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Stochastic calculus applied in Finance

This course contains seven chapters after some prerequisites, 18 hours plus exercises
(12h).

0.1 Introduction, aim of the course, agenda

The purpose is to introduce some bases of stochastic calculus to get tools to be applied
to Finance. Actually, it is supposed that the �nancial market proposes assets, the prices
of them depending on time and hazard. Thus, they could be modelized by stochastic
processes, assuming theses prices are known in continuous time. Moreover, we suppose
that the possible states space, Ω, is in�nite, that the information is continuously known,
that the trading are continuous. Then, we consider that the model is indexed by time
t, t ∈ [0, T ] or R+, and we will introduce some stochastic tools for these models.

Remark that actually the same tools could be useful in other areas, other than �nancial models.

(0) Prerequisites in Probability theory.
(i) Brownian motion: this stochastic process is characterized by the fact that little incre-
ments model the �noise�, the physical measure error.... The existence of such a process is
proved in the �rst chapter, Brownian motion is explicitly built, some of useful properties
are shown.
(ii) Stochastic integral: actually Itô calculus allows to get more sophisticated processes
by integration. This integral is de�ned in second chapter
(iii) Itô formula allows to di�erentiate functions of stochastic processes.
(iv) Stochastic di�erential equations: linear equation goes to Black-Scholes model and a
�rst example of di�usion. Then Ornstein-Uhlenbeck equation models more complicate
�nancial behaviors.
(v) Change of probability measures (Girsanov theorem) and martingale problems will be
�fth chapter. Indeed, in these �nancial models, we try to set on a probability space where
all the prices could be martingales, so with constant mean; in such a case, the prices are
said to be �risk neutral�. Thus we will get Girsanov theorem and martingale problem.
(vi) Representation of martingales, complete markets: we introduce the theorem of mar-
tingale representation, meaning that, under convenient hypotheses, any FT -measurable
random variable is the value at time T of a martingale. In this chapter we also consider
complete markets.
(vii) A conclusive chapter apply all these notions to �nancial markets : viable market,
complete market, admissible portfolio, optimal portfolio and so on in case of a small
investor. We also look (if time enough) at European options.
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0.2 Prerequisites

Some de�nitions : on a set Ω a σ-algebra is a set A of subsets satisfying :
• ∅ ∈ A,
• if A and B ∈ A, then A ∪B, A ∩B, Ac = Ω− A ∈ A,
• if ∀n, An ∈ Ω and An ⊃ An+1, ∩nAn ∈ A.

A probability on A is an application P : A 7→ [0, 1] such that P(Ω) = 1; P(Ac) =
1−P(A); if A and B ∈ A and A∩B = ∅, P(A∪B) = P(A)+P(B); P(∩nAn) = limn P(An).

A probability space is the triplet (Ω,A,P).
Actually it a positive bounded measure on (Ω,A).

An important example of σ-algebra on R,Rd is the Borel σ-algebra generated by the
open subset, meaning the smallest σ-algebra containing the open (or the closed) subsets.

A �ltration is a set of increasing σ-algebras (Ft, t ∈ R+), and a �ltered probability
space is the set (Ω,A, (Ft, t ∈ R+),P), ∀t,Ft ⊂ A.

A random variable X on (Ω,A,P) to a measurable space (E, E) is an application
from Ω to E such that ∀A ∈ E , the reciprocal set X−1(A) ∈ A. It is said to be A-
measurable.
We denote the expectation EP[X] =

∫
Ω
X(ω)dP(ω), and E[X] if there is no ambiguity.

A stochastic process is an application X on Ω× R+. When ω is �xed, t 7→ X(ω, t)
is named a trajectory; this one could be continuous, right continuous (càd) left limited
(làg), and so on.

On a �ltered probability space, a process is said to be adapted to the �ltration when
∀t, X(., t) is Ft-measurable.

0.3 Some convergences

De�nition 0.1. Let Pn series of probability measures on a metric space (E, d) endowed
with Borel σ-algebra B, and P measure on B. The series (Pn) is said to weakly converge
to P if ∀ ∈ Cb(E), Pn(f) → P(f).

De�nition 0.2. Let (Xn) a series of random variables on (Ωn,An,Pn) taking their
values in a metric space (E, d,B). The series (Xn) is said to converge in law to
X if the series of probability measures (PnX

−1
n ) weakly converges to PX−1, meaning:

∀f ∈ Cb(E), Pn(f(Xn)) → P(f(X)).

- Lp convergence: E[|Xn −X|p] → 0.

- convergence in probability: ∀ε, P{ω : |Xn(ω)−X(ω)| ≥ ε} → 0.

- almost sure convergence: P{ω : limnXn(ω) = X(ω)} = 1.

- limit sup and limit inf of sets: lim infnAn = ∪n ∩k≥n Ak, lim supnAn = ∩n ∪k≥n Ak.

We can express almost sure convergence:

∀ε, P(lim inf
n
{ω : |Xn(ω)−X(ω)| ≤ ε} = 1.
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And the following is now obvious:

Proposition 0.3. Almost sure convergence yields probability convergence.

Proposition 0.4. Lp convergence yields probability convergence.

- Lebesgue theorems: monotoneous, bounded convergence.

Theorem 0.5. Fatou: For all series of events (An)

P(lim inf
n
An) ≤ lim inf

n
P(An) ≤ lim sup

n
P(An) ≤ P(lim sup

n
An).

Theorem 0.6. Borel-Cantelli:∑
n

P(An) <∞ ⇒ P(lim supAn) = 0.

When the events An are independent and
∑

n P(An) = ∞, then P(lim supAn) = 1.

Proofs of these two theorem to be done as exercises: (I.0).

De�nition 0.7. A family of random variables {Uα, α ∈ A} is uniformly integrable

when

lim
n→∞

sup
α

∫
{|Uα|≥n}

|Uα|dP = 0.

Theorem 0.8. The following are equivalent:

(i) Family {Uα, α ∈ A} is uniformly integrable,

(ii) supαE[|Uα|] <∞ and ∀ε,∃δ > 0 : A ∈ A et P(A) ≤ δ ⇒ E[|Uα|1A] ≤ ε.

RECALL: an almost surely convergent series which get a uniformly integrable

family, moreover converges in L1.
Xn → X in L1 if and only if the family (Xn, n ≥ 0) is uniformly integrable and

Xn → X in probability.

0.4 Conditional expectation

De�nition 0.9. Let X a random variable belonging to L1(Ω,A,P) and B a σ-algebra
included in A. EP(X/B) is the unique random variable in L1(B) such that

∀B ∈ B,
∫
B

XdP =

∫
B

EP(X/B)dP.

Corollary 0.10. If X ∈ L2(A), ∥X∥22 = ∥EP(X/B)∥
2
2 + ∥X − EP(X/B)∥

2
2.

Exercises : Let X ∈ L1 and a family of σ-algebras Fα, α ∈ A. Then the family of
conditional expectations {E[X/Fα], α ∈ A} is uniformly integrable.
Then Ex. 1.1 1.2 1.7.
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0.5 Stopping time

This notion is related to a �ltered probability space.

De�nition 0.11. A random variable T : (Ω,A, (Ft),P) → (R+,B) is a stopping time

if ∀t ∈ R+, the event {ω/T (ω) ≤ t} ∈ Ft.

Examples :

- a constant variable is a stopping time,

- let O be an open set in A and X a continuous process, then

TO(ω) = inf{t,Xt(ω) ∈ O}

is a stopping time, called `hitting time'.

De�nition 0.12. Let T be a stopping time in �ltration Ft. The set
FT = {A ∈ A, A ∩ {ω/T ≤ t} ∈ Ft} is called stopped σ-algebra at time T.

De�nition 0.13. The process X.∧T is called �stopped process at T �, denoted as XT .

Exercises I 3 to 8. The 1.6 is important, as a proposition: A random variable X is
FT−measurable if and only if ∀t ≥ 0, X1{T≤t} is Ft−measurable.

0.6 Martingales

(cf. [30] pages 8-12 ; [20] pages 11-30.)

De�nition 0.14. An adapted real process X is a martingale (resp super/sub) if
(i) Xt ∈ L1(Ω,A,P),∀t ∈ R+,
(ii) ∀s ≤ t, E[Xt/Fs] = Xs. (resp ≤,≥ .)

Lemma 0.15. Let X be a martingale and φ a function such that ∀t ϕ(Xt) ∈ L1.
If φ is a convex function, then φ(X) is a sub-martingale.
If φ is a concave function, then φ(X) is an super-martingale.

When X is a sub-martingale and ϕ an increasing convex function (s.t. ∀t ϕ(Xt) ∈ L1),
then ϕ(X) is a sub-martingale.

Proof exercise II.1.

De�nition 0.16. The martingale X is said to be closed by Y ∈ L1(Ω,A,P) if Xt =
E[Y/Ft].

Corollary 0.17. A closed martingale is uniformly integrable.

Proposition 0.18. Any martingale admits a càdlàg modi�cation (cf [30]).

càdlàg means right continuous left limited, it is a french acronym
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Theorem 0.19. convergence of martingales: Let X be a càd super (or sub)-martingale
such that suptE[|Xt|] <∞. Then limt→∞Xt exists almost surely and belongs to L1(Ω,A,P).
If X is a martingale closed by Z, it is too by limt→∞Xt, denoted as X∞, equal to
E[Z/ ∨t≥0 Ft].

The proof is really sophisticated and long enough, so we skip it.

Corollary 0.20. A below bounded super-martingale converges almost surely to in�nity.

Proof. : Let X be an super-martingale, such that there exists a ∈ R, Xt(ω) ≥ a almost
surely. So, Xt − a is too a super-martingale satisfying 0 ≤ Xt − a and 0 ≤ E[Xt −
a] = E(|Xt − a|]. But the super-martingale property tells E[Xt − a] ≤ E[X0 − a]. So ∀t
0 ≤ E(|Xt− a|] ≤ E[X0− a]. The theorem property is satis�ed and concludes the proof.•

Theorem 0.21. In case of L1 bounded martingale (meaning exactly suptE[|Xt|] < ∞)
there exists Y and Z positive martingales such that almost everywhere for all t, Xt =
Yt − Zt.

As a consequence, in many proofs, we could suppose that the martingale

could be positive.

Theorem 0.22. Let X be a martingale. The followings are equivalent :
(i) X is uniformly integrable,
(ii) Xt converges almost surely to Y, Y belonging to L1, when t goes to in�nity, and

{Xt, t ∈ R+} is a martingale,
(iii) (Xt) L

1 converges to Y when t goes to in�nity.

Proof. = exercise II.3: (i) ⇒ (iii) ⇒ (ii) ⇒ (i).

The following is a corollary which stresses the point (ii) above : {Xt, t ∈ R+} is a
martingale.

Corollary 0.23. Let X be a uniformly integrable martingale; then the almost sure limit
Y of Xt when t goes to in�nity exists and belongs to L1. Moreover Xt = E[Y/Ft].

Actually the hypothesis �X be a uniformly integrable martingale� is the point (i) in
previous theorem, so we get assertion (ii) which is exactly the corollary conclusion.

•

Notation: let X be a stochastic process and T a stopping time on the �ltered prob-
ability space (Ω,A, (Ft),P). Then XT is the random variable ω → XT (ω)(ω).
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Theorem 0.24. Doob: Let (Xt, t ∈ R+) be a càd F-martingale, S and T F-stopping
times such that:
(i) E[|XS|], E[|XT |] <∞,
(ii) limt→+∞

∫
{T>t} |Xt|dP = limt→+∞

∫
{S>t} |Xt|dP = 0,

(iii) S ≤ T <∞ almost surely.
Then E[XT/FS] = XS P− almost surely.

Let X be a càd sub-martingale with terminal value X∞, let two stopping times S and
T satisfying (i)(ii)(iii). Then:

XS ≤ E[XT/FS] P− almost surely.

Proof: pages 19-20 [20]: to be detailed.

We provide the proof only in case of closed martingale: ∀t, Xt = E[X∞/Ft].Moreover,
we restrain to the case of Xt ≥ 0 without loss of generality, since a closed martingale can
be written as following: Xt = E[X+

∞/Ft]−E[X−
∞/Ft], di�erence between two non negative

martingales.
(i) The �rst step will be to prove that in such a case, for all stopping time T :

(1) XT = E[X∞/FT ].

Then if S ≤ T, FS ⊂ FT and

E[XT/FS] = E[E[X∞/FT ]/FS] = E[X∞/FS] = XS.

(ii) The second step is to consider T deterministic : then (1) is only the de�nition of a
closed martingale.
(iii)We now consider that the stopping time T is such that T (Ω) is the discrete real
subspace {t1, · · · , tn, · · · }. Then

XT1T=tn = Xtn1T=tn = E[X∞/Ftn ]1T=tn .

On another hand, XT is both FT−measurable and integrable (assumption (i)). Let A ∈
FT and compute

E[X∞1A] =
∑
n

E[X∞1A1T=tn ] =
∑
n

E[Xtn1A1T=tn ]

since A ∩ {T = tn} ∈ Ftn and positiveness allows the commutation between
∑

and E.

E[X∞1A] =
∑
n

E[XT1A1T=tn ] = E[XT1A]

so (1) is satis�ed.
(iv) Let T a general stopping time: there exists a decreasing sequence of stopping times
Tn, Tn ↓ T and ∀n, Tn satis�ed step (iii): so ∀n,

XTn = E[X∞/FTn ].
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The right continuity tells us that the left hand above goes to XT almost surely.
Actually, (XTn) is a backward martingale, uniformly integrable, so we admit that this
convergence is too a L1 convergence.

Moreover Tn ≥ T implies FT ⊂ FTn and we get

E[X∞/FT ] = E[E[X∞/FTn ]/FT ] = E[XTn/FT ].

Using the almost sure and L1 convergence of (XTn) to XT , the right hand above converges
to XT and (1) is proved.

•

Corollary 0.25. Under the same assumptions

E[Xt∧T/FS] = Xt∧S.

Proof. : Doob theorem applied to stopping times t∧T, t∧S yields E[Xt∧T/Ft∧S] = Xt∧S.
But actually, we can prove that E[Xt∧T/FS] is Ft∧S-measurable
(not so obvious, to detail...).
Then we can identify E[Xt∧T/FS] as E[Xt∧T/Ft∧S]. •

De�nition 0.26. The increasing process ⟨M⟩ (�bracket�) is de�ned as:

t 7→ ⟨M⟩t = lim
|π|→0

proba
∑
ti∈π

(Mti −Mti−1
)2

π being partitions of [0, t] and |π| = supi(ti+1 − ti).

In next chapter, we will show that if M = B is Brownian motion then ⟨B⟩t = t.

Remark 0.27. The squarred integrable martingales admit a bracket.

Proposition 0.28. ⟨M⟩t is the adapted increasing continuous unique processus such that
M2

t − ⟨M⟩t is a martingale.

This proposition is often used as the bracket de�nition and then De�nition 0.26 is a
consequence.
Proof: We can write M2

t − ⟨M⟩t as the limit in probability of

[
∑
ti∈π

(Mti −Mti−1
)]2 −

∑
ti∈π

(Mti −Mti−1
)2

and we developp the square

[
∑
ti∈π

(Mti −Mti−1
)]2 −

∑
ti∈π

(Mti −Mti−1
)2 = 2

∑
i<j

(Mti −Mti−1
)(Mtj −Mtj−1

).

We now take the Fs conditional expectation above,

E[M2
t −
∑
ti∈π

(Mti−Mti−1
)2/Fs] =M2

s−
∑
ti≤s

(Mti−Mti−1
)2+2E[

∑
s≤ti<tj

(Mti−Mti−1
)(Mtj−Mtj−1

)/Fs].
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But for any s ≤ ti < tj,

E[(Mti −Mti−1
)(Mtj −Mtj−1

)/Fs] = E[(Mti −Mti−1
)E[(Mtj −Mtj−1

)/Fti ]/Fs] = 0.

Thus we can conclude getting |π| to 0. •

Corollary 0.29. For any pair s ≤ t, E[(Mt −Ms)
2/Fs] = E[(⟨M⟩t − ⟨M⟩s)/Fs].

Proof: We developp (Mt −Ms)
2 =M2

t − 2MsMt +M2
s ; since

E[Mt/Fs] =Ms, E[M2
t −2MsMs+M

2
s /Fs] = E[M2

t /Fs]−M2
s .We now set the di�erence

E[(Mt −Ms)
2]/Fs]− E[⟨M⟩t − ⟨M⟩s/Fs] = E[M2

t − ⟨M⟩t/Fs]−M2
s + ⟨M⟩s. •

Finally we admit some useful inequalities, (cf. [20] pp 13-14) namely Doob's inequali-
ties (i) (ii) and Burkholder-Davis-Gundy inequality (iii).

Theorem 0.30. Let X be a càd sub martingale and 0 ≤ σ < τ , λ > 0. Then

(i) λP{ sup
σ≤t≤τ

Xt ≥ λ} ≤ E[X+
τ ].

(ii) ∀p > 1, E[ sup
σ≤t≤τ

|Xt|p] ≤ (
p

p− 1
)pE[|Xτ |p]

(iii) If X is a local martingale, X0 = 0, ∀p ≥ 1, there exists Cp > cp > 0 such that

∀ stopping time τ, cpE[⟨X⟩τ |p] ≤ E[(sup
t≤τ

|Xt|2p)] ≤ CpE[⟨X⟩pτ ]

where ⟨X⟩ is the bracket.

Finally we provide a useful sub martingale decomposition:

Theorem 0.31. Let be X a sub martingale of �class D� (meaning the family
{XS, S being F stopping times} is uniformly integrable). Then there exists a martingale
M and an increasing process A such that almost surely Xt =Mt + At.

De�nition 0.32. A process X is said to be �progressively measurable" for �ltration
(Ft, t ≥ 0) if ∀t ≥ 0, ∀A ∈ B(R) : {(s, ω)/0 ≤ s ≤ t ; Xs(ω) ∈ A} ∈ B([0, t])⊗Ft,
meaning that the application on ([0, t]× Ω,B([0, t])⊗Ft) : (s, ω) 7→ Xs(ω) is measurable.

Proposition 0.33. (cf [20], 1.12) If X is a adapted measurable process, it admits a
progressively measurable modi�cation.

Proof: cf. Meyer 1966, page 68.

0.7 Local martingales

To stop a process at a convenient stopping time allows to get some uniformly integrable
martingales thus easy to manage with: we get results for all n, then n going to the in�nity
and using Lebesgue theorems (monotonous or bounded convergences). It is the reason of
the introduction of stopping times and local martingales. The set of local martingales is
denoted as Mloc.
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De�nition 0.34. (page 33 [30].) Let X an adapted càdlàg process. It is a local mar-
tingale if there exists a series of stopping times (Tn)n, increasing to in�nity, so that ∀n
the stopped process XTn

. is a martingale.

Theorem 0.35. (cf [30], th. 44, page 33) Let M ∈ Mloc and T stopping time such that
MT is uniformly integrable.

(i) S ≤ T ⇒MS is uniformly integrable.

(ii) Mloc is a real vector space.

(iii) if MS and MT are uniformly integrable, then MS∧T is uniformly integrable.

Notation :
M∗

t = sup
0≤s≤t

|Ms| ; M∗ = sup
0≤s

|Ms|.

Theorem 0.36. (cf [30], th. 47, page 35) If M ∈ Mloc is such that E[M∗
t ] <∞∀t, then

M is a �true� martingale.
If moreover E[M∗] <∞, then M is uniformly integrable.

Proof: to be admitted.
(i) ∀s ≤ t, |Ms| ≤ M∗

t belongs to L1. The sequence Tn ∧ t is increasing to t and

E[MTn∧t/Fs] = MTn∧s.

Taking almost sure limit in this equality and Lebesgue theorem allow the L1 convergence.

(ii) Then M is a martingale and M∗ is in L1. Martingale convergence theorem shows the almost sure
convergence of (Mt) to M∞. Finally, the uniform integrability is to be proved (using equivalent de�nition
of uniform integrability).

0.8

The following concerns general culture, but out of the agenda.

De�nition 0.37. Let X and Y two processes, X is said to be a modi�cation of Y if:

∀t ≥ 0,P{Xt = Yt} = 1.

X and Y are said to be indistinguable if almost surely the trajectories coincide:

P{Xt = Yt, ∀t ≥ 0} = 1.

Remark 0.38. This second notion is stronger than the �rst one.

Proposition 0.39. Let X be a F-progressively measurable process and T be a (Ft) stopping time. Then
(i) the application ω 7→ XT (ω)(ω) is FT -measurable
(ii) and the process t 7→ Xt∧T is F-adapted.

Proof: (i) the fact that X is progressively measurable implies that for any Borel set A,

∀t, {(s, ω), 0 ≤ s ≤ t, Xs(ω) ∈ A} ∈ B[0,t] ⊗Ft.

Then {ω : XT (ω)(ω) ∈ A} ∩ {ω : T (ω ≤ t} = {ω : XT (ω)∧t(ω) ∈ A} ∩ {T ≤ t}.
T is a F-stopping time, so the second event belongs to Ft, and because of progressively measurability

the �rst is too.

(ii) This second assertion moreover shows that XT is too F-adapted.
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Proposition 0.40. (cf [20], 1.13) If X is an adapted measurable process and admits càd or càg trajec-
tories, it is progressively measurable.

Proof: De�ne

X(n)
s (ω) = X(k+1)t2−n(ω), s ∈] kt

2n
,
(k + 1)t

2n
], X

(n)
0 (ω) = X0(ω) ; k = 0, · · · , 2n − 1.

Obviously the application (s, ω) 7→ X
(n)
s (ω) is B([0, t])⊗Ft-measurable. Using right continuity, the series

X
(n)
s (ω) converges to Xs(ω) ∀(s, ω) then the limit is too B([0, t])⊗Ft-measurable.
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1 Introduction of Wiener process, Brownian motion

[20] pages 21-24 ; [30] pages 17-20.

Historically, this process �rst models the irregular motion of pollen particles suspended
in water, observed by Robert Brown in 1828. This leads to dispersion of micro-particles
in water, also called a �di�usion� of pollen in water. In fact, this movement is currently
used in many other models of dynamic phenomena:

- Microscopic particles in suspension,

- Prices of shares on the stock exchange,

- Errors in physical measurements,

- Asymptotic behavior of queues,

- Any behavior from dynamic random (stochastic di�erential equations).

De�nition 1.1. The Brownian motion orWiener process is a process B on a �ltered
space (Ω,A,Ft,P), adapted, continuous, taking its values in Rd such that:

(i) B0 = 0, P-almost surely on Ω,

(ii) ∀s ≤ t, Bt − Bs is independent of Fs, with centered Gaussian law with variance
matrix (t− s)Id.

Consequently, let a real sequence 0 = t0 < t1 < · · · < tn < ∞, the sequence (Bti −
Bti−1

)i follows a centered Gaussian law with variance matrix diagonal, diagonal (ti−ti−1)i.
B is said to be a, independent increments process.

The �rst problem we solve is the existence of such a process. There are several classical
constructions.

1.1 Existence based on vector construction, Kolmogorov lemma

([20] 2.2 ; [30] pages 17-20.) Very roughly, to get an idea without going into detailed
proofs (long, delicate and technical), we proceed as follows. Let Ω be C(R+,Rd) and
B(t, ω) = ω(t) be the �coordinate applications� called trajectories. Space Ω is endowed
with the smallest σ-algebra A which implies the variable {Bt, t ∈ R+} measurable and
with �natural� �ltration generated by the process B : Ft = σ{Bs, s ≤ t}. On (Ω,A)
the existence of a unique probability measure P is proved, satisfying ∀n ∈ N, t1, · · · , tn ∈
R+, B1, · · · , Bn being Borel of Rd :

P{ω/ω(ti) ∈ Bi∀i = 1, · · · , n} =

∫
B1

· · ·
∫
Bn

p(t1, 0, x1)p(t2−t1, x1, x2) · · · p(tn−tn−1, xn−1, xn)dx1..dxn,

where p(t, x, y) = 1√
2πt
e−

(y−x)2

2t .
Then the point is to show:

- This well de�nes a probability measure on the σ-algebra A.
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- Under this probability measure, the process t 7→ ω(t) is a Brownian motion according
to the original de�nition.

De�nition 1.2. This probability measure P is named the Wiener measure on Ω.

In fact, this de�nes a probability measure on the Borel sets of the application space
A(R+,Rd), Ω not being one of its Borel sets. Instead of that, we choose Ω = A(R+,Rd)
and Kolmogorov theorem (1933).

De�nition 1.3. A consistent family of �nite dimensional distributions (Qt, t n-uple R+)
is a family of measures on (Rd,B(Rd)) such that

- if s = σ(t), s and t ∈ (R+)n, σ a permutation of integers {1, · · · , n} A1, · · · , An ∈
B(Rd), then Qt(A1, · · · , An) = Qs(Aσ(1), · · · , Aσ(n),

- and if u = (t1, · · · , tn−1), t = (t1, · · · , tn−1, tn),∀tn, Qt(A1, · · · , An−1,R) = Qu(A1, · · · , An−1).

Theorem 1.4. (cf [20] page 50 : Kolmogorov, 1933) Let (Qt, t ∈ (R+)n) be a consistent
family of �nite dimensional distributions.
Then there exists a probability measure P on (Ω,B(Ω)) such that for all B1, · · · , Bn ∈
B(Rd),

Qt(B1, · · · , Bn) = P{ω/ω(ti) ∈ Bi, i = 1, · · · , n}.

We apply this theorem to the family of measures

Qt(A1, · · · , An) =

∫
ΠiAi

p(t1, 0, x1) · · · , p(tn − tn−1, xn−1, xn)dx.

Then we show the existence of a continuous modi�cation of the process= coordinate
applications of Ω (Kolmogorov-Centsov, 1956), to get to the existence of a continuous
modi�cation of the canonical process:

Theorem 1.5. (Kolmogorov-Centsov, 1956,cf [20] page 53, [30] page 171) Consider X
real random process on (Ω,A,P) satisfying:

∃α, β, C > 0 : E|Xt −Xs|α ≤ C|t− s|1+β, 0 ≤ s, t ≤ T,

then X admits a continuous modi�cation X̃ which is locally γ−Hölder continuous:

∃γ ∈]0, β
α
[, ∃h random variable > 0, ∃δ > 0 :

P{ sup
0<t−s<h;s,t∈[0,T ]

|X̃t − X̃s| ≤ δ|t− s|γ} = 1.

Remark that this theorem is also true for t ∈ Rd-indexed �elds.
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1.2 Second construction of Brownian motion, case d = 1

to skip in a �rst lecture

Once again we consider Ω = C(R+
,R), we de�ne on it:

ρ(ω1, ω2) =
∑
n≥1

2−n sup
0≤t≤n

(|ω1(t)− ω2(t)| ∧ 1)

meaning PROHOROV's distance.

Remark 1.6. This metric implies a topology which is the uniform on any compact convergence in prob-

ability. Ω = D(R+
,R) is a complete space with respect to this norm (cf. [30], page 49.)

On Ω, we call �nite dimensional cylindrical sets subsets as
A = {ω/(ω(t1), · · · , ω(tn)) ∈ B} where B is a Borel set of Rn

and t an n-uple of positive real numbers.
Then Ω is endowed with the σ-algebra generated by these sets and we show:

Proposition 1.7. (Exercise 4.2, [20] page 60) Let Gt be the σ-algebra generated by the cylindrical sets
related to n−uples (ti) such that ∀i, ti ≤ t.

- G = ∨tGt coincides with (Ω, ρ) Borel sets.

- If

φt : Ω → Ω

ω 7→ (s 7→ ω(s ∧ t))

then Gt = φ−1
t (G) meaning Ωt = C([0, t],R) Borel sets.

The construction is based on central limit theorem.

Theorem 1.8. let (ξn)n∈N be a sequence of independent random variables, same law, centered,with

variance σ2. Then

Sn =
1

σ
√
n

n∑
i=1

ξi converges in distribution to X of law N (0, 1).

This tool will allow us to explicitly build the Brownian motion; the following theorem is called
Donsker's invariance theorem.

Theorem 1.9. On a probability space (Ω,A,P) let be a sequence of independent random variables, same
law, centered,with variance σ2 > 0. Let be the family of continuous processes

Xn
t =

1

σ
√
n
[

[nt]∑
j=1

ξj + (nt− [nt])ξ[nt]+1].

Let Pn
be the measure induced by Xn on (C(R+

,R),G). Then Pn
weakly converges to P∗

, measure under

which Bt(ω) = ω(t) is a standard Brownian motion on C(R+
,R).

The long proof (7 pages, cf. [20]) is based on the following topological tools:
- weak and distribution convergences,
- tight families and relative compacity,

which are the topic of the following sub-sections.
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1.2.1 Tight families and relative compacity

De�nition 1.10. Let (S, ρ) be a metric space and Π a family of probability measures on (S,B(S)); Π is
said to be relatively compact if a weakly sub-sequence can be extracted from Π.

The family Π is said to be tight if

∀ε > 0, ∃K compact ⊂ S such that P(K) ≥ 1− ε, ∀P ∈ Π.

Similarly, a family of random variables {Xα : (Ωα,Aα) ; α ∈ A} is said to be relatively compact
or tight if the family of related probability measures on (S,B(S)) is relatively compact or tight.

We admit the following theorem.

Theorem 1.11. (Prohorov theorem, 1956, [20] 4.7)
Let Π be a family of probability measures on (S,B(S)). Then Π is relatively compact if and only if it is
tight.

This theorem is interesting since relative compacity allows to extract a weakly convergent sequence,
but the tightness property is easier to check.

De�nition 1.12. On Ω = C(R+
), the continuity modulus on [0, T ] is the quantity

mT (ω, δ) = max
|s−t|≤δ,0≤s,t≤T

|ω(s)− ω(t)|.

Exercise : we can show that this modulus is continuous on the metric space (Ω, ρ), ρ being Prohorov's
distance, increasing with respect to δ, and that ∀ω, limδ→0 m

T (ω, δ) = 0.

The following theorem is a tightness criterion (thus of relative compacity) for a family of probability
measures on (Ω,B(Ω)).

Theorem 1.13. ([20] page 63, 4.10) A sequence of probability measures (Pn) is tight if and only if:
(i)

lim
λ→∞

sup
n≥1

Pn{ω : |ω(0)| > λ} = 0.

(ii)
lim
δ→0

sup
n≥1

Pn{ω : mT (ω, δ) > ε} = 0,∀T > 0, ∀ε > 0.

Proof It is based on the following lemma:

Lemma 1.14. ([20], 4.9 page 62: Arzelà-Ascoli theorem) Let be A ⊂ Ω. Then Ā is compact if and only
if

sup
{ω∈A}

|ω(0)| < ∞ and ∀T > 0, lim
δ→0

sup
{ω∈A}

mT (ω, δ) = 0.

Proof : pages 62-63 de [20].

Then, to study the convergence of the processes (Xn) de�ned in Donsker theorem (1.9), we introduce
notions of convergence related to processes. The convergence in law �process as a whole� is di�cult to
obtain. We introduce a concept easier to verify.

De�nition 1.15. The sequence of processes (Xn) converges in �nite dimensional distribution to
the process X if ∀d ∈ N and for any d-uple (t1, · · · , td), (Xn

t1 , · · · , X
n
td
) converges in distribution to

(Xt1 , · · · , Xtd)

To prove such a convergence, it is enough to use characteristic functions of such d-uples.
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Proposition 1.16. If the sequence of processes (Xn) converges in distribution to the process X, then it
converges in �nite dimensional distribution to the process X.

Proof: indeed, ∀d and for aand π ◦Xn = (Xn
t1 , · · · , X

n
td
) converges converges in distribution to π ◦X

since continuity keeps the convergence in distribution . •

Warning! the converse is not always true! It can be seen in the following example as an Exercise:

Xn
t = nt1[0, 1

2n ](t) + (1− nt)1[ 1
2n , 1

n ](t)

converges in �nite dimensional distribution to 0 but not in distribution.
But it is true in case of a tight sequence.

Theorem 1.17. (4.15 [20]) Let (Xn) be a sequence of processes, constituting a tight family converging

in �nite dimensional distribution to a process X. Then, Pn law of Xn on C(R+
) weakly converges to a

measure P under which the process Bt(ω(= ω(t) is limit in �nite dimensional distribution of the sequence
(Xn).

Proof: based on Prohorov theorem. The family is tight thus relatively compact and there exists P
weak limit of a subsequence of the family. Let Q be a weak limit of another subsequence and suppose

Q ̸= P. The hypothesis yields ∀d,∀t1, · · · , td,∀B Borel of Rd
:

P{ω : (ω(ti)) ∈ B} = Q{ω : (ω(ti)) ∈ B}

since there is convergence in �nite dimensional distribution. This means that P and Q coincide on
cylindrical events, so on B which they generate. Thus any convergent subsequence weakly converges to
this unique probability measure P.

We now suppose that (Pn) doesn't weakly converge to P. This means that there exists f ∈ Cb(R+
)

such that the real bounded sequence (Pn(f)) doesn't converge to P(f).
Anyway, there exists at least a convergent subsequence (Pnk

(f)), with limit which is not P(f). On
the other hand, since the family is tight, a weakly convergent sequence can be extracted from family Pnk

,
still called (Pnk

). But we saw that limit of (Pnk
) is necessarily P(f), thus a contradiction and the proof

is concluded. •

1.2.2 Donsker invariance principle and Wiener measure

In this section we prove the theorem building Brownian motion. We study the sequence of processes
de�ned in principal theorem thanks to independent random variables (ξj , j ≥ 1). We need:

- to prove the convergence of sequence of processes (Xn, n ≥ 0),

- to prove the properties of the limit conveniently to the initial de�nition. Thus the scheme of the
proof is:

1) this sequence converges in �nite dimensional distribution to a process with Brownian motion
properties,

2) this sequence is tight and Theorem 1.17 can be applied.

1)

Proposition 1.18. (cf 4.17 [20]) Let be:

Xn
t =

1

σ
√
n
(

[nt]∑
j=1

ξj + (nt− [nt])ξ[nt]+1).
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Then, ∀d,∀(t1, · · · , td) ∈ R+
, we get the distribution convergence:

(Xn
t1 , · · · , X

n
td
) −→D (Bt1 , · · · , Btd)

where B satis�es the properties de�ning the Brownian motion.

Proof: a �rst simpli�cation uses:

Sn
t =

1

σ
√
n

[nt]∑
j=1

ξj et Sn
t = (Sn

t1 , · · · , S
n
td
).

Remark:

Xn
t = Sn

t +
nt− [nt]

σ
√
n

ξ[nt]+1.

Bienaymé-Tchebichev inequality yields:

P{∥ Xn
t − Sn

t ∥> ε} ≤ d

nσ2ε2
∥ ξ ∥2→ 0

when n goes to in�nity. Then it is enough to get the distribution convergence of (Sn
t ). conclude the proof

as an Exercise.

Remark that (Sn
t , t ≥ 0) is an independent increments process; if (ti) are increasing ordered, the d

random variables (Sn
t1 , S

n
t2 −Sn

t1 , · · · , S
n
td
−Sn

td−1
) are independent. The application from Rd

to Rd
: x 7→

(x1, x1+x2, · · · ,
∑

i xi) is continuous and distribution convergence is maintained by the continuity. Then
it is enough to look at the distribution convergence of the d-uple of increments, this is done using
characteristic function:

(2) ϕn(u1, · · · , ud) = E[e
i
∑

j uj(S
n
tj

−Sn
tj−1

)
] = ΠjE[e

iuj
σ
√

n

∑
[ntj−1]<k≤[ntj ]

ξk ].

For any j, denoting kj = [ntj ], each factor is written as:

E

[
e
iuj

√
kj−kj−1

n

∑
k ξk

σ
√

kj−kj−1

]
.

But
kj−kj−1

n =
[ntj ]−[ntj−1]

n converges to (tj − tj−1) when n goes to in�nity and the random variable∑
[ntj−1]<k≤[ntj ]

ξk

σ
√

kj−kj−1

converges in distribution to a standard Gaussian law (law of large numbers) thus its

characteristic function goes to e−t2/2 and the jth factor goes to e−
1
2u

2
j (tj−tj−1). The limit law thus

admits the characteristic function ϕ(u) = e−
1
2

∑
j u2

j (tj−tj−1) which is exactly this one of the d-uplet
(Bt1 , (Bt2 −Bt1), · · · , (Btd −Btd−1

)) coming from a Brownian motion.
Thus we get both law of limit process and property of independent increments.

2) We have now to prove that the family is tight, which will result of following lemmas:

Lemma 1.19. (cf. [20], 4.18) Let (ξj , j ≥ 1) be a sequence of random variables, independent, same law,

centered, variance 1, and let be Sj =
∑j

k=1 ξk. Then:

∀ε > 0, lim
δ→0

limn→∞
1

δ
P{max{1≤j≤[nδ]>+1}|ξj | > εσ

√
n} = 0.

Lemma 1.20. (cf. [20], 4.19) Under same hypotheses,

∀T > 0, lim
δ→0

limn→∞P{max{1≤j≤[nδ]>+1}max{1≤k≤[nT ]>+1}|Sj+k − Sj | > εσ
√
n} = 0.
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Proof of Donsker invariance theorem :
Using Proposition 1.18 and Theorem 1.17, it is enough to show that the family is tight. Here we use the
characterization given in Theorem 1.13. In this case Xn

0 = 0 ∀n, so it is enough to prove second criteron:

lim
δ→0

sup
n
P{max|s−t|≤δ,0≤s,t≤T |Xn

s −Xn
t | > ε} = 0.

. limn = infm supn≥m could replace supn since for m bounded we can get empty events taking δ
small enough: (Xn, 0 ≤ n ≤ m) is continuous on [0, T ] thus uniformly continuous.

{max|s−t|≤δ,0≤s,t≤T |Xn
s −Xn

t | > ε} =

{max|s−t|≤δ,0≤s,t≤T |Sjs − Sjt +
ns − js
σ
√
n

ξjs+1 −
nt − jt
σ
√
n

ξjt+1| > εσ
√
n},

where js = [ns], and if we denote js = k and jt = k + j, assuming s ≤ t, this set is included in:

{max|s−t|≤δ,0≤s,t≤T |Sjs − Sjt | > εσ
√
n}

and Lemma 1.20 concludes. •

1.3 Properties of trajectories of Brownian motion

1.3.1 Gaussian process

De�nition 1.21. A process X is said to be Gaussian if ∀d,∀(t1, · · · , td) positive real
numbers, the vector (Xt1 , · · · , Xtd) admits a Gaussian law. If the law (Xt+ti ; i = 1, · · · , d)
doesn't depend on t, process X is said to be stationary.

We call covariance of vector X the matrix

ρ(s, t) = E[(Xs − E(Xs))(Xt − E(Xt))
T ], s, t ≥ 0.

Proposition 1.22. Brownian motion B is a centered continuous Gaussian process with
covariance ρ(s, t) = s ∧ t.

Reciprocally, any centered continuous Gaussian process with covariance ρ(s, t) = s ∧ t
is a Brownian motion.

Proposition 1.23. The Brownian motion converges �in mean" to zero: Bt

t
→ 0 almost

surely when t goes to in�nity.

Proof Exercises. This last proposition is more or less a �law of large numbers�. •

Other Brownian motions can be obtained by standard transformations, for instance chang-
ing the �ltration.

(i) change of scaling: ( 1√
c
Bct,Fct).

(ii) inversion of time: (Yt,FY
t ), with Yt = tB 1

t
si t ̸= 0, Y0 = 0 et FY

t = σ{Ys, s ≤ t}.

(iii) reversing time: (Zt,FZ
t )0≤t≤T , with Zt = BT −BT−t et FZ

t = σ{Zs, s ≤ t}.
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(iv) symmetry: (−Bt,Ft).

In each case we have to check that it is an adapted continuous process satisfying the
characteristic property of Brownian motion or: that it is a centered continuous Gaussian
process with covariance ρ(s, t) = s ∧ t.
The only di�cult case is (ii) (Exercise).

1.3.2 Zeros set

This set is X = {(t, ω) ∈ R+ × Ω : Bt(ω) = 0}. Let �xed a trajectory ω, denote Xω =
{t ∈ R+ : Bt(ω) = 0}.

Theorem 1.24. (cf. [20] 9.6, p. 105) P-almost surely with respect to ω

(i) Lebesgue measure of Xω is null,

(ii) Xω is closed no bounded,

(iii) t = 0 is an accumulation point of Xω,

(iv) Xω is dense in itself.

Proof too di�cult Exercise.... out of the agenda.

1.3.3 Variations of the trajectories

(cf. [20] pb 9.8 p. 106 et 125)
Notation: πn = (t0 = 0, · · · , tn = t) is a �subdivision� of [0, t], denote ∥πn∥ = supi{ti −
ti−1}, called the �mesh� of πn.

Theorem 1.25. (cf. [30] 28 p. 18)
Let πn be a sequence of subdivisions of interval [0, t] such that the mesh of πn, ∥πn∥, goes
to zero when n goes to in�nity. Let be πn(B) =

∑
ti∈πn

(Bti+1
−Bti)

2.
Then, when n goes to in�nity, πn(B) goes to t in L2(Ω), and almost surely if moreover∑

n ∥ πn ∥<∞.

Proof : Let be zi = (Bti+1
− Bti)

2 − (ti+1 − ti) ;
∑

i zi = πn(B) − t. It is a centered
independent random variables sequence since Bti+1

− Bti law is Gaussian law with null
mean and variance ti+1 − ti. Moreover we compute the expectation of z2i :

E[z2i ] = E[(Bti+1
−Bti)

2−(ti+1−ti)]2 = E[(Bti+1
−Bti)

4−2(Bti+1
−Bti)

2(ti+1−ti)+(ti+1−ti)2].

Knowing the moments of Gaussian law, we get:

E[z2i ] = 2(ti+1 − ti)
2.

The independence between the zi shows that E[(
∑

i zi)
2] =

∑
iE[(zi)

2] equal to
2
∑

i(ti+1 − ti)
2 ≤ 2∥πn∥.t, which goes to zero when n goes to in�nity. This fact yields

L2(Ω) convergence (so probability convergence) of πn(B) to t.
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If moreover
∑

n ∥ πn ∥< ∞, then P{|πn(B) − t| > ε} ≤ 1
ε2
2 ∥ πn ∥ t. Thus the series∑

n P{|πn(B)− t| > ε} converges and Borel-Cantelli lemma proves that

P[limn{|πn(B)− t| > ε}] = 0,

meaning:

P[∩n∪m≥n {|πm(B)− t| > ε}] = 0,∀ε > 0, almost surely ∪n∩m≥n{|πm(B)− t| ≤ ε} = Ω,

this expresses almost sure convergence of πn(B) to t. •

Theorem 1.26. (cf. [20] 9.9, p.106)

P{ω : t 7→ Bt(ω) is monotoneous on any interval} = 0.

Proof : let us denote F = {ω : there exists an interval where t 7→ Bt(ω) is monotonous}.
This could be expressed as:

F = ∪s,t∈Q,0≤s<t{ω : u 7→ Bu(ω) is monotonous on (s, t)}.

Let s and t be �xed in Q s.t. 0 ≤ s < t; we study the event

A = {ω : u 7→ Bu(ω) is increasing on(s, t)}.

Then, A = ∩nAn où An = ∩n−1
i=0 {ω : Bti+1

− Bti ≥ 0} with ti = s + (t − s) i
n
. Using

independence of increments, P(An) = ΠiP{∆iB ≥ 0} = 1
2n
. For any n P(A) ≤ P(An) thus

P(A) = 0 for all s and t proving P(F ) = 0. •

Theorem 1.27. (cf. [20] 9.18, p.110 : Paley-Wiener-Zygmund, 1933)

P{ω : ∃t0 t 7→ Bt(ω) di�erentiable at point t0} = 0.

More speci�cally, denoting D+f(t) = limh→0
f(t+h)−f(t)

h
; D+f(t) = limh→0

f(t+h)−f(t)
h

,
there exists an event F of probability measure 1 included in the set:

{ω : ∀t, D+Bt(ω) = +∞ ou D+Bt(ω) = −∞}.

Proof :

Let be ω such that there exists t such that −∞ < D+Bt(ω) ≤ D+Bt(ω) < +∞. Then,

∃j, k such that ∀h ≤ 1/k, |Bt+h −Bt| ≤ jh.

We can �nd n greater than 4k and i, i = 1, · · · , n, such that :

i− 1

n
≤ t ≤ i

n
, and if ν = 1, 2, 3 :

i+ ν

n
− t ≤ ν + 1

n
≤ 1

k
.

These two remarks and triangle inequality |B i+1
n

−B i
n
| ≤

|B i+1
n

−Bt|+ |Bt −B i
n
| induce the upper bound

|B i+1
n

−B i
n
| ≤ 3j

n
.
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We go on with ν = 2 then 3 :

|B i+2
n

−B i+1
n
| ≤ 5j

n
, |B i+3

n
−B i+2

n
| ≤ 7j

n
.

Thus the starting ω belongs to an event such that there exists t ∈ [0, 1], such that ∀n ≥ 4k,

∃i ∈ {1, · · · , n} such that t ∈ [ i−1
n
, i
n
], ν = 1, 2, 3 : |B i+ν

n
−B i+ν−1

n
| ≤ (2ν+1)j

n
.

These three events of B are independent; the probability measure of the event

∀ν = 1, 2, 3 : |B i+ν
n

−B i+ν−1
n

| ≤ (2ν + 1)j

n

is bounded by j3.3.5.7
n3/2 and the one of the event

∀n ≥ 4k, ∃i = 1, · · · , n, ν = 1, 2, 3 : |B i+ν
n

−B i+ν−1
n

| ≤ (2ν + 1)j

n

is bounded by n j3.3.5.7
n3/2 ∀n ≥ 4k, thus goes to zero when k goes to in�nity. •

De�nition 1.28. Let f be a function de�ned on interval [a, b]. We call variation of f
on this interval :

V ar[a,b](f) = sup
π

∑
ti∈π

|f(ti+1)− f(ti)|

where π belongs to the subdivisions of [a, b] set.

Theorem 1.29. (cf. [30] p.19-20 Let a and b be �xed in R+ :

P{ω : V ar[a,b](B) = +∞} = 1.

Proof :Let a and b be �xed in R+ and π a subdivision of [a, b].∑
ti∈π

|B(ti+1)−B(ti)| ≥
∑

ti∈π |B(ti+1)−B(ti)|2

supti∈π|B(ti+1)−B(ti)|
.(3)

The numerator is the quadratic variation of B, known as converging to t. Then, s 7→ Bs(ω)
is continuous so uniformly continuous on interval [a, b]:

∀ε,∃η, ∥ π ∥< η ⇒ supti∈π|B(ti+1)−B(ti)| < ε.

Thus the quotient (3) converges to in�nity. •

1.3.4 Lévy Theorem

This theorem gives the magnitude of the modulus of continuity.

Theorem 1.30. ([20] th. 9.25 pp 114-115)
Let be g :]0, 1] → R+, δ < 1, g(δ) =

√
−2δ log(δ). Then,

P{ω : limδ↘0
1

g(δ)
sup

0<s<t<1,t−s≤δ
|(Bt −Bs)(ω)| = 1} = 1.
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This means that the magnitude of the modulus of continuity of B is g(δ).

Theorem 1.31. (cf. [30] 31 p.22-23) Let be Ft = σ(Bs, s ≤ t) ∨ N . Then the �ltration
F is right continuous, meaning that Ft+ := ∩s>tFs coincides with Ft.

Proof (Exercise) uses the fact that

∀u1,∀u2 , ∀z > v > t,

E[ei(u1Bz+u2Bv)/Ft+ ] = lim
w↘t

E[ei(u1Bz+u2Bv)/Fw] =

E[ei(u1Bz+u2Bv)/Ft],

meaning that the Ft+ and Ft conditional laws are the same ones, so Ft+ = F .
t

1.3.5 Markov and martingale properties

The Brownian motion is a Markov process, meaning that:

∀x ∈ R, ∀f bounded Borel, Ex[f(Bt+s)/Fs] = EBs [f(Bt)].

The proof is easy, possibly �handmade� : under Px, Bt+s = x+Wt+s and

f(Bt+s) = f(x+Wt+s −Ws +Ws),

we conclude using independence of x+Ws and Wt+s −Ws.
As a corollary, we get that B is a martingale for its own �ltration.

1.4 Computation of 2
∫ t

0 BsdBs (Exercise)

The trajectories of B aren't di�erentiable, anyway we look for a meaning to this integral.
The intuition could say that it is B2

t , but it is not. To stress the di�erence between both,
we decompose B2

t as a sum of di�erences along a subdivision of interval [0, t], denoted as
ti = it/n, then developed using Taylor formula:

B2
t =

∑
i

(B2
ti+1

−B2
ti
) =

∑
i

2Bti [Bti+1
−Bti ] +

∑
i

[Bti+1
−Bti ]

2.

The �rst term �naturally� converges to the expected formula: 2
∫ t

0
BsdBs (we will justify

this convergence in Chapter 2). We could think that the second term converges to 0, here
is the paradox. We have to remark that, by de�nition of Brownian motion, this second
term is sum of the squared of n centered independent Gaussian variables with variance
t/n; thus it is a random variable with t

n
χ2
n law. Its expectation is t and its variance is

t2/nV arχ2
1: thus this term L2-converges (thus probability convergence) to its expectation

t. Later, we will more speci�cally prove

B2
t = 2

∫ t

0

BsdBs + t.
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2 Stochastic integral

The main purpose of this chapter is to give meaning to notion of integral of some processes
with respect to Brownian motion or, more generally, with respect to a martingale. Guided
by the �pretext� of this course (stochastic calculus applied to Finance), we can motivate
the stochastic integral as following: for a moment study a model where the price of a
share would be given by a martingale Mt at time t. If we have X(t) of such shares at
time t and if we conduct transactions at times tk wealth is �nally increased:∑

k

X(tk−1)(Mtk −Mtk−1
).

But if we want to trade in continuous time, at any time t we must be able to de�ne a
mathematical tool to move to limit in the above expression with the problem, especially
if M = B, the derivative B′ doesn't exist! this expression is a sum which is intended
to converge to a Stieljes integral, but since the variation V (B) is in�nite, this can not
converge in a � deterministic� sense: the stochastic integral �naive� is impossible (cf.
Protter page 40) as the following result shows it.

Theorem 2.1. Let π = (tk) be a subdivision of [0, T ]. If
lim∥π∥→0

∑
k x(tk−1)(f(tk) − f(tk−1)) exists, then f is �nite variation. (cf. Protter, th.

52, page 40)

The proof uses Banach Steinhaus theorem, id est: ifX is a Banach space and Y normed
vector space, (Tα) a sequence of bounded operators fromX to Y such that ∀x ∈ X, (Tα(x))
is bounded, then the sequence (∥ Tα ∥) is bounded in R.

Reciprocally, we get: V (f) = +∞ yields the limit doesn't exist, this the case if
f : t 7→ Bt is Brownian motion.
We thus must �nd other tools. The idea of Itô was to restrict integrands to be processes
that can not "see" the increments in the future, that is adapted processes, so that, at
least for the Brownian motion, x(tk−1) and (Btk − Btk−1

) are independent, so trajectory
by trajectory nothing can be done. But we will work in probability, in expectation.

The plan is as follows: after introducing the problem and some notations (2.1.1),
we �rst de�ne (2.1.2) the integral on the �simple processes� (S denotes the set of simple
processes, which will be de�ned below). Then 2.1.3 will give the properties of this integral
over S thereby operator extended by continuity on the closure of S for a well chosen
topology, so to have a reasonable amount of integrands.

2.1 Stochastic integral

2.1.1 Introduction and notations

Let M be a square integrable continuous martingale on the �ltered probability space
(Ω,Ft,P) where Ft is for instance the natural �ltration generated by the Brownian motion,
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completed by negligible events. For any measurable process X, ∀n ∈ N and ∀t ∈ R+ let
us de�ne:

In(X, t) =
∑
j

X(
j − 1

2n
∧ t)(M j

2n
∧t −M j−1

2n
∧t).

This quantity doesn't necessarily have a limit. We have to restrict to a class of almost
surely square integrable (with respect to increasing process ⟨M⟩ de�ned below), adapted,
measurable processes X.

De�nition 2.2. The increasing process ⟨M⟩ is de�ned as:

t 7→ ⟨M⟩t = lim
∥π∥→0

probability
∑
ti∈π

(Mti −Mti−1
)2

where π describe the subdivisions of [0, t]. It is named �bracket�.

The construction of I(X, t) is due to Ito (1942) in case of M Brownian motion, and
Kunita and Watanabe (1967) for square integrable martingales. An exercise in Chapter
1 with M = B proves ⟨B⟩t = t.

Remark 2.3. The square integrable continuous martingales admit a bracket.

Recall:

Proposition 2.4. ⟨M⟩t is the unique adapted increasing continuous process such that
M2

t − ⟨M⟩t is a martingale.

Very often, this proposition is bracket de�nition, and then De�nition 0.26 is a conse-
quence.
Notation: let us de�ne a measure on σ-algebra B(R+)⊗F as

µM(A) = E[

∫ ∞

0

1A(t, ω)d⟨M⟩t(ω)].

X and Y are said to be equivalent if X = Y µM a.s.
Notation: for any adapted process X, we note [X]2T = E[

∫ T

0
X2

t d⟨M⟩t].
Remark that X et Y are equivalent if and only if [X − Y ]2T = 0 ∀T ≥ 0.

Let us introduce the following set of processes:

(4) L(M) = { classes of measurable F -adapted processes Xs.t. ∀T [X]T < +∞}

endowed with the metric:

(5) d(X, Y ) =
∑
n≥1

1 ∧ [X − Y ]n
2n

,

then the subset of the previous:

L∗(M) = {X ∈ L progressively measurable}.

When the martingale M is such that ⟨M⟩ is absolutely continuous with respect to
Lebesgue measure, since any element of L admits a modi�cation in L∗(M), in such a
case, we manage in L, but generally, we will restrict to L∗(M).
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Proposition 2.5. Let LT (M) be the set of adapted measurable processes X on [0, T ] such
that:

[X]2T = E[

∫ T

0

X2
sd⟨M⟩s] < +∞.

L∗
T (M), set of progressively measurable processes of LT (M), is closed in LT (M). In

particular, it is complete for the norm [.]T .

Proof: Let (Xn) be a sequence in L∗
T (M), converging to X: [X − Xn]T → 0. It

is a sequence in L2 space, thus complete and X ∈ LT (M), convergence L2 yields the
existence of an almost surely convergent subsequence. Let Y be the almost sure limit on
Ω×[0, T ],meaning that A = {(ω, t) : limnX

n
t (ω, t) exists } has probability equal to 1 and

Y (ω, t) = X(ω, t) if (ω, t) ∈ A, and if not is equal to 0. The fact that ∀n, Xn ∈ L∗
T (M)

shows that Y ∈ L∗
T (M) and Y is equivalent to X. •

2.1.2 Integral of simple processes and extension

De�nition 2.6. Process X is said to be simple if there exists a sequence of real numbers
(ti) increasing to in�nity and a bounded family (ξi) of Fti−measurable random variables
such that:

Xt = ξ01{0}(t) +
∞∑
i=1

ξi1]titi+1](t).

Denote S their set, note the inclusions S ⊂ L∗(M) ⊂ L. (to check as Exercise)
Exercise: compute [X]2T when X ∈ S.

De�nition 2.7. Let be X ∈ S. The stochastic integral of X with respect to M is

It(X) =
∞∑
i=1

ξi(Mt∧ti+1
−Mt∧ti).

Notation: (X.M)t := It(X) to express it is a stochastic integral w.r.t. martingale M.

We have now to extend this de�nition to a larger class of integrands, at least in case
of M is Brownian motion, meaning ⟨M⟩t = t.

Lemma 2.8. For any bounded process X ∈ L(B) there exists a sequence of processes

Xn ∈ S such that supT≥0 limnE[
∫ T

0
(Xn −X)2dt] = 0.

Proof

(a) Case when X is continuous: set Xn
t = X j−1

2n
on the interval ] j−1

2n
j
2n
]. By continuity,

obviously Xn
t → Xt almost surely. Moreover by hypothesis X is bounded; dominated

convergence theorem allows to conclude.
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(b) Case when X ∈ L∗(M): set Xm
t = m

∫ t

(t−1/m)+
Xsds, this one is continuous and

stay measurable adapted bounded in L. Using step (a) ∀m, there exists a sequence Xm,n

of simple processes converging to Xm in L2([0, T ]× Ω, dP× dt) meaning that:

(6) ∀m ∀T lim
n→∞

E[

∫ T

0

(Xm,n
t −Xm

t )2dt] = 0.

Let be A = {(t, ω) ∈ [0, T ] × Ω : limm→∞Xm
t (ω) = Xt(ω)}c and its ω−section Aω,

∀ω. Since X is progressively measurable, Aω ∈ B([0, T ]). Using Lebesgue fundamental
theorem (cf. for instance STEIN: "Singular Integrals and Di�erentiability Properties of
Functions") X is integrable yields:

Xm
t −Xt = m

∫ t

(t−1/m)+
(Xs −Xt)ds→ 0

for almost any t and Lebesgue measure of Aω is null. On another hand, X and Xm are
uniformly bounded; bounded convergence theorem in [0, T ] proves that

∀ω
∫ T

0
(Xs −Xm

x )2ds→ 0.

Once again we apply bounded convergence theorem but in Ω so that E[
∫ T

0
(Xs −

Xm
x )2ds] → 0. This fact added to (6) concludes (b).

(c) Case when X is bounded adapted measurable: we go to case (b) recalling
that any adapted measurable process admits a progressively measurable modi�cation,
named Y . Then there exists a sequence (Y n) of simple processes converging to Y in
L2([0, T ]× Ω, dP× dt):

E[

∫ T

0

(Ys − Y m
s )2ds] → 0 et ∀t P(Xt = Yt) = 1.

Set ηt = 1{Xt ̸=Yt}. Using Fubini theorem we get:

E[

∫ T

0

ηtdt] =

∫ T

0

P(Xt ̸= Yt)dt = 0

thus
∫ T

0
ηtdt = 0 almost surely.

ηt + 1{Xt=Yt} = 1 ⇒ E[

∫ T

0

1{Xt=Yt}dt] = T and 1{Xt=Yt} = 1 dt× dP almost surely

Finally:

E[

∫ T

0

(Ys − Y m
s )2ds] = E[

∫ T

0

1{Xs=Ys}(Ys − Y m
s )2ds] = E[

∫ T

0

(Xs − Y m
s )2ds]

which gives the conclusion. •
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Proposition 2.9. If the increasing process t 7→ ⟨M⟩t is P-almost surely absolutely con-
tinuous with respect to Lebesgue measure dt, then the set S is dense in the metric space
(L, d) with metric d de�ned in (5).

Proof

(i) Let be X ∈ L and bounded: the previous lemma proves the existence of a sequence
of simple processes (Xn) converging toX in L2(Ω×[0, T ], dP⊗dt), ∀T. Thus there exists an
almost surely converging subsequence. Bounded convergence theorem and d⟨M⟩t = f(t)dt
get the conclusion.

(ii) Let be X ∈ L no bounded: set Xn
t (ω) = Xt(ω)1{|Xt(ω)|≤n}. The distance

d(Xn, X) = E[

∫ T

0

X2
s1{|Xt(ω)|≥n}d⟨M⟩s] → 0

since the integrand converges almost surely to 0, is bounded by X2 which is integrable
(bounded convergence theorem). But ∀n Xn ∈ L and are bounded: their set is dense in
L.

(iii) The set of simple processes is dense in the subset of bounded processes of L; (i)
and (ii) yields the conclusion. •

This proposition therefore provides the density of simple processes set in L in the case
of increasing process ⟨M⟩t is absolutely continuous with respect to dt. If not, there exists
the density of simple processes only in L∗(M) with the following proposition.

Proposition 2.10. S is dense in the metric space (L∗(M), d) with metric d de�ned in
(5).

Proof: Cf. Proposition 2.8 and Lemma 2.7. in [20], pages 135-137.

Remark 2.11. useful: the metric d de�ned in (5) induces the following equivalent topology
limn→∞ d(Xn, X) = 0 if and only if

∀T > 0, lim
n→∞

E[

∫ T

0

|Xn(t)−X(t)|2d⟨M⟩t] = 0.

2.1.3 Construction of the stochastic integral, elementary properties

Remember the stochastic integral of a simple process X:

It(X) =
∞∑
i=1

ξi(Mt∧ti+1
−Mt∧ti).

Let us denote It(X) =
∫ t

0
XsdMs or (X.M)t in case of integratorM. This simple stochastic

integral admits the following properties (Exercise):
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Exercise. Let S be the set of simple processes on which the stochastic integral with
respect to M is de�ned:

It(X) =
∑
j

ξj(Mtj+1∧t −Mtj∧t).

Prove that It satis�es the following properties

(i) It is a linear application.

(ii) It(X) is square integrable.

(iii) Expectation of It(X) is null.

(iv) t 7→ It(X) is a continuous martingale.

(v) E[It(X)]2 = E[
∫ t

0
X2

sd⟨M⟩s].

(vi) E[(It(X)− Is(X))2/Fs] = E[
∫ t

s
X2

ud⟨M⟩u/Fs].

(vii) ⟨I.(X)⟩t =
∫ t

0
X2

sd⟨M⟩s.
Remark that (v) proves that It is an isometry.

We now extend the set of integrands over simple processes thanks to above density results
then we check that this new operator satis�es the same properties.

Proposition 2.12. Let be X ∈ L∗(M) and a sequence of simple processes (Xn) converging
to X. Then the sequence (It(X

n)) is a Cauchy sequence in L2(Ω). The limit doesn't
depend of the chosen sequence so it de�nes the stochastic integral of X with respect to the
martingale M, denoted as It(X) or

∫ t

0
XsdMs or (X.M)t.

Proof: using property (v) above we compute the norm L2 of It(X
n):

∥ It(Xn)− It(X
p) ∥22= E[

∫ t

0

|Xn
s −Xp

s |2d⟨M⟩s] → 0

∀t > 0 since d(Xn, Xp) → 0. Clearly the same kind of argument proves that changing
sequence approaching X does not change this limit:

∥ It(Xn)− It(Y
n) ∥2→ 0

along with d(Xn, Y n) ≤ d(Xn, X) + d(X, Y n). •

We now prove the properties:

Proposition 2.13. let be X ∈ L∗(M), then:
i) It is a linear application.
(ii) It(X) is square integrable.
(iii) Expectation of It(X) is null.
(iv) t 7→ It(X) is a continuous martingale.
(v) E[It(X)]2 = E[

∫ t

0
X2

sd⟨M⟩s].
(vi) E[(It(X)− Is(X))2/Fs] = E[

∫ t

s
X2

ud⟨M⟩u/Fs].
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(vii) ⟨I.(X)⟩t =
∫ t

0
X2

sd⟨M⟩s.
(vi') E[(It(X))2/Fs] = I2s (X) + E[

∫ t

s
X2

ud⟨M⟩u/Fs].

(vii) ⟨I.(X)⟩t =
∫ t

0
X2

sd⟨M⟩s.

CONCLUSION: X ∈ L∗(M) ⇒ X.M is a square integrable martingale.

Proof: most of these properties are obtained passing to the L2 limit of properties satis�ed
by It(X

n) ∀n, for instance (i) (ii) (iii) (iv); (concerning (iv) note that the set of square
integrable continuous martingales is complete in L2).

(v) is a consequence of (vi) with s = 0.

(vi) Set s < t and A ∈ Fs, and compute:

E[1A(It(X)− Is(X))2] = lim
n
E[1A(It(X

n)− Is(X
n))2] =

lim
n
E[1A

∫ t

s

(Xn
u )

2d⟨M⟩u] = E[1A

∫ t

s

X2
ud⟨M⟩u]

since d(Xn, 0) → d(X, 0).
(vii) is a consequence of (vi') and second characterization of bracket (0.28). •

Proposition 2.14. For any stopping times S and T, S ≤ T, satisfying Doob Theorem
hypotheses, we get:

E[It∧T (X)/FS] = It∧S(X).

If X and Y ∈ L∗, almost surely,

E[(It∧T (X)− It∧S(X))(It∧T (Y )− It∧S(Y ))/FS] = E[

∫ t∧T

t∧S
XuYud⟨M⟩u/FS].

Proof: t 7→ It(X) is a martingale, we apply Doob Corollary 0.25 concerning the two
bounded stopping times t ∧ S and t ∧ T : so E[It∧T (X)/FS] = It∧S(X).

Let be t ≥ 0 and the bracket of I.(X) is
∫ t

0
X2

sd⟨M⟩s, so It(X)2 −
∫ t

0
X2

sd⟨M⟩s is
a martingale; once again we apply Doob theorem concerning the stopping between two
bounded stopping times S ∧ t et T ∧ t, meaning

E[IT∧t(X)2 − IS∧t(X)2/FS∧t] = E[

∫ T∧t

S∧t
X2

ud⟨M⟩u/FS∧t].

This implies the second point using Corollary 0.25 once again, �nally we conclude using
polarization argument. •

2.2 Quadratic co-variation

(cf. [20], pages 141-145 ; [30], pages 58-60) Similarly the de�nition of ⟨M⟩t as proba-
bility limit of quadratic increments sums of M , the quadratic co-variation of two square
integrable continuous martingales M and N , if π are subdivisions of [0, t], is de�ned as

⟨M,N⟩t = lim
|π|→0

proba
∑
ti∈π

(Mti+1
−Mti)(Nti+1

−Nti),
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or equivalently
4⟨M,N⟩t := ⟨M +N⟩t − ⟨M −N⟩t.

Example : if B is a vector Brownian motion, then ⟨Bi, Bj⟩t = t if i = j and = 0 if i ̸= j.

So, in case of X and Y ∈ L∗(M), we now can study the �bracket� ⟨I(X), I(Y )⟩. But
previously we recall some useful results on the brackets of square integrable continuous
martingales.

Proposition 2.15. Let M and N be two square integrable continuous martingales, then:

(i) |⟨M,N⟩t|2 ≤ ⟨M⟩t⟨N⟩t ;

(ii) MtNt − ⟨M,N⟩t is a martingale.

Proof: (i) is proved as any Cauchy inequality. Since M + N is a square integrable
continuous martingale, the di�erence (M +N)2 − ⟨M +N⟩t is a martingale and (ii) is a
consequence. •

Proposition 2.16. Let T be a stopping time, M and N be two square integrable contin-
uous martingales. Then: ⟨MT , N⟩ = ⟨M,NT ⟩ = ⟨M,N⟩T .

Proof: cf. Protter [30] th.25, page 61.

Let π be a subdivision of [0, t].

⟨MT , N⟩t = lim
|π|→0

∑
i

(MT
ti+1

−MT
ti
)(Nti+1

−Nti).

The family (ti ∧ T ) is a subdivision of [0, t ∧ T ].

⟨M,N⟩t∧T = lim
|π|→0

∑
i

(MT∧ti+1
−MT∧ti)(NT∧ti+1

−NT∧ti).

The di�erence between these two sums is null on the event {T ≥ t} and on the complement
{T < t}, it is

(MT −Mti)(Nt∧ti+1
−NT∧ti+1

),

the index i being such that T ∈ [ti, tti+1
]. All these processes are continuous, so the limit

is almost surely null, thus too in probability. •

Theorem 2.17. (Kunita-Watanabe inequality) Let M and N be two square integrable
continuous martingales, X ∈ L∗(M) et Y ∈ L∗(N). Then almost surely:

(7) (

∫ t

0

|XsYs|d⟨M,N⟩s)2 ≤
∫ t

0

|Xs|2d⟨M⟩s
∫ t

0

|Ys|2d⟨N⟩s.

Proof:

(i) �rst remark the almost sure inequality:

⟨M,N⟩t − ⟨M,N⟩s ≤
1

2
(

∫ t

s

d⟨M⟩u +

∫ t

s

d⟨N⟩u)
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consequence of inequality :

2
∑
i

(Mti+1 −Mti)(Nti+1 −Nti) ≤
∑
i

(Mti+1 −Mti)
2 +

∑
i

(Nti+1 −Nti)
2

where we pass to probability limit thus almost sure for a subsequence.

Let A be the increasing process ⟨M⟩ + ⟨N⟩. All the �nite variation processes ⟨M⟩, ⟨N⟩, ⟨M,N⟩ are
absolutely continuous with respect to A. Thus it could be set

d⟨M,N⟩t = f(t)dAt, d⟨M⟩t = g(t)dAt, d⟨N⟩t = h(t)dAt.

(ii) For any a and b: ∫ t

0

(aXs

√
g(s) + bYs

√
h(s))2ds ≥ 0.

Using classic method in case of Cauchy inequalities, yields:

(8) (

∫ t

0

|XsYs|
√
g(s)h(s)ds)2 ≤

∫ t

0

|Xs|2d⟨M⟩s
∫ t

0

|Ys|2d⟨N⟩s.

(iii) For any a the process ⟨aX.M + Y.N⟩ is increasing, so:∫ t

s

(a2g(u) + 2af(u) + h(u))dAu ≥ 0, ∀s ≤ t.

Since A is increasing, this implies that the integrand is positive: a2g(s) + 2af(s) + h(s) ≥ 0 ∀a ∈ R,

meaning f(s) ≤
√
g(s)h(s).

This and (8) go to the conclusion. •

Proposition 2.18. Let M and N be two square integrable continuous martingales, X ∈
L∗(M) and Y ∈ L∗(N). Then:

(9) ⟨X.M, Y.N⟩t =
∫ t

0

XuYud⟨M,N⟩u, ∀t ∈ R, P a.s.

and

(10) E[

∫ t

s

XudMu

∫ t

s

YudNu/Fs] = E[

∫ t

s

XuYud⟨M,N⟩u/Fs], ∀s ≤ t, P a.s.

Proof: needs some preliminary lemmas

Lemma 2.19. Let M and N be two square integrable continuous martingales, and ∀n
Xn, X ∈ L∗(M) such that ∀t:

lim
n

∫ t

0

|Xn
u −Xu|2d⟨M⟩u = 0, P a.s.

Then:
⟨IM(Xn), N⟩t →n→∞ ⟨IM(X), N⟩t, P a.s.
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Proof: We look for evaluating Cauchy rest.

|⟨IM(Xn), N⟩t − ⟨IM(Xp), N⟩t|2 = |⟨IM(Xn −Xp), N⟩t|2

≤ ⟨IM(Xn −Xp)⟩t⟨N⟩t =
∫ t

0

|Xn
u −Xp

u|2d⟨M⟩u⟨N⟩t

the inequality coming from Cauchy-Schwartz inequality concerning brackets (cf. Propo-
sition 2.15 (i)). Thus the convergence is an immediate consequence of the hypothesis.
•

Lemma 2.20. Let M and N be two square integrable continuous martingales and X ∈
L∗(M). Then for almost any t:

⟨IM(X), N⟩t =
∫ t

0

Xud⟨M,N⟩uP a.s.

Proof: let (Xn) be a sequence of simple processes going to X :

lim
n
E[

∫ ∞

0

|Xn
u −Xu|2d⟨M⟩u = 0.

Let t be �xed, and a subsequence, converging P a.s. :
∫ t

0
|Xn

u −Xu|2d⟨M⟩u → 0. Lemma
2.19 proves:

(11) ⟨IM(Xn), N⟩t → ⟨IM(X), N⟩tP a.s.

For simple processes:

⟨IM(Xn), N⟩t =
∑
i

Xn
ti

∑
sk∈[titi+1]

(Msk+1
−Msk)(Nsk+1

−Nsk)

which goes to
∫ t

0
Xn

ud⟨M,N⟩u when supk |sk+1 − sk| → 0. Finally

|
∫ t

0

Xn
ud⟨M,N⟩u −

∫ t

0

Xud⟨M,N⟩u|2 =(12)

|
∫ t

0

(Xn
u −Xu)d⟨M,N⟩u|2 ≤

∫ t

0

|Xn
u −Xu|2d⟨M⟩u⟨N⟩t

using Kunita-Watanabé inequality (7), then we take almost sure right limit by construc-
tion of Xn. Then (12) goes to zero; this limit and the previous (11) prove the result. •

Proof of Proposition 2.18

(i) Set N1 = Y.N, Lemma 2.20 yields:

⟨X.M,N1⟩t =
∫ t

0

Xud⟨M,N1⟩u and ⟨M,Y.N⟩t =
∫ t

0

Yud⟨M,N⟩u

We compose �nite variation integrals to conclude.

(ii) The property is true for any simple process; then take the probability limit.
Exercise.
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Proposition 2.21. Let M be a square integrable continuous martingale and X ∈ L∗(M).
Then X.M is the unique square integrable continuous martingale Φ null at t = 0 such
that, for any square integrable continuous martingale N :

⟨Φ, N⟩t =
∫ t

0

Xud⟨M,N⟩uP a.s.

Proof: actually X.M satis�es this relation according to Lemma 2.20. Then let Φ
satisfying hypotheses of the proposition; for any square integrable continuous martingale
N :

⟨Φ−X.M,N⟩t = 0, P a.s.

As a particular case, if we choose N = Φ−X.M, we get ⟨N⟩t = 0 P a.s. that is

Φ−X.M = 0, P a.s.

•

Corollary 2.22. Let M and N be two square integrable continuous martingales, X ∈
L∗(M), Y ∈ L∗(N), T a stopping time such that P a.s. :

Xt∧T = Yt∧T et Mt∧T = Nt∧T .

Then:
(X.M)t∧T = (Y.N)t∧T .

Proof: let H be a square integrable continuous martingale; using Proposition 2.16:

⟨M −N,H⟩T = ⟨MT −NT , H⟩ = 0, P a.s.

On one hand:

∀H, ⟨X.M − Y.N,H⟩t∧T =

∫ t∧T

0

Xud⟨M,H⟩u −
∫ t∧T

0

Yud⟨N,H⟩u,

on the other hand hypothesis Xt∧T = Yt∧T , Proposition 2.16 and Lemma 2.20 imply:

⟨(X.M)T , H⟩ = ⟨X.M,H⟩T =

∫ t∧T

0

Xud⟨M,H⟩u =

∫ t∧T

0

Yud⟨N,H⟩u

Thus we can deduce with 2.21

(13) ⟨X.M − Y.N,H⟩T = 0, P a.s.

So (X.M − Y.N)T is a martingale, orthogonal to any square integrable continuous mar-
tingale, and in particular to itself, so it is null. •

Proposition 2.23. The stochastic integral has associative property: if H ∈ L∗(M) and
G ∈ L∗(H.M), then GH ∈ L∗(M) and:

G.(H.M) = GH.M

Proof: Exercise, cf. Protter th. 19 page 55 or K.S. corollary 2.20, page 145. •
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2.3 Integration with respect to local martingales

Corollary 2.22 allows the extension of integrators set and integrands set. In this subsec-
tion, M is a continuous local martingale.

De�nition 2.24. Let P∗(M) be the set of progressively measurable processes such that

∀t,
∫ t

0

X2
sd⟨M⟩s <∞, P a.s.

De�nition 2.25. Let be X ∈ P∗(M) and M a local martingale, with sequence of stopping
times Sn. Let be Rn(ω) = inf{t/

∫ t

0
X2

sd⟨M⟩s ≥ n} and Tn = Rn ∧ Sn We now de�ne the
stochastic integral of X with respect to M :

X.M = XTn .MTn on {t ≤ Tn(ω)}.

Proposition 2.26. This is a �robust� de�nition since
if n ≤ m, XTn .MTn = XTm .MTm on {t ≤ Tm(ω)} and the process X.M so de�ned is a
local martingale.

Proof: Corollary 2.22 says that if t ≤ Tm

(XTm .MTm)Tn
t = (XTm∧Tn .MTm∧Tn)t = (XTm .MTm)t.

Moreover thanks to this corollary, this de�nition doesn't depend on the chosen se-
quence.
Finally by construction, ∀n, (X.M)Tn is a martingale, and this exactly means that X.M
is a local martingale. •

This stochastic integral doesn't keep all the previous "good" properties. For instance
the ones concerning expectations are lost (generally X.M is not integrable), as are the
ones concerning conditional expectations. But we have:

Proposition 2.27. Let M be a continuous local martingale and X ∈ P(M). Then X.M
is the unique local martingale Φ such that for any square integrable continuous martingale
N :

⟨Φ, N⟩t =
∫ t

0

Xud⟨M,N⟩u.

Proof: this is the "local" version of Proposition 2.21. On the event {t ≤ Tn}, X.M =
XTn .MTn and satis�es ∀t, ∀n and any martingale N,

⟨XTn .MTn , N⟩t =
∫ t

0

XTn∧sd⟨MTn , N⟩s

meaning
∫ Tn∧t
0

Xud⟨M,N⟩u which converges almost surely to
∫ t

0
Xud⟨M,N⟩u when n goes

to in�nity.

Reciprocally, for any martingale N we get the almost sure equality ⟨Φ−X.M,N⟩t = 0,
particularly for N = (Φ−X.M)Tn . Thus for any localising sequence (Tn), the martingale
(Φ−X.M)Tn bracket is null; so (Φ−X.M)Tn = 0 and almost surely Φ = X.M.
We implicitly used XT .M = (X.M)T and the result concerning brackets 2.16. •
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3 Itô formula

(cf. [20], pages 149-156, [30], pages 70-83)

This tool allows integro di�erential calculus, usually called �Itô calculus�, calculus on
trajectories of processes, thus the knowledge of what happens to a realization ω ∈ Ω.

First recall the standard integration with respect to �nite variation processes.

De�nition 3.1. Let A be a continuous process. It is said to be �nite variation if ∀t,
given the subdivisions π of [0, t] we get:

lim
|π|→0

∑
ti∈π

|Ati+1
− Ati| <∞ P a.s.

Example: At =
∫ t

0
Ysds when Y is a continuous process.

Such processes, ω being �xed, give rise to Stieltjes integral.

Theorem 3.2. (cf. Protter, th. 31 page 71). Let A a continuous �nite variation process,
f of class C1. Then, f(A.) is a continuous �nite variation process:

f(At) = f(A0) +

∫ t

0

f ′(As)dAs.

This is the order 1 Taylor formula.

These processes joined to continuous local martingales generate a large enough space
of integrators, de�ned below.

De�nition 3.3. A continuous semi-martingale is a process X on a �ltered probability
space (Ω,F ,Ft,P) P a.s. de�ned:

Xt = X0 +Mt + At, ∀t ≥ 0,

where X0 is F0-measurable, M is a continuous local martingale and A = A+ −A−, A+ et
A− adapted �nite variation increasing processes.

Recall: under AOA hypothesis, the prices are semi-martingales, cf. [7].
Important: ∀A �nite variation process and ∀Y continuous semi-martingale, the bracket
⟨A, Y ⟩t = 0.

3.1 Itô formula

Theorem 3.4. (Itô 1944, Kunita-Watanabé 1967) Let be f ∈ C2(R,R) and X a contin-
uous semi-martingale. Then, P a.s. and ∀t ≥ 0:

f(Xt) = f(X0) +

∫ t

0

f ′(Xs)dMs +

∫ t

0

f ′(Xs)dAs +
1

2

∫ t

0

f”(Xs)d⟨M⟩s,

the �rst integral is a stochastic integral, the two others are Stieltjes integrals.
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Di�erential notation : sometimes, we say that the �stochastic di�erential� of f(Xt) is:

df(Xs) = f ′(Xs)dXs +
1

2
f”(Xs)d⟨X⟩s,

from where we deduce a stochastic di�erential calculus. This formula could be summarized
as an order 2 Taylor formula.
Proof: four steps.

we "localize" to go to a bounded case,

we get the Taylor development of function f up to order 2,

we study the term inducing stochastic integral,

�nally the quadratic variation term.

(1) Let be the stopping time

Tn = 0 si |X0| ≥ n,

inf{t ≥ 0; |Mt| ≥ n or |At| ≥ n or ⟨M⟩t ≥ n}
and in�nity if above set is empty.

Obviously this sequence of stopping times is almost surely increasing to in�nity. The
property to prove is trajectorial, it is enough to show it for the process stopped at time Tn
(then n goes to in�nity). We thus can assume that the processes M,A, ⟨M⟩ and random
variable X0 are bounded. The process X is too bounded and we can consider function f
admitting a compact support: f, f ′, f” are bounded.

(2) To get this formula, and particularly the stochastic integral term, we cut the in-
terval [0, t] as a subdivision π = (ti, i = 1, ..., n) and we study the increments of f(Xt) on
this subdivision:

f(Xt)− f(X0) =
n−1∑
i=0

(f(Xti+1
)− f(Xti)) =(14)

n−1∑
i=0

f ′(Xti)(Mti+1
−Mti) +

n−1∑
i=0

f ′(Xti)(Ati+1
− Ati) +

1

2

n−1∑
i=0

f”(ηi)(Xti+1
−Xti)

2,

where ηi ∈ [Xti , Xti+1
].

Obviously the second term converges to Stieltjes integral of f ′(Xs) with respect to A.
Here, nothing is stochastic.

(3) Concerning the �rst term, we consider the simple process associated to the subdi-
vision π :

Y π
s = f ′(Xti) si s ∈]ti, ti+1].

Then this �rst term, by de�nition, is equal to
∫ t

0
Y π
s dMs. But∫ t

0

|Y π
s − f ′(Xs)|2d⟨M⟩s =

n−1∑
i=0

∫ ti+1

ti

|f ′(Xti)− f ′(Xs)|2d⟨M⟩s.
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The application s 7→ f ′(Xs) being continuous, the integrand above converges almost surely
to zero. The fact that f ′ is bounded and bounded convergence Theorem prove that Y π

s

converges to f ′(Xs) in L
2(dP× d⟨M⟩): by de�nition, the �rst term converges in L2 to the

stochastic integral ∫ t

0

f ′(Xs)dMs.

(4) Quadratic variation term: we decompose it in three terms:

n−1∑
i=0

f”(ηi)(Xti+1
−Xti)

2 =
n−1∑
i=0

f”(ηi)(Mti+1
−Mti)

2(15)

+2
n−1∑
i=0

f”(ηi)(Mti+1
−Mti)(Ati+1

− Ati) +
n−1∑
i=0

f”(ηi)(Ati+1
− Ati)

2

The last term is bounded by ∥f”∥ supi |∆iA|
∑n−1

i=0 |∆iA|, by hypothesis ∥f”∥ and
∑n−1

i=0 |∆iA|
are bounded; supi |∆iA| goes to zero almost surely since A is continuous.

The second term is bounded by 2∥f”∥ supi |∆iM |
∑n−1

i=0 |∆iA| which similarly con-
verges almost surely to zero since M is continuous.

The �rst term of (15) is near to be

n−1∑
i=0

f”(Xti)(Mti+1
−Mti)

2.

Indeed:

n−1∑
i=0

(f”(ηi)− f”(Xti))(∆iM)2 ≤ sup
i

|f”(ηi)− f”(Xti)|
n−1∑
i=0

(∆iM)2

where supi |f”(ηi)−f”(Xti)| goes almost surely to zero using f” continuity, and
∑n−1

i=0 (∆iM)2

goes to ⟨M⟩t, by de�nition, in probability so there exists a subsequence which converges
almost surely. Thus the product goes to zero in L2 using the bounded convergence The-
orem. It remains to study

n−1∑
i=0

f”(Xti)(Mti+1
−Mti)

2

to be compared to
∑n−1

i=0 f”(Xti)(⟨M⟩ti+1
−⟨M⟩ti). Its limit in L2 is

∫ t

0
f”(Xs)d⟨M⟩s since

- by continuity the simple process t 7→ f”(Xti) if t ∈]ti, ti+1] converges almost surely to
f”(Xs);
- the bounded convergence Theorem concludes.

Let be the di�erence:

n−1∑
i=0

f”(Xti)[(Mti+1
−Mti)

2 − (⟨M⟩ti+1
− ⟨M⟩ti)],
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we study its limit in L2; look at the expectation of rectangular terms:

i < k : E[f”(Xti)f”(Xtk)(∆iM
2 − ⟨M⟩ti+1

ti )(∆kM
2 − ⟨M⟩tk+1

tk
)].

Applying Ftk conditional expectation, f”(Xti)f”(Xtk)(∆iM
2 − ⟨M⟩ti+1

ti ) get out the con-

ditional expectation, sinceM2−⟨M⟩ is a martingale we get E[(∆kM
2−⟨M⟩tk+1

tk
)/Ftk ] = 0

and we conclude that these terms are null.
Look at the squared terms:∑
i

E[(f”(Xti))
2(∆iM

2 − ⟨M⟩ti+1

ti )2] ≤ 2∥f”∥2∞
∑
i

[E(∆iM
4) + E((⟨M⟩ti+1

ti )2)]

≤ 2∥f”∥2∞E[(sup
i

∆iM
2
∑
i

∆iM
2) + sup

i
(⟨M⟩ti+1

ti )⟨M⟩t].

In the bound, supi∆iM
2 and supi(⟨M⟩ti+1

ti ) are bounded and converge almost surely
to zero by continuity; by de�nition ,

∑
i∆iM

2 converges to ⟨M⟩t in probability; using
bounded convergence Theorem, globally it converges to zero L1, at least for a subsequence.

As a conclusion, the sequence of sums (14) converges in probability to the result of The-
orem; we conclude thanks to the almost sure convergence of a subsequence. •

3.1.1 Extension and applications

We can extend this result to functions of vector semi-martingales depending also on time.

Proposition 3.5. Let M be a d-dimensional vector of continuous local martingales, A a
d-dimensional vector of continuous adapted processes with �nite variation, X0 a random
variable, F0-measurable. Let be f ∈ C1,2(R+,Rd). Set Xt = X0+Mt+At. Then, P almost
surely:

f(t,Xt) = f(0, X0) +

∫ t

0

∂

∂t
f(s,Xs)ds+

∫ t

0

∑
i

∂

∂xi
f(s,Xs)dM

i
s +

∫ t

0

∑
i

∂

∂xi
f(s,Xs)dA

i
s

+
1

2

∫ t

0

∑
ij

∂2

∂xi∂xj
f(s,Xs)d⟨M i,M j⟩s

Proof: to write it as a problem.

When f and its derivatives are bounded and M is a square integrable martingale, the
stochastic integral term above is a "true" martingale, null in t = 0 and yields:

f(t,Xt)−f(0, X0)−
∫ t

0

∂

∂t
f(s,Xs)ds−

∫ t

0

∂

∂xi
f(s,Xs)dA

i
s−

1

2

∫ t

0

∂2

∂xi∂xj
f(s,Xs)d⟨M i,M j⟩s ∈ M

For instance, if A = 0 and X =M is Brownian motion, yields:

f(t,Xt)− f(0, X0)−
∫ t

0

Lf(s,Xs)ds is a martingale
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where the di�erential operator L = ∂
∂t
+ 1

2

∑
i

∂2

∂xi∂xi
.

From Itô formula we can deduce the solution of the so-called �heat equation�, meaning
the partial di�erential equation (PDE):

f ∈ C1,2(R+,Rd),
∂

∂t
f =

∑
i

1

2

∂2

∂xi∂xi
f and f(0, x) = φ(x)

where φ ∈ C2
b (R

d) and the unique solution is

f(t, x) = E[φ(x+Bt)].

We easily check that this function is actually solution applying Itô formula; the unique-
ness is a little bit more di�cult to check.

For the following corollary, we set the following notation-de�nition:

De�nition 3.6. If X is the continuous real semi-martingale X0 +M + A, denote ⟨X⟩
(which is actually ⟨M⟩). Similarly for two continuous semi-martingales X and Y, denote
⟨X, Y ⟩ the bracket of their martingale part.

Corollary 3.7. Let be two continuous real semi-martingales X and Y ; then:∫ t

0

XsdYs = XtYt −X0Y0 −
∫ t

0

YsdXs − ⟨X, Y ⟩t.

This is the important formula, named integration by part formula.

Proof: Exercise, as a simple application of Itô formula.
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4 Examples of stochastic di�erential equations (SDE)

Here are other applications of Itô formula: a great use of Brownian motion is to model
additive noises, measurement error in ordinary di�erential equations. For instance let us
assume dynamics given by:

ẋ(t) = a(t)x(t), t ∈ [0, T ], x(0) = x.

But it is not exactly this, in addition to the speed there is a little noise, and we model
the dynamics as following:

dXt = a(t)Xtdt+ b(t)dBt, t ∈ [0, T ], X0 = x,

called stochastic di�erential equation. We do not discuss the theory in this course,
but we give another example below.

4.1 Black and Scholes model

This model is the one of a stochastic exponential with constant coe�cients. We assume
that the risky assets is solution to the SDE

(16) dSt = Stbdt+ StσdWt, So = s,

coe�cient b is called �trend� and σ �volatility�. Using the previous, it admits the explicit
unique solution:

St = s exp[σWt + (b− 1

2
σ2)t].

Let us remark that logSt has a Gaussian law.

Exercise: prove the uniqueness of the solution of (16); you could use Itô formula and
apply it to the quotient of two solutions.

The following de�nitions will be seen with more details in Chapter 8.

De�nition 4.1. A strategy θ = (a, d) is said to be self-�nancing if Vt(θ) = atS
0
t +dtSt =

⟨θ0, p0⟩+
∫ t

0
asdS

0
s +

∫ t

0
dsdSs.

Moreover it is said to be admissible if it is self-�nancing and if its value

Vt(θ) = V0 +

∫ t

0

θs.dSs

is almost surely bounded below by a real constant.

An arbitrage opportunity is an admissible strategy θ such that the value V.(θ)
satis�es V0(θ) = 0, VT (θ) ≥ 0 and P(VT (θ) > 0) > 0.
AOA hypothesis is the non existence of such a strategy.

We call risk neutral probability measure any probability measure Q which is equiv-
alent to P and so that any discounted prices (id est e−rtSt where r is a discount coe�cient,
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for instance in�atio rate) are (F , Q)−martingales. Needs Section 5.
A market is viable is AOA hypothesis is satis�ed. A su�cient condition is there exists
at least one risk neutral probability measure. Needs Section 6.3.
A market is complete as soon as ∀X ∈ L1(Ω,FT ,P) there exists a strategy θ which
is stochastically integrable with respect to the prices vector and such that X = E(X) +∫ T

0
θtdSt. Needs Sections 6.1 and 6.2.

The market under Black and Scholes model is viable, complete, with the unique risk
neutral probability measure

Q = LTP, dLt = −Ltσ
−1(b− r)dWt, t ∈ [0, T ], L0 = 1.

De�nition 4.2. We call �call option� the following contract: at time t = 0 the buyer pays
a sum q which gives the possibility to buy at time t = T a share to price K but without
obligation. If at time T, ST > K, he exercises his right and wins (ST−K)+−q. Otherwise,
and if he does not exercise, it will have lost q. Overall, he earns (ST −K)+ − q.

We call �put option� the following contract: at time t = 0 the buyer pays a sum q which
gives the possibility to sell at time t = T a share to price K but without obligation. If at
time T, ST < K, he exercises his right and wins K − ST − q. Otherwise, and if he does
not exercise, it will have lost q. Overall, he earns (K − ST )

+ − q.

The problem is then to �nd a �fair price� q, between seller and buyer of this contract.
This is the aim of the so called Black and Scholes formula.
To do this, we assume that the hedging portfolio θ, is such that there exists a class (1, 2)
function C such that the value is:

(17) Vt(θ) = C(t, St).

On another hand, θ is the pair (a, d) and

(18) Vt(θ) = atS
0
t + dtSt = ⟨θ0, p0⟩+

∫ t

0

asdS
0
s +

∫ t

0

dsdSs.

With this self �nancing strategy θ the seller of the option (for instance (ST −K)+) could
�hedge the option using initial price q = V0 to �nally have VT (θ) = C(T, ST ).

The key is the two ways of computing the stochastic di�erential of this value and their
identi�cation:

dVt(θ) =
∂

∂t
C(t, St)dt+

∂C

∂x
(t, St)dSt +

1

2

∂2C

∂x2
C(t, St)S

2
t σ

2dt,

using (17), then using (18):

dVt(θ) = ratS
0
t dt+ dtSt(bdt+ σdWt).
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The identi�cation gives two equations, and recall (18) which is C(t, St):

∂C

∂t
(t, St) + bSt

∂C

∂x
(t, St) +

1

2

∂2C

∂x2
S2
t σ

2 = ratS
0
t + dtStb(19)

∂C

∂x
(t, St)Stσ = dtStσ.

Thus we get the hedging portfolio:

(20) dt =
∂C

∂x
(t, St) ; at =

C(t, St)− St
∂C
∂x
(t, St)

S0
t

.

Plugging (20) in (19) we get an almost sure equality

∂C

∂t
(t, St) + rSt

∂C

∂x
(t, St) +

1

2

∂2C

∂x2
(t, St)S

2
t σ

2 = rC(t, St),

and when t = T we need C(T, ST ) = (ST − K)+. But actually because logSt admits a
Gaussian law, we get that St(Ω) = R+ −{0}, so we can replace above all St by an x > 0,
and we get the PDE with boundary condition:

∂C

∂t
(t, x) + rx

∂C

∂x
(t, x) +

1

2

∂2C

∂x2
(t, x)x2σ2 = rC(t, x),

C(T, x) = (x−K)+, x ∈ R+.

We solve this problem using Feynman-Kac formula. Set

dYs = Ys(rds+ σdWs), Yt = x.

Then Ys = x exp[σ(Ws −Wt)− (s− t)(1
2
σ2 + r)] denoted as Y

(t,x)
s and

C(t, x) = Ex[e
−r(T−t)(Y t,x

T −K)+]

is the expected solution, the portfolio being given by equations (20). The so famous Black-
Scholes formula allows an explicit computation of this function, setting φ the distribution
function of standard Gaussian law:

C(t, x) = xφ

(
log(x/K) + (T − t)(r + 1

2
σ2)

σ
√
T − t

)
−Ke−r(T−t)φ

(
log(x/K) + (T − t)(r − 1

2
σ2)

σ
√
T − t

)
.

The initial price q of this option is then C(0, x).

Actually, the way is to solve after a change of (variable,function):

x = ey, y ∈ R ; D(t, y) = C(t, ey)
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which allows to go to Dirichlet problem:

∂

∂t
D(t, y) + r∂yD(t, y) +

1

2
∂2y2D(t, y)σ2 = rD(t, y), y ∈ R,

D(T, y) = (ey −K)+, y ∈ R,

associated to the stochastic di�erential equation:

dXs = rds+ σdWs, s ∈ [t, T ], Xt = y.

This is exactly what we saw in Proposition 4.11, with g = 0, f(x) = (ex − k)+, k(x) = r.
Thus

D(t, y) = Ey[e
−r(T−t)(eXT −K)+],

and the explicit formula since XT admits a Gaussian law.

The price at time t is C(t, St) = EQe[
−r(T−t)(eXT −K)+/Ft]; this is easy to compute:

the law of XT given Ft is a Gaussian law, with mean St+ r(T − t) and variance σ2(T − t).

4.2 Stochastic exponential

Let us consider the function C∞, f : x 7→ ex, and a continuous semi-martingale X,
X0 = 0, let us apply Itô formula to the process Zt = exp(Xt − 1

2
⟨X⟩t). Yields:

Zt = 1 +

∫ t

0

[exp(Xs −
1

2
⟨X⟩s)(dXs −

1

2
d⟨X⟩s) +

1

2
exp(Xs −

1

2
⟨X⟩s)d⟨X⟩s].

So, after some cancellation:

Zt = 1 +

∫ t

0

exp(Xs −
1

2
⟨X⟩s)dXs,

or using di�erential notation:
dZs = ZsdXs.

This is an example of (stochastic) di�erential equation. Then there is the following result:

Theorem 4.3. Let X be a continuous semi martingale, X0 = 0. Then there exists a unique
continuous semi martingale which is solution of the stochastic di�erential equation:

(21) Zt = 1 +

∫ t

0

ZsdXs

which is explicitly:

Zt(X) = exp(Xt −
1

2
⟨X⟩t).
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Itô formula shows that this process is actually solution of the required equation.
Exercise: show the uniqueness assuming that there exists two solutions Z and Z ′, then
apply Itô formula to the quotient Yt =

Zt

Z′
t
.

De�nition 4.4. Let X be a continuous semi martingale, X0 = 0. The stochastic ex-
ponential of X, denoted as E(X), is the unique solution of the stochastic di�erential
equation (21).

Example: Let be X = aB where a is a real number and B the Brownian motion;
then Et(aB) = exp(aBt − 1

2
a2t), sometimes called �geometric Brownian motion�.

Here are some results on these stochastic exponentials.

Theorem 4.5. (cf. [30], Th. 37) Let X and Y be two continuous semimartingales,
X0 = Y0 = 0. Then

E(X)E(Y ) = E(X + Y + ⟨X, Y ⟩).

Preuve: set Ut = Et(X) et Vt = Et(Y ) and apply integration by part formula (3.7):

UtVt − 1 =

∫ t

0

UsdVs + VsdUs + d⟨U, V ⟩s

Setting W = UV and using the di�erential de�nition of the stochastic exponential we get
the result. •

Corollary 4.6. Let X be a continuous semi martingale, X0 = 0. Then the inverse
E−1
t (X) = Et(−X + ⟨X⟩)

Proof as an Exercise.

Let us now consider more general linear stochastic di�erential equations.

Theorem 4.7. (cf. [30], th. 52, page 266.) Let Z and H two real continuous semi
martingales, Z0 = 0. Then the stochastic di�erential equation:

Xt = Ht +

∫ t

0

XsdZs

admits the unique solution

EH(Z)t = Et(Z)(H0 +

∫ t

0

E−1
s (Z)(dHs − d⟨H,Z⟩)s).

Preuve: we use the method of constant variation. Let us assume that the solution
admits the form:

Xt = Et(Z)Ct

and apply Itô formula:

dXt = CtdEt(Z) + Et(Z)dCt + d⟨E(Z), C⟩t,
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so, replacing dEt(Z) by its value and using the particular form of X:

dXt = XtdZt + Et(Z)[dCt + d⟨Z,C⟩t].

If X is solution of the required equation, by identi�cation we get two di�erent expressions
for dXt and by identi�cation we get:

dHt = Et(Z)[dCt + d⟨Z,C⟩t].

But since Et(Z) is an exponential and since (Zt − 1
2
⟨Z⟩t) is �nite, E−1

t (Z) exists and

dCt = E−1
t (Z)dHt − d⟨Z,C⟩t

so yields:
d⟨Z,C⟩t = E−1

t (Z)d⟨H,Z⟩t,
and �nally:

dCt = E−1
t (Z)[dHt − d⟨H,Z⟩t].

We used the co-variation of C and Z is the same as the one of Et(Z)−1.H and Z. •

4.3 Ornstein-Uhlenbeck equation

Another important example used in Finance (for instance to model the dynamics of rate)
is the one of Ornstein-Uhlenbeck equation (cf. [20], page 358):

dXt = a(t)Xtdt+ b(t)dBt, t ∈ [0, T ], X0 = x

where a and b are F−adapted processes, a almost surely integrable with respect to to
time, b ∈ L2(Ω× [0, T ], dP⊗ dt). When a and b are constant a(t) = −α and b(t) = σ, we
get the solution:

Xt = e−αt(x+

∫ t

0

σeαsdBs).

Morever it can be shown:

m(t) = E(Xt) = m(0)e−αt

V (t) = V ar(Xt) =
σ2

2α
+ (V (0)− σ2

2α
)e−2αt

ρ(s, t) = cov(Xs, Xt) = [V (0) +
σ2

2α
(e2α(t∧s) − 1)]e−α(t+s)

Finally one more example, �Mean reversion� model, is the Cox Ingersoll Ross

model:
dYt = λ(η − Yt)dt+ θ

√
YtdBt, Yt = y.

With the hypothesis
2λη ≥ θ2

we get Yt > 0. This is convenient to model stochastic volatility or interest rates.
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4.4 Insight into more general stochastic di�erential equations

Generally, there is existence (and uniqueness) su�cient conditions for solution of the equation with initial
condition Xt = x:

(22) Xt,x
s = x+

∫ s

t

b(u,Xu)du+ σ(u,Xu)dWu,

for instance hypotheses on coe�cients could be:
(i) continuous, with sub linear increase with respect to space,
(ii) such that there exists a solution to the equation unique in law, meaning weak solution:there exists
a probability Px on Wiener space (Ω,F) under which

. X is F−adapted continuous, taking its value in R,

. if Sn = inf{t : |Xt| > n}, XSn satis�es the existence conditions of strong solutions (meaning
trajectorial solutions).
The increasing limit of times Sn is called explosion time. Then Px-almost surely for all n

Xt∧Sn = x+

∫ t∧Sn

t

b(u,Xu)du+

∫ t∧Sn

t

σ(u,Xu)dWu.

For clari�cation, let us quote the existence Theorem 6 page 194 in [30].

Theorem 4.8. Let Z be a semi martingale with Z0 = 0 and let f : R+ ×R× Ω be such that

(i) for �xed x, (t, ω) 7→ f(t, x, ω) is adapted right continuous-left limited,

(ii) for each (t, ω), |f(t, x, ω)− f(t, y, ω)| ≤ K(ω)|x− y| for some �nite random variable K.
Let X0 be �nite and F0-measurable. Then the equation

Xt = X0 +

∫ t

0

f(s, .,Xs−)dZs

admits a solution. This solution is unique and it is a semi martingale.

Or Theorem 2.5 page 287 in [20].

Theorem 4.9. Let the EDS
dXt = b(t,Xt)dt+ σ(t,Xt)dWt

such that the coe�cient b and σ are locally Lipschitz continuous in the space variable; i.e. for every
integer n ≥ 1 there exists a constant Kn such that for every t ≥ 0, ∥x∥ ≤ n, and ∥y∥ ≤ n

∥b(t, x)− b(t, y)∥+ ∥σ(t, x)− σ(t, y)∥ ≤ Kn∥x− y∥.

Then strong uniqueness holds.

4.5 Link with partial di�erential equations, Dirichlet Problem

(cf. [20] 5.7 pages 363 et sq.)

De�nition 4.10. Let D be an open subset of Rd
. An order 2 di�erential operator A =

∑
i,j ai,j(x)

∂2

∂xi∂xj

is said to be elliptic for x if

∀ξ ∈ Rd
∗,
∑
i,j

ai,j(x)ξiξj > 0.

If A is elliptic for any point x ∈ D, it is said to be elliptic in D.
If there exists δ > 0 such that

∀ξ ∈ Rd
,
∑
i,j

ai,j(x)ξiξj ≥ δ∥ξ∥2,

it is said to be uniformly elliptic.
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Dirichlet problem is the one to �nd a C2 class function u on bounded open subset D, u(x) = f(x)
∀x ∈ ∂D, and satisfying in D:

Au− ku = −g

with A elliptic, k ∈ C(D̄,R+
), g ∈ C(D̄,R), f ∈ C(∂D,R).

Proposition 4.11. (Proposition 7.2, page 364 [20])

Let u be solution of Dirichlet problem (A, D) and X solution of (22) with operator A = 1
2

∑
i,j,l σ

i
lσ

j
l (x)

∂2

∂xi∂xj
+

∇.b(x); TD the exit time of D by X. If ∀x ∈ D,

(23) Ex(TD) < ∞

then ∀x ∈ D̄,

u(x) = Ex[f(XTD ) exp(−
∫ TD

0

k(Xs)ds) +

∫ TD

0

g(Xt) exp(−
∫ t

0

k(Xs)ds)dt].

Proof Exercise (problem 7.3 in [20], correction page 393).
First let us remark that the continuity of X implies XTD

∈ ∂D.
Indication: prove

M : t 7→ u(Xt∧TD ) exp

(
−
∫ t∧TD

0

k(Xs)ds

)
+

∫ t∧TD

0

g(Xs) exp

(
−
∫ s

0

k(Xu)du

)
ds, t ≥ 0

is a uniformly integrable martingale with respect to Px: compute Ex(M0) = Ex(M∞); on {t < TD}, do
the Itô di�erential of M and use on D,Au− ku+ g = 0. M0 = u(x) since X0 = x under Px,

dMt = exp(−
∫ t∧TD

0

k(Xs)ds)×[Au(Xt∧TD)dt+∇u(Xt∧TD )σ(t,Xt∧TD )dWt+g(Xt∧TD)−(k.u)(Xt∧TD )dt],

functions∇u and σ are continuous thus bounded on compact D̄, so the second term above is a martingale,
moreover the other terms cancel since Au− ku+ g = 0 and for any t, Ex[Mt] = u(x).

This martingale is bounded in L2 so uniformly integrable and we could do t going to in�nity and
apply stopping Theorem since Ex[TD] < ∞. •

Remark 4.12. (Friedman, 1975) A su�cient condition for hypothesis (23) is: ∃l,∃α : al,l(x) ≥ α > 0.
This condition is stronger than ellipticity, but weaker than uniform ellipticity in D.

Set:
b∗ = max{|bl(x)|, x ∈ D̄}, q = min{xl, x ∈ D̄},

and choose ν > 4b∗/α, h(x) = −µ exp(νxl), x ∈ D, µ will be chosen later. Then h is C∞ class and
−Ah(x) is computed and bounded:

−Ah(x) = (
1

2
ν2all + νbl(x))µe

νxl ≥ (
8(b∗)2

α
− 4b∗

α
b∗)µeνxl ≥ 4(b∗)2

α
µeνq ≥ 1.

Then we choose µ great enough so that −Ah(x) ≥ 1 ; x ∈ D, h and its derivatives are bounded in
D, and we apply Itô formula to h

h(XTD
t ) = h(x) +

∫ t∧TD

0

Ah(Xs)ds+

∫ t∧TD

0

∇h(Xs)σ(Xs)dWs.

Thus yields

t ∧ TD ≤ h(x)− h(XTD
t ) = −

∫ t∧TD

0

Ah(Xs)ds

plus a uniformly integrable martingale. Thus Ex[t ∧ TD] ≤ 2∥h∥∞ and �nally let t goes to in�nity.
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5 Change of probability, Girsanov theorem

The motivation of this chapter is: martingales and local martingales are powerful tools,
and it is therefore worthwhile to model reality so that the processes involved are martin-
gales, at least locally. Thus, for the application of stochastic calculus to Finance, the data
are a set of processes that model the evolution over time of share price on the �nancial
market, and one can legitimately ask the question:

Is there a �ltered probability space (Ω,Ft,P) on which the price process are all mar-
tingales (at least locally)?

Speci�cally, does it exist a probability P which satis�es the property? Hence the two
problems discussed are the following:

- How to move from a probability space (Ω,F ,P) to (Ω,F , Q) in a simple way? does it

exist a density dP
dQ

? How then are transformed Brownian motion and martingales? This is
Girsanov theorem, Section 5.1. Section 5.2 gives a su�cient condition to apply Girsanov
theorem.

- Finally, given a family of semi-martingales on �ltered probability space (Ω, (Ft)),
does it exist a probability P such that all these processes are martingales on �ltered
probability space (Ω, (Ft),P)? This is a �martingale problem� that we will see in Chapter
6.

We a priori consider a �ltered probability space (Ω, (Ft),P) which is de�ned linked to
a d-dimensional Brownian motion B, B0 = 0. The �ltration is generated by the Brownian
motion and we note M(P) the set of martingales on (Ω, (Ft),P).

Recall the notion of local martingales, their set is denoted as Mloc(P) meaning
adapted process M such that there exists a sequence of stopping times (Tn) increasing to
in�nity and such that ∀n the Tn stopped process MTn is a true martingale.

5.1 Girsanov theorem

([20] 3.5, p 190-196; [30] 3.6, p 108-114)

Let X be an adapted measurable process in P(B):

P(B) := {Xadapted measurable process:∀T,
∫ T

0
∥ Xs ∥2 ds < +∞ P a.s.}

This set is larger than L(B) = L2(Ω× R+, dP⊗ dt).
Generally we de�ne for any martingale M the set P(M) which contains
L(M) = L2(Ω× R+, dP⊗ d⟨M⟩):

P(M) := {Xadapted measurable process: ∀T,
∫ T

0

∥ Xs ∥2 d⟨M⟩s < +∞ P a.s.}

For such process X, X.M is only a �local� martingale.

Think of d⟨M⟩s as f(s, ω)ds.
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Thus we can de�ne the local martingale X.B and its Doléans exponential (stochastic
exponential) as soon as ∀t

∫ t

0
∥ Xs ∥2 ds < +∞ P a.s.:

Et(X.B) = exp[

∫ t

0

(
∑
i

X i
sdB

i
s −

1

2
∥ Xs ∥2 ds)],

solution of the SDE

(24) dZt = Zt

∑
i

X i
tdB

i
t ; Z0 = 1,

which is too a local martingale since
∫ t

0
Z2

s ∥ Xs ∥2 ds < +∞ P a.s. by continuity of the
integrand on [0, t].

Under some conditions, E.(X.B) is a �true� martingale, then ∀t, E[Zt] = 1, this allows
a change of probability measure on the σ-algebra Ft :

Q = Zt.P meaning if A ∈ Ft, Q(A) = E[1AZt].

Note that E is the expectation with respect to probability measure P. Since Zt > 0, both
probability measures are equivalent and P(A) = EQ[Z

−1
t 1A].

Theorem 5.1. (Girsanov, 1960 ; Cameron-Martin, 1944)
If the process Z = E(X.B) solution of (24) belongs to M(P), and if Q is the probability
measure de�ned on FT by ZT .P then:

B̃t = Bt −
∫ t

0

Xsds, t ≤ T

is a Brownian motion on (Ω, (Ft)0≤t≤T , Q).

The proof needs a preliminary lemma. Below EQ notes the Q-expectation.

Lemma 5.2. Let be T ≥ 0, Z ∈ M(P), Q = ZTP. Let be 0 ≤ s ≤ t ≤ T and a random

variable Y, in L1(Q,Ft), then EQ(Y/Fs) =
E(Y Zt/Fs)

Zs
.

This is, more or less, a Bayes formula.
Proof (Exercise): let be A ∈ Fs:

EQ(1A
E(Y Zt/Fs)

Zs

) = E(1AE(Y Zt/Fs))

since on Fs, Q = ZsP. Then: E[1AE(Y Zt/Fs)] = E(1AY Zt)
by de�nition of conditional expectation, and �nally using de�nition of Q, and since 1AY
is FT -measurable

E(1AY Zt) = EQ(1AY ).

This is true ∀A ∈ Fs, so we can identify E(Y Zt/Fs)
Zs

as the expected conditional expectation.

•
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Proposition 5.3. Under hypotheses of Girsanov theorem, for any continuous local P-
martingale M , the process N below is a Q−local martingale:

N =M −
∫
0

∑
i

X i
sd⟨M,Bi⟩s.

Proof: (Exercise)

•

It yields as a corollary that B̃ is a Q-martingale with bracket t. To prove it is a
Q-Brownian motion, it is enough to show that it is an independent increments process
with Gaussian law (or that it is a Gaussian process).

Now we look things in �reverse� order, that is, if there exists equivalent probability mea-
sures, to look for a link between martingales related to the one or the other probability,
and related to the same �ltration.

Proposition 5.4. Let P and Q be two equivalent probability measures on (Ω,F) and the
uniformly integrable continuous martingale Zt = E[ dQ

dP/Ft]. ThenM ∈ Mc
loc(Q) ⇔MZ ∈

Mc
loc(P).

Proof: Let (Tn) be a sequence of stopping times, localizing for M and recall Doob
Corollary 0.25

EQ[Mt∧Tn/Fs] = EQ[Mt∧Tn/Fs∧Tn ] =Ms∧Tn .

We now apply Lemma 5.2, for s ≤ t it yields both:

(25) EQ[Mt∧Tn/Fs] =
EP[ZtMt∧Tn/Fs]

Zs

and

EQ[Mt∧Tn/Fs∧Tn ] =
EP[Zt∧TnMt∧Tn/Fs∧Tn ]

Zs∧Tn

so

EQ[Mt∧Tn/Fs] =
EP[Zt∧TnMt∧Tn/Fs∧Tn ]

Zs∧Tn

.

Then the fact that MTn ∈ M(Q) is equivalent to (MZ)Tn ∈ M(P).

•

Theorem 5.5. Girsanov-Meyer: Let be P and Q two equivalent probability measures,
Zt = E[ dQ

dP/Ft] and X a semi-martingale on (Ω,F ,P) decomposed as X =M +A. Then,

X is too semi-martingale on (Ω,F , Q) decomposed as X = N + C, where

N =M −
∫ t

0

Z−1
s d⟨Z,M⟩s ; C = A+

∫ t

0

Z−1
s d⟨Z,M⟩s.
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Proof: (i) C is a �nite variation process as sum of two �nite variation processes.

(ii) Compute the product NZ using Itô formula under P:

d(NZ)t = NtdZt + ZtdMt − ZtZ
−1
t d⟨Z,M⟩t + d⟨Z,N⟩t.

But N is a P-semi martingale with martingale part M : the bracket ⟨Z,N⟩ is the one of
M with Z, so a cancellation proves that NZ is a P-martingale so (using Proposition 5.4)
N is a Q-martingale. •

5.2 Novikov condition

(cf. [20] pages 198-201).
The previous subsection is based on the hypothesis that the process E(X.B) is a true
martingale. We now look for su�cient conditions on X so that this hypothesis will be
satis�ed. Generally E(X.B) is at least a local martingale with localising sequence

Tn = inf{t ≥ 0,

∫ t

0

∥ Es(X.B)Xs ∥2 ds > n}.

Lemma 5.6. E(X.B) is an super martingale; it is a martingale if and only if:

∀t ≥ 0 E[Et(X.B)] = 1.

Proof: there exists an increasing sequence of stopping times Tn such that ∀n, E(X.B)Tn ∈
M(P) thus for any s ≤ t we get

E[ETn∧t(X.B)/Fs] = ETn∧s(X.B).

Using Fatou lemma, we deduce from this equality going to the limit that actually E(X.B)
is a super martingale (remember that any positive local martingale is a supermartingale).
Since E[E0(X.B)] = 1, it is enough that, ∀t ≥ 0, we could have E[Et(X.B)] = 1 to check
that E(X.B) is a martingale. •

Proposition 5.7. ([20] pp. 198-199)
Let M be a continuous local martingale with respect to P and Z = E(M) such that
E[exp 1

2
⟨M⟩t] <∞ ∀t ≥ 0. Then ∀t ≥ 0, E[Zt] = 1.

Corollary 5.8. (Novikov, 1971) : Let X be an adapted vectorial measurable process such
that:

E[exp
1

2

∫ t

0

∥ Xs ∥2 ds] <∞ pour tout t ≥ 0

(where ∥x∥2 =
∑

i x
2
i ,) then E(X.B) ∈ M(P).

To close this subsection, here is an example of process X ∈ P(B) which doesn't
satisfy Novikov condition, such that E(X.B) ∈ Mc

loc(P) but it is not a �true� martingale
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(Exercise):
Let be the stopping time T = inf{1 ≥ t ≥ 0, t+B2

t = 1} and

Xt = − 2

(1− t)2
Bt1{t≤T} ; 0 ≤ t < 1, X1 = 0.

(i) Prove that T < 1 almost surely and thus
∫ 1

0
X2

t dt <∞ almost surely.

(ii) Apply Itô formula to the process t→ B2
t

(1−t)2
; 0 ≤ t < 1 to prove:∫ 1

0

XtdBt −
1

2

∫ 1

0

X2
t dt = −1− 2

∫ T

0

[
1

(1− t)4
− 1

(1− t)3
]B2

t dt < −1.

(iii) The local martingale E(X.B) is not a martingale (not up to 1 anyway!): we deduce
from (ii) that its expectation is bounded by exp(−1) < 1 and this contradicts Lemma 5.6.
Anyway, we can prove that ∀n ≥ 1 and σn = 1 − (1/

√
n), the process E(X.B)σn is a

martingale.
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6 Martingale representation theorem, martingale prob-

lem

(cf. Protter [30], pages 147-157.)
The motivation of this chapter is to show that a large enough class of martingales could
be identi�ed as a stochastic integral X.B. This will allow us to �nd a common probability
measure P for all the price processes such that these ones are all P-martingales, at least
local martingales.

6.1 Representation property

We here consider martingales in M2,c, null at time t = 0, and satisfying ⟨M⟩∞ ∈ L1.
Then, E[suptM

2
t ] ≤ C2 suptE[⟨M⟩t] = E[⟨M⟩∞] < ∞. These martingales are uniformly

integrable, there exists M∞ such that ∀t ≥ 0, Mt = E[M∞/Ft]. Let us denote their set
as H2

0.
H2

0 = {M ∈ M2,c,M0 = 0, ⟨M⟩∞ ∈ L1}.

Recall following notations:

L(M) = {X adapted ∈ L2(Ω×R+,P⊗d⟨M⟩)} ; L∗(M) = {X progressive P a.s. ∈ L2(R+, d⟨M⟩)},

and if X is càd or càg, then adapted is equivalent to progressive. For now on, we only
consider such a case.
We have to look at what happens after a change of probability measure.

De�nition 6.1. Let be A ⊂ H2
0(P) and denote M(A) the set of probability measures Q

on F∞, absolutely continuous with respect to P, equal to P on F0, such that A ⊂ H2
0(Q).

Lemma 6.2. M(A) is convex.

Proof: exercise.

De�nition 6.3. Let be A ⊂ H2
0, A is said to have the predictable representation

property if:

I = {X =
n∑

i=1

H iM i, M i ∈ A, H i ∈ L∗(M i) ∩ L2(dP⊗ d⟨M i⟩)} = H2
0.

Below, we will see an important example of such an A, Theorem 6.14:
Let be A = (M1, · · · ,Mn) ⊂ H2

0(P) satisfying M i †M j, i ̸= j. P is extremal in M(A)
yields that A has the predictable representation property.

And really important is Theorem 6.15:
Let B be a n-dimensional Brownian motion on (Ω,FB

t ,P). Then ∀M ∈ Mc,2
loc, there exists

H i ∈ L(Bi), i = 1, · · · , n, such that:

Mt =M0 +
n∑

i=1

(H i.Bi)t.
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Theorem 6.4. Let F be a closed vector subspace of H2
0. Then the followings are equivalent

de�nitions of a stable subspace:

(i) if M ∈ F and A ∈ Ft, (M −M t)1A ∈ F, ∀t ≥ 0.

(ii) F satis�es: if ∀M ∈ F and for any stopping time T then MT ∈ F.

(iii) if M ∈ F and H bounded ∈ L∗(M) then H.M ∈ F.

(iv) if M ∈ F and H ∈ L∗(M) ∩ L2(dP⊗ d⟨M⟩), then H.M ∈ F.

More or less, �stability� means stability with respect to stochastic integration.
Proof: Since L∗

b(M) ⊂ L∗(M) ∩ L2(dP⊗ d⟨M⟩), the implication (iv) ⇒ (iii) is obvious.

(iii) ⇒ (ii): it is enough to consider any stopping time T and the process Ht = 1[0,T ](t). Then

(H.M)t =

∫ t

0

1[0,T ](s)dMs = Mt∧T ∈ F,

meaning MT is an element of F.

(ii) ⇒ (i): let t be �xed, A ∈ Ft and M ∈ F. We build the stopping time
T (ω) = t if ω ∈ A and in�nity if not. This is actually a stopping time since A ∈ Ft. Otherwise, on one
hand:

(M −M t)1A = (M −M t) if ω ∈ A, which is equivalent to T (ω) = t

= 0 if not ,

on the other hand:

M −MT = (M −M t) if ω ∈ A,

= 0 if not ,

this means that (M −M t)1A = M −MT . But F is stable, thus M and MT ∈ F, so (M −M t)1A ∈ F
for any t ≥ 0: this is property (i).

(i) ⇒ (iv): let be H ∈ P which could be written as:

H = H0 +
∑
i

Hi1]ti,ti+1]

where Hi = 1Ai , Ai ∈ Fti . Then

H.M =
∑
i

1Ai(Mti+1 −Mti) =
∑
i

1Ai(M −M ti)ti+1

which belongs to F using (i). Any simple process is limit of linear combinations of processes as H above;

the stochastic integral being linear we get for any simple process X that X.M ∈ F, vector space. To

conclude we take the limits of simple processes since P is dense in L∗(M)∩L2(dP⊗d⟨M⟩) (cf. Proposition
2.10) •

De�nition 6.5. Let A be a subset of H2
0. We denote S(A) the smallest stable closed

vectorial subspace which contains A.

De�nition 6.6. Let be M and N ∈ H2
0, M and N are said to be orthogonal if

E[M∞N∞] = 0, strongly orthogonal if MN is a martingale.
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By de�nition MN − ⟨M,N⟩ is a martingale, thus the strong orthogonality is equiv-
alent to ⟨M,N⟩ = 0. This is a simple way to prove that strong orthogonality implies
orthogonality; the converse is false: let us consider M ∈ H2

0 and Y a Bernoulli random
variable (values ±1 with probability 1

2
), independent of M . Let be N = YM.

Exercise: prove that M and N are orthogonal but no strongly orthogonal.

Let A be a subset of H2
0, denote A⊥ its orthogonal space, A† its strong orthogonal

space.

Lemma 6.7. Let A be a subset of H2
0, then A† is stable closed vector subspace.

Proof: let Mn be a sequence in A†, converging to M in H2
0, and let be N ∈ A:

∀n, MnN is a uniformly integrable martingale. On another hand, ∀t ≥ 0, using Cauchy-
Schwartz inequality

E[|⟨Mn −M,N⟩t|2] ≤ E[⟨Mn −M⟩t]E[⟨N⟩t]

which goes to zero. Thus ⟨Mn, N⟩t → ⟨M,N⟩t in L2. But ∀n and ∀t, ⟨Mn, N⟩t = 0, thus
⟨M,N⟩t = 0 and M is orthogonal to N. •

Lemma 6.8. Let M and N be two martingales in H2
0, the following are equivalent:

(i) M and N strongly orthogonal, denoted as M †N,
(ii) S(M) †N
(iii) S(M) † S(N)

(iv) S(M)⊥N
(v) S(M)⊥S(N)

Proof: exercise.

Theorem 6.9. Let be M1, · · · ,Mn ∈ H2
0 such that for i ̸= j, M i †M j. Then,

S(M1, · · · ,Mn) = {
n∑

i=1

H iM i ;H i ∈ L∗(M i) ∩ L2(dP⊗ d⟨M i⟩)}.

It means that, in this case, actually, the right hand is a closed vectorial subspace.
Proof: let us denote I the right hand. By construction and property (iv) , I is a stable space. Consider
now the application:

⊕iL∗(M i) ∩ L2(dP⊗ d⟨M i⟩) −→ H2
0

(Hi) 7−→
n∑

i=1

Hi.M i

We easily check that this is an isometry, using that for i ̸= j, M i †M j :

∥
n∑

i=1

HiM i ∥22=
n∑

i=1

∥ HiM i ∥22=
n∑

i=1

E[

∫ ∞

0

|Hi
s|2d⟨M i⟩s].

Thus the set I, image of a closed set by an isometric application is a closed set so contains S(M1, · · · ,Mn).
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Conversely, using Theorem 6.4 (iv), any stable closed set F which contains M i contains too Hi.M i

so I ⊂ F . •

Here, too, vector subspace is closed.

Proposition 6.10. Let be A = (M1, · · · ,Mn) ⊂ H2
0 satisfying M i † M j, i ̸= j. If for

any N ∈ H2
0 strongly orthogonal to A is null, then A has the predictable representation

property.

Proof: Theorem 6.9 proves that S(A) is the set I, de�ned above. Then let be N ∈ A†.
Using Lemma 6.8(ii),

N ∈ S(A)† = I†.

Hypothesis theorem tells us that N is null, meaning I† = {0}, thus I = H2
0. •

These orthogonality and representation properties are related to underlying probability
measure.

De�nition 6.11. Q ∈ M(A) is said to be extremal if

Q = aQ1 + (1− a)Q2, a ∈ [0, 1], Qi ∈ M(A) ⇒ a = 0 ou 1.

Next theorem is a necessary condition for PRP (predictable representation property).

Theorem 6.12. Let be A ⊂ H2
0(P). S(A) = H2

0(P) yields that P is extremal in M(A).

Proof : cf. Th. 37 page 152 [30].
We assume that P is not extremal so could be written as aQ1+(1−a)Q2 with Qi ∈ M(A).
Probability measure Q1 ≤ 1

a
P, so admits a density Z with respect to P, such that Zt ≤ 1

a

and Z.−Z0 ∈ H2
0(P). Remark that P and Q1 coincide on F0 implies Z0 = 1. Let be X ∈ A:

so it is a P and Q1-martingale thus ZX is a P-martingale and also (Z−Z0)X = (Z−1)X
is a P-martingale; this proves that Z − Z0 is orthogonal to any X, so to A, so to S(A).
This set being H2

0(P), Z − 1 = 0 and P = Q1 is extremal. •

Proposition 6.13. Let be A ⊂ H2
0(P) and P extremal in M(A). If M ∈ Mc

b(P) ∩ A†

then M is null.

Proof: Let c be a bound of the bounded martingale M and we assume M is not
identically null. Thus we can de�ne

dQ = (1− M∞

2c
)dP et dR = (1 +

M∞

2c
)dP.

Then P = 1
2
(Q+R), Q and R are absolutely continuous with respect to P and equal P on

F0 sinceM0 = 0. Let be X ∈ A ⊂ H2
0(P): using Proposition 5.4, X ∈ H2

0(Q) if and only if
(1− Mt

2c
)Xt ∈ H2

0(P). But X †M so actually this property is true and as well X ∈ H2
0(Q).

Thus Q and R,∈ M(A).
So it could exist a decomposition of P, and this contradicts the hypothesis: M is neces-
sarily null. •
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The following is now a su�cient condition for PRP (predictable representation property).

Theorem 6.14. Let be A = (M1, · · · ,Mn) ⊂ H2
0(P) satisfying M i † M j, i ̸= j. P is

extremal in M(A) yields that A has the predictable representation property.

Proof: Proposition 6.10 proves that it is enough to show that any N ∈ H2
0(P)∩A† is

null. Let N be such a martingale and a sequence of stopping times Tn = inf{t ≤ 0 ; |Nt| ≥
n}. The stopped martingale NTn is bounded and belongs to A† ; P is extremal. Theorem
6.13 shows that NTn is null ∀n, so N = 0. •

6.2 Fondamental theorem

Theorem 6.15. Let B be a n-dimensional Brownian motion on (Ω,FB
t ,P). Then ∀M ∈

Mc,2
loc, there exists H i ∈ L(Bi), i = 1, · · · , n, such that:

Mt =M0 +
n∑

i=1

(H i.Bi)t.

Proof: exercise.
This is an application Theorem 6.14 to the component of Brownian motion, we prove
that P is the unique element of M(B). We do as following: let be Q ∈ M(B) and the
martingale Z = E[dQ

dP
/F.] which is a function g of Bi

t since B is a Markov process; B is
both P and Q-martingale; Girsanov theorem implies that ZB is a P martingale, so the
bracket ⟨Z,B⟩ = 0 and Itô formula proves g = 1, meaning P = Q.
Use that Zt = E[ dQ

dP/FB
t ] is a measurable function of vector (B1

t , · · · , Bn
t ).

Then we localize martingale M.

Corollary 6.16. Under the same hypotheses, let be Z ∈ L1(F∞,P), then there exists
H i ∈ L(Bi), i = 1, · · · , n, such that:

Z = E[Z] +
n∑

i=1

(H i.Bi)∞.

Proof: apply Theorem 6.15 to the martingaleMt = E[Z/Ft] and do t going to in�nity.
•

Let be P and Q two equivalent probability measures and denote Z the P−integrable
variable dQ

dP > 0, EP[Z] = 1. The martingale Zt = EP[Z/Ft] > 0 could be �represented�

as a Brownian martingale: there exists ψ ∈ L(B) such that dZt = ψtdBt.
This is an exponential martingale: indeed, since Zt > 0, there exists a process ϕ = Z−1ψ
such that dZt = ZtϕtdBt.

This is important in case of Ito formula use, computation of bracket, etc.

Warning! in case of a vector martingale M, its components not being strongly orthogonal,

the set L(M) contains the set {H = (H i), ∀i H i ∈ L(M i)} but they aren't equal: H ∈ L(M) ⇔
∀t,

∫ t
0

∑
i,j H

i
sH

j
sd⟨M i,M j⟩s < ∞.
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6.3 Martingale problem

(cf. Jacod [19], pages 337-340).
In case of Finance, it is the following problem: let be a set of price processes with dynamics
modeled by a family of adapted continuous processes on the �ltered probability space
(Ω,B,Ft,P), actually semi martingales. Does it exist a probability measure Q such that
this family could be a subset of Mc

loc(Q)? This is a martingale problem. We assume that
B = F∞.

In this subsection we consider a larger set of martingales:

H1(P) = {M ∈ Mc
loc(P) ; sup

t
|Mt| ∈ L1}.

This de�nition is equivalent to:

H1(P) = {M ∈ Mc
loc(P) ; ⟨M⟩

1
2∞ ∈ L1}

using Burkholder inequality:

∥ sup
t

|Mt|∥q ≤ cq∥⟨M⟩
1
2∥q ≤ Cq∥ sup

t
|Mt|∥q.

De�nition 6.17. Let X be a family of adapted continuous processes on (Ω,B,Ft). We
call solution of the martingale problem related to X any probability P such that
X ⊂ Mc

loc(P). We note M(X ) this set of probability measures and we recall that S(X ) is
the smallest stable subset of H1(P) containing {H.M,H ∈ L∗(M),M ∈ X}.

Proposition 6.18. M(X ) is convex.

Proof: exercise.

We note Me(X ) the extremal elements of this set.

Theorem 6.19. (cf. th. 11.2 [19] page 338.)
Let be P ∈M(X ) ; the followings are equivalent:

(i) P ∈Me(X )

(ii) H1(P) = S(X ∪ {1}) and F0 = (∅,Ω)
(iii) ∀N ∈ Mb(P) ∩ X † such that ⟨N⟩ is bounded , N = 0 and F0 = (∅,Ω).

Remark 6.20. Property (ii) exactly means that a market generated by a set of prices
processes X is complete. It has the representation property.

Corollary 6.21. If moreover X is �nite, or containing uniquely almost sure continuous
processes, (i) (ii) (iii) are equivalent to

(iv){Q ∈M(X ), Q ∼ P} = {P}.
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Proof:
(ii)⇒(iii) let M be a bounded, M0 = 0, strongly orthogonal to any element of X meaning
⟨M,X⟩ = 0, ∀X ∈ X .

Since by hypothesis X ∪ {1} generate the set H1(P), any N ∈ H1(P) is limit of a
sequence of processes as N0 +

∑
iHi.Xi. Thus,

⟨M,N⟩t = limM0N0 +
∑
i

⟨M,Hi.Xi⟩t =
∑
i

∫ t

0

Hid⟨M,Xi⟩s

which is null v on M, which so is orthogonal to any element of H1(P). Moreover, M is
bounded so belongs to H1(P), thus it orthogonal to itself thus it is null.

(iii)⇒(ii) By the de�nition we get the inclusion S(X ∪ {1}) ⊂ H1(P). But let us sup-
pose that this inclusion is strict. Since S(X ∪ {1}) is a closed convex subset of H1(P),
there exists M ∈ H1(P) orthogonal to S(X ∪ {1}). Particularly M is orthogonal to 1,
thus M0 = 0. Let Tn = inf{t/|Mt| ≥ n} be the sequence of stopping times such that MTn

is a bounded martingale, null in 0, orthogonal to X : Hypothesis (iii) implies M is null
and the equality of both sets is satis�ed.

(i)⇒(iii) P is extremal in M(X ). Let Y be a bounded F0-measurable random variable
and N ′ a bounded martingale, null in zero, orthogonal to X . Set N = Y −E[Y ]+N ′ and
remark that ∀t ≥ 0, EP(Nt) = 0. Then set

a = ∥N∥∞ ; Z1 = 1 +
N

2a
; Z2 = 1− N

2a
.

Obviously E(Zi) = 1, Zi ≥ 1
2
> 0, so the measures Qi = ZiP are equivalent to P proba-

bility measures, their half-sum is P.

Since Y is F0-measurable and N ′ is orthogonal to X ∀X ∈ X , and NX is a P- martin-
gale. Thus ZiX = X ± NX

2a
is too a P- martingale. Using Proposition 5.4, X ∈ Mc

loc(Qi)
and Qi ∈ M(X ); this contradicts that P is extremal unless Nt = 0,∀t ≥ 0 meaning bot
Y = E[Y ] and N ′ = 0. This concludes (iii).

(iii)⇒(i) Let us assume that P admits the decomposition inM(X ) : P = aQ1+(1−a)Q2.
So Q1 is absolutely continuous with respect to P and the density Z exists, bounded by 1

a
,

E[Z] = 1 and since F0 = (0,Ω), Z0 = 1 almost surely: Z − 1 is a bounded null in zero
martingale.

On another hand, ∀X ∈ X , X ∈ Mc
loc(P) ∩Mc

loc(Q1) since P and Q1 ∈ M(X ). Once
again, Proposition 5.4 proves that ZX ∈ Mc

loc(P) and (Z−1)X ∈ Mc
loc(P) meaning Z−1

is orthogonal to any X and Hypothesis (iii) proves Z− 1 = 0, meaning Q1 = P which, so,
is extremal.

(iv)⇒(iii) is proved as (i)⇒(iii), this proof doesn't need any property to X .
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(ii)⇒(iv) Let us assume that there exists P′ ̸= P in M(X ), equivalent to P. In case
of �nite X , (ii) means (cf. Theorem 6.9):

H2(P) = {a+
n∑

i=1

H iX i ; a ∈ R, H i ∈ L∗(X i) ∩ L2(dP⊗ d⟨X i⟩), X i ∈ X}.

Let Z be the martingale density of P′ with respect to P : P′ = ZP where Z is a P-
martingale, expectation 1, equal to 1 at zero. Any X of X belongs to Mc

loc(P)∩Mc
loc(P

′),
but Proposition 5.4 says that ZX ∈ Mc

loc(P), thus (Z − 1)X ∈ Mc
loc(P), meaning that

Z−1 is orthogonal to X so to S(X ∪{1}) = H1(P). Localizing, we bound this martingale,
the stopped martingale is orthogonal to itself, thus null.
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7 Finance application

The application is twofold: if there exists a probability Q, equivalent to the natural
probability such that any price process is a Q-martingale, Q is said risk neutral probability
(or �martingale measure�), then the market is said VIABLE, meaning that there exists
no arbitrage (arbitrage is to win with a strictly positive probability starting with a null
initial wealth meaning VT (θ) ≥ 0 and P{VT (θ) > 0} > 0.
RECIPROCAL is false, contrarily to what it is too often said or written.

When the set of these price processes, Q-martingales, has the representation property
for Q-martingales, the market is said to be COMPLETE.

7.1 Research of a risk neutral probability measure

We assume that the share prices are Si, i = 1, ...n, strictly positive semi martingales:

dSi
t = Si

tb
i
tdt+ Si

t

∑
j

σi
j(t)dB

j
t .

Otherwise look at the equivalent probability Q = E(X.B)P = ZP. Using Girsanov Theo-
rem, ∀j:

B̃j
t = Bj

t −
∫ t

0

Xj
sds

is a Q-Brownian motion. So actually processes Si are too Q-semi martingales as following:

dSi
t = Si

t(b
i
t +
∑
j

σi
j(t)X

j
t )dt+ Si

t

∑
j

σi
j(t)dB̃

j
t .

Thus the problem is now to �nd a vector X in L(B) satisfying (for instance) Novikov
condition such that ∀i = 1, ...n we get the system with n equations and d unknown:

bit +
∑
j

σi
j(t)X

j
t = 0.

Exercise: solve this system when n = d = 1, then n = d. What to do if n ̸= d ?

7.2 Application: to hedge an option

In case of a complete market, using representation Theorem, we can �hedge� an option.

Remember that an option is a �nancial asset based on a share price p but it is a right
that can carry forward in two ways :

- call option with terminal value (ST −K)+,

- put option with terminal value (K − ST )
+,

K being the exercise price of the option and T the maturity.
Concretely, at time 0 we buy
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- the right to buy at price K even if the price ST is over (call)

- or the right to sell at price K even if the price ST is under (put).
But to �nd the �fair price� of this contract, the seller of the option could honor the
contract, thus placing the sum obtained by selling the contract so he can (at least in
average) pay the buyer at time T .

De�nition 7.1. We call the fair price of a contingent claim H the smallest x ≥ 0 such
that
there exists a self-�nancing admissible strategy π which realizes at time T the value
g(ST ) = VT (π), the discounted price being e−rTVT (π) = H, initial value being V0(π) = x.

Recall: A self-�nancing strategy π is said to be admissible if its value

Vt(π) = V0 +

∫ t

0

πs.dSs

is almost surely bounded below by a real constant.

For instance for the �call option�, the claim is H = g(ST ) = (ST − K)+, and the
seller of the contract looks for �hedging�. Here are useful the �martingale representation�
Theorems. If r is the discount (e.g. savings rate), e−rTg(ST ) is the discounted claim.

Let us assume that we are in 7.1 scheme with n = d, σ invertible and the market
admitting a risk neutral probability measure on FT : Q = ET (X.B)P. Using fundamental
Theorem there exists a vector θ such that

(26) e−rTg(ST ) = EQ[e
−rTg(ST )] +

∫ T

0

∑
j

θjtdB̃
j
t .

But using Q-Brownian motion B̃ above, yields:

dSi
t = Si

t

∑
j

σi
j(t)dB̃

j
t

so ∀j
dB̃j

t =
∑
i

(σ−1)ji (t)(S
i
t)

−1dSi
t

to be replaced in (26):

e−rTg(ST ) = EQ[e
−rTg(ST )] +

∫ T

0

∑
i,j

θjt (S
i
t)

−1(σ−1)ji (t)dS
i
t

which allows us to identify the hedging portfolio

πi
t = (Si

t)
−1
∑
j

θjt (σ
−1)ji (t)

and �nally the fair price is:
q = EQ[e

−rTg(ST )].
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8 Financial model, continuous time, continuous prices

(Cf. [9] chap 12.1 to 12.5, [20] Section 5.8, pages 371 et sq.)
Here are assumed AOA hypothesis (cf. De�nition 4.1): thus the price processes are semi
martingales.

8.1 Model

We consider �nite horizon t ∈ [0, T ], the market is denoted as S with n + 1 assets, the
prices of which being continuous semi martingales. Real quantities of these assets could
be bought or sold, there is neither trade nor transaction costs. The semi martingales are
continuous, build on Wiener space, �ltered probability space: (Ω,A,P,Ft), on which is
de�ned a n-dimensional Brownian motion, B. Moreover we assume F0 = {∅,Ω},FT = A.

Hypothesis on market S: the �rst assets is risk less, constant rate, namely the
�bond�, S0

t = ert thus:
dS0

t = S0
t rdt, r > 0, S0

0 = 1.

The n risky assets on the market are supposed to be strictly positive semi martingales
satisfying: ∀i = 1, ..., n, there exists a semi martingale X i such that :

Si
t = Et(X i), t ∈ [0, T ].

Concretely,

(27) dX i
t =

∑
j

(σi
j(t)dB

j
t + bi(t)dt), i = 1, · · · , n; dX0

t = rdt.

There is a perishable consumption good and there are I economic agents with access
to information Ft on time t. For any k = 1, · · · , I, the k−th agent has resources (endow-
ments) ek0 ∈ R+ on the beginning and ekT ∈ L1(Ω,FT ,P) at the end, he consumes ck0 ∈ R
on the beginning and ckT ∈ L1(Ω,FT ,P) at the end. He has no intermediary resources or
consumption.

We denote X a subset of R × A(Ω,FT ,P), set of claims to reach, equipped with a
complete, continuous, increasing, convex preference relation (that will be built later and
is di�erent from an order relation, it lacks the antisymmetry and transitivity).

De�nition 8.1. A preference relation (denoted as ≺) is said to be complete if for any
c1 and c2 in X, it is either c1 ≺ c2 or c2 ≺ c1
It is said to be continuous if ∀c ∈ X, {c′ ∈ X, c′ ≺ c} and {c′ ∈ X, c ≺ c′} are closed
sets.
It is said to be increasing if all the coordinates of c′ are greater or equal to those of c
implies c ≺ c′.
It is said to be convex if c′ and c” ≺ c then ∀α ∈ [0, 1], αc′ + (1− α)c” ≺ c.
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8.2 Equilibrium price measure, or risk neutral probability mea-
sure

De�nition 8.2. Let (S0, · · · , Sn) be a price system, an equilibrium price measure or
risk neutral probability measure on (Ω,Ft) is a probability Q, equivalent to P, such the
discounted prices e−rtSi, denoted S̃i, are local Q-martingales.

We note QS the set of such probability measures.
Remark that QS is included in the set M(S), cf. De�nition 6.17.
We now assume that QS is non empty, we choose Q ∈ QS; it is not necessarily unique,
but most of the results don't depend on the chosen element in QS.
This hypothesis implies the absence of arbitrage opportunity (De�nition 8.7 and Theo-
rem 8.9 below). Once again, contrary to what we read too often it is not equivalent to it.
This is a su�cient condition but not necessary for the absence of arbitrage. Instead, it is
equivalent to a condition called NFLVR(cf. [7]).

Exercise: In this context, express the major hypothesis of the model (27), namely the
existence of a equilibrium price measure Q , i.e. the discounted price processes S̃n are
Q-martingales. Itô formula is a good tool to solve it.

(28) dS̃i
t = e−rtdSi

t − rSi
te

−rtdt = S̃i
t(dX

i
t − rdt) = S̃i

t [
∑
j

σi
j(t)dB

j
t + (bi(t)− r)dt].

So the problem is to �nd Q, equivalent to P, and a Q−Brownian motion B̃ such that dXi
t−rdt =

σtdB̃t. Here we use Girsanov theorem denoting Zt = EP[
dP
dQ/Ft] which could be expressed as

a martingale, stochastic integral with respect to the d-dimensional Brownian motion B: there

exists a vector process X ∈ P(B) such that dZt = Zt
∑d

j=1X
jdBj

t .

To �nd risk neutral Q is equivalent to �nd X.

End the exercise by assuming for example that the matrix tσ.σ has rank d thus is invertible and

there is a Novikov-type condition on the vector v. = (tσ.σ.)
−1×tσ.(b.−r.1) where 1 = (1, · · · , 1).

More generally, discuss the existence of risk-neutral probabilities depending on

whether d = n, d < n, d > n.

8.3 Trading strategies

Notation: below, ⟨x, y⟩ notes the scalar product between both vectors x and y, not to be confused

with the stochastic bracket between two martingales or semi martingales!

A strategy is a portfolio θ, F -adapted process taking its values in Rn+1, θi represent-
ing the portion of the portfolio invested in the ith �nancial assets. The conditions to
assume are those allowing the real process

∫
⟨θs, dSs⟩ to be de�ned: θ has to be integrable

on [0, t], ∀t respectively with respect to the martingale part and the �nite variation part
of the semi-martingale, discounted price process S̃i. This quantity

∫ t

0
⟨θs, dSs⟩ represents

the gain from the exchange between 0 and t and
∫ t

0
⟨θs, dS̃s⟩ represents the discounted

gain from the exchange between 0 and t.
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De�nition 8.3. An admissible strategy is an adapted process taking its values in RN+1

on (Ω,Ft, Q), stochastically integrable (cf. Section 2) with respect to the price vector S.

De�nition 8.4. A strategy is self-�nancing if moreover ∀t ∈ R+ the portfolio value
satis�es:

Vt(θ) = ⟨θt, St⟩ = ⟨θ0, S0⟩+
∫ t

0

⟨θs, dSs⟩.

Remark: This is interpreted as follows: there are no external resources, only the
change of the portfolio is changing wealth.
This may be clearer in discrete time:

Vt+1 − Vt = ⟨θt+1, St+1⟩ − ⟨θt, St⟩ = ⟨θt+1, St+1 − St⟩(29)

is equivalent to ⟨θt+1, St⟩ = ⟨θt, St⟩.

The portfolio is change between t and t+1 by internal reorganization between the assets.

This not an obligation but here we assumed that the price processes are stochastic expo-
nentials, so that they are strictly positive.

Theorem 8.5. Let θ be an admissible strategy. It is self-�nancing if and only if the
discounted value of the portfolio Ṽt(θ) = e−rtVt(θ) satis�es:

Ṽt(θ) = V0(θ) +

∫ t

0

⟨θs, dS̃s⟩

where the scalar product is in Rn instead of Rn+1 since dS̃0
s = 0.

Proof. : exercise, using Ito formula on the product e−rt × Vt(θ), then using (28).

Corollary 8.6. let Q be an equilibrium price measure. For any θ self-�nancing strategy,
element of P(S̃), the discounted value of the portfolio is a local Q−martingale.

Proof. : Exercise

De�nition 8.7. θ is said to be an arbitrage strategy if it is admissible,
self-�nancing and satis�es one of these three properties:

⟨θ0, S0⟩ ≤ 0 and ⟨θT , ST ⟩ ≥ 0 almost surely and ̸= 0 with probability > 0,

⟨θ0, S0⟩ < 0 and ⟨θT , ST ⟩ ≥ 0 almost surely,

⟨θ0, S0⟩ = 0 and ⟨θT , ST ⟩ ≥ 0 almost surely and ̸= 0 with probability > 0.(30)

Proof: exercise, prove the equivalence of these three de�nitions.
For instance, 2 ⇒ 3, if ⟨θ0, S0⟩ = a < 0, we de�ne a new strategy which satis�es the third
property:

θ′i = θi, i = 1, · · · , n ; θ′0(t) = θ0(t)− ae−rt, ∀t ∈ [0, T ].

Then

⟨θ′0, S0⟩ = θ′00 , S
0
0 +

n∑
1

⟨θi0, Si
0⟩ = ⟨θ0, S0⟩ − a = 0

and ⟨θ′T , ST ⟩ = ⟨θT , ST ⟩ − ae−rT erT > ⟨θT , ST ⟩ ≥ 0. Thus, ⟨θ′T , ST ⟩ is positive, non null. •
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De�nition 8.8. A market where there is no arbitrage strategy is said to be viable. We
say that it satis�es the AOA hypothesis arbitrage opportunity absence).

We now give some su�cient conditions to make a market S viable.

Theorem 8.9. (cf. [9], 12.2 et sq.) If the set QS is non empty, then the market is viable.

Proof. : Exercise with the following steps. Let be Q ∈ QS:
1. If for any self-�nancing strategy θ, Ṽt(θ) is a Q−super martingale, then the market is
viable.
2. If any self-�nancing strategy of P(S̃) is such that Ṽt(θ) ≥ 0, then the market is viable.

1. The fact that Ṽt(θ) is a Q−super martingale could be written as:

∀s ≤ t, EQ[Ṽt(θ)/Fs] ≤ Ṽs(θ).

Particularly, since the initial σ−algebra F0 is trivial, for s = 0,

EQ[ṼT (θ)] ≤ Ṽ0(θ) meaning ⟨θ0, S0⟩.

Thus let us assume that there exists an arbitrage strategy: ⟨θ0, S0⟩ = 0, ⟨θT , ST ⟩ ≥ 0.
Thus EQ[ṼT (θ)] ≤ 0 and since ṼT (θ) = e−rT ⟨θT , ST ⟩ ≥ 0, ṼT (θ) = 0, so strategy θ cannot
be arbitrage strategy.

2. Since the strategy θ is self-�nancing,

Ṽt(θ) = ⟨θ0, S0⟩+
∫ t

0

⟨θs, dS̃s⟩.

Corollary 8.6 shows that Ṽt(θ) is a local Q−martingale moreover positive, thus it is a
super martingale (cf. proof of Lemma 5.6) and we go back to (1) to conclude. •

As a conclusion, to avoid arbitrage, we add in the de�nition of admissible strategy θ
the obligation to check

Vt(θ) ≥ 0, dt⊗ dP almost surely .

Remark 8.10. We stress the sequence of implications: QS is non empty ⇒ no arbitrage
⇒ price processes are semi-martingale
without however, having the reciprocal.....

8.4 Complete market

Here we use the tools introduced in Subsection 6.1. Let be Q ∈ QS.

De�nition 8.11. A contingent claim X ∈ L1(Ω,FT , Q) is simulable or attainable
under probability measure Q if there exists a self-�nancing admissible strategy θ and a
real number x such that

X = ⟨θT , ST ⟩ = x+

∫ T

0

θs.dSs.

A market is said to be complete under probability measure Q for the price system S
is any X ∈ L1(Ω,FT , Q) is simulable.
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In this subsection we look for a characterization of complete market, at least to exhibit
some su�cient conditions for completeness.

Theorem 8.12. A claim X is simulable if and only if there exists a vector process α ∈
P(S̃), N-dimensional such that:

EQ[X/Ft] = e−rTEQ[X] +

∫ t

0

⟨αs, dS̃s⟩.

Proof:

If X is simulable, this means there exists a self-�nancing admissible strategy θ and a
real number x such that X = VT (θ) = ⟨θT , ST ⟩ = x+

∫ T

0
⟨θs, dSs⟩.

Since θ is admissible, by de�nition, it is stochasticaly integrable with respect to S so to
S̃; it is self-�nancing meaning (cf. Theorem 8.5) dṼt(θ) = ⟨θt, dS̃t⟩. But X = ⟨θT , ST ⟩ or
ṼT (θ) = e−rTX and �nally Ṽ (θ) is a martingale:

Ṽt(θ) = EQ[ṼT (θ)/Ft] = EQ[ṼT (θ)] +

∫ t

0

⟨θs, dS̃s⟩.

The �rst term is e−rTEQ[X] and the process α is identi�ed as the required process, the
strategy θ on coordinates 1, · · · , N.

Conversely, if α exists, let us de�ne the strategy

θi = αi, i = 1, · · · , n ; θ0 = e−rTEQ[c(T )] +

∫ T

0

⟨αs, dS̃s⟩ −
n∑
1

⟨θis, S̃i
s⟩.

We check that this strategy actually hedges the claim X, thus simulable, then that
this strategy θ is actually self-�nancing. •

Let us admit the theorem:

Theorem 8.13. Let Q be a risk neutral probability measure. If F0 = {Ω, ∅), the following
are equivalent:

(i) The market is complete with respect to price system {S}.

(ii) QS = {Q}

Proof: Exercise, in case of N assets, semi martingales driven by a d−Brownian motion
B:

dSi
t = Si

tb
i
tdt+ Si

t

d∑
j=1

σij
t dB

j
t , i = 1, · · · , n.
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9 EXERCISES

We consider that we are on a �ltered probability space (Ω,A, (Ft),P).
i(*) means exo i is di�cult to solve but its result is useful.

9.1 Prerequisites: conditional expectation, stopping time

0. Recall Borel-Cantelli and Fatou lemmas.

1. Let G be a sub-σ algebra of A and an almost surely positive random variable X.
Prove that the conditional expectation E[X/G] is also strictly positive.
Prove that the reciprocal is false given a contra-example (for instance use the trivial
σ-algebra G).

2. Let G ⊂ H ⊂ A and X ∈ L2(Ω,A,P). Prove (Pythagore Theorem):

E[(X − E[X/G])2] = E[(X − E[X/H])2] + E[(E[X/H]− E[X/G])2].

3. Let O be an open sand in A and a F−adapted continuous process X. One notes

T0 = inf{t : Xt ∈ O}.

Prove that TO is a stopping time.

4. Let be stopping times S and T .
(i) Prove that S ∧ T is a stopping time.
(ii) Prove

FS∧T = FS ∩ FT .

5. Let be T a stopping time and A ∈ A. Prove that

TA = T sur A,

= +∞ sur Ac,

is a stopping time if and only if A ∈ FT .

6. A real random variable X is FT measurable if and only if ∀t ≥ 0, X1T≤t is Ft

measurable.

7. Let X ∈ L1 and a family of σ-algebras Fα, α ∈ A. Then the family of conditional
expectations {E[X/Fα], α ∈ A} is uniformly integrable.

8. let X be a F -progressively measurable process and T a (Ft) stopping time. Then
(i) the application ω 7→ XT (ω)(ω) is FT -measurable
(ii) the process t 7→ Xt∧T is F -adapted.

9. If X is an adapted measurable process admitting càd or càg trajectories, it is
progressively measurable.
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9.2 Martingales

1. Let X be a martingale, φ a function such that ∀t φ(Xt) ∈ L1.
(i) if φ is a convex function, then φ(X) is a sub-martingale ; if φ is a concave function
φ(X)is a super-martingale.
(ii) When X is a sub-martingale and φ an increasing convex function such that ∀t φ(Xt) ∈
L1, then φ(X) is a sub-martingale.

2. Martingale convergence: admit the following: let X be a càd super (or sub)-
martingale such that suptE[|Xt|] <∞. Then limt→∞Xt exists almost surely and belongs
to L1(Ω,A,P).

And deduce the Corollary : if X is a càd bounded from below super-martingale, then
limt→∞Xt exists almost surely and belongs to L1(Ω,A,P).

3. let X be a martingale. Prove the following are equivalent:
(i) X is uniformly integrable.
(ii) Xt converges almost surely to Y (which belongs to L1) when t goes to in�nity and

{Xt, t ∈ R+} is a martingale.
(iii) Xt converges to Y in L1 when t goes to in�nity.

Indication: (i) → (iii) → (ii) → (i)

4. let be (Xt)t≥0 a positive right continuous upper-martingale and

T = inf{t > 0 : Xt = 0}.

(i) Prove that almost surely ∀t ≥ T, Xt = 0. (First prove E(Xt1T≤t) = 0.)
(ii) Prove that almost surely X∞ = limt→∞Xt exists. Deduce:

{X∞ > 0} ⊂ {∀t, Xt > 0} = {T = +∞}.

Give a contra-example using

{X∞ > 0} ̸= {T = +∞}.

5. If M ∈ Mloc is such that E[M∗
t ] <∞∀t, then M is a 'true' martingale.

Moreover suppose E[M∗] <∞, then M is uniformly integrable.

6. If X is a closed martingale with Z, meaning Z is integrable and ∀t, Xt = E[Z/Ft],
prove that it also closed with limt→∞Xt denoted as X∞ equal to E[Z/ ∨t≥0 Ft].
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9.3 Brownian motion

1. Prove that the real Brownian motion is a centered continuous Gaussian process with
covariance function ρ(s, t) = s ∧ t.
Conversely a centered continuous Gaussian process with covariance function ρ(s, t) = s∧t
is a real Brownian motion.

2. Prove that the Brownian motion is a martingale with respect to its proper �ltration,
i.e. Ft = σ(Bs, s ≤ t).
Prove that it is also a Markov process.

3. Let be Gt = σ(Bs, s ≤ t) ∨ N , t ≥ 0. Prove this �ltration is càd, meaning Gt+ =
∩s>tGs.
Indication: use
1. the Gt+-conditional characteristic of the vector (Bu, Bz), z, u > t is the limit of Gw-
conditional characteristic function of the vector (Bu, Bz), when w decreases to t,
2. this limit is equal to the Gt-conditional characteristic of the vector (Bu, Bz), z, u > t,
3. thus for any integrable Y E[Y/Gt+ ] = E[Y/Gt]. So any Gt+-measurable is Gt-measurable
and conclude.

4(*). Paley-Wiener-Zygmund' Theorem, 1933, cf.pp. 110-111, Karatzas-Schreve. For
almost all ω ∈ Ω, the application t 7→ Bt(ω) is not di�erentiable. More speci�cally, we
have

P{ω ∈ Ω : ∀t, limh→0+
(Bt+h −Bt)(ω)

h
= +∞ and limh→0+

(Bt+h −Bt)(ω)

h
= −∞} = 1.

6. Let be (Bt) a real Brownian motion.
a) Prove that the sequence Bn

n
goes to 0 almost surely.

b) Use that B is a martingale and a Doob inequality (cf. Theorem 0.30 page 8 Lecture
Notes) to deduce the majoration

E[ sup
σ≤t≤τ

(
Bt

t
)2] ≤ 4τ

σ2
.

c) Let be τ = 2σ = 2n+1, give a bound for P{sup2n≤t≤2n+1 |Bt

t
| > ε} that proves the

convergence of this sequence, then apply Borel Cantelli lemma.
d) Deduce limt→∞

Bt

t
= 0 almost surely. (meaning the large numbers law, cf. problem

9.3, correction pages 124-125, in Karatzas-Schreve.)

7. Let be Yt = t.B1/t ; Y0 = 0 and FY
t the natural �ltration associated to the process

Y. Prove that (Yt,FY
t ) is a Brownian motion (use the criterium in 1 and exercise 6 above).
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9.4 Stochastic integral

In this section and the following let be M square integrable martingale on the �ltered
probability space (Ω,Ft, P ) such that d⟨M⟩t is absolutely continuous w.r.t. Lebesgue
measure dt: ∃ f measurable positive function on [0,T] s.t. d⟨M⟩t = f(t)dt.
1. Let be LT (M) the set of adapted processes X on [0, T ] such that:

[X]2T = E[

∫ T

0

X2
sd < M >s] < +∞.

Prove that LT (M) is a metric space w.r.t. the distance d: d(X, Y ) =
√
[X − Y ]2T .

Actually it is a semi-norm which de�nes an equivalence relation X ∼ Y if d(X,Y ) = 0.
2. Prove the equivalence∑

j≥1

2−j inf(1, [X −Xn]j) → 0 ⇐⇒ ∀T, [X −Xn]T → 0.

3. Let be S the set of simple processes for which is de�ned the stochastic integral w.r.t.
M :

It(X) =
J−1∑
j=0

Xj(Mtj+1
−Mtj) +XJ(Mt −MtJ ) on the event {tJ ≤ t ≤ tJ+1}.

Prove that It satis�es the following:

(i) It is a linear application on S.
(ii) It(X) is Ft-measurable and square integrable.

(iii) E[It(X)] = 0.

(iv) It(X) is a continuous martingale.

(v) E[(It(X)− Is(X))2/Fs] = E[I2t (X)− I2s (X)/Fs] = E[
∫ t

s
X2

ud < M >u /Fs].

(vi) E[It(X)]2 = E[
∫ t

0
X2

sd < M >s] = [X]2t .

(vii) < I.(X) >t=
∫ t

0
X2

sd < M >s .
Indication: actually, (vi) and (vii) are consequence of (v).

4. Prove Proposition 2.18: Let M and N be two square integrable continuous martin-
gales, X ∈ L∗(M) and Y ∈ L∗(N). Then:

(31) ⟨X.M, Y.N⟩t =
∫ t

0

XuYud⟨M,N⟩u, ∀t ∈ R, P a.s.

and

(32) E[

∫ t

s

XudMu

∫ t

s

YudNu/Fs] = E[

∫ t

s

XuYud⟨M,N⟩u/Fs], ∀s ≤ t, P a.s.

5. Prove that stochastic integral is associative, meaning: if H is stochastically in-
tegrable w.r.t. the martingale M, giving the integral H.M, and if G is stochastically
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integrable w.r.t. the martingale H.M , then G.H is stochastically integrable w.r.t. the
martingale M and:

G.(H.M) = (G.H).M.

6. Let be M a continuous martingale and X ∈ L(M). let be s < t and Z a Fs-
measurable bounded random variable. Compute E[

∫ t

s
ZXudMu−Z

∫ t

s
XudMu]

2 and prove:∫ t

s

ZXudMu = Z

∫ t

s

XudMu.

6. Let be T a stopping time, two processes X and Y such that XT = Y T , two
martingales M and N such that MT = NT . Suppose X ∈ L(M) and Y ∈ L(N). Prove
that IM(X)T = IN(Y )T .
(Use that for any square integrable martingale: Mt = 0 a.s.⇐⇒< M >t= 0 a.s.)

7. LetM and N square integrable continuous martingales, and processesX ∈ L∞(M),
Y ∈ L∞(N). Prove that
(i) X.M and Y.N are uniformly integrable, with terminal value

∫∞
0
XsdMs and

∫∞
0
YsdNs.

(ii) limt→∞⟨X.M, Y.N⟩t exists almost surely.
This is a direct application of Kunita-Watanabe's inequality.
(iii)E[X.M∞Y.N∞] = E[

∫∞
0
XsYsd⟨M,N⟩s].

Use the following theorem: if M is a continuous local martingale such that E[⟨M⟩∞] <
∞, then it is uniformly integrable and converges almost surely when t → ∞. Moreover
E[⟨M⟩∞] = E[M2

∞].

8. Let be M and N two local continuous martingales and real numbers a and b,
X ∈ L∞(M) ∩ L∞(N). Prove that the stochastic integration with respect to the local
continuous martingales is a linear application, meaning X.(aM + bN) = aX.M + bX.N

9. Stratonovitch integral is de�ned as:∫ t

0

Ys ◦ dXs =

∫ t

0

Ys ◦ dXs +
1

2
⟨Y,X⟩t.

Let be ε = 1
2
. Prove that:

lim
∥π∥→0

Sε(Π) =
m−1∑
i=0

[(1− ε)Wti + εWti+1
](Wti+1

−Wti) =

∫ t

0

Ws ◦ dWs =
1

2
W 2

t

where ∥π∥ = supi(ti+1 − ti).
Let be X and Y two continuous semi-martingales,and π a partition [0,t]. Prove that

lim
∥π∥→0

m−1∑
i=0

1

2
(Yti+1

+ Yti)(Xti+1
−Xti) =

∫ t

0

Ys ◦ dXs.

Let be X a d-dimensional vector of continuous semi-martingales, and f a C2 function.
Prove that:

f(Xt)− f(X0) =

∫ t

0

∂f

∂xi
(Xs) ◦ dX i

s.
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9.5 Itô formula

1. The quadratic co-variation of two continuous square integrable semi martingales X
and Y is the limit in probability, when supi |ti+1 − ti| → 0 of:

⟨X,Y ⟩t = lim
proba

n∑
i=1

(Xti+1
−Xti)(Yti+1

− Yti).

Prove this co-variation is null when X is a continuous semi-martingale and Y a �nite
variation process.
2. Lévy Theorem : Let be X a continuous (semi-)martingale, X0 = 0 almost surely.
X is a real Brownian motion if and only ifX is a continuous local martingale s.t. ⟨X⟩t = t.
First step: compute the Fs-conditional characteristic function ofXt−Xs using Itô formula,
∀ s ≤ t.
3. Prove that the unique solution in C1,2

b (R+, Rd) of the partial di�erential equation (heat
equation)

∂f

∂t
=

1

2
∆f, f(0, x) = φ(x), ∀x ∈ Rd

where φ ∈ C2
b (R

d) is f(t, x) = E[φ(x+Bt)], B d−dimensional Brownian motion.
could we avoid boundedness of f and ϕ ?

4. Long and tedious proof... Let be M a d-dimensional vector of continuous mar-
tingales, A an adapted continuous d-dimensional vector with with �nite variation, X0 a
F0-measurable random variable; let be f ∈ C1,2(R+,Rd) and Xt := X0 +Mt + At. Prove
that P almost surely:

f(t,Xt) = f(0, X0) +

∫ t

0

∂f

∂t
(s,Xs)ds+

∫ t

0

∑
i

∂f

∂xi
(s,Xs)dM

i
s +

∫ t

0

∑
i

∂f

∂xi
(s,Xs)dA

i
s

+
1

2

∫ t

0

∑
i,j

∂2f

∂xi∂xj
(s,Xs)d⟨M i,M j⟩s

5. a)Use exercise 4 with two semi-martingales X = X0 +M + A and Y = Y0 + N + C.
Prove that

∫ t

0
XsdYs = XtYt −X0Y0 −

∫ t

0
YsdXs − ⟨X, Y ⟩t.

This the integral by part formula.

b) Use Ito formula to get the stochastic di�erential of the processes

t 7→ X−1
t ; t 7→ exp(Xt) ; t 7→ Xt.Y

−1
t .

6. Prove that

(exp

∫ t

0

asds)(x+

∫ t

0

bs exp(−
∫ t

0

audu)dBs)

is solution to the SDE

dXt = a(t)Xtdt+ b(t)dBt, t ∈ [0, T ], X0 = x,

after justi�cation of any integral in the formula.
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9.6 Stochastic di�erential equations

1. Prove that the process t 7→ (exp
∫ t

0
asds)(x +

∫ t

0
bs exp(−

∫ s

0
audu)dBs) is solution to

the SDE dXt = a(t)Xtdt + b(t)dBt, t ∈ [0, T ], X0 = x, after justi�cation of any integral
in the formula. (meaning specify useful hypotheses on parameters a and b.

2. Let be B a real Brownian motion. Prove that B2
t = 2

∫ t

0
BsdBs + t.

If ∀t X ∈ Lt(B), then:

(X.B)2t = 2

∫ t

0

(X.B)sXsdBs +

∫ t

0

X2
sds.

Let be Zt = exp((X.B)t − 1
2

∫ t

0
X2

sds). Prove that Z is solution to the SDE:

Zt = 1 +

∫ t

0

ZsXsdBs.

Prove that Y = Z−1 is solution to the SDE:

dYt = Yt(X
2
t dt−XtdBt).

Prove that there exists a unique solution to the SDE dXt = Xtbtdt+XtσtdBt, Xt = x ∈ R
when b, σ2 ∈ L1(R+), computing the stochastic di�erential of two solutions ratio.
3. Let be Ornstein Uhlenbeck stochastic di�erential equation:

dXt = −αXtdt+ σdBt, X0 = x,

where x ∈ L1(F0).
(i) Prove that the following is the solution of this SDE:

Xt = e−αt(x+

∫ t

0

σeαsdBs).

(ii) Prove that the expectation m(t) = E[Xt] is solution of an ordinary di�erential
equation which is obtained by integration of Xt = x − α

∫ t

0
Xsds + σBt. Deduce m(t) =

m(0)e−αt.
(iii) Prove the covariance

V (t) = V ar[Xt] =
σ2

2α
+ (V (0)− σ2

2α
)e−2αt.

(iv) Let be x a F0-measurable variable, with law N (0, σ
2

2α
), Prove that X is a Gaussian

process with co-variance function ρ(s, t) = σ2

2α
e−α|t−s|.
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9.7 Black-Scholes Model

to do with Man next week to prepare the terminal term test!

1.Assume that a risky asset price process is solution to the SDE

(33) dSt = Stbdt+ StσdWt, So = s,

b is named �trend' and σ �volatility�. Prove that (33) admits a unique solution, using Ito
formula to compute the ratio S1

S2 with Si, i = 1, 2 two solutions to the SDE.

2. Assume that the portfolio θ value Vt(θ) is such that there exists a C1,2 regular
function C satisfying

(34) Vt(θ) = C(t, St).

Otherwise, θ is the pair (a, d) and

(35) Vt(θ) = atS
0
t + dtSt = V0(θ) + ⟨θ0, p0⟩+

∫ t

0

asdS
0
s +

∫ t

0

dsdSs.

With this �self-�nancing� strategy θ the option seller (for instance option (ST − K)+)
could �hedge� the option with the initial price q = V0: VT (θ) = C(T, ST ).
Use the two di�erent expressions of stochastic di�erential of Vt(θ), meaning starting with
⟨θ0, p0⟩+

∫ t

0
asdS

0
s +
∫ t

0
dsdSs or with VT (θ) = C(T, ST ), to get a PDE (partial di�erential

equation) the solution of which will be the researched function C.

3. Actually this PDE is solved using the change of (variable,function) :

x = ey, y ∈ R ; D(t, y) = C(t, ey).

Thus, prove that we turn to the Dirichlet problem

∂D

∂t
(t, y) + r

∂D

∂y
(t, y) +

1

2

∂2D

∂y2
(t, y)σ2 = rD(t, y), y ∈ R,

D(T, y) = (ey −K)+, y ∈ R.

Now let be the SDE:
dXs = rds+ σdWs, s ∈ [t, T ], Xt = y.

Deduce the solution
D(t, y) = Ey[e

−r(T−t)(eXT −K)+],

and the explicit formula, �Black-Scholes� formula, which uses the fact that the law of XT

is a Gaussian law.
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9.8 Change of probability measures, Girsanov theorem

1. Let be the probability measure Q equivalent to P de�ned as Q = Z.P, Z ∈ L1(Ω,FT ,P)
meaning Q|Ft = Zt.P, Zt = EP [Z/Ft].
Prove that ∀t and ∀Y ∈ L∞(Ω,Ft, P ), EP [Y Zt/Fs] = ZsEQ[Y/Fs].
Indication: compute ∀A ∈ Fs, the expectations EP [1AY Zt] and EP [1AZsEQ[Y/Fs]].
2. Let be T ≥ 0, Z ∈ M(P) and Q = ZTP, 0 ≤ s ≤ t ≤ T and a Ft−measurable random
variable Y ∈ L1(Q). Prove (Bayes formula)

EQ(Y/Fs) =
EP(Y Zt/Fs)

Zs

.

3. Let be M a P-martingale, X ∈ L(B) such that Z = E(X.B) is a P-martingale
(remember: dZt = ZtXtdBt, Z0 = 1). Let be Q := ZTP an equivalent probability
measure to P on σ-algebra FT .

(i) Prove that d⟨M,Z⟩ = ZXd⟨M,B⟩.
(ii) Use Itô formula to develop MtZt −MsZs, compute EP[MtZt/Fs].

(iii) Use Itô formula between s and t to process Z.

∫ .

0
Xud⟨M,B⟩u.

(iv) Deduce M. −
∫ .

0
Xud⟨M,B⟩u is a Q−martingale.

4. The following is a contra-example when Novikov condition is not satis�ed: let be the stopping
time T = inf{1 ≥ t ≥ 0, t+B2

t = 1} and

Xt = − 2

(1− t)2
Bt1{t≤T} ; 0 ≤ t < 1, X1 = 0.

(i) Prove that T < 1 almost surely, so
∫ 1
0 X2

t dt < ∞ almost surely.

(ii) Apply Itô formula to the processt → B2
t

(1−t)2
; 0 ≤ t < 1 to prove:∫ 1

0
XtdBt −

1

2

∫ 1

0
X2

t dt = −1− 2

∫ T

0

t

(1− t)4
B2

t dt < −1.

(iii) The local martingale E(X.B) is not a martingale: we deduce from (ii) that E[Et(X.B)] ≤
exp(−1) < 1 and this fact contradicts that for any martingale E(Mt) = M0, here it could be 1....

Anyway, prove that ∀n ≥ 1 and σn = 1−(1/
√
n), the stopped process E(X.B)σn is a martingale.
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9.9 Representation theorems, martingale problem

Recall:
H2

0 = {M ∈ M2,c,M0 = 0, ⟨M⟩∞ ∈ L1},
M and N are said to be orthogonal if E[M∞N∞] = 0, noted M⊥N ,
and strongly orthogonal if MN is a martingale, noted as M †N .
Let be A ⊂ H2

0: denote S(A) the smallest stable closed vector subspace which contains A.

1. Let be M ∈ H2
0 and Y a centered Bernoulli random variable independent on M .

Let be N := YM. Prove M⊥N but no M †N.
2. Let be M(A) the set of probability measures Q on F∞, Q << P, P|F0 = Q|F0 , and
such that A ⊂ H2

0(Q). Prove that M(A) is convex.
Study carefully the di�erence between M(A) and M(A) (cf. Def 6.1 and 6.17 in Lecture
Notes).
3. Let be B a n−dimensional Brownian motion on (Ω,Ft,P). Prove that ∀M ∈ Mc,2,
∃H i ∈ P(Bi), i = 1, · · · , n, such that:

Mt =M0 +
n∑

i=1

(H i.Bi)t.

Indication: apply extremal probability measure theorem (th 6.14) to the set M(B) (actually the
singleton {P}) when B is the set of Brownian motion.
4. Prove that the above vector process H is unique, meaning ∀H ′ satisfying Mt = M0 +∑n

i=1(H
′i.Bi)t is such that :∫ t

0

n∑
i=1

|H ′i
s −H i

s|2ds = 0 almost surely.
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9.10 Example: optimal strategy for a small investor

To do later to prepare the terminal term test....

Let be a set of price processes: Sn
t = Et(Xn), t ∈ [0, T ], with:

dXn
t =

d∑
j=1

σn
j (t)dW

j
t + bn(t)dt, n = 1, · · · , N ; dX0

t = rtdt.

Suppose the matrix σ satis�es dt⊗ dP almost surely : σσ∗ ≥ αI, σ∗ is the transpose matrix of
σ and α > 0. The coe�cients b, σ, r areF−adapted bounded [0, T ]× Ω processes.
1. Look for a condition so that the market is viable, meaning a condition such that there is no
arbitrage opportunity.

(i) Prove that a market is viable as soon as there exists a risk neutral probability measure Q.
(ii) Propose some hypotheses on the above model, su�cient for the existence of Q.

(iii) Propose some hypotheses on the above model, su�cient for the market be complete, meaning
any contingent claim is �attainable� (hedgible).
Start with case N = d = 1, then N = d > 1.
Remark: If d < N and σ surjective, there is no uniqueness of vector u so that σdW +(b−r)dt =
σdW̃ . In this case, the market is not complete and the set QS is bijective with σ−1(r − b).

Recall: let be a set of price processes S, a risk neutral probability measure on(Ω, (Ft)) is a

probability measure Q equivalent to P such that the discounted prices e−rtSn, denoted as S̃n, are local

Q-martingales; denote their set QS .

2. Let be θ an admissible strategy. Prove it is self-�nancing if and only if the discounted portfolio
value Ṽt(S) = e−rtVt(S) satis�es:

Ṽt(S) = V0(S) +

∫ t

0
< θs, dS̃s > .

Use Ito formula; then deduce that (Ṽt(S)) is a local Q-martingale ∀Q ∈ QS .
3. Prove the equivalence between the three properties de�ning the self-�nancing admissible
strategy θ as an arbitrage strategy :

⟨θ0, S0⟩ ≤ 0 and ⟨θT , ST ⟩ ≥ 0 almost surely and ̸= 0 with probability > 0,

⟨θ0, S0⟩ < 0 and ⟨θT , ST ⟩ ≥ 0 almost surely,

⟨θ0, S0⟩ = 0 and ⟨θT , ST ⟩ ≥ 0 almost surely and ̸= 0 with probability > 0.

4. Prove Theorem 8.9: If the set QS is non empty, then the market is viable.
5. A su�cient and necessary condition for a strategy (π, c) to be admissible: let be �xed the

discounted �objective� consumption
∫ T
0 e−rscsds. Prove that

(∗) EQ[

∫ T

0
e−rscsds] ≤ x

is equivalent to the existence of an admissible strategy π such that XT = x+
∫ T
0 πs.dS̃s.

6. Optimal strategies: Prove that actually the problem is as following: the small investor
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evaluates the quality of his investment with an �utility function� (Ui is positive, concave, strictly
increasing, C1 class); he look for the maximization:

(c,XT ) → EP[
∫ T

0
U1(cs)ds+ U2(XT )]

under the above constraint 5 (*). Solve this constrained optimization problem using Lagrange
method and Kuhn and Tucker Theorem.
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