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1 Introduction

1.1 Motivation

Asymmetric information can be considered as the problem of an insider trading : some
�nancial agent knows something about the future. Thus, a market model is built on a
�ltered probability space (Ω, (Ft, t ∈ [0, T ]),P), the prices of assets being solution of a SDE
driven by W, a d-dimensional Brownian motion. From the beginning, t = 0, the investor
(namely the �insider") knows a random variable L ∈ L1(Ω,FT ;Rκ), κ ∈ N, for instance, he
knows that some trading will be done and when it will be done; for two assets of prices S1

et S2, the random variable could be their ratio at time T : L = lnS1
T − lnS2

T . The �natural�
�ltration known by the insider trader is Ft ∨ σ(L). But on the �ltered probability space
(Ω, (Yt, t ∈ [0, T ]),P), the process W is no longer a semi-martingale. This is the so-called
initial enlargement of �ltration problem. This one is widely studied in LN 1118. Karatzas
and Pikovsky [34] studied similar problems on some examples of real or vectorial random
variables : L = W1, L = (λiW

i
1 + (1 − λi)Ei)i=1,d with a family of independent Gaussian

variables (Ei), or L = S1 the price at time 1, or L = 1{S1<p}. The common point is the so
called hypothesis HJ which will be de�ned below.

1



But if there is a set of investors with di�erent information on the market, the trading
manages only if a price is got between them, this problem is called an �equilibrium problem".
Here we don't manage with other types of equilibrium, such as �Arrow-Debreu" or �Arrow-
Radner� (cf. [25]), meaning a set of agents, receiving an endowment, using it to optimize
their consumption, while balancing the market; the market is to be �clear".

Another point of view could be the so called �ltering problem, meaning incomplete infor-
mation, given a signal, how to estimate the prices given a signal for the best. In any cases,
the agents have an optimization problem to solve. Such problem are solved with Bellman
principle, for instance.

1.2 Plan

Actually, this course will o�er seven chapters, including an introduction to the useful tools
(Subsection 1.3).

• We �rst introduce some elements on enlargement of �ltration, �ltering, optimal control,
and Bellman principle [13, 16, 31].

• Then in Chapter 2 we present Kyle's seminal paper about �insider trading and rational
anticipation" [36]: the aim is to set the existence of an equilibrium price when there
exists not only market maker and noise traders but also an insider trader; the model
is a discrete time model.

• Always in a discrete time model, Chapter 3 concerns an extension of this insider trading
whith nonlinear equilibria with risk neutrality, respectively with risk aversion, following
El Karoui and Cho [8].

• Chapter 4 presents continuous case, �rst Back's point of view [3] and secondly Cho's
extension [9].

• This work is then extended in [42] to strategic noise traders (Chapter 5).

• Chapter 6 presents another type of equilibrium (cf. [25]).

• Finally, in Chapter 7 we quickly present some other points of view (e.g. Campi and
Cetin, Jouini and Napp, Schweizer, Lasserre.... cf. some lectures in AMaMef workshop-
Toulouse January 2007).

1.3 Stochastic tools

1.3.1 Initial enlargement of �ltrations

Let a �ltered probability space (Ω, (Ft, t ∈ [0, T ]),P), with some processes given by the
equation :

Sit = Si0 +

∫ t

0

Sisb
i
sds+

∫ t

0

Sis(σ
i
s, dWs), 0 ≤ t ≤ T, S0 ∈ Rd, i = 1 · · · , d.
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where W is d-dimensional Brownian motion and (., .) denotes the scalar product in Rd.
We �enlarge" the �ltration with an initial information, for instance a random variable L ∈
L1(Ω,FT ;Rκ), κ ∈ N, or a σ-algebra G. The �enlarged� �ltration is Ft ∨ σ(L). To apply
the standard results, we use the associated right continuous �ltration, denoted by Y : Yt =
∩s>t(Fs ∨ σ(L)), t ∈ [0, T ].

But on the �ltered probability space (Ω, (Yt, t ∈ [0, T ]),P), the process W is no longer a
semi-martingale. Following Föllmer and Imkeller [15], an equivalent probability measure Q
is built such that under Q, for all t < T, the σ-algebra Ft is independent of σ(L). Thus W is
a (Y , Q)-Brownian motion. Another useful method is the initial enlargement of �ltrations,
it allows to �nd some conditions on L (or on G) so that there exist a Y-Brownian motion B
and an increasing process A satisfying Wt = Bt+At. This was studied when L is a Gaussian
random variable by Yor [46], Chaleyat-Maurel and Jeulin [7].

More generally, Jacod [29] did the same when the family of conditional laws Qt(ω, .) of
L given Ft is dominated almost surely by a non-random measure ; see also Song [45]. The
Bouleau-Hirsch [6] results give some simple conditions on L so that these conditional laws are
dominated by the Lebesgue measure. With some extra hypotheses, Imkeller [27], speci�es
the decomposition of the semi-martingale W using Malliavin calculus.

Below, we give the links between some hypotheses allowing enlargement of �ltration.

1.3.2 Hypotheses, cf. [21]

Consider a probability space (Ω,A,P) with �ltration (Ft, t ≤ T,FT ⊂ A) ; an informed
agent has an initial (at t = 0) private information described by a σ-�eld G ⊂ A, (a general
example is G = σ(L) for a random variable L ∈ L1(Ω,FT ;Rκ), κ ∈ N). The right continuous
�ltration (Yt = ∩s>t(Fs ∨ G), t ∈ [0, T ]) will denote the information of the informed agent.

This section is devoted to show the link between di�erent hypotheses which allow the
enlargement of �ltration which is necessary to study market with informed agent. Indeed
the semi-martingales describing prices evolution in the market without an informed agent
(F) need to be also semi-martingales in the market with informed agent (Y).

The �rst hypothesis is

(H ′) : ∀M ∈Mloc(F ,P),∃M ′ ∈Mloc(Y ,P) such that M ′
t = Mt − At, ∀t ∈ [0, T [,

where A is a �nite variations process. (H ′) is granted as soon as the conditional law of L
given Ft is absolutely continuous with respect to a deterministic measure for all t ∈ [0, T [)
(Jacod [29]).

The second and third hypotheses are (H3) and (HJ) which imply (H ′) (cf. Proposition
1.4 below) :

(H3) : ∃Q ∼ P; such that under Q,∀t < T,Ft is independent of G.
(HJ) : The conditional law of L given Ft is equivalent to the law of L,∀t < T.

Here q(t, .) will denote the density between the two probability laws.
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When G = σ(L), (HJ) implies (H ′) and under (HJ) the probability law de�ned by, for
all A < T, Q = 1

q(A,L)
P on YA has the following properties:

under Q, Ft and G are independent and Q|Ft = P|Ft ,∀t ≤ A.

Remark 1.1 J. Amendinger (his thesis and [1]) supposes (HJ), then shows (H3), and actu-
ally always uses the property (H3) in his proofs. So, we can apply his results. He establishes
also that under (HJ), �ltration F. ∨ G is right continuous as soon as F. is (Proposition 3.4,
[1]).

Simple examples for which Hypothesis (H3) is veri�ed are given in [19] ; examples, for
which hypothesis (H ′) is veri�ed but (H3) is not, are given in [17].

Remark 1.2 Let R a probability law which veri�es (H3). Then, there exists an equivalent
probability Q, satisfying (H3), and such that ∀t < T,Q|Ft = P|Ft . Indeed, let Z∗t = EP[ dR

dP/Ft]
and Q = (Z∗t )−1R on Yt ; let H ∈ L∞(Ft) and Y ∈ L∞(G), if H ′ = (Z∗t )−1H, this random
variable is in L1(Ft, R), then

EQ[H.Y ] = ER[(Z∗t )−1.H.Y ] = ER[H ′.Y ] = ER(H ′)ER(Y ) = EP(H)ER(Y ).

So G and Ft are independent under Q and Q|Ft = P|Ft ,∀t < T.

Hypothesis (HJ) is linked with Hypothesis (27) in Föllmer-Imkeller [15]. The next propo-
sition is near to Remarks (28) and (29) in this paper.

Proposition 1.3 If G = σ(L), then (H3) and (HJ) are equivalent.

Proof : The proof done in [19] never uses the continuity of processes in the story....so it
can be used here. •

Proposition 1.4 Hypothesis (H3) implies hypothesis (H ′).

Proof : Let Q = HP, H ∈ L1(Ω,A,P), be the probability law under which F and G are
independent and such that Q|Ft = P|Ft ; let Zt = EP[H/Ft], it is a (F ,P) martingale. Let
M ∈Mloc(F ,P), then (Protter page 109 [43]) we have

M ′ = M − (Z)−1.[Z,M ] ∈Mloc(F , Q). (1)

But if t < T, Q|Ft = P|Ft then Zt = 1 and M ′ = M.

The independence of G and Ft,∀t < T, under Q shows that M ′ ∈ Mloc(Y , Q). The
process Z∗t = EQ[H−1/Yt] is a (Y , Q) martingale. Then again using Girsanov theorem,

M ′′ = M ′ − (Z∗)−1.[Z∗,M ′] = M − (Z∗)−1.[Z∗,M ] ∈Mloc(Y ,P) (2)

thus we get the (Y ,P)-semimartingale decomposition of M.

•
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Remark 1.5 If the martingale M , in the proof of the previous proposition, admits a rep-
resentation property then [Z∗,M ] is absolutely continuous with respect to [M,M ]. This is
done for martingales driven by a Brownian motion and a point process as an example.

In Grorud-Pontier 2001 [21] is given a su�cient condition including hypothesis (H ′) to
satisfy (H3) for models in which prices are driven by a Brownian motion and a point process
(actually similar to Novikov condition in case of Girsanov formula).

1.3.3 Stochastic Filtering, cf. Bain and Crisans [4]

A signal process X is observed via another continuous process Y , namely the �observation
process". This one generates its natural �ltration, Y . The aim is to estimate the signal for
the best using the observations, more precisely, to get the Yt-conditional law of Xt for any
time t, denoted as πt. Process π is characterized as a solution of a SDE. This Yt-conditional
law of Xt is a stochastic process t 7→ πt taking its value in the space of probability measures.
Generally, the observation process is

Yt = Y0 +

∫ t

0

h(Xs)ds+Wt, t ≥ 0.

Under some topological or stochastic properties as separability, optional projection or weak
topology are needed. Then, the construction of a regular conditional probability can be
done, with some su�cient conditions on function h to get the innovation process,

It = Yt −
∫ t

0

πs(h)ds

as a Brownian motion. Now let the famous Fujisaki-Kallianpur-Kunita representation theo-
rem:

Theorem 1.6 If for all t ≥ 0, h(X.) ∈ L2(Ω × [0, t]) and
∫ t

0
‖πs(h)‖2ds < ∞, then ∀η

Y∞-measurable there exists a Y-progressively measurable process ν such that

η = E(η) +

∫ t

0

νs.dIs.

An important point in this theory is the �ltering equations, in the case of the signal X
is a di�usion driven by a p-Brownian motion V :

X i
t = X i

0 +

∫ t

0

f i(Xs)ds+
∑
j=1,p

∫ t

0

σij(Xs)dV
j
s , i = 1, · · · , d.

Its initial law is denoted as π0, and there exists an operator A on the bounded Borelian
functions such that φ(Xt) − φ(X0) −

∫ t
0
Aφ(Xs)ds is a martingale. Thus yields Kushner-

Stratonovitch equation:

πt(φ) = π0(φ) +

∫ t

0

πs(Aφ)ds+

∫ t

0

[πs(φ.h)− πs(φ)πs(h)]dIs.
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1.3.4 Optimal control, Bellman principle

This is useful starting from Chapter 4.

Let a value function to maximize with respect to a set of strategies S, meaning a set of
predictable processes:

α 7→ E[U(α,X)].

Usually the optimal conditional value after t is de�ned:

Φα(t) = ess sup{E[U(α̃, X)/Ft], α̃|[0,t] = α|[0,t]}.

Lemma 1.7 cf. [13] (N. El Karoui's version of Bellman's principle).
For all α ∈ S, Φα has to be a supermartingale.
Moreover, α is an optimal control is equivalent to the fact that Φα is a martingale.

As soon as X is a di�usion process with in�nitesimal generator L, this lemma and Ito
formula imply that the value function is solution of a partial di�erential equation, named
Hamilton-Jacobi-Bellman equation. Indeed, since X is a Markov process, actually there
exists a function Fα (supposed for the moment to be smooth) such that

Φα(t) = Fα(t,Xt) = Fα(0, X0) +

∫ t

0

LFα(s,Xs)ds+Mt

where M is a martingale. So

α is an optimal control ⇔ LFα(t,Xt) = 0 dt⊗ dP a.s.

If the support of process X is [0, T ]× U we get a PDE:

LFα(s, x) = 0, ∀(t, x) ∈ [0, T ]× U

with boundary conditions convenient to the problem to be solved.

Bellman's principal could be named Dynamic Programming Principle and leads to Hamilton-
Jacobi-Bellman equation. If process X is controlled by α:
dXt = b(Xt, α)dt+ σ(Xt, α)dWt, with the function to be maximized E[

∫ T
0
f(t,Xt, α)dt], we

introduce the so-called Hamiltonian:

H(t, x, p,M) = sup
α∈S

[
−b(x, α).p− 1

2
σ2(x, α).M − f(t, x, α)

]
and the above value function F is solution to:

−∂tF (t, x) +H(t, x, ∂xF, (t, x)∂2
xxF (t, x)) = 0, F (T, x) = D(x)

if D(XT ) is the terminal cost.
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2 Insider trading and rational anticipation

In the seminal paper [36], Kyle asks three questions:

- how quickly is new private information about the underlying value of a speculative
commodity incorporated into market prices?

- how does noise trading a�ect the volatility of prices?

- what determines the liquidity of a speculative market?

Kyle considers a market with one risky assets and one riskless assets under Gaussian hy-
potheses. There are three agents:

- the insider trader has access to a private observation of the expost liquidation value of
the risky assets,

- uninformed noise traders trade randomly (according to a centered Gaussian law),

- the market maker set prices e�ciently, meaning conditionnally on the public informa-
tion he has about the assets quantities tradered by all the traders.

Dicrete-time model can be considered, so trading times are each auction times, or continuous-
time model with continuous trading. At each time, the traders choose the quantities they
will trade, using their own information. After that, the market maker set a price and trades
the quantity which will make the market clear.

Here is summarized this discrete time model (1985) [36].

2.1 Model and notations.

Let the expost liquidation value of the risky assets be denoted as V , a Gaussian random
variable N(p, σ2).
The noise trader trades the quantity ũ ∼ N(0, σ2

u), random variable independent of V.
The insider trader trades the quantity x̃. The insider trader knows V from the beginning. We
can assume that there exists a function X such that x̃ = X(V ), X is the so-called insider's
�strategy�.
The market maker has to set the researched price, denoted p̃. He observes the global demand
of the risky asset: x̃+ ũ but no separately and so we can assume that there exists a function
P such that p̃ = P (x̃+ ũ).
Then the insider's pro�t will be on time 1:

π̃ = (V − p̃)x̃ = (V − P (X(V ) + ũ))X(V ). (3)

Finally, there exists functions π̃ and p̃ such that

π̃ = π̃(X,P ) ; p̃ = p̃(X,P ).

7



2.2 Equilibrium

The insider is risk neutral and his aim is to optimize his pro�t. Otherwise, the market maker
has to set a price so that the market will be clear. So we get the following de�nition:

De�nition 2.1 An equilibrium is a pair of functions (X,P ) satisfying:

- X is optimal: for any strategy X ′, E[π̃(X,P )/V ] ≥ E[π̃(X ′, P )/V ],

- p̃(X,P ) = E[V/x̃+ ũ] (the price is said to be �rational" or �e�cient").

It appears like a �x point problem. This problem is too general and complex. Here the
functions X and P are constrained to be a�ne functions, so we get:

Theorem 2.2 (Th. 1 page 1319) There exists a unique equilibrium in which the functions
X and P are linear:

X(v) =

√
σ2
u

σ2
(v − p) ; P (y) = p+

1

2

√
σ2

σ2
u

y. (4)

Proof : Following the linear hypothesis, put:

P (y) = µ+ λy ; X(v) = α + βv.

A natural constraint is λ > 0, since the prices usually increase with the demand. Thus the
insider's pro�t is

π̃ = (V − P (x̃+ ũ))x̃ = (V − µ− λ(x̃+ ũ))x̃,

and conditionnally on V = v, given the independence between V and ũ and the fact that ũ
is centered:

E[π̃/V = v] = (v − µ− λx̃)x̃.

On one hand, since λ > 0, the optimal pro�t is reached with

x∗ =
v − µ

2λ

and the expected optimal pro�t is π̃∗ = (µ−v)2

2λ
.

On the other hand, we look for (µ, λ) such that the equilibrium pricing rule could be
e�cient given x = x∗:

µ+ λy = E[V/x∗ + ũ = y] = E

[
V/
V − µ

2λ
+ ũ = y

]
.

Once again, Gaussian and independence hypotheses yield the pair (V, V−µ
2λ

+ ũ) is Gaussian
with mean (p, p−µ

2λ
) and covariance matrix Γ:

Γ =

(
σ2 σ2

2λ
σ2

2λ
σ2
u + σ2

4λ2

)
8



Thus the conditional expectation is:

E[V/x∗ + ũ = y] = p+
σ2

2λ

σ2
u + σ2

4λ2

(y − p− µ
2λ

).

The identi�cation to the function µ+ λy yields the result: λ = σ
2σu

and µ = p. •
Remember, if (X, Y ) ∼ N ,

E[X/Y = y] = E(X) +
cov(X, Y )

V ar(Y )
(y − E(Y )).

2.3 Sequential auction equilibrium: N auctions

Then Kyle extends his results to a sequence of auctions, meaning that auctions occur on
times t0 = 0 < t1 < · · · < tN−1 < 1. Once again, the expost liquidation value of the risky
assets is denoted as V , Gaussian random variable N(p, σ2). The noise trader trades un on
time tn, a Gaussian random variable N(0, (tn−tn−1)σ2

u), independent of V. The insider trader
trades xn on time tn. Then the market maker set the price p̃n on this time, depending of
the global demand un + xn. The insider observes V and also knows the prices on each time
auction, so the strategy is given by:

xn = Xn(p̃0, · · · , p̃n, V ).

Similarly, ∀n, there exists a function Pn:

p̃n = Pn(uo + xo, · · · , un + xn).

The insider's pro�t is

πn =
N∑
k=n

(V − p̃k)xk.

De�nition 2.3 A sequential auction equilibrium is a pair of RN valued functions
(X,P ) satisfying:

- X is optimal: ∀n = 1, · · · , N, for any strategy X ′ such that Xi = X ′i, i = 1, · · · , n− 1,
E[πn(X,P )/p̃1, · · · , p̃n, V ] ≥ E[πn(X ′, P )/p̃1, · · · , p̃n, V ],

- ∀n = 1, · · · , N, p̃n(X,P ) = E[V/xi + ui, i = 1, ..., n].

Once again, he restricts the component functions X and P to be a�ne functions, and in this
case, they are recursive. Thus he gets
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Theorem 2.4 th 2 page 1322.
There exists a unique linear equilibrium and this equilibrium is a recursive one.

xn = βn(V − p̃n−1)∆tn, (5)

∆p̃n = λn(xn + un),

σ2
n = V ar(V/x1 + u1, · · · , xn + un)

E[π̃n/p1, · · · , pn, v] = αn−1(v − pn−1)2 + δn−1.

Here the constants are the unique solution to the di�erence equation system, n = 1, ..., N :

αn−1 =
1

4λn(1− αnλn)
, αN = 0,

δn−1 = δn + αnλ
2
nσ

2
u∆tn, δN = 0,

βn∆tn =
1− 2αnλn

2λn(1− αnλn)
,

λn =
βnσ

2
n

σ2
u

,

σ2
n = (1− βnλn∆tn)σ2

n−1, (6)

given the condition λn(1− αnλn) > 0.

We here omit the proof.

How to interpret these parameters ? We quote Kyle (page 1323):

• �The parameters βn, n = 1, · · · , N, characterize the insider's strategy and measure the
intensity with which he trades on the basis of his private information,

• the parameters λn, n = 1, · · · , N, characterize the recursive pricing rule and measure
the depth of the market (small λn correspond to a deep market),

• the parameters σn, n = 1, · · · , N, give the error variance of prices after the nth auction
and measure how much of the insider's private information is not yet incorporated into
prices (as estimated by market makers),

• the parameters αn−1, δn−1, de�ne a quadratic pro�t function which gives the value of
trading opportunities at auction n."

2.4 Conclusion

The answers to Kyle's questions (2):
the informed trader trades in such a way that his information is incorporated into prices
gradually.
The constant volatility re�ects the fact that information is incorporated into prices at a
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constant rate. Furthermore, all of the insider's private information is incorporated into
prices by the end of trading in a continuous auction equilibrium.
An ex ante doubling of the quantities traded by noise traders induces the insider and market
maker to double the quantities they trade, but has no e�ect on prices, and thus, doubles the
insider's pro�t.

The meaning is given below, in a de�nition which will be useful later.

De�nition 2.5 A �doubling strategy� is to double the price up to winning.... to buy the
assets with the hope that the traders will buy more and more and thus the prices would
increase....

This notion is more or less linked to arbitrage opportunities.
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3 Insider trading and nonlinear equilibria, [8] 2000

Here the Gaussian hypothesis is relaxed for the risky assets law. Moreover, the authors
exhibit necessary and su�cient conditions for the existence of an equilibrium. As Kyle does
it, they only consider two times: t = 0 or t = 1. The insider's strategy only depends on
the signal S and doesn't depend on the time, neither the market maker's observation, Y.
Equilibrium price is characterized as a �xed point of a system, only depending on the assets
law.

Two examples are studied where law of the risky assets are more accurate. Finally, the
authors present what is the in�uence of the utility function on the equilibrium, depending
of it is risk adverse or not.

3.1 The model

Once again, there are three agents

- the insider trader has access to a private observation: he knows a signal S on the expost
liquidation value V of the risky assets, S = V + ξ, here ξ is a Gaussian random variable
N(0, η2), independent of V, (the law of which is very general for the moment). Knowing S,
he uses this knowledge to invest X on the risky assets and his strategy is X = α(S), his
initial investment on the risky assets is X0.

- the uninformed noise trader trades randomly and invests Z, Z law is a Gaussian law
N(0, σ2

u),

- the market maker observes the sum Y1 = X + Z, but not separately. Then he sets
prices e�ciently, meaning conditionnally on the public information he has about the assets
quantities tradered by all the traders: P1 = E(V/Y1) = H(Y1).
On the one hand, H is a function depending on the strategy α, let us denote it Hα. On
the other hand, the insider's aim is to optimize the expected utility function of his terminal
wealth (pro�t), meaning W1(H,α) = V X0 + [V −H(α(S) + Z)]α(S), given his information
I = σ(Y0, S,X0) :

α 7→ E[u(V X0 + [V −H(α(S) + Z)]α(S))/I].

Remark that:

H(α(S) + Z) is the selling price,

[V −H(α(S) + Z)]α(S) is the pro�t.

3.2 Nonlinear equilibrium, risk neutral utility

De�nition 3.1 An equilibrium is a pair of measurable functions (H,α) satisfying:

- H is a rational price, meaning H(Y1) = E[V/Y1].

- α is H-optimal: for any strategy α′, E[W1(H,α)/I] ≥ E[W1(H,α′)/I].
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Firstly, the insider computes Hα given α, then he optimizes α 7→ E[W1(Hα, α)/I].

In a �rst step, the authors assume u = Id (meaning the insider is risk neutral). In such
a case, X0 is irrelevant, we assume X0 = 0. They also suppose that ξ = 0, meaning that
insider's information is not noisy.

Proposition 3.2 Let fZ the probability density function of the random variable Z. For any
strategy α, below the expectation is w.r.t. V :

Hα(y) = E[V/α(V ) + Z = y] =
E[V fZ(y − α(V ))]

E[fZ(y − α(V ))]
.

Remark that anyway, V ≥ 0 implies Hα(y) ≥ 0.
Proof : Using Bayes rule, the law of (V, Y1) is given by the product of the conditionnal law
of Y given V times the law of V, meaning FZ(y − α(V ))× FV (v). By the way,

E[V/Y1 = y] =

∫
v.fZ(y − α(v))FV (dv)∫
fZ(y − α(v))FV (dv)

.

•
A corollary yields:

Corollary 3.3 Since the law of Z is the Gaussian law N(0, σ2
u),

Hα(y) =
E[V exp(σ−2

u (yα(V )− 1
2
α2(V )))]

E[exp(σ−2
u (yα(V )− 1

2
α2(V )))]

.

The insider's second step is to optimize α 7→ E[(V −Hα(α+ Z))α/I] in the functions of V
set.

Proposition 3.4 The pair (H∗, α∗) is an equilibrium if (and only if?)
1. ∀v ∈ supp(V ), α∗(v) solves E[(1 + σ−2

u xZ)Hα∗(x+ Z)] = v.
2. v 7→ α∗(v) is strictly increasing on supp(V ).
3. H∗ = Hα∗ .

Proof ([8] page 26): in the case when ξ = 0, X0 = 0, actually I = σ(V ). So let

J : α 7→ E[W1(H,α)/I] = E[(v −H(α + Z))α].

As a �rst step, assume that the functionH is twice di�erentiable and that we can di�erentiate
under the integral. In such a case, ∂αJ = E[v − H(α + Z) − αH ′(α + Z)] and ∂2

α2J =
−E[2H ′(α + Z) + αH”(α + Z)]. A su�cient condition for α∗ to be optimal is to satisfy

E[H(α + Z) + αH ′(α + Z)] = v, (7)

E[2H ′(α + Z) + αH”(α + Z)] ≥ 0. (8)
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Since the law of Z is the Gaussian law N(0, σ2
u), we could get (notice here y − α(V ) is Z)

∂αE[H(α + Z)] = σ−2
u E[ZH(α + Z)]

and the condition (7) could be written as following

E[(1 + αZσ−2
u )H(α + Z)] = v, (9)

that is condition 1.

If we now consider the implicit equation which links α and v, yields:

∀v ∈ Supp(V ), E[H(α(v) + Z) + α(v)H ′(α(v) + Z)] = v

and we di�erentiate this equation with respect to v:

α′(v) (E[2H ′(α + Z) + αH”(α + Z)]) = 1

meaning that condition (8) is equivalent to α′(v) > 0, this is condition 2.

Thus conditions 1 and 2 are su�cient for α∗ to be optimal, and so the function H∗

de�ned in Proposition 3.2 with such α∗, the obtained pair (H∗, α∗) is an equilibrium. •

Conversely, I disagree the authors since these are not necessary conditions: indeed, a
solution to (7) could be an optimum without the function J would be concave, id est Condition
(8): keep it in mind as an exercise.

Anyway, the matter is still very di�cult to solve because the implicit equation. Below
two simple examples which can be solved.

3.3 Nonlinear equilibrium with Binomial law of V

Suppose that V is a Binomial random variable:

P (V = v1) = p ; P (V = v0) = q = 1− p, v0 < v1.

So let α(vi) = αi, i = 0, 1. We obtain the closed formula for Hα:

Hα(y) =
pv1 exp(σ−2

u (yα1 − 1
2
α2

1) + qv0 exp(σ−2
u (yα0 − 1

2
α2

0)

p exp(σ−2
u (yα1 − 1

2
α2

1) + q exp(σ−2
u (yα0 − 1

2
α2

0)
.

The su�cient optimality conditions are then:
when v = vi, vi = E[(1 + σ−2

u αiZ)H(αi + Z)], α0 < α1.

Proposition 3.5 (prop 5 page 28)
Under the hypothesis of a Binomial random variable V, α(V ) is optimal yields α1α0 = −σ2

u.

14



Then a unique equilibrium is de�ned by

H∗(y) =
pv1 exp(σ−2

u (yα1 − 1
2
α2

1)) + qv0 exp(σ−2
u (yα0 − 1

2
α2

0))

p exp(σ−2
u (yα1 − 1

2
α2

1)) + q exp(σ−2
u (yα0 − 1

2
α2

0))
(10)

α∗1 = the unique positive solution of (11)

0 = E

[
1 + σ−2

u xZ

p exp[Z(σ−2
u x+ x−1) + 1

2
σ−2
u (x+ σ2

ux
−1)2] + q

]
,

α∗0 = −σ2
u(α

∗
1)−1. (12)

Proof : (only an idea...) Actually the �rst condition is a degenerate linear system in (v0, v1)
so we produce a necessary condition on (α0, α1). Nevertheless, the uniqueness is not so easy
to prove, nor the last condition. Actually, in Appendix A, the authors prove condition (12)
but only a numerical approach in Appendix B indicates the existence of a unique solution
of (11). •

Naturally, higher the variance σ2
u of the noise trading is, deeper the market is, and thus

larger the insider's optimal strategy. Note that the optimal strategy doesn't depend on
explicit value vi, but only depends on �good or bad news". The postannouncement value
W1+ depends on v1 − v0.

3.4 Nonlinear equilibrium with continuous law of V

3.2. pages 29-30
Assumption A: We assume that law of V is such that there exists a strictly increasing
function h satisfying Θ = h−1(V ) is a standard Gaussian random variable.
This means that if V admits a continuous distribution function F, F−1(x) de�ned as the
minimum of y such that F (y) = x; let Φ be the standard Gaussian law distribution function,
thus h could be F−1 ◦Φ. Remark that actually this function h is almost surely di�erentiable.

In this subsection, we restrain the insider's strategies to be linear w.r.t. Θ:

A = {α : V 7→ ah−1(V ) + b ; a > 0, b ∈ R}.

So yields a �quasi-linear equilibrium�, and Y = α(V ) + Z = ah−1(V ) + b+ Z = aΘ + b+ Z.
In such a case, the pair (Y, Z) is a Gaussian one. Remember Z ∼ N (0, σ2

u).

Proposition 3.6 (prop. 7 p.30)
When the distribution function F of V is a continuous one, and the insider's strategies
α ∈ A, h = F−1 ◦ Φ, there exists a unique quasi-linear equilibrium as soon as there exists
(a, b) ∈ R+

∗ × R such that h satis�es

E

[
h[

a

a2 + σ2
u

(ax+ b) +X] +
a

a2 + σ2
u

(ax+ b)h′[
a

a2 + σ2
u

(ax+ b) +X]

]
= h(x), ∀x ∈ R,
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where X is a Gaussian random variable N(−b a
a2+σ2

u
, 1 − a4

(a2+σ2
u)2

). In such a case, the equi-

librium is the pair (α,H):

α(V ) = ah−1(V ) + b, (13)

H(y) = E[h(
ay

a2 + σ2
u

+ J)], J ∼ N(− ab

a2 + σ2
,

σ2
u

a2 + σ2
u

). (14)

Proof : The �rst step is to compute the function H using Corollary 3.3:

Hα(y) =
E[h(Θ) exp(σ−2

u (y(aΘ + b)− 1
2
(aΘ + b)2))]

E[exp(σ−2
u (y(aΘ + b)− 1

2
(aΘ + b)2))]

,

remark that (σ−2
u (y(at+ b)− 1

2
(at+ b)2))− 1

2
t2 = −1

2
a2+σ2

u

σ2 (t− a(y−b)
a2+σ2

u
)2 + C(a, b, y, σu), then

a cancellation yields:

Hα(y) =

∫
h(t)

√
σ2
u

2π(a2 + σ2
u)

exp−1

2

a2 + σ2
u

σ2
u

(
t− a(y − b)

a2 + σ2
u

)2

dt

thus, putting t = a(y−b)
a2+σ2

u
+ u
√

σ2
u

(a2+σ2
u)
,

Hα(y) =

∫
h

(
a(y − b)
a2 + σ2

u

+ u

√
σ2
u

(a2 + σ2
u)

)√
1

2π
exp−1

2
u2du

which can be summarized as

Hα(y) = E

[
h

(
a(y − b)
a2 + σ2

u

+ U

√
σ2
u

(a2 + σ2
u)

)]
, where U ∼ N (0, 1). (15)

Now since a > 0 condition (8) in Proposition 3.4 proof is satis�ed.
So we look for (a, b) ∈ R∗+ × R such that condition (7) could be satis�ed ∀x ∈ R,:

h(x) = EU,Z

[
h

(
a(ax+ Z)

a2 + σ2
u

+ U

√
σ2
u

a2 + σ2
u

)
+
a(ax+ b)

a2 + σ2
u

h′

(
a(ax+ Z)

a2 + σ2
u

+ U

√
σ2
u

a2 + σ2
u

)]

In the particular case where F is a Gaussian distribution function, meaning

h : x 7→ xσV + p, h′ = σV ,

we obtain Kyle's equilibrium as a particular case, cf. (4) above: following the proposition,
∀x ∈ R, (a, b) has to satis�es

x =
a(ax)

a2 + σ2
u

+
a(ax+ b)

a2 + σ2
u

⇒ a2 = σ2
u, b = 0.

recovering Kyle's result: α∗(V ) =
√

σ2
u

σ2
V

(V − p).
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Corollary 3.7 cor 8, page 30.
Let V a Gaussian random variable N(p, σ2

V ), then there exists a unique quasilinear equilib-
rium which is exactly Kyle's equilibrium:

H∗(y) =
1

2

√
σ2
V

σ2
u

y + p ; α∗(s) = (s− p)

√
σ2
u

σ2
V

.

3.5 Risk adverse versus risk neutral

4. pages 30-33
Finally, the authors study the in�uence of utility, but in a simpler case: V is a Gaussian
random variable N(m,σ2

V ) and H(y) = λy + µ, λ > 0. The signal S = V + ξ, ξ being a
Gaussian random variable N(0, η2), η2 < σ2

V .

3.5.1 Risk neutral case

Proposition 3.8 Under these hypotheses, there exists a unique linear equilibrium

H∗(y) =
1

2

√
σ2
V − η2

σ2
u

y +m ; α∗(s) = (s−m)

√
σ2
u

σ2
V − η2

.

Proof : The optimal value is J(s) = supαE[(s−H(α+Z))α]. Once again, H is constrained
to be y 7→ λy + µ, λ > 0. Since E(Z) = 0, we go to maximise
α 7→ α(s− λα− µ), meaning α∗ = s−µ

2λ
.

Now we turn to a rational price, meaning

H(y) = E[V/α + Z = y], α + Z =
V + ξ − µ

2λ
+ Z,

the pair (V, V+ξ−µ
2λ

+Z) being a Gaussian vector with mean (m, m−µ
2λ

) and covariance matrix:

Γ =

(
σ2
V

σ2
V

2λ
σ2
V

2λ
σ2
u +

σ2
V +η2

4λ2

)
Thus the conditional expectation is:

E[V/α + Z = y] = m+

σ2
V

2λ

σ2
u +

σ2
V +η2

4λ2

(y − m− µ
2λ

).

The identi�cation to the function µ+ λy yields the result:

λ(σ2
u +

σ2
V + η2

4λ2
) =

σ2
V

2λ
⇒ λ =

1

2

√
σ2
V − η2

σ2
u

, (16)

µ = m− 1

2
(m− µ) ⇒ µ = m. (17)

•
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Remark 3.9 As η2 increases to σ2
V , the insider observes less and less the value V . So the

price pressure λ∗ goes to 0 and α goes to in�nity. The reason is that it is unrealistic to
suppose the insider to be risk neutral.... So the authors go to an insider who is risk adverse.

3.5.2 Risk adverse case

For instance, let the utility function uγ : x 7→ γeγx, γ < 0, |γ| is the risk aversion rate.
Despite the unrealistic aspect, let us assume that X0 = x0 is a public observation, and we
admit the following result:

Proposition 3.10 prop 10 page 32.
Suppose that V a Gaussian random variable N(m,σ2

V ), and the insider's utility function is
uγ : x 7→ γeγx, γ < 0. Then there exists a unique LINEAR equilibrium de�ned as following.

H∗(y) = λ∗y +m− γη2x0λ
∗φ∗

1− λ∗φ∗
, (18)

α∗(s) = φ∗[s−m+
γη2x0

1− λ∗φ∗
], (19)

where φ∗ is a positive solution to g(φ) =

γη2(σ2
V + η2)2φ5 − (σ4

V − σ4
u)φ

4 + γσ2
u[σ

4
V + 2η2(σ2

V + η2)]φ3 + 2σ2
uη

2φ2 + γσ4
uη

2φ+ σ4
u = 0

and

λ∗ =
σ2
V φ
∗

σ2
u + (σ2

V + η2)(φ∗)2
.

Obviously, a positive solution exists since g(0) = σ4
u > 0 and limφ→∞ g(φ) = −∞. But the

author claims the uniqueness of this positive solution φ∗, nevertheless the proof is not so
obvious and needs to be completed.

Remark that this equilibrium goes to the risk neutral equilibrium (above) when γ goes
to 0.

Look also after the behaviour when γ goes to −∞: in such a case the equation goes to

φ[η2(σ2
V + η2)2φ4 + σ2

u[σ
4
V + 2η2(σ2

V + η2)]φ2 + σ4
uη

2] = 0

meaning there exists no more solution when the risk aversion rate increases too much, except
φ∗ = α∗ = 0...

Finally, by contrast to the risk neutral case, the trading strategy doesn't explode even
though the price pressure is very small.
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4 Continuous time (cf. [3] 1992 and [9] 2003.)

Below we look at Back's work, then Cho's extension, both in continuous time frame.

4.1 Back model

Once again, the insider trader is risk neutral. As is the case in many other models, the
continuous-time version is more tractable than the discrete-time version: all the processes
could be semi-martingales. This also allows the price law to be more general than a Gaussian
law. Moreover, it concerns non necessary linear functions X and P.

4.1.1 The model

Let (Ω,A,P) a probability space. Here, t belongs to [0, 1]. There exists a constant riskless
assets. The insider knows the expost terminal price V, the signal, with law F : trading price
after the release of information. Once again we assume Assumption A (see above Section
3.4, there exists strictly increasing h such that Θ = h−1(V ) is a standard Gaussian random
variable), V ∈ L2, the interior U of supp(V ) is supposed to be an interval (�nite or not).

Noise traders order according to a process Z, Brownian motion independant of V. The
insider trader orders according to a process X, càdlàg semi-martingale A+M . The market
maker observes the sum Y = X + Z. On time t, he set the price Pt = H(Yt, t), H ∈
C2,1(R, [0, 1]), H(Z1, 1) ∈ L2, ∀t, y 7→ H(y, t) is strictly monotoneous. Thus H−1 exists and
the insider observes Pt, he also knows Zt.

Di�erent �ltrations are de�ned on (Ω,A,P) concerning the di�erent information: FZ , F :=
FZ ∨ σ(V ), FY for instance.

Let (B,X) the insider's portfolio, so his wealth is the semi-martingale Wt = Bt + PtXt.
We suppose that this portfolio is self �nancing, so dWt = Xt−dPt, since the riskless asset is
constant, equal to 1.

Notice that the price could have a jump on terminal time: P1 = H(Y1, 1) 6= V.
Thus, assuming W0 = 0, the insider's terminal wealth is:

W1 = (V − P1)X1 +

∫ 1

0

Xt−dPt.

Integration by part formula (Ito formula) yields:

X1P1 =

∫ 1

0

Xt−dPt +

∫ 1

0

Pt−dXt + [X,P ]t,

so

W1 =

∫ 1

0

(V − Pt−)dXt − [X,P ]t.

This can be interpreted as the value of the terminal position V.X1, less the cost of acquiring
it:
∫ 1

0
Pt−dXt. This formula can be linked to Kyle's formula concerning insider's pro�t (3)

π̃ = (V − p̃)x̃ = (V − P (X(V ) + ũ))X(V )
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4.1.2 Notations and de�nitions

We denote H the set of functions H satisfying
H ∈ C2,1(R, [0, 1]), H(Z1, 1) ∈ L2, ∀t, y 7→ H(y, t) is strictly monotoneous, so ∂yH > 0.
H is the set of pricing rules.

Recall that the �ltration generated by the process Z and the random variable V above
is denoted as F .

We denote X the set of F -semi-martingales X such that when H ∈ H,

E[

∫ 1

0

H2(Xt− + Zt, t)dt] <∞,

(this hypothesis avoids the price to be too great, to rule out �doubling strategies"', page
394 l -12 (7), meaning to double the bet up to win), X is the set of the insider's trading
strategies. Obviously Xt is a measurable function of V.

De�nition 4.1 A pricing rule H is said to be rational if dt⊗ dP almost surely

H(Yt, t) = E[V/FYt ].

A strategy X is said to be optimal if it maximizes the conditional terminal wealth,
meaning the application on X

X 7→ E[

∫ 1

0

(V − Pt−)dXt − [X,P ]1/σ(V )]. (20)

4.1.3 Equilibrium

De�nition 4.2 A pair (H,X) ∈ H × X is an equilibrium if H is a rational price and X
an optimal trading strategy.

Let Φ the Gaussian distribution function of Z1 and F this one of V , supposed to be continuous
strictly increasing, so F−1 exists and is too continuous strictly increasing. The main results
(Theorems 1, 2, 3 pages 396-397) are summarized below.

Theorem 4.3 There exists an equilibrium (H,X) de�ned as following:

H(y, t) = E[F−1 ◦ Φ(y + Z1 − Zt)], (21)

Xt(V ) = (1− t)
∫ t

0

Φ−1 ◦ F (V )− Zs
(1− s)2

ds. (22)

Proof: This �veri�cation theorem" is a consequence of the following technical lemmas.
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Lemma 4.4 Let h be a di�erentiable strictly monotoneous function s.t. h(Zt) ∈ L1. Suppose
the pricing rule on R× [0, 1] is

H : (y, t) 7→ E[h(y + Z1 − Zt)].

Let on U × R, j(v, y) =
∫ h−1(v)

y
(v − h(x))dx, and on U × R× [0, 1],

J(v, y, t) = E[j(v, y + Z1 − Zt)],

where v is considered as a constant. If J(v, 0, 0) < ∞, then J is a smooth solution of the
Bellman equation on U × R×]0, 1[

max
α∈R

[
∂tJ + ∂yJα +

1

2
σ2∂2

yyJ + (V −H)α

]
= 0, (23)

and boundary condition:

J(v, y, 1) > J(v, h−1(v), 1) = 0 ∀v ∈ U,∀y < h−1(v). (24)

Be cautious below di�erentiating the expectation, but formally, with such a de�nition,
J satis�es ∂yJ = H − V, and using Ito formula for j(v, y + Z1 − Zs) from t to 1 and its
expectation, we check ∂tJ + 1

2
σ2∂2

yyJ = 0, so yields (23).

Boundary condition (24) is a consequence of h strict monotonicity: y < x < h−1(v) ⇒
h(y) < h(x) < v ⇒ J(v, y, 1) = j(v, y) > 0. •

Lemma 4.5 Let H an arbitrary pricing rule. Suppose a nonnegative, smooth solution of
(23), (24), J , exists. Then for any trading strategy X, the expected pro�t (20) is no larger
than E[J(V, 0, 0)].
Any trading strategy X := A+M which has continuous paths, for which M = 0, and which
implies H(Y1, 1) = V almost surely, yields an expected pro�t equal to E[J(V, 0, 0)] and is
therefore an optimal strategy.

If X is any trading strategy that includes discrete orders, or has a nonzero local martingale
part, or does not imply H(Y1, 1) = V almost surely, then the expected pro�t from X is strictly
less than E[J(V, 0, 0)].

• Since J,H satisfy (23), ∂yJ = V −H, ∂tJ + 1
2
σ2∂2

yyJ ≤ 0. Using Itô developpement we
get

J(V, Y1, 1)− J(V, 0, 0) =

∫ 1

0

∂yJ(V, Ys, s)dYs +

∫ 1

0

∂tJ(V, Ys, s)ds

+

∫ 1

0

1

2
∂2
yyJ(V, Ys, s)d[Y c, Y c]s +

∑
0≤s≤1

[J(V, Ys, s)− J(V, Ys−, s)−∆sX∂yJ(V, Ys−, s)].

Technical computations and independence between Z and V yield the result concerning
the expected pro�t:

E[

∫ 1

0

(V − Pt−)dXt − [X,P ]1/σ(V )] ≤ J(V, 0, 0).
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• The equality is reached when X is a continuous �nite variation process and yields to
H(Y1, 1) = V ).

• If not (meaning X doens't satisfy one of the previous conditions), then

E[

∫ 1

0

(V − Pt−)dXt − [X,P ]1/σ(V )] < J(V, 0, 0).

•

Lemma 4.6 If the insider trader follows the strategy (22)

Xt(V ) = (1− t)
∫ t

0

Φ−1 ◦ F (V )− Zs
(1− s)2

ds,

then the process Y is a F-Brownian bridge with instantaneous variance σ2, terminating at
Φ−1 ◦ F (V ).
Moreover Y is a FY−Brownian motion with zero drift and instantaneous variance σ2.

Actually, with this strategy

dYt =
Φ−1 ◦ F (V )− Yt

1− t
dt+ dZt,

which is (6.23) in Karatzas Schreve 1987, page 358, so by (6.26)

Yt = tΦ−1 ◦ F (V ) + (1− t)
∫ t

0

dZs
1− s

so that Y is a F−Brownian bridge: actually it can be proved identifying dYt as dXt + dZt
with Xt de�ned in the lemma, and dYt = d[tΦ−1 ◦ F (V ) + (1− t)

∫ t
0
dZs
1−s ].

More precisely, by a developpement and an integration by part:

Xt(V ) + Zt = (1− t)
∫ t

0

Φ−1 ◦ F (V )− Zs
(1− s)2

ds+ Zt = Yt.

Moreover, with respect to FY , 1
σ
Y is a FY−Brownian motion (think of innovation pro-

cess in �ltering theory) •

Proof Theorem 4.3 needs to check two points

• H(y, t) is a rational price, meaning H(y, t) = E[H(Y1, 1)/Yt = y],

• the proposed strategy is optimal.
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The �rst point is a consequence of Lemma 4.6: equality in law between Z on F and Y
on FY , so

E[H(Z1, 1)/Zt = y] = E[F−1 ◦ Φ(Z1)/Zt = y] = E[F−1 ◦ Φ(y + Z1 − Zt)/Zt = y],

H(y, t) = E[F−1 ◦ Φ(y + Z1 − Zt)]

For the second point, H(Y1, 1) = F−1 ◦ Φ(Y1) = V using Lemma 4.6 and independence
between V and Z. Since the proposed strategy satis�es this property, and is continuous with
�nite variation, Lemma 4.5 concludes the proof.

Before proving converse and uniqueness results, we need the following two lemmas.

Lemma 4.7 Let H an arbitrary pricing rule. If there exists a smooth solution to (23), (24),
then the process t 7→ H(Zt, t) is a martingale on the �ltration F .
If the trading strategy X := A+M has continuous paths, for which M = 0,

∀t, H(Yt, t) = H(0, 0) +

∫ t

0

∂yH(Ys, s)dYs.

Actually author's proof doesn't use (23), (24) but the following consequences:

∂yJ(V, y, t) = H(y, t)− V,

(∂tJ +
1

2
σ2∂2

yyJ)(V, y, t) = 0,

J(V, y, t) = E[J(V, y + Z1 − Zt)/V ].

So, H(y, t) = ∂yJ(V, y, t) + V.
Di�erentiating the second relation above w.r.t. y, (∂tH + 1

2
σ2∂2

yyH)(y, t) = 0 so

dH(Zt, t) =

∫ t

0

∂yH(Zs, s)dZs

is a F−martingale.

In case of continuous �nite variation process X, Itô formula applied to H(Yt, t) concludes
the proof.

•

Lemma 4.8 Let (H,X) be an equilibrium and J a smooth solution to (23), (24). Then,
on the �ltration FY , the process Y is a Brownian motion with zero drift and instantaneous
variance σ2.

Proof Lemma 4.5 and X optimal shows that X is a continuous �nite variation process.
Then, since (H,X) is an equilibrium and J a smooth solution to (23,24), Lemma 4.7 yields:

dH(Yt, t) = ∂yH(Yt, t)dYt.
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Moreover, H being a pricing rule, it is a FY−martingale and ∂yH > 0, thus

dYt = (∂yH(Yt, t))
−1dH(Yt, t)

is a FY− local martingale.
Finally, remember Yt = Zt + Xt with X a �nite variation process, so the brackets 〈Y 〉t =
〈Z〉t = σ2t. Lévy Theorem concludes the proof. •

This �rst theorem concerns uniqueness of equilibrium.

Theorem 4.9 The pricing rule H (21) is the unique equilibrium price for which there exist
a nonnegative constant σ2 and a nonnegative smooth function J on U ×R× [0, 1] satisfying
the Bellman equation on U × R×]0, 1[:

max
α∈R

[
∂tJ + ∂yJα +

1

2
σ2∂2

yyJ + (V −H)α

]
= 0,

and boundary condition:

J(v, y, 1) > J(v, h−1(v), 1) = 0 ∀v ∈ U,∀y < h−1(v)

where h : x 7→ H(x, 1).

Proof Let H be any equilibrium pricing rule such that there exists J a smooth solution to
(23), (24).
Once again ∂tH + 1

2
σ2∂2

yyH = 0, so Itô formula applied to the process
s 7→ H(y + Zs − Zt, s) from t to 1 get

H(y + Z1 − Zt, 1)−H(y, t) =

∫ 1

t

∂yH(y + Zs − Zt, s)dZs

is a F−martingale and necessarily

H(y, t) = E[H(y + Z1 − Zt, 1)].

Lemma 4.5 says that an optimal strategyX is necessarily a continuous �nite variation process
and leads to Y1 such that H(Y1, 1) = V. Let h : y 7→ H(y, 1) which is strictly increasing, so
Y1 = h−1(V ),

∀a ∈ R, P{Y1 ≤ a} = P{V ≤ h(a)} = F ◦ h(a).

But Lemma 4.8 gives Y1 law N (0, σ2), thus Φ = F ◦ h concludes the proof of Point 1. •
The following characterizes equilibrium

Theorem 4.10 Let (H,X) an equilibrium. If there exists a function J such that H, J
satis�es (23,24). Then

dPt = ∂yH(Yt, t)dYt

and the process Y is distributed as a FY -Brownian motion with variance σ2.
The process H(Zt, t) is a F-martingale.
If F (v) =

∫ v
0
f(u)du, and E[∂yH(Z1, 1)] < ∞, then ∂yH(Z., .) is a F-martingale and

∂yH(Y., .) is a FY -martingale.
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Comment: the boundary condition (24) is a little unusual, one might expect J to be null
at �nal time. The interpretation could be that J is de�ned by continuity at �nal time, and
the remaining value J(V, Yt, t) at time t close to �nal time is near to zero if and only if Yt is
close to h−1(V ), meaning Pt close to V.
Proof

• Pt = H(Yt, t) so the �rst assertion is included in Lemma 4.8.

• The second assertion is included in Lemma 4.8.

• The third assertion concerns X = 0, so actually

dH(Yt, t) = ∂yH(Zt, t)dZt

is a F−martingale.

• Finally assuming that V law admits a density of probability f, if h = F−1 ◦ Φ, then
h′ = Φ′

f◦h .

Actually, the hypothesis E[∂yH(Z1, 1)] <∞ allows us to commute di�erentiation and
integration, thus G = ∂yH satis�es the same PDE as H : ∂tG + 1

2
σ2∂2

yyG = 0. This
proves that ∂yH(Z., .) is a F−martingale and ∂yH(Y., .) is a FY−martingale.

•

Exercices Suppose V has the Gaussian law N(p, σ2), or log V has a Gaussian law. Then
solve the problem in these two cases.

4.1.4 Conclusion

cf. page 404 [3]:�The key aspect of the continuous-time model is that the informed trader
can move continuously up or down the residual supply curve. This �exibility on the part
of the insider, combined with risk neutrality, helps to pin down the equilibrium beliefs of
market makers. In equilibrium, the insider has many optima, because there is no expected
cost in moving up and then back down the supply curve, or vice-versa, or simply delaying
trading....In a competitive equilibrium with a risk-neutral agent and a �xed risk-free rate,
expected returns on all assets are uniquely determined, but any portfolio is optimal for the
risk-neutral agent.

The situation is very di�erent when agents are risk adverse. It is important to determine
to what extent the results of this articleare robust to risk adversion.

The model was solved in this article without recourse to the �ltering technology used by
Kyle. This permitted the analysis of general assets value distributions."
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4.2 Insider trading: uniqueness and risk aversion

Here is a continuous time model (cf. [9] 2003) as in Back's paper: it is an extension of the
previous models. K.H. Cho considers continuous time: t ∈ [0, 1], and here the equilibrium
is nonlinear; two cases are studied: risk neutral and risk adverse cases. The main tool is
optimal control theory, for instance think of Bellman's principle.

All the random variables are de�ned on a probability space (Ω,A,P), we further de�ne
some �ltrations included in A.

4.2.1 The model, notations and de�nitions

As previously there are three agents:

- the insider trader has access to a private observation of the expost liquidation value of
the risky assets, the random value V, and invests Xt given V ,

- the uninformed noise trader trades randomly: Zt, according to a centered Gaussian law,

- the market maker set the price P e�ciently, meaning conditionnally on the public
information he has about the assets quantities tradered by all the traders (Yt = Xt + Zt,
t ∈ [0, 1], which is the market maker's information). Thus

Pt = E[V/Ys, s ≤ t], t < 1.

The author here supposes Y0 = 0. As it is usual, let us denote the complete càd �ltration
generated by a process D as FD, e.g. FY , FP and so on. Using this notation yields

Pt = E[V/FYt ].

This introduces a functional, so called �pricing rule", P such that:

Pt = P (t, Ys, s ≤ t).

The set of such functionals is denoted as P . As it was stressed above, P1 is not necessarily V.
The following hypotheses are assumed:

(H1) The distribution function F of V is continuous strictly increasing.
Let us denote Φ the distribution function of N (0, 1), then the law of Θ := Φ−1 ◦ F (V ) is
N (0, 1).
Remark that (H1) is equivalent to the existence of a function h (namely F−1 ◦Φ) continuous
strictly increasing such that the law of h−1(V ) (denoted below as Θ) is N (0, 1).

(H2) The process Z. is σB. with σ 6= 0 and B is a Brownian motion with respect to
(P,FB), independent of V.

The insider's information is modellized by the �ltration (Ft = FPt ∨σ(V ), t ≥ 0). Actually,
FX

t = Ft (to be proved below). Denote S the set of the insider's strategies, (Xt, t ∈ [0, 1[),
u his utility function, W1 his terminal wealth, after the information V is revealed, depending
on the pair (P,X) ∈ P × S.
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De�nition 4.11 For a given pricing rule P ∈ P , a trading strategy X∗ is said to be
P -optimal if

∀X ∈ S, E[u(W1(P,X))/V ] ≤ E[u(W1(P,X∗))/V ].

De�nition 4.12 For a given trading strategy X ∈ S, a pricing rule P ∗ ∈ P is said to be
X-rational if

P ∗(t, Ys, s ≤ t) = E[V/FYt ] dt⊗ dPa.s.

De�nition 4.13 An equilibrium is a pair (P,X) ∈ P ×S such that P is X-rational and X
is P -optimal.

4.2.2 Survey of di�erent P and S spaces

• Kyle 1985 (only Section 4, previous ones concern discrete time):
The processes P ∈ Pk and X ∈ Sk are as following

dPt = λtdYt ; dXt = φt(V − Pt)dt,

λ and φ are real deterministic functions on [0, 1], λt > 0.
In this model V is a Gaussian random variable, W1 = (V − P (X(V ) + ũ))X(V ).
The disadvantage is that Pt could be non positive, and the set Sk is too small.

• Cho and El Karoui 2000.
The time is discrete, t = 0, 1. So these spaces don't concern processes spaces. This
paper is to be linked to Kyle sections 1-3 and Chapter 2. Anyway,

W1 = V X0 + (V −H(X + Z))X.

• Back 1992.
The spaces here are

Pb = {Pt = H(t, Yt), H ∈ C1,2} ; Sb = {F − càd-làg semi-martingales}.

He obtains uniqueness of equilibrium in Gaussian case.

W1 =
∫ 1

0
(V − Pt−)dXt − [X,P ]t = (V − P1)X1 +

∫ 1

0
Xt−dPt.

• Here the author sets

P = {P : t 7→ H(t,

∫ t

0

λsdYs) ; H ∈ C1,2(]0, 1[×R), ∂yH(t, y) > 0 ∀t ; λ ∈ C1(]0, 1[,R+
∗ )}.

Thus, P ∈ P is denoted as (H, λ). He also assumes:

(H3) H(.,

∫ .

0

λsdYs) ∈ L2([0, 1]× Ω), (25)
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to avoid �doubling strategies" (cf. De�nition 2.5).

S = {X : t 7→
∫ t

0

αsds, α F − adapted}.

In this model

W1(P, α) =

∫ 1

0

(V −H(t,

∫ t

0

λsdY
α
s ))αtdt.

Remark the inclusions:

Pk and Pb ⊂ P ; Sk ⊂ S ⊂ Sb.

But notice that, anyway, the optimal strategy in Back actually belongs to S.

4.2.3 Links between di�erent �ltrations

Since λ > 0, setting ξt =
∫ t

0
λsdYs, F ξ = FY . By de�nition of a rational pricing rule, P is

FY -adapted so FP ⊂ FY . Conversely, since ∀t, y 7→ H(t, y) is invertible, ξ is FP -adapted,
so F ξ ⊂ FP thus �nally

FP = FY = F ξ.

Otherwise, Z = Y − X is F -adapted (since by de�nition FY = FY ∨ σ(V )), so B is
F−adapted, moreover by de�nition σ(V ) ⊂ Ft thus: FBt ∨ σ(V ) ⊂ Ft.
Conversely, Yt = σBt +Xt is FBt ∨ FXt -measurable, so FYt ⊂ FBt ∨ σ(V ) and �nally

∀t ≥ 0, FBt ∨ σ(V ) = Ft.

Thus using the independance of B and V, B is also a (F ,P) Brownian motion.

4.2.4 Bellman's optimality principle

cf. above Section 1.3.4
We now set a model of optimal control: the control process is the strategy Xα; let the
conditional value function:

Φα(t) = ess sup{E[u(W1(P, α̃))/Fαt ], α̃ ∈ S, α̃|[0,t] = α|[0,t]},

where Fαt = FZ+Xα ∨ σ(V ).
Remember that

Wt(P, α) =

∫ t

0

[V −H(s,

∫ s

0

λu(αudu+ dZu))]αsds.

Remark that the system is a Markovian one, so actually there exists a measurable function
such that (cf. Lemma 1.7, prop 2.3. in [42] or Proposition 5.3 in next Chapter):

Φα(t) = Φα(t, Yt, V ).

The following lemma will be usefull, using Bellman principle, cf. above Lemma 1.7.
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Lemma 4.14 Let (H,λ) ∈ P and α ∈ S. Then the three properties are equivalent:

dt⊗ dP a.s.∂tH(t, ξαt ) +
1

2
σ2λ2

t∂
2
y2H(t, ξαt ) = 0, (26)

∀t ∈ [0, 1], α̂t = E[αt/FYt ] = 0, (27)

ξα. is a FY − martingale and 〈ξα, ξα〉t = σ2

∫ t

0

λ2
sds. (28)

Proof Let (H, λ) be a pricing rule in the class P . Itô formula implies:

dH(t, ξt) = (∂tH(t, ξt) +
1

2
σ2λt∂

2
x2H(t, ξt))dt+ ∂xH(t, ξt)dξt.

By de�nition, t 7→ H(t, ξt) is a FY -martingale (rational price). On the other hand, dξt =
λtdYt = λt(σdBt + αtdt). Let the innovation process

dIt = λt(σdBt + (αt − α̂t)dt) = λt(dYt − α̂tdt)

which is also a FY -martingale (cf. above Section 1.3.3). Thus,

dH(t, ξt) = (∂tH(t, ξt) +
1

2
σ2λt∂

2
x2H(t, ξt))dt+ ∂xH(t, ξt)dIt + λtα̂tdt.

This proves the equivalence between (26) and (27).

Finally, dξt = dIt + α̂tdt is a FY -martingale is equivalent to α̂t = 0 and the brackets of
ξ and I are both equal to σ2

∫ t
0
λ2
sds.

•

4.2.5 Risk neutral insider

Here u = Id, recall Wt(P, α) =
∫ t

0
(V −H(s, ξαs ))αsds, and ∀t < 1

Φα(t, ξαt ) = Wt(P, α) + ess sup{E[

∫ 1

t

(V −H(s, ξα̃s ))α̃sds/Fαt ], α̃|[0,t] = α|[0,t]}.

The second term traditionnally is denoted as J(t, ξαt ). To solve the optimal problem, we need
to get the conditional value Φα as a Fα-martingale, but, �rst, it has to be a supermartingale.
We use Ito formula, assuming Φα smooth enough:

dΦα(t, ξαt ) = (V−H(t, ξαt ))αtdt+[∂tJ(t, ξt)+λtαt∂yJ(t, ξt)+
1

2
σ2λ2

t∂y2J(t, ξt)]dt+σλt∂yJ(t, ξt)dBt.

(29)
To necessarily be a supermartingale for all α, the �nite variation part above has to be non
positive, so yields:

∀α ∈ S, (V −H(t, ξαt ))αt + ∂tJ(t, ξt) + λtαt∂yJ(t, ξt) +
1

2
σ2λ2

t∂y2J(t, ξt) ≤ 0 dt⊗ dPa.s.
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This is a linear function of α, so we get null the α coe�cient, the remaining being non
positive, dt⊗ dP a.s. and since the support of process ξ could be R we get ∀y ∈ R:

V −H(t, y) + λt∂yJ(t, y) = 0, (30)

∂tJ(t, y) +
1

2
σ2λ2

t∂y2J(t, y) ≤ 0. (31)

The optimality is obtained when (31) is null.

By de�nition,

W1(P, α) =

∫ 1

0

(V −H(s, ξαs ))αsds.

It could be W1(P, α) 6= Φα(1, ξα1 ). But actually α optimal makes the process Φα(., ξα. ) a
U.I. FY -martingale, thus continuous. So

lim
t7→1

Φα(t, ξαt ) = Φα(1−, ξα1 ) =

∫ 1

0

(V −H(s, ξαs ))αsds.

Actually, if ξ1
α = [H(1, .)]−1(V ), i.e. H(1, ξ1

α) = V, then, J(1, ξ1) = 0 as soon as ξ1 = h(V ),
this yields a boundary condition.

Proposition 4.15 su�cient condition.
Let a pricing rule (H,λ) ∈ P satisfying the system (30), (31) associated to α ∈ S with
(31)=0. Then necessarily λ is a constant, E[αt/FYt ] = 0 a.s., V = H(1, ξα1 ) a.s. and the
pair ((H, λ), α) is an equilibrium.

Proof

First step is to di�erentiate (30) w.r.t. y: ∂yH(t, y) = λt∂
2
y2J(t, y).

This equation combined with (31) yields ∂tJ(t, y) + 1
2
σ2λt∂yH(t, y) = 0. This one is di�er-

entiated once again w.r.t. y:

∂2
tyJ(t, y) +

1

2
σ2λt∂

2
y2H(t, y) = 0. (32)

Now let us di�erentiate (30) w.r.t. t: λ′t∂yJ(t, y) + λt∂
2
tyJ(t, y)− ∂tH(t, y) = 0.

But (30) says that ∂yJ(t, y) = −λ−1
t (V −H), so

λ′tλ
−1
t (V −H)− λt∂2

tyJ(t, y) + ∂tH(t, y) = 0 (33)

and cancelling ∂2
tyJ(t, y) between (32) and (33) yield the following PDE for the function H:

∂tH(t, y) +
1

2
σ2λt∂

2
y2H(t, y) + λ′tλ

−2
t (V −H) = 0.

But, H can't depend on the random variable V . So, necessarily, λ′ = 0 and actually H is
solution of the following PDE:

∂tH(t, y) +
1

2
σ2λt∂

2
y2H(t, y) = 0, H(1, y) = E[V/Y1 = y]. (34)
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Second step uses equivalences in Lemma 4.14, so α̂t = E[αt/FYt ] = 0 and ξα. = λY. is a FY−
martingale.

Finally, (31)= 0 implies that Φα is a martingale so Lemma 1.7 proves that α is optimal.

A FY -martingale being continuous, we get limt7→1−Φα(t) =
∫ 1

0
(V − H(s, ξαs )αsds and the

price P1 = H(1, ξα1 ) has to be exactly V (on �nal time, the information is revealed). So we
get the terminal condition V = H(1, ξα1 ).

With the solution H of (34) and λ a constant, ((H, λ), α) is an equilibrium. •

Proposition 4.16 Necessary condition
Let V satisfying Hypothesis (H1) such that V = h(Θ), (meaning h strictly increasing contin-
uous and Θ ∼ N (0, 1)). Then an equilibrium pricing rule (H,λ) ∈ P necessarily satis�es:

∀y ∈ R, H(1, y) = h(y/λσ) ; H(t, y) = E[h(
y

λσ
+ Θt)]

where Θt ∼ N(0, 1− t).
Moreover the optimal ξα1 is the unique solution to V = H(1, x) a.s.

Proof : Since (H, λ) ∈ P is an equilibrium pricing rule, there exists a strategy α such
that ((H,λ), α) is an equilibrium. As in the previous proof, necessarily there exists a regular
function J such that the equalities (30) and (31) are satis�ed. Thus the previous proposition
can be applied: once again, λ is a constant and ∀t ∈ [0, 1], α̂t = E[αt/FYt ] = 0 ; now using
Lemma 4.14, the process ξα is a FY -martingale with bracket σ2λ2t, meaning that ξαt law is
N (0, σ2λ2t).

On the other hand, Itô formula and (31) yield:

J(1, ξα1 )− J(t, ξαt ) =

∫ 1

t

∂yJ(s, ξαs )dξαs

and using (30)

J(1, ξα1 )− J(t, ξαt ) = λ

∫ 1

t

(H(s, ξαs )− V )(αsds+ dZs).

The right second term is a local F -martingale null at time t = 1, but hypothesis (H3) (25)
makes it a true martingale:

E[J(t, ξαt )− J(1, ξα1 )/Ft] = E[λ

∫ 1

t

(V −H(s, ξαs ))αsds/Ft].

By de�nition of process J , the right hand is maximum when α is optimal and the maximum
actually is J(t, ξαt ), so ∀t, E[J(1, ξα1 )/Ft] = 0, thus J(1, ξα1 ) = 0. Following Back recalled in
(24), this means that

V = H(1, ξα1 ).
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Thus, h(Θ) = H(1, ξα1 ) almost surely, laws of σλΘ and ξα1 are the same, so we identify
∀y ∈ R, h(y) = H(1, σλy) which concludes the proof.

Finally, H is solution of the so-called heat equation (34) with terminal condition as above
and the last assertion is straightforward. •

The following proposition provides an explicit optimal solution.

Proposition 4.17 Let V satisfying Hypothesis (H1) such that V = h(Θ). Let a pricing rule
(H,λ) ∈ P de�ned as following:

∀y ∈ R, H(t, y) = E[h(y + Θt)] ; λ = 1/σ

where Θt ∼ N(0, 1− t), and a strategy α ∈ S:

αt = σ
h−1(V )− ξt

1− t
.

Then this pair (H,λ) ∈ P , α ∈ S is an equilibrium.

Remark 4.18 λ = 1/σ means that Pt = H(t, 1
σ
Yt).

Proof : prop 2, Cho's proof page 68.... but actually I am not convinced...
It is enough to check (30)(31) and α̂t = 0. Then we apply Proposition 4.15.
The tools are: ξα is a FY -martingale, 〈ξα〉t = t, and FY = F ξ. •

Example with V as a Gaussian random variable N (m,Σ). This means
h : x 7→ x

√
Σ +m, and proves that α∗t = V−Pt

λ(1−t)
√

Σ
= σ(V−Pt)

(1−t)
√

Σ
. Here we see the in�uence of σ

on insider's behaviour.

4.2.6 Risk adverse insider

The utility function is u(x) = γeγx, γ < 0. We only quote Cho's main results (Proposition
3 and 4):

Theorem 4.19 1. There is no equilibrium on the space P × S unless V law is Gaussian.

2. If V law is N (m,Σ), there exists a unique equilibrium ((H∗, λ)α∗):

H∗(t, y) = m+ y, (35)

λt =
λ1

γσ2λ1(1− t) + 1
, λ1 =

Σ

σ

(
1

2
γσ +

√
1 + (

1

2
γσ)2

)
, (36)

α∗t =
V − Pt
λ1(1− t)

. (37)
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5 Extension to strategic noise trader [42]

We consider an extension of the Kyle and Back's model [36, 3], meaning a model for the
market with a continuous time risky asset and asymmetrical information. There are three
�nancial agents : the market maker, an insider trader (who knows a random variable V
which will be revealed at �nal time) and a non informed agent. Here we assume that the
non informed agent is strategic, namely he/she uses a utility function to optimize his/her
strategy. Optimal control theory is applied to obtain a pricing rule and to prove the existence
of an equilibrium price when the insider trader and the non informed agent are risk-neutral.
We will show that if such an equilibrium exists, then the non informed agent's optimal
strategy is to do nothing, in other words to be non strategic.

5.1 Introduction

The purpose of this paper is to extend A. Kyle and K. Back's model [36, 3]. Firstly in
1985 Kyle [36] de�ned an equilibrium problem. On a Gaussian �nancial market in discrete
time, there are three agents: a market maker, an insider trader, a non informed agent (noise
trader). The market maker has to de�ne a pricing rule in such way that an equilibrium does
exist between the traders. Back [3] extended this model to continuous time. Then N. El
Karoui and K. Cho [8] relaxed the Gaussian hypothesis in Kyle's model using �ne tools in
stochastic control [13, 16]. Finally, K. Cho [9] delivered a new version of Back's model, also
relaxing the Gaussian hypothesis. In these four papers, the non informed agent is supposed
to be non strategic and so he/she is called �noise trader�. As in Cho [9], we like to ask the
question: what happens if the non informed agent tries to be strategic instead of being only
�a noise trader�?

On such a model, let us mention Guillaume Lasserre's thesis [37] and [38] which extended
this problem to multivariate case in continuous time, the agents using a non speci�ed utility
function.

Among previous models of insider trading, let us mention [34, 1, 2, 18, 19, 20, 21, 44].
But these models are quite di�erent: the main tools are enlargement of �ltration [7, 29, 33,
46, 1, 2] and change of probability measure [15].

Finally, Kyle and Back's equilibrium model has to be distinguished from other models
such that Arrow-Debreu or Arrow-Radner ones. These equilibrium were studied in an asym-
metric information context by Pikovski and Karatzas (no published preprint) and Hillairet
in her thesis (cf. also [25]).

5.2 The model

At time t ∈ [0, 1], the insider trader holds Xt units on risky asset, the non informed agent
receives a random endowment Et and holds Zt. Let Yt = Xt + Zt, which is observed by the
market maker. In order to discover price Pt of the risky asset, the following hypotheses are
done :
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There exists a C1,2 function H on ]0, 1[×R such that price Pt satis�es :

Pt = H(t, Yt), ∀t, x 7→ H(t, x) is non decreasing, ∂xH > 0. (38)

On the �ltered probability space (Ω, (FBt , t ∈ [0, T ]),P) associated to B, a standard
Brownian motion, we get a random variable V independent of B and we suppose that the
insider knows V (which could be the price at time 1, more precisely V = P1+) so:

dXt = α(t, Yt, V )dt,Xo ∈ L1(σ(V )), (39)

where α is a measurable function such that

∀x, α(., x, V ) is càdlàg and x 7→ α(s, x, V ) is uniformly Lipschitz, on [0, 1]× R. (40)

We will call such function f(t, x, v) (or f(t, x) resp.) with 3 (or 2) variables (t, x, v) (or
(t, x)) regular when it satis�es the same condition (40) in (t, x) for each �xed v.
The non informed agent buys Zt and consumes the remainder of her/his endowment denoted
as Et:

dEt = e(t, Yt)dt+ σdBt, where σ > 0,

where e is regular in the above sense (40), and dZt = −β(t, Yt)dt + dEt, Zo ∈ R, where β is
regular. Actually

dZt = (−β(t, Yt) + e(t, Yt))dt+ σdBt, Zo ∈ R. (41)

Notice that β represents the non informed agent's consumption speed. He/she invests his/her
endowment minus his/her consumption.

So, we can introduce the following �ltration:

F = (σ{V, (Bs, s ≤ t)}, t ∈ [0, 1]), (42)

obviously, the �ltration (Ft, t ∈ [0, 1]) is completed and get right continuous (cf. [1]): it sat-
is�es the �usual� properties� (see for instance [43]). We can consider that Ft is the insider's
information at time t.

More generally, FM denotes the complete right continuous �ltration generated by the process
M. For instance, FY is the market maker's information at time t, the public information.
Under the hypothesis that ∂yH > 0, the knowledge on Y and P are the same, hence the
�ltrations FY and FP are identical.

Proposition 5.1 Under hypotheses (38) to (41), the following stochastic di�erential equa-
tion admits a unique strong solution :

dYt = [α(t, Yt, V ) + e(t, Yt)− β(t, Yt)]dt+ σdBt, t ∈ [0, T ], Y0 6= 0. (43)

This solution is a F-Markov process.
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Proof : the hypotheses are such that (43) satis�es the existence and uniqueness hypotheses
(cf. [43] th. 6 page 194 for instance).
This equation is a di�usion equation with an initial σ−algebra non trivial: F0 = ∩t>0(σ(V )∨
FBt ). •

Corollary 5.2 The �ltration generated by the process Y and V is the same as the �ltration
F :

Ft = ∩s>t(σ(V ) ∨ FYs ).

Proof : By construction, the unique solution to (43) is F -adapted, and so, ∀t,FYt ⊂ Ft,
by de�nition, σ(V ) ⊂ Ft
⇒ ∩s>t(FYs ∨ σ(V )) ⊂ ∩s>tFs = Ft.

Reciprocally, since σ > 0 and

σBt = Yt −
∫ t

0

[α(s, Ys, V ) + e(s, Ys)− β(s, Ys)]ds,

∀t, Bt is FYt ∨ σ(V )-measurable, and we conclude the proof. •
Let us remark that the independence between V and B implies that B is also a (F ,P)

Brownian motion (cf. [7] or [29] for instance). So we get the following :

Proposition 5.3 Conditionally in V , Y is a FY -Markov process, i.e. ∀ bounded borelian
function f there exists a measurable function h on [0, 1]× R× R such that almost surely :

E[

∫ 1

t

f(s, Ys, V )ds/Ft] = h(t, Yt, V )

Proof : it is a consequence of Proposition 5.1 and Corollary 5.2. We obtain that Y is a
F -Markov process, so we get the conclusion. •

Remark 5.4 The F-Markov process Y is associated with the in�nitesimal generator

Aα,β = [α + e− β]∂x +
1

2
σ2∂2

xx.

5.3 The pricing rule

The market maker observes the �ltration FY , so that he/she can make price H(t, Yt).

De�nition 5.5 The function H, mentioned in the hypothesis (38), is called the pricing
rule.

The insider trader has to choose a strategy α, and the non informed agent has to choose
a strategy β. The �admissible� strategies α, β, satisfy Hypotheses (39), (41) and then the
stochastic di�erential equation (43) admits a unique strong solution. So we de�ne
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De�nition 5.6 The set of the regular functions α(t, x, v) is denoted by S, whose element is
called admissible strategy for the insider trader.
On the other hand, S ′ denotes the set of the regular functions β(t, x), set of admissible
strategies for the non insider trader.

De�nition 5.7 (1) A strategy β∗ ∈ S ′ is optimal if

β∗ ∈ argmax{β 7→ E[

∫ 1

0

−Ps[(e(s, Ys)− β(s, Ys))ds] +

∫ 1

0

δsV (e− β)(s, Ys)ds], β ∈ S ′}.

where δ is measurable satisfying ∀x, δ(., x) is càdlàg and x 7→ δ(s, x) is uniformly Lipschitz
on [0, 1] taking its values in ]0, 1[.
(2) A strategy α∗ ∈ S is optimal if

α∗ ∈ argmax{α 7→ E[

∫ 1

0

(V − Ps)α(s, Ys, V )ds/σ(V )], α ∈ S}.

Remark that the coe�cient δ is an �impatience coe�cient�, it means that it delays the agent's
pro�t. Think of [5] where entrepreneur and �nanciers are di�erently impatient.

Besides, in [37], the insider's terminal wealth is W0 +
∫ 1

0
XsdPs + (V − P1)X1, but using

Ito formula this is the same since in our case 〈X,P 〉 = 0.
The market maker's aim is to discover a pricing rule H satisfying (38) and such that optimal
strategies exist in S,S ′. Moreover, the price has to be rational (P is a FY -martingale):

Pt = H(t, Yt) = E[V/FYt ], t ∈ [0, 1[.

Non necessarily V is equal to P1 (cf. [3] or [37]), it could be V = P1+.

Remark that, as in �ltering theory, we can introduce the innovation process which is a
FY−Brownian motion, i.e.

dIt = dBt + σ−1(α + e− β − α̃)tdt where α̃t = EP[α(t, Yt, V )/FYt ] + (e− β)(t, Yt),

in other words dYt = σdIt + α̃tdt.

5.4 Risk neutral agents, u = Id

Bellman's principle is to optimize between t and terminal time 1 supposing we know how to
optimize between 0 and t (for instance look at [13] p. 95 et sq). Let the value functions:

Jα(t) =

∫ t

0

(V −H(s, Ys))α(s, Ys, V )ds+ (44)

+ess sup{E[

∫ 1

t

(V − Ps)γ(s, Ys, V )ds/Ft], γ ∈ S, γ1[0,t] = α1[0,t]}.
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J ′β(t) = E[

∫ t

0

(δ(s, Ys)V − Ps)(e− β)(s, Ys)ds/FYt ]

+ ess sup{E[

∫ 1

t

(δ(s, Ys)V − Ps)(e− ζ)(s, Ys)ds)/FYt ], ζ ∈ S ′, ζ1[0,t] = β1[0,t]}.(45)

Remark that, in the �rst term above, V can be get out the integral and replaced by Pt, its
conditional expectation with respect to FYt .

The following is a consequence of Proposition 5.3.

Proposition 5.8 ∀γ ∈ S, ζ ∈ S ′, there exist measurable functions fγ, gζ such that :

E[

∫ 1

t

(V −H(s, Ys))γ(s, Ys, V )ds/Ft] = fγ(t, Yt, V ),

E[

∫ 1

t

(δ(s, Ys)V − Ps)(e− ζ)(s, Ys)sds)/FYt ] = gζ(t, Yt).

We now denote the value functions:

Wα(t, Yt, V ) = ess sup{E[

∫ 1

t

(V −H(s, Ys))γ(s, Ys, V )ds/Ft], γ ∈ S, γ1[0,t] = α1[0,t]}, (46)

and

Uβ(t, Yt) = ess sup{E[

∫ 1

t

(δ(s, Ys)V − Ps)(e− ζ)(s, Ys)sds)/FYt ], ζ ∈ S ′, ζ1[0,t] = β1[0,t]}.

(47)
Remark that

Jα(t) =

∫ t

0

(V −H(s, Ys))αds+Wα(t, Yt, V ),

and

J ′β(t) =

∫ t

0

−H(s, Ys)(e−β)(s, Ys)ds+H(t, Yt)

∫ t

0

δ(s, Ys)(e−β)(s, Ys)ds+U
β(t, Yt). (48)

Moreover, we have boundary conditions : Wα(1, x, v) = 0, Uβ(1, x) = 0, ∀(v, x) ∈ R2.

Let us use Nicole El Karoui's result (above Lemma 1.7): ∀α, ∀β, Jα is a (F ,P) super-
martingale and J ′β is a (FY ,P) super-martingale. Moreover, α∗ ∈ S, β∗ ∈ S ′ are optimal if
and only if Jα is a local (F ,P) martingale and J ′β is a local (FY ,P) martingale. So we get a
tool to manage the existence of a couple of optimal strategies. With Ito's derivation formula
-dropping α and β for simplicity and denoting δt(e− β)t instead of δ(t, Yt)(e− β)(t, Yt)- we
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get:

dJα(t) = (V −H(t, Yt))αdt+ ∂tWdt+Aα,βWdt+ σ∂xWdBt.

dJ ′β(s) = −H(t, Yt)(e− β)tdt+H(t, Yt)δt(e− β)tdt+∫ t

0

δs(e− β)sds[∂tH(t, Yt)dt+ ∂xH(t, Yt)[α + e− β]tdt+
1

2
∂2
xxHσ

2dt] +(49)

∂tUdt+Aα,βUdt+ σ[∂xU +

∫ t

0

δs(e− β)sds× ∂xH(t, Yt)]dBt.

We have to write the process J ′β with respect to the (FY ,P)-Brownian motion I:

dJ ′β(s) = −H(t, Yt)(e− β)tdt+H(t, Yt)δt(e− β)tdt+∫ t

0

δs(e− β)sds[∂tH + ∂xHα̃t +
1

2
∂2
xxHσ

2](t, Yt)dt+ (50)

[∂tU + ∂xUα̃t +
1

2
∂2
xxUσ

2](t, Yt)dt+ σ[∂xU +

∫ t

0

δs(e− β)sds× ∂xH(t, Yt)]dIt.

First of all, the super-martingale property implies the two following inequalities ∀α, ∀β:

− H(t, Yt)(e− β)t +H(t, Yt)δt(e− β)t

+ [∂tH + ∂xHα̃t +
1

2
∂2
xxHσ

2](t, Yt).

∫ t

0

δs(e− β)sds

+ [∂tU + ∂xUα̃t +
1

2
∂2
xxUσ

2](t, Yt) ≤ 0,

(V −H(t, Yt))α + ∂tW +Aα,βW ≤ 0. (51)

The �rst inequality has to be satis�ed ∀α, ∀β, so it has to be ∀α̃. But this expression is linear
with respect to α̃. So we get:

∫ t

0

δs(e− β)sds× ∂xH(t, Yt) + ∂xU(t, Yt) = 0, (52)

and the optimality of β is equivalent to:

(δt−1)(e−β)tH(t, Yt)+

∫ t

0

δs(e−β)sds[∂tH+
1

2
∂2
xxHσ

2](t, Yt)+(∂tU+
1

2
σ2∂2

xxU)(t, Yt) = 0.

Remark that this system implies that dJ ′β is identically null, so J ′β is a constant on time, so
it seems that the optimal strategy could be anything. So we get the following proposition.
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Proposition 5.9 Non insider's optimal strategy is not to invest.

The proof stays on some lemmas.

Lemma 5.10 There exist f, g ∈ C1[0, T ] such that the non insider's value function U satis-
�es:

U(t, x) = [f(t)− f(0)]H(t, x) + g(t) with f(1)− f(0) = g(1) = 0.

Proof : Equation (52) implies dt⊗ dP almost surely (recall that by hypothesis ∂xH > 0):∫ t

0

δs(e− β)sds = − ∂xU(t, Yt)

∂xH(t, Yt)
, (53)

Di�erentiate this equation with respect to time :

δt(e− β)tdt = (54)(
−∂

2
xtU

∂xH
+
∂xU∂

2
xtH

(∂xH)2

)
(t, Yt)dt− ∂x

(
∂xU

∂xH

)
(t, Yt)dYt −

1

2
σ2∂2

xx

(
∂xU

∂xH

)
(t, Yt)dt.

So the local martingale part is null, that is to say, since Y is a Brownian di�usion,

∀t, ∀x, 0 = ∂x(
∂xU

∂xH
)(t, x), (55)

and consequently ∂xU(t,x)
∂xH(t,x)

does not depend on x so

∀t, dP a.s., (δ(e− β))(t, Yt) = −∂t(
∂xU

∂xH
)(t, Yt) (denoted as − f ′(t)) (56)

only depends on time, so does the function δ(e − β). Yields from (55) that ∂xU/∂xH only
depends on time and from (53):

∂xU(t, x) = [f(t)− f(0)]∂xH(t, x),

and since U(1, x) = 0 ∀x we can conclude that

U(t, x) = [f(t)− f(0)]H(t, x) + g(t) with f(1)− f(0) = g(1) = 0.

Function f is di�erentiable by de�nition, thus g is too, since H, f, U are di�erentiable. •

Lemma 5.11 Functions f and g are linked by the following:

∀(t, x), δ−1(t, x)f ′(t)H(t, x) + g′(t) = 0. (57)
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Proof : We deduce from (56) δt(e− β)t = −f ′(t), that:

(e− β)t = −δ−1
t f ′(t) and

∫ t

0

δs(e− β)sds = f(0)− f(t). (58)

We now use Equation (53) and the results in (58), ∀t, ∀x :

0 = −(δt − 1)δ−1
t f ′(t)H(t, x) + (f(0)− f(t))(∂tH +

1

2
σ2∂2

xxH)(t, x)

+(f(t)− f(0))(∂tH +
1

2
σ2∂2

xxH)(t, x) + f ′(t)H(t, x) + g′(t)

and after cancellations, ∀t, ∀x yields the result (57).

Lemma 5.12 A necessary and su�cient condition for the existence of an optimal α∗ is this
system admits a solution (W,H):

∂xW (s, x, V ) = H(s, x)− V, ∂2
xxW (s, x, V ) = ∂xH(s, x), (59)

∂tW (s, x, V ) = −(e− β)t∂xW (s, x, V )− 1

2
σ2∂2

xxW (s, x, V ). (60)

Proof : Recalling that δ−1(t, Yt)f
′(t) = −(e− β)(t, Yt), this yields the optimal strategy for

the non informed agent:
(e− β∗)(t, Yt)H(t, Yt) = g′(t). (61)

By the way, as in the non insider's case, the super-martingale property :

∀α, (V −H(t, Yt))α + ∂tW + (α + e− β)t∂xW +
1

2
σ2∂2

xxW ≤ 0, (62)

induces a linear expression with respect to α, so once again we get:

0 = V −H(s, x) + ∂xW (s, x, V ) (63)

and there exists optimal α∗ is equivalent to:

0 = ∂tW (s, x, V ) +
1

2
σ2∂2

xxW (s, x, V ) + (e− β)t∂xW (64)

with boundary condition W (1, x, V ) = 0.

In such a case, we get the announced necessary and su�cient condition for the existence
of an optimal α∗. •

Proof of the proposition 5.9:
Using the expression (57) for (e− β) yields:

∂tW = −H−1(s, x)g′(t)(H(s, x)− V )− 1

2
σ2∂xH(s, x) = −g′(t) + g′(t)H−1V − 1

2
σ2∂xH.
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We di�erentiate this last equation with respect to x and (59) with respect to time t, so we
get : ∂tH = ∂2

xtW = −g′(t)H−2V ∂xH − 1
2
σ2∂2

xxH
and a nonlinear di�erential equation:

∂tH = −g′(t)H−2V ∂xH −
1

2
σ2∂2

xxH. (65)

But this one is depending on V, so necessarily g′ is identically null and thus, recalling (58),
f ′ = 0 implies that the optimal strategy is (e− β)(t, Yt) = 0, that is to say

the better the noise trader has to do is not to invest!! (66)

•
So we now came back to Cho's paper [9]. Using Itô formula, we get H(t, Yt) as a semi-

martingale, but by de�nition, t 7→ H(t, Yt) is a (FY ,P)−martingale so it has to be driven
by the innovation process I:

dH(t, Yt) = [∂tH + α̃t∂xH +
1

2
σ2∂2

xxH](t, Yt)dt+ σ∂xH(t, Yt)dIt,

thus t 7→ H(t, Yt) is a (FY ,P)−martingale is equivalent to a new partial di�erential equation

∂tH + α̃t∂xH +
1

2
σ2∂2

xxH = 0. (67)

The comparison with the previous one (65) shows that actually if α is optimal, α̃ has to be
null, i.e. a result shown by Cho. Remark that in such a case dYt = σdIt and σ−1Y is a
(FY ,P) Brownian motion.

5.5 Modi�cation

So far we have discussed the problem in its simpli�ed situation, that is: we supposed the
market maker observes the sum Yt = Xt + Zt to make price. In other words we developed
the discussion by treating the intensity of both traders' activities, insider and non-informed,
with equal weight. But there may be an idea saying that such situation may not be close
to the reality. Let us consider for example an extreme case where the activity Xt of the
insider is very small and almost negligeable before the overwhelming activity of majority
noise traders. Then we wonder if our result can still hold true for such case.

As a �rst step toward the amelioration in this point of our model, we try to take into
acount the portion between the intensities of these two traders, say A (∈]0, 1[) and we suppose
that for the price making the market maker observes the amount,

Yt = AXt + (1− A)Zt.

Combining this with the equations (39),(41) we �nd the following equation for the Yt, instead
of the equation (43).

dYt = [Aα(t, Yt, V ) + (1− A){e(t, Yt)− β(t, Yt)}]dt+ (1− A)σdBt, Y0 6= 0. (68)
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Now with this model we like to repeat the discussion. But this is quite easy because we need
not to do other things but to follow the same discussion only by changing the coe�cients
α(t, y, v), (e− β)(t, y), σ to the, Aα(t, y, v), (1− A)(e− β)(t, y), (1− A)σ respectively. By
consequence we readily �nd that our result about the optimal policy for noise trader (66)
still holds true in this modi�ed model, but the equation (67) for the price function should
be modi�ed into the following form;

∂tH + Aα̃t∂xH +
1

2
(1− A)2σ2∂2

xxH = 0. (69)

Recall that α̃t = E[α(t, Yt, V )/FYt ] so actually Aα̃t is to be null. Either A = 0 or α̃t = 0.
The �rst case A = 0 means that there is no insider traders and it is another problem. The
alternative is α̃t = 0 and we come back to the previous section and Cho's paper [9].

Finally, what happens if A goes to 1 ? meaning that the percent of insider traders is
increasing. Then since dYt = Aα̃tdt+ (1−A)σdIt and the insider's optimal strategy satis�es
α̃t = 0, Yt goes to be a constant when A goes to 1. Recalling that dYt = Aαtdt+(1−A)σdBt

it means that also α should be null. This could mean that the existence of noise traders is
indispensable for the trading to be done in the market. On the other hand, if A goes to 1,
the consequence in Equation (69) is that ∂tH goes to 0, the price H becomes a constant,
and these two facts (constant price and no trading) are consistent.
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6 Another type of equilibrium, C. Hillairet [25] 2005

This paper concerns a quite di�erent equilibrium, but the common facts are the existence
of di�erently informed agents and the existence of an �equilibrium" between them, so that
the trading occurs. But here the prices are exogeneous and a pricing rule is not looked for.
Moreover, the author considers non continuous price process.

6.1 The model, notations and de�nitions

The �ltered probability space is the product of canonical spaces of a pair (W,N), W being a
m−Brownian motion andN a n-point process on (Ω, (Ft, t ∈ [0, T ]],P), d = m+n. The point
process admits the positive intensity κ such that the compensated processMt = Nt−

∫ t
0
κsds

is a (F ,P)-martingale. There exists a riskless assets, the bond P0(t) = P0(0) exp
∫ t

0
rsds and

d risky assets:

dP i
t = P i

t−[bitdt+
∑
j

σij(t)dWj(t) +
∑
j

σij(t)dNj(t)], i = 1, ...d. (70)

The processes r, b, σ are such that there exists a unique strong solution to (70).

The author considers three types of information: initial or progressive strong information,
meaning that the kth agent's information is

Gkt = Ft ∨Hk
t ,

Hk denotes his private information.

De�nition 6.1 The agents's strategies are Gk-adapted portfolio-consumption (πk, ck), sat-
isfying ck ≥ 0, ∫ T

0

(ckt + ‖σ̃tπkt ‖2)dt <∞, Pa.s.

The kth agent has his own endowment εk, Gk-adapted.

Let βt = (P0(t))−1 be the de�ation process. Then assuming that the strategy is self-
�nancing, the discounted wealth could be (here 1d is a vector in Rd with all components
equal to 1):

βtX
k
t =

∫ t

0

βs(ε
k
s − cks)ds+

∫ t

0

βsπ̃s(bs − r1d)ds+

∫ t

0

βsπ̃s−σsd(W,N)s. (71)

But actually, the stochastic integrals are not well de�ned with such integrand processes, not
F−adapted. Below, we add some hypotheses such that the enlargement of �ltration can be
used.
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As it is usual, the kth agent's aim is to optimise his strategy, given his utility function
Uk:

(π, c) 7→ E[U(Xk
A)/Gk0 ].

Some notations:

Θt the �rst m lines of σ−1
t (bt − rt1), (72)

κtqt the last n lines of σ−1
t (bt − rt1), supposed to be > 0,

Ŵt = Wt +

∫ t

0

Θsds,

M̂t = Nt −
∫ t

0

qsκsds,

Ŝ = Ŵ , M̂ . (73)

6.2 Enlargement of �ltration

To make valid the stochastic integrals in the wealth process, the following assumption is
done:
For all agent k, there exists (Zk

t , t ∈ [0, A], A < T ), a non negative Gk−martingale, such
that E[Zk

A] = 1 satisfying

dZk
t = Zk

t−[ρkt dWt + (τ kt − In)dMt]. (74)

We denote Qk the equivalent probability

dQk = (Zk
A)−1P. (75)

A consequence of this assumption is the following:

Corollary 6.2 On the �ltered probability space (Ω,Gk,P)

W̃ k
t = Wt −

∫ t

0

ρksds

is a Brownian motion,

M̃k
t = Nt −

∫ t

0

κsτ
k
s ds

is the compensated point process of N .

Thus, the wealth equation (71) is meaningfull on the �ltered probability space (Ω,Gk,P).

De�nition 6.3 Let Y k the Doléans exponential of the process

−(Θt + ρkt ).dW̃
k
t +

qt
τ kt
.dM̃k

t.
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Such a process is a positive (Gk,P)-local martingale. To make the work easier, let us assume
that Y k is a martingale.
Examples of Hk

t , initial or progressive strong information:

σ(Lk) ; σ(h(Lk, Bk
s )).

In the third exemple, page 11:

ξkt (Lk) =
dνk

dP̂Lk
=
dPνk

dP̂
.

Zk
t = E ˆP[ξkt (Lk)/Ft].

6.3 Optimization of consumption

pages 6-12
Here we only consider a logarithmic utility. The aim is to optimize in the set of admissible
strategies:

(πk, ck) 7→ EP [

∫ A

0

log(βtX
k
t )dt/Gk0 ]. (76)

Proposition 6.4 Under the hypotheses that

βtε
k
t is deterministic and EP[

∫ A

0

Y k
t βtε

k
t dt/Gk0 ] > 0 a.s. (77)

Given

λk =
A

EP[
∫ A

0
Y k
t βtε

k
t dt/Gk0 ]

,

the optimal strategy is

ĉkt =
1

λkβtY k
t

, (78)

π̂kt = (σ̃t)
−1

(
A− t
Aβt

∫ A

0

βtε
k
t )dt

)
lkt
Y k
t−
. (79)

In such a case, the optimal wealth is

X̂k
t = (βtY

k
t )−1

(
A− t
λk
− EP[

∫ A

t

Y k
s βsε

k
sds/Gkt ]

)
.
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6.4 Equilibrium

pages 12-15, section 4.

De�nition 6.5 An equilibrium is done when there exists optimal strategies (ĉk, π̂k) clearing
the market, meaning that:

K∑
k=1

π̂kt = 0d, dt⊗ dP a.s. on [0, A]× Ω.

�This setting is not usual for an equilibrium model in the sense that we assume that the price
processes are exogeneous. The considered agents are price takers. We can think for example
at a small closed structure of agents trying to set agents trying to set transactions such that
the stock market clears in their `local' structure. Their transactions do not a�ect the price
processes, that are �xed by an external market. It is a competitive dynamic equilibrium....
De�nition 6.5 means that the transactions can occur if the endowments and the agents'
informations are well-balanced. It can interpreted as
�the more informed an agent is, the less weight he must invest" (not to be discovered).

Using the explicit form of optimal portfolios in the logarithmic utility case, yields the
theorem:

Theorem 6.6 Under the hypotheses (74,77), there exists an equilibrium (6.5) if and only if
the processes (Y k, k = 1, ...K) satisfy the equilibrium relation

dt⊗ dP a.s.
K∑
k=1

ak
Y k
t

= 1 where ak =

∫ A
0
βtε

k
t dt∑K

j=1

∫ A
0
βtε

j
tdt

. (80)

The coe�cient ak can be seen as the kth agent's weight in the market. The process Y k

summarizes the kth agent's information and determines his optimal behaviour.
cf. Imkeller-Schweizer or [2]

page 14: �Insider's additional expected logarithmic utility can be considered as the rela-
tive entropy of his own probability measure w.r.t. the risk neutral probability of a non
insider trader."

Corollary 6.7 Under the hypotheses (74,77), given the processes (Y k, k = 1, ...K − 1, then
there exists an equilibrium if and only if

K−1∑
k=1

ak(1− 1/Y k) > −aK ,

(Y K)−1 = 1 +
K−1∑
k=1

ak
aK

(1− 1/Y k). (81)

EXAMPLE (page 18 4.3) with K = 2.
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7 Some other points of view

Here are gathered the summaries of some communications in the AMaMeF workshop (Toulouse,
January 2007) concerning some equilibria.

7.1 L. Campi and U. Çetin: Insider trading in an equilibrium with
default, a passage from reduced-form to structural modelling

The equilibrium model is Back's model [3] concerning the pricing of a defaultable zero
coupon bond issued by a �rm. Recall that the market consists of a risk-neutral informed
agent, noise traders and a market maker who sets the price using a total order. When the
insider doesn't trade, the default time possesses a default intensity in market's view as in
reduced-form credit risk models. However, the authors show that, in the equilibrium, the
modelling becomes �structural": this means that the default time becomes the �rst time
that some continuous observation process falls below a certain barrier. Interestingly, the
�rm value is still not observable. They also establish the no expected theorem that the
insider's trades are inconspicuous.

7.2 E. Barucci et al., A market model with insider's trades and no
information transmission

The authors consider a continuous extension of Kyle's model [36]. They show that in equi-
librium, the insider trades but no private information are transmitted. The main di�erence
between their setting and Kyle's one is that the insider is risk adverse and that the risky
assets pay a continuous time dividend stream, which is described by a mean reverting pro-
cess. The dividend realisation is observed by all agents, but the insider knows the dividend
growth rate (which is itself mean reverting) while the market maker does not. Noise trader's
order �ow is described by a stochastic di�erential equation. Here is de�ne a Bayesian-Nash
equilibrium.

De�nition 7.1 A Bayesian-Nash equilibrium....

In equilibrium the insider trades but no information is transmitted because the order �ow is
uninformative for the market maker.
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7.3 E. Jouini and C. Napp, Are more risk-adverse agents more
optimistic? Insights from a simple rational expectations equi-
librium model.

The authors analyse the link between pessimism and risk-aversion. They consider a model of
partially revealing, competitive rational expectations equilibrium with diverse informations,
in which the distribution of risk-aversion across individuals is unknown. They show that
when a high individual level of risk-aversion, more risk-averse agents are more optimistic.
This correlation between individual risk-aversion and optimism leads to a pessimistic �con-
sensus belief", hence to an increase in the market price of risk. Risk-sharing schemes and
welfare implications are analysed. Finally they show that agent's welfare may increase upon
the receipt of more precise information.

7.4 Guillaume Lassere [37, 38]

7.5 R. MONTE and B. TRIVELLATO, [40]

An equilibrium model of insider trading in continuous time,
Decision Econ. Finan., 2009, 32(2), 83-128.

7.6 M. Schweizer and U. Gruber, Mechanism for price formation
in the presence of a large trader.

This one is slightly di�erent from the previous works, since it concerns an asymmetric in-
formation with a large investor.

The authors present an approach to the derivation and study of a class of models where
there is interaction between underlying assets prices and the actions of a large investor. More
precisely, they start with a simple discrete time situation and provide a precise description of
a model for the way that a large investor a�ects prices when trying to hedge a given option
that he has sold in a self-�nancing manner. Under suitable assumptions, they can show that
this leads to a class of generalized correlated random walks, for which they are able to obtain
a di�usion limit. The resulting continuous model contains several special cases that have
been discussed in the literature. Their approach allows them to see more clearly whre the
micoeconomic price formation mechanism comes in.

7.7 C. T. WU

Look at his PHD: �Construction of Brownian Motions in Enlarged Filtrations and Their Role
in Mathematical Models of Insider Trading�.
In this thesis, we study Gaussian processes generated by certain linear transformations of two
Gaussian martingales. This class of transformations is motivated by �nancial equilibrium
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models with heterogeneous information. In Chapter 2 we derive the canonical decomposition
of such processes, which are constructed in an enlarged ltration, as semimartingales in their
own �ltration. The resulting drift is described in terms of Volterra kernels. In particular we
characterize those processes which are Brownian motions in their own �ltration. In Chapter
3 we construct new orthogonal decompositions of Brownian �ltrations.

In Chapters 4 to 6 we are concerned with applications of our characterization results in
the context of mathematical models of insider trading. We analyze extensions of the �nan-
cial equilibrium model of Kyle [42] and Back [7] where the Gaussian martingale describing
the insider information is speci�ed in various ways. In particular we discuss the structure
of insider strategies which remain inconspicuous in the sense that the resulting cumulative
demand is again a Brownian motion.

On large investors, also look at Grorud-Pontier [21].
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