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Stochastic calculus applied in Finance

This course contains seven chapters after some prerequisites, 18 hours plus exercises
(12h).

0.1 Introduction, aim of the course, agenda

The purpose is to introduce some bases of stochastic calculus to get tools to be applied
to Finance. Actually, it is supposed that the financial market proposes assets, the prices
of them depending on time and hazard. Thus, they could be modelized by stochastic
processes, assuming theses prices are known in continuous time. Moreover, we suppose
that the possible states space, €2, is infinite, that the information is continuously known,
that the trading are continuous. Then, we consider that the model is indexed by time
t,t €[0,T] or R", and we will introduce some stochastic tools for these models.

Remark that actually the same tools could be useful in other areas, other than financial models.

(0) Prerequisites in Probability theory.

(i) Brownian motion: this stochastic process is characterized by the fact that little incre-
ments model the “noise”, the physical measure error.... The existence of such a process is
proved in the first chapter, Brownian motion is explicitly built, some of useful properties
are shown.

(ii) Stochastic integral: actually Itd calculus allows to get more sophisticated processes
by integration. This integral is defined in second chapter

(iii) Tt6 formula allows to differentiate functions of stochastic processes.

(iv) Stochastic differential equations: linear equation goes to Black-Scholes model and a
first example of diffusion. Then Ornstein-Uhlenbeck equation models more complicate
financial behaviors.

(v) Change of probability measures (Girsanov theorem) and martingale problems will be
fifth chapter. Indeed, in these financial models, we try to set on a probability space where
all the prices could be martingales, so with constant mean; in such a case, the prices are
said to be “risk neutral”. Thus we will get Girsanov theorem and martingale problem.
(vi) Representation of martingales, complete markets: we introduce the theorem of mar-
tingale representation, meaning that, under convenient hypotheses, any Fpr-measurable
random variable is the value at time 7" of a martingale. In this chapter we also consider
complete markets.

(vii) A conclusive chapter apply all these notions to financial markets : viable market,
complete market, admissible portfolio, optimal portfolio and so on in case of a small
investor. We also look (if time enough) at European options.



0.2 Prerequisites

Some definitions : on a set {2 a o-algebra is a set A of subsets satisfying :
o)c A,

eif Aand B€ A, then AUB, ANB, A=Q0—Ac A,

eifVn, A, € Qand A, D A,41, VA, € A.

A probability on A is an application P : A — |0,
1-P(A);if Aand B € Aand ANB =0, P(AUB) = IP(

A probability space is the triplet (2, A4, P).
Actually it a positive bounded measure on (£2,.A4).

1] such that P(Q) = 1; P(A°)
)+P(B); P(N,A,) = hmnIP’(An .

An important example of o-algebra on R, R? is the Borel o-algebra generated by the
open subset, meaning the smallest o-algebra containing the open (or the closed) subsets.

A filtration is a set of increasing o-algebras (F;,t € R"), and a filtered probability
space is the set (Q, A, (F;,t € RT),P), V¢, F; C A.

A random variable X on (€2, A,P) to a measurable space (E, &) is an application
from Q to E such that VA € &, the reciprocal set X 1(A) € A. Tt is said to be A-
measurable.

We denote the expectation Ep[X] = [, X , and E[X] if there is no ambiguity.

A stochastic process is an apphcatwn X on Q x RT. When w is fixed, t — X (w, 1)
is named a trajectory; this one could be continuous, right continuous (cad) left limited
(lag), and so on.

On a filtered probability space, a process is said to be adapted to the filtration when
Vt, X(.,t) is Fi-measurable.

0.3 Some convergences

Definition 0.1. Let P, series of probability measures on a metric space (E,d) endowed
with Borel o-algebra B, and P measure on B. The series (P,,) is said to weakly converge

to P if ¥V € Cy(E), P,(f) — P(f).

Definition 0.2. Let (X,) a series of random wvariables on (Q,, A,,P,) taking their
values in a metric space (E,d,B). The series (X,,) is said to converge in law to
X if the series of probability measures (P, X ') weakly converges to PX~', meaning:

- L? convergence: E|[|X,, — X|?] — 0.

- convergence in probability: Ve, P{w : | X, (w) — X(w)| > e} — 0.

- almost sure convergence: P{w : lim,, X,,(w) = X(w)} = 1.

- limit sup and limit inf of sets: liminf, A,, = U, Ng>, Ak, limsup, A, = Ny Ug>, Ay

We can express almost sure convergence:

Ve, P(liminf{w : | X, (w) — X(w)| <e} =1.



And the following is now obvious:
Proposition 0.3. Almost sure convergence yields probability convergence.

Proposition 0.4. LP convergence yields probability convergence.

- Lebesgue theorems: monotoneous, bounded convergence.

Theorem 0.5. Fatou: For all series of events (A,,)

P(liminf A,) <liminfP(A,) < limsupP(4,) < P(limsup 4,).

n

Theorem 0.6. Borel-Cantelli:

ZP(An) < oo = P(limsup 4,,) = 0.

When the events A, are independent and ), P(A,) = oo, then P(limsup 4,) = 1.

Proofs of these two theorem to be done as exercises: (1.0).

Definition 0.7. A family of random variables {U,,« € A} is uniformly integrable
when

lim sup/ |Us|dP = 0.
{lUa|zn}

n—oo o

Theorem 0.8. The following are equivalent:

(i) Family {U,,a € A} is uniformly integrable,

(i1) sup, E[|Us|] < 00 and Ve,30 >0: A€ A et P(A) <0 = E[|Uy|14] <e.
RECALL: an almost surely convergent series which get a uniformly integrable
family, moreover converges in L'.

X, — X in L! if and only if the family (X,,n > 0) is uniformly integrable and
X, = X in probability.

0.4 Conditional expectation

Definition 0.9. Let X a random variable belonging to L'(2, A,P) and B a o-algebra
included in A. Ep(X/B) is the unique random variable in L'(B) such that

VB € B, / XdP = / Ep(X/B)dP.
B B
Corollary 0.10. If X € L*(A), | X|3 = |Ep(X/B)|3+ | X — Ep(X/B)|3.
Exercises : Let X € L' and a family of o-algebras 7% o € A. Then the family of

conditional expectations { E[X/F*],a € A} is uniformly integrable.
Then Ex. 1.1 1.2 1.7.



0.5 Stopping time

This notion is related to a filtered probability space.
Definition 0.11. A random variable T : (2, A, (F;),P) — (R", B) is a stopping time
if Vt € RY, the event {w/T(w) <t} € F.

Examples :
- a constant variable is a stopping time,

- let O be an open set in A and X a continuous process, then
To(w) = inf{t, X;(w) € O}
is a stopping time, called ‘hitting time’.

Definition 0.12. Let T be a stopping time in filtration F;. The set
Fr={Aec A, An{w/T <t} € F} is called stopped o-algebra at time T.

Definition 0.13. The process X rr is called “stopped process at T”, denoted as X' .

Exercises I 3 to 8. The 1.6 is important, as a proposition: A random variable X is
FT —measurable if and only if Vt > 0, X1ir<sy is Fy—measurable.

0.6 Martingales

(cf. |30] pages 8-12 ; [20] pages 11-30.)

Definition 0.14. An adapted real process X is a martingale (resp super/sub) if
(i) X; € L'(Q, A, P),Vt € RT,
(i) ¥s < 1, E[X,/F) = X,. (resp <,

Lemma 0.15. Let X be a martingale and ¢ a function such that ¥Vt ¢(X;) € L.
If ¢ is a convez function, then o(X) is a sub-martingale.
If ¢ is a concave function, then ¢(X) is an super-martingale.

When X is a sub-martingale and ¢ an increasing convex function (s.t. ¥Vt ¢(X;) € L),
then ¢(X) is a sub-martingale.

Proof exercise 11.1.

Definition 0.16. The martingale X is said to be closed by Y € L'(Q, A P) if X; =
EY/[F].

Corollary 0.17. A closed martingale is uniformly integrable.

Proposition 0.18. Any martingale admits a cadlag modification (cf [30]).
cadlag means right continuous left limited, it is a french acronym
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Theorem 0.19. convergence of martingales: Let X be a cad super (or sub)-martingale
such that sup, E[| X;|] < oco. Then lim;_,o, X; exists almost surely and belongs to L*(9), A, P).
If X 1s a martingale closed by Z, it is too by lim; . X;, denoted as X, equal to
E[Z] V>0 Fi).

The proof is really sophisticated and long enough, so we skip it.

Corollary 0.20. A below bounded super-martingale converges almost surely to infinity.

Proof. : Let X be an super-martingale, such that there exists a € R, X;(w) > a almost
surely. So, X; — a is too a super-martingale satisfying 0 < X; —a and 0 < EF[X,; —
a] = E(]X; — a|]. But the super-martingale property tells E[X; — a] < E[Xy — a]. So Vt
0 < E(|X; —al] < E[Xy — a]. The theorem property is satisfied and concludes the proof.e

Theorem 0.21. In case of L' bounded martingale (meaning exactly sup, E[|X;|] < oo)

there exists Y and Z positive martingales such that almost everywhere for all t, X, =
Y, — Z,.

As a consequence, in many proofs, we could suppose that the martingale
could be positive.

Theorem 0.22. Let X be a martingale. The followings are equivalent :

(1) X is uniformly integrable,

(ii) X; converges almost surely to Y, Y belonging to L', when t goes to infinity, and
{X;,t € R} is a martingale,

(iii) (X;) L' converges to Y when t goes to infinity.

Proof. = exercise I1.3: (i) = (uii) = (i1) = (i).

The following is a corollary which stresses the point (i) above : {X;,t € @} is a
martingale.
Corollary 0.23. Let X be a uniformly integrable martingale; then the almost sure limait
Y of X; when t goes to infinity exists and belongs to L'. Moreover X; = E[Y/F].
Actually the hypothesis “X be a uniformly integrable martingale” is the point (i) in
previous theorem, so we get assertion (ii) which is exactly the corollary conclusion.

Notation: let X be a stochastic process and T" a stopping time on the filtered prob-
ability space (€2, A, (F;),P). Then Xy is the random variable w — Xp(,)(w).



Theorem 0.24. Doob: Let (X;,t € RY) be a cad F-martingale, S and T F-stopping
times such that:

(i) E[|Xs[), E[Xr]] < oc,

(1) limy_, 4 oo f{T>t} | Xy |dP = limy 1 o f{S>t} | Xy |dP =0,

(111) S < T < 0o almost surely.

Then E[Xr/Fs] = Xs P — almost surely.

Let X be a cad sub-martingale with terminal value X, let two stopping times S and

T satisfying (i)(ii)(iii). Then:
Xs < E[X7/Fs| P— almost surely.

Proof: pages 19-20 [20]: to be detailed.

We provide the proof only in case of closed martingale: V¢, X, = F[X/F;]. Moreover,
we restrain to the case of X; > 0 without loss of generality, since a closed martingale can
be written as following: X; = F[X1 /F]—E[XL/F:], difference between two non negative
martingales.

(i) The first step will be to prove that in such a case, for all stopping time 7":

(1) Xr = E[ X/ Frl.

Then if S < T, Fs C Fr and
E[Xr/Fs| = E[E[X«/Fr]/Fs| = E[Xs/Fs| = Xs.

(ii) The second step is to consider 7' deterministic : then (1) is only the definition of a
closed martingale.

(iii)We now consider that the stopping time 7" is such that 7'(€2) is the discrete real
subspace {t1,- - ,tn, - }. Then

Xrlrey, = Xo, 11—, = E[Xoo/Fi, | 11—,

On another hand, Xt is both Fr—measurable and integrable (assumption (i)). Let A €
Fr and compute

E[Xoolal = E[Xelalr—,] =Y E[X, 1alr-,]

since AN{T =t,} € F, and positiveness allows the commutation between ) and E.

E[Xo14] =Y E[Xrlalr—y,] = E[Xr14]

so (1) is satisfied.
(iv) Let T a general stopping time: there exists a decreasing sequence of stopping times
T,, T, 1 T and Vn, T,, satisfied step (iii): so Vn,

X1, = E[Xo/Fr,].
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The right continuity tells us that the left hand above goes to X7 almost surely.
Actually, (X7,) is a backward martingale, uniformly integrable, so we admit that this
convergence is too a L' convergence.

Moreover T, > T implies Fr C Fr, and we get
E[Xw/Fr| = E|E[X«/Fr,]/ Fr| = E[ X1, | Fr].

Using the almost sure and L' convergence of (X7, ) to Xr, the right hand above converges
to X7 and (1) is proved.

Corollary 0.25. Under the same assumptions
E[Xt/\T/-FS] = Xins-

Proof. : Doob theorem applied to stopping times t AT, tAS yields E[Xiar/Firs] = Xins.
But actually, we can prove that E[X;,r/Fs] is Firs-measurable

(not so obvious, to detail...).
Then we can identify E[ X r/Fs| as E[Xiar/Fins]- °

Definition 0.26. The increasing process (M) (“bracket”) is defined as:

t— (M), = |71r1r_130pr0ba ;(Mt - M, .)?

7 being partitions of [0,t] and |w| = sup;(tit1 — t;).

In next chapter, we will show that if M = B is Brownian motion then (B); = t.
Remark 0.27. The squarred integrable martingales admit a bracket.
Proposition 0.28. (M), is the adapted increasing continuous unique processus such that

M? — (M) is a martingale.

This proposition is often used as the bracket definition and then Definition 0.26 is a
consequence.
Proof: We can write M? — (M), as the limit in probability of

[Z(Mtz - Mtifl)]2 - Z(Mtl - Mti71)2
t,em tiem

and we developp the square

[Z(Mtz o Mtz‘&)]z - Z(M Mtz 1 - QZ Mt -1 (M o Mtjfl)'
t;em t;em 1<j
We now take the F; conditional expectation above,

E[MtZ_Z<Mti_Mti—1)2/fs] = ML?_Z(MH_M%—l)z_'—zE[ Z (Mti_Mti—l>(Mtj_Mt

t,em t;<s s<t; <t

_)/F-



But for any s <t; <,
E[(Mtz - Mtifl)(Mtj - Mtj—l)/fs] = EKM% - Mtifl)E[(Mtj o Mtjfl)/fti]/fs] = 0.

Thus we can conclude getting |7| to 0. .

Corollary 0.29. For any pair s < t, E[(M; — M)*/F] = E[((M), — (M)s)/Fs].

Proof: We developp (M; — M,)? = M? — 2M M, + M?; since
E[M;)F,] = My, E|]M? —2M,M,+ M?/F,| = E[M?/F,] — M?. We now set the difference
E[(M, — M)*]/F] = E[(M), = (M),/F] = E[M} — (M)/ F.] = M7 + (M),. .

Finally we admit some useful inequalities, (cf. |[20] pp 13-14) namely Doob’s inequali-
ties (i) (ii) and Burkholder-Davis-Gundy inequality (iii).

Theorem 0.30. Let X be a cad sub martingale and 0 < o < 7, A > 0. Then
(i) AP{sup X; > \} < E[X]'].

o<t<rt

(i) Vp>1, E[sup |X,|7] < (pf

o<t<T

V(X

(111) If X is a local martingale, Xo = 0, ¥p > 1, there exists C, > ¢, > 0 such that

V stopping time 7, ¢, E[{(X),|"] < E[(sup |X;|*)] < C,E[(X)?]
t<rt

where (X) is the bracket.

Finally we provide a useful sub martingale decomposition:

Theorem 0.31. Let be X a sub martingale of “class D” (meaning the family
{Xs, S being F stopping times} is uniformly integrable). Then there exists a martingale
M and an increasing process A such that almost surely X, = M; + A;.

Definition 0.32. A process X is said to be “progressively measurable” for filtration
(Fi,t >0) if Vi > 0,YA € B(R) : {(s,w)/0<s<t; Xs(w) e A} € B([0,1]) ® F,
meaning that the application on ([0,t] x Q,B([0,t]) ® F) : (s,w) — X(w) is measurable.

Proposition 0.33. (¢f [20], 1.12) If X is a adapted measurable process, it admits a
progressively measurable modification.

Proof: cf. Meyer 1966, page 68.

0.7 Local martingales

To stop a process at a convenient stopping time allows to get some uniformly integrable
martingales thus easy to manage with: we get results for all n, then n going to the infinity
and using Lebesgue theorems (monotonous or bounded convergences). It is the reason of
the introduction of stopping times and local martingales. The set of local martingales is
denoted as M.



Definition 0.34. (page 33 [30].) Let X an adapted cadlag process. It is a local mar-
tingale if there exists a series of stopping times (T),),, increasing to infinity, so that Vn
the stopped process X is a martingale.

Theorem 0.35. (cf [30], th. /4, page 33) Let M € My, and T stopping time such that
M7 is uniformly integrable.

(i) S < T = M? is uniformly integrable.
(i1) Mo is a real vector space.
(iii) if M and MT are uniformly integrable, then M"T is uniformly integrable.

Notation :
M} = sup |M|; M* =sup|M|.
0<s

0<s<t

Theorem 0.36. (cf [30], th. 47, page 35) If M € M, is such that E[M}] < coVt, then
M is a “true” martingale.
If moreover E[M*] < oo, then M is uniformly integrable.

Proof: to be admitted.
i) Vs < t,|M,| < M} belongs to L'. The sequence T, At is increasing to ¢ and
t g g

E[MT,,,/\I‘,/J:S] = MTn/\s~

Taking almost sure limit in this equality and Lebesgue theorem allow the L! convergence.

(i) Then M is a martingale and M* is in L'. Martingale convergence theorem shows the almost sure
convergence of (M;) to M. Finally, the uniform integrability is to be proved (using equivalent definition
of uniform integrability).

0.8

The following concerns general culture, but out of the agenda.
Definition 0.37. Let X and Y two processes, X is said to be a modification of Y if:
vt >0,P{X; =Y} = 1.
X and Y are said to be indistinguable if almost surely the trajectories coincide:
P{X; =Y;,vt >0} = 1.
Remark 0.38. This second notion is stronger than the first one.
Proposition 0.39. Let X be a F-progressively measurable process and T be a (F;) stopping time. Then
(i) the application w — Xp(,(w) is Fr-measurable
(#1) and the process t — Xyar is F-adapted.
Proof: (i) the fact that X is progressively measurable implies that for any Borel set A,
Vt, {(s,w), 0<s<t, Xy(w) € A} € By, ® Fi.
Then {w: Xpy(w) € A N{w: T(w <t} = {w: Xpya(w) € AN {T < t}.

T is a F-stopping time, so the second event belongs to F;, and because of progressively measurability
the first is too.

(ii) This second assertion moreover shows that X7 is too F-adapted.



Proposition 0.40. (¢f [20], 1.13) If X is an adapted measurable process and admits cid or cig trajec-
tories, it is progressively measurable.

Proof: Define

kt (k+1)t
on’  on

XM (W) = Xpy1yn (@), 5 €] ], X{ (W) = Xo(w) s k=0,---,2" — 1.

S

Obviously the application (s,w) — X S(")(w) is B([0, t]) ® Fi-measurable. Using right continuity, the series
Xin)(w) converges to X(w) V(s,w) then the limit is too B([0,{]) ® Fi-measurable.
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1 Introduction of Wiener process, Brownian motion

[20] pages 21-24 ; [30] pages 17-20.

Historically, this process first models the irregular motion of pollen particles suspended
in water, observed by Robert Brown in 1828. This leads to dispersion of micro-particles
in water, also called a “diffusion” of pollen in water. In fact, this movement is currently
used in many other models of dynamic phenomena:

- Microscopic particles in suspension,

- Prices of shares on the stock exchange,

- Errors in physical measurements,

- Asymptotic behavior of queues,

- Any behavior from dynamic random (stochastic differential equations).

Definition 1.1. The Brownian motion or Wiener process is a process B on a filtered
space (2, A, Fi,P), adapted, continuous, taking its values in R? such that:

(i) Bo =0, P-almost surely on 2,

(ii)) Vs < t, By — By is independent of F, with centered Gaussian law with variance
matriz (t — s)ly.

Consequently, let a real sequence 0 =ty < t; < --- < t, < 00, the sequence (B;, —
By, ) follows a centered Gaussian law with variance matrix diagonal, diagonal (¢; —t;_1);.
B is said to be a, independent increments process.

The first problem we solve is the existence of such a process. There are several classical
constructions.

1.1 Existence based on vector construction, Kolmogorov lemma

(]20] 2.2 ; [30] pages 17-20.) Very roughly, to get an idea without going into detailed
proofs (long, delicate and technical), we proceed as follows. Let Q be C(R',R?) and
B(t,w) = w(t) be the “coordinate applications” called trajectories. Space € is endowed
with the smallest o-algebra A which implies the variable {B;,t € R*} measurable and
with “natural” filtration generated by the process B : F; = o{Bs,s < t}. On (2, .A)
the existence of a unique probability measure P is proved, satisfying Vn € N t,,--- |, €
R*,By,--- , By, being Borel of R? :

P{w/w(t;) € BiVi=1,--- ,n} = / . / p(t1,0,x1)p(ta—t1, 1, x2) - p(tn—tn_1, Tn_1, Tp)dzy..dz,,
Bl n
2

—x)
where p(t,x,y) = ﬁe’w 3
Then the point is to show:

- This well defines a probability measure on the o-algebra A.
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- Under this probability measure, the process t — w(t) is a Brownian motion according
to the original definition.

Definition 1.2. This probability measure P is named the Wiener measure on €.

In fact, this defines a probability measure on the Borel sets of the application space
AR, RY), Q not being one of its Borel sets. Instead of that, we choose Q = A(RT,R%)
and Kolmogorov theorem (1933).

Definition 1.3. A consistent family of finite dimensional distributions (Qq,t n-uple RY)
is a family of measures on (R?, B(R?)) such that

-if s =0o(t),s and t € (R")", o a permutation of integers {1,--- ,n} Ay, - -, A, €
B(R?), then Qu(Ar, -+, Ap) = Qs(Avqry,+ , Ag(ny,

- and qu = (tl, cee ,tnfl), t= (tl, cee ,tn,l,tn),Vtht(Al, s ,Anfl,R) = Qu(Ala cee ,Anfl).

Theorem 1.4. (cf [20] page 50 : Kolmogorov, 1933) Let (Qi,t € (RT)™) be a consistent

family of finite dimensional distributions.

Then there exists a probability measure P on (Q, B(QQ)) such that for all By, -+, B, €
Qi(B1,- -+ ,B,) =Plw/w(t;) € B;,i=1,--- ,n}.

We apply this theorem to the family of measures
Qi(Ar, -+, Ay) = / p(t1,0,21) - p(tn — tho1, Tno1, Tp)de.
II; A;

Then we show the existence of a continuous modification of the process— coordinate
applications of Q (Kolmogorov-Centsov, 1956), to get to the existence of a continuous
modification of the canonical process:

Theorem 1.5. (Kolmogorov-Centsov, 1956,cf [20] page 53, [30] page 171) Consider X
real random process on (2, A, P) satisfying:

3o, 3,C > 0: E|X; — X,|* < C|t —s|'P, 0<s,t < T,

then X admits a continuous modification X which is locally v— Holder continuous:
Iy €]0, é[, 3h random wvariable > 0,36 >0
o
P{  sup X, — X,| <0t —s|"} =1.

0<t—s<h;s,t€[0,T]

Remark that this theorem is also true for ¢ € R%indexed fields.
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1.2 Second construction of Brownian motion, case d =1

to skip in a first lecture
Once again we consider Q = C(R",R), we define on it:

plwr,wa) =Y 27" sup (Jwi(t) —wa(t)| A1)

et 0<t<n

meaning PROHOROV’s distance.
Remark 1.6. This metric implies o topology which is the uniform on any compact convergence in prob-

ability. Q = D(R+,R) is a complete space with respect to this norm (cf. [80], page 49.)

On €2, we call finite dimensional cylindrical sets subsets as
A= {w/(w(t1),--- ,w(ty)) € B} where B is a Borel set of R" and ¢ an n-uple of positive real numbers.
Then 2 is endowed with the o-algebra generated by these sets and we show:

Proposition 1.7. (Ezercise 4.2, [20] page 60) Let G; be the o-algebra generated by the cylindrical sets
related to n—uples (t;) such that Vi, t; <t.

- G = V4G coincides with (2, p) Borel sets.
- If
w2 = Q
w = (s w(sAt))
then G; = p; 1(G) meaning QO = C([0,t],R) Borel sets.

The construction is based on central limit theorem.

Theorem 1.8. let (§n)neN be a sequence of independent random wvariables, same law, centered,with

variance o2. Then

1 n
Sp = 07\/5 ;& converges in distribution to X of law N(0,1).

This tool will allow us to explicitly build the Brownian motion; the following theorem is called
Donsker’s invariance theorem.

Theorem 1.9. On a probability space (2, A, IP) let be a sequence of independent random variables, same
law, centered,with variance o> > 0. Let be the family of continuous processes

[nt

]
i + (nt — [ty 41]-

1
Xp= |
ov/n =

Let P" be the measure induced by X™ on (C(R+7 R),G). Then P" weakly converges to P*, measure under
which By(w) = w(t) is a standard Brownian motion on C(RJr,R).

The long proof (7 pages, cf. [20]) is based on the following topological tools:
- weak and distribution convergences,
- tight families and relative compacity,

which are the topic of the following sub-sections.
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1.2.1 Tight families and relative compacity

Definition 1.10. Let (S, p) be a metric space and 11 a family of probability measures on (S, B(S)); I is
said to be relatively compact if a weakly sub-sequence can be extracted from II.

The family 11 is said to be tight if

Ve > 0,3K compact C S such that P(K) >1—¢, VP €I

Similarly, a family of random variables {Xs : (o, Aa) ; o € A} is said to be relatively compact
or tight if the family of related probability measures on (S, B(S)) is relatively compact or tight.

We admit the following theorem.

Theorem 1.11. (Prohorov theorem, 1956, [20] 4.7)
Let 11 be a family of probability measures on (S,B(S)). Then II is relatively compact if and only if it is
tight.

This theorem is interesting since relative compacity allows to extract a weakly convergent sequence,
but the tightness property is easier to check.

Definition 1.12. On Q = C(R+), the continuity modulus on [0,T] is the quantity

0) = s) —w(t)|.
w,9) \sft\<1?,%)<<st<T|w(g) w(®)]

> S,

Exercise : we can show that this modulus is continuous on the metric space (€2, p), p being Prohorov’s
distance, increasing with respect to d, and that Vw, lims_,o m” (w,d) = 0.

The following theorem is a tightness criterion (thus of relative compacity) for a family of probability
measures on (€2, B(2)).

Theorem 1.13. (/20] page 63, 4.10) A sequence of probability measures (IP,,) is tight if and only if:
(i)
lim supP,{w : |w(0)] > A} =0.

A—00 n>1
(i1)
lim sup P, {w : m”(w,6) > e} =0,YT > 0,Ve > 0.

§—0 n>1

Proof It is based on the following lemma:

Lemma 1.14. ([/20], 4.9 page 62: Arzela-Ascoli theorem) Let be A C Q. Then A is compact if and only
if

sup |w(0)| < oo and VT > 0, lim sup m’(w,d) = 0.

{weA} -0 fweAa}

Proof : pages 62-63 de [20].

Then, to study the convergence of the processes (X™) defined in Donsker theorem (1.9), we introduce
notions of convergence related to processes. The convergence in law “process as a whole” is difficult to
obtain. We introduce a concept easier to verify.

Definition 1.15. The sequence of processes (X™) converges in finite dimensional distribution to
the process X if Vd € N and for any d-uple (t1,--- ,tq), (Xf, .-+, XP) converges in distribution to
(Xt17' o 7Xtd)

To prove such a convergence, it is enough to use characteristic functions of such d-uples.
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Proposition 1.16. If the sequence of processes (X™) converges in distribution to the process X, then it
converges in finite dimensional distribution to the process X.

Proof: indeed, Vd and for aand 7o X" = (X[, --- , X}") converges converges in distribution to 7o X
since continuity keeps the convergence in distribution . .

Warning! the converse is not always true! It can be seen in the following example as an Exercise:

n

converges in finite dimensional distribution to 0 but not in distribution.
But it is true in case of a tight sequence.

Theorem 1.17. (4.15 [20]) Let (X™) be a sequence of processes, constituting a tight family converging

in finite dimensional distribution to a process X. Then, P, law of X™ on C(R+) weakly converges to a
measure P under which the process By(w(= w(t) is limit in finite dimensional distribution of the sequence
(X™).

Proof: based on Prohorov theorem. The family is tight thus relatively compact and there exists P
weak limit of a subsequence of the family. Let ) be a weak limit of another subsequence and suppose
Q # IP. The hypothesis yields Vd, Vt1,--- ,tq, VB Borel of R%

Plw: (w(t:) € BY = Qfw: (w(t;)) € B}

since there is convergence in finite dimensional distribution. This means that P and Q coincide on
cylindrical events, so on B which they generate. Thus any convergent subsequence weakly converges to
this unique probability measure IP.

We now suppose that (IP,,) doesn’t weakly converge to IP. This means that there exists f € Cb(R+)
such that the real bounded sequence (IP,,(f)) doesn’t converge to P(f).

Anyway, there exists at least a convergent subsequence (IP,,, (f)), with limit which is not [P(f). On
the other hand, since the family is tight, a weakly convergent sequence can be extracted from family P,,, ,
still called (IP,,, ). But we saw that limit of (IP,,, ) is necessarily IP(f), thus a contradiction and the proof
is concluded. .

1.2.2 Donsker invariance principle and Wiener measure
In this section we prove the theorem building Brownian motion. We study the sequence of processes
defined in principal theorem thanks to independent random variables (£;,7 > 1). We need:

- to prove the convergence of sequence of processes (X,,,n > 0),

- to prove the properties of the limit conveniently to the initial definition. Thus the scheme of the
proof is:

1) this sequence converges in finite dimensional distribution to a process with Brownian motion
properties,

2) this sequence is tight and Theorem 1.17 can be applied.
1)
Proposition 1.18. (c¢f 4.17 [20]) Let be:

[nt

]
Xp = le/ﬁ(z_:l &+ (nt = [t pury ).
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Then, Vd,¥(t1,--- ,tq) € RJr, we get the distribution convergence:
(X£7 7X1;nd) —D (Bt17"' )Btd)
where B satisfies the properties defining the Brownian motion.

Proof: a first simplification uses:

[nt]

n 1 n __ n mn
St - a\/ﬁgfj et Sﬁ - (Stla 7Std)'
Remark: b~ [nf]
nt — n
X{ =5+ —F—&nyg+1-

ovn

Ble“a y me- I(Zheblche V lne(]uah‘ y yleldS.
z n0—2€2

when n goes to infinity. Then it is enough to get the distribution convergence of (S}'). conclude the proof
as an Ezercise.

Remark that (S, > 0) is an independent increments process; if (Z;) are increasing ordered, the d
random variables (S}, St —S7,---, S —Sp',_|) are independent. The application from RYtoR” : 2+
(x1, 21429, , ), x;) is continuous and distribution convergence is maintained by the continuity. Then
it is enough to look at the distribution convergence of the d-uple of increments, this is done using
characteristic function:

S,’?J’_ —-Sy

(2) 9" (w1, -+ yua) = Ble' =0 0T )) < 1 Blenr ikt ),

For any j, denoting k; = [nt;], each factor is written as:

ki—kj—1 Y&k

U

But kj_:j’l = ["tj]_T[L"tj’l] converges to (t; — tj_1) when n goes to infinity and the random variable

2nt;_q)<k<nt ;) Sk

S converges in distribution to a standard Gaussian law (law of large numbers) thus its
j—kj—1

characteristic function goes to e~ /2 and the jth factor goes to e~ 2% (i—t-1) The limit law thus
admits the characteristic function ¢(u) = e 7 2% (1) which s exactly this one of the d-uplet
(Bty, (Bty — Bty ), -+, (B, — B, ,)) coming from a Brownian motion.

Thus we get both law of limit process and property of independent increments.

2) We have now to prove that the family is tight, which will result of following lemmas:

Lemma 1.19. (c¢f. [20], 4.18) Let (fj,j_ > 1) be a sequence of random variables, independent, same low,
centered, variance 1, and let be S; = {€=1 &k. Then:

. 1
Ve > O,%lg(l) hmn_>OCSP{maaz{lgS[m;bH}|§j| > eoy/n} = 0.
Lemma 1.20. (cf. [20], 4.19) Under same hypotheses,

VT >0, %i_r)r(l)mnﬁmp{max{lgjg[ng]>+1}max{1§k§[nT]>+1}\Sj+k — Sj‘ > 60’\/75} =0.
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Proof of Donsker invariance theorem :
Using Proposition 1.18 and Theorem 1.17, it is enough to show that the family is tight. Here we use the
characterization given in Theorem 1.13. In this case X = 0 Vn, so it is enough to prove second criteron:

}LH(I] sup P{maff\s—t\gé,ogs,tgﬂ)(? - X{|>et=0.
n

. lim,, = infy, sup,,>,, could replace sup,, since for m bounded we can get empty events taking &
small enough: (X™,0 <n < m) is continuous on [0, 7] thus uniformly continuous.

{max|s_y<s50<si<r| X — X{'| > e} =
ns —j ne — Jt
{maz|s_y<s0<s, <95 = Sj, + ;7\/58@#1 - ﬁﬁjtﬂl > eoy/n},
where js = [ns], and if we denote j; = k and j; = k + j, assuming s < ¢, this set is included in:
{max\sft\gé,ogs,tSTLS‘s —Sj,| > eov/n}

and Lemma 1.20 concludes. .

1.3 Properties of trajectories of Brownian motion
1.3.1 Gaussian process

Definition 1.21. A process X is said to be Gaussian if Vd,V(t1,--- ,tq) positive real
numbers, the vector (Xy,,- -+, Xy,) admits a Gaussian law. If the law (Xy;50=1,--- ,d)
doesn’t depend on t, process X 1s said to be stationary.

We call covariance of vector X the matrix
p(s,t) = E[(Xs — BE(X)(X; — BE(X))"], s,t > 0.
Proposition 1.22. Brownian motion B is a centered continuous Gaussian process with
covariance p(s,t) = s At.

Reciprocally, any centered continuous Gaussian process with covariance p(s,t) = s At
15 a Brownian motion.

Proposition 1.23. The Brownian motion converges “in mean" to zero: % — 0 almost
surely when t goes to infinity.

Proof Exercises. This last proposition is more or less a “law of large numbers”. )

Other Brownian motions can be obtained by standard transformations, for instance chang-
ing the filtration.

(i) change of scaling: (\/LEBCt,fct).
(ii) inversion of time: (Y;, FY), with ¥; = tBisit#0, Yo =0et FY =o{Y,, s <t}

(iii) reversing time: (Z;, FZ)o<i<, With Z; = By — By_; et FZ = 0{Z,,s < t}.
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(iv) symmetry: (—By, Fy).

In each case we have to check that it is an adapted continuous process satisfying the
characteristic property of Brownian motion or: that it is a centered continuous Gaussian
process with covariance p(s,t) = s A t.

The only difficult case is (ii) (Exercise).

1.3.2 Zeros set
This set is X = {(t,w) € RT x Q: By(w) = 0}. Let fixed a trajectory w, denote &, =
{t e R" : B;(w) = 0}.
Theorem 1.24. (cf. [20] 9.6, p. 105) P-almost surely with respect to w
(i) Lebesgue measure of X, is null,
(i1) X, is closed no bounded,
(i1i) t = 0 is an accumulation point of X,

(iv) X, is dense in itself.

Proof too difficult Exercise.... out of the agenda.

1.3.3 Variations of the trajectories

(cf. [20] pb 9.8 p. 106 et 125)

Notation: 7, = (to = 0,--- ,t, = t) is a “subdivision” of [0,¢], denote ||m,| = sup,{t; —
ti_1}, called the “mesh” of m,,.

Theorem 1.25. (c¢f. [30] 28 p. 18)

Let 7, be a sequence of subdivisions of interval [0,t] such that the mesh of 7, ||m,||, goes
to zero when n goes to infinity. Let be m,(B) = >, . (B, — By,)2.

Then, when n goes to infinity, m,(B) goes to t in L*(Q), and almost surely if moreover

2 I [I< 00

Proof : Let be z; = (By,,, — By,)*> — (tix1 — t;) 5 >,z = mu(B) — t. It is a centered
independent random variables sequence since By, , — By, law is Gaussian law with null
mean and variance t;.1 — t;. Moreover we compute the expectation of zf :

E[z2] = E[(Bti-u_Bti)Q_(ti-f-l_ti)P = E[(Bti+1_Bti)4_2(Bti+l_Bti)2(ti+1_ti)+<ti+1_ti)2]'

(3

Knowing the moments of Gaussian law, we get:

7

The independence between the z; shows that E[(Y", 2;)*] = Y., E[(2:)%] equal to
2> (tiy1 — t;)? < 2||m,||.t, which goes to zero when n goes to infinity. This fact yields
L?(2) convergence (so probability convergence) of m,(B) to t.
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If moreover Y, || m, ||< oo, then P{|m,(B) —t| > e} < 52 || m, || t. Thus the series
> . P{|mn(B) — t| > €} converges and Borel-Cantelli lemma proves that

Pllim, {|m,(B) — t| > €}] =0,
meaning:
PNy Umnsn {|mm(B) —t| > €}] = 0,Ve > 0, almost surely U, Npsn{|mm(B) —t| <e} =Q,

this expresses almost sure convergence of 7, (B) to t. )

Theorem 1.26. (cf. [20] 9.9, p.106)

P{w : t — By(w) is monotoneous on any interval} = 0.

Proof: let us denote F' = {w : there exists an interval where ¢ — B;(w) is monotonous}.
This could be expressed as:

F = Ug e o<s<t{w : u — By(w) is monotonous on (s,t)}.
Let s and t be fixed in @ s.t. 0 < s < t; we study the event

A ={w:u— B,(w) is increasing on(s, t)}.

Then, A = N4, ot A, = N{w : By,,, — By, > 0} with t; = s + (¢t — s)%. Using
independence of increments, P(A,,) = ILP{A;B > 0} = 5. For any n P(A) < P(A,) thus
P(A) =0 for all s and ¢ proving P(F") = 0. °

Theorem 1.27. (cf. [20] 9.18, p.110 : Paley-Wiener-Zygmund, 1953)

P{w : 3ty t — By(w) differentiable at point to} = 0.

More specifically, denoting D% f(t) = mh_ﬂ)w . Dof(t) = h_mhﬁow,

there exists an event ' of probability measure 1 included in the set:

{w :Vt, DTBy(w) = +00 ou D, Bi(w) = —oc}.

Proof :
Let be w such that there exists ¢ such that —oco < D} By(w) < D" B;(w) < +00. Then,
3j, k such that Vh < 1/k, |Bip, — By| < jh.
We can find n greater than 4k and ¢,7 = 1,--- ,n, such that :
i+v o ;< v+1

<t<—,andifvr=1,2,3:

0
— <
n n n n

> =

These two remarks and triangle inequality |Bix1 — Bi| <

|Bﬂ - Bt| + |Bt — B

induce the upper bound
3J

1B — B < 22
n n

<

3
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We go on with v = 2 then 3 :

Thus the starting w belongs to an event such that there exists ¢ € [0, 1], such that Vn > 4k,
Ji € {1,--- ,n} such that t € [=1, 1], =1,2,3: |Bizy — Bizwa | < @
These three events of B are independent; the probability measure of the event

(2v+1)5

Vv =1,2,3:|Bitv — Bisv1| <
n n n

is bounded by jiﬁg? and the one of the event

2 1)j
Vn >4k, di=1,,nv=123:|Biw — Bin| < @v+1)j
n n n
is bounded by nﬂ'ii;’;j Vn > 4k, thus goes to zero when k goes to infinity. °

Definition 1.28. Let f be a function defined on interval [a,b]. We call variation of f
on this interval :

Var[a,b}(f) = Slip Z |f(ti+1) - f(t1)|

t,em
where T belongs to the subdivisions of [a,b] set.

Theorem 1.29. (cf. [30] p.19-20 Let a and b be fived in RY :
P{w : Vargy(B) = +oo} = 1.
Proof :Let a and b be fixed in R* and 7 a subdivision of [a, b].

doten | B(tiva) — B(t:)]?
Suptieﬂ'|B<ti+1> - B(ti)| .

(3) Z |B(tis1) — B(t:)| >

t,em

The numerator is the quadratic variation of B, known as converging to t. Then, s — Bg(w)
is continuous so uniformly continuous on interval [a, b|:

Ve, I, || 7 [|[< 1 = supyex|B(tis1) — B(t;)| < e.

Thus the quotient (3) converges to infinity. o

1.3.4 Lévy Theorem

This theorem gives the magnitude of the modulus of continuity.

Theorem 1.30. (/20] th. 9.25 pp 11/-115)
Let be g :]0,1] = R, § < 1, g(§) = y/—2010g(5). Then,

1
P{w : limg\ o—= sup |(B; — Bs)(w)| =1} = 1.

9(5) 0<s<t<1,t—s<§
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This means that the magnitude of the modulus of continuity of B is g(9).

Theorem 1.31. (c¢f. [30] 31 p.22-23) Let be F; = o(Bs, s < t)VN. Then the filtration
F is right continuous, meaning that Fi+ := NgsFs coincides with Fy.

Proof (Exercise) uses the fact that

VUI,VUQ 5 \V/Z > v > t’
E[ei(ule+usz)/ft+] — h{‘n E[ei(mBerusz)/fw] —
w\ ¢

lﬁj[ei(mBerusz)/_7:t]7

meaning that the Fi+ and F; conditional laws are the same ones, so F+ = F;

1.3.5 Markov and martingale properties

The Brownian motion is a Markov process, meaning that:
Vz € R, Vf bounded Borel, E,[f(Biis)/Fs| = Ep,[f(Bt)].
The proof is easy, possibly “handmade” : under P, B;,s = x + W, and
f(Biys) = flz + Wiy — Ws + W),

we conclude using independence of z + W, and W, — Wi,
As a corollary, we get that B is a martingale for its own filtration.

1.4 Computation of 2f0t B,dB; (Exercise)

The trajectories of B aren’t differentiable, anyway we look for a meaning to this integral.
The intuition could say that it is BZ, but it is not. To stress the difference between both,
we decompose B? as a sum of differences along a subdivision of interval [0, ], denoted as
t; = it/n, then developed using Taylor formula:

Bt2 = Z(BZH o Bt2,) = ZQBti [Bti+1 B Bti] + Z[BtiJrl - Bti]2'

)

The first term “naturally” converges to the expected formula: 2 f(f BsdBg (we will justify
this convergence in Chapter 2). We could think that the second term converges to 0, here
is the paradox. We have to remark that, by definition of Brownian motion, this second
term is sum of the squared of n centered independent Gaussian variables with variance
t/n; thus it is a random variable with £x2 law. Its expectation is ¢ and its variance is
t?/nVarx?: thus this term L?-converges (thus probability convergence) to its expectation
t. Later, we will more specifically prove

t
B2 = 2/ B.dB, +t.
0
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2 Stochastic integral

The main purpose of this chapter is to give meaning to notion of integral of some processes
with respect to Brownian motion or, more generally, with respect to a martingale. Guided
by the “pretext” of this course (stochastic calculus applied to Finance), we can motivate
the stochastic integral as following: for a moment study a model where the price of a
share would be given by a martingale M, at time ¢. If we have X(¢) of such shares at
time ¢ and if we conduct transactions at times t; wealth is finally increased:

Z X(tk—l)(Mtk - Mtk—l)'

But if we want to trade in continuous time, at any time ¢ we must be able to define a
mathematical tool to move to limit in the above expression with the problem, especially
if M = B, the derivative B’ doesn’t exist! this expression is a sum which is intended
to converge to a Stieljes integral, but since the variation V(B) is infinite, this can not
converge in a ¢ deterministic” sense: the stochastic integral “naive” is impossible (cf.
Protter page 40) as the following result shows it.

Theorem 2.1. Let m = (t) be a subdivision of [0,T]. If
Lm0 Dop @(te—1)(f(te) — f(te—1)) exists, then f is finite variation. (cf. Protter, th.
52, page 40)

The proof uses Banach Steinhaus theorem, id est: if X is a Banach space and Y normed
vector space, (T,) a sequence of bounded operators from X to Y such that Vo € X, (T,(x))
is bounded, then the sequence (|| T, ||) is bounded in R.

Reciprocally, we get: V(f) = +oo yields the limit doesn’t exist, this the case if
f :t— By is Brownian motion.
We thus must find other tools. The idea of Itd was to restrict integrands to be processes
that can not "see" the increments in the future, that is adapted processes, so that, at
least for the Brownian motion, x(tx_1) and (B, — By, ,) are independent, so trajectory
by trajectory nothing can be done. But we will work in probability, in expectation.

The plan is as follows: after introducing the problem and some notations (2.1.1),
we first define (2.1.2) the integral on the “simple processes” (S denotes the set of simple
processes, which will be defined below). Then 2.1.3 will give the properties of this integral
over S thereby operator extended by continuity on the closure of S for a well chosen
topology, so to have a reasonable amount of integrands.

2.1 Stochastic integral
2.1.1 Introduction and notations

Let M be a square integrable continuous martingale on the filtered probability space
(Q, Fi,P) where F; is for instance the natural filtration generated by the Brownian motion,
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completed by negligible events. For any measurable process X, Vn € N and V¢t € RT let
us define:

7 —1
I,(X 1) = ZX(Q—n AN(M g g = Miziyy)-
j

This quantity doesn’t necessarily have a limit. We have to restrict to a class of almost
surely square integrable (with respect to increasing process (M) defined below), adapted,
measurable processes X.

Definition 2.2. The increasing process (M) is defined as:

s (M), = 1i bability S (M, — M, )
— (M), ”ﬂl”rgopmawyt;( W= M, )

where m describe the subdivisions of [0,t]. It is named “bracket”.

The construction of I(X,t) is due to Ito (1942) in case of M Brownian motion, and

Kunita and Watanabe (1967) for square integrable martingales. An exercise in Chapter
1 with M = B proves (B); = t.

Remark 2.3. The square integrable continuous martingales admit a bracket.

Recall:

Proposition 2.4. (M), is the unique adapted increasing continuous process such that
M? — (M), is a martingale.

Very often, this proposition is bracket definition, and then Definition 0.26 is a conse-
quence.
Notation: let us define a measure on o-algebra B(R') ® F as

par(A) = E[ | Lalt )M ()
0
X and Y are said to be equivalent if X = Y s a.s.
Notation: for any adapted process X, we note [X]% = E[fOT X2d(M),].
Remark that X et Y are equivalent if and only if [X — V]2 =0 VT > 0.

Let us introduce the following set of processes:
(4)  L(M) = { classes of measurable F-adapted processes Xs.t. VI' [X|r < +oo}

endowed with the metric:
INX=Y],
(5) dX,Y) =) —o—
n>1
then the subset of the previous:
L*(M) = {X € L progressively measurable}.

When the martingale M is such that (M) is absolutely continuous with respect to
Lebesgue measure, since any element of £ admits a modification in £*(M), in such a
case, we manage in £, but generally, we will restrict to £*(M).

23



Proposition 2.5. Let L1(M) be the set of adapted measurable processes X on [0, T] such
that:

x5 = 51 " X2 < +oo.

LH(M), set of progressively measurable processes of Lp(M), is closed in Lp(M). In
particular, it is complete for the norm [.|r.

Proof: Let (X") be a sequence in L5(M), converging to X: [X — X"|pr — 0. It
is a sequence in L? space, thus complete and X € Lp(M), convergence L? yields the
existence of an almost surely convergent subsequence. Let Y be the almost sure limit on
Q2% [0, T], meaning that A = {(w,t) : lim, X/ (w,t) exists } has probability equal to 1 and
Y(w,t) = X(w,t) if (w,t) € A, and if not is equal to 0. The fact that Vn, X" € L5 (M)
shows that Y € £3.(M) and Y is equivalent to X. .

2.1.2 Integral of simple processes and extension

Definition 2.6. Process X is said to be simple if there exists a sequence of real numbers
(t;) increasing to infinity and a bounded family (&;) of JFy,—measurable random variables
such that:

Xi = &liy(t) + Y &y, (1)
=1

Denote S their set, note the inclusions S C L*(M) C L. (to check as Exercise)
Exercise: compute [X]% when X € S.

Definition 2.7. Let be X € S. The stochastic integral of X with respect to M 1is

L(X) = Z&(thtm — Mins,)-

i=1
Notation: (X.M) := Ii(X) to express it is a stochastic integral w.r.t. martingale M.

We have now to extend this definition to a larger class of integrands, at least in case
of M is Brownian motion, meaning (M), = t.

Lemma 2.8. For any bounded process X € L(B) there exists a sequence of processes
Xn € 8 such that suppsg limy, E[fOT(Xn — X)2dt] = 0.

Proof

-1
2n 2n
obviously X' — X, almost surely. Moreover by hypothesis X is bounded; dominated

convergence theorem allows to conclude.

(a) Case when X is continuous: set X;* = X ;-1 on the interval | |. By continuity,
2n
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(b) Case when X € L*(M): set X;" = mf(tt_l/m)+ X,ds, this one is continuous and
stay measurable adapted bounded in £. Using step (a) Vm, there exists a sequence X™"
of simple processes converging to X™ in L%([0,T] x ,dP x dt) meaning that:

T
(6) Vm VT lim E| / (X" — X™)%dt] = 0.
0

n—oo

Let be A = {(t,w) € [0,T] x Q : lim, 0o X" (w) = X¢(w)}© and its w—section A,
Vw. Since X is progressively measurable, A, € B(]0,7]). Using Lebesgue fundamental
theorem (cf. for instance STEIN: "Singular Integrals and Differentiability Properties of
Functions") X is integrable yields:

t
X" X, =m (X, — X)ds = 0

(t—=1/m)+

for almost any ¢ and Lebesgue measure of A, is null. On another hand, X and X™ are
uniformly bounded; bounded convergence theorem in [0, T] proves that

Vo [ (X, — X)2ds — 0.

Once again we apply bounded convergence theorem but in {2 so that E[fOT(XS —
X™)2ds] — 0. This fact added to (6) concludes (b).

(c) Case when X is bounded adapted measurable: we go to case (b) recalling
that any adapted measurable process admits a progressively measurable modification,

named Y. Then there exists a sequence (Y™) of simple processes converging to Y in
L3([0,T] x Q,dP x dt):

T

E[/ (Y, = Y™)?ds] = 0et Vt P(X; =Y;) = 1.

0
Set 1y = 1{x,+v,}. Using Fubini theorem we get:
T T
E[/ nedt] = / P(X, £ Y;)dt = 0
0 0

thus fOT nydt = 0 almost surely.

T
e+ lix,—vy = 1= E[/ 1(x,—v;ydt] = T and 1{x,—y,; = 1 dt x dP almost surely
0

Finally:

B / (Y — Y")ds] = E| / 1y (Ys — Y)2ds] = B / (X, — Y™)ds)

which gives the conclusion. °
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Proposition 2.9. If the increasing process t — (M), is P-almost surely absolutely con-
tinuous with respect to Lebesque measure dt, then the set S is dense in the metric space
(L, d) with metric d defined in (5).

Proof

(i) Let be X € £ and bounded: the previous lemma proves the existence of a sequence
of simple processes (X™) converging to X in L*(Qx [0, T], dP®dt), VT. Thus there exists an
almost surely converging subsequence. Bounded convergence theorem and d(M); = f(t)dt
get the conclusion.

(ii) Let be X € £ no bounded: set X;"(w) = X¢(w)1{x,(w)<n}- The distance
T
4", X) = Bl | X1nond0) 0
0

since the integrand converges almost surely to 0, is bounded by X? which is integrable
(bounded convergence theorem). But Vn X™ € £ and are bounded: their set is dense in

L.

(iii) The set of simple processes is dense in the subset of bounded processes of £; (i)
and (ii) yields the conclusion. o

This proposition therefore provides the density of simple processes set in L in the case
of increasing process (M), is absolutely continuous with respect to dt. If not, there exists
the density of simple processes only in £*(M) with the following proposition.

Proposition 2.10. S is dense in the metric space (L*(M),d) with metric d defined in

(5)-
Proof: Cf. Proposition 2.8 and Lemma 2.7. in [20], pages 135-137.

Remark 2.11. useful: the metric d defined in (5) induces the following equivalent topology
lim,, o0 d( X, X) = 0 if and only if

VT > 0, lim E[/OT | X, (t) — X(8)[*d(M);] = 0.

n—o0

2.1.3 Construction of the stochastic integral, elementary properties

Remember the stochastic integral of a simple process X:

IL(X) = Z&(thfm — M)

=1

Let us denote I;(X) = fg XsdM; or (X.M); in case of integrator M. This simple stochastic
integral admits the following properties (Exercise):
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Exercise. Let & be the set of simple processes on which the stochastic integral with
respect to M is defined:

-[t(X) = ZSJ (Mtj+1At - Mtj/\t)'
J
Prove that I; satisfies the following properties
(i) I; is a linear application.
ii) I;(X) is square integrable.

iii) Expectation of I;(X) is null.

v) BIL(X)]” = E[f; X2d(M),].
vi) Bl(L(X) = L(X))?/F) = B[, X2d{M)./F.].
i) (LX) = fJX3d<M>s-

(

(

(iv) t — I;(X) is a continuous martingale.
(

(

(vi ¢ =

Remark that (v) proves that [; is an isometry.

We now extend the set of integrands over simple processes thanks to above density results
then we check that this new operator satisfies the same properties.

Proposition 2.12. Let be X € L*(M) and a sequence of simple processes (X™) converging
to X. Then the sequence (I;(X™)) is a Cauchy sequence in L*(Q). The limit doesn’t
depend of the chosen sequence so it defines the stochastic integral of X with respect to the
martingale M, denoted as I;(X) or fot X dMg or (X.M);,.

Proof: using property (v) above we compute the norm L? of I;(X™):
t
| (X)) = L(XP) |l5= E[/ X3 = XEPA(M),] = 0
0

Vt > 0 since d(X™, X?) — 0. Clearly the same kind of argument proves that changing
sequence approaching X does not change this limit:

I 1e(X™) = L(Y™") [l2— 0

along with d(X™, Y") < d(X", X) +d(X,Y™). o
We now prove the properties:

Proposition 2.13. let be X € L*(M), then:
i) I} is a linear application.
(i1) I,(X) is square integrable.
(111) Expectation of I;(X) is null.
(i) t — It(X) is a continuous martingale.
() BIL(X) = ELf; X2d(M).].

(vZ)E[(It(X) L(X))*/F) = El[{ X3d(M)u/F].
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(vid) (L(X))e = Jy X2d(M)..
(vi’) E[(It( )/ F) = LX) + Bl Xid(M),/F.).

(vii) (I ( t—foXQ (M)s.
CONCLUSION: X € L*(M) = X.M is a square integrable martingale.

Proof: most of these properties are obtained passing to the L? limit of properties satisfied
by I;(X™) Vn, for instance (i) (ii) (iii) (iv); (concerning (iv) note that the set of square
integrable continuous martingales is complete in L?).

(v) is a consequence of (vi) with s = 0.

(vi) Set s <t and A € F,, and compute:
EA(I(X) = L(X))*] = lim B[1(L,(X™) = L,(X™))"] =

t
lim E[1.4 / (X™)2d(M),] = E[1, / X2

since d(X",0) — d(X,0).
(vii) is a consequence of (vi’) and second characterization of bracket (0.28). o

Proposition 2.14. For any stopping times S and T, S < T, satisfying Doob Theorem
hypotheses, we get:

E[Liyr(X)/Fs| = Lips(X).
If X and Y € L*, almost surely,

El(Tnr(X) = Tins(X)) (e (Y) = Iins(Y))/Fs] = / X, Yad(M)o/Fs).

Proof: t — [,(X) is a martingale, we apply Doob Corollary 0.25 concerning the two
bounded stopping times t A S and t AT : so E[liar(X)/Fs| = Lins(X).

Let be t > 0 and the bracket of I(X) is [y X2d(M),, so I,(X)? — [} X2d(M), is
a martingale; once again we apply Doob theorem concerning the stopping between two
bounded stopping times S At et T'A ¢, meaning

TNt

BlIrpe(X)* = Isne(X)?*/ Fsnd = E[ | Xyd{M)/Fsnl.

SNt

This implies the second point using Corollary 0.25 once again, finally we conclude using
polarization argument. °

2.2 Quadratic co-variation

(cf. [20], pages 141-145 ; [30], pages 58-60) Similarly the definition of (M), as proba-
bility limit of quadratic 1ncrements sums of M, the quadratic co-variation of two square
integrable continuous martingales M and N, if w are subdivisions of [0, t], is defined as

<Ma N>t = \}rl\r—I}O proba Z(MtH»I - Mti)(Nti+1 o Nti)’

tiem
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or equivalently
4<M,N>t = <M+N>t — <M—N>t
Example : if B is a vector Brownian motion, then (B’ B’), =t if i = j and = 0 if i # ;.
So, in case of X and Y € L*(M), we now can study the “bracket” (I(X),I(Y)). But

previously we recall some useful results on the brackets of square integrable continuous
martingales.

Proposition 2.15. Let M and N be two square integrable continuous martingales, then:
(i) (M, N)e|* < (M)e(N)y ;
(ii) MyN; — (M, N); is a martingale.
Proof: (i) is proved as any Cauchy inequality. Since M + N is a square integrable

continuous martingale, the difference (M + N)? — (M + N), is a martingale and (ii) is a
consequence. o

Proposition 2.16. Let T be a stopping time, M and N be two square integrable contin-
uous martingales. Then: (MT N) = (M, NT) (M, N)T.

Proof: cf. Protter [30] th.25, page 61.
Let 7 be a subdivision of [0, ¢].

(MT,N), = hmz L= M,

|7|—0

N,).

1+1 - 7
The family (t; A T) is a subdivision of [0,¢ A T].

<M7 N)t/\T = |h‘]./_r>].0 Z(MT/\tiJrl - MTAti)(NTAti+1 - NT/\ti)'

The difference between these two sums is null on the event {7" > ¢} and on the complement
{T < t}, it is

(M7 — My, )(Nepti, — N

the index 4 being such that T' € [t;,t;,,,]. All these processes are continuous, so the limit
is almost surely null, thus too in probability. °

i+1 i+1)7

Theorem 2.17. (Kunita- Watanabe inequality) Let M and N be two square integrable
continuous martingales, X € L*(M) et Y € L*(N). Then almost surely:

7) ([ e w0 < [ xpaan. [ pa

Proof:

(i) first remark the almost sure inequality:

(M N) = (). < 5[ aon+ [ a.)
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consequence of inequality :
2Z(Mt1ﬂ+l - Mti L+1 - < Z Mt1+1 - + Z Ntz+1 Ntz
i

where we pass to probability limit thus almost sure for a subsequence.

Let A be the increasing process (M) + (N). All the finite variation processes (M), (N), (M, N) are
absolutely continuous with respect to A. Thus it could be set

(M, NY, = f(t)dAr, d{M), = g(t)dAs, d(N), = h(t)dA,.

(ii) For any a and b:
/O (aXs1/9(s) + bYs\/h(s))?ds > 0.

Using classic method in case of Cauchy inequalities, yields:
t t t
® ([ IXXIVaERGI? < [P, [y paw
(iii) For any a the process (aX.M + Y.N) is increasing, so:

t
/ (a%g(u) + 2af(u) + h(u))dA, > 0,Vs < t.
Since A is increasing, this implies that the integrand is positive: a%g(s) + 2af(s) + h(s) > 0 Va € R,

meaning f(s) < +/g(s)h(s).
This and (8) go to the conclusion. .

Proposition 2.18. Let M and N be two square integrable continuous martingales, X €
LX(M) and Y € L*(N). Then:

t
(9) (X.M,Y.N), :/ XY, d{M,N),, Vt €R, P a.s.
0

and

/XdM/YdN/]-" /XYdMN>/J—“] Vs <t, Pas.

Proof: needs some preliminary lemmas

Lemma 2.19. Let M and N be two square integrable continuous martingales, and ¥n
X", X € L*(M) such that Vt:

t
lim/ X" — X, [2d(M), =0, P a.s.
" Jo

Then:
<]M(Xn)7N>t —?n—o00 <]M(X), N>t, P a.s.
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Proof: We look for evaluating Cauchy rest.
(1M (X™), N, — <IM(X”) N)f* = [(IM (X" — X7), N),[?
< (IM(X™ - XP)) t—/ X0 — XUPd(M)u(N)e

the inequality coming from Cauchy-Schwartz inequality concerning brackets (cf. Propo-
sition 2.15 (i)). Thus the convergence is an immediate consequence of the hypothesis.
®

Lemma 2.20. Let M and N be two square integrable continuous martingales and X €
L*(M). Then for almost any t:

(IM(X),N), = /Ot X d{M,N),P a.s.

Proof: let (X™) be a sequence of simple processes going to X :
limE[/ X" — X, [*d(M), = 0.
" 0

Let ¢ be fixed, and a subsequence, converging P a.s. : [J | X2 — X,,[2d(M), — 0. Lemma
2.19 proves:

(11) (IM(X™), N); — (IM(X), N),P a.s.

For simple processes:

<]M Xn t—ZXn Z 8k+1 _Msk)(NSk+1_N5k)

skE[t t1+1]

which goes to fg X!d(M, N), when supy, |sk+1 — sk| — 0. Finally
t t
(12) | / XM, N, — / X,d(M, N, =
0

[ o= X0aon Nl < [ 10 - Xupagan )

using Kunita-Watanabé inequality (7), then we take almost sure right limit by construc-
tion of X™. Then (12) goes to zero; this limit and the previous (11) prove the result. e

Proof of Proposition 2.18
(i) Set Ny = Y.N, Lemma 2.20 yields:

t t
(X.-M,Ny); = | X.d(M,Ny), and (M,Y.N), = / Y.d(M,N),
0 0

We compose finite variation integrals to conclude.

(ii) The property is true for any simple process; then take the probability limit.
Ezercise.
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Proposition 2.21. Let M be a square integrable continuous martingale and X € L*(M).
Then X.M s the unique square integrable continuous martingale ® null at t = 0 such
that, for any square integrable continuous martingale N :

t
<<I>,N>t:/ Xud(M,N),P a.s.
0

Proof: actually X.M satisfies this relation according to Lemma 2.20. Then let &
satisfying hypotheses of the proposition; for any square integrable continuous martingale
N:

(& —X.M,N); =0, Pa.s.

As a particular case, if we choose N = ® — XM, we get (N); =0 P a.s. that is
- X.M=0, Pa.s.
[ ]

Corollary 2.22. Let M and N be two square integrable continuous martingales, X €
LX5(M),Y € L(N), T a stopping time such that P a.s. :

Xinr = Yiar €t Miar = Niar.

Then:
(X.M)t/\T — (YN>t/\T'

Proof: let H be a square integrable continuous martingale; using Proposition 2.16:
(M — N, H\" = (M" — N" H)=0, Pa.s.

On one hand:

tAT tAT
VH, <X.M—Y.N,H)MT:/ Xud<M,H)u—/ Y, d{N, H).,,
0 0
on the other hand hypothesis X;\r = Y;rr, Proposition 2.16 and Lemma 2.20 imply:
tAT tAT
(X.M)T H) = (X.M,H)" = / X, d{M, H), = / Y, d{N, H),

0 0

Thus we can deduce with 2.21
(13) (X.M —Y.N,H)" =0, P a.s.

So (X.M — Y.N)T is a martingale, orthogonal to any square integrable continuous mar-
tingale, and in particular to itself, so it is null. °

Proposition 2.23. The stochastic integral has associative property: if H € L*(M) and
G e L(H.M), then GH € L*(M) and:

G.(HM)=GHM
Proof: Exercise, cf. Protter th. 19 page 55 or K.S. corollary 2.20, page 145. °
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2.3 Integration with respect to local martingales

Corollary 2.22 allows the extension of integrators set and integrands set. In this subsec-
tion, M is a continuous local martingale.

Definition 2.24. Let P*(M) be the set of progressively measurable processes such that
t
Vt, / de<M>s < o0, Pa.s.
0

Definition 2.25. Let be X € P*(M) and M a local martingale, with sequence of stopping
times S,. Let be R,(w) = inf{t/ fot X2d{M)s > n} and T, = R, N S,, We now define the
stochastic integral of X with respect to M :

XM= X" M"™ on {t <T,(w)}.

Proposition 2.26. This is a “robust” definition since
ifn < m, X M™ = XTn MTm on {t < T,,(w)} and the process X.M so defined is a
local martingale.

Proof: Corollary 2.22 says that if t <T,,
(X T MTmy = (X T NI ATy — (X T M T

Moreover thanks to this corollary, this definition doesn’t depend on the chosen se-
quence.
Finally by construction, Vn, (X.M)™" is a martingale, and this exactly means that X.M
is a local martingale. °

This stochastic integral doesn’t keep all the previous "good" properties. For instance
the ones concerning expectations are lost (generally X.M is not integrable), as are the
ones concerning conditional expectations. But we have:

Proposition 2.27. Let M be a continuous local martingale and X € P(M). Then X.M
15 the unique local martingale ® such that for any square integrable continuous martingale

N: .
<<I>,N>t:/ X d{(M,N),.

Proof: this is the "local" version of Proposition 2.21. On the event {t <T,}, X.M =
X M™» and satisfies V¢, ¥n and any martingale N,

t
<XT".MT",N>,5:/ XTn/\sd<MTn7N>s
0

meaning fOT"At X,d(M, N), which converges almost surely to [ X,d(M, N), when n goes
to infinity.

Reciprocally, for any martingale N we get the almost sure equality (& — X.M, N), = 0,
particularly for N = (® — X.M)T». Thus for any localising sequence (7},), the martingale
(® — X.M)T bracket is null; so (® — X.M)™ = 0 and almost surely ® = X.M.

We implicitly used X7.M = (X.M)T and the result concerning brackets 2.16. °
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3 It6 formula

(cf. [20], pages 149-156, [30], pages 70-83)

This tool allows integro differential calculus, usually called “It6 calculus”, calculus on
trajectories of processes, thus the knowledge of what happens to a realization w € 2.

First recall the standard integration with respect to finite variation processes.

Definition 3.1. Let A be a continuous process. It is said to be finite variation if Vi,
given the subdivisions m of [0,t] we get:

lim Z’Atzﬂ Ayl < oo Pas.

Example: Ay = fo Yids when Y is a continuous process.

Such processes, w being fixed, give rise to Stieltjes integral.

Theorem 3.2. (c¢f. Protter, th. 31 page 71). Let A a continuous finite variation process,
f of class C'. Then, f(A)) is a continuous finite variation process:

f(A) = f(Ao) + /Ot f'(Ag)dA

This is the order 1 Taylor formula.

These processes joined to continuous local martingales generate a large enough space
of integrators, defined below.

Definition 3.3. A continuous semi-martingale is a process X on a filtered probability
space (2, F, Fi,P) P a.s. defined:

Xt:X0+Mt+At, VtZO,

where X is Fo-measurable, M is a continuous local martingale and A = AT — A=, AT et
A~ adapted finite variation increasing processes.

Recall: under AOA hypothesis, the prices are semi-martingales, cf. [7].
Important: VA finite variation process and VY continuous semi-martingale, the bracket
<A7 Y>t =

3.1 1It6 formula

Theorem 3.4. (Ito 1944, Kunita-Watanabé 1967) Let be f € C*(R,R) and X a contin-
uous semi-martingale. Then, P a.s. and ¥Vt > 0:

f(Xe) = f(Xo) + /f dM+/f +%/Otf”(X d(M

the first integral is a stochastic integral, the two others are Stieltjes integrals.
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Differential notation : sometimes, we say that the “stochastic differential” of f(X;) is:
1
df (X,) = f/(X,)dX, + §f” (Xs)d(X)s,

from where we deduce a stochastic differential calculus. This formula could be summarized
as an order 2 Taylor formula.
Proof: four steps.

we "localize" to go to a bounded case,
we get the Taylor development of function f up to order 2,
we study the term inducing stochastic integral,

finally the quadratic variation term.

(1) Let be the stopping time

Tn = 0si |XQ|Z’IY,,
inf{t > 0;|M;| > nor |A;] >nor (M), >n}

and infinity if above set is empty.

Obviously this sequence of stopping times is almost surely increasing to infinity. The
property to prove is trajectorial, it is enough to show it for the process stopped at time 7,
(then n goes to infinity). We thus can assume that the processes M, A, (M) and random
variable X are bounded. The process X is too bounded and we can consider function f
admitting a compact support: f, f’, f7 are bounded.

(2) To get this formula, and particularly the stochastic integral term, we cut the in-
terval [0,¢] as a subdivision m = (¢;,7 = 1,...,n) and we study the increments of f(X;) on
this subdivision:

1) X)) = Y (X~ FX) =
Z_: f/(Xti)(Mti+1 - Mtz) + i f/(Xti)<Ati+1 - Atz) + % _ f”(ni)(Xti+1 - Xti>27

where 1; € [ Xy, Xy, .
Obviously the second term converges to Stieltjes integral of f/(X) with respect to A.
Here, nothing is stochastic.

(3) Concerning the first term, we consider the simple process associated to the subdi-
vision 7 :
YT = f/(th) sis E}t“tH,l]

s

Then this first term, by definition, is equal to fot Y dM,. But
t n—l o et
[ = peopaan. = 3 [ e - rec) .,
0 i=0 Vi
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The application s — f’(X;) being continuous, the integrand above converges almost surely
to zero. The fact that f’ is bounded and bounded convergence Theorem prove that Y
converges to f'(X,) in L?(dP x d(M)): by definition, the first term converges in L? to the
stochastic integral

/0 XA,

(4) Quadratic variation term: we decompose it in three terms:

n—1 n—1
(15) Z f” (ni)(Xti+1 - Xti)2 = Z f”<ni)(Mti+1 - Mti)2
i=0 1=0
n—1 n—1
+2 Z f” (ni)(th - Mti)(Ati+l - Atz) + Z f” (ni)(Ati+1 - Ati)Q
i=0 =0

The last term is bounded by || || sup; |A;A] S0~ |A;A], by hypothesis || f7]] and 327 |A; Al

are bounded; sup, |A; A| goes to zero almost surely since A is continuous.

The second term is bounded by 2||f”| sup; |A:M| 321 |A;A| which similarly con-
verges almost surely to zero since M is continuous.

The first term of (15) is near to be

n—1

Z f” (Xti)(Mti-H - Mti)Q‘
=0

Indeed:
n—1 n—1
S ) = X)) (AM)? < sup|f7 () — f7(X) D (AM)?
i=0 ! i=0

where sup; | f7(n;)—f7 (X4, )| goes almost surely to zero using f” continuity, and >0 (A;M)?
goes to (M), by definition, in probability so there exists a subsequence which converges
almost surely. Thus the product goes to zero in L? using the bounded convergence The-
orem. It remains to study

n—

f7(Xe,) (M, M, )?

1
il i

i=0

to be compared to 31— £ (X4, ) ((M)y,,, — (M)y,). Tts limit in L is f; f”(X,)d(M), since

- by continuity the simple process t — f7(X,,) if t €]t;,t;11] converges almost surely to

I (Xs);

- the bounded convergence Theorem concludes.

Let be the difference:

n—1

Z f”<Xti)[(Mti+l - Mti)Q - (<M>ti+1 - <M>tz)]’

1=0
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we study its limit in L?; look at the expectation of rectangular terms:
i<kt B (X)) 7 (X ) (AM? = (M) ) (ApM? — (M))].

Applying F;, conditional expectation, f” (X, )f” (X;,)(A;M? — <M>t”1) get out the con-
ditional expectation, since M?— (M) is a martingale we get E[(ApM?— (M >t’“+1)/}"tk] =0
and we conclude that these terms are null.

Look at the squared terms:

ZE PP (X)) P(AMP = (M) )] < 2017115 ) [B(AMY) + B(((M);)?)]

i

IN

In the bound, sup; A;M? and sup,((M );“) are bounded and converge almost surely
to zero by continuity; by definition , Y, A;M? converges to (M), in probability; using
bounded convergence Theorem, globally it converges to zero L', at least for a subsequence.

As a conclusion, the sequence of sums (14) converges in probability to the result of The-
orem; we conclude thanks to the almost sure convergence of a subsequence. )

3.1.1 Extension and applications

We can extend this result to functions of vector semi-martingales depending also on time.

Proposition 3.5. Let M be a d-dimensional vector of continuous local martingales, A a
d-dimensional vector of continuous adapted processes with finite variation, Xo a random
variable, Fo-measurable. Let be f € 0172(R+,Rd). Set Xy = Xo+ M;+ A;. Then, P almost
surely:

Lo t 0 S 0 .
it X)) = f(O,X0)+/0 Ef(s,Xs)der/o ;axif(s,Xs)dMer/o ;a—xif(s,Xs)dAs

I 0? ‘ ‘
s 2: Do
2/0 = 3xi8xjf(S’X8)d<M M)

Proof: to write it as a problem.

When f and its derivatives are bounded and M is a square integrable martingale, the
stochastic integral term above is a "true" martingale, null in ¢ = 0 and yields:

1t62

ta t a X .
f(t,Xt)—f(O,Xo)—/o af(s,Xs)ozs—/O oo XA [ 5 s, XM M),

For instance, if A =0 and X = M is Brownian motion, yields:
t
ft, X)) — £(0,Xo) — / Lf(s, Xs)ds is a martingale
0
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where the differential operator £ = % +3> ax(?;z»

From It6 formula we can deduce the solution of the so-called “heat equation”, meaning
the partial differential equation (PDE):

1 9

fectm kY, D=3 fand £(0,2) = ()

where ¢ € CZ2(R%) and the unique solution is

f(t, ) = Elp(z + By)].

We easily check that this function is actually solution applying 1t6 formula; the unique-
ness is a little bit more difficult to check.

For the following corollary, we set the following notation-definition:

Definition 3.6. If X is the continuous real semi-martingale Xo + M + A, denote (X)
(which is actually (M) ). Similarly for two continuous semi-martingales X and Y, denote
(X,Y) the bracket of their martingale part.

Corollary 3.7. Let be two continuous real semi-martingales X and Y ; then:
t t
/ X, dY, = XY, — XYy — / YidX, — (X, Y).
0 0

This is the important formula, named integration by part formula.

Proof: Exercise, as a simple application of 1t6 formula.
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4 Examples of stochastic differential equations (SDE)

Here are other applications of 1t6 formula: a great use of Brownian motion is to model
additive noises, measurement error in ordinary differential equations. For instance let us
assume dynamics given by:

(t) = a(t)z(t), t € [0,T], z(0) = =.

But it is not exactly this, in addition to the speed there is a little noise, and we model
the dynamics as following:

dX, = a(t)X,dt + b(t)dB,, t € [0,T), X, = x,

called stochastic differential equation. We do not discuss the theory in this course,
but we give another example below.

4.1 Black and Scholes model

This model is the one of a stochastic exponential with constant coefficients. We assume
that the risky assets is solution to the SDE

(16) dSt = Stbdt + StO'th, SO = S,

coefficient b is called “trend” and o “volatility”. Using the previous, it admits the explicit
unique solution:

1
Sy = sexploW; + (b — 502)15].
Let us remark that log S; has a Gaussian law.

Ezercise: prove the uniqueness of the solution of (16); you could use Ité formula and
apply it to the quotient of two solutions.

The following definitions will be seen with more details in Chapter 8.

Definition 4.1. A strategy 0 = (a, d) is said to be self-financing if V;(0) = a;SP +d;S; =
(6o, po) + [ asdS° + [} ddS.

Moreover it is said to be admissible if it is self-financing and if its value

t
Vi(0) = Vo —I—/ 0s.dS
0

18 almost surely bounded below by a real constant.

An arbitrage opportunity is an admissible strategy 0 such that the value V.(0)
satisfies Vo(0) = 0, Vr(0) > 0 and P(Vp(0) > 0) > 0.
AOA hypothesis is the non existence of such a strategy.

We call risk neutral probability measure any probability measure Q) which is equiv-
alent to P and so that any discounted prices (id est e~ Sy where r is a discount coefficient,
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for instance inflatio rate) are (F,Q)—martingales. Needs Section 5.

A market is viable is AOA hypothesis is satisfied. A sufficient condition is there exists
at least one risk neutral probability measure. Needs Section 6.35.

A market is complete as soon as VX € LY(Q, Fr,P) there exists a strateqy 0 which
is stochastically integrable with respect to the prices vector and such that X = E(X) +
fOT 0,dS;. Needs Sections 6.1 and 6.2.

The market under Black and Scholes model is viable, complete, with the unique risk
neutral probability measure

Q= LP,dL; = —Lio ' (b—7)dW,,t €[0,T], Ly = 1.

Definition 4.2. We call “call option” the following contract: at time t = 0 the buyer pays
a sum q which gives the possibility to buy at time t = T a share to price K but without
obligation. If at time T, St > K, he exercises his right and wins (Sy— K)" —q. Otherwise,
and if he does not exercise, it will have lost q. Overall, he earns (St — K)™ — q.

We call “put option” the following contract: at timet = 0 the buyer pays a sum q which
gives the possibility to sell at time t =T a share to price K but without obligation. If at
time T, St < K, he exercises his right and wins K — St — q. Otherwise, and if he does
not ezercise, it will have lost q. Overall, he earns (K — Sy)™ —q.

The problem is then to find a “fair price” g, between seller and buyer of this contract.
This is the aim of the so called Black and Scholes formula.
To do this, we assume that the hedging portfolio 6, is such that there exists a class (1, 2)
function C' such that the value is:

(17) Vi(0) = C(1,5).

On another hand, 6 is the pair (a,d) and

t t
(18) Vi(0) = a,SY + diS; = (6o, po) + / asdSY + / dydS,.
0 0

With this self financing strategy 6 the seller of the option (for instance (St — K)™) could
“hedge the option using initial price ¢ = V4 to finally have Vi (0) = C (T, St).

The key is the two ways of computing the stochastic differential of this value and their
identification:

1 2
= %C(t, Sy)dt + a—O(t, Sy)dS; + —a—OC(t, Sy)SZodt,

4Vi(6) Ox 2 Ox?
using (17), then using (18):
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The identification gives two equations, and recall (18) which is C(¢, S;):

2
%C; (t St) bSt aac (t St> 18—05202 = rCLtS + dtstb

2 0x?
oC
a (t St)StO' = dtSt

Thus we get the hedging portfolio:

(19)

oC , o\ CltS) = S%(t.5)
%Of,st) ; Qy = SO

(20) dy =

Plugging (20) in (19) we get an almost sure equality

oC oC 192C
ot (tSt)+TSta (tSt) 282

and when ¢t = T we need C(T,Sr) = (Sr — K)T. But actually because log.S; admits a
Gaussian law, we get that S;(Q2) = Rt — {0}, so we can replace above all S; by an = > 0,
and we get the PDE with boundary condition:

(t St)SQUQ = TC(t St)

9, o +122C >+15‘20(
R R Y

E(t, ) t,x)r*o? = rC(t, 1),
C(T,z)=(z— K)",z € R".

We solve this problem using Feynman-Kac formula. Set
dYs = Ys(rds + odWs), Y, = .
Then Y, = zexplo(W, — W;) — (s — t)(20? + r)] denoted as Y5 and
CO(t,x) = By le " TV} — K)*)

is the expected solution, the portfolio being given by equations (20). The so famous Black-
Scholes formula allows an explicit computation of this function, setting ¢ the distribution
function of standard Gaussian law:

<1Og(w/K) + (T —t)(r + %‘72)>
oVvT —t
_KerT0y, (bg(?ﬂ/K) ;r (?:i)(r - 5‘72)) :

C(t,x) = zp

The initial price ¢ of this option is then C(0, z).

Actually, the way is to solve after a change of (variable,function):

r=c,yeR; D(t,y) =C(t,e")
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which allows to go to Dirichlet problem:

0 1
ED(tu y) + TayD(t7 y) + 5832D(t7 y)02 = TD(t7 y)u y e R,

D<T7y> = (ey_K)Jr,yeR’

associated to the stochastic differential equation:
dXs =rds+odW,s € [t,T],X; = y.

This is exactly what we saw in Proposition 4.11, with g =0, f(x) = (e* —k)*, k(xz) =r.
Thus
D(t,y) = E,le" (e — K)7],

and the explicit formula since X1 admits a Gaussian law.

The price at time ¢ is C(t, S;) = Ege[ "7~ (eXr — K)* /F,]; this is easy to compute:
the law of Xr given F; is a Gaussian law, with mean S; + (T —t) and variance o*(T —t).

4.2 Stochastic exponential

Let us consider the function C*°, f : x — €%, and a continuous semi-martingale X,

Xo =0, let us apply It6 formula to the process Z; = exp(X; — %(Xﬁ) Yields:

Zi=1+ / exp(X, — & (X)X, — Sd(X).) + 5 exp(X. — 2(X).)d(X).].

So, after some cancellation:

¢
1

Z, =1 +/ exp(Xs — §(X)S)dXS,

0

or using differential notation:
dZs = Z,dX,.
This is an example of (stochastic) differential equation. Then there is the following result:

Theorem 4.3. Let X be a continuous semi martingale, Xo = 0. Then there exists a unique
continuous semi martingale which is solution of the stochastic differential equation:

t
(21) Zy=1 +/ Zd X
0
which s explicitly:
1
Zt(X) = eXp(Xt — §<X>t)
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It6 formula shows that this process is actually solution of the required equation.
Exercise: show the uniqueness assuming that there exists two solutions Z and Z', then
apply Ité formula to the quotient Y; = %

t

Definition 4.4. Let X be a continuous semi martingale, Xqg = 0. The stochastic ex-
ponential of X, denoted as £(X), is the unique solution of the stochastic differential
equation (21).

Example: Let be X = aB where a is a real number and B the Brownian motion;
then & (aB) = exp(aB; — 3a*t), sometimes called “geometric Brownian motion”.
Here are some results on these stochastic exponentials.

Theorem 4.5. (c¢f. [30], Th. 37) Let X and Y be two continuous semimartingales,
Xo=Yy,=0. Then
EX)E(Y) = EX +Y + (X,Y)).

Preuve: set U; = &(X) et V; = &(Y) and apply integration by part formula (3.7):
t
UV — 1= / U,dV, + VidU, + d(U, V),
0

Setting W = UV and using the differential definition of the stochastic exponential we get
the result. °

Corollary 4.6. Let X be a continuous semi martingale, Xo = 0. Then the inverse
ETNX) = &(-X + (X))

Proof as an FErercise.
Let us now consider more general linear stochastic differential equations.

Theorem 4.7. (cf. [30], th. 52, page 266.) Let Z and H two real continuous semi
martingales, Zy = 0. Then the stochastic differential equation:

t
Xt - Ht —|— / Xsts
0
admits the unique solution

En(Z); = E(Z)(Hy + /t ENZ)dH, — d{H, Z)),).

Preuve: we use the method of constant variation. Let us assume that the solution

admits the form:
Xt — gt(Z)Ct

and apply It6 formula:

dXt - Ctdgt(Z) + gt(Z)dCt + d(g(Z), C)t,
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so, replacing d&;(Z) by its value and using the particular form of X:
dXt = XtdZt + gt(Z) [dC’t + d<Z, C>t]

If X is solution of the required equation, by identification we get two different expressions
for dX; and by identification we get:

But since £(Z) is an exponential and since (Z, — 1(Z),) is finite, & *(Z) exists and

2

dCt - gtil(Z)dHt - d<Z, C)t

so yields:
dZ,C)y=ENZ)d(H, Z),,
and finally:
dCt - 5t_1(Z)[dHt - d(H, Z>t]
We used the co-variation of C' and Z is the same as the one of &(Z)™'.H and Z. .

4.3 Ornstein-Uhlenbeck equation

Another important example used in Finance (for instance to model the dynamics of rate)
is the one of Ornstein-Uhlenbeck equation (cf. [20], page 358):

dX; = a(t)X,dt + b(t)dBy, t € [0,T), Xo=2x

where a and b are F—adapted processes, a almost surely integrable with respect to to
time, b € L*(Q x [0,T],dP ® dt). When a and b are constant a(t) = —«a and b(t) = o, we
get the solution:

X =e "z + /t ce**dBy).

Morever it can be shown: O
m(t) = E(X;)=m(0)e

V() = Var(Xy) = % + (V(0) — —

o2

p(S,t) = CO'U(XsaXt) = [V(O) + %

Finally one more example, “Mean reversion” model, is the Cox Ingersoll Ross
model:
dY, = A(n — Y)dt + 0y/Y,dB,,Y, = y.

With the hypothesis
2\n > 62

we get Y; > 0. This is convenient to model stochastic volatility or interest rates.
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4.4 Insight into more general stochastic differential equations

Generally, there is existence (and uniqueness) sufficient conditions for solution of the equation with initial
condition X; = x:

(22) XbT = x4 / b(u, X)) du + o(u, Xy )dWy,
t

for instance hypotheses on coeflicients could be:

(i) continuous, with sub linear increase with respect to space,

(ii) such that there exists a solution to the equation unique in law, meaning weak solution:there exists
a probability [P, on Wiener space (2, F) under which

. X is F—adapted continuous, taking its value in R,

. if S, = inf{t : |X¢| > n}, X5 satisfies the existence conditions of strong solutions (meaning
trajectorial solutions).
The increasing limit of times S, is called explosion time. Then P,-almost surely for all n

tASh tAS,
Xins, = —|—/ b(u, X, )du +/ o(u, Xy )dW,.
t t

For clarification, let us quote the existence Theorem 6 page 194 in [30].
Theorem 4.8. Let Z be a semt martingale with Zg = 0 and let f : R x R x Q be such that
(i) for fized z, (t,w) — f(t,x,w) is adapted right continuous-left limited,

(#1) for each (t,w), |f(t,z,w) — f(t,y,w)| < K(w)|z — y| for some finite random variable K.
Let Xy be finite and Fo-measurable. Then the equation

t
Xy = Xo + / f(S, -7XS—)dZs
0
admits a solution. This solution is unique and it is a semi martingale.

Or Theorem 2.5 page 287 in [20].

Theorem 4.9. Let the EDS
dXt = b(t, Xf)dt + O'(t7 Xf)th

such that the coefficient b and o are locally Lipschitz continuous in the space variable; i.e. for every
integer n > 1 there exists a constant K, such that for everyt > 0, ||z|]| < n, and ||ly|]| <n

16(t, 2) = b(t, y)|| + [lo(t, 2) = o(t,y)|| < Knllz =y

Then strong uniqueness holds.

4.5 Link with partial differential equations, Dirichlet Problem

(cf. [20] 5.7 pages 363 et sq.)

Definition 4.10. Let D be an open subset of R?. An order 2 differential operator A =73, j Qi (a:)%
; 0w

is said to be elliptic for x if
d
Vf S R*, Zai,j(x)fifj > 0.
i,

If A is elliptic for any point x € D, it is said to be elliptic in D.
If there exists § > 0 such that

d
Ve e RY, Y ais()€g; > o€l
4,7
it is said to be uniformly elliptic.
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Dirichlet problem is the one to find a C? class function u on bounded open subset D, u(z) = f(z)
Vo € 0D, and satisfying in D:
Au — ku = —g

with A elliptic, k € C(D,R™), g € ¢(D,R), f € ¢(0D,R).
Proposition 4.11. (Proposition 7.2, page 364 [20])

Let u be solution of Dirichlet problem (A, D) and X solution of (22) with operator A = 3 D alialj (z)%Jr
V.b(z); Tp the exit time of D by X. If Vo € D,

(23) E,(Tp) < o

then Yo € D,
u() = By (X)) exp(— / " R(X.)ds) + / " 9(X,) exp(~ / K(X.)ds)d].

Proof Exercise (problem 7.3 in [20], correction page 393).
First let us remark that the continuity of X implies X7, € dD.
Indication: prove

tATp tATp S
M :t — uw(Xiar,) exp (—/ k(XS)ds> —|—/ g(Xs)exp <—/ k(Xu)du> ds,t >0
0 0 0

is a uniformly integrable martingale with respect to IP,: compute E,(My) = E,(M.); on {t < Tp}, do
the Ito differential of M and use on D, Au — ku + g = 0. My = u(z) since X = x under [P,

tATp
th = exp(— / k(Xé)dS) X [AU(Xt/\TD)dt—‘rvu(Xt/\TD)O'(t, XtATD)th+g(XtATD)_(k-u) (Xt/\TD)dt];
0

functions Vu and o are continuous thus bounded on compact D, so the second term above is a martingale,
moreover the other terms cancel since Au — ku + g = 0 and for any ¢, E,[M;] = u(x).

This martingale is bounded in L? so uniformly integrable and we could do ¢ going to infinity and
apply stopping Theorem since E,[Tp] < oo. .

Remark 4.12. (Friedman, 1975) A sufficient condition for hypothesis (23) is: 31,3a : a;(x) > a > 0.
This condition is stronger than ellipticity, but weaker than uniform ellipticity in D.

Set:
b* = max{|b;(z)|,z € D}, q = min{x;,z € D},

and choose v > 4b*/a, h(x) = —pexp(vay),z € D, p will be chosen later. Then h is C* class and
—Ah(x) is computed and bounded:
s

4(b* 2
b*)/lvel > uuew > 1.
(% « (%

1
—Ah(w) = (G%au + vhi(@))pe”™ = (

Then we choose p great enough so that —Ah(z) > 1; x € D, h and its derivatives are bounded in
D, and we apply Itd formula to h

tATp

hXIPY = h(z) + /MTD Ah(X,)ds + / V(X))o (Xs)dWs.

Thus yields
tATD
t ANTp < h(x) — h(X!?) = _/ Ah(X,)ds
0

plus a uniformly integrable martingale. Thus E,[t A Tp] < 2||h||e and finally let ¢ goes to infinity.
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5 Change of probability, Girsanov theorem

The motivation of this chapter is: martingales and local martingales are powerful tools,
and it is therefore worthwhile to model reality so that the processes involved are martin-
gales, at least locally. Thus, for the application of stochastic calculus to Finance, the data
are a set of processes that model the evolution over time of share price on the financial
market, and one can legitimately ask the question:

Is there a filtered probability space (€2, F;,P) on which the price process are all mar-
tingales (at least locally)?

Specifically, does it exist a probability P which satisfies the property? Hence the two
problems discussed are the following:

- How to move from a probability space (€2, F,P) to (2, F, Q) in a simple way? does it
exist a density %? How then are transformed Brownian motion and martingales? This is

Girsanov theorem, Section 5.1. Section 5.2 gives a sufficient condition to apply Girsanov
theorem.

- Finally, given a family of semi-martingales on filtered probability space (€, (F;)),
does it exist a probability PP such that all these processes are martingales on filtered
probability space (€2, (F;),P)? This is a “martingale problem” that we will see in Chapter
6.

We a priori consider a filtered probability space (€2, (F;),P) which is defined linked to
a d-dimensional Brownian motion B, By = 0. The filtration is generated by the Brownian
motion and we note M (P) the set of martingales on (€2, (F;),P).

Recall the notion of local martingales, their set is denoted as M,.(IP) meaning
adapted process M such that there exists a sequence of stopping times (7},) increasing to
infinity and such that Vn the T}, stopped process M is a true martingale.

5.1 Girsanov theorem

([20] 3.5, p 190-196; [30] 3.6, p 108-114)

Let X be an adapted measurable process in P(B):
P(B) := { Xadapted measurable process:VT), fOT | X5 []? ds < +o0 P a.s.}

This set is larger than £(B) = L?() x RT, dP ® dt).
Generally we define for any martingale M the set P(M) which contains
L(M)=L*QxR",dP ® d(M)):

T
P(M) = { X adapted measurable process: VT, / | X, ||? d(M)s < +00 P a.s.}
0

For such process X, X.M 1is only a “local” martingale.

Think of d(M)s as f(s,w)ds.
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Thus we can define the local martingale X.B and its Doléans exponential (stochastic
exponential) as soon as Vt fg | X, ||? ds < +o00 P a.s.:

t
% ) 1 2
St(X.B):exp[/o (32 B = 5 X P )

solution of the SDE

(24) dZ, =7,y X{dB; ; Zy=1,

which is too a local martingale since fot Z% || X, ||* ds < +oo P a.s. by continuity of the
integrand on [0, ¢].

Under some conditions, £ (X.B) is a “true” martingale, then V¢, E[Z;] = 1, this allows
a change of probability measure on the o-algebra F; :

Q) = Z;.P meaning if A € F;, Q(A) = E[14Z,].
Note that E is the expectation with respect to probability measure P. Since Z; > 0, both

probability measures are equivalent and P(A) = Eg[Z; '1.4].

Theorem 5.1. (Girsanov, 1960 ; Cameron-Martin, 1944)
If the process Z = E(X.B) solution of (24) belongs to M(P), and if Q is the probability
measure defined on Fp by Zp.P then:

t
Bt:Bt—/XSdS,tST
0

is a Brownian motion on (S0, (Fy)o<i<t, @)

The proof needs a preliminary lemma. Below Eg notes the QQ-expectation.

Lemma 5.2. Let be T >0, Z € M(P), Q = ZgP. Let be 0 < s <t < T and a random
variable Y, in LY(Q, F;), then Eq(Y/F,) = E(YZi/Fs)

Zs

This is, more or less, a Bayes formula.
Proof (Exercise): let be A € Fi:

E(YZt/fs)
Zs

since on F, Q = Z,P. Then: E[14E(Y Z;/F)] = E(14Y Z;)
by definition of conditional expectation, and finally using definition of (), and since 14Y
is Fr-measurable

Eq(la ) = EQAE(Y Z/F)))

E(14Y Z,) = Eg(14Y).

This is true VA € Fj, so we can identify E(

% as the expected conditional expectation.
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Proposition 5.3. Under hypotheses of Girsanov theorem, for any continuous local P-
martingale M, the process N below is a (Q—local martingale:

N:M—/ Xid(M, B'),.
OZZ»: { )

Proof: (Exercise)
[

It yields as a corollary that B is a Q-martingale with bracket t. To prove it is a
(2-Brownian motion, it is enough to show that it is an independent increments process
with Gaussian law (or that it is a Gaussian process).

Now we look things in “reverse” order, that is, if there exists equivalent probability mea-
sures, to look for a link between martingales related to the one or the other probability,
and related to the same filtration.

Proposition 5.4. Let P and Q be two equivalent probability measures on (2, F) and the
uniformly integrable continuous martingale Z; = E[%/]—}] Then M € M5, .(Q) < MZ €
foc(P).

loc

c
loc

Proof: Let (7},) be a sequence of stopping times, localizing for M and recall Doob
Corollary 0.25
Eo[Mint, | Fs) = Eq[Mint, | Fsar,] = Msar, -

We now apply Lemma 5.2, for s < ¢ it yields both:

Ep[ZiMinr, | F]
Zs

(25) Eq[Minr, [ Fs] =

and
EIP [Zt/\Tn Mt/\Tn /]:s/\Tn]

Zs/\Tn

EplZint, Mint, | Fert,]
Zs/\Tn .

Then the fact that M™ € M(Q) is equivalent to (M Z)™ € M(P).

EQ [Mt/\Tn /fs/\Tn] =

SO
EQ [Mt/\Tn /‘FS] =

Theorem 5.5. Girsanov-Meyer: Let be P and Q) two equivalent probability measures,
Zy = E[%/]—}] and X a semi-martingale on (€2, F,P) decomposed as X = M + A. Then,
X is too semi-martingale on (2, F, Q) decomposed as X = N + C, where

t t
N = M—/ ZYd(Z, M), ; (J:A+/ Z7Yd(Z, M),.
0 0
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Proof: (i) C is a finite variation process as sum of two finite variation processes.

(ii) Compute the product NZ using It6 formula under P:
d(NZ); = NydZ; + ZdMy — 2,27 d{Z, M), + d{Z, N),.

But N is a P-semi martingale with martingale part M: the bracket (Z, N) is the one of
M with Z, so a cancellation proves that NZ is a P-martingale so (using Proposition 5.4)
N is a Q-martingale. °

5.2 Novikov condition

(cf. |20] pages 198-201).

The previous subsection is based on the hypothesis that the process £(X.B) is a true
martingale. We now look for sufficient conditions on X so that this hypothesis will be
satisfied. Generally £(X.B) is at least a local martingale with localising sequence

t
T, = inf{t > 0, / | E(X.B)X, ||* ds > n}.
0

Lemma 5.6. £(X.B) is an super martingale; it is a martingale if and only if:

vt >0 E[§(X.B)] = 1.

Proof: there exists an increasing sequence of stopping times 7}, such that Vn, £(X.B)™
M(P) thus for any s <t we get

ElEr ni(X.B)/F] = Enns(X.B).

Using Fatou lemma, we deduce from this equality going to the limit that actually £(X.B)
is a super martingale (remember that any positive local martingale is a supermartingale).
Since E[&)(X.B)] =1, it is enough that, V¢ > 0, we could have F[£(X.B)] =1 to check
that £(X.B) is a martingale. .

Proposition 5.7. (/20] pp. 198-199)
Let M be a continuous local martingale with respect to P and Z = E(M) such that
Elexp 3 (M)} < 00 V¢t > 0. Then Vt >0, E[Z,] = 1.

Corollary 5.8. (Novikov, 1971) : Let X be an adapted vectorial measurable process such
that:

1 t
Elexp 5/ | X, ||? ds] < oo pour tout t >0
0

(where ||z||* =", 22,) then E(X.B) € M(P).

At ]

To close this subsection, here is an example of process X € P(B) which doesn’t
satisfy Novikov condition, such that £(X.B) € M¢{ (P) but it is not a “true” martingale

loc
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(Exercise):
Let be the stopping time T = inf{1 >¢ > 0,t + B? =1} and

2
QBtl{tST} 3 0 S t < 1, X1 =0.

AR

(i) Prove that T < 1 almost surely and thus fol X2dt < oo almost surely.

(i1) Apply Itoé formula to the process t — % : 0<t <1 to prove:

/1XdB 1/1X2dt— 1 2/T[ ! ! |BZdt < —1
o 2 e T o (=0t (112 '

(i1i) The local martingale E(X.B) is not a martingale (not up to 1 anyway!): we deduce
from (ii) that its expectation is bounded by exp(—1) < 1 and this contradicts Lemma 5.6.
Anyway, we can prove that ¥n > 1 and o, = 1 — (1/4/n), the process E(X.B)°" is a
martingale.
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6 Martingale representation theorem, martingale prob-
lem

(cf. Protter [30], pages 147-157.)

The motivation of this chapter is to show that a large enough class of martingales could
be identified as a stochastic integral X.5B. This will allow us to find a common probability
measure P for all the price processes such that these ones are all P-martingales, at least
local martingales.

6.1 Representation property

We here consider martingales in M?¢, null at time ¢ = 0, and satisfying (M), € L'.
Then, E[sup, M?] < Cysup, E[(M),] = E[{M)] < oo. These martingales are uniformly
integrable, there exists M., such that V¢ > 0, M, = E[M,/F;]. Let us denote their set
as H3.

H2 = {M € M** My=0,(M)s € L'}.

Recall following notations:
L(M) = {X adapted € L*(QxR", Pd(M))}; L*(M) = {X progressive Pa.s. € L*(R",d(M))},

and if X is cad or cag, then adapted is equivalent to progressive. For now on, we only
consider such a case.
We have to look at what happens after a change of probability measure.

Definition 6.1. Let be A C HZ(P) and denote M(A) the set of probability measures Q
on Fuo, absolutely continuous with respect to P, equal to P on Fy, such that A C H3(Q).

Lemma 6.2. M(A) is conver.

Proof: exercise.

Definition 6.3. Let be A C H2, A is said to have the predictable representation
property if:

IT={X=) HM, M'€¢ A H € (M)nLdP®d(M))} =H;.
i=1
Below, we will see an important example of such an A, Theorem 6.14:
Let be A = (M',---  M"™) C H2(P) satisfying M* T M?,i # j. P is extremal in M(A)
yields that A has the predictable representation property.
And really important is Theorem 6.15:

Let B be a n-dimensional Brownian motion on (Q, FZ,P). Then YM € M2, there exists
Hie L(BY),i=1,---,n, such that:

M, = My+ Y (H'.B"),.

1=1
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Theorem 6.4. Let F' be a closed vector subspace of H3. Then the followings are equivalent
definitions of a stable subspace:

(i)if M € F and Ae F,, (M —M"14€F, Vt>0.

(ii) F satisfies: if VM € F and for any stopping time T then MT € F.
(111) if M € F and H bounded € L*(M) then H.M € F.

(iv) if M € F and H € L£*(M) N L*(dP @ d(M)), then H.M € F.

More or less, “stability” means stability with respect to stochastic integration.
Proof: Since £;(M) C L*(M) N L?(dP ® d(M)), the implication (iv) = (iii) is obvious.
(iii) = (ii): it is enough to consider any stopping time 7" and the process H; = 1jo7)(t). Then
t
(HM)t = / 1[07T](8)dM5 = Miar € F,
0

meaning M7 is an element of F.

(ii) = (i): let ¢ be fixed, A € F; and M € F. We build the stopping time
T(w) =t if w € A and infinity if not. This is actually a stopping time since A € F;. Otherwise, on one
hand:

(M —-—MH14 = (M- M"ifwe A, which is equivalent to T(w) =t
= 0if not ,

on the other hand:

M-MT = (M-MY)ifwe A,
= 0if not ,

this means that (M — M%)14 = M — MT. But F is stable, thus M and M7 € F, so (M — M')14 € F
for any ¢t > 0: this is property (i).

(i) = (iv): let be H € P which could be written as:
H = HO + ZHil]t'i,tH»l]
where H, = 14,,A; € F;,. Then

HM = Z 1A7:(Mt7:+1 - Mtl) = Z ]‘Az‘ (M - Mti)ti+1

which belongs to F' using (i). Any simple process is limit of linear combinations of processes as H above;
the stochastic integral being linear we get for any simple process X that X.M € F, vector space. To
conclude we take the limits of simple processes since P is dense in £* (M )N L2 (dP®d(M)) (cf. Proposition
2.10) .

Definition 6.5. Let A be a subset of Hi. We denote S(A) the smallest stable closed
vectorial subspace which contains A.

Definition 6.6. Let be M and N € H3, M and N are said to be orthogonal if
E[M,N.] =0, strongly orthogonal if M N is a martingale.
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By definition M N — (M, N) is a martingale, thus the strong orthogonality is equiv-
alent to (M, N) = 0. This is a simple way to prove that strong orthogonality implies
orthogonality; the converse is false: let us consider M € H32 and Y a Bernoulli random
variable (values £1 with probability %), independent of M. Let be N = Y M.

Exercise: prove that M and N are orthogonal but no strongly orthogonal.

Let A be a subset of H2, denote A its orthogonal space, A' its strong orthogonal
space.

Lemma 6.7. Let A be a subset of H32, then AT is stable closed vector subspace.
Proof: let M" be a sequence in A', converging to M in H2, and let be N € A:

Vn, M™N is a uniformly integrable martingale. On another hand, V¢ > 0, using Cauchy-
Schwartz inequality

E[(M" = M, N),|*] < E[(M" — M),]E[(N),]
which goes to zero. Thus (M™ N); — (M, N); in L?. But Vn and V¢, (M™, N), = 0, thus
(M,N); =0 and M is orthogonal to N. o

Lemma 6.8. Let M and N be two martingales in H3, the following are equivalent:

i) M and N strongly orthogonal, denoted as M T N,

(
(12) S(M) T N
(122) S(M) 1 S(N)
(tv) S(M)LN

(

v) S(M)LS(N)

Proof: exercise.

Theorem 6.9. Let be M ---  M™ € HE such that for i # j, M'{t M. Then,

S(M*', - M™) = {zn: H'M';H' € £*(M") N L*(dP @ d(M"))}.

=1

It means that, in this case, actually, the right hand is a closed vectorial subspace.
Proof: let us denote Z the right hand. By construction and property (iv) , Z is a stable space. Consider
now the application:

LY (MYNLA(dP @ d(M?)) — H2

(HY) +— i H.M'
i=1

We easily check that this is an isometry, using that for i # j, M*{ M7:

DTS WEIES ey N

Thus the set Z, image of a closed set by an isometric application is a closed set so contains S(M?*, -, M™).
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Conversely, using Theorem 6.4 (iv), any stable closed set F' which contains M* contains too H*.M®
soZ C F. .

Here, too, vector subspace is closed.
Proposition 6.10. Let be A = (M',---  M") C HZ satisfying M* 1t M?,i # j. If for
any N € H3 strongly orthogonal to A is null, then A has the predictable representation
property.

Proof: Theorem 6.9 proves that S(A) is the set Z, defined above. Then let be N € AT.
Using Lemma 6.8(ii),
Ne S =1

Hypothesis theorem tells us that N is null, meaning Z' = {0}, thus Z = H2. .

These orthogonality and representation properties are related to underlying probability
measure.

Definition 6.11. Q € M(A) is said to be extremal if

Q=a@Q1+ (1 -a)Q2,ac]0,1],Q;, € M(A) =a=0 ou 1.

Next theorem is a necessary condition for PRP (predictable representation property).

Theorem 6.12. Let be A C HZ(P). S(A) = H3(P) yields that P is extremal in M(A).

Proof : cf. Th. 37 page 152 [30].
We assume that P is not extremal so could be written as aQ;+(1—a)Q2 with Q; € M(A).
Probability measure Q1 < %IP’, so admits a density Z with respect to P, such that Z; < %
and Z —Z, € H3(P). Remark that P and Q; coincide on Fy implies Zy = 1. Let be X € A:
so it is a P and @);-martingale thus ZX is a P-martingale and also (Z — Zp)X = (Z—-1)X
is a P-martingale; this proves that Z — Z; is orthogonal to any X, so to A, so to S(A).
This set being HZ(P), Z —1=0 and P = Q, is extremal. o

Proposition 6.13. Let be A C HZ(P) and P extremal in M(A). If M € ME(P) N A
then M is null.

Proof: Let ¢ be a bound of the bounded martingale M and we assume M is not
identically null. Thus we can define

Moo lwoo
= (1 — ==\qP = (1 4+ ==2\dP.
dQ = ( e )dP et dR = (1 + e )d

Then P = %(Q + R), @ and R are absolutely continuous with respect to P and equal PP on
Fo since My = 0. Let be X € A C Hi(P): using Proposition 5.4, X € HZ(Q) if and only if
(1—21)X, € HE(P). But X t M so actually this property is true and as well X € H3(Q).
Thus @ and R, € M(A).

So it could exist a decomposition of P, and this contradicts the hypothesis: M is neces-
sarily null. °
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The following is now a sufficient condition for PRP (predictable representation property).

Theorem 6.14. Let be A = (M',---  M™) C HZ(P) satisfying M+ M7, i # j. P is
extremal in M(A) yields that A has the predictable representation property.

Proof: Proposition 6.10 proves that it is enough to show that any N € H2(P) N AT is
null. Let N be such a martingale and a sequence of stopping times 7T,, = inf{t < 0; |Ny| >
n}. The stopped martingale N7 is bounded and belongs to A" ; P is extremal. Theorem
6.13 shows that N7» is null Vn, so N = 0. o

6.2 Fondamental theorem

Theorem 6.15. Let B be a n-dimensional Brownian motion on (0, F2,P). Then VM €
M2 there exists H € L(B"),i=1,--- ,n, such that:

loc?

M, = Mo+ Y (H'.B').
i=1

Proof: exercise.
This is an application Theorem 6.14 to the component of Brownian motion, we prove
that P is the unique element of M(B). We do as following: let be @) € M(B) and the
martingale Z = E[j—g/}f} which is a function g of B! since B is a Markov process; B is
both P and @-martingale; Girsanov theorem implies that ZB is a P martingale, so the
bracket (Z, B) = 0 and Ito6 formula proves g = 1, meaning P = Q).
Use that Z; = E[%/}}B] is a measurable function of vector (B},---, BP).

Then we localize martingale M.

Corollary 6.16. Under the same hypotheses, let be Z € L'(Fu,P), then there erists
Hie L(BY),i=1,---,n, such that:

Z=E[Z]+) (H B
i=1
Proof: apply Theorem 6.15 to the martingale M; = E[Z/F;] and do ¢ going to infinity.

Let be P and @ two equivalent probability measures and denote Z the P—integrable
variable % > 0, Ep[Z] = 1. The martingale Z; = Ep[Z/F;] > 0 could be “represented”
as a Brownian martingale: there exists ¢ € £(B) such that dZ; = ¢,dB;.

This is an exponential martingale: indeed, since Z;, > 0, there exists a process ¢ = Z~ 14

such that dZt = ZthtdBt.
This is important in case of Ito formula use, computation of bracket, etc.

Warning! in case of a vector martingale M, its components not being strongly orthogonal,
the set £(M) contains the set {H = (H"), Vi H' e L(M")} but they aren’t equal: H € L(M) <
Ve, [y X, HIHLd(M?, M), < oo
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6.3 Martingale problem

(cf. Jacod [19], pages 337-340).

In case of Finance, it is the following problem: let be a set of price processes with dynamics
modeled by a family of adapted continuous processes on the filtered probability space
(Q, B, F;,P), actually semi martingales. Does it exist a probability measure ) such that

this family could be a subset of M, .(Q)? This is a martingale problem. We assume that
B=F.

In this subsection we consider a larger set of martingales:

HY(P) = {M € M;, (P); sup|M,| € L'}
t

loc
This definition is equivalent to:

HU(P) = {M € M, (P); (M) € L'}

loc

using Burkholder inequality:

1
Fsup [Mifllg < el (M)2]lq < Cll sup | Ml

Definition 6.17. Let X' be a family of adapted continuous processes on (2,8, F;). We
call solution of the martingale problem related to X any probability P such that
X C M (P). We note M(X) this set of probability measures and we recall that S(X) is

loc

the smallest stable subset of H*(P) containing {H.M,H € L*(M),M € X}.
Proposition 6.18. M (X) is conver.

Proof: exercise.

We note Mc(X) the extremal elements of this set.
Theorem 6.19. (c¢f. th. 11.2 [19] page 338.)
Let be P € M(X) ; the followings are equivalent:

(i) P e M.(X)

(1) H'(P) = S(X U{1}) and Fo = (0,Q)

(iii) YN € My(P) N XT such that (N) is bounded , N =0 and Fo = (0, Q).
Remark 6.20. Property (ii) exactly means that a market generated by a set of prices
processes X is complete. It has the representation property.

Corollary 6.21. If moreover X 1is finite, or containing uniquely almost sure continuous

processes, (i) (ii) (iii) are equivalent to

(({Q € M(X), Q ~P} = {P}.
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Proof:
(ii)=-(iii) let M be a bounded, My = 0, strongly orthogonal to any element of X meaning
(M, X) =0, VX € X.

Since by hypothesis X U {1} generate the set H'(P), any N € H'(P) is limit of a
sequence of processes as No + > . H;. X;. Thus,

t
(M, N); = lim MoNo + > (M, H;. X;), = Z/ H;d(M, X;),
i ; /0

which is null v on M, which so is orthogonal to any element of H!(P). Moreover, M is
bounded so belongs to H!(P), thus it orthogonal to itself thus it is null.

(iii)=-(ii) By the definition we get the inclusion S(X U {1}) C H!(P). But let us sup-
pose that this inclusion is strict. Since S(X U {1}) is a closed convex subset of H!(P),
there exists M € H!'(P) orthogonal to S(X U {1}). Particularly M is orthogonal to 1,
thus My = 0. Let T;, = inf{t/|M;| > n} be the sequence of stopping times such that M
is a bounded martingale, null in 0, orthogonal to X: Hypothesis (iii) implies M is null
and the equality of both sets is satisfied.

(i)=(iii) P is extremal in M(X). Let Y be a bounded Fy-measurable random variable
and N’ a bounded martingale, null in zero, orthogonal to X. Set N =Y — E[Y]+ N’ and
remark that V¢ > 0, Ep(N;) = 0. Then set

N N
=|IN|leo; Z1=14+—; Zy=1— —.
a =[Nl ! * 2a 2 2a
Obviously FE(Z;) = 1,7; > % > 0, so the measures ); = Z;P are equivalent to IP proba-
bility measures, their half-sum is P.

Since Y is Fo- measurable and N’ is orthogonal to X VX € X, and NX is a P- martin-
gale. Thus Z;X = X 4+ &% is too a P- martingale. Using Proposition 5.4, X € M¢, (Q.)
and Q; € M(X); this contradlcts that P is extremal unless N; = 0,Vt > 0 meaning bot
Y = E[Y] and N’ = 0. This concludes (iii).

(iii)=-(i) Let us assume that P admits the decomposition in M(X') : P = a@Qy+ (1 —a)Qs.
So ()1 is absolutely continuous with respect to P and the density Z exists, bounded by %,
E[Z] =1 and since Fy = (0,12), Zy = 1 almost surely: Z — 1 is a bounded null in zero
martingale.

On another hand, VX € X', X € Mj (P) N M;, .(Q1) since P and Q; € M(X). Once
again, Proposition 5.4 proves that ZX € M7 (P) and (Z—-1)X € Mj, (P) meaning Z—1
is orthogonal to any X and Hypothesis (iii) proves Z — 1 = 0, meaning ); = P which, so,
is extremal.

(iv)=-(iii) is proved as (i)=-(iii), this proof doesn’t need any property to X.
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(ii)=-(iv) Let us assume that there exists P’ # P in M(X), equivalent to P. In case
of finite X', (ii) means (cf. Theorem 6.9):

H(P)={a+ ) H'X';a€eR, H € L(X')NL*dP®d(X")), X' € X}.

i=1

Let Z be the martingale density of P’ with respect to P : P = ZP where Z is a P-
martingale, expectation 1, equal to 1 at zero. Any X of X belongs to M{ (P)NM¢§ (P),
but Proposition 5.4 says that ZX € M{ (P), thus (Z — 1)X € M .(P), meaning that

Z —1is orthogonal to X so to S(XU{1}) = H'(P). Localizing, we bound this martingale,
the stopped martingale is orthogonal to itself, thus null.
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7 Finance application

The application is twofold: if there exists a probability (), equivalent to the natural
probability such that any price process is a Q-martingale, @ is said risk neutral probability
(or “martingale measure”), then the market is said VIABLE, meaning that there exists
no arbitrage (arbitrage is to win with a strictly positive probability starting with a null
initial wealth meaning V7 (0) > 0 and P{Vr(0) > 0} > 0.

RECIPROCAL is false, contrarily to what it is too often said or written.

When the set of these price processes, (Q-martingales, has the representation property
for -martingales, the market is said to be COMPLETE.

7.1 Research of a risk neutral probability measure

We assume that the share prices are S°,i = 1,...n, strictly positive semi martingales:

ds; = Slbldt+SZZa t)dB;.

Otherwise look at the equivalent probability @ = £(X.B)P = ZP. Using Girsanov Theo-
rem, Vj:

t
B! =B} — / X!ds
0
is a Q-Brownian motion. So actually processes S* are too Q-semi martingales as following:

dsi = Szb“rZa Xﬂdt+5%Za t)ydBi.

Thus the problem is now to find a vector X in L£(B) satisfying (for instance) Novikov
condition such that Vi = 1,...n we get the system with n equations and d unknown:

b%tz t)X] = 0.

Ezxercise: solve this system when n =d =1, then n =d. What to do if n #d ?

7.2 Application: to hedge an option

In case of a complete market, using representation Theorem, we can “hedge” an option.

Remember that an option is a financial asset based on a share price p but it is a right
that can carry forward in two ways :

- call option with terminal value (S — K)T,

- put option with terminal value (K — Sy)*,
K being the exercise price of the option and T the maturity.
Concretely, at time 0 we buy
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- the right to buy at price K even if the price St is over (call)

- or the right to sell at price K even if the price Sy is under (put).
But to find the “fair price” of this contract, the seller of the option could honor the
contract, thus placing the sum obtained by selling the contract so he can (at least in
average) pay the buyer at time 7.

Definition 7.1. We call the fair price of a contingent claim H the smallest © > 0 such
that

there exists a self-financing admissible strategy m™ which realizes at time T the value
g(St) = Vp(m), the discounted price being e "I Vp(nr) = H, initial value being Vo(m) = x.

Recall: A self-financing strategy = is said to be admissible if its value

¢
Vi(m) = Vo —i—/ s.dS
0

is almost surely bounded below by a real constant.

For instance for the “call option”, the claim is H = ¢(Sr) = (Sr — K)™, and the
seller of the contract looks for “hedging”. Here are useful the “martingale representation”
Theorems. If r is the discount (e.g. savings rate), e "7 g(Sr) is the discounted claim.

Let us assume that we are in 7.1 scheme with n = d, o invertible and the market
admitting a risk neutral probability measure on Fr: @ = E(X.B)P. Using fundamental
Theorem there exists a vector 6 such that

(26) e g(Sr) = Egle T g(S1)] / ZeﬂdBﬂ
But using @-Brownian motion B above, yields:
ds; = S; Zcr t)dB]
so V7 ‘ A
dB] =Y (o7)i(t)(S})""dS]

)

to be replaced in (26):
e Tg(Sr) = Eqle " g(Sr) / Zef (S (e Y (b)ds:
which allows us to identify the hedging portfolio
o= ()7 Y el ()
J

and finally the fair price is:
q = Eqle™" g(Sr)].
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8 Financial model, continuous time, continuous prices

(Cf. [9] chap 12.1 to 12.5, [20] Section 5.8, pages 371 et sq.)
Here are assumed AOA hypothesis (cf. Definition 4.1): thus the price processes are semi
martingales.

8.1 Model

We consider finite horizon t € [0,7], the market is denoted as S with n + 1 assets, the
prices of which being continuous semi martingales. Real quantities of these assets could
be bought or sold, there is neither trade nor transaction costs. The semi martingales are
continuous, build on Wiener space, filtered probability space: (£2,.A4,P, F;), on which is
defined a n-dimensional Brownian motion, B. Moreover we assume Fy = {0, Q}, Fr = A.

Hypothesis on market S: the first assets is risk less, constant rate, namely the
“bond”, S? = €™ thus:
dsp = Sprdt, r >0, S) = 1.

The n risky assets on the market are supposed to be strictly positive semi martingales
satisfying: Vi = 1,...,n, there exists a semi martingale X’ such that :

St =&(X"Y), telo,T).
Concretely,

(27) AX] = S (o4()dB] + b (dt) i =1, dX) = rdt.

J

There is a perishable consumption good and there are I economic agents with access
to information F; on time ¢. For any k = 1,--- | I, the k—th agent has resources (endow-
ments) ef € R* on the beginning and e € L'(Q, Fr,P) at the end, he consumes c§ € R
on the beginning and % € L*(Q, Fr,P) at the end. He has no intermediary resources or
consumption.

We denote X a subset of R x A(Q, Fr,P), set of claims to reach, equipped with a
complete, continuous, increasing, convex preference relation (that will be built later and
is different from an order relation, it lacks the antisymmetry and transitivity).

Definition 8.1. A preference relation (denoted as <) is said to be complete if for any
c1 and co 1n X, it is either ¢; < ¢ or ¢ < ¢y

It is said to be continuous if Ve € X, {¢ € X, ¢ < ¢} and {¢ € X, ¢ <} are closed
sets.

It is said to be increasing if all the coordinates of ¢’ are greater or equal to those of ¢
implies ¢ < c.

It is said to be convex if ¢ and ¢’ < ¢ then Yo € [0,1], ad + (1 —a)c” < c.
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8.2 Equilibrium price measure, or risk neutral probability mea-
sure

Definition 8.2. Let (S°,---,S™) be a price system, an equilibrium price measure or
risk neutral probability measure on (Q, Fi) is a probability Q, equivalent to P, such the
discounted prices e "tS?, denoted S*, are local Q-martingales.

We note Qg the set of such probability measures.
Remark that Qg is included in the set M(S), cf. Definition 6.17.
We now assume that Qg is non empty, we choose ) € Qg; it is not necessarily unique,
but most of the results don’t depend on the chosen element in Qg.
This hypothesis implies the absence of arbitrage opportunity (Definition 8.7 and Theo-
rem 8.9 below). Once again, contrary to what we read too often it is not equivalent to it.
This is a sufficient condition but not necessary for the absence of arbitrage. Instead, it is
equivalent to a condition called NFLVR(cf. [7]).

FEzercise: In this context, express the major hypothesis of the model (27), namely the
existence of a equilibrium price measure Q) , i.e. the discounted price processes S™ are
Q-martingales. Ité formula is a good tool to solve it.

(28)  dS!=e"dS! — rSle mdt = SH(dX! — rdt) = S| Z ot (t)dB] + (bi(t) — r)dt].

So the problem is to find Q, equivalent to P, and a Q—Brownian motion B such that dX}—rdt =
o:dB;. Here we use Girsanov theorem denoting Z; = E]p[% /Fi] which could be expressed as
a martingale, stochastic integral with respect to the d-dimensional Brownian motion B: there
exists a vector process X € P(B) such that dZy = Z; 25:1 XJdB;.

To find risk neutral ) is equivalent to find X.

End the exercise by assuming for example that the matrix ‘o.0 has rank d thus is invertible and
there is a Novikov-type condition on the vector v, = (fo.0) "t x'o (b.—r 1) where 1 = (1,--- ,1).
More generally, discuss the existence of risk-neutral probabilities depending on

whether d =n,d < n,d > n.

8.3 Trading strategies

Notation: below, (x,y) notes the scalar product between both vectors x and y, not to be confused
with the stochastic bracket between two martingales or semi martingales!

A strategy is a portfolio #, F-adapted process taking its values in R™™', #° represent-
ing the portion of the portfolio invested in the ith financial assets. The conditions to
assume are those allowing the real process [ (65, dSs) to be defined: 6 has to be integrable
on [0,t], Vt respectively with respect to the martingale part and the finite variation part
of the semi-martingale, discounted price process Si. This quantity f(f (05, dSs) represents

the gain from the exchange between 0 and ¢ and fg (h,,dS,) represents the discounted
gain from the exchange between 0 and t.
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Definition 8.3. An admissible strategy is an adapted process taking its values in RN+
on (2, Fi,Q), stochastically integrable (cf. Section 2) with respect to the price vector S.

Definition 8.4. A strategy is self-financing if moreover ¥t € RT the portfolio value
satisfies:

Vi(0) = (0t St) = (6o, So) + /t<93,d55>.

Remark: This is interpreted as follows: there are no external resources, only the
change of the portfolio is changing wealth.
This may be clearer in discrete time:

(29) Vier = Vi = (Oe11, Se1) — (01, St) = (011, Sen — St)
is equivalent to (0111, Sty = (01, St).

The portfolio is change between ¢ and £+ 1 by internal reorganization between the assets.

This not an obligation but here we assumed that the price processes are stochastic expo-
nentials, so that they are strictly positive.

Theorem 8.5. Let 0 be an admissible strategy. It is self-financing if and only if the
discounted value of the portfolio V;(0) = e "V,(0) satisfies:

Vi) =vio) + [ (6,,d3,)

where the scalar product is in R" instead of R™™ since dS? = 0.

Proof. : exercise, using Ito formula on the product e x V;(#), then using (28).

Corollary 8.6. let () be an equilibrium price measure. For any 0 self-financing strategy,
element of P(S), the discounted value of the portfolio is a local Q—martingale.

Proof. : Exercise

Definition 8.7. 0 is said to be an arbitrage strategy if it is admissible,
self-financing and satisfies one of these three properties:

(0o, So) < 0 and (67, St) > 0 almost surely and # 0 with probability > 0,
(0, So) < 0 and (07, St) > 0 almost surely,
(30) (0o, So) = 0 and (07, Sty > 0 almost surely and # 0 with probability > 0.

Proof: exercise, prove the equivalence of these three definitions.
For instance, 2 = 3, if (fy, So) = a < 0, we define a new strategy which satisfies the third

property: ‘ '
0 =0 i=1,---,n; 0°%) =6°(t) — ae "Vt € [0,T].

Then .
(60, So) = 00, 50 + > (0, Sb) = (6o, So) —a =0
1

and (0, St) = (0r, S7) —ae™"Te™ > (07, St) > 0. Thus, (0, St) is positive, non null. e
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Definition 8.8. A market where there is no arbitrage strateqy is said to be viable. We
say that it satisfies the AOA hypothesis arbitrage opportunity absence).

We now give some sufficient conditions to make a market S viable.

Theorem 8.9. (cf. [9], 12.2 et sq.) If the set Qg is non empty, then the market is viable.

Proof. : Exercise with the following steps. Let be () € Qs:

1. If for any self-financing strategy 0, V,(0) is a Q—super martingale, then the market is
viable.

2. If any self-financing strategy of P(S) is such that V,(#) > 0, then the market is viable.

1. The fact that V() is a Q—super martingale could be written as:
Vs <1, EqlVi(0)/F.) < Vi(0).
Particularly, since the initial oc—algebra Fj is trivial, for s = 0,
Eq[Vr(0)] < Vo(6) meaning (6o, So)-

Thus let us assume that there exists an arbitrage strategy: (6o, So) = 0, (07, St) > 0.
Thus Eg[Vr(0)] < 0 and since Vr(0) = e (07, St) > 0, Vr(0) = 0, so strategy 6 cannot
be arbitrage strategy.

2. Since the strategy 6 is self-financing,

Vi(0) = (6o, So) + / t<95,dss>-

Corollary 8.6 shows that f/}(Q) is a local Q—martingale moreover positive, thus it is a
super martingale (cf. proof of Lemma 5.6) and we go back to (1) to conclude. o

As a conclusion, to avoid arbitrage, we add in the definition of admissible strategy 6
the obligation to check
Vi(0) > 0, dt @ dP almost surely .

Remark 8.10. We stress the sequence of implications: Qg is non empty = no arbitrage
= price processes are semi-martingale
without however, having the reciprocal.....

8.4 Complete market

Here we use the tools introduced in Subsection 6.1. Let be QQ € Qg.

Definition 8.11. A contingent claim X € L'(Q, Fr,Q) is simulable or attainable
under probability measure Q) if there exists a self-financing admissible strateqy 6 and a
real number x such that

T
X = <‘9TaST> = ZL’—f—/ HS.dSS.
0

A market is said to be complete under probability measure Q) for the price system S
is any X € LY(Q, Fr, Q) is simulable.
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In this subsection we look for a characterization of complete market, at least to exhibit
some sufficient conditions for completeness.

Theorem 8.12. A claim X is simulable if and only if there ewists a vector process o €
P(S), N-dimensional such that:

EolX/F] = e T EglX] + / (s, d5,).

Proof:

If X is simulable, this means there exists a self-financing admissible strategy 6 and a
real number z such that X = Vp(0) = (07, Sr) == + f0T<(95, dSs).
Since 6 is admissible, by definition, it is stochasticaly integrable with respect to S so to
S; it is self-financing meaning (cf. Theorem 8.5) dV;(8) = (6;,dS;). But X = (A7, St) or
V() = e X and finally V(6) is a martingale:

Vi(6) = EqlVi(6)/F) = EolVe(6)) + / (0., dS.).

The first term is e "7 Eg[X] and the process « is identified as the required process, the
strategy 6 on coordinates 1,--- , V.

Conversely, if « exists, let us define the strategy

n

T
0 =a', i=1,---,n; 0°=e"TEG[c(T)] +/ (arg, dS) Z (0,50,
0 1

We check that this strategy actually hedges the claim X, thus simulable, then that
this strategy 6 is actually self-financing. °

Let us admit the theorem:

Theorem 8.13. Let Q be a risk neutral probability measure. If Fo = {2, 0), the following
are equivalent:

(i) The market is complete with respect to price system {S}.
(ii) Qs = {Q}

Proof: Exercise, in case of N assets, semi martingales driven by a d—Brownian motion

d
dS} = Sibidt + S}y o/dB], i=1,-- n.

Jj=1
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9 EXERCISES

We consider that we are on a filtered probability space (2, A, (F;),P).
i(*) means exo i is difficult to solve but its result is useful.

9.1 Prerequisites: conditional expectation, stopping time

0. Recall Borel-Cantelli and Fatou lemmas.

1. Let G be a sub-o algebra of A and an almost surely positive random variable X.
Prove that the conditional expectation E[X/G] is also strictly positive.
Prove that the reciprocal is false given a contra-example (for instance use the trivial
o-algebra G).

2. Let G CH C Aand X € L*(Q, A, P). Prove (Pythagore Theorem):

E[(X — E[X/G))*) = E(X — E[X/H])*] + E[(E[X/H] — E[X/G])’]

3. Let O be an open sand in A and a F—adapted continuous process X. One notes
T() = Hlf{t . Xt S O}

Prove that Ty is a stopping time.

4. Let be stopping times S and 7.
(i) Prove that S AT is a stopping time.
(ii) Prove
Fonr = Fs N Fr.

5. Let be T a stopping time and A € A. Prove that

Th=T sur A,

=+o0o sur A

is a stopping time if and only if A € Fr.

6. A real random variable X is Fp measurable if and ounly if Vi > 0, X1, is F;
measurable.

7. Let X € L' and a family of o-algebras F*, o € A. Then the family of conditional
expectations { E[X/F*],a € A} is uniformly integrable.

8. let X be a F-progressively measurable process and T" a (F;) stopping time. Then
(i) the application w +— Xy (w) is Fr-measurable
(ii) the process t — X1 is F-adapted.

9. If X is an adapted measurable process admitting cad or cag trajectories, it is
progressively measurable.

67



9.2 Martingales

1. Let X be a martingale, ¢ a function such that V¢t p(X;) € L.

(i) if ¢ is a convex function, then ¢(X) is a sub-martingale ; if ¢ is a concave function
©(X)is a super-martingale.

(ii) When X is a sub-martingale and ¢ an increasing convex function such that V¢ ¢(X;) €
L', then ¢(X) is a sub-martingale.

2. Martingale convergence: admit the following: let X be a cad super (or sub)-
martingale such that sup, F[|X;|] < co. Then lim;_,., X; exists almost surely and belongs
to L'(Q, A, P).

And deduce the Corollary : if X is a cad bounded from below super-martingale, then
limy o, X; exists almost surely and belongs to L'(2, A, P).

3. let X be a martingale. Prove the following are equivalent:
(i) X is uniformly integrable.
(ii) X; converges almost surely to Y (which belongs to L') when ¢ goes to infinity and
{X;,t € R"} is a martingale.
(iii) X; converges to Y in L' when ¢ goes to infinity.

Indication: (i) — (iti) — (i7) — (4)
4. let be (X;);>0 a positive right continuous upper-martingale and
T =inf{t >0 : X, = 0}.

(i) Prove that almost surely V¢ > T, X; = 0. (First prove E(X;17<) = 0.)
(i) Prove that almost surely X, = lim; ., X; exists. Deduce:

{Xw >0} C{Vt, X;>0}={T = +o0}.
Give a contra-example using
{Xw >0} A A{T = +00}.

5. If M € My, is such that E[M}] < coVt, then M is a ’true’ martingale.
Moreover suppose E[M*] < oo, then M is uniformly integrable.

6. If X is a closed martingale with Z, meaning Z is integrable and V¢, X; = E[Z/F],
prove that it also closed with lim; ., X; denoted as X, equal to E[Z/ Vi>¢ Fil.
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9.3 Brownian motion

1. Prove that the real Brownian motion is a centered continuous Gaussian process with
covariance function p(s,t) = s At.

Conversely a centered continuous Gaussian process with covariance function p(s,t) = sAt
is a real Brownian motion.

2. Prove that the Brownian motion is a martingale with respect to its proper filtration,
ie. Ft =0(Bs,s <t).
Prove that it is also a Markov process.

3. Let be G, = 0(Bs,s < t) VN,t > 0. Prove this filtration is cad, meaning G+ =
r_]s>tgs-
Indication: use
1. the G+-conditional characteristic of the vector (By, B,), z,u > t is the limit of G-
conditional characteristic function of the vector (By, B.), when w decreases to t,
2. this limit is equal to the G;-conditional characteristic of the vector (B, B,), z,u > t,
3. thus for any integrable Y E[Y /G| = E[Y/G]. So any G+ -measurable is Gi-measurable
and conclude.

4(*). Paley-Wiener-Zygmund’ Theorem, 1933, cf.pp. 110-111, Karatzas-Schreve. For
almost all w € ), the application ¢ +— B;(w) is not differentiable. More specifically, we
have

(Bisn — By)(w)
h

By, — B
= +o0 and li_mh_>0+( asl . 210 =—o0}=1.

]P{(JJ € Q: Vt, %h_ﬂ)wL

6. Let be (B;) a real Brownian motion.
a) Prove that the sequence % goes to 0 almost surely.
b) Use that B is a martingale and a Doob inequality (cf. Theorem 0.30 page 8 Lecture
Notes) to deduce the majoration
B 4
E[sup (71)?) < =

o<t<T t o?

¢) Let be 7 = 20 = 2"™, give a bound for P{supyncycon:1|5:| > €} that proves the
convergence of this sequence, then apply Borel Cantelli lemma.

d) Deduce limy_, % = 0 almost surely. (meaning the large numbers law, cf. problem
9.3, correction pages 124-125, in Karatzas-Schreve.)

7. Let be Y; =t.By); ; Yo =0 and .7-?/ the natural filtration associated to the process
Y. Prove that (V;, FY) is a Brownian motion (use the criterium in 1 and exercise 6 above).
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9.4 Stochastic integral

In this section and the following let be M square integrable martingale on the filtered
probability space (2, F;, P) such that d(M), is absolutely continuous w.r.t. Lebesgue
measure dt: 3 f measurable positive function on [0,T] s.t. d(M); = f(t)dt.

1. Let be L7 (M) the set of adapted processes X on [0, 7] such that:

T
(X]3 = E[/ X2d < M >,] < +oo.
0

Prove that Lr(M) is a metric space w.r.t. the distance d: d(X,Y) = /[X — Y]2.
Actually it is a semi-norm which defines an equivalence relation X ~Y if d(X,Y) = 0.
2. Prove the equivalence

> 27 inf(1[X - X,];) = 0= VT, [X — X,]r — 0.
J>1

3. Let be S the set of simple processes for which is defined the stochastic integral w.r.t.
M :
J—1
L(X) = Z:Xj(Mtj+1 — My,) + X (M, — M) on the event {t; <t <t;.}.
=0
Prove that I; satisfies the following:

(i) I; is a linear application on S.

(i) [;(X) is ]-"t—measurable and square integrable.

(i) E[L(X)] =

(iv) I;(X) is a continuous martingale.

(v) E[(L(X) = I(X))?/F] = Bl (X) = I2(X)/F] = E[[; X2d < M >, |F].
(vi) E[L(X)]? = E[fy X2d < M >,] = [X]}.

(vil) < [(X) >= fo X2d < M >, .
Indication: actually, (vi) and (vii) are consequence of (v).

4. Prove Proposition 2.18: Let M and N be two square integrable continuous martin-
gales, X € L*(M) and Y € L*(N). Then:

t

(31) (X.M,Y.NY, = / X,Y,d(M, N, ¥t € R, P a.s.
0

and

/XdM/YdN/]—“ /XYd(MN>/]—"] Vs <t, Pas.

5. Prove that stochastic integral is associative, meaning: if H is stochastically in-
tegrable w.r.t. the martingale M, giving the integral H.M, and if G is stochastically
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integrable w.r.t. the martingale H.M, then G.H is stochastically integrable w.r.t. the
martingale M and:
G.(HM)=(G.H).M

6. Let be M a continuous martingale and X € L(M). let be s < t and Z a Fs-
measurable bounded random variable. Compute E[fst 77X, dM,—7 fst X, dM,)?* and prove:

t t
/ZXudMu:Z/ XydM,.

6. Let be T a stopping time, two processes X and Y such that X7 = Y7, two
martingales M and N such that M7 = N7, Suppose X € L(M) and Y € L(N). Prove
that I,/ (X)T = In(Y)T.

(Use that for any square integrable martingale: M; =0 a.s. «<=< M >;=0 a.s.)

7. Let M and N square integrable continuous martingales, and processes X € L. (M),
Y € Lo(N). Prove that
(i) X.M and Y.N are uniformly integrable, with terminal value fooo X,dM, and fooo Y,dNj,.
(i) lims oo (X. M, Y.N); exists almost surely.

This is a direct application of Kunita- Watanabe’s inequality.

(iii) E[X. My Y-Noo| = E[[° X,Y,d(M, N),).

Use the followmg theorem: if M is a continuous local martingale such that E[(M )] <
00, then it is uniformly integrable and converges almost surely when t — oo. Moreover

E[(M)oo] = E[MZ].

8. Let be M and N two local continuous martingales and real numbers a and b,
X € Loo(M)N Lo(N). Prove that the stochastic integration with respect to the local
continuous martingales is a linear application, meaning X.(aM + bN) = aX.M + bX.N

9. Stratonovitch integral is defined as:
t t 1
/YSOdXS:/)/;OdXS—f—§<Y,X>t
0 0

Let be € = % Prove that:

[[]| =0

m—1
lim S.(IT) = Y [(1 = &)W, + Wy, |(Wi,,, — W, /WodW W
=0

where ||| = sup;(ti11 — ).
Let be X and Y two continuous semi-martingales,and 7 a partition [0,t]. Prove that

m—1

1 t
lim )" 5 Vi +Y2) (Xo, — Xo) = / Y, 0 dX,.
0

ll7]|—0 “—
=0

Let be X a d-dimensional vector of continuous semi-martingales, and f a C? function.
Prove that:
L of

0 0x; (X

f(Xe) = f(Xo) = s) 0 dX;.
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9.5 1It6 formula

1. The quadratic co-variation of two continuous square integrable semi martingales X
and Y is the limit in probability, when sup; |t;11 — t;| — 0 of:

(XYt_hmZXtm— (Y,

proba 4

Y,).

i+1 - 7,

Prove this co-variation is null when X is a continuous semi-martingale and Y a finite
variation process.

2. Lévy Theorem : Let be X a continuous (semi-)martingale, Xy = 0 almost surely.
X is a real Brownian motion if and only if X is a continuous local martingale s.t. (X); = t.
First step: compute the Fs-conditional characteristic function of X;— X using It6 formula,
Vs <t.

3. Prove that the unique solution in C; 2(R*, R of the partial differential equation (heat
equation)

o = AL (0.0) = gln), Vo e B
where p € C2(R?) is f(t,z) = E[¢(z + B;)], B d—dimensional Brownian motion.
could we avoid boundedness of f and ¢ ¢

4. Long and tedious proof... Let be M a d-dimensional vector of continuous mar-
tingales, A an adapted continuous d-dimensional vector with with finite variation, X, a
Fo-measurable random variable; let be f € CV2(R™, Rd) and X; := X+ M; + A;. Prove
that P almost surely:

_ ‘of ' Of i [
ft,X,) = f(o,X0)+/ E(S,Xs)ds—i‘/o ;axi(S’XS)dMSJF/O Zi:axi(
/Zax Or; XM, M),

5. a)Use exercise 4 with two semi-martingales X = Xo+ M + A and Y =Yy + N + C.
Prove that [ X.dY, = X,Y; — XoYp — [} YidX, — (X,Y),.
This the integral by part formula.

5, X, )dA"

b) Use Ito formula to get the stochastic differential of the processes
te X7t exp(Xy) st XY
6. Prove that
t t t
(eXp/ asds)(x + / bs exp(—/ a,du)dBs)
0 0 0
is solution to the SDE
dX; = a(t)X,dt + b(t)dBy, t € [0,T], Xo = =z,

after justification of any integral in the formula.
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9.6 Stochastic differential equations

1. Prove that the process t — (exp fot asds)(z + fot bs exp(— [ audu)dB,) is solution to
the SDE dX; = a(t)X,dt + b(t)dBy, t € [0,T], Xo = x, after justification of any integral
in the formula. (meaning specify useful hypotheses on parameters a and b.

2. Let be B a real Brownian motion. Prove that B? = 2 fot B,dBg +t.
If vt X € L4(B), then:

t t
(X.B)? =2 / (X.B),X.dB, + / X2ds.
0 0
Let be Z, = exp((X.B), — 1 [ X2ds). Prove that Z is solution to the SDE:
t
Zy=1 +/ Z XdBs.
0

Prove that Y = Z~! is solution to the SDE:

dY; = Yy (X}dt — X,dB;).

Prove that there exists a unique solution to the SDE d.X; = X;b;dt+ X;0:,dB;, X; =x € R
when b, 0% € L'(R"), computing the stochastic differential of two solutions ratio.
3. Let be Ornstein Uhlenbeck stochastic differential equation:

dXt = —OéXtdt + O'dBt7 XO =,
where x € L'(Fp).
(i) Prove that the following is the solution of this SDE:

¢
X, =e (z +/ 0e**dBy).
0

(ii) Prove that the expectation m(t) = E[X,] is solution of an ordinary differential
equation which is obtained by integration of X; = x — « f; Xsds + 0 By. Deduce m(t) =
m(0)e .

(iii) Prove the covariance

V(t) = Var[X,| = % + (V(0) — —

(iv) Let be x a Fy-measurable variable, with law N (0, %), Prove that X is a Gaussian

. . . 2 _ali—
process with co-variance function p(s,t) = Ze =5l
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9.7 Black-Scholes Model

to do with Man next week to prepare the terminal term test!
1.Assume that a risky asset price process is solution to the SDE
(33) dSt = Stbdt + StUth, SO =S,
b is named “trend’ and o “volatility”. Prove that (33) admits a unique solution, using Ito
. 1 . P .
formula to compute the ratio % with S*, 7 = 1,2 two solutions to the SDE.
2. Assume that the portfolio 6 value V;(6) is such that there exists a C? regular
function C satisfying

(34) Vi(0) = C(t, Sy).

Otherwise, 6 is the pair (a,d) and
t t
(35) Vi(0) = a7 + dpSy = Vo(0) + (0o, po) + / asdSy + / dsdSs.
0 0

With this “self-financing” strategy 6 the option seller (for instance option (Sr — K)™)
could “hedge” the option with the initial price ¢ = Vy: Vp(0) = C(T, St).

Use the two different expressions of stochastic differential of V;(), meaning starting with
(0o, po) + fot asdS? + fot dsdSs or with Vr(0) = C(T, St), to get a PDE (partial differential
equation) the solution of which will be the researched function C.

3. Actually this PDE is solved using the change of (variable function) :
r=ec'yeR; D(t,y)=C(te").
Thus, prove that we turn to the Dirichlet problem

oD oD 102D )
(¢ ——(t S = rD(t R
at(,yHray(,yHQayg(,y)d rD(t,y),y € R,

D(T,y)= (e — K)",y e R.

Now let be the SDE:
dXs =rds+odWs,s € [t,T], X; = .

Deduce the solution
D(t,y) = E,[e"" (X — K)*],

and the explicit formula, “Black-Scholes” formula, which uses the fact that the law of X
is a Gaussian law.
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9.8 Change of probability measures, Girsanov theorem

1. Let be the probability measure Q equivalent to P defined as Q = Z.P, Z € L*(Q, Fr,P)
meaning Q|F;, = Z,.P, Z, = Ep|Z/F].

Prove that V¢ and VY € L>*(Q, Fi, P), Ep|Y Z;/ Fs| = Z,EqlY | Fy.

Indication: compute VA € Fy, the expectations Ep[laY Z,] and Ep[laZ,EqlY/Fs]|.

2. Letbe T >0, 7 € M(P) and Q = ZyP, 0 < s <t < T and a J;—measurable random
variable Y € L'(Q). Prove (Bayes formula)

En(YZ, ) F,
(v /7, = RO,
3. Let be M a P-martingale, X € L(B) such that Z = £(X.B) is a P-martingale
(remember: dZ, = Z;XidBy, Zy = 1). Let be Q := ZrP an equivalent probability
measure to P on o-algebra Fr.
(i) Prove that d{(M, Z) = ZXd(M, B).
(ii) Use Ito formula to develop M;Z, — M,Z,, compute Ep[M,Z,/F,].
(iii) Use It6 formula between s and ¢ to process Z. fo X, d{M, B),.
(iv) Deduce M. — [; X,d(M, B), is a Q—martingale.
4. The following is a contra-example when Novikov condition is not satisfied: let be the stopping

time 7' = inf{1 > ¢ > 0,t+ B? = 1} and

2
Xt = _WBt]‘{tST} H 0 S t < 1, X1 = 0.

(i) Prove that 7" < 1 almost surely, so fol XZdt < co almost surely.

2
(ii) Apply It6 formula to the processt — (1372)2 ; 0 <t <1 to prove:

/leB—l/lXth——l—Z/TtBth<—1
T R .

(iii) The local martingale £(X.B) is not a martingale: we deduce from (ii) that F[&(X.B)] <
exp(—1) < 1 and this fact contradicts that for any martingale E(M;) = My, here it could be 1....
Anyway, prove that ¥n > 1 and o, = 1—(1/4/n), the stopped process E(X.B)?" is a martingale.
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9.9 Representation theorems, martingale problem

Recall:
={M € M?**, My=0,{M) € L'},
M and N are said to be orthogonal if E[M., N.] =0, noted M LN,
and strongly orthogonal if M N is a martingale, noted as M t V.
Let be A C H2: denote S(A) the smallest stable closed vector subspace which contains A.

1. Let be M € H2 and Y a centered Bernoulli random variable independent on M.
Let be N :=Y M. Prove M 1N but no M { N.

2. Let be M(A) the set of probability measures @ on Fo, Q@ << P, Pz, = Q|5,, and
such that A C HZ(Q). Prove that M(A) is convex.

Study carefully the difference between M(A) and M (A) (cf. Def 6.1 and 6.17 in Lecture
Notes).

3. Let be B a n—dimensional Brownian motion on (2, 7;,P). Prove that VM € M®%%
JH' € P(B"),i =1,--- ,n, such that:

M, = M0+Z (H'.BY)

=1

Indication: apply extremal probability measure theorem (th 6.14) to the set M (B) (actually the
singleton {P}) when B is the set of Brownian motion.

4. Prove that the above vector process H is unique, meaning VH' satisfying M; = My +
S (H".B%); is such that :

/ Z |HY — H|?ds = 0 almost surely.
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9.10 Example: optimal strategy for a small investor

To do later to prepare the terminal term test....

Let be a set of price processes: S}' = &(X™),t € [0,T], with:
d .
dX] = "o} (t)dW] + b (t)dt,n =1, ,N;dX{ = rydt.
j=1

Suppose the matrix o satisfies dt ® dP almost surely : oo* > «l, o* is the transpose matrix of
o and a > 0. The coefficients b, o, r areF —adapted bounded [0, 7] x € processes.
1. Look for a condition so that the market is viable, meaning a condition such that there is no
arbitrage opportunity.
(i) Prove that a market is viable as soon as there exists a risk neutral probability measure Q.
(ii) Propose some hypotheses on the above model, sufficient for the existence of Q.
(iii) Propose some hypotheses on the above model, sufficient for the market be complete, meaning
any contingent claim is “attainable” (hedgible).
Start with case N =d =1, then N =d > 1.
Remark: If d < N and o surjective, there is no uniqueness of vector u so that odW + (b—r)dt =
odW . In this case, the market is not complete and the set Qg is bijective with o~ (7 — b).
Recall: let be a set of price processes S, a risk neutral probability measure on(,(F;)) is a
probability measure @ equivalent to IP such that the discounted prices e~"*S™, denoted as S are local
@-martingales; denote their set Qg.
2. Let be 6 an admissible strategy. Prove it is self-financing if and only if the discounted portfolio
value V;(S) = e "'V;(9) satisfies:

t
T1(S) = V() +/ < 0..d5, > .
0

Use Ito formula; then deduce that (V;(S)) is a local Q-martingale YQ € Qg.
3. Prove the equivalence between the three properties defining the self-financing admissible
strategy 6 as an arbitrage strategy :

(00, S0) <0 and (67, ST) > 0 almost surely and # 0 with probability > 0,
(00, S0) <0 and (07, St) > 0 almost surely,
(0o, So) = 0 and (A7, S7) > 0 almost surely and # 0 with probability > 0.

4. Prove Theorem 8.9: If the set Qg is non empty, then the market is viable.
5. A sufficient and necessary condition for a strategy (m,c) to be admissible: let be fixed the

discounted “objective” consumption fOT e "cgds. Prove that

T
(%) EQ[/O e "egds) < x

is equivalent to the existence of an admissible strategy 7 such that X = x + fOT Ws.dgs.
6. Optimal strategies: Prove that actually the problem is as following: the small investor
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evaluates the quality of his investment with an “utility function” (U; is positive, concave, strictly
increasing, C! class); he look for the maximization:

T
(¢, X1) — E]P[/o Ui(cs)ds + Ua(X7)]

under the above constraint 5 (*). Solve this constrained optimization problem using Lagrange
method and Kuhn and Tucker Theorem.
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