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Introduction to STOCHASTIC CALCULUS,
APPLICATIONS to FINANCE

To manage with Mathematical Finance we need some stochastic tools, especially
stochastic calculus. Indeed, the financial market is supposed to offer some assets, the
price of them being stochastic processes: they depend both time and alea. We suppose
they are known continuously. We also suppose that the nature space, Ω, is infinite, that
the information on market and trading are available on any time, meaning “continuous
trading”. So the time index is t, t ∈ [0, T ] or R+. We now introduce some stochastic tools,
(which anyway can model very different other situations, outside Finance!)

0.1 Plan

i) Wiener process or Brownian motion is such that its small increments well fit the noise,
the alea, the physical measure error and so on. The first chapter 1 proves the existence
of such a process, explicitely building it. Some of the most useful properties are given.
ii) Itô calculus (Chapter 2) gives more sophisticated stochastic processes using stochastic
integration.
iii) Itô formula (Chapter 3) is a differentiation formula of a stochastic process function.
iv) These tools allow us to introduce the so called stochastic diferential equations (SDE),
we look only on linear SDE which are the basis of Black-Scholes model, and perhaps a
little more complicate one: Ornstein-Uhlenbeck SDE, useful to model the rate behaviour.
v) Chapter 5 presents two problems: change of probability measure and martingale prob-
lem. Indeed, in mathematical Finance it is easier to consider the market under the risk
neutral probability measure (if it exists !) meaning that under this measure, all the price
processes are martingales. The existence of such a measure forbids “arbitrage opportu-
nity” (meaning to win money on the financial market with a null initial wealth). Thus
we present:

- Girsanov theorem to know changing the probability measure,

- martingale problem= to find a probability measure under which all the price processes
are martingales,

- martingale representation property, meaning that under convenient hypotheses, any
random variable, FT -mesurable (a contingent claim) is the T -value of a martingale; thus
we obtain a hedging portfolio.

vi) Finally, we use all these tools to model some financial assets markets, to exhibit of
an optimal portfolio, to solve the valuation and the hedging of an option.

1



0.2 Basic definitions.

- probability space (Ω,A, P) with σ-algebra A,
- Borelian σ-algebra on R,Rd.
- random variable,
- filtration, filtered probability space (Ω,A, (Ft), P).
- random process,
- right continuous trajectory (càd), left limited (làg),
- (Ft) adapted process.

0.3 Convergences

Definition 0.1 Let (Pn) be a probability measure sequence on a metric space (E, d) en-
dowed with Borelian σ-algebra B, let P be a probability measure on B. The sequence (Pn)
is said to weakly converge to P if ∀f ∈ Cb(E), Pn(f) → P(f).

Definition 0.2 Let (Xn) be a random variable sequence ∀n defined on (Ωn,An, Pn) and
taking its values in (E, d,B). The sequence (Xn) is said to converge in law to X if the
measure sequence (PnX

−1
n ) weakly converges to PX−1, meaning ∀f ∈ Cb(E), Pn(f(Xn)) →

P(f(X)).

Recall:

- convergence in Lp,

- P almost sure convergence,

- probability convergence.

Proposition 0.3 P almost sure convergence yields probability convergence.

Proposition 0.4 Lp convergence yields probability convergence.

- Lebesgue theorems: monotoneous convergence, bounded convergence.

- lim sup = ∩k ∪n≥k An, lim inf = ∪k ∩n≥k An, .

Theorem 0.5 Fatou: For all event set (An),

P(lim inf
n

An) ≤ lim inf
n

P(An) ≤ lim sup
n

P(An) ≤ P(lim sup
n

An).

Theorem 0.6 Borel-Cantelli:
∑

n P(An) < ∞⇒ P(lim sup An) = 0.
Suppose that the events An are independent and

∑
n P(An) = ∞, then P(lim sup An) = 1.
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Definition 0.7 Let {Uα, α ∈ A} be an event family, it is said uniformly integrable if
limn→∞ supα

∫
{|Uα|≥n} |Uα|dP = 0.

Theorem 0.8 The following are equivalent.

(i) The family {Uα, α ∈ A} is uniformly integrable,

(ii) supα E[|Uα|] < ∞ and ∀ε, ∃δ > 0 : A ∈ A and P(A) ≤ δ ⇒ E[|Uα|1A] ≤ ε.

RECALL : An almost surely convergent sequence which is a uniformly inte-
grable family is convergent in L1.

0.4 Conditional expectation

Definition 0.9 Let X in L1(Ω,A, P), B a sub-σ-algebra of A. EP(X/B) is the unique
random variable in L1(B) such that

∀B ∈ B,
∫

B
XdP =

∫
B

EP(X/B)dP.

Corollary 0.10 Let X ∈ L2(A), ‖X‖2
2 = ‖EP(X/B)‖2

2 + ‖X − EP(X/B)‖2
2.

0.5 Stopping time

It is a notion related to a filtered probability space.

Definition 0.11 A random variable T : (Ω,A, (Ft), P) → (R+,B) is a stopping time
if ∀t ∈ R+, the event {ω/T (ω) ≤ t} ∈ Ft.

Examples:

- a constant,

- let O be an open set in A and X be a continuous process, then

TO(ω) = inf{t,Xt(ω) ∈ O}

is a stopping time, so called a “hitting time”.

Definition 0.12 Let T be a F.-stopping time. The set

FT = {A ∈ A, A ∩ {ω/T ≤ t} ∈ Ft}

is called the T -stopped σ-algebra.

Definition 0.13 The process X.∧T is called “ T -stopped process” generally denoted as
XT .
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0.6 Martingales

(cf. [23] pages 8 à 12 ; [13] pages 11 à 30.)

Definition 0.14 Let X be an adapted real process. It is a martingale (resp supra/sub)
if

(i) Xt ∈ L1(Ω,A, P),∀t ∈ R+,

(ii) ∀s ≤ t, E[Xt/Fs] = Xs. (resp ≤,≥ .)

Lemma 0.15 Let X be a martingale, ϕ a convex function such that ∀t φ(Xt) ∈ L1, then
ϕ(X) is a sub-martingale ; if ϕ is a concave function, ϕ(X) is a super-martingale.

Proof exercise.

Definition 0.16 The martingale X is closed by Y ∈ L1(Ω,A, P) if Xt = E[Y/Ft].

Proposition 0.17 Every martingale admits a càdlàg modification (cf. [23]).

Theorem 0.18 Martingale convergence: let X be a càd super (or sub)-martingale such
that supt E[|Xt|] < ∞. Then limt→∞ Xt exists almost surely and belongs to L1(Ω,A, P).
If X is closed by Z, it is closed by limt→∞ Xt denoted as X∞ which equals E[Z/∨t≥0 Ft].

Corollary 0.19 A bounded from below supermartingale converges almost surely when t
goes to infinity.

Theorem 0.20 Let X be a uniformly integrable càd martingale; then the almost sure
limit Y of Xt when t goes to infinity exists and belongs to L1. Moreover Xt = E[Y/Ft].

Theorem 0.21 Let X be a martingale. X is uniformly integrable iff

(i) Xt converges almost surely to Y (which belongs to L1) when t goes to infinity and

{Xt, t ∈ R+} is a martingale.

or

(ii) Xt converges to Y in L1 when t goes to infinity.

Theorem 0.22 Doob: Let (Xn, n ∈ N) be a F-martingale, S and T F-stopping times
such that:

(i) E[|XS|], E[|XT |] < ∞,

(ii) limn→+∞
∫
{T>n} |Xn|dP = limn→+∞

∫
{S>n} |Xn|dP = 0,
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(iii) S ≤ T < ∞ almost surely.
Then E[XT /FS] = XS P− almost surely.

Let X be a càd sub-martingale with terminal value X∞, let two stopping times S and
T satisfying (i)(ii)(iii). Then:

XS ≤ E[XT /FS] P− almost surely.

Proof: pages 19-20 [13].

Definition 0.23 The increasing process 〈M〉 (or 〈M, M〉) is defined on time t as follow-
ing (π are [0, t] partitions):

〈M〉t = lim
|π|→0

proba
∑
ti∈π

(Mti −Mti−1
)2.

Next chapter: if M is Brownian motion B then 〈B〉t = t.

Remark 0.24 The martingales in L2 admit a bracket.

Proposition 0.25 〈M〉t is the unique continuous process which is adapted increasing
such that

M2
t − 〈M〉t is a martingale.

Very often this proposition is the bracket definition and then 0.23 is a consequence.

0.7 Some definitions and theorems about processes

Definition 0.26 Let X and Y be two processes: X is a modification of Y if :

∀t ≥ 0, P{Xt = Yt} = 1.

X and Y are indistinguable if almost surely their trajectories coincide:

P{Xt = Yt,∀t ≥ 0} = 1.

Remark 0.27 The second notion is stronger than the first.

Definition 0.28 A process X is “progressively measurable” with respect to the filtration
(Ft, t ≥ 0) if ∀t ≥ 0,∀A ∈ B(R) :

{(s, ω)/0 ≤ s ≤ t ; Xs(ω) ∈ A} ∈ B([0, t])⊗Ft,

meaning that the application ([0, t]× Ω,B([0, t])⊗Ft) : (s, ω) 7→ Xs(ω) is measurable.
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Proposition 0.29 (cf [13], 1.12) If X is an adapted measurable process, it admits a
progressively measurable modification.

Proof: cf. Meyer 1966, page 68.

Proposition 0.30 Let X be a F-progressively measurable process and T a (Ft) stopping
time. Then
(i) the application ω 7→ XT (ω)(ω) is FT -measurable
(ii) the process t 7→ Xt∧T is F-adapted.

Proof: (i) X is progressively measurable yields that ∀A Borelian set,

∀t, {(s, ω), 0 ≤ s ≤ t, Xs(ω) ∈ A} ∈ B[0,t] ⊗Ft,

{ω : XT (ω)(ω) ∈ A} ∩ {ω : T (ω ≤ t} = {ω : XT (ω)∧t(ω) ∈ A} ∩ {T ≤ t}.
Using that T is a F -stopping time, the second event belongs to Ft, and since progres-

sive measurability holds, the first one too belongs to Ft.

(ii) The second assertion moreover shows that XT is F -adapted.

Proposition 0.31 (cf [13], 1.13) If X is an adapted measurable process admitting càd
or càg trajectories, it is progressively measurable.

Proof: Define

X(n)
s (ω) = X(k+1)t2−n(ω), s ∈]

kt

2n
,
(k + 1)t

2n
], X

(n)
0 (ω) = X0(ω) ; k = 0, · · · , 2n − 1.

Then the application (s, ω) 7→ X(n)
s (ω) is B([0, t])⊗Ft-measurable. Right continuity shows

that the sequence (X(n)
s (ω)) converges to Xs(ω) (∀s, ω) thus the limit is B([0, t]) ⊗ Ft-

measurable.

Definition 0.32 (page 33 [23]) Let X an adapted càdlàg process: it is a local martin-
gale if there exists a sequence of stopping times Tn increasing to infinity, such that ∀n
the process XTn is a martingale.

Suitably stopping a process is a useful tool to get uniformly integrable martingales
which are easier to manage with: some results are obtained ∀n, then we go to the limit,
for instance using Lebesgue theorems. We denote the local martingale set as Mloc.

Theorem 0.33 (cf [23], th. 44, page 33) Let M ∈Mloc and a stopping time T such that
MT is uniformly integrable.

(i) S ≤ T ⇒ MS is uniformly integrable.

(ii) Mloc is a real vectorial set.

(iii) MS and MT uniformly integrable imply that MS∧T is uniformly integrable.
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Notation :
M∗

t = sup
0≤s≤t

|Ms| ; M∗ = sup
0≤s

|Ms|.

Theorem 0.34 (cf [23], th. 47, page 35) If M ∈ Mloc is such that E[M∗
t ] < ∞∀t, then

M is a ’true’ martingale.
Moreover suppose E[M∗] < ∞, then M is uniformly integrable.

Proof:
(i) ∀s ≤ t, |Ms| ≤ M∗

t belonging to L1, the sequence Tn ∧ t increases to t and

E[MTn∧t/Fs] = MTn∧s.

Using almost sure convergence in this equality, Lebesgue Theorem allows us to go to the
L1 limit. Thus M is a martingale.
(ii) M∗ belongs to L1. The martingale convergence theorem shows the almost sure con-
vergence of Mt to M∞. Finally we prove the uniform integrability (using the equivalent
definition of uniform integrability).

0.8 Exercises

1. Let G be a sub-σ algebra of A and an almost surely positive random variable X. Prove
that the conditional expectation E[X/G] is also strictly positive.
Prove that the reciprocal is false given a contra-example (for instance use the trivial
σ-algebra G).

2. Let G ⊂ H ⊂ A and X ∈ L2(Ω,A, P). Prove (Pythagore Theorem):

E[(X − E[X/G])2] = E[(X − E[X/H])2] + E[(E[X/H]− E[X/G])2].

3. Let O be an open set in A and a F−adapted continuous process X. One notes

T0 = inf{t : Xt ∈ O}.

Prove that TO is a stopping time.

4. Lemma 0.15: Let X be a martingale, ϕ a convex function such that ∀t φ(Xt) ∈ L1,
then ϕ(X) is a sub-martingale ; if ϕ is a concave function ϕ(X)is a super-martingale.

5. Theorem 0.18 Martingale convergence: Let X be a càd super (or sub)-martingale
such that supt E[|Xt|] < ∞. Then limt→∞ Xt exists almost surely and belongs to L1(Ω,A, P).
If X is closed by Z, it is closed by limt→∞ Xt denoted as X∞ which equals E[Z/∨t≥0 Ft].

6. Let X be a martingale. Prove the following are equivalent
(i) X is uniformly integrable
(ii) Xt converges almost surely to Y (which belongs to L1) when t goes to infinity and
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{Xt, t ∈ R+} is a martingale.
(iii) Xt converges to Y in L1 when t goes to infinity.

Indication: (i) → (iii) → (ii) → (i)

7. Proposition 0.30: Let X be a F -progressively measurable process and T a (Ft)
stopping time. Then
(i) the application ω 7→ XT (ω)(ω) is FT -measurable
(ii) the process t 7→ Xt∧T is F -adapted.

8. Proposition 0.31: If X is an adapted measurable process admitting càd or càg
trajectories, it is progressively measurable.

9. Theorem 0.34
If M ∈Mloc is such that E[M∗

t ] < ∞∀t, then M is a ’true’ martingale.
Moreover suppose E[M∗] < ∞, then M is uniformly integrable.
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1 Brownian motion, Wiener process

([13] pages 21-24 ; [23] pages 17-20.)

Firstly this was a way to model the irregular motion of pollen particules in water, phe-
nomena observed by Robert BROWN 1828). So, there is a dispersion of micro-particules
in water, or a pollen “diffusion” in water. Actually, this motion is used in many other
modelizations of dynamic phenomenae:

- suspension of micro-particules in water,

- stock prices in financial markets,

- physical measure errors,

- waiting queue asymptotical behaviour,

- any dynamical behaviour with some random part (stochastic differential equations).

Definition 1.1 Brownian motion or Wiener process is a process on a filtered proba-
bility space (Ω,A, (Ft), P) which is F-adapted, continuous, taking its values in a vectorial
space and:

(i) B0 = 0, P-almost surely on Ω,

(ii) ∀s ≤ t, Bt −Bs is independent of Fs, with Gaussian law N (0, (t− s)Id).

Thus let us consider a real sequence 0 = t0 < t1 < · · · < tn < ∞, the sequence
(Bti −Bti−1

)i is a centered Gaussian vector with variance-covariance diagonal matrix, the
diagonal being ti − ti−1. B is said to be an independent increment process.

The first point to be solved is the existence of such process. There exist some classical
constructions; here we present a trajectorial construction.

1.1 Existence based on a trajectorial construction, Kolmogorov
lemma

(You can find some details in [13] 2.2 ; [23] pages 17-20.)

Roughly speaking, avoiding technical, baresome, long proofs, we do as following. Let
Ω = C(R+, Rd), B(t, ω) = ω(t) the “coordinate” maps, called trajectories. We endow Ω
with the smaller σ-algebra A such that {Bt, t ∈ R+} is measurable and with the “natural”
filtration generated by the process B : Ft = σ{Bs, s ≤ t}. On (Ω,A), the existence of a
unique probability measure P is proved, s. t.

∀n ∈ N,∀t1, · · · , tn ∈ R+,∀B1, · · · , Bn Rd Borelian sets:
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P{ω/ω(ti) ∈ Bi ∀i = 1, · · · , n} =∫
B1

· · ·
∫

Bn

p(t1, 0, x1)p(t2 − t1, x1, x2) · · · p(tn − tn−1, xn−1, xn)dx1..dxn,

where p(t, x, y) = 1√
2πt

e−
(y−x)2

2t .

We have to show:

- P is actually a probability measure on A,

- under this probability measure, the process t 7→ ω(t) is a Brownian motion as it is
defined above.

Actually, this definition only concerns the Borelian events of the space: Ω′ = A(R+, Rd).
But, unhappily, Ω is not a Borelian set. So Ω = A(R+, Rd) is chosen and Kolmogorov
theorem is used (1933) :

Definition 1.2 A “consistent familly” of finite dimensional distributions (Qt, t n-uple R+)
is a measure familly on (Rd,B(Rd)) such that

- If s = σ(t), s and t ∈ (R+)n, σ permutation of {1, · · · , n}, A1, · · · , An ∈ B(Rd), then
Qt(A1, · · · , An) = Qs(Aσ(1), · · · , Aσ(n))

- If u = (t1, · · · , tn−1), t = (t1, · · · , tn−1, tn), then ∀tn, Qt(A1, · · · , An−1, R) = Qu(A1, · · · , An−1).

Theorem 1.3 (cf [13] page 50 : Kolmogorov, 1933) Let (Qt, t ∈ (R+)n) be a consistent
familly of finite dimensional distributions.
Then there exists a probability measure P on (Ω,B(Ω)) such that ∀B1, · · · , Bn ∈ B(Rd),

Qt(B1, · · · , Bn) = P{ω/ω(ti) ∈ Bi, i = 1, · · · , n}.

This theorem is applied to the familly of measures

Qt(A1, · · · , An) =
∫
ΠiAi

p(t1, 0, x1) · · · , p(tn − tn−1, xn−1, xn)dx.

Then the existence of a continuous modification of the ‘coordinate applications’ process of
Ω (Kolmogorov-Centsov, 1956) is proved. Finally one proves the existence of a continuous
modification of the canonical process:

Theorem 1.4 (Kolmogorov-Centsov, 1956, cf. [13] page 53, [23] page 171) Let X be a
real random process on (Ω,A, P) satisfying:

∃α, β, C > 0 : E|Xt −Xs|α ≤ C|t− s|1+β, 0 ≤ s, t ≤ T,

then X admits a continuous modification X̃ which is locally γ−Hölder continuous:

∃γ ∈]0,
β

α
[,∃h random variable > 0,∃δ > 0 :

P{ sup
0<t−s<h;s,t∈[0,T ]

|X̃t − X̃s| ≤ δ|t− s|γ} = 1.

Remark that this theorem is also true for processes (Xt, t ∈ Rd).
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1.2 Brownian motion trajectories properties

1.2.1 Gaussian process

Definition 1.5 A process X is said to be a Gaussian process when ∀d,∀(t1, · · · , td) ∈
Rd

+, (Xt1 , · · · , Xtd) is a Gaussian vector. When (Xt+ti ; i = 1, · · · , d) law is independent of
t, the process is said to be stationnary.

The covariance of the vector X is the matrix

ρ(s, t) = E[(Xs − E(Xs))(Xt − E(Xt))
T ], s, t ≥ 0

with AT denotes the transposed matrix.

Proposition 1.6 The Brownian motion B is a continuous Gaussian process with covari-
ance ρ(s, t) = s ∧ t.

Reciprocally, any centered continuous Gaussian process with covariance ρ(s, t) = s ∧ t
is a Brownian motion.

The Brownian motion converges “in mean” to zero:

Bt

t
→ 0

almost surely when t goes to infinity.

Proof exercise. The third point is similar to a “large number law”. •

Other Brownian motions can be obtained using standard transformations, with per-
haps also change of filtration.

(i) scaling: ( 1√
c
Bct,Fct).

(ii) time inversion: (Yt,FY
t ), Yt := tB 1

t
if t 6= 0, Y0 = 0 and FY

t = σ{Ys, s ≤ t}.

(iii) time returning: (Zt,FZ
t ), Zt := BT −Bt and FZ

t = σ{Zs, s ≤ t}.

(iv) symmetry: (−Bt,Ft).

In each case, we have to verify that the new process is continuous, adapted, satis-
fying the Brownian motion characteristic property or that it is a Gaussian process with
covariance ρ(s, t) = s ∧ t. The most difficult to prove is (ii) (use Proposition 1.6).

Proposition 1.7 B is a martingale with respect to its own filtration and it is a Markov
process.

Proof: exercise, as an application of the definition.
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1.2.2 Variations of the trajectories

(cf. [13] pb 9.8 p. 106 and 125)
Notation: πn = (t0 = 0, · · · , tn = t) is a “partition” of [0, t], let us denote ‖πn‖ =
supi{ti − ti−1}, called “step” of πn.

Theorem 1.8 (cf. [23] 28 p. 18)
Let (πn) be a partition sequence of the interval [0, t] such that πn ⊂ πm when n ≤ m and
‖πn‖ goes to zero when n goes to infinity. We set

πn(B) =
∑

ti∈πn

(Bti+1
−Bti)

2.

Then when n goes to infinity, πn(B) goes to t in L2(Ω),
and almost surely if moreover

∑
n ‖ πn ‖< ∞ .

Proof: Let zi = (Bti+1
− Bti)

2 − (ti+1 − ti) ;
∑

i zi = πn(B) − t. (zi) is a centered
independent random variable sequence since Bti+1

−Bti admits a Gaussian law with null
mean and variance ti+1 − ti. We compute the expectation of z2

i :

E[z2
i ] = E[(Bti+1

−Bti)
2−(ti+1−ti)]

2 = E[(Bti+1
−Bti)

4−2(Bti+1
−Bti)

2(ti+1−ti)+(ti+1−ti)
2].

Using the Gaussian law moments, yields

E[z2
i ] = 2(ti+1 − ti)

2.

The independence of (zi) shows that E[(
∑

i zi)
2] =

∑
i E[(zi)

2] ≤ 2t‖πn‖, going to zero
when n goes to infinity. Yields the convergence in L2(Ω) (so probability convergence) of
sequence (πn(B)) to t.

Let ε > 0. Moreover suppose that
∑

n ‖ πn ‖< ∞; P{|πn(B)− t| > ε} ≤ 1
ε2 2 ‖ πn ‖ t.

Then the series
∑

n P{|πn(B)− t| > ε} converges and Borel-Cantelli lemma shows:

P[limn{|πn(B)− t| > ε}] = 0,

meaning that:

P[∩n∪m≥n{|πm(B)−t| > ε}] = 0 ⇔ ∀ε > 0, almost surely ∪n∩m≥n{|πm(B)−t| ≤ ε} = Ω,

that is the almost sure convergence of πn(B) to t. •

Theorem 1.9 to admit... (cf [13] 9.18, p.110 : Paley-Wiener-Zygmund, 1933)

P{ω : ∃t0 t 7→ Bt(ω) differentiable in t0} = 0.
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To go farer....let us denote

D+f(t) = limh→0
f(t + h)− f(t)

h
; D+f(t) = limh→0

f(t + h)− f(t)

h
,

there exists an event F with probability measure 1 which subset of:

{ω : ∀t, D+Bt(ω) = +∞ or D+Bt(ω) = −∞}.

This result can be understood as following: almost surely w.r.t. ω, the trajectory t 7→
Bt(ω) is continuous but no differentiable.

Definition 1.10 Let a function f on the interval [a, b] : the variation of f on this
interval is

V ar[a,b](f) = sup
π

∑
ti∈π

|f(ti+1)− f(ti)|

where π belongs to the partition of [a, b] set.

Theorem 1.11 (cf. [23] p.19-20) Let a, b in R+:

P{ω : V ar[a,b](B) = +∞} = 1.

Proof : Let a and b be fixed in R+, a partition π of [a, b].

∑
ti∈π

|B(ti+1)−B(ti)| ≥
∑

ti∈π |B(ti+1)−B(ti)|2

supti∈π|B(ti+1)−B(ti)|
.(1)

The numerator is the quadratic variation of B, we know that it goes to b − a. Then,
s 7→ Bs(ω) is continuous (so uniformly continuous) on the interval [a, b]:

∀ε, ∃η, ‖ π ‖< η ⇒ supti∈π|B(ti+1)−B(ti)| < ε.

Thus the fraction (1) goes to infinity. •

1.3 Computation of 2
∫ t
0 BsdBs (exercise)

B trajectories are not differentiable, but we look for understanding this integral. Logically
it could be B2

t , but it is not. To stress the difference, we split B2
t as a sum of increments

along the interval [0, t] partition: ti = it/n, then using the identity x2− y2 = 2y(x− y) +
(x− y)2:

B2
t =

∑
i

(B2
ti+1

−B2
ti
) =

∑
i

2Bti [Bti+1
−Bti ] +

∑
i

[Bti+1
−Bti ]

2.

The first term“naturally” converges to: 2
∫ t
0 BsdBs (this will be proved below, Section

2.1). It could be believed that the second term converges to 0, but here it is the paradox.
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Using Brownian motion definition, this second term is the sum of n squarred Gaussian
variables, independent centered with variance t/n: Central Limit Theorem proves that
it is a random variable with law t/nχ2

n. Its mean is t, its variance is t2/nV arχ2
1: so this

term converges in L2 (so also probability convergence) to the mean t. Thus we will prove
below more precisely that

B2
t = 2

∫ t

0
BsdBs + t.

1.4 Exercises

1. Proposition 1.6: The Brownian motion B is a continuous Gaussian process with
covariance ρ(s, t) = s ∧ t.
Reciprocally, any centered continuous Gaussian process with covariance ρ(s, t) = s ∧ t is
a Brownian motion.

2. Let Yt = t.B1/t ; Y0 = 0 and FY
t the natural filtration linked to process Y. Prove

that(Yt,FY
t ) is a Brownian motion. (use 1. and exercise 5).

3. Proposition 1.7: Prove that B is a martingale with respect to its own filtration and
that it is a Markov process.

4. Let Gt = σ(Bs, s ≤ t)∨N , t ≥ 0. Prove that this filtration is càd, i.e. Gt+ = ∩s>tGs.
Indication: use that the conditional characteristic function of vector (Bu, Bz), z, u > t
given Gt+ , is the limit of the conditional characteristic function of the same vector given
Gw when w decrease to t, and it coincides with the conditional characteristic function of
vector (Bu, Bz), z, u > t, given Gt. Yields any conditional law given Gt+ coincides with
this given Gt, then any random variable Gt+-measurable is Gt-measurable, conclude.

5. Let B be a real Brownian motion.
a) Prove that the sequence Bn

n
goes to 0 almost surely.

b) Use that B is a martingale and a Doob inequality to get the majoration

E[ sup
σ≤t≤τ

(
Bt

t
)2] ≤ 4τ

σ2
.

c) Now let τ = 2σ = 2n+1, give a majoration of P{sup2n≤t≤2n+1 |Bt

t
| > ε} to prove this

sequence convergence, finally apply Borel Cantelli lemma.

d) Yields limt→∞
Bt

t
= 0 almost surely (i.e. large numbers law, cf. Problem 9.3, pages

124-125, Karatzas-Schreve.)
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2 Ito calculus

The aim of this chapter is to give sense to the notion of process integral with respect to
Brownian motion or more generally with respect to a martingale. If we think of the aim
of this course, stochastic calculus applied to Finance, the motivation of stochastic integral
could be the following: let us suppose a market model where the assets price could be
modelled as a martingale, Mt at time t. If we have X(t) of these asssets and if we trade
on times tk, finally the wealth could increase as following:∑

k

X(tk−1)(Mtk −Mtk−1
).

If we trade on continuous time, at any time t, this expression is a sum which could
converge to a Stieltjes integral. But when M = B we know that the differential B′ doesn’t
exist!! and since the variation V (B) is infinite, there is not a “deterministic” limit, the
“näıve” stochastic integral is impossible (cf. Protter [23] page 40) as the following result
proves it.

Theorem 2.1 Let π = (tk) be a partition of [0, T ]. Let us suppose that for all continuous
function x: lim|π|→0

∑
k x(tk−1)(f(tk) − f(tk−1)) exists, then f admits a finite variation.

(cf. Protter [23], th. 52, page 40)

Reciprocally, if V (f) =
∑

k |f(tk) − f(tk−1)| = +∞, then the limit doesn’t exist, for
instance, think of the Brownian motion f : t 7→ Bt. So we need other tools. Itô’s idea
was to restrain the integrands to the processes which can’t“see” the future increments,
meaning the adapted processes, so that x(tk−1) and (Btk − Btk−1

) could be independent;
thus, we can’t do anything trajectorially but we work “in probability”.

Here is the scheme: we introduce the problem and some notations (2.1.1), we first
(2.1.2) define the integral of “simple” processes (denoting their set as S, defined below)
then in 2.1.3 we give the properties of this integral on S which allows us an extension
of this operator on the closure S with respect to a suitable topology to obtain a large
enough integrands set.

The section 2.2 is devoted to the quadratic variation, which is a time variance. Among
others, this tool will be usefull to define the integral of an integral.

2.1 The stochastic integral

2.1.1 Introduction and notations

Let M be a continuous martingale, square-integrable, its bracket, increasing process being
denoted as 〈M〉, on a filtered probability space (Ω,Ft, P), where for instance Ft is the

15



Brownian motion natural filtration, completed with negligible events. Let a measurable
process X, n ∈ N, time t, we define:

In(X, t) =
∑
j

X(
j − 1

2n
∧ t)(M j

2n∧t −M j−1
2n ∧t).

As we saw that in Theorem 2.1, the limit could not exist. So we only consider the adapted
measurable processes X, almost surely square-integrable with respect to d〈M〉.

The construction of I(X, t) was done by Itô (1942) in case of Brownian motion M and
by Kunita et Watanabe (1967) in case of square-integrable martingales. We now use the
Introduction prerequisites to define a topology on integrands set:

. let π be partitions of interval [0, t], the process 〈M〉 is defined at time t:

〈M〉t = lim
|π|→0

proba
∑
ti∈π

(Mti −Mti−1
)2,

. for instance, if M = B then 〈B〉t = t,

. the square-integrable martingales M admit a bracket 〈M〉,

. 〈M〉t is the unique increasing continuous adapted process such that M2
t − 〈M〉t is a

martingale.
This property, equivalent to the definition, is sometimes used as the definition.

Notation: on the σ-algebra B(R+)⊗F , we define the measure

µM(A) = E[
∫ ∞

0
1A(t, ω)d〈M〉t(ω)].

In the Brownian case, µB(A) = E[
∫∞
0 1A(t, ω)dt].

For any adapted process X, we denote

[X]2T = E[
∫ T

0
X2

t d〈M〉t].

The processes X and Y are said to be “equivalent” if X = Y µM a.s., let us remark
that X and Y are equivalent if and only if [X − Y ]2T = 0 ∀T ≥ 0.

Let us define the following set:

L = { classes of F -adapted measurable processes X such that ∀T, [X]T < +∞}

endowed with the metric:

d(X, Y ) =
∑
n

2−n1 ∧ [X − Y ]n.(2)

16



Concerning the general case, we introduce the subset

L∗ = {X ∈ L, progressively measurable}

and we have to restrain the integral to this subset. But in the case where the martingale M
is such that its increasing process 〈M〉 is absolutely continuous with respect to Lebesgue
measure (meaning there exists a measurable function f such that 〈M〉t(ω) =

∫ t
0 f(ω, s)ds),

using that any element of L admits a modification in L∗, in this case, we can manage only
with L; the Browian motion satisfies this property, the only case that we here completely
study. Thus, we will not use the set L∗.

Proposition 2.2 Let LT be the set of adapted measurable processes X on [0, T ] such that:

[X]2T = E[
∫ T

0
X2

s d〈M〉s] < +∞.

L∗T denotes the set of LT progressively measurable elements. This set is closed in LT and
complete for the norm [.]T .

Let a sequence [X − Xn]T → 0 in L2 which is a complete set. Thus, X ∈ LT and L2

convergence imply the existence of a subsequence which converges almost surely. Let Y
be this almost sure limit in Ω × [0, T ], meaning that A = {(ω, t) : limn Xn

t (ω, t) exists}
has a probability measure equal to 1,

Y (ω, t) = X(ω, t) if (ω, t) ∈ A, 0 ifnot .

The fact that ∀n, Xn ∈ L∗T shows that Y ∈ L∗T and Y, X are equivalent. •

2.1.2 Integral of simple processes

Definition 2.3 The following process X is said to be simple:

Xt = ξ010(t) +
∞∑
i=0

ξi1]titi+1](t),

ξi being a bounded Fti−measurable random variable and (ti) being a non negative real
sequence going to infinity, t0 = 0. We denote S their set.

We admit the following inclusions S ⊂ L∗ ⊂ L.
Exercise: Compute [X]2T when X ∈ S.

17



Definition 2.4 Let X ∈ S. The stochastic integral of X along M is

It(X) :=
∞∑
i=1

ξi(Mt∧ti+1
−Mt∧ti).

Exercise: Compute E[(IT (X))2] when X ∈ S. Do the comparison with [X]2T .

The next step is to extend this definition to a larger class of integrands.

Lemma 2.5 For any bounded process X ∈ L there exists a sequence of processes Xn ∈
S such that supT≥0 limn E[

∫ T
0 (Xn −X)2(t)d〈M〉t] = 0.

Preuve to be admitted.

Proposition 2.6 In the case when P-almost surely 〈M〉t is absolutely continuous with
respect to Lebesgue measure dt, then S is dense in the metric space (L, d), d was defined
above (2).

This proposition thus proves that S is dense in L as soon as M satisfies the hypothesis

(H) the increasing process 〈M〉t is absolutely continuous with respect to dt.

The Brownian motion satisfies this hypothesis. Henceforth, we only manage with mar-
tingales satisfying (H) so we only consider the space L and no L∗.

Remark 2.7 useful: the metric (2) implies the following equivalent topology: d(Xn, X) →
0 when n goes to the infinity if and only if

∀T > 0, E[
∫ T

0
|Xn(t)−X(t)|2d〈M〉t] → 0.

2.1.3 Basic properties and extension of stochastic integral

Recall the simple X stochastic integral

It(X) :=
∞∑
i=1

ξi(Mt∧ti+1
−Mt∧ti).

We note It(X) or
∫ t
0 XsdMs or (X.M)t to stress that the integrator is M. Elementary

properties to show as an exercise:
Exercise. Let S the set of simple processes endowed with the stochastic integral with
respect to M :

It(X) =
∑
j

ξj(Mtj+1∧t −Mtj∧t).
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Prove that It satisfies the following properties:

(i) It is a linear application on S.

(ii) It(X) is square-integrable.

(iii) E[It(X)] = 0.

(iv) t 7→ It(X) is a continuous martingale.

(v) E[It(X)]2 = E[
∫ t
0 X2

s d〈M〉s], meaning [X]2t .

(vi) E[(It(X)− Is(X))2/Fs] = E[
∫ t
s X2

ud〈M〉u/Fs] = E[(It(X))2 − (Is(X))2/Fs].

(vii) 〈I.(X)〉t =
∫ t
0 X2

s d〈M〉s.

These properties allow us to extend the set of integrands outside the set of simple
processes, using the density results in Proposition 2.6. Moreover, we will show that the
extended operator satisfies all properties (i) to (vii).

Proposition 2.8 Let X ∈ L and a sequence of simple processes Xn going to X with
the distance d. Then, the sequence It(X

n) is a Cauchy sequence in L2(Ω), and the limit
doesn’t depend on the chosen sequence, it is denoted as It(X) or

∫ t
0 XsdMs or (X.M)t,

stochastic integral of X with respect to the martingale M.

Proof: to do as an exercise.

Definition 2.9 This limit defines the stochastic integral It(X).

Now we prove the properties, ’going to the limit’: It is an isometry from (L, d) to L2(Ω),
the simple processes are dense in (L, d).

Proposition 2.10 Let X ∈ L then: It satisfies the following properties:

(i) It is a linear application on S.

(ii) It(X) is square-integrable.

(iii) E[It(X)] = 0.

(iv) t 7→ It(X) is a continuous martingale.

(v) E[It(X)]2 = E[
∫ t
0 X2

s d〈M〉s], meaning [X]2t .

(vi) E[(It(X)− Is(X))2/Fs] = E[
∫ t
s X2

ud〈M〉u/Fs] = E[(It(X))2 − (Is(X))2/Fs].

(vii) 〈I.(X)〉t =
∫ t
0 X2

s d〈M〉s.
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2.2 Quadratic variation

(cf. [13], pages 141-145; [23], pages 58-60.)
Let us consider the martingales M and N satisfying (H). We recall that 〈M〉t is the

limit in probability lim|π|→0 proba
∑

ti∈π(Mti+1
−Mti)

2. Similarly we define the quadratic
covariation of two square-integrable continuous martingales M and N : let π be the par-
titions of [0, t] we define

〈M, N〉t := lim
|π|→0

proba
∑
ti∈π

(Mti+1
−Mti)(Nti+1

−Nti)

or, equivalently:
4〈M, N〉t := 〈M + N〉t − 〈M −N〉t.

Thus when X and Y ∈ L(M), we have to study the “bracket” 〈I(X), I(Y )〉. Firstly
some useful recalls concerning the square-integrable continuous martingales.

Proposition 2.11 Let M et N two square-integrable continuous martingales, then:

(i) |〈M, N〉t|2 ≤ 〈M〉t〈N〉t;
(ii) MtNt − 〈M, N〉t is a martingale.

Corollary 2.12 ∀s, ∀t, s ≤ t, E[(Mt−Ms)(Nt−Ns)/Fs] = E[(〈M, N〉t− 〈M, N〉s/Fs].

Preuve Exercise: (i) is a Cauchy inequality; since M+N is a square-integrable continuous
martingale, the difference (M + N)2 − 〈M + N〉t is a martingale, yields (ii) .

•

Proposition 2.13 Let T be a stopping time and M and N two square-integrable contin-
uous martingales, then: 〈MT , N〉 = 〈M, NT 〉 = 〈M, N〉T .

Preuve: cf. Protter [23] th. 25, page 61, to admit. •

Theorem 2.14 (Kunita-Watanabe inequality, cf. [13] Prop. 2.14 page 142.) Let M et
N two square-integrable continuous martingales, X ∈ L(M) and Y ∈ L(N); then almost
surely :

(
∫ t

0
|XsYs|d〈M, N〉s)2 ≤

∫ t

0
|Xs|2d〈M〉s

∫ t

0
|Ys|2d〈N〉s.(3)

Proposition 2.15 Let M and N be two square-integrable continuous martingales, X ∈
L(M) and Y ∈ L(N); then:

〈X.M, Y.N〉t =
∫ t

0
XuYud〈M, N〉u, ∀t ∈ R, P p.s.(4)

and

E[
∫ t

s
XudMu

∫ t

s
YudNu/Fs] = E[

∫ t

s
XuYud〈M, N〉u/Fs], ∀s ≤ t, P p.s.(5)
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The case M = N is nothing else but the stochastic integral property (vii), applied to
It(X + Y ). Besides it is easy to see that (4) and (5) are equivalent.

Proposition 2.16 The stochastic integral is “associative” as following: let H ∈ L(M)
and G ∈ L(H.M), then GH ∈ L(M) and:

G.(H.M) = GH.M

Preuve Exercise: cf. [23] Th. 19 page 55 or [13] Corollary 2.20, page 145. •
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2.3 Exercises

Let M square integrable martingale on (Ω, (Ft; t ∈ R+), P ) with bracket 〈M〉t absolutely
continuous with respect to Lebesgue measure.
1. Let the simple process X:

Xt = ξ010(t) +
∞∑
i=0

ξi1]titi+1](t),

Compute [X]2T when X ∈ S and E[(It(X))2].

2. Let LT (M) be the set

{Xadapted measurable process on [0, T ] such that: [X]2T = E[
∫ T

0
X2

s d < M >s] < +∞}.

Prove that (LT (M), d) is a metric space with distance d:

d(X, Y ) =
√

[X − Y ]2T .

3. Prove the following are equivalent:

lim
n→∞

∑
j≥1

2−j inf(1, [X −Xn]j) = 0 ⇐⇒ ∀T, [X −Xn]T −→n→∞ 0.

4. Let S the set of simple processes endowed with stochastic integral w.r.t. M :

It(X) =
∑
j

Xj(Mtj+1∧t −Mtj∧t).

Prove that It (also denoted as (X.M)t) satisfies the following properties:
(i) It is a linear map on S.
(ii) It(X) is square-integrable.
(iii) E[It(X)] = 0.
(iv) It(X) is a continuous martingale.
(v) E([It(X)]2) = E[

∫ t
0 X2

s d < M >s].
(vi) E[(It(X)− Is(X))2/Fs] = E[I2

t (X)− I2
s (X)/Fs] = E[

∫ t
s X2

ud < M >u /Fs].
(vii) < I.(X) >t=

∫ t
0 X2

s d < M >s .

5. Proposition 2.11:
Let M et N two square-integrable continuous martingales, then:

(i) |〈M, N〉t|2 ≤ 〈M〉t〈N〉t;
(ii) MtNt − 〈M, N〉t is a martingale.

6. Proposition 2.16:
Prove that the stochastic integral is associative i.e.: if H is M -integrable, the integral
being denoted as H.M, and if G is H.M -integrable, then the product GH is M -integrable
and:

G.(H.M) = (GH).M.
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3 Ito formula

(cf. [13], pages 149-156, [23], pages 70-83.)

This new tool allows us “integrodifferential” calculus, namely “Itô calculus”. It con-
cerns calculus about process trajectories, meaning what happens when alea ω occurs.

We first recall what is the integral along finite variation processes.

Definition 3.1 Let A a continuous process.It is said to be with finite variation if ∀t,
considering partitions π of [0, t] yields:

lim
|π|→0

∑
ti∈π

|Ati+1
− Ati| < ∞ P a.s.

Such processes, for one fixed ω, induce Stieltjes integrals. For instance if A is a non
decreasing process, for any partition π of [0, t], Vπ(A) = At − A0.

Theorem 3.2 (cf. Protter [23], Th. 31 page 71) Let A a finite variation continuous
process, and a C1 class function f . Then, f(A.) is a finite variation continuous process
and:

f(At) = f(A0) +
∫ t

0
f ′(As)dAs.

This is the plain Taylor formula, order 1.

These processes, joined with the continuous local martingales generate a large set of
integrators which we consider now.

Definition 3.3 A continuous semi-martingale is a process X on a filtered probability
space (Ω,F ,Ft, P), defined P a.s. as following:

Xt = X0 + Mt + At, ∀t ≥ 0,

X0 is F0-measurable, M is a continuous local martingale and A = A+ −A−, A+ and A−

being adapted finite variation nondecreasing continuous processes.

Remark 3.4 A finite variation continuous process admits a null quadratic variation:
〈A〉t = 0 ∀t.

Proof: exercise, first use an nondecreasing process A, then apply to A = A+ − A−.

This notion is particularly important because of arbitrage opportunity absence hypothesis
(Arbitrage opportunity means to obtain a nonnegative wealth with a positive probability
starting with a null wealth).
Indeed, Delbaen-Schachermayer proved [5] that under AOA Hypothesis the price processes
are necessarily semi-martingales.
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Definition 3.5 If X is the continuous real semi-martingale X0 + M + A, one notes 〈X〉
the limit in probability of increments square sum (similarly martingale case); actually,
one shows that this limit is 〈M〉. Similarly, let two continuous semi-martingales X et Y,
one notes 〈X, Y 〉 their martingale part bracket.

3.1 Itô rule, or variable change formula

Theorem 3.6 (Itô, 1944 and Kunita-Watanabé, 1967) Let f ∈ C2(R, R) and X a con-
tinuous semi-martingale. Then P a.s. ∀t ≥ 0:

df(Xs) = f ′(Xs)dXs +
1

2
f”(Xs)d〈X〉s,

meaning:

f(Xt) = f(X0) +
∫ t

0
f ′(Xs)dMs +

∫ t

0
f ′(Xs)dAs +

1

2

∫ t

0
f”(Xs)d〈M〉s,

here the first integral is a stochastic integral, the two others are Stieltjes integral.

We already saw this formula in Chapter 1, Section 1.3 for the function f : x 7→ x2 and
X = B : B2

t = 2
∫ t
0 BsdBs + t.

Differential notation: f(Xt) stochastic differential is

df(Xs) = f ′(Xs)dXs +
1

2
f”(Xs)d〈X〉s,

thus we can manage with a stochastic differential calculus. Think of this formula as
somethink like a Taylor formula to the order 2.
Preuve: four steps:

localisation to be in bounded case,

Taylor development of function f to the order 2,

studying the term which will be the stochastic integral,

studying the term which will be the quadratic variation.

1. Let the stopping time

Tn = 0 si |X0| ≥ n,

inf{t ≥ 0; |Mt| ≥ n or |At| ≥ n or 〈M〉t ≥ n}
+∞ if not.

This stopping times sequence is almost surely increasing to +∞. The property to be
proved is true along trajectories, thus we only need to prove it on {(t, ω), t ≤ Tn(ω)}
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meaning that we stop at time Tn. Then n goes to infinity. This allows us to suppose
bounded the processes M, A, 〈M〉, the random variable X0, the process X, and we can
suppose f to have a compact support: f(X.), f

′(X.), f”(X.) are bounded.

2. To obtain Ito formula, particularly the stochastic integral term, as we did in Chapter
1 to study B2

t , we cut the interval [0, t] as a partition π = (ti, i = 1, ..., n) and we study
the increments of f(X.) along this partition:

f(Xt)− f(X0) =
n−1∑
i=0

(f(Xti+1
)− f(Xti)) =(6)

n−1∑
i=0

f ′(Xti)(Mti+1
−Mti) +

n−1∑
i=0

f ′(Xti)(Ati+1
− Ati) +

1

2

n−1∑
i=0

f”(ηi)(Xti+1
−Xti)

2,

where ηi = λXti + (1− λ)Xti+1
.

The second term obviously goes to the Stieltjes integral of f ′(Xs) with respect to A,without
any stochastic notion.

3. Concerning the first term, we consider the simple process associated to the partition
π :

Y π
s = f ′(Xti) if s ∈]ti, ti+1].

Here f ′(Xti) is Fti-measurable, thus Y π ∈ S and this first term is equal to
∫ t
0 Y π

s dMs by
definition. But,∫ t

0
|Y π

s − f ′(Xs)|2d〈M〉s =
n−1∑
i=0

∫ ti+1

ti
|f ′(Xti)− f ′(Xs)|2d〈M〉s.

The application s 7→ f ′(Xs) is continuous, so the above integrand almost surely converges
to zero. Using the boundness of f ′ and Lebesgue Theorem, yields Y π

s L2−converges to
f ′(Xs) in the metric space (S, d), with the metric d defined in Chapter 2: stochastic
integral definition implies that the first term L2-converges to∫ t

0
f ′(Xs)dMs.

4. Quadratic variation term : we cut it in three terms :

n−1∑
i=0

f”(ηi)(Xti+1
−Xti)

2 =
n−1∑
i=0

f”(ηi)(Mti+1
−Mti)

2(7)

+2
n−1∑
i=0

f”(ηi)(Mti+1
−Mti)(Ati+1

− Ati) +
n−1∑
i=0

f”(ηi)(Ati+1
− Ati)

2

The last term is less than ‖f”‖ supi |∆iA|
∑n−1

i=0 |∆iA|, where the first and the third factors
are bounded by hypothesis; supi |∆iA| goes to zero almost surely since A is continuous.

25



We bound the second term by ‖f”‖ supi |∆iM |∑n−1
i=0 |∆iA| which also converges almost

surely to zero since M is continuous and
∑n−1

i=0 |∆iA| ≤ Vt(A) < ∞.

The first term of (7) is “near” of

n−1∑
i=0

f”(Xti)(Mti+1
−Mti)

2.

Indeed :

n−1∑
i=0

(f”(ηi)− f”(Xti))(∆iM)2 ≤ sup
i
|f”(ηi)− f”(Xti)|

n−1∑
i=0

(∆iM)2

where the first factor goes almost surely to zero using f” continuity and the second factor
goes to 〈M〉t in probability by definition; thus a subsequence converges almost surely.
Then the product goes to zero in L2 using Lebesgue Theorem. Finally we have to study

n−1∑
i=0

f”(Xti)(Mti+1
−Mti)

2

to be compared to
∑n−1

i=0 f”(Xti)(〈M〉ti+1
−〈M〉ti). The L2 limit of that is

∫ t
0 f”(Xs)d〈M〉s

since

- by continuity the simple process
∑

i f”(Xti)1]ti,ti+1] almost surely converges to f”(Xs);

- Lebesgue Theorem allows to conclude.

Denoting 〈M〉ts = 〈M〉t − 〈M〉s, let the difference :

n−1∑
i=0

f”(Xti)[(Mti+1
−Mti)

2 − 〈M〉ti+1
ti ],

we study the L2 limit; inside the square expectation, let us consider the terms:

i < k : E[f”(Xti)f”(Xtk)(∆iM
2 − 〈M〉ti+1

ti )(∆kM
2 − 〈M〉tk+1

tk )]

Using Fti conditional expectation, we deduce that these terms are null, since M2 − 〈M〉
is a martingale. Finally look at the square terms:∑

i

E[(f”(Xti))
2(∆iM

2 − 〈M〉ti+1
ti )2] ≤ 2‖f”‖2

∞
∑

i

[E(∆iM
4) + E((〈M〉ti+1

ti )2)]

≤ 2‖f”‖2
∞E[(sup

i
∆iM

2
∑

i

∆iM
2) + sup

i
(〈M〉ti+1

ti )〈M〉t]

In the majoration, supi ∆iM
2 and supi(〈M〉ti+1

ti ) are bounded and converge almost surely
to zero by continuity;

∑
i ∆iM

2 converges to 〈M〉t in probability by definition; globally,
Lebesgue Theorem yields the L1−convergence to zero of a subsequence.

Finally the sequence of sums (6) converges in probability to the Theorem expression;
we conclude using the almost sure convergence of a subsequence.
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3.2 Extension and applications

We can extend this result to functions of vectorial semi-martingales, also depending on
time.

Proposition 3.7 Let M be a d-dimension vector of continuous local martingales, and
let A be a d-dimension vector of adapted continuous processes with finite variation, X0 a
random F0-measurable. Let Xt = X0 + Mt + At. Then, P almost surely :

f(t,Xt) = f(0, X0) +
∫ t

0
∂tf(s, Xs)ds +

∫ t

0
∂if(s, Xs)dM i

s +
∫ t

0
∂if(s, Xs)dAi

s

+
1

2

∫ t

0

∑
ij

∂2
ijf(s, Xs)d〈M i, M j〉s

Preuve: exercise, but very long and tedious....

When f and its derivatives are bounded and M is a square integrable martingale, the
above stochastic integral term is a “true” martingale, null at time t = 0 and:

f(t,Xt)−f(0, X0)−
∫ t

0
∂tf(s, Xs)ds−

∫ t

0
∂if(s, Xs)dAi

s−
1

2

∫ t

0
∂2

ijf(s, Xs)d〈M i, M j〉s ∈M

For instance if A = 0 and X = M is the Brownian motion, yields:

f(t,Xt)− f(0, X0)−
∫ t

0
Lf(s, Xs)ds ∈M

where the differential operator L = ∂t + 1
2

∑
i ∂

2
ii and M denotes the martingales set.

On another hand, Ito formula allows to deduce the solution of the so called “equation de
la chaleur”, meaning the partial derivatives equation:

f ∈ C1,2(R+, Rd), ∂tf =
∑

i

1

2
∂2

iif and f(0, x) = ϕ(x)

where ϕ ∈ C2
b (Rd) and its unique solution is

f(t, x) = E[ϕ(x + Bt)].

We can easily see that actually this function is a solution, using Ito formula; uniqueness
is a consequence of PDE theory.
cf. exercise 5 below: develop ϕ(x + Xt) using Itô formula, take the expectation to get
f(t, x), differentiate w.r.t. t and x.

The next corollary is very easy to prove and very useful.

Corollary 3.8 Let two real continuous semi-martingales X and Y ; then:∫ t

0
XsdYs = XtYt −X0Y0 −

∫ t

0
YsdXs − 〈X, Y 〉t.

This is the integration by parts formula.

Preuve: exercise; apply Ito formula to the function on R2, (x, y) 7→ xy.
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3.3 Exercises

Let a square integrable martingale M on the filtered probability space (Ω,Ft, P ) such
that d〈M〉t is absolutely continuous with respect to dt.
1. Let M be a continuous martingale and X ∈ L(M). Let s < t and Z a Fs-measurable
bounded random variable; prove:∫ t

s
ZXudMu = Z

∫ t

s
XudMu.

indication: use the property (vi) of stochastic integral, Proposition 2.11 and its corollary
to compute E[

∫ t
s ZXudMu − Z

∫ t
s XudMu]

2.

2. Remark 3.4.
A finite variation continuous process admits a null quadratic variation: 〈A〉t = 0 ∀t.

3. Let two semi-martingales X = X0 + M + A and Y = Y0 + N + C. Use Ito formula
to:

a) prove that
∫ t
0 XsdYs = XtYt − X0Y0 −

∫ t
0 YsdXs − 〈X, Y 〉t. i.e. the integration by

parts formula.

b) develop the following processes

t 7→ X−1
t ; t 7→ exp(Xt) ; t 7→ Xt.Y

−1
t .

4. Lévy Theorem: Let X be a continuous semi-martingale, X0 = 0 almost surely. This
process is a real Brownian motion iff it is a continuous local martingale with bracket
〈X〉t = t.
Indication: firstly, using Ito formula, compute the conditional characteristic function of
Xt −Xs given Fs, ∀s ≤ t.

5. Prove that the unique solution in C1,2(R+, Rd) of the PDE (Heat Equation)

∂tf =
1

2
∆f, f(0, x) = ϕ(x), ∀x ∈ Rd,

ϕ ∈ C2(Rd) is f(t, x) = E[ϕ(x + Bt)] where B is the Brownien d−dimensional motion.

6. Let M be a d−dimensional vector of continuous martingales, A be a d−dimensional
vector ofadapted continuous processes with finite variation, X0 a F0-measurable random
variable; let f ∈ C1,2(R+, Rd). Let Xt = X0 + Mt + At. Then prove that P almost surely:

f(t,Xt) = f(0, X0) +
∫ t

0
∂tf(s, Xs)ds +

∫ t

0
∂if(s, Xs)dM i

s +
∫ t

0
∂if(s, Xs)dAi

s

+
1

2

∫ t

0
∂2

ijf(s, Xs)d〈M i, M j〉s
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4 Stochastic exponentials, examples of stochastic dif-

ferential equations

There exists other applications of Ito formula: Brownian motion is very useful to model
some additive noise, measure error, in a differential equation. For instance, let us suppose
the dynamics:

ẋ(t) = a(t)x(t), t ∈ [0, T ], x(0) = x.

Unhappily, this is not exact, there is some noise which is added to the speed, so we get:

dXt = a(t)Xtdt + b(t)dBt, t ∈ [0, T ], X0 = x,

f a so called stochastic differential equation, SDE. cf. exercises.

Here we don’t study the more general SDE, but we give a second example below.

4.1 Stochastic exponential

Let us consider the C∞ class function f : x 7→ ex, and a continuous semi-martingale
X, X0 = 0, we apply the Ito formula to the semi-martingale Xt − 1

2
〈X〉t and the ex-

ponential function, meaning that we compute the “stochastic differential” of the process
t 7→ Zt = exp(Xt − 1

2
〈X〉t). Yields:

Zt = 1 +
∫ t

0
[exp(Xs −

1

2
〈X〉s)(dXs −

1

2
d〈X〉s) +

1

2
exp(Xs −

1

2
〈X〉s)d〈X〉s].

After some simplifications (remind that two semimartingales with the same martingale
part have same bracket) :

Zt = 1 +
∫ t

0
exp(Xs −

1

2
〈X〉s)dXs,

or using the differential notation: dZs = ZsdXs, Z0 = 1. Here is the linear stochastic
differential equation.

Theorem 4.1 Let X be a continuous semi-martingale, X0 = 0. Then there exists a
unique continuous semi-martingale which is solution of the stochastic differential equation:

Zt = 1 +
∫ t

0
ZsdXs(8)

admitting the closed form:

Zt(X) = exp(Xt −
1

2
〈X〉t).
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The Ito formula proves that this process is actually solution of the equation. Here, we
admit the uniqueness (exercise).

Definition 4.2 Let X be a continuous semi-martingale, X0 = 0. The stochastic expo-
nential of X, denoted E(X), is the unique solution of the differential equation (8).

Example : Let X = aB with a a real number and B the Brownian motion; then
Et(aB) = exp(aBt − 1

2
a2t), so called “geometric Brownian motion”.

Here are some results about these stochastic exponentials.

Theorem 4.3 (cf [23], th. 37) Let X and Y two continuous semi-martingales, X0 =
Y0 = 0. Then

E(X)E(Y ) = E(X + Y + 〈X, Y 〉).

Proof as an exercise: Let Ut = Et(X) et Vt = Et(Y ) and apply the formula (3.8):

UtVt − 1 =
∫ t

0
UsdVs + VsdUs + d〈U, V 〉s

Putting W = UV and using the differential definition of the stochastic exponential yield
the result. •

Corollary 4.4 Let X a continuous semi-martingale, X0 = 0. Then the inverse E−1
t (X) =

Et(−X + 〈X〉)

Proof as an exercise.

We now consider a little bit more general stochastic differential equations.

Theorem 4.5 (cf [23], th. 52, page 266.) Let Z and H be two real continuous semi-
martingales, Z0 = 0. Then the unique solution of the stochastic differential equation:

Xt = Ht +
∫ t

0
XsdZs

is: EH(Z)t = Et(Z)(H0 +
∫ t

0
E−1

s (Z)(dHs − d〈H, Z〉)s).

Once again the proof is an exercise using Ito formula...

The example quoted on the beginning of this chapter is important since it is often used
in Finance (for instance to model the rate dynamics): Ornstein-Uhlenbeck equation
(cf. [13], page 358 and exercises below) :

dXt = a(t)Xtdt + b(t)dBt, t ∈ [0, T ], X0 = x
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where a and b are F−adapted processes, a is almost surely time integrable and b ∈
L2(Ω× [0, T ], dP⊗ dt). When these processes are constants (α et σ), yields the solution:

Xt = e−αt(x +
∫ t

0
σeαsdBs).

In this case we also can show:

m(t) = E(Xt) = m(0)e−αt

V (t) = V ar(Xt) =
σ2

2α
+ (V (0)− σ2

2α
)e−2αt

ρ(s, t) = cov(Xs, Xt) = [V (0) +
σ2

2α
(e2α(t∧s) − 1)]e−α(t+s)

4.2 Link with PDE

(cf. [13] 5.7 pages 363 et sq.)
In this section we use a SDE solution with initial condition Xt = x :

X t,x
s = x +

∫ s

t
b(u, Xu)du + σ(u, Xu)dWu(9)

and the following assumptions:
(i) the coefficients are continuous, increasing at most linearly in the space,
(ii) there exists a unique solution in law, i.e. weak solution: there exists a probability
measure Px on the Wiener space (Ω,F) under which

. X is continuous F−adapted, takes its values in R,

. if Sn = inf{t : |Xt| > n}, XSn satisfies the existence conditions for strong solutions
(meaning trajectorial solutions).
The increasing limit of times Sn is called the explosion time. Px-almost surely, ∀n

Xt∧Sn = x +
∫ t∧Sn

t
b(u, Xu)du +

∫ t∧Sn

t
σ(u, Xu)dWu

4.2.1 Dirichlet problem

Let D an open set in Rd.

Definition 4.6 An order 2 differential operator A =
∑

i,j ai,j(x)∂2
ij is said to be x-elliptic

if
∀ξ ∈ Rd

∗,
∑
i,j

ai,j(x)ξiξj > 0.

If A is elliptic for any point in D, it is said to be elliptic in D.
If there exists δ > 0 such that

∀x ∈ D, ∀ξ ∈ Rd,
∑
i,j

ai,j(x)ξiξj ≥ δ‖ξ‖2,
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A is said to be uniformly elliptic.

The Dirichlet problem is to find a C2 -class function u and satisfying:

Au− ku = −g,∀x ∈ D; u(x) = f(x), ∀x ∈ ∂D,

A is elliptic, k ∈ C(D̄, R+), g ∈ C(D̄, R), f ∈ C(∂D, R).

Proposition 4.7 (Proposition 7.2, page 364 [13])
Let u be a solution of Dirichlet problem (A, D) and X solution of (9) with the operator
A = 1

2

∑
i,j,l σ

i
lσ

j
l (x)∂2

ij +∇.b(x) ; TD the hitting time of X out of D. If

Ex(TD) < ∞, ∀x ∈ D,(10)

then ∀x ∈ D̄,

u(x) = Ex[f(XTD
) exp(−

∫ TD

0
k(Xs)ds) +

∫ TD

0
g(Xt) exp(−

∫ t

0
k(Xs)ds)dt).

Proof as an exercise (problem 7.3 in [13], corrected page 393).
First of all the X continuity implies XTD

∈ ∂D.
Indication : prove that

M : t 7→ u(Xt∧TD
) exp(−

∫ t∧TD

0
k(Xs)ds) +

∫ t∧TD

0
g(Xs) exp(−

∫ s

0
k(Xu)du)ds, t ≥ 0

is a uniformly Px integrable martingale: one compute Ex(M0) = Ex(M∞); on {t < TD},
we do the Ito differential of M and we use that on D,Au− ku + g = 0. M0 = u(x) since
X0 = x Px almost surely,

dMt = exp(−
∫ t∧TD

0
k(Xs)ds)[Au(Xt∧TD

)dt+∇u(Xt∧TD
)σ(t,Xt∧TD

)dWt+g(Xt∧TD
)−(k.u)(Xt∧TD

)dt],

the functions ∇u and σ are continuous thus bounded on the compact set D̄. So the second
term above is a martingale, moreover the other terms cancel since Au− ku + g = 0 and
∀t, Ex[Mt] = u(x).

This martingale is uniformly integrable since it is L2-bounded, so let t go to infinity
and apply stopping Doob theorem, available thanks to Ex[TD] < ∞. •

Remark 4.8 (Friedman, 1975)
A sufficient condition to get the hypothesis (10) is: ∃l,∃α : al,l(x) ≥ α > 0. This
condition implies ellipticity but it is weaker than the uniform ellipticity in D.

Let:
b∗ = max{|bl(x)|, x ∈ D̄}, q = min{xl, x ∈ D̄},
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choose ν > 4b∗/α, h(x) = −µ exp(νxl), x ∈ D, µ will be chosen later. Then h is C∞,
−Ah(x) can be computed and bounded below:

−Ah(x) = (
1

2
ν2all + νbl(x))µeνxl ≥ (

8(b∗)2

α
− 4b∗

α
b∗)µeνxl ≥ 4(b∗)2

α
µeνq ≥ 1.

Then we choose µ great enough so that −Ah(x) ≥ 1; x ∈ D, h and its derivatives are
bounded in D, we apply Itô formula to h:

h(XTD
t ) = h(x) +

∫ t∧TD

0
Ah(Xs)ds +

∫ t∧TD

0
∇h(Xs)σ(Xs)dWs.

Yields

t ∧ TD ≤ h(x)− h(XTD
t ) = −

∫ t∧TD

0
Ah(Xs)ds + Mt,

M being a uniformly integrable martingale. Thus Ex[t ∧ TD] ≤ 2‖h‖∞, we get the result
with t going to infinity.

4.2.2 Feynman-Kac formula

Let us consider the SDE

dXt = b(t,Xt)dt + σ(t,Xt)dWt, X0 = x,(11)

the associated infinitesimal generator Lt = b(t, .)∂x + 1
2
σ(t, .)∂2

xx, the rate coefficient r
defined on [0, T ]× R taking its values in R+

∗ and the partial derivatives equation:

rv − ∂tv − Ltv = f on [0, T ]× R, v(T, .) = g.(12)

This problem is known as the Cauchy problem. This problem admits a solution using this
of (11).

Theorem 4.9 Let v be a C1,2([0, T ]× R) solution of (12). Suppose that ∂xv is bounded.
Then v admits the representation

v(t, x) = E

[∫ T

t
e−
∫ s

t
r(u,Xt,x

u )duf(s, X t,x
s )ds + e−

∫ T

t
r(u,Xt,x

u )dug(X t,x
T )

]
, ∀(t, x).

4.3 Black-Scholes model

This model is exactly the stochastic exponential, with constant coefficients: the risky
assets is solution of the SDE

dSt = Stbdt + StσdWt, So = s,

33



the coefficient b is called the “trend” and σ the “volatility”. Using everything above, this
SDE admits the explicit unique solution:

St = s exp[σWt + (b− 1

2
σ2)t].

We remark that log St law is Gaussian, thus its support is all R, and so the exponential
support is all R+ − {0}.

Definition 4.10 We call risk neutral probability measure any probability Q, equiv-
alent to P, such that all prices are (F , Q)−martingales.
A market is called viable if AOA hypothesis is satisfied. A sufficient condition is there
exists at least one risk neutral probability measure.
A market is called complete as soon as, ∀X ∈ L1(Ω,FT , P), there exists a process θ,
integrable with respect to the prices vector and such that X = E(X) +

∫ T
0 θtdSt.

In Chapter 6 we will see that the Black and Scholes model is viable and complete, with
the unique risk neutral probability measure

Q = LT P, dLt = −Ltσ
−1(b− r)dWt, t ∈ [0, T ], L0 = 1.

Definition 4.11 A “call option ” is the following contract: the buyer pays at time 0 a
sum q which allows him to buy at time 1 the assets at price K, but it is not an obligation.
If at final time T, ST > K, he buys and he wins ST −K − q. If not, he does nothing and
losses q. Globally he wins (ST −K)+ − q.

A “put option ” is the following contract: the buyer pays at time 0 a sum q which
allows him to sell at time 1 the assets at price K, but it is not an obligation. If at final
time T, ST < K, he sells and he wins K − ST − q. If not, he does nothing and losses q.
Globally he wins (K − ST )+ − q.

Then the problem is to find a fair price, q, between the buyer an the seller of this contract.
This is the aim of Black-Scholes formula
To do that, we assume that the hedging portfolio θ of this contingent claim is such that
there exists a C(1,2)-class function C such that the value V satisfies:

Vt(θ) = C(t, St).(13)

On another hand, θ is (a, d) and we get

Vt(θ) = atS
0
t + dtSt(14)

Under the hypothesis ”the portfolio θ is self-financing”, we get

Vt(θ) = 〈θ0, p0〉+
∫ t

0
asdS0

s +
∫ t

0
dsdSs.(15)
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Using this strategy θ, the option seller could “hedge” the option with initial price q = V0.

We can compute the V differential by two ways, then we will identify them; starting
with (13) and Ito formula :

dVt(θ) = ∂tC(t, St)dt + ∂xC(t, St)dSt +
1

2
∂2

x2C(t, St)S
2
t σ

2dt,

starting with (15) :
dVt(θ) = ratS

0
t dt + dtSt(bdt + σdWt).

The identification implies two equations (dt coefficient and dWt coefficient) and (14)which
is merely C(t, St)) :

∂tC(t, St) + bSt∂xC(t, St) +
1

2
∂2

x2C(t, St)S
2
t σ

2 = ratS
0
t + dtStb(16)

∂xC(t, St)Stσ = dtStσ.

Yields the portfolio:

dt = ∂xC(t, St) ; at =
C(t, St)− St∂xC(t, St)

S0
t

.(17)

To obtain the hedging portfolio explicitely, we need the function C, solution of the PDE
which could be obtained using the first equation of (16) and (17).
Remark: indeed we can replace St by x > 0 since it is a lognormal random variable thus
with a support = R+

∗ :

∂tC(t, x) + rx∂xC(t, x) +
1

2
∂2

x2C(t, x)x2σ2 = rC(t, x),

C(T, x) = (x−K)+, x > 0, t ∈ [0, T ].

This is a Cauchy problem with D =]0, T [×R+
∗ and the operator 1

2
x2σ2∂2

x2 + ∂t + rx∂x,
g = 0, k(x) = r, f(x) = (x−K)+. Let Y be solution to

dYs = Ys(rds + σdWs), Yt = x.

Then Ys = x exp[σ(Ws −Wt) + (s− t)(−1
2
σ2 + r)] and

C(t, x) = E[e−r(T−t)(YT −K)+/Yt = x]

is the waited solution, the portfolio is given via the equations (17).

The famous Black-Scholes formula allows an explicit computation of this function: let
Φ be the distribution function of the standard Gaussian law.

C(t, x) = xΦ

(
log(x/K) + (T − t)(r + 1

2
σ2)

σ
√

T − t

)
−Ke−r(T−t)Φ

(
log(x/K) + (T − t)(r − 1

2
σ2)

σ
√

T − t

)
.

(18)
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The option initial price q is then C(0, x).

Actually, one solve it using (variable,function) change:

x = ey, y ∈ R ; D(t, y) = C(t, ey),

so one goes to a simpler Cauchy problem

∂tD(t, y) + r∂yD(t, y) +
1

2
∂2

y2D(t, y)σ2 = rD(t, y), y ∈ R,

D(T, y) = (ey −K)+, y ∈ R,

linked to the stochastic differential equation :

dXs = rds + σdWs, s ∈ [t, T ], Xt = y.

This one is exactly the one in Proposition 4.7, with g = 0, f(x) = (ex − k)+, k(x) = r.
Thus,

D(t, y) = E[e−r(T−t)(eXT −K)+/Xt = y],

and yields the explicit formula since XT law is a Gaussian law and get (18): the price
at time t is C(t, St) = EQe[−r(T−t)(eXT − K)+/Ft]. This is easy to compute: XT law
conditionally to Ft is a Gaussian law (St + r(T − t), σ2(T − t)).
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4.4 Exercises

Let a filtered probability space (Ω,Ft, P ).

1. Let B be the real Brownian motion; using Ito formula prove that B2
t = 2

∫ t
0 BsdBs+t.

2. Let X ∈ L(B), prove that (X.B)2
t = 2

∫ t
0(X.B)sXsdBs +

∫ t
0 X2

s ds.

3. Let Zt = exp((X.B)t − 1
2

∫ t
0 X2

s ds). Prove that Z is solution of the SDE:

Zt = 1 +
∫ t

0
ZsXsdBs.

Prove that Y = Z−1 is solution of

dYt = Yt(X
2
t dt−XtdBt), Y0 = 1.

Using Ito formula applied to the function (x, y) 7→ x/y, prove the uniqueness of the
solution of the linear SDE.

4. Prove that

(exp
∫ t

0
asds)(x +

∫ t

0
bs exp(−

∫ s

0
audu)dBs)

is solution of the SDE dXt = atXtdt + btdBt, t ∈ [0, T ], X0 = x. Take care to justify
all the integrals which appear in this formula (i.e. precise the useful hypotheses on the
parameters a and b.)
This equation is the Ornstein-Uhlenbeck or Vasicek equation, this model often is used to
model rate behaviour.

5. The following is a particular case of Orstein Uhlenbeck SDE:

dXt = −αXtdt + σdBt, X0 = x,

where x is a random variable in L1(F0).
(i) Prove that the following process is solution of this SDE:

Xt = e−αt(x +
∫ t

0
σeαsdBs).

(ii) Prove that t 7→ m(t) = E[Xt] is solution of the ordinary differential equation which
is obtained by integrating the following: Xt = x− α

∫ t
0 Xsds + σBt. Deduce that m(t) =

m(0)e−αt.
(iii) Prove that the variance function satisfies

V (t) = V ar[Xt] =
σ2

2α
+ (V (0)− σ2

2α
)e−2αt.
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(iv) If x is a F0-measurable random variable with the law N (0, σ2

2α
), show that X is a

Gaussian process with the covariance function ρ(s, t) = σ2

2α
e−α|t−s|.

6. Let W a standard Brownian motion, ε a number in [0, 1], and Π = (t0, · · · , tm) a
partition of [0, 1] with 0 = t0 < · · · < tm = t). Consider the approximating sum :

Sε(Π) =
m−1∑
i=0

[(1− ε)Wti + εWti+1
](Wti+1

−Wti)

for the stochastic integral
∫ t
0 WsdWs. Show that :

lim
|Π|→0

Sε(Π) =
1

2
W 2

t + (ε− 1

2
)t,

where the limit is in probability. The right hand of the last limit is a martingale if and
only if ε = 0, so that W is evaluated at the left-hand endpoint of each interval [ti, ti+1] in
the approximating sum ; this corresponds to the Ito integral.

With ε = 1
2

we obtain the Stratonovitch integral, which obeys the usual rules of
calculus such as

∫ t
0 Ws ◦ dWs = 1

2
W 2

t .
Indication: stress one approximation of the

∫ t
0 Ws ◦ dWs and of W quadratic variation.

Then apply Ito formula to t 7→ W 2
t . Alternative: write Sε(Π) as a combination of W 2

ti+1
−

W 2
ti

and (Wti+1
−Wti)

2.
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5 Probability measure change and martingale prob-

lem

Motivation: martingales and local martingales are powerful tools, so it could be interesting
to model real world so that the processes could be martingales, at least local martingales.
Moreover, in such a case, we avoid “arbitrage opportunities”. Thus, to apply stochastic
calculus to Finance, real data are modelled as price processes evolving on financial market
as semi-martingales. To avoid artitrage opportunities, for the moment we assume there
exists at least one risk neutral probability measure, meaning there exists Q such that
all the prices processes are Q−martingales. This is a sufficient condition for AOA. Thus
yields the two problems in this chapter:

- how to change from a probability space (Ω,F , P) to another one (Ω,F , Q), does

there exist a density of probability measure dP
dQ

? in this case, how is the Brownian motion
changed? this is Girsanov theorem, Section 5.1,

- then we deal with the so-called “representation property”, meaning how to express
the contingent claims using the assets prices, meaning to find a portfolio (an hedging
portfolio) which allows us to realize the terminal time contingent claim, cf. Section 5.3.

The last important question will be studied in Chapiter 6: let a family of adapted
processes on the filtered probabilisable space (Ω, (Ft)), does there exist a probability P
such that all these processes could be (Ω, (Ft), P)-martingales? This is the so-called mar-
tingale problem: cf. the seminal book [12] on this topic.

Let (Ω,Ft, P) be a filtered probability space endowed with a d-dimensional Brownian
motion B, B0 = 0. The filtration is the one generated by the Brownian motion and we
denote M(P) the set of (Ω, (Ft), P) martingales. Let us recall the notion of local mar-
tingale, the set of which is denoted as Mloc(P), meaning an adapted process M such that
there exists an increasing sequence of stopping times (Tn), going to infinity, such that ∀n
the Tn stopped process MTn is a ’true’ martingale.

5.1 Girsanov Theorem

([13] 3.5, p 190-196 ; [23] 3.6, p 108-114) Let X be an adapted measurable process,
X ∈ P(B) meaning:

P(B) := {X adapted measurable process: ∀T,
∫ T

0
‖ Xs ‖2 ds < +∞ P a.s.}

This set contains L(B) = L2(Ω× R+, dP⊗ dt).
More generally, for any martingale M we define the set P(M) which contains
L(M) = L2(Ω× R+, dP⊗ d〈M〉) :

P(M) := {X adapted measurable process: ∀T,
∫ T

0
‖ Xs ‖2 d〈M〉s < +∞ P a.s.}
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For such processes X, the stochastic integral X.M is only a “local” martingale.

Thus we could define the local martingale X.B and its Doléans exponential (stochas-
tic exponential) as soon as ∀t,

∫ t
0 ‖ Xs ‖2 ds < +∞ P a.s. :

Et(X.B) = exp[
∫ t

0
(
∑

i

X i
sdBi

s −
1

2
‖ Xs ‖2 ds)],

solution of the SDE
dZt = Zt

∑
i

X i
tdBi

t ; Z0 = 1,(19)

this is also a local martingale since
∫ t
0 Z2

s ‖ Xs ‖2 ds < +∞ P a.s. using the integrand
continuity on [0, t].

Under suitable conditions, E.(X.B) is a “true” martingale, then ∀t, E[Zt] = 1, which
allows the probability change on σ-algebra Ft :

Q = Zt.P meaning: if A ∈ Ft, Q(A) = EP[1AZt].

Since Zt > 0, the two probabilities are equivalent and P(A) = EQ[Z−1
t 1A]. Moreover,

limt→∞ Zt exists and ∀ S stopping time, ∀A ∈ FS, P(A) = EQ[Z−1
S 1A].

Theorem 5.1 (Girsanov, 1960; Cameron-Martin, 1944) If the process Z = E(X.B),
solution to (19), belongs to M(P), and if Q is the probability defined on FT as ZT .P then:

B̃t = Bt −
∫ t

0
Xsds, t ≤ T

is a (Ω, (Ft)0≤t≤T , Q) Brownian motion.

Thus, look at Black-Scholes model

dSt = St(bdt + σdBt),

using B̃t = Bt + σ−1bt, and Q = E(X.B)P with Xt = −σ−1bt,
we obtain that S is a Q−martingale.

Actually, we need the discounted price S̃t = St

S0
t

could be a local martingale, thus a

risk neutral probability measure is Q = E(X.B)P with Xt = −σ−1(b− r)t. The quantity
σ−1(b− r) is said to be the “risk premium”.

The proof needs a lemma. Below EQ denotes the Q-expectation and EP denotes the
P-expectation.

Lemma 5.2 Let T ≥ 0, Z ∈ M(P) and Q = ZT P. Let 0 ≤ s ≤ t ≤ T and Y a
Ft−measurable random variable in L1(Q), then

EQ(Y/Fs) =
EP(Y Zt/Fs)

Zs

.
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This could be seen as a Bayes formula.
Preuve (exercise 1 below) : Let A ∈ Fs, yields:

EQ(1A
E(Y Zt/Fs)

Zs

) = E(1AE(Y Zt/Fs))

using Fs, Q = ZsP. Then: E[1AE(Y Zt/Fs)] = E(1AY Zt)
using conditional expectation definition, Q definition and the fact that 1AY is Ft-measurable,
∀A ∈ Fs,

E(1AY Zt) = EQ(1AY ),

so we can identify
EP(Y Zt/Fs)

Zs
as the expected conditional expectation. •

Proposition 5.3 Assuming Girsanov Theorem hypotheses, for any continuous local P-
martingale M , the processus N , defined below, is a local Q−martingale:

N = M −
∫
0

∑
i

X i
sd〈M, Bi〉s.

Proof: exercise 2 below.

•

As a corollary, B̃ is a Q-martingale with bracket t. The fact that it is a Q-Brownian
motion is a consequence of one of the following:
- either it is a process admitting Q−Gaussian independent increments,
- or it is a Q−Gaussian process.

We now look at that problem on another point of view: i.e. given a set of equivalent
probability measures, looking for a link between the martingales with respect these dif-
ferent probability measures, (but always with the same filtration).

Proposition 5.4 Let P and Q two equivalent probability measures on (Ω,F) and the
uniformly integrable continuous martingale Zt = E[ dQ

dP/Ft]. Then

M ∈Mloc(Q) ⇔ MZ ∈Mloc(P).

Preuve : Let a stopping time sequence (Tn) to localize M : Lemma 5.2 yields ∀s ≤ t :

EQ[Mt∧Tn/Fs] =
EP[ZtMt∧Tn/Fs]

Zs

(20)

then the fact that MTn ∈M(Q) yields (MZ)Tn ∈M(P).
Reciprocally, it is enough to consider a stopping time sequence (Tn) localizing ZM and
to apply (20) once again. •
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Theorem 5.5 Girsanov-Meyer: Let P and Q two equivalent probability measures, Zt =
E[ dQ

dP/Ft] and X a semi-martingale on (Ω,F , P) with the decomposition X = M + A.

Then, X is also a semi-martingale on (Ω,F , Q) with the decomposition X = N + C,
where

N = M −
∫ t

0
Z−1

s d〈Z,M〉s ; C = A +
∫ t

0
Z−1

s d〈Z,M〉s.

Preuve : (i) C is a finite variation process as the sum of two finite variation processes.

(ii) Proposition 5.4 is applied to N, we compute the product NZ using Itô formula
under the probability P.

d(NZ)t = NtdZt + ZtdMt − ZtZ
−1
t d〈Z,M〉t + d〈Z,N〉t

But N is a P-semi-martingale, with martingale part M : the bracket 〈Z,N〉 = 〈Z,M〉
thus NZ is a P-martingale so N is a Q-martingale. •

5.2 Novikov Condition

(cf [13] pages 198-201.)
The above subsection is based on the hypothesis that the process E(X.B) is a ’true’
martingale. We now have to give some conditions on X so that this hypothesis is satisfied.
Generally, at least, E(X.B) is a local martingale with a localizing sequence, for instance:

Tn = inf{t ≥ 0,
∫ t

0
‖ Es(X.B)Xs ‖2 ds > n}

Lemma 5.6 E(X.B) is a supermartingale, it is a martingale if and only if ∀t ≥ 0,
E[Et(X.B)] = 1.

Proof: There exists an increasing stopping times sequence Tn such that ∀n, E(X.B)Tn ∈
M(P), thus ∀s ≤ t yields

E[ETn∧t(X.B)/Fs] = ETn∧s(X.B).

If n goes to infinity, Fatou lemma and this equality yield that E(X.B) is a supermartingale
(any positive local martingale is a supermartingale). Since E[E0(X.B)] = 1, it is sufficient
that ∀t ≥ 0, E[Et(X.B)] = 1 to prove that E(X.B) is a martingale. •

Proposition 5.7 Let M a continuous local P -martingale and Z = E(M) such that
E[exp 1

2
〈M〉t] < ∞ ∀t ≥ 0. Then ∀t ≥ 0, E[Zt] = 1.

Corollary 5.8 (Novikov, 1971) : Let X an adapted measurable process such that:

E[exp
1

2

∫ t

0
‖ Xs ‖2 ds] < ∞ for all t ≥ 0

then E(X.B) ∈M(P).
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To end this subsection, let an example of process X ∈ P(B) which doesn’t satisfy
Novikov condition, such that E(X.B) ∈ Mc

loc(P) but not being a “true” martingale:
exercise 3 below.
Let the stopping time T = inf{1 ≥ t ≥ 0, t + B2

t = 1} and

Xt = − 2

(1− t)2
Bt1{t≤T} ; 0 ≤ t < 1, X1 = 0.

(i) Prove that almost surely T < 1 so almost surely
∫ 1
0 X2

t dt < ∞.

(ii) Apply Itô formula to the process t → B2
t

(1−t)2
; 0 ≤ t < 1 to show that:

∫ 1

0
XtdBt −

1

2

∫ 1

0
X2

t dt = −1− 2
∫ T

0
[

1

(1− t)4
− 1

(1− t)3
]B2

t dt < −1.

(iii) The local martingale E(X.B) is not a martingale (no up to time 1!): we deduce
from (ii) that its expectation is less than exp(−1) < 1 and this fact contradict Lemma 5.6.
Nevertheless we can show that ∀n ≥ 1 and σn = 1 − (1/

√
n), the process E(X.B)σnis a

martingale.

5.3 Martingale representation Theorem

(cf. Protter [23], pages 147-157.)
The aim of this subsection is to show that a wide class of local martingales can be written
(to be “represented” by) X.B: there exists X ∈ P(B) such that Mt = M0 +

∫ t
0 XsdBs.

This tool will allow us to solve the option hedging problem.

NOTATIONS :
M2,c continuous martingales set in L2;
M2,c

loc continuous local martingales set in L2.

5.3.1 Stable subspace , definitions

To be skipped in a first lecture.

Let us consider the martingales in M2,c which equal 0 at time t = 0 and satisfies
〈M〉∞ ∈ L1. Then supt E[M2

t ] = supt E[〈M〉t] = E[〈M〉∞] < ∞. These martingales are
uniformly integrable, there exists M∞ such that ∀t ≤ 0, Mt = E[M∞/Ft]. One notes H2

0

their set.
H2

0 = {M ∈M2,c, M0 = 0, 〈M〉∞ ∈ L1}.

Definition 5.9 A vectorial H2
0 subspace F is called stable subspace if ∀M ∈ F and

for any stopping time T then MT ∈ F.
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Definition 5.10 Let A a H2
0 subset. One notes S(A) the smaller stable closed vectorial

subspace which contains A.

Definition 5.11 Let A ⊂ H2
0, A is said to have the predictable representation prop-

erty if:

I = {X =
n∑

i=1

H iM i, M i ∈ A, H i ∈ L∗(M i) ∩ L2(dP⊗ d〈M i〉)} = H2
0.

Definition 5.12 Let A ⊂ H2
0(P). One notes M(A) the set of probability measures on

F∞ which are absolutely continuous with respect to P and equal to P on F0 and such that
A ⊂ H2

0(Q).

Lemma 5.13 M(A) is convex.

Proof: exercise.

Definition 5.14 Q ∈M(A) is said to be extremal if

Q = aQ1 + (1− a)Q2, a ∈ [0, 1], Qi ∈M(A) ⇒ a = 0 ou 1.

Theorem 5.15 Let A = (M1, · · · , Mn) ⊂ H2
0(P) with M i †M j, i 6= j. The fact that P is

extremal in M(A) implies that A has the predictable representation property.

5.3.2 Fondamental theorem

Theorem 5.16 Let a d-dimensional Brownian motion B on (Ω, (Ft), P). Then ∀M ∈
Mc,2

loc, there exists a unique vector of processes (Hj ∈ P(Bj), j = 1, · · · , d) such that:

Mt = M0 +
d∑

j=1

∫ t

0
Hj

sdBj
s .

Proof (exercise): apply Theorem 5.15 to the Brownian motion components, prove that P
is the unique element of M(B). Then, localize the martingale M.

Corollary 5.17 Under the same hypotheses, let Z ∈ L1(F∞, P), then there exists a
unique vector H such that Hj ∈ P(Bj), j = 1, · · · , d, and: Z = E[Z] +

∑d
j=1(H

j.Bj)∞.

Proof: apply the theorem to the martingale Mt = E[Z/Ft] and do t going to infinity.

•
Then let us remark that, if P and Q are two equivalent probability measures, denoting
Z the P−integrable variable dQ

dP , then the martingale Zt = EP[Z/Ft] is an exponential
martingale: there exists a process φ such that dZt = ZtφtdBt.
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5.3.3 Application: finding a risk neutral probability measure

Let us assume that the underlying assets prices Si, i = 1, ...n are positive semi-martingales
as

dSi
t = Si

tb
i
tdt + Si

t

∑
j

σi
j(t)dBj

t .

Besides let the equivalent probability measure Q = E(φ.B)P = ZP. Using Girsanov
theorem, ∀j :

B̃j
t = Bj

t −
∫ t

0
φj

sds

is a Q-Brownian motion. So actually, Si are also Q-semi-martingales satisfying:

dSi
t = Si

t(b
i
t +

∑
j

σi
j(t)φ

j
t)dt + Si

t

∑
j

σi
j(t)dB̃j

t .

Thus the problem is now to find a vector φ in L(B) satisfying (for instance) Novikov
condition and such that ∀i = 1, ...n

bi
t +

∑
j

σi
j(t)φ

j
t = 0,

this is a system with n equations and d unknown.
exercise : system to be solved when n = d = 1, then when n = d. What is to do when
n 6= d ?

5.3.4 Application: option hedging

In case of a complete market, using the representation theorem, we can manage the so
called “hedging” option.

Definition 5.18 A “call option” is the following contract: at time 0, the buyer pays q so
that he has the right at time 1 to buy the asset at price K even if S1 > K. It is not an
obligation, only a right.... When at time 1 S1 > K he buys, so that he wins S1 −K − q.
In the other case, and if he does nothing, he loses q. Globally, he wins (S1 −K)+ − q.

A “put option ” is the following contract: at time 0, the buyer pays q so he has the
right at time 1 to sell the asset at price K even if S1 < K. It is not an obligation, only a
right.... When at time 1 S1 < K he buys, so he wins K − S1 − q. In the other case, and
if he does nothing, he loses q. Globally, he wins (K − S1)

+ − q.

K is the option strike and T the maturity.

This means that on time t = 0 we buy the right to buy the assets on price K even if
ST is above it (call) or the right to sell the assets on price K even if ST is below it (put).
But to find the ’fair price’ of this contract, the seller has to hedge the contract, thus he
has to have a portfolio such that his initial wealth will be this price, and its terminal
wealth would be what he have to pay to his buyer, at least in expectation.
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Definition 5.19 The so called “fair price” of the contingent claim H is the smaller
x ≥ 0 such that there exists an admissible self-financing strategy π to hit the wealth Xπ,
the discounted price of it being e−rT Xπ

T = H, Xπ
0 = x.

The seller look for a hedging strategy. Here the useful tool will be the martingale repre-
sentation theorems..... Let r be the discounting rate (for instance bond rate), e−rT XT is
the discounted contingent claim. Let us suppose a market as defined in 5.3.3, [n = d, σ
invertible, process φ satisfying Novikov condition] thus the market admits a risk neutral
probability measure on FT : Q = ET (φ.B)P. Using the fondamental theorem there exists
a vector θ such that

e−rT XT = EQ[e−rT XT ] +
∫ T

0

∑
j

θj
tdB̃j

t .(21)

But if we use the definition of the Q-Brownian motion B̃ above:

dSi
t = Si

t

∑
j

σi
j(t)dB̃j

t

Let ∀j
dB̃j

t = (Si
t)
−1(σ−1)j

i (t)dSi
t

to put in (21):

e−rT XT = EQ[e−rT XT ] +
∫ T

0

∑
i,j

θj
t (S

i
t)
−1(σ−1)j

i (t)dSi
t .

This allows us to identify the hedging portfolio

πi
t = (Si

t)
−1
∑
j

θj
t (σ

−1)j
i (t)

then the fair price is:
q = EQ[e−rT XT ].
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5.4 Exercises

1. Let Q be a P−equivalent probability defined by Q = Z.P où Z ∈ L1(Ω,FT , P ) i.e. Q
restrained to the σ−algebra Ft is Zt.P, Zt = E[Z/Ft].
Prove that ∀t and ∀Y ∈ L1(Ω, Ft, P ), EP [Y Zt/Fs] = ZsEQ[Y/Fs].
Indication: compute ∀A ∈ Fs, the expectations E[1AY Zt] and E[1AZsEQ[Y/Fs]].

2. Let M be a P-martingale, X ∈ L(B) such that Z = E(X.B) is a martingale; we
recall Zt = ZtXtdBt, Z0 = 1. One put Q = ZT P an P−equivalent probability.
(i) Prove that d〈M, Z〉 = ZXd〈M, B〉.
(ii) Using Ito formula to develop MtZt −MsZs, compute EP[MtZt/Fs].
(iii) Use Ito formula between s and t to the process Z.

∫ .
0 Xud〈M, B〉u.

(iv) Deduce that M. −
∫ .
0 Xud〈M, B〉u is a Q−martingale.

3. Let T = inf{1 ≥ t ≥ 0, t + B2
t = 1} be a stopping time and

Xt = − 2

(1− t)2
Bt1{t≤T} ; 0 ≤ t < 1, X1 = 0.

(i) Prove that T < 1 almost surely, thus
∫ 1
0 X2

t dt < ∞ almost surely.

(ii) Apply Itô formula to the process t → B2
t

(1−t)2
; 0 ≤ t < 1 and prove:

∫ 1

0
XtdBt −

1

2

∫ 1

0
X2

t dt = −1− 2
∫ T

0

t

(1− t)4
B2

t dt < −1.

(iii) The local martingale E(X.B) is not a martingale: (ii) yields that its expecta-
tion is bounded above exp(−1) < 1 and this fact contradicts the martingale property
E(Mt) = M0 (which could be 1!....)
Nevertheless, prove that ∀n ≥ 1 and σn = 1 − (1/

√
n), the process E(X.B)σn is a mar-

tingale.

4. Let n processes modelling prices, driven by the following SDEs:

dSi
t = Si

t

d∑
j=1

σi
j(t)dBj

t , S0 = s ∈ Rn

where σ∗σ is a definite positive matrix. Give a sufficient condition such that there exists
a hedging strategy of the contingent claim H = (S1

T − K)+, i.e. such that the market
could be ‘complete’.
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6 Market model, continuous time, continuous prices.

Among others, look at [6] Chapters 12.1-12.5 or [13] Section 5.8, pages 371 et sq. Let us
suppose AOA hypothesis, thus the prices processes are semi-martingales.

6.1 The model

We choose a finite horizon: t ∈ [0, T ], the market, denoted as S, offers N + 1 assets, the
prices are continuous semi-martingales, we can buy or sell some real quantities of them,
there is no transaction or change costs. These price processes are continuous, defined on
a filtered probability space, Wiener space, (Ω,A, P,Ft), endowed with a d-dimensional
Brownian motion denoted as B. Moreover, we suppose that F0 = {∅, Ω},FT = A.

Hypothesis on the market S: The first assets is riskless, so called the ‘bond’:

dS0
t = S0

t rdt, r > 0, S0
0 = 1,

meaning that S0
t = ert.

Then N risky assets on the market are positive semi-martingales satisfying ∀n = 1, ..., N,
there exists a semi-martingale xn such that:

Sn
t = Et(x

n), t ∈ [0, T ],

meaning that
dxn

t = σn
j (t)dBj

t + bn(t)dt, n = 1, · · · , N ; dx0
t = rdt.

6.2 Equilibrium price measure or risk neutral probability

Definition 6.1 Let (S0, · · · , SN) be a price system, an equilibrium price measure or
risk neutral probability on (Ω,Ft) is a probability Q, which is equivalent to P such that the
discounted prices e−rtSn, denoted as S̃n, are local Q-martingales.

We note QS the set of such probability measures.

Let us assume that QS is non empty, and choose Q ∈ QS; this one is not unique, but
generally the results don’t depend on the one chosen in the set QS.
This hypothesis yields the absence of arbitrage (Definition 6.6 and Theorem 6.8 below).
Nevertheless, despite what it is too often written, it is not an equivalent condition: suf-
ficient but not necessary condition. But, this hypothesis is equivalent to the condition
NFLVR: no free lunch with vanishing risk (cf. [5]).

Exercise: in this context, translate the main model hypothesis, i.e. the existence of a
risk neutral probability Q, so that the discounted prices S̃n are martingales.
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A good tool will be Ito formula:

dS̃n
t = e−rtdSn

t − rSn
t e−rtdt = S̃n

t (dxn
t − rdt) = S̃n

t [
∑
j

σn
j (t)dBj

t + (bn(t)− r)dt].(22)

The aim is to find a P-equivalent probability measure Q and a Q Brownian motion B̃ such

that dxn
t − rdt = σdB̃. Here we use Girsanov Theorem, denoting Zt = EP[dP

dQ
/Ft] which

is a martingale. So Z can be ’represented’ with respect to the d-dimensional Brownian
motion B: there exists a vector process X ∈ P(B) such that dZt = Zt

∑d
j=1 XjdBj

t . To
find Q risk neutral probability measure is equivalent to find X.
As an example, end the exercise assuming that

. the matrix tσ.σ has the rank d, thus it is invertible,

. there exists a Novikov condition on vector v. = (tσ.σ.)
−1 ×t σ.(b. − r.1) where

1 = (1, · · · , 1).
More generally, discuss the existence of risk neutral probability measure in the cases
d =, <, > N.

6.3 Financial strategies

Notation: below, 〈x, y〉 notes the scalar product between the two vectors x and y, not to
be confused with the stochastic bracket between two martingales or semi-martingales!

A strategy is a portfolio θ, F -adapted process taking its values in RN+1, θn denoting
the portfolio component which is invested in the n-th assets. The suitable conditions are
those which allows the real process

∫
〈θs, dSs〉 to be well defined:

θ has to be integrable on [0, t], ∀t, respectively with respect to martingale part and
to finite variation part of the semimartingale, the discounted price S̃n. This quantity∫ t
0〈θs, dSs〉 represents the profit obtained between 0 and t,

∫ t
0〈θs, dS̃s〉 represents the dis-

counted profit obtained between 0 and t.

Definition 6.2 An admissible strategy is an adapted process, taking its values in
RN+1, defined on (Ω,Ft, Q), stochastically integrable (cf. Section 2.1) with respect to the
price vector S.

Definition 6.3 A strategy is self-financing if, moreover, ∀t ∈ R+ the portfolio value
satisfies:

Vt(θ) = 〈θt, St〉 = 〈θ0, S0〉+
∫ t

0
〈θs, dSs〉.

Remark: The interpretation could be the following: there is no external endowment,
only the portfolio variation makes the wealth evolving.
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Look at that in a discrete model:

Vt+1 − Vt = 〈θt+1, St+1〉 − 〈θt, St〉 = 〈θt+1, St+1 − St〉(23)

⇐⇒ 〈θt+1, St〉 = 〈θt, St〉.

The portfolio is done between t and t+1 with an internal distribution between the assets.

Here we assume the prices to be stochastic exponentials so that they are strictly pos-
itive.

Theorem 6.4 Let θ an admissible strategy. It is self-financing if and only if the dis-
counted portfolio value Ṽt(θ) = e−rtVt(θ) satisfies:

Ṽt(θ) = V0(θ) +
∫ t

0
〈θs, dS̃s〉

where the scalar product belongs to RN instead of RN+1 since dS̃0
s = 0.

Proof: exercise, using Ito formula to develop e−rt × Vt(θ) and equation (22).

Corollary 6.5 Let Q a risk neutral probability measure. For any self-financing strategy
θ which belongs to P(S̃), the discounted portfolio value is a local Q−martingale.

Preuve: exercise.

Definition 6.6 The process θ is said to be an arbitrage strategy if it is admissible,
self-financing and satisfies one of the three following properties:

〈θ0, S0〉 ≤ 0 et 〈θT , ST 〉 ≥ 0 almost surely and 6= 0 with probability > 0,

〈θ0, S0〉 < 0 et 〈θT , ST 〉 ≥ 0 almost surely,

〈θ0, S0〉 = 0 et 〈θT , ST 〉 ≥ 0 almost surely and 6= 0 with probability > 0.(24)

If there exists such a strategy, it is said that there exists an “arbitrage opportunity”.

There exists an arbitrage strategy is equivalent to there exists one of these three defined
strategies.
For instance, look at 2 ⇒ 3, if 〈θ0, S0〉 = a < 0, a new strategy is defined, satisfying the
last property:

θ′n = θn, n = 1, · · · , N ; θ′0(t) = θ0(t)− ae−rt,∀t ∈ [0, T ].

Then,

〈θ′0, S0〉 = θ′00 , S0
0 +

N∑
1

〈θn
0 , Sn

0 〉 = 〈θ0, S0〉 − a = 0

and 〈θ′T , ST 〉 = 〈θT , ST 〉 − ae−rT erT > 〈θT , ST 〉 ≥ 0. Thus 〈θ′T , ST 〉 is positive non null.

•
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6.4 Viable market

Definition 6.7 A market without arbitrage strategy is said to be viable (cf. AOA hy-
pothesis definition, Chapter 3).

Below, some sufficient conditions to make a market S viable are given.

Theorem 6.8 (cf. [6], 12.2 et sq.) If the set Q is non empty then market is viable.

Preuve as an exercise, with the following steps, let Q ∈ QS:
1. If for any self-financing strategy Ṽt(θ) is a Q−supermartingale, then the market is viable.

Since Ṽt(θ) is a Q−supermartingale:

∀s ≤ t, EQ[Ṽt(θ)/Fs] ≤ Ṽs(θ).

So for s = 0, since F0 is the trivial σ-algebra,

EQ[ṼT (θ)] ≤ Ṽ0(θ) i.e. 〈θ0, S0〉

Suppose that θ is an arbitrage strategy: 〈θ0, S0〉 = 0, 〈θT , ST 〉 ≥ 0.
So EQ[ṼT (θ)] ≤ 0 and since ṼT (θ) = e−rT 〈θT , ST 〉 ≥ 0, ṼT (θ) = 0 the strategy θ cannot
be an arbitrage strategy.
2. If any self-financing strategy of P(S̃) is such that Ṽt(θ) ≥ 0, then the market is viable.
Since the strategy θ is self-financing,

Ṽt(θ) = 〈θ0, S0〉+
∫ t

0
〈θs, dS̃s〉.

Corollary 6.5 shows that Ṽt(θ) then is a local Q−martingale. Since it is positive, it is a
supermartingale (cf. Lemma 5.6 proof) and we go to 1. to conclude. •

As a conclusion, to avoid arbitrage, we add a condition in admissibility definition of
a strategy θ: the obligation to satisfy

Vt(θ) ≥ 0, dt⊗ dP almost surely .

Remark 6.9 Let us stress the implication sequence: QS is non empty ⇒ arbitrage op-
portunity absence ⇒ the price processes are semi-martingales,
BUT the converse aren’t necessarily satisfied!! cf. once again Delbaen-Schachermayer,
QS 6= ∅ ⇔ NFLV R.
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6.5 Complete market

Here we use the tools which are defined in Subsection 5.3 (representation property). Let
Q ∈ QS.

Definition 6.10 A contingent claim X ∈ L1(Ω,FT , Q) is attainable under probability
Q if there exists a self-financing admissible strategy θ and x ∈ R such that

X = 〈θT , ST 〉 = x +
∫ T

0
θs.dSs.

A market is said to be complete under the probability Q for the price system S if any
X ∈ L1(Ω,FT , Q) is attainable.

Here we look for a characterization of complete markets, at least we try to exhibit some
completeness sufficient conditions.

Theorem 6.11 A contingent claim X is attainable if and only if there exists a vector
process α ∈ P(S̃) taking its values in RN such that:

EQ[X/Ft] = e−rT EQ[X] +
∫ t

0
〈αs, dS̃s〉.

Proof:

If X is attainable, this means that there exists a self-financing admissible strategy θ
and x ∈ R such that X = VT (θ) = 〈θT , ST 〉 = x +

∫ T
0 〈θs, dSs〉.

Since θ is admissible, by definition, it is stochastiquely integrable with respect to S so to
S̃; it is self-financing means that (cf. Theorem 6.4) dṼt(θ) = 〈θt, dS̃t〉. But
X = 〈θT , ST 〉 i.e. ṼT (θ) = e−rT X, finally process Ṽ.(θ) is a martingale:

Ṽt(θ) = EQ[ṼT (θ)/Ft] = EQ[ṼT (θ)] +
∫ t

0
〈θs, dS̃s〉.

The first term actually is e−rT EQ[X], we identify the process α, which we are looking for,
as the strategy θ for the coordinates 1 to N (θ0 is out since dS̃0

t = 0).

Reciprocally, if α exists, the strategy is defined as:

θn = αn, n = 1, · · · , N ; θ0
t =

∫ t

0
〈αs, dS̃s〉 −

N∑
1

〈αn
t , S̃n

t 〉,

and x = EQ[X]. We verify that the pair (strategy, initial value) actually attains the
contingent claim X, then that the proposed θ is actually self-financing. •

We admit the theorem :
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Theorem 6.12 Let Q be a risk neutral probability measure. If F0 = {Ω, ∅), the following
are equivalent:

(i) The market concerning the price system {S} is complete.

(ii) QS = {Q}

Exercise: prove (i) implies (ii) assuming there exists two equivalent risk neutral probability
measures, then ∀i, S̃i ∈Mloc(Q1) ∩Mloc(Q2).
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6.6 Exercises

We assume that the prices system is:

Sn
t = Et(X

n), t ∈ [0, T ],

where:

dXn
t =

d∑
j=1

σn
j (t)dW j

t + bn(t)dt, n = 1, · · · , N ; dx0
t = rdt.

The matrix σ rank is N dt ⊗ dP almost surely and ∃α > 0 such that σσ∗ ≥ αI. The
coefficients b, σ, r are bounded on [0, T ]× Ω.

6.6.1 Is the market viable?

Meaning is there no arbitrage opportunity?
Recall that an admissible strategy is a process θ taking its values in RN+1 belonging to
P(S.σ.W ) and satisfying the condition

〈θ, S〉 ≥ 0, dt⊗ dP almost surely.

Prove:
The market is viable as soon as there exists a risk neutral probability measure.
Give some sufficient condition on the coefficients σ, b, r such that the market would be
viable.

6.6.2 Is the market complete?

Indication: describe the set QS of risk neutral probability measures, depending on d <
N, d = N, d > N.

6.6.3 Admissibility necessary and sufficient conditions

Prove that:
the discounted consumption

∫ T
0 e−rscsds being fixed

EQ[
∫ T

0
e−rscsds] ≤ x

is equivalent to the existence of an admissible strategy π which can simulate XT starting
from initial wealth x.
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6.6.4 Optimal strategies

Let a small trader optimizing his strategy using the so called utility functions Ui as follows:

(c, XT ) → EP[
∫ T

0
U1(cs)ds + U2(XT )]

where Ui are class C1 functions, positive, concave, strictly increasing. It is a constrained
optimisation problem:

sup
(c,XT )

{EP[
∫ T

0
U1(cs)ds + U2(XT )]/EQ[

∫ T

0
e−rscsds] ≤ x}.(25)

Solve this problem using Lagrange method. Let L be the Lagrangian function:

L : C1 × C2 × R+ → R

L(c, X, λ) = EP[
∫ T

0
U1(cs)ds + U2(XT )]− λ(EQ[

∫ T

0
e−rscsds]− x),

C1 = {c ∈ L1([0, T ]× Ω, dt× dQ), C2 = L1(P) ∩ L1(Q).
Indication: think of Kuhn and Tucker Theorem (saddle point).
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GLOSSARY

admissible strategy: Definition 6.2, pages 50, 52, 54.

arbitrage strategy: Definition 6.6, pages 1, 23, 51, 54.

assets: pages 1, 15, 33, 34, 39, 45, 48, 49, 50.

bond: pages 46, 48.

complete market: pages 45, 52.

contingent claim: pages 1,34, 39, 52, Definition 5.19.

attainable (contingent claim): Definition 6.10, Theorem 6.11.

fair price: Definition 5.19, pages 34, 45, 46.

maturity: Definition 5.18.

stocks=assets.

trend: page 34.

viable market: pages 34, 51, 54.

volatility: page 34.
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