
“terminal” consumption and there exists a self-financing portfolio θ such that X = VT (θ).
If moreover the market is viable, let us suppose that there exist two equilibrium prices
measures Q1, Q2 so:

Ṽt(θ) = 〈θt, S̃t〉 = EQi
[ṼT (θ)/Ft], i = 1, 2

and for any event A of FT and for t = 0 and X = 1A × S0
T yields:

V0(θ) = Q1(A) = Q2(A),

meaning the uniqueness of the equilibrium prices measure.

(ii) Reciprocally, since the market is viable, (let us denote Q a risk neutral probability
measure) but no complete, there exists a random variable X FT−measurable and inte-
grable and positive non null and no accessible. Let us then define the set V of accessible
wealth:

V = {uo +
T

∑

t=1

〈θt, S̃t − S̃t−1〉; uo ∈ R; θ predictable self-financing}.
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Since X is not accessible, X
So

T

doesn’t belong to V following the characterization (iii)

of the self-financing strategies. Let Q be an equilibrium prices measure; V is a strict
closed vector subspace of L2(Q) and so there exists Y ∈ L2(Q), orthogonal to V. Thus
EQ[Y h] = 0, ∀h ∈ V and EQ[Y ] = 0 since all the constants belong to V (think of θ = 0).
Let us then define the measure:

Q′ = (1 +
Y

2 ‖ Y ‖∞
)Q

which is equivalent to Q, so to P, and which is a probability measure since EQ[Y ] = 0.

Then let ∀A ∈ Ft the strategy θ defined by

θk
s = 1Aδn,k, s = t + 1 ; θs = 0 ∀s 6= t + 1, k = 0, · · · , N

and uo = 0: (uo, θ) allows to finance the value 1A(S̃n
t+1−S̃n

t ) which so belongs to V. Yields:

EQ[Y 1A(S̃n
t+1 − S̃n

t )] = 0,

and:

EQ′ [1A(S̃n
t+1 − S̃n

t )] = EQ[(1 +
Y

2 ‖ Y ‖∞
)1A(S̃n

t+1 − S̃n
t )] = EQ[1A(S̃n

t+1 − S̃n
t )]

which is null, since the discounted prices are Q−martingales and also Q′−martingales,
which contradicts the uniqueness hypothesis: Q = Q′ which implies Y = 0 and so
V = L2(Q). 2

2.6 Valuation and hedging

On a viable and complete market, let Q be the unique equilibrium price measure. At time
T an aim is fixed, for instance the random variable h FT -measurable and integrable, and
let θ a self-financing strategy which allows to finance h: VT (θ) = h. Let us recall that for
all t, Ṽt(θ) = EQ[ h

So
T

/Ft] or Vt(θ) = So
t EQ[ h

So
T

/Ft], i.e. the portfolio θ value at time t, the

initial wealth being Vo(θ) = EQ[ h
So

T

]. Starting with this value, and using the strategy θ,

the existence of which is in force thanks to the completeness hypothesis, we are sure to
obtain h at time T : the “hedging” is sure: θ “hedges” h, V0(θ) is the “fair price”.

This technique allows us to know what initial prices have to be fixed on the market
for financial assets, defined as function of several actions. The most known are “options”:

- a call option with terminal value (ST −K)+,

- a put option with terminal value (K − ST )+.
These options are called “European”, there exist other options called “American options”:
i.e. we buy the right to exercise the sell or buy option before the maturity time T , at

27



a random time and the aim is to optimize this random time in the stopping times set
(stopping times are integer random variables with special properties):

h = sup{E[(Sτ −K)+] ; τ stopping times ≤ T}.

This is a special optimal control problem: optimal stopping time.

In the following section, we look for the strategy θ to be moreover admissible.

2.7 Optimization in a viable and complete market

Let x = X0 be the agent’s initial wealth. He looks for a strategy θ which has to be
optimal with respect to a utility function U of the portfolio terminal value. As previously,
U is a strictly concave increasing function on R

+. Firstly we characterize the admissible
strategies, i.e. θ has to be self-financing, at any time Vt(θ) ≥ 0, and (Vt(θ), t = 0, · · · , T )
is a Q- martingale, Q being the risk neutral probability measure.

Proposition 2.20 Let be V ∈ L1
+(Ω, Q) and RT = (S0

T )−1. Then V is the terminal value
of an admissible strategy with initial value x if and only if EQ[RT V ] = x.

Proof:

Let θ be the portfolio which allows to finance the aim V : RT V = RT VT (θ). The
martingale property shows that EQ[RT V ] = EQ[ṼT (θ)] = V0(θ), i.e. x.

Reciprocally, since the market is complete, there exists a self-financing strategy θ such
that V = VT (θ) and in such a case RT V = V0(θ) +

∑T
s=1〈θs, (S̃s+1 − S̃s)〉 (cf. (iii) in

Proposition 2.4), and since Q is risk neutral, Mt = V0(θ) +
∑t

s=1〈θs, (S̃s+1 − S̃s)〉 is a
martingale and Mt = Ṽt(θ) = EQ[RT V/Ft] is positive since V is so; thus θ is admissible.
Finally, by hypothesis EQ[RT V ] = x, so V0(θ) = x, initial value of the admissible strategy
θ. 2

Now the aim is to find V ∗ which realizes the maximum of the application V 7→
EP[U(V )] under the constraint that V is the terminal value of an admissible strategy
with initial value x. So, as in the two periods case, we have to solve an optimization
problem under constraint. Let us define the Lagrangian function:

L(V, λ) = EP[U(V )]− λ(EQ[RT V ]− x)

which can be written as

L(V, λ) = E
P

[U(V )− λ(
dQ

dP
RT V − x)].
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The concavity hypotheses allow us to obtain the optimum cancelling the Lagrangian
gradient:

∂L

∂V
= EP[U ′(V )− λ

dQ

dP
RT ]

∂L

∂λ
= EQ[RT V ]− x.(10)

The strict concavity of U shows the existence of the function I = (U ′)−1 and a solution
to the system is for instance:

V ∗ = I
(

λ∗
dQ

dP
RT

)

with λ∗ such that X (λ∗) = x where

X : R → R(11)

λ 7→ EP[
dQ

dP
RT I(λ

dQ

dP
RT )].

Since this application is monotone ( Lebesgue Theorem) and surjective on R
+, there exists

a unique λ∗ = X−1(x) :

V ∗ = I(X−1(x)
dQ

dP
RT ).

The optimal strategy θ∗ is deduced from V ∗ as in Proposition 2.20.

29



FEUILLE 1

1. Soit une fonction U croissante positive et concave et g(c) = E[U(cT )]. Montrer
que la relation c1 ≺ c2, définie par g(c1) ≤ g(c2), a les propriétés d’une préférence sur
l’ensemble des consommations.
Les exercices qui suivent sont extraits du DANA-JEANBLANC
1.2.3. Soit f : R

d+1 → R
k de matrice D. Montrer que D de rang k équivaut à f surjective

ou f ∗ injective.
1.2.5. Certains auteurs définissent une opportunité d’arbitrage θ par

d
∑

i=0

θip
i = 0,

d
∑

i=0

θid
i(ωj) ≥ 0, j = 1, · · · , k, et il existe j0 :

d
∑

i=0

θid
i(ωj0) > 0.

Montrer que si l’actif indexé 0 est sans risque, cette définition est équivalente à celle
donnée dans le cours.
1.2.8. Soit un système de prix S = (S0, D), vi

j = di(ωj), et Dθ le vecteur de composantes

(Dθ)j =
∑d

i=0 θiv
i
j et S.θ le produit scalaire

∑d
i=0 θip

i. On fait l’hpothèse que l’actif 0 est
sans risque.
a) montrer que l’hypothèse AOA équivaut à

(i)Dθ = 0 ⇒ S.θ ≥ 0.

(ii)Dθ ∈ R
k
+, Dθ 6= 0 ⇒ S.θ > 0.

b) Soit z ∈ Im(D). On peut écrire z = Dθ. Montrer que l’application π : z → S.θ ne
dépend pas du choix de θ sous l’hypothèse AOA et définit une forme linéaire positive sur
Im D.
c) Montrer que π se prolonge en une forme linéaire positive π̄ sur R

k.
d) Montrer en utilisant le théorème de Riesz que π̄(z) = β.z avec β ∈ (R∗

+)k.
e) En déduire le théorème : l’hypothèse AOA équivaut à l’existence d’une suite (βj)j =
1, · · · , k, de nombres strictement positifs, appelés prix d’états, tels que

Si =
k

∑

j=1

vi
jβj, i = 0, · · · , d.

1.2.9. Supposons qu’il y ait des contraintes sur portefeuilles modélisées par un cône
convexe fermé C, par exemple, C = {θ ∈ R

d+1, θi ≥ 0, i = r + 1, · · · , r + p ; θi ≤ 0, i =
r + p + 1, · · · , d}. On modifie la définition d’AOA en se restreignant à C.
(i) On note pour θ̄ ∈ C, NC(θ̄) = {p ∈ R

d+1〈p, θ−θ̄〉 ≤ 0, ∀θ ∈ C}.Montrer que l’hypothèse
d’AOA est équivalente à l’existence de β ∈ (R∗

+)k tel que −S + D̃β ∈ NC(0).
(ii) On suppose qu’il y a k ≥ 4 états de la nature et 4 actifs et l’hypothèse A.O.A.
L’actif 0 est sans risque et le taux d’intérêt est r. Les autres sont risqués de matrice de
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rendement D. On suppose que les contraintes sont θ2 ≥ 0 et θ3 ≤ 0. Montrer qu’il existe
une probabilité π telle que

S1 =
1

1 + r

k
∑

j=1

v1
j πj, S

2 ≥
1

1 + r

k
∑

j=1

v2
j πj, S

3 ≤
1

1 + r

k
∑

j=1

v3
j πj.

II.
Un petit épargnant place chaque mois une proportion de sa fortune initiale dans un place-
ment de taux aléatoire et épargne le reste à un taux nul. On suppose que les variables
aléatoires qui modélisent les différents taux de chaque mois sont indépendantes et de même
moyenne notée m, m > 0. Sa richesse initiale est x, x > 0 et il recherche une politique
optimale sur N mois au sens où il veut maximiser en moyenne la somme de ses épargnes
successives et de sa richesse terminale, qui est la quantité sur laquelle se fonde le banquier
pour calculer le montant d’un prêt.

1. Définir le modèle de contrôle défini ci-dessus, en précisant ses différents éléments :
espaces concernés, dynamique du système, valeur à optimiser...

2. Résoudre dans le cas d’une période de cinq mois avec m = 0.5.

3. Même question lorsque N est quelconque et m > 1.
Indication : montrer par récurrence que V (k, Xk) est proportionnelle à Xk et que π∗k(Xk) =
1 en indiquant le coefficient de proportionnalité.

4. Même question lorsque N est quelconque et m ∈ [ 1
N

, 1[.
Indication : on pose k0 = [ 1

m
] ; montrer par récurrence que V (k, Xk) est proportionnelle

à Xk et que π∗k(Xk) = 1, ∀k < N − k0 ; π∗k(Xk) = 0, ∀k ≥ N − k0. de proportionnalité.
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FEUILLE 2

1. On considère un marché comportant 3 actifs dont les prix d’achats sont

p1 = 20 ; p2 = 60 ; p3 = 30

et les prix à l’instant T sont des variables aléatoires définies sur un espace de probabilité
Ω = (ω1, ω2, ω3) et données par :

d1(ω1) = 60 d2(ω1) = 100 d3(ω1) = 30
d1(ω2) = 50 d2(ω2) = 120 d3(ω2) = 30
d1(ω3) = 60 d2(ω3) = 120 d3(ω3) = 30

Déterminer l’ensemble budgétaire d’un agent disposant des ressources suivantes :

e(0) = 400, e(T, ω1) = 500, e(T, ω2) = 1300, e(T, ω3) = 300.

2. Montrer que dans un marché où tout processus de consommation est atteignable
(marché complet), toute allocation d’équilibre a l’efficacité de Pareto : pour ceci, notant
ci le processus de consommation de l’agent i et ei ses ressources à l’équilibre, bi un autre
processus de consommation préférable, et ai = bi − ci, on suit les étapes suivantes (on
note (θi, αi) ce qui permet d’atteindre ai) :

.i. traduire que ci est une allocation d’équilibre ; que ai est atteignable ; que bi est
faisable.

.ii. Montrer (par l’absurde) que
∑

i〈θ
i, p〉 = 0 et en déduire que

∑

i α
i = 0, où αi est

la ressource initiale associée à ai.

.iii. Montrer que αi = 0 pour tout i, puis conclure.

3. On considère un marché comportant 3 actifs dont les prix d’achats sont

p1 = 35 ; p2 = 40 ; p3 = 12

et les prix à l’instant T sont des variables aléatoires définies sur un espace de probabilité
Ω = (ω1, ω2, ω3) et données par :

d1(ω1) = 24 d2(ω1) = 44 d3(ω1) = 12
d1(ω2) = 20 d2(ω2) = 44 d3(ω2) = 12
d1(ω3) = 48 d2(ω3) = 36 d3(ω3) = 12

a) Quel est l’ensemble des processus de consommation atteignables ?
b) Le processus de consommation suivant :

c(0) = 0, c(T, ω1) = 6, c(T, ω2) = 5, c(T, ω3) = 12
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est-il atteignable ? Donner une ressource initiale et une stratégie permettant de l’atteindre.
c) même question avec le processus de consommation :

c(0) = 0, c(T, ω1) = 9, c(T, ω2) = 1, c(T, ω3) = 17.

d) Ce système de prix permet-il une stratégie d’arbitrage ?

4. There are K = 2 states and N = 3 securities with payout

D =
20 44 12

48 36 12

and prices p1 = 35, p2 = 40, p3 = 12.
a. Is the market complete ? Find the set M of all attainable consumption processes.
b. Find an initial endowment and a trading strategy that attain the consumption process :
c(0 = 0, c(T, ω1) = 9, c(T, ω2) = 1.
c. Does the given price system permit arbitrage strategies ?
d. Do equilibrium price measures exist ?

5. On considère un marché comportant 3 actifs dont les prix d’achats sont

p1 = 8 ; p2 = 10 ; p3 = 3

et les prix à l’instant T sont des variables aléatoires définies sur un espace de probabilité
Ω = (ω1, ω2, ω3) et données par :

d1(ω1) = 6 d2(ω1) = 11 d3(ω1) = 6
d1(ω2) = 5 d2(ω2) = 11 d3(ω2) = 6
d1(ω3) = 12 d2(ω3) = 9 d3(ω3) = 6

a. Le marché est-il complet ?
b. Existe-t-il une mesure de prix d’équilibre ? des stratégies d’arbitrage ?
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FEUILLE 3

1. On considère un marché comportant 2 actifs dont l’évolution des prix au cours de deux
périodes est la suivante :

p1(t, ω) ω1 ω2 ω3 | p2(t, ω) ω1 ω2 ω3

t = 0 1 1 1 | t = 0 5 5 5
t = 1 2 3 3 | t = 1 2 6 6
t = 2 3 3 8 | t = 2 3 4 8

a) Quelle est la filtration engendrée par les processus de prix ?
b) Donner des exemples de stratégies autofinancées.
c) Déterminer l’ensemble budgétaire d’un agent disposant du processus de ressource suiv-
ant :

e(t, ω) ω1 ω2 ω3

t = 0 10 10 10
t = 1 20 30 30
t = 2 0 0 0.

d) Quel est l’ensemble des processus de consommation accessibles ? (utiliser la question
précédente avec e(0) libre et e(1) = e(2) = 0.)

2. On donne un système de prix de 2 actifs, évoluant sur 3 périodes, dans un espace
d’aléas de cardinal K = 6 :

p1(t, ω) ω1 ω2 ω3 ω4 ω5 ω6 | p2(t, ω) ω1 ω2 ω3 ω4 ω5 ω6

t = 0 8 8 8 8 8 8 | t = 0 20 20 20 20 20 20
t = 1 7 7 7 7 7 7 | t = 1 10 10 30 30 30 30
t = 2 9 9 9 9 10 10 | t = 2 15 15 40 40 40 40
t = 3 10 10 10 10 10 10 | t = 3 10 20 30 40 50 60.

a) Quelle est la filtration engendrée par les processus de prix ?
b) Soit (θ(t); 1 ≤ t ≤ 3) un processus à valeurs dans R2. A quelles conditions ce processus
constitue-t-il une stratégie autofinancée ?
c) On introduit un “bond” sur le marché, de prix constant égal à 1 et on décide d’investir
sur les actifs risqués 1 et 2 les quantités suivantes :

θ(1) = (10; 1) ; θ(2, ωk) = (5; 0), k = 1, 2; (5; 3) sinon ;

θ(3, ωk) = (0; 2), k = 1, 2; (1; 5), k = 3, 4; (3; 5) sinon .

Quelle quantité θ0(t) doit-on investir dans le bond à chaque instant t pour que (θ0, θ) soit
une stratégie autofinancée de richesse initiale V0 = 100 ?
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d) Ce marché est-il viable ? complet ?
e) Proposer un système de prix, engendrant la même filtration que le précédent, et tel
que le marché induit ne soit pas complet .
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FEUILLE 4

1. On considère un marché comportant 3 actifs dont les prix d’achats sont p1 = 1 ; p2 =
2 ; p3 = 7 et les prix à l’instant T sont des variables aléatoires définies sur un espace de
probabilité Ω = (ω1, ω2, ω3) et données par :

d1(ω1) = 1 d2(ω1) = 3 d3(ω1) = 9
d1(ω2) = 1 d2(ω2) = 1 d3(ω2) = 5
d1(ω3) = 1 d2(ω3) = 5 d3(ω3) = 13.

a) Existe-t-il des mesures de prix d’équilibre ? des stratégies d’arbitrage ?
b) Quel est l’ensemble M des processus de consommation atteignables ? Calculer EQ[c(T )]
pour c ∈ M et Q mesure de prix d’équilibre.
c) On considère un quatrième actif : une option call sur l’actif 2 de prix d’exercice 2.
Calculer EQ(d4) pour différentes mesures de prix d’équilibre.

2. On se place dans un marché, pas nécessairement complet, à plusieurs dates 0, 1, · · · , T,
pour lequel on suppose qu’il existe au moins une mesure de prix d’équilibre. Montrer que
pour toute consommation accessible par une stratégie autofinancée c = (c(0), c(T )), la
valeur EQ[c(T )] ne dépend pas de la mesure de prix d’équilibre Q.

3. Un marché comportant 3 actifs est décrit par le système de prix suivant :

p1 = 1 ; p2 = 3 ; p3 = 9

d1(ω1) = 1 d2(ω1) = 3 d3(ω1) = 9
d1(ω2) = 1 d2(ω2) = 1 d3(ω2) = 5
d1(ω3) = 1 d2(ω3) = 4 d3(ω3) = 11
d1(ω4) = 1 d2(ω4) = 2 d3(ω4) = 7.

a) Déterminer les mesures de prix d’équilibre.
b) Quel est l’ensemble M des processus de consommation accessibles ?

4. Come back to the market described in exercise 3, “feuille 2”.
a) Do equilibrium price measures exist ? Find them all.
b) Find the equilibrium price of a fourth security : dt

4 = (40, 20, 30).
c) Find the equilibrium prices of the following securities :

(i) A call option on security 1 with the exercise price of 25.

(ii) A put option on security 2 with the exercise price of 40.

(iii) A security whose terminal payout in each state is the maximum payout of all
securities less the average payout of all securities in that state.
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[4] J. NEVEU : “Martingales à temps discrets”, Masson, Paris, 1972.

[5] S. R. PLISKA : “Introduction to Mathematical Finance”, Blackwell, Oxford, 1998.

37


