
2018, March 1st-13th John Von Neumann Institute

Master QCF

Financial Time Series, 20 hours+practical exercises.
Plus Corrections of exercises.

Forecasting discipline is an issue of Statistics. Indeed, the aim is to answer the following
kind of problem: a systemX is evolving in time, it is observed and one would like to predict
the future. In our case, we are interested in financial data, for instance price processes
modeling assets price. Anyway, practical observations tell us that the interesting matter is
not the price process, but the RETURN processes, and mainly, their covariance function
as a risk measure (cf. volatility in continuous time models). Actually, we do not try
to model the price processes, but the risk concerning the returns, meaning we look for a
model fitting the second order moments (meaning covariance function of return processes,
which is more or less a risk measure). Generally, underlies a modeling problem: it is to
find the mathematical “model” that realizes the better connection between a variable and
the time.
The principle is to find a mathematical model fitting the covariance function (namely γ)
as a function of time. Given the available observations, we try the “best” function f (the
optimality criterion depending on the method) such as γ ≈ f(t) where t is time. Namely,
we consider that the observations are a set (X(t− i), i = 1, · · · , n). Concerning Financial
data, the more convenient models are ARCH and GARCH, due to stylised features.

Indeed, the financial data present some stylised facts:

• non stationarity of price series,

• absence of auto correlation for the price variations,

• unpredictability of returns,

• auto correlation of the squared price returns,

• volatility clustering ⇒ prediction of squared returns,

• fat tailed distributions (leptokurticity),

• leverage effects,

• seasonality.
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For all these facts, ARMA are not convenient for modeling price series. But, the
correlation process, important since it is a measure of the risk, meaning more or less the
volatility, could be modeled as a GARCH process. Anyway, we will start which basic
definitions in ARMA area; as a first step, we will present processes ARMA which is a tool
to model the covariance function γ(k, j) = cov(Xk, Xj).

There is two parts: first one concerns ARMA processes, linear models:

• Processes ARMA: Box and Jenkins’methods, general features (sophisticated meth-
ods, where is exhibited a linear function of X(t) and its past values X(t − i), i =
1, · · · , n).

• Delay operator, ARMA equations.

• Estimate of an ARMA process, covariance function.

• ARMA model identification, estimation of its parameters.

The second part concerns GARCH processes, convenient to model the correlation func-
tion, meaning the volatility in discrete time case. Processes ARCH, GARCH (cf.
Gouriéroux, Zakoian) are similar to the previous one but the functions are no more lin-
ear. For instance ∀t, X(t) = zt

√
α0 + α1X(t− 1).

• Some non linear models

• Linear ARCH-GARCH models

• Identification

• Estimates and forecasting

• Tests based on the likelihood

• Some extensions

• Financial Applications.

A selection criterion is obviously the quality of the forecast. We will propose statis-
tical tests that allow to judge the goodness of fit (between the curve obtained and the
observations). An empirical way could be added: to reserve some “witnesses spots” and
to do the study, excluding them, and judging the error on witnesses.

For the concrete use of these methods it is recommended to use the free software ”R”:

https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

Some data can be found via Internet. For instance, historical prices, assets daily
returns, on “yahoofinance” to get SP500, as a column Excel.
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1 Box and Jenkins’ methods, general features

Developed in the 70s, these are very powerful methods which make maximum use of the
fact that the evolution of the studied time series is considered as one of the achievements
of a stochastic process, endowed with a strong enough structure. Indeed, once highlighted
the structure, this allows to predict more confidently the future series. The consideration
is the need for a fairly long period of observations for the forecast being reliable. The
authors recommend 5 to 6 periods in the case of periodic phenomena, and a minimum
of 30 observations in other cases.

These methods work very well for short-term forecasts macroeconomic series, especially
for the industrial production indexes. In Finance, this method does not concern the
forecast of returns, but the one of volatility.

They are based on the assumption that each observation depends quite strongly on
previous observations. Basically, this addiction to the past replaces multiplicity of ob-
servations (in Statistics) to estimate the settings by applying the law of large numbers.
So are assumed strong enough assumptions, that the series is stationary, meaning the
two first moments do not depend on time. If this is not the case, they must be done
“stationary” by transformations (called filters) that remove trend and seasonality.

1.1 Definitions

Thus, we consider processes, random series, indexed in Z and taking their values in C
(complex numbers) but we restrict this course to real numbers R:

∀n ∈ Z, Xn is a random variable : (Ω,F , P )→ (R,B).

We try to model the application n 7→ Xn with a trend part, a seasonal component, and
measurement error.

Hypothesis: The observations xn are the values of a centered, square-integrable, station-
ary, random process Xn, i.e. there exists a function γ on Z such that ∀n , cov(Xn, Xn−k) =
γ(k). Notice:

cov(Xn, Xn−k) = E[(Xn − E(Xn))(Xn−k − E(Xn−k))].

Remark 1.1 Exercise 1: Actually for any k ∈ Z, γ(k) = γ(−k).

Definition 1.2 : Such a process is called a second order stationary time series,
S.T.S. for short.

The function γ is called the auto covariance function.

Moreover we define the auto correlation function ρ : k 7→ ρ(k) = γ(k)
γ(0)

.
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There exists another notion: “strict stationarity” meaning the vectors (X1, · · · , Xk) and
(Xn+1, · · · , Xn+k) have the same law, for any pair (k, n).

As for the covariance function γ, for any k ∈ Z, ρ(k) = ρ(−k) and we define the
correlogram, graph of the application ρ, useful tool in analyzing the series as discussed
later.

We also introduce:

Definition 1.3 The partial auto correlation function, P.A.C.F., is defined on N as:

r : N→ R ; r(p− n) = cor (Xn, Xp/Xn+1, · · · , Xp−1), p > n,

meaning

r(p− n) =
cov (Xn −X∗n, Xp −X∗p )√

Var (Xn −X∗n) Var (Xp −X∗p )

where X∗j is the orthogonal projection of Xj on the vector space Sn,p generated by (Xn+1, · · · , Xp−1),
and completed by r(1) = ρ(1).

Exercise 2: this expression only depends on (p− n).

Finally, we introduce the infinite dimensional matrix of variance-covariance process
X.

Definition 1.4 : The Toeplitz matrix is

Γ, γ(i, j) = r(i− j), i, j ≥ 1.

This is a symmetric matrix.

1.2 Examples of second order stationary times series, STS

First example of fundamental S.T.S. : the white noise.

Definition 1.5 The (weak) white noise is a STS (εk) (with covariance function equal
to γ with γ(k) = σ2δk,0.

If moreover there is independence between the random variables (εk), the white noise is
said strong.
For example, this may be a Gaussian process with covariance matrix Γ = σ2Id; in this
case, there is in addition the orthogonality of the white noise components εn in L2 and
their independence, thanks to the Gaussian nature of the series.
A strong white noise is a white noise such that (εn) are i.i.d.

Remark 1.6 We can show that the white noise covariance function checks the equality

γ(n) =
σ2

2π

∫ 2π

0

einλdλ.
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This “white noise process” is used to model the measurement error. If the series is not
centered, the term is “colored noise”.

Second example:

Definition 1.7 A moving average is a STS as follows:

Xn =
∑
k∈Z

akεn−k,

where the series (ak; k ∈ Z) ∈ l2 and ε is a white noise.
For short: M.A.= “moving average”.

Proposition 1.8 The covariance function of a moving average Xn =
∑

k∈Z akεn−k is
written as γ(p) =

∑
k∈Z ap−ka−k ∀p ∈ Z.

Proof : We write Xn and Xn−p definition; firstly remark that these series are L2 con-
vergent using the hypothesis that the series (ak; k ∈ Z) ∈ l2. Secondly we compute their
covariance, meaning the mean of the product since these random variables are centered:

E[XnXn+p] = lim
K→∞

∑
|k|<K

ap+kak.

This limit exists since

∀K > 0, (
∑
|k|<K

ap+kak)
2 ≤

∑
|k|<K

|ap+k|2
∑
|k|<K

|ak|2 <∞.

This inequality is proved recursively: it is true for K = 2, and the property for K − 1
implies it for K. •

Definition 1.9 When there exists a finite number of non null coefficients ak, i.e. (a0, · · · , ap),
we say that X is a order p-moving average, MA(p) for short.

Third example: let ε be a white noise, and define the recursive series

Xn = αXn−1 + εn.

Assuming that we know a particular element of the series, for instance X0, assuming
it is a centered random variable in L2 we prove the following.

Proposition 1.10 Let X be the process defined as

Xn = αXn−1 + εn, ∀n ∈ Z, X0 ∈ L2, E[X0] = 0.

Assuming |α| < 1, and E[X2
n] ≤M2, ∀n ∈ Z−, then X is a STS.

Specifically, this is a moving average with coefficients aj = αj, j ≥ 0. Its covariance

function is defined by γ(k) = αk

1−α2 .
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Proof = Exercise 3

Definition 1.11 An order 1 auto regressive series X (AR(1) for short) is a process
depending only of the previous observation, step by step.

At this point we can quote Francq and Zakoian [6] pp 7-11: Sections 1.3 Financial
Series and Section 1.4 Random variance models which shows how ARMA processes are
not appropriate to model Financial Series as it is written above in the introduction:

Indeed, once again, the financial data present some stylised facts:

• non stationarity of price series,

• absence of auto correlation for the price variations,

• unpredictability of returns,

• auto correlation of the squared price returns,

• volatility clustering ⇒ prediction of squared returns,

• fat tailed distributions (leptokurticity),

• leverage effects,

• seasonality.
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First Part: ARMA

2 Delay Operator, ARMA equations

In this subsection we consider that X is a STS. In AR(1) example, Xn = aXn−1 + εn
and ∀(εn) (a given white noise) we get Xn as a function of Xn−1; more generally it is
interesting to get formal this passage from n−1 to n. Firstly we have to define the spaces
on which is defined this passage.

Definition 2.1 The closed subspace generated by the set {Xp, p ∈ Z, p ≤ n} in L2 is
denoted as HX

n .
This subspace of L2, HX

n , is named the linear past of X.
We note also:

HX
−∞ = ∩nHX

n ; HX
+∞ = ∪nHX

n = HX .

HX
−∞is named the asymptotic past, HX the linear envelope.

These spaces are used to characterize two specific types of STS.
Following Francq and Zakoian [6] page 4, we consider εn := Xn −Pn−1(Xn), weak or
strong white noise, where Pn−1 is the L2 orthogonal projector on HX

n−1.

Definition 2.2 When HX
−∞ = {0} the series is regular.

When HX
−∞ = HX the series is singular. In this case, the linear pasts are constant and

the “innovation” does not bring any information.

A first example of regular STS is the white noise. Other examples in Section 4.4 (Exercise
6).
Actually because the process ε is non correlated, the vector space Hε

n = Rεn + Hε
n−1. So

if Y ∈ Hε
n ∩Hε

n−1, firstly, Y = aεn + P ε
n−1(Y ). But Y ∈ Hε

−∞ means that Y ∈ Hε
n−1, so

a = 0. And so on, Y = 0 and ε is a regular series.

Definition 2.3 The operator HX = vect {Xn, n ∈ Z} in L2 which sends Xn to Xn−1

is named the delay operator denoted SX : SX(Xn) = Xn−1.

Proposition 2.4 The operator SX is the unique isometric from HX to HX which sends
Xn to Xn−1. Moreover, SX(HX) = HX .

Proof : The operator SX is defined on the {Xn, n ≥ 0} and is extended by linearity on
any finite linear combinations of Xn. This is an isometric:

‖ SX(
∑
i

aiXi) ‖2
2 =

∑
i,j

aiajE[Xi−1Xj−1]

=
∑
i,j

aiajγ(i− j) =‖
∑
i

aiXi ‖2
2 .
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Thus we could extend this operator SX by continuity on the whole HX .
Uniqueness: it is a consequence of the fact that if T could be another solution, T = SX
on any Xn, so on any finite linear combinations of Xn so by continuity on HX .
Any element of HX is a limit of finite linear combinations of Xn, image by SX of finite
linear combinations of Xn, so the equality SX(HX) = HX . •

Theorem 2.5 (WOLD): Any STS could be written as a unique sum of a regular and a
singular parts:

X = Xr +Xs

so that the spaces HXr
and HXs

are L2 orthogonal.

Proof : Exercise 4

Proposition 2.6 Both series Xr and Xs are too STS.

Proof : Firstly by construction they are centered and in L2.
Secondly we use the following:

Lemma 2.7 For all n ∈ Z, PX
n ◦ SX = SX ◦ PX

n+1.

Proof for all p ∈ Z, PX
n ◦ SX(Xp) = PX

n (Xp−1) is the unique vector in HX
n such that

Xp−1−PX
n (Xp−1) is orthogonal to HX

n . So we have to compute ∀k ≤ n the scalar product
〈Xk, Xp−1 − SX ◦ PX

n+1(Xp)〉. This scalar product is equal to:

〈Xk, Xp−1 − SX ◦ PX
n+1(Xp)〉 = γ(k − p+ 1)− 〈SX(Xk+1), SX ◦ PX

n+1(Xp)〉
= γ(k − p+ 1)− 〈Xk+1, P

X
n+1(Xp)〉

since SX is an isometry. Then we use ∀k ≤ n,Xk+1 ∈ HX
n+1. Yields:

〈Xk, Xp−1−SX◦PX
n+1(Xp)〉 = γ(k−p+1)−〈Xk+1, P

X
n+1(Xp)〉 = γ(k−p+1)−〈Xk+1, Xp〉 = 0.

•
We apply this lemma to the computation of the covariance function of the series Xs,
whith n ≥ p:

(Xs
n, X

s
p) = (PX

−∞(Xn), PX
−∞(Xp)) = (SX ◦ PX

−∞(Xn), SX ◦ PX
−∞(Xp)) =

(PX
−∞ ◦ SX(Xn), PX

−∞ ◦ SX(Xp)) = (PX
−∞(Xn−1), PX

−∞(Xp−1))

which is exactly (Xs
n−1, X

s
p−1) by definition of Xs, step by step we go to

(Xs
n, X

s
p) = (Xs

n−p, X
s
0),

which only depends on the difference n−p; this proves the stationarity of the series (Xs).
Then, the part Xr = X − Xs is too a STS: Xr ∈ L2 with null expectation by linearity,
and we easily check the stationarity of E[(Xr

n, X
r
p)]. More specifically we prove:

(Xn −Xs
n, Xp −Xs

p) = γ(n− p)− γs(n− p).

This shows the stationarity of Xr and the relation between the covariance functions
γ = γr + γs. •

9



Remark 2.8 When a STS is not singular, the strict inclusion ∀n, HX
n−1 ⊂ HX

n is sat-
isfied. Indeed, if not, there exists n such that HX

n−1 = HX
n , and with the lemma and the

delay operator SX we deduce that ∀n, HX
n−1 = HX

n , so the series is singular.

The following theorem provides a characterization of regular series.

Theorem 2.9 A series X is regular if and only if there exists a sequence (dn) in l2(C)
and a white noise ε such that:

Xn =
∑
p≥0

dpεn−p.

We could choose ε so that the linear pasts of X and ε are identical; then this white noise
and the associated sequence (dn) are unique, except a possible multiplicative coefficient.

Definition 2.10 This white noise is named innovation white noise.

The interest of such series lies in the following corollary: the projection on the past is so
extremely simple.

Corollary 2.11 Let X be a regular series and ε its innovation white noise; for all m ≤ n,

PX
m (Xn) =

∑
p≥n−m

dpεn−p.

Proof of the theorem: By definition Xn ∈ Hε
n, so HX

n ⊂ Hε
n, ∩nHX

n ⊂ ∩Hε
n = {0} since

ε is regular, and X is regular.

Conversely, let X be a regular series. Let the process vn = Xn − PX
n−1(Xn); this is a

STS since we could compute its covariance function:

∀n, ‖ vn ‖=‖ SX(Xn+1)− PX
n−1 ◦ SX(Xn+1) ‖=‖ Xn+1 − PX

n (Xn+1) ‖=‖ vn+1 ‖

denoted σ2 = γ(0). By definition, vn ∈ HX
n and is orthogonal to HX

n−1 so to the previous
vi: so it is a STS, and more specifically a white noise denoted aεn.

By definition, Xn = aεn + PX
n−1(Xn), εn ∈ HX

n and is orthogonal to HX
n−1, thus

HX
n is the direct sum Rεn ⊕ HX

n−1. By induction we get that HX
n is the direct sum

⊕0≤i≤jRεn−i ⊕HX
n−j−1. On this direct sum we get the decomposition

Xn =
∑

0≤i≤j

aiεn−i + PX
n−j−1(Xn)

Since X is a regular series, limj→∞ P
X
n−j−1(Xn) = 0 and X is equal to

∑
0≤i aiεn−i, which

is the expected form.

As a consequence, Xn ∈ Hε
n and since previously we knew that, εn ∈ HX

n , these two
spaces are identical.
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Uniqueness: we assume that there exists a pair (ε′, d′), (white noise, l2(C) element),
solution of the problem, so satisfying

∀n, P ε′

n = PX
n = P ε

n and Xn =
∑
0≤i

diεn−i =
∑
0≤i

d′iε
′
n−i.

On both hands of this equality we apply the operator PX
n−1, we get :

P ε
n−1(Xn) =

∑
1≤i

diεn−i;P
ε′

n−1(Xn) =
∑
1≤i

d′iε
′
n−i.

But P ε′
n = P ε

n so the difference is null and ∀n, d′0ε′n = d0εn meaning the uniqueness except
a possible multiplicative coefficient. •

The proof of the corollary is obvious since the operators PX
m and P ε

m are the same, as
are the corresponding spaces HX

m and Hε
m.

Remark 2.12 The identity between these two families of spaces is interpreted as follows:
Linear pasts of X and ε coincide. If X is observed up to time n− 1, the additional infor-
mation provided by really new Xn is represented by aεn = Xn−PX

n−1(Xn), the ‘innovation’
as we called it previously.

More generally, we will now study the class of STS, solution of “ ARMA ” equations,
written using the delay operator SX .

Definition 2.13 Let Xbe a STS and ε a white noise, P and Q two polynomials with
complex coefficients. We say that X is solution of ARMA(P,Q) equation if this
process satisfies for any n in Z :

(1) P (SX)(Xn) = Q(Sε)(εn),

meaning there exist complex coefficients (a0, · · · , ap) and (b0, · · · , bq) such that ∀n ∈ Z :

(2)

p∑
i=0

aiXn−i =

q∑
i=0

biεn−i.

In case of p = 0, X is MA(q) ; in case of q = 0, X is AR(p). In the general case we
say that X is ARMA(p,q).
Such an equation could be solved, either to get X function of process ε or the converse so
that we could “forecast” Xn based solely on its past. Roughly speaking, this consists in a
“reverse” of operators P (SX) and = Q(Sε). This is out of our agenda, but the following
Section 2.1 is an important result which will be useful in the second part of this course.

2.1 ARMA Equation: resolution

Let AP (X) = AQ(ε) an ARMA equation.
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Theorem 2.14 (Fejer-Riesz) Let P et Q be non nul polynomials with no common roots,
those of P have modulus 6= 1. Then the ARMA equation is solvable as soon as the modulus
of P roots are > 1 and those of Q ≥ 1.

Definition 2.15 This ARMA representation of X is called canonical Fejer-Riesz canon-
ical representation.

3 Estimate of an ARMA Process covariance function

We come back to the observation of a STS, supposed to be stationary, non necessarily
centered:

X1, · · · , XN ,

The first step is to estimate E(X) and covariance function γX .

According to standard probability or statistics lecture notes in case of sampling, E(X)
is estimated by Cesàro mean, that is justified by the large numbers law (cf. [4]). But the
required assumptions are either the independence of the observations or the martingale
property for the process. Neither of these assumptions is checked in the case of STS.
Nevertheless, with similar proofs to those seen during Probability course, we get same
type results. This is what will be used to justify an approximate of mean, covariance
function.

Insert work with R: ’plotobs(X)’ to draw the series graph; mean(X); acf(X) to get
correlogram, variogram, partial correlogram...see TD-TP Agnes Lagnoux.

3.1 Large numbers law

Lemma 3.1 Let X1, · · · , Xn, n ∈ N be a sequence of random variables with mean m.
We put Sn :=

∑n
i=1Xi and assume:

∃M > 0, V ar(Xn) ≤M2, V ar(Sn) ≤ nM2, ∀n ≥ 1.

Then 1
n
Sn → m in L2 and almost surely, when n goes to infinity.

Proof :
(i) V ar( 1

n
Sn) = E[ 1

n
Sn − m]2 since by hypothesis E(Sn) = nm. But V ar( 1

n
Sn) =

1
n2V ar(Sn) ≤ 1

n
M2 → 0 when n goes to infinity, so the convergence in L2.

(ii) Let Zk = sup{| 1
n
Sn −m|, n ∈ [k2, (k + 1)2[}. We put Yj := Xj −m so:

1

n
Sn −m =

1

n
Sk2 +

1

n
(Xk2+1 + · · ·+Xn − nm) =

1

n
(Sk2 − k2m+ Yk2+1 + · · ·+ Yn).

Then we deduce the bound:

Zk ≤
1

k2
(|Sk2 − k2m|+ |Yk2+1|+ · · ·+ |Y(k+1)2−1|)
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so the L2 norm satisfies:

‖Zk‖2 ≤
1

k2
(‖Sk2 − k2m‖2 + ‖Yk2+1‖2 + · · ·+ ‖Y(k+1)2−1‖2).

By hypothesis the first term is bounded by Mk, and any following terms (k+1)2−1−k2 =
2k are equal to the X standard deviation bounded by M :

‖Zk‖2 ≤
1

k2
(Mk + 2kM) = 3M/k.

Thus the series E(
∑

k Z
2
k) =

∑
k E(Z2

k) ≤
∑

k 9M2/k2 is convergent, proving that Zk
converges almost surely, when k goes to infinity, exactly meaning 1

n
Sn − m converges

almost surely to zero, meaning 1
n
Sn converges almost surely to m when n goes to infinity.

•
We apply this lemma to a STS: since V ar(Xn) = γX(0) the first hypothesis is satisfied.

The second hypothesis concerns

V ar(Sn) = V ar(
n∑
i=1

Xi) =
∑

1≤i,j≤n

γX(i− j) = nγX(0) + 2(n− 1)γX(1) + · · ·+ 2γX(n− 1)

the order of which not necessarily being nM.
But for instance a MA(q) process satisfies this hypothesis since in this case there exists a
finite number of non null γX(i), γ(k) = 0 for all k > q:

V ar(Sn) ≤ n(γ(0) + · · ·+ γ(q)).

Exercise 7: under the assumption of the lemma above, in case of an AR(1), Xn = aXn−1 +

εn prove that the covariance is γX(k) = ak

1−a2 .

3.2 Covariance function estimate, acf, pacf

Let k be fixed in N (if k < 0, γ(k) = γ(−k)). Using the large numbers law (or rather
Lemma 3.1), if the series Y : n → XnXn+k has “good” properties, a γX(k) reasonable
estimate is:

γ̄n(k) =
1

n

n∑
j=1

XjXj+k.

For that remark that we need observations at least from time 1 to n+ k.
If we have only n observations, we propose:

γ∗n(k) =
1

n

n−k∑
j=1

XjXj+k.

Both estimates have the following properties:

(i) Bias
E[γ̄n(k)] = γ(k),
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meaning this estimate has a null bias ∀n.

E[γ∗n(k)] =
n− k
n

γ(k)→ γ(k),

this estimate bias is asymptotically null.
Exercise 8: Applying Lemma 3.1, compute the biais of these both estimates.

(ii) Convergence and quadratic error: here we need more hypotheses. To apply
Lemma 3.1, E(XnXn+k) = γ(k) but we also need the existence of a constant M such that
V ar(XnXn+k) ≤ M2 and V ar(

∑n
i=1XiXi+k) ≤ nM2 meaning we would need at least

X ∈ L4 and supnE(X4
n) ≤M2. Now to check the second hypothesis:∑
1≤i,j≤n

E[XiXi+kXjXj+k]− n2γ2(k) ≤ nM2

we could (for instance) assume that the series law is Gauss.

Anyway, since it is a stylized fact that price processes are not Gaussian, we can not
use such an hypothesis.
But even if we can not assume normal law, we nevertheless get:

Proposition 3.2 (cf. [1], p. 104) Let X be a STS in L4 such that supnE(X4
n) ≤ M2

and
lim

|n−m|→∞
[E[XnXn+kXmXm+k]− γ2(k)] = 0.

Then γ̄n(k)→ γ(k) in L2.

Proof : Exercise 9

The following is to skip for a first lecture.

Definition 3.3 A sequence of real random variable (Xn, n ∈ Z) is said to be Gauss when any real linear
combination of Xi follows a Gauss law.

Remark that in such a case the vector space HX contains only Gauss variables since the Gauss laws are
preserved under L2 convergence.

In this case we get the following for γ∗(k).

Proposition 3.4 Let X be a Gaussian STS with spectral density = restriction to Π of a continuous
function on R with period 2π, then ∀k : γ∗n(k) goes to γ(k) almost surely and in L2.

Admit the proof.

•

Theorem 3.5 Let X be a Gaussian centered STS with covariance function γ such that:

∞∑
k=1

k|γ(k)| <∞.
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Then ∀ fixed k ∈ N the vector

√
n(γ∗n(0)− γ(0), · · · , γ∗n(k)− γ(k))

weakly converges to the centered Gauss law with covariance matrix Γ:

(3) Γij =
∑
k∈Z

γ(k)γ(k + i+ j) + γ(k)γ(k + i− j).

The proof is easy but tedious. Look at the details for instance in [1] pages 111 et sq.

Remark 3.6 As a consequence of this theorem we could notice:

P{√n|γ∗n(k)− γ(k)| ≤ α} →
∫ +α

−α
fΓ(x)dx.

So we could get a confidence interval for the parameter γ(k), with confidence level ε deduced from α

(ε =
∫ +α

−α f
Γ(x)dx):

γ(k) ∈]γ∗n(k)− α√
n
, γ∗n(k) +

α√
n

[.

(iii) Comparison between γ̄ and γ∗: In the case where supnE(X4
n) ≤ M2 when

n→∞, k being fixed, we get, Exercise 9:

‖γ̄n(k)− γ∗n(k)‖2 ≤
k

n
M → 0.

Routines R: acf, pacf, to give an example.

4 ARMA model Identification, estimation of its pa-

rameters

Cf. Chapter 5.2 [6].
We assume that the changes in the time series (differentiation, seasonal fitting) have been
made so that we have an effective centered STS, and that the obtained series is real, with
a rational spectrum meaning that there exists p and q ∈ N, polynomials P degree p
and Q degree q, a white noise ε such that the series X is solution to the ARMA equation
APX = AQε.

The aim is to find p, q, P,Q to identify the model. We have n observations of X and
we suppose that the covariance function γ is known, actually estimated according to the
method provided in Section 3.2.
R command: arima, monmodele= ; X= ; with model parameters, simulation of processes,
plotobs(X) ; mean(X) ; acf(X) which gives correlogram, variogram; pacf(X), etc.

15



4.1 Estimation of P coefficients

Hypothesis : we suppose that p, q are known in N and function γ is known, we put
a0 = 1.
(p, q) is minimal, meaning there does not exists polynomials P ′ and Q′ with smaller
degrees than p, q in the ARMA equation.
We detail the ARMA equation APX = AQε:

p∑
0

aiXn−i =

q∑
0

blεn−l.

We do the scalar product in L2 of this equality with Xn−m for any m ≥ q + 1 so that
Xn−m is orthogonal to (AQε)n. For any m ≥ q + 1:

p∑
0

aiγ(m− i) = 0,

let the set of linear equations the solution of which being the vector a in Rp:

p∑
1

aiγ(m− i) = −γ(m), ∀m ≥ q + 1.

With m = q+1, · · · , q+p, we get a system of equations named Yule-Walker equations;
we denote Rpq the matrix of this system of p equations and p unknown variables:

| γ(q) · · · γ(q + 1− p) |
| · · · · · · · · · |

Rpq = | · · · · · · · · · |
| · · · · · · · · · |
| γ(q − 1 + p) · · · γ(q) |

and Γq+pq+1 the vector with coordinates γ(m), m = q + 1, · · · , q + p.

Proposition 4.1 If X is an ARMA(p,q) process, (p, q) being minimal, the matrix Rpq is
invertible and the coefficients of the polynomial P are the coordinates of the vector

a = −R−1
pq Γq+pq+1.

Proof : We assume that detRpq = 0, meaning there exists p coefficients αi (at least one
is non null) such that :

p−1∑
i=0

αiγ(q + j − i) = 0, ∀j = 0, · · · , p− 1.

On the other hand, for j = p, using Yule-Walker equations, we replace γ(q + p− i) :

p−1∑
i=0

αiγ(q + p− i) = −
p−1∑
i=0

αi

p∑
1

ajγ(q + p− i− j) = −
p∑
j=1

aj

p−1∑
i=0

αiγ(q + p− i− j)
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which is a sum of null terms for p− j = p− 1, · · · , 0 since detRpq = 0. By induction, step
by step, we get for j ≥ 0:

p−1∑
i=0

αiγ(q + j − i) = 0.

This exactly reflects the fact that ∀j ≥ 0 :

E[

p−1∑
i=0

αiXn−iXn−j−q] = 0,

meaning ∀n ≥ 0,
∑p−1

i=0 αiXn−i is orthogonal to HX
n−q = Hε

n−q and we compute its coordi-
nates in (Hε

n−q)
⊥:

〈
p−1∑
i=0

αiXn−i, εn−q+l〉 =

p−1∑
i=0

αi〈Xn−i, εn−q+l〉

for l = 1, · · · , q and equal to 0 for l > q.Moreover using stationarity hypothesis 〈Xn−i, εn−q+l〉
does not depend on n: since the white noise ε is the innovation white noise X is expressed
as a function of ε and this scalar product is stationary.
Denoting γl the coordinate of

∑p−1
i=0 αiXn−i on εn−q+l:

p−1∑
i=0

αiXn−i =

q∑
l=1

γlεn−q+l,

which is an ARMA(p-1,q-1) relation and contradicts the hypothesis that the pair (p, q) is
’minimal’. •

4.2 Estimation of Q coefficients

This is a much more difficult problem and we will only give a weak approach! We assume
P is known (we estimated it in previous subsection), q and γ are also known. We put

Yn =

p∑
0

akXn−k.

We will only put the problem, then its resolution states on numerical analysis. The
existence of solutions is proved, but not the uniqueness. The Y covariance function is
computed as a function of the (bi) using that Y = AQε :

γY (0) =

q∑
0

b2
k

γY (1) =

q∑
1

bkbk−1

γY (j) =

q∑
j

bkbk−j

γY (q) = bqb0
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We look for a solution b such that the corresponding polynomial Q admits only zeros with
modulus ≥ 1.
Exercise 10: solve this system for q = 1, 2.

For q = 1, b2
i , i = 0, 1 are 1

2

(
γ(0)±

√
γ(0)2 − 4γ(1)2

)
so we need γ(0) ≥ 2γ(1).

For q = 2..... awful computations !

But the aim is to find the polynomial Q and there is another method, easier but using
complex numbers and what is called “spectral density”. Since Y is MA(q) process, its
spectral density is known to be

f(λ) =
1

2π

+q∑
−q

γY (k)e−ikλ =
1

2π
|Q(e−iλ)|2

where you only have to know that z = e−iλ is 2 dimensional, (cos(λ),− sin(λ)), and
satisfies 1/z = (cos(λ), sin(λ)) = eiλ. So we have to deal with: meaning

Q(z)Q(1/z) = γY (0) +

+q∑
1

γY (k)(zk + z−k)

With the change of variable Z = z + 1/z we compute zk + z−k as polynomial of Z, for
instance:

z2 + z−2 = Z2 − 2.

Thus Q(z)Q(1/z) could be written as a polynomial U(Z) the zero of which Zj are linked
to those of Q by the relation Zj = zj + 1/zj.

Practically, once found U and its zeros, we deduce those of Q, chosen with modulus ≥ 1.
The coefficients b are got from the expansion of Πj(z − zj).

Routines R: for instance for ARMA(2,1) needs arima commands:
arima(x, order = c(2,0,1)),

seasonal = list(order = c(2,0,1), period = NA),

xreg = NULL, include.mean = TRUE,

transform.pars = TRUE,

fixed = NULL, init = NULL,

method = c(”CSS-ML”, ”ML”, ”CSS”), n.cond,

SSinit = c(”Gardner1980”, ”Rossignol2011”),

optim.method = ”BFGS”,

optim.control = list(), kappa = 1e6)
X.ord=c(2,9,1)
X.arima=arima(X,ord=X.ord)

Remark: CSS= Conditional Square Sum.
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4.3 Characterization of parameters p and q

Definition 4.2 A rational spectrum ARMA process is said to be with minimal type
(p, q) when in the “canonical Fejer-Riesz relation”, the degrees of P and Q are exactly p
and q.
More concretely: (p, q) is minimal when there does not exist polynomials P ′ and Q′ with
smaller degrees than p, q in the ARMA equation.

Consequence: if an ARMA(p’,q’) process is minimal type (p, q), necessarily p′ ≥ p, q′ ≥ q.

Theorem 4.3 A regular STS X is minimal type (0, q) if and only if

γ(m) = 0, ∀|m| ≥ q + 1 et γ(q) 6= 0.

Proof Exercise 11.

Definition 4.4 Let (p, q) be a pair of positive numbers. We say that a real sequence
rn, n ∈ Z satisfies a (p, q) induction if there exists coefficients (α0, · · · , αp) with α0 =
1, αp 6= 0, such that

∑p
0 αjrm−j = 0, ∀m ≥ q + 1.

The induction is minimal (p, q) if any pair (p′, q′) satisfying the property above are
such that p′ ≥ p, q′ ≥ q.

As we saw that in Subsection 4.1, the sequence γ(n) of an ARMA(p,q) satisfies a minimal
(p, q) induction. With the γ (or at least their estimates), we can find p and q highlighting
the minimal induction. A priori it is not so obvious but this property is equivalent to
others properties which are easier to check numerically.

Lemma 4.5 Let a sequence (xm, m ∈ Z) and the matrix Rs,t with (i, j) coefficient equal
to xi−j, i and j going from 1 to s. If rs,0 6= 0, the following are equivalent:

(i) The sequence (xm, m ∈ Z) satisfies a minimal induction (p, q) relation;

(ii) among the determinants rs,t, we have rs,t 6= 0 while s ≤ p or t ≤ q, and rs,t = 0 if
s ≥ p+ 1 and t ≥ q + 1.

(iii) rp+1,q 6= 0 and rp,q+1 6= 0 and rp+1,j = 0 if j ≥ q + 1.

(iv) rp+1,q 6= 0 and rp,q+1 6= 0 and ri,q+1 = 0 si i ≥ p+ 1.

Here rp,q will denote the determinant of the matrix Rp,q defined in Section 4.1.

Remark 4.6 In case of ARMA process, Rs,0 is the variance matrix of the vector (X1, · · · , Xs).
The lemma hypothesis corresponds to the case where the series X is non singular.

So this hypothesis is not too strong:
Exercise, if X is non singular, prove that rs,0 6= 0, meaning: prove that rs,0 = 0 implies
X is singular.

The lemma proof is tedious, for a complete proof, look at [1], pp. 137-138.
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Proposition 4.7 Let X be a rational spectrum STS. It is minimal type ARMA (p, q) if
and only if the covariance function satisfies a minimal (p, q) induction relation.
In this case the induction relation is the one which provides the coefficients (ai) of the
polynomial P :

γ(m) + a1γ(m− 1) + · · ·+ apγ(m− p) = 0, ∀m ≥ q.

Definition 4.8 The order s partial auto correlation of X, denoted as Φ(s), is the
last coordinate of the vector −R−1

s,0Γs1.

Previously it was denoted r (Definition 1.3)

r(p− n) =
cov (Xn −X∗n, Xp −X∗p )√

Var (Xn −X∗n) Var (Xp −X∗p )
.

Proposition 4.9 Let a rational spectrum non singular real STS X. It is an AR(p)
process if and only if Φ(s) = 0, ∀s ≥ p+ 1 and Φ(p) 6= 0.

Proof : Exercise 12 proves the necessary condition.
Conversely, to prove the sufficient condition, we use Lemma 4.5. We consider the Cramer
system:

Rs,0α = −Γs1.

We noticed that, for a non singular series, rs,0 = det Rs,0 6= 0. By performing the Cramer
resolution, the last coordinate of α is:

−
det R′s,0
rs,0

where R′s,0 is the matrix Rs,0 with the last column replaced by Γs1. Using a sequence of s
permutations, we see that R′s,0 is actually Rs,1, and the last coordinate of α is: (−1)s rs,1

rs,0
.

We then can express the hypothesis

Φ(s) = 0, ∀s ≥ p+ 1 and Φ(p) 6= 0

as rs,1 = 0 ∀s ≥ p+ 1 and rp,1 6= 0, meaning the property (iv) in Lemma 4.5 when q = 0
which is a characterization of an AR(p). •

4.4 Exercises

Below ε is a white noise with variance = 1 on the probability space (Ω,A,P).

1. Let a STS X, the covariance function is γ(k) = E[XnXn−k]. Prove that for any
k ∈ Z, γ(k) = γ(−k) and

|γ(n)| ≤ γ(0) ; γ(−n) = γ(n)
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and ∀k, ∀k-uplet (n1, · · · , nk) and ∀k-uplet of real numbers (c1, · · · , ck), we get:∑
i,j

cicjγ(ni − nj) ≥ 0

meaning that the Toeplitz matrix T is positive, meaning for all non equal to 0 vector
c ∈ Rk, c̃T c > 0.

Indication: to study the variance of the random variable
∑

i ciXni .

2. Prove that the partial auto correlation function, P.A.C.F., defined on N as:

r : N→ R ; cor (Xn, Xp/Xn+1, · · · , Xp−1), p > n,

meaning
cov (Xn −X∗n, Xp −X∗p )√

Var (Xn −X∗n) Var (Xp −X∗p )

whereX∗j is the orthogonal projection ofXj on the vector space generated by (Xn+1, · · · , Xp−1),
depends only on the lag p− n.

3. Prove that an AR(1) is a STS, proof of Proposition 1.10.
Prove that a moving average

∑
k∈Z akεn−k is a STS. Compute its covariance function with

the coefficients ai.

4. Wold’s Theorem: Prove that the regular and singular parts of a STS are still STS.

Xs
n = PX

−∞(Xn) ; Xr
n = Xn − PX

−∞(Xn).

5. MidTerm Test 2016: Let X be a STS such that ∀n ∈ Z, Xn = εn + αεn−1, |α| = 1.
(i) Prove that for all n, HX

n ⊂ Hε
n.

(ii) Prove that ∀n ∈ Z and for all p ≥ 1, there exists a constant βp such that: εn+βpεn−p ∈
HX
n .

(iii) Prove that for all n ∈ Z and for all p ≥ 1,

‖ εn − PX
n (εn) ‖2

2≤‖ P ε
n−p(εn − PX

n (εn)) ‖2 .

Indication: inside the squared norm, keep one of the factors and decompose the other
using εn + βpεn−p.
(iv) Deduce that ε is an innovation white noise for X.

6. Look at the regularity of the STS:
Xn = g(n)X0 where g is an application from Z to R such that X is a STS;
White noise
Moving average

∑
k∈N akεn−k;

Moving average
∑

k∈Z akεn−k;
AR(1).
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7. Under the assumption of Lemma 3.1, in case of an AR(1), Xn = aXn−1 +εn prove that

the covariance is γX(k) = ak

1−a2 .

8. Applying Lemma 3.1, compute the biais of the estimates γ̄n(k) = 1
n

∑n
j=1XjXj+k,

γ∗n(k) = 1
n

∑n−k
j=1 XjXj+k.

9. Assuming the existence of moments in L4 (supnE[X4
n] ≤M),

(i) study the quadratic convergence, limn→∞E[(γ̄n(k)− γ(k))2].
(ii) Moreover, bound the norm ‖γ̄n(k)− γ∗n(k)‖2.

10. Let X be an ARMA(p,1)
∑p

0 akXn−k = b0εn + b1εn−1. Propose estimates of b0, b1.

11. Prove Theorem 4.3

12. Prove necessary condition of Proposition 4.9.

13. Let X be a STS defined as Xn = εn + 0.8εn−1 − 0.2εn−2.
(i) What is the regularity of this STS ? Compute its covariance function.
(ii) Prove that εn + εn−1 ∈ HX

n . Then use the scheme of exercise 5 above to prove that ε
is an innovation white noise for X.

14. II. of 2016 Midterm test. Let be ε an ARCH(1): there exists a white noise η,
strong or weak, there exists α0 and α1 positive constants, and a process h such that
ht = α0 + α1ε

2
t−1(also denoted σ2

t ) such that εt = σtηt.
(i) Prove that (ε2

t ) is an AR(1): ε2
t = α0 +α1ε

2
t−1 +µt where µt = ε2

t−ht is the innovation
process, meaning the supplementary information given by εt after time t− 1.
(ii) Prove E(µt) = 0.
(iii) We now assume α1 < 1, then ε satisfies the following E[εt/Ft−1] = 0 ; V ar(εt) = α0

1−α1
,

(iv) (ε2
t ) is a stationary process,

(v) and the conditional variance of ε given the past Ft−h, h > 0, is non constant in time:

V ar(εt/Ft−h) = αh1ε
2
t−h + α0

1− αh1
1− α1

.

(vi) Study the case α1 ≥ 1.
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Second Part: Processes ARCH, GARCH

5 Some non linear models

We now look for models taking in account the stylized facts of financial series. The
standard ARMA can not do that. Remember that our aim is to model financial series such
that a forecasting could be efficient: perhaps a linear combination of past values could be a
forecast. But the linearity does not allow to take in account asymmetry, leptokurticity, for
instance. Actually, given the past at time t, meaning the σ-algebra Ft−1 := σ(Xt−i, i ≥ 0),
the better approximation (in L2 sense) is the conditional expectation with respect to the
σ−algebra FXt−1 generated by the past of process X, {Xt−i, i ≥ 1} :

X̂t = E[Xt/FXt−1].

Thinking of the first part, there exists a white noise ε generating a sub filtration F ⊂ FX .

Recall that a process η is a strong white noise if it is a series of centered i.i.d. random
variables, V ar(ηn) = 1, and a weak white noise if the linear projection of ηt on the past
{ηt−i, i ≥ 1} is 0, but there is no more the independence, the ηi are only non correlated.

Thus, Campbell, Lo, McKinlay propose

Xt = g(ηt−1, ηt−2, ....) + ηth(ηt−1, ηt−2, ....).

the first term is the conditional expectation, the second term is the forecasting error. So
there could be two types of non linear models, according to g or h could be non linear.
Anyway, there is two different approaches.

• Non linear extensions of ARMA processes, which take in account the asymmetric
features.

• ENGLE (1982): Autoregressive Conditional heteroscedasticity (=ARCH), with es-
timates of the variance.

Francq and Zakoian [6]; see also BOLLERSEV (1986) [3].

Definition of heteroscedasticity: the covariance function is not stationary; Here we
deal with “Conditional Heteroscedasticity” (so CH in the acronym GARCH, G being for
”general”): the conditional covariance is non stationary.

Below, η is a white noise process, meaning (ηt) are centered independent identically
distributed with variance = 1. Some authors consider σ2

η 6= 1. Actually, non correlated η
could be a sufficient condition.
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5.1 First approach

Here are some examples, but it is not an exhaustive description.
(i) GRANGER-ANDERSEN (1978):

Xt = µ+

p∑
i=1

φiXt−i +

q∑
j=1

θjηt−j +
∑
i,j≥0

λi,jXt−iηt−j.

(ii) EXPAR

Xt = µ+

p∑
i=1

[αi + βi exp(−γX2
t−i] + ηt.

(iii) Markov switching models, threshold auto regressive (TONG, 1978) meaning

Xt = Φ1(SX)(X)1{Xt−d>γ} + Φ2(SX)(X)1{Xt−d≤γ} + ηt,

where Φi are polynomial functions, SX is the delay operator, γ is the threshold, meaning
according to this threshold there is a switching.
This method allows to take in account the asymmetry feature.

5.2 Second approach, Engle

The aim is to model the conditional variance of the price variation:

εt = log(1 + rt) ; where rt =
pt − pt−1

pt−1

; σ2
t = V ar(εt/εt−i, i > 0).

Then we look at ARCH/GARCH: Let us suppose that X = log p is an AR(1) process:

Xt = θXt−1 + εt.

Ft−1 is the σ-algebra generated by (εt−i, i > 0), sub σ-algebra of the one generated by
the prices observations (Xt−i = log pt−i, i > 0).

Then the conditional expectation E[Xt/Ft−1] = θXt−1. On the one hand εt = Xt −
θXt−1. On the other hand, recursively we get E(Xt) = θE(Xt−1) = θtx0 which goes to
0 when t → ∞ if |θ| < 1. Similarly, the conditional variance E[(Xt − θXt−1)2/Ft−1] =
E(ε2) = σ2

ε does not depend on time and (once again recursively) the variance is E(X2
t ) =

σ2
ε

1−θ2 , with such models we can not forecast the changes in forecasting errors
So the estimates of the variance are constant and do not highlight any evolution in the
time....Thus it could be better to model the covariance function as a process.

ENGLE’s hypothesis is: ARCH model for the volatility process. Such models can take
in account the non stationarity of the variance along the time. There exists two types of
such models:

• Linear ARCH with quadratic specification of conditional variance:
ARCH(q), GARCH(q), IGARCH (p,q);
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• Non linear ARCH with asymmetric specification of variance:
EGARCH(p,q), TARCH(q), APAGARCH....(cf. below Chapter 10)

We think of random variance model, ARMA are not convenient to model these facts,
such as the property of conditional heteroscedasticity: V ar(εt/εt−i, i > 0) is non constant,
below we will put εt = σtηt, where σt > 0 is Ft−1 measurable, and η is a white noise,
ηt being independent on Ft−1. ε is the current price variation, εt := Xt − E[Xt/Ft−1],
E[εt/Ft−1] = 0, E[ε2

t/Ft−1] = σ2
t , σ represents the volatility process, ε is a weak white noise

with kurtosis, cf. [6] (1.7):
E(ε4t )

(E(ε2t )
2 = κη[1 + V ar(σ2)

(E(σ2
t )2

], where κη is η kurtosis coefficient.

Look at some models [6] p. 11 with random variance models, εt = σtηt where σt > 0
is Ft−1 measurable, η white noise independent of Ft−1:

• Conditionally heteroscedastic (=GARCH) process, where the filtration is induced
by the past of the process (εt) and the volatility at time t, is a function of (εi, i < t).
In the standard case, the volatility at time t is a LINEAR function of (εi, i < t).

• Stochastic volatility processes: log σt = ω+ϕ log σt−1 + vt where v is a strong white
noise independent of η. We can say that actually, log σ is an AR(1) process.

• Switching regime models: σt = σ(∆t,Ft−1) where ∆t represents a ‘regime’, unob-
servable process, independent of η. Conditionally to ∆t, σt could be a GARCH. The
process ∆ is for instance a finite-state Markov chain (cf. Markov-switching models).

6 Linear ARCH-GARCH models

6.1 ARCH(1)

The first model is Engel’s one:

εt = ηt

√
α0 + α1ε2

t−1,

where η is a weak white noise (centered, E(ηt/Ft−1) = 0, and variance 1) and αi, i = 0, 1
are positive real parameters. It is equivalent to write εt = ηt

√
ht with ht = α0 + α1ε

2
t−1.

Definition 6.1 A process ε is said to be an ARCH(1) if there exists a (strong or weak)
white noise η (satisfying also E[ηt/Ft−1] = 0) and a process h such that ht = α0 + α1ε

2
t−1

(usually denoted as σ2
t ) and

εt = σtηt, αi > 0, i = 0, 1.

Actually we remark that (ε2
t ) is an AR(1):

σ2
t = ht = α0 + α1ε

2
t−1 ⇔ ε2

t = α0 + α1ε
2
t−1 + µt
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where µt := ε2
t − ht is the innovation process, meaning the supplementary information

given by εt after time t− 1.
Remark that E(µt) = E(σ2

t η
2
t − σ2

t ) = 0 and E(µt/Ft−1) = σ2
t [E(η2

t − 1)/Ft−1] = 0.

The following proposition proves that in case of α1 < 1, (ε2
t )t is a stationary process:

Proposition 6.2 Assume that α1 < 1, and let ε be an ARCH(1) process satisfying: there
exist K and M such that supt≤K E(ε2

t ) ≤M. It satisfies the following

E[εt/Ft−1] = 0 ; V ar(εt) =
α0

1− α1

.

There exists a similar result for GARCH(1,1) if α + β < 1.
Proof Exercise 15

Such properties allow us to consider such process as an error model, for instance the
variation, the volatility.

Proposition 6.3 Assume α1 < 1. The conditional variance of ε given the past Ft−h, h >
0, is non constant in time:

V ar(εt/Ft−h) = αh1ε
2
t−h + α0

1− αh1
1− α1

.

It is the main feature of such models: ε is similar to a homoscedastic white noise but its
conditional variance is not stationary.
Proof Exercise 16 (i)

Proposition 6.4 The conditional covariance is null

cov(εt, εt+k/Ft−h) = 0 ∀h ≥ 1, k ≥ 1.

Proof Exercise 16 (ii)

Proposition 6.5 We assume that there exist K and M such that supt≤K E(ε2
t ) ≤ M.

(i) Assume α1 > 0 and almost surely α0 + µt > 0. Then the process (ε2
t ) defined by the

ARCH(1) Definition 6.1 is positive. So we have some conditions on the support of random
variable µt.
(ii) α0 > 0 and 0 < α1 < 1⇔ the variance of random variable εt exists.

Proof : (i) Definition 6.1 is ε2
t = α0 + α1ε

2
t−1 + µt, the assumptions imply εt > 0 almost

everywhere.
(ii) the proof of ⇒ is Proposition 6.2.
Conversely under the assumtion εt ∈ L2, and the fact that µt are centered, once again we
get the recursive formula

E[ε2
t ] = α0

1− αh1
1− α1

+ αh1E[ε2
t−h].
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Using that for h great enough E[ε2
t−h] ≤M, this series is converging if and only if |α1| < 1.

Since the result is positive, the limit α0

1−α1
> 0, so α0 > 0. •

Under the hypothesis “the process ε belongs to L4”, we get (cf. Berra and Higgins,
1993):

Proposition 6.6 (i) Assume ∀t, εt ∈ L4 and E[η4
t ] = 3. Then

E[ε4
t/Ft−1] = 3(α0 + α1ε

2
t−1)2.

(ii) If there exist K and M such that supt≤K E(σ4
t ) ≤M and 3α2

1 < 1,

E[ε4
t ] = 3(α2

0 + 2α0α1E(ε2
t−1) + α2

1E[ε4
t−1] =

3α2
0(1 + α1)

(1− 3α2
1)(1− α1)

.

(iii) Thus we get the kurtosis

kurtosis =
E[ε4

t ]

(E[ε2
t ])

2
=

3(1− α2
1)

1− 3α2
1

> 3.

Remark that the kurtosis is greater than the Gaussian law kurtosis. So this model can
take in account this leptokurtic feature of the observed data.
Proof Exercise 17.

6.2 Models with ARCH(q) errors

Definition 6.7 A process ε is said to be an ARCH(q) if there exist a white noise η and
a process h such that ht = α0 +

∑q
i=1 αiε

2
t−i, α0 > 0, αi ≥ 0 for i ≥ 1, and

εt = ηt
√
ht.

Similarly to ARCH(1), we have results for ARCH(q) models, at least E[εt/Ft−1] = 0
and V ar[εt/Ft−1] = ht = α0 +

∑q
i=1 αiε

2
t−i.

Thus we now consider a financial series AR(1): (Xt) and its residual, a “weak white
noise”, meaning εt := Xt − E[Xt/Ft−1] and Xt = µ+ ρXt−1 + εt, |ρ| < 1.

But actually ε is an ARCH(q) process; there exists a weak white noise η so that

εt = ηt
√
ht, ht = α0 +

q∑
i=1

αiε
2
t−i.

Thus, for instance if q = 1, the process ε satisfies Propositions 6.2, 6.3 , 6.4, 6.5.
Exercise 18 : In case of a linear model, we can prove recursively

∀h > 0, E[Xt/Ft−h] = µ+ ρE[Xt−1/Ft−h] = µ

(
1− ρh

1− ρ

)
+ ρhXt−h.

Then we have some properties for initial process X:
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Proposition 6.8 Let an AR(1) X with error ε being an ARCH(1). Then

V ar(Xt/Ft−h) =

(
α0

1− α1

)[(
1− ρ2h

1− ρ2

)
− α1

(
αh1 − ρ2h

α1 − ρ2

)]
+ α1

(
αh1 − ρ2h

α1 − ρ2

)
ε2
t−h.

Proof Exercise 19

As a corollary: V ar(Xt/Ft−1) = α0 + α1ε
2
t−1. This means that the forecasting error

admits a non constant variance: the confident interval size depends on time, via the values
of εt−h.

6.3 GARCH(p,q)

[[6] 2.1 pp. 19 et sq.]
Once again we consider the white noise of a financial time series, meaning εt := log pt −
log pt−1. But we now assume that ε is a GARCH(p,q) process.

It could happen that q could be too large, and in such a case, following Box and
Jenkins, we would apply the “parsimony” principle to the process h.
Anyway, the practitioners usually only consider GARCH(1,1) even if it is not always
convenient, so we have to be careful, cf. [6] page 205, ZakTab205.pdf; very often the
hypothesis “the model is ARCH(5)” is accepted at level 0.05 and 0.01. The model is
GARCH(1,1) is accepted only for DJU, Nasdaq.

Figure 1: Portmanteau test.

28



Definition 6.9 A process ε is a GARCH(p,q) if there exist a weak white noise η, integers
p and q, real numbers α0 > 0, αi ≥ 0, βj ≥ 0, so that

εt = ηtσt, σ
2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j,

εt ∈ L2, E[εt/F εt−1] = 0,

with sufficient conditions to insure σ2
t ≥ 0.

Recall: η is a white noise, E(ηt/Ft−1) = 0, E(η2
t ) = 1.

We recall µt := ε2
t −σ2

t the innovation process for ε2 , which is an uncorrelated process;
it is also defined as µt = ε2

t − V ar(εt/Ft−1).
Remark that E(εt/Ft−1) = 0 since ηt is centered and independent on Ft−1.
So V ar(εt/Ft−1) = E(ε2

t/Ft−1) = σ2
t since V ar(ηt) = 1.

Exercise 20: Prove that the process (ε2
t ) is an ARMA(sup(p, q), p) process, more specifi-

cally:

ε2
t = α0 +

p∨q∑
i=1

(αi + βi)ε
2
t−i + µt −

p∑
j=1

βjµt−j.

This is named an “ARMA representation”.

Thus it could be an idea to apply usual ARMA methods to the process ε2 to identify
p, q, αi, βj.... but actually it is not really convenient, because the lack of strict stationarity.

Example 1: GARCH(1,1): εt = ηtσt, σ
2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 induces an ARMA(1,1):

ε2
t = α0 + (α1 + β1)ε2

t−1 + µt − β1µt−1.

Proof : ε2
t = µt + σ2

t = µt + α0 + α1ε
2
t−1 + β1σ

2
t−1 = µt + α0 + α1ε

2
t−1 + β1(ε2

t−1 − µt−1).

If α1 + β1 < 1, and if ∃M, ∃N, supt≤N E[ε2
t ] ≤M , by induction we get

V ar(εt) = E[ε2
t ] =

α0

1− α1 − β1

.

Here we once again have a necessary condition, α1 + β1 < 1, for the existence of V ar(εt)
and the stationarity of the process (ε2

t ).

More generally we now look for a link between kurtosis and conditional heteroscedas-
ticity, using σ2 = ε2 − µ:

Proposition 6.10 Let εt = ηtσt with η a Gaussian white noise (so E(η4
t ) = 3) and

σ2
t = α0 +

∑q
i=1 αiε

2
t−i +

∑p
j=1 βjσ

2
t−j. Then E[ε4

t ] ≥ 3 (E[ε2
t ])

2
and

Kurtosis = 3 + 3
V ar[E(ε2

t/Ft−1)]

(E[ε2
t ])

2 .
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Proof cf. Proposition 6.6, case ARCH(1).

E[ε4
t ] = 3E[σ4

t ]; E[ε2
t ] = E[σ2

t ]; so the Kurtosis=
E(ε4t )

E(ε2t )
2 = 3

E[σ4
t ]

E[σ2
t ])2

.

On the other hand: E(ε2
t/Ft−1) = σ2

t , so V ar[E(ε2
t/Ft−1)] = E(σ4

t ) − (E(σ2
t ))

2, and
E(σ4

t ) = (E(σ2
t ))

2 + V ar[E(ε2
t/Ft−1)].

So we get the result putting these moments inside the ratio Kurtosis expression. •

Example 2, [6] p. 45: GARCH(1,1) with η a Gaussian white noise, εt = ηtσt,
σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1.

Exercise 21: Prove that εt ∈ L4 only if (α1 + β1)2 + 2α2
1 < 1. In this case

kurtosis = 3
1− (α1 + β1)2

1− (α1 + β1)2 − 2α2
1

.

Stylized facts:
- process ε2 is correlated, ε is not; e.g. ε2

t = α0 + α1ε
2
t−1 + β1µt−1, µt−1 = ε2

t−1 − σ2
t−1. We

assume εt ∈ L4, then we can look at cor(ε2
t , ε

2
t−l) (cf. [6] remark 2.1 page 20).

Definition 6.11 A process ε is a STRONG GARCH(p,q) if there exist a strong white
noise η, p and q, α0 > 0, αi, i = 1...p, βj, j = 1....q so that

εt = σtηt, σ
2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j,

εt ∈ L2, E[εt/F εt−1] = 0,(4)

with sufficient conditions to insure σ2
t ≥ 0.

Remark that using ε2
t−i = σ2

t−iη
2
t−j, σ

2
t = α0 +

∑q
i=1(αiη

2
t−i + βi)σ

2
t−i, meaning σ2 is an

AR(p ∨ q) with random coefficients.

Properties of simulated paths:
look at fig 2.1 [6] pp 21 et sq. and real data “Bourse de Paris”

showing the volatility clustering property, succession of large magnitudes of |εt| then
low magnitudes of |εt|. Large absolute values are not uniformly distributed but tend to
cluster.
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Stationarity study: The aim is to look at the stationary solutions to Equation in Defi-
nition 4, similarly to what we did in ARMA study. As an example, look at GARCH(1,1):
let a strong white noise η and

εt = σtηt, σ
2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1,

and denote the polynomial function a(z) = α1z
2 + β1. With this notation we get

ht = σ2
t = α0 + (α1ηt + β1)σ2

t−1 = α0 + a(ηt)σ
2
t−1,
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so recursively we get

ht = α0(1 +
∑
i≥1

a(ηt−1)....a(ηt−i)).

The following proposition proves the strict stationarity of any strong GARCH(1,1).

Theorem 6.12 ([6] pp 24-25 and Cor p. 26) Assume γ = E[log(a(η)] < 0, where a(x) =
α1x+ β1, then the series

ht = α0(1 +
∑
i≥1

a(ηt−1)....a(ηt−i)),

converges almost surely and εt = ηt
√
ht is the unique strictly stationary solution of the

system (4), case p = q = 1.
Moreover the process ε is Fη adapted and ergodic.
If γ ≥ 0 and α0 > 0, there exists no strictly stationary solution of (4).

Proof : only an idea....
(i) Using large numbers theorem, remark that 1

n
ln[a(ηt−1)....a(ηt−i)] = 1

n

∑i
l=1 ln a(ηt−l)→

γ < 0, so the order of a(ηt−1)....a(ηt−i) is about enγ = (eγ)n which is a convergent series
when γ < 0.
Then starting with the definition of h and a we get

ht = α0(1 +
∑
i≥1

(α1η
2
t−1 + β)....(α1η

2
t−i + β)),

so
E(ε2

t ) = E(ht) = α0(1 +
∑
i≥1

E[(α1η
2
t−1 + β1)....(α1η

2
t−i + β1)].

Since the process η is non correlated and E(η2
j ) = 1

E(ε2
t ) = E(ht) = α0(1 +

∑
i≥1

(α1 + β1)i)

which does not depend on t and exists as soon as α1 + β1 < 1.
(ii) By definition the process ε is Fη-adapted. Ergodic definition: ∀k ∈ N, ∀B Borel set
in Rk limn→∞

1
n

∑k
i=1 1B(Zt, ..., Zt+k−1) = P{(Zt, ..., Zt+k−1) ∈ B}.

(iii) If γ ≥ 0, the series in (i) is not converging, no solution. •

Corollary 6.13 When t→∞ : γ > 0⇒ σ2
t →a.s. ∞ and

γ > 0 and E[| log η2
t |] <∞⇒ ε2

t →a.s. ∞.

Second-order stationarity of solutions to Equation (4) th 2.2 page 27 [6]:
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Theorem 6.14 • Let α0 > 0, if α1 + β1 ≥ 1, there does not exist a solution to Equation
(4).
• If α1 + β1 < 1, the process defined by

εt = ηtσt; σ
2
t = α0 +

∑
i≥1

Πi
j=1a(ηt−j)), a(x) = α0x

2 + β1,

is a second order stationary solution to Equation (4).
• More precisely, ε is a weak white noise. Moreover there exists no other adapted second-
order stationary solution.

Proof • [6] Th 2.2 page 27, case p = q = 1: Suppose there exists a solution to (4) then
E(εt) = 0, E(ε2

t ) = E(σ2
t ) = α0 + (α1 + β1)E(σ2

t−1). Recursively we get E(σ2
t ) = α0

1−(α+β)

if and only if α1 + β1 < 1, so there is no solution in case of α1 + β1 ≥ 1.

• If α1 + β1 < 1, look at

εt = ηtσt; σ
2
t =

∑
i≥1

Πi
j=1a(ηt−j)), a(x) = α0x

2 + β1.

As previously, η is a white noise process, independent on the process σ. Thus E(ε2
t ) =

E(η2
t )E(σ2

t ) = E(σ2
t ) which is computable via the recursive equation

E(σ2
t ) = α0 +

∑
i≥1

E[a(ηt)]
i

This sum is finite if and only if E[a(ηt)] < 1 which is equivalent to α1 + β1 < 1.
Denote that the assumptions implies that ε2

t−1 = η2
t−1σ

2
t−1, so on the one hand,

α0 + α1ε
2
t−1 + β1σ

2
t−1 = α0 + α1η

2
t−1σ

2
t−1 + β1σ

2
t−1 = α0 + a(ηt−1)

which on the other hand can be identified to σ2
t meaning that actually the process defined

in the theorem is actually solution to Equation (4).

• The process ε is a weak white noise: it is centered as η is, and uncorrelated for the
same reason, since σ and η are uncorrelated.
Under this assumption, we see above that necessarily any solution of Equation (4) satisfies
the definition of the theorem with such a definition of function a. ( [6] chap 2 pp 28 et
sq.)

7 Identification [6] Chap. 5

Let (p1, · · · , pn) be observed prices of a centered stationary process, deduced from a
financial time series, X = log p. The log-price variation,Xt −Xt−1, should coincide with
its innovation process ε: ∀t, εt = log pt

pt−1
= Xt−Xt−1 where p is the financial time series.

Notice this series ε is dependent though uncorrelated:

33



X stationary so εt is centered; concerning the ε covariance function: cov(εt, εt−s) =
E[ηtσtηt−sσt−s] = E[E[ηt/Ft−1]σtηt−sσt−s] = 0. Cf. [6] page 93 line -1

We have to identify the model GARCH(p,q), meaning identify the orders p, q and the
coefficients:

εt = σtηt, σ
2
t = α0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j,

εt ∈ L2, E[εt/F εt−1] = 0, α0 > 0, αi ≥ 0, i = 1...p, βj ≥ 0, j = 1....q.

7.1 Autocorrelation check for white noise

Recall that the theoretical covariances E[εnεn+k] = 0 ∀k 6= 0. They can be estimated by
SACV (S for sample):

γ̂(k) = γ̂(−k) = n−1
∑

i=1,n−k

εiεi+k

and the autocorrelation function, SACR by

ρ̂(k) =
γ̂(k)

γ̂(0)
.

We now need to test the null hypothesis: γ = 0. It is done by the following theorem which
is similar to a central limit theorem, so provides confident intervals:

Theorem 7.1 Let the GARCH process defined above satisfying εn ∈ L4 and the sym-
metric covariance m × m matrix Γm defined by Γm(i, j) = E[ε2

n+1−iε
2
n+1−j]. Then when

n → ∞, the distribution of the m vector SACV
√
nγ̂m =

√
n(γ̂(1), ...., γ̂(m)) goes to a

centered vector Gaussian law with variance matrix Γm.
Let Γρ(m) := 1

[E(ε2n)]2
Γm, then the distribution of the m vector SACR

√
nρ̂m =

√
n(ρ̂(1), ...., ρ̂(m))

goes to a centered vector Gaussian law with variance matrix Γρ(m).

Look for R code to draw a given number of ρ̂(j) and their confident intervals, [6] page 96.

Then there exists “Portmanteau” tests for checking that the data is a strong realization
of a strong white noise, it involves the statistic

QLB
m := n(n+ 2)

∑
i=1,m

ρ̂2(i)/(n− i).

Under null hypothesis: “ε is a weak white noise”, QLB
m asymptotic distribution is χ2

m. So
the null hypothesis is rejected as soon as QLB

m ≥ (1− α) quantile of χ2
m.

But there exists a more robust statistic using estimated covariance and correlation ma-
trices

Γ̂m :=

[
Γ̂m(i, j) :=

1

n

∑
k=1,n

ε2
kεk−iεk−j

]
, Γ̂ρ(m) :=

1

[E(ε2
n)]2

Γ̂m.
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Theorem 7.2 Let the GARCH process defined above satisfying εn ∈ L4 and the symmet-
ric covariance m×m matrix Γm defined by Γm(i, j) = E[ε2

n+1−iε
2
n+1−j]. The Portmanteau

statistic Qm = nρ̂′mΓ̂ρ(m)−1ρ̂m has an asymptotic χ2
m distribution.

Let r(k) = Corr(εt, εt−k/Ft−1) named partial auto correlation, and its estimate r̂(k),
the sample partial auto correlation SPAC. It could be easily computed with Durbin’s
algorithm [6] p. 355. It satisfies the convergence in law

√
nr̂(k) → N (0, 1), ∀k > p for

an AR(p), but be careful: with such too narrow confident intervals, we could be wrong
rejecting the null hypothesis.

Think that tests based on SPAC could be more powerful than the ones based on SACR
(cf. [6] pp 97-99).

7.2 Identifying the ARMA orders of an ARMA-GARCH

Let ARMA-GARCH model, ARMA(P,Q), GARCH(p,q):

Xt −
∑
i=1,P

aiXt−i = εt −
∑
i=1,Q

biεt−i

where ε is a GARCH (weak) white noise as defined above. The first task is to identify
the orders P and Q. Recall that ρX(k) = 0 ∀k > Q, and rX(k) = 0 ∀k > P :
let us refer to the first part, explicitly Chapter 4 Section 4.3.
From now on we assume that the law of ηt is symmetric.
We will identify (P,Q) using the “corner method”: look at the (j × j) Toeplitz matrix
D(i, j) with D(i, j)k,l := ρX(i − 1 + k, i + 1 − l) and ∆(i, j) its determinant. Since
ρX(h) =

∑
i=1,p aiρX(hi) = 0 for all h > Q, ∆(i, j) = 0 as soon as i > P, j > Q. Thus we

look for P and Q such that (P + 1, Q+ 1) is a corner of 0 in the table of ∆(i, j).
Note that this is automatically done by R routines.

7.3 Identifying the GARCH orders of an ARMA-GARCH

In this case we could use the same methods for the ARMA(p,q) process (ε2
t )t: corner

method, cf. [6] Section 5.3.1. and above in these notes Lemma 4.5.

We could also look at the estimates of SACV and SPACV....

But a priori the most used pair is p = q = 1..... even if it is not the most convenient
model, cf. Tables in [6].

7.4 Lagrange multiplier test for conditional homoscedasticity

[6] pp 111-116. The purpose is to test the absence of “GARCH effect”, meaning a null
hypothesis H0 : α01 = · · · = α0q = 0. We introduce “Lagrange multiplier” the statistic

LMn :=
1

n

∂

∂α′
ln(θ̂c)Î22 ∂

∂α
ln(θ̂c) =

1

n

q∑
h=1

[
1

κ̂η − 1

n∑
t=1

(
ε2
t

ω̂c
− 1)

ε2
t−h

ω̂c

]2

,
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to complete after Sections 8.3 and 8.4 defining the notations: θ̂c, κ̂η, and the function ln.

8 Estimates and forecasting

Francq and Zakoian [6] Chapters 6,7
We here suppose that p and q are known and we present two methods to estimate: ordinary
least squares (OLS) or (quasi) Maximal Likelihood (MLE).

The aim is to estimate the unknown parameter
θ = (αi, i = 1, ...q; βj, j = 1, ..., p) for a GARCH(p,q) process.

OLS is a useful method but there is two drawbacks:
- OLS estimate is not efficient, (less good than MLE estimate...)
- Hypothesis L8 is needed for better properties.

An improvement is provided with “feasible generalized least squares” (FGLS).

8.1 OLS to estimate ARCH(q) models

Recall the model:

εt = σtηt, σ
2
t = ω0 +

q∑
i=1

αi0ε
2
t−i, ω0 > 0,

εt ∈ L2, E[εt/F εt−1] = 0(5)

where (ηt) are independent identically distributed, centered and E(η2
t ) = 1 meaning η is

a strong white noise.
The parameter to be estimated is θ0 = (ω0, αi0) ∈ Rq+1, the observations are (εt, t =
1, ..., n), for instance εt = log(1 + rt) = log pt − log pt−1 where rt is the return, we denote
the vector of observations as Zt−1 := (1, ε2

t−1, · · · , ε2
t−q). We get the scalar product in Rq+1:

ε2
t = 〈Zt−1, θ0〉+ µt

i.e. Y = Xθ0 +U in Rn, where U = (µt = σ2
t (η

2
t − 1), t = 1, ...n), X is the matrix with 1

in the first colum, elsewhere the X elements are ε2
i−j, i = 0, ..., n− 1; j = 0, ..., q − 1.

The consistent OLS estimate is defined as

θ̂(n) := arg min ‖Y −Xθ‖2 = (X̃X)−1X̃Y.(6)

Under assumptions: ε ∈ L4 and satisfies (5) above, the following is an estimate of σ2
0 =

V ar(µt) = E[(ε2
t − 〈Zt−1, θ0〉)2]:

σ̂2(n) :=
1

n− q − 1
‖Y −Xθ̂(n)‖2 =

1

n− q − 1

n∑
i=1

(
ε2
t − ω̂ −

q∑
i=1

α̂iε
2
t−i

)2

.
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Theorem 8.1 (i) If ε is a strictly stationary non anticipative (Fη adapted) solution to
system (5) with ω0 > 0, εt ∈ L4, P{η2

t = 1} < 1 then almost surely the sequence of
estimates θ̂(n)→ θ0 and σ̂2(n)→ σ2.
(ii) If moreover εt ∈ L8 then there is a central limit Theorem, convergence in distribution:

√
n(θ̂(n)− θ0)→L N

(
0, (E(η4)− 1)A−1BA

)
where A is the matrix E[Zt−1Z̃t−1] and B = E[σ4

tZt−1Z̃t−1].

These matrices are “information matrices” and can be approximated by

Â :=
1

n

n∑
t=1

Zt−1Z̃t−1; B̂ :=
1

n

n∑
t=1

σ̂4
tZt−1Z̃t−1.

8.2 FGLS to estimate ARCH(q) models

Remember that the error vector is µt = σ2
t (η

2
t − 1) = ε2

t − σ2
t , E(µt) = 0, the observa-

tions being the εt (and recall that ηt ∈ L2 for all t). The Ft−1 conditional variance is
V ar(µt/Ft−1) = V ar(η2

t )σ
4
t .

Let θ = (ω, α) ∈ Rq+1, we denote the application σ2
t : θ → ω + 〈α, εt〉, σ4

t : θ →
(ω + 〈α, εt〉)2, and Ω̂ := Diag(σ−4

1 (θ̂(n)), ..., σ−4
n (θ̂(n))) where θ̂(n) is the OLS estimate

given in Equation (6).

Theorem 8.2 Under the assumptions of Theorem 8.1 (i), the FGLS estimator defined
as

θ̃n := (X̃Ω̂X)−1X̃Ω̂Y

almost surely goes to θ0 and
√
n(θ̃n − θ0)→L N

(
0, V ar(η2

t )J
−1
)

where J = E
(
σ−4
t Zt−1Z̃t−1

)
is positive definite.

Remember that (Zt, t ∈ N) are the observations.
We skip the too long proof, cf. [6] Th 6.3 pp. 132-134. but here are some elements:

• J is a positive definite matrix.

• θ̃n − θ0 =
(∑

t=1,n σ
−4
t (θ̂(n))Zt−1Z

′
t−1

)−1 (∑
t=1,n σ

−4
t (θ̂(n))Zt−1µt

)
.

• Taylor expansion of the above expression.

• Bound
‖ 2
n

∑
t=1,n σ

−6
t (θ∗)Zt−1µt × Z ′t−1(θ̃n − θ0)‖
‖θ̂(n)− θ0‖

(θ∗ ∈ (θ0, θ̂(n))) to prove the almost sure convergence.
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• Then apply central limit theorem.

By the way, remark that such an estimator θ̃n is the orthogonal projection of Y under
the norm ‖X‖2 := X̃Ω̂X.
Remark that we need n >> q: q parameters are to be estimated using n observations.

8.3 Constrained OLS to estimate ARCH(q) models

A problem could occur: the estimate of one component θi could be non positive.... So it
is convenient to add this constraint and we turn to the constrained optimization problem:

θ̂(n)c := arg min
θ∈Rq+1

+

‖Y −Xθ‖2.

Since θ → ‖Y −Xθ‖2 is a convex application and ‖Y −Xθ‖ ≥ ‖Xθ‖ − ‖Y ‖ → ∞ when
‖θ‖ → ∞ in Rq+1

+ , θ̂(n)c exists.

We get the following properties, cf. Theorems 6.5, 6.6, 6.7 [6].

Theorem 8.3 (i) If rank(X) = q + 1, θ̂(n)c = θ̂(n)⇔ θ̂(n) ∈ Rq+1
+ ,

(ii) If rank(X) = q + 1, θ̂(n)c = arg min
θ∈Rq+1

+

˜(θ̂(n)− θ)X̃X(θ̂(n)− θ).

(iii) Under the assumptions of Theorem 8.1 (i), θ̂(n)c → θ0 almost surely.

8.4 Quasi-maximal Likelihood (QML)

QML method needs stronger assumptions than the previous method. It provides consis-
tent and asymptotically normal estimators in case of strictly stationary GARCH processes.

8.4.1 Conditional QL

We observe (ε1, ...εn). We suppose that: p and q are known and the model is

εt = σtηt, σ
2
t = ω0 +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ
2
t−j,

εt ∈ L2, E[εt/F εt−1] = 0,

η being independent identically distributed, centered, with variance equal to 1.

The parameter to be estimated is θ = (ω, α, β) ∈ Θ ⊂ R+
∗ × (R+)p+q. We suppose that

conditionally to initial values (ε0, ..., ε1−q, σ
2
0, ..., σ

2
1−p), the law of the vector ε is Gaussian,

meaning the likelihood

Ln(θ) = Πn
t=1

1√
2πσ̃2

t (θ)
exp(− ε2

t

2σ̃2
t (θ)

)
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where recursively

σ̃2
t (θ) := ω +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjσ̃
2
t−j(θ),

the choice of the initial values could be ε0 = ... = ε1−q = σ2
0 = ... = σ2

1−p = the common
value ω

1−
∑
α−

∑
β
. But, if this choice gives negative values for the parameters, a better

choice could be ω or ε2
1: ε2

1 is observed, and ω is a component of the parameter θ to be
estimated.

Then the QMLE is
θ̂(n) := arg max

θ∈Θ
(θ → Ln(θ)).

Actually, we look for the arg min of the application

θ → ln(θ) := −2 logLn(θ) =
n∑
t=1

[
ε2
t

σ̃2
t (θ)

+ log(σ̃2
t (θ))],

θ̂(n) := arg min
θ∈Θ

(θ → ln(θ)).

Anyway, there does not exist an explicit expression for this estimator, but it could be
exhibited via numerical procedures.

We admit the following theorem.

Theorem 8.4 The QML estimator θ̂(n) is solution to the system in R+
∗ × (R+)p+q

n∑
t=1

ε2
t − σ̃2

t (θ)

σ̃4
t (θ)

∇θσ̃
2
t (θ) = 0

with initial values ω or ε2
1.

(i) Assume the true parameter θ0 ∈ Θ, compact subset of R+
∗ ×(R+)p+q, plus some technical

assumptions (cf. [6] p.144 and A.i below), then almost surely θ̂(n)→n→∞ θ0.
(ii) If moreover θ0 ∈ Θo (means θ0 /∈ ∂Θ) and κη = E(η4

t ) <∞, then we get a CLT:

√
n(θ̂(n)− θ0)→L N (0, (E(η4

t )− 1)J−1)

where the matrix J is defined by Ji,j = Eθ0 [
∂2ln(θ0)
∂i∂j

]

Assumptions:

A.1: θ0 ∈ Θ,Θ is compact.

A.2: γ(A0) < 0 γ(A0) being deduced from some matrices, ∀θ ∈ Θ :
∑p

j=1 βj < 1.

A.3: η2
t law is non degenerate, E(η2

t ) = 1, for instance P(η2
t = 1) < 1, cf. Theorem 8.1.

A.4: If p > 0,
∑q

i=1 αi0z
i and 1 −

∑q
j=1 βj0z

j polynomials have no common roots,∑q
i=1 αi0 6= 0, αq0 + βp0 6= 0.
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Exercise 22: Give the log likelihood of a process ARCH(1) εt = (
√
ω + αε2

t−1)ηt.
Stationarity imposes α < 1. Recall (ηt) are iid, standard Gaussian law. The conditional
law of εt given Ft−1 is N (0, ω + αε2

t−1). So the density is

1√
2π(ω + αε2

t−1)
exp[− y2

2(ω + αε2
t−1)

]

Considering that the observations are ε0, ....εn the likelihood is

Πn
t=1

1√
2π(ω + αε2

t−1)
exp[− ε2

t

2(ω + αε2
t−1)

]

and the loglikelihood is ln(θ) =
∑n

t=1[
ε2t

ω+αε2t−1
+ ln(ω+αε2

t−1)]. The MLE has to minimize

θ = (ω, α)→
∑n

t=1[
ε2t

ω+αε2t−1
+ ln(ω+αε2

t−1)]. Remark that for each term in the above sum

the application x→ ε2t
x

+ lnx is not convex but its derivative is negative then positive. So
we can argue that θ → lnn(θ) could have a minimum. Anyway, such a minimum does not
exist in a close form but it could be provided with numerical procedures, as a solution of
the system

∂ωln(θ) =
∑n

t=1

(
−ε2t

(ω+αε2t−1)2
+ 1

ω+αε2t−1

)
= 0

∂αln(θ) =
∑n

t=1 ε
2
t−1

(
−ε2t

(ω+αε2t−1)2
+ 1

ω+αε2t−1

)
= 0

8.4.2 Estimation of ARMA-GARCH models by QML

We now look at ARMA(P,Q)-GARCH(p,q) model: The process X is observed (for in-
stance log of prices):

Xt − c0 =
P∑
i=1

a0i(Xt−i − ci) + et −
Q∑
j=1

b0jet−j,

but the noise is not directly observed and is modeled as a GARCH(p,q) process .

et = ηtσt, σ
2
t = ω0 +

q∑
i=1

α0ie
2
t−i +

p∑
j=1

β0jσ
2
t−j.

In this case the parameter to be estimated is φ = (c, a, b, α, β). With QML method we
get estimators which are consistent and asymptotically Gaussian. (cf. [6] page 150, 7.21)

Routines in R to estimate these parameters by MLE:
garchFitControl, MLE is the by default method; on another hand, method=CSS-ML,
or ML or CSS...
ML means Maximal Likelihood, and CSS means Contributed Squared Sum, it minimizes
the sum of squared residuals.
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8.5 Forecast and confident intervals

With the identified model we now can predict the future behavior of the time series. With
the central limit theorems, (cf. Theorems 8.1 (ii), 8.2 ,8.4 (ii)) any estimated parameters
actually are estimated via a confident interval, so the forecasting is an interval for any
time.

R routines: look at fGarchUse.pdf, predict(....) ; value....

9 Tests based on the likelihood

Cf. Francq and Zakoian [6] Chapter 8, pp. 185-206.
The asymptotic normality of QML estimators allows to test the estimated model. But be
careful: when some true coefficients are null, in this case, asymptotic normality fails....
indeed, for a θ0i = 0, we should have

√
nθ̂i(n) =

√
n(θ̂i(n) − θ0i) ≥ 0 almost surely,

impossible for a Gaussian random variable !

9.1 Test of second order stationarity assumption

In such a test, the null hypothesis H0 is a necessary condition for stationarity, look at
Example 1 in Section 6.3: α+β < 1. If not, the ε2

t is not integrable, the stationarity fails.

We mean to test

H0 :
∑
i

α0i +
∑
j

β0j < 1 against H1 :
∑
i

α0i +
∑
j

β0j ≥ 1

since the assumption H0 is necessary for the series belonging to L2. Let us consider a vector
c with all components equal to 1, H0 is exactly 〈c, θ0〉 < 1. Under convenient hypotheses
we deduce from the asymptotic normality of θ̂(n) the convergence in distribution

√
n(〈c, θ̂(n)〉 − 〈c, θ0〉)→L N (0, (E(η4

t )− 1)c′J−1c)

recalling Ji,j = Eθ0 [∂
2ln(θ0)
∂i∂j

]. We have to replace unknown parameters E(η4
t ) and J by their

estimates: κ̂η and Ĵ :

κ̂η :=
1

n

n∑
t=1

ε4
t

σ̃4
t (θ̂(n))

; Ĵ :=
1

n

n∑
t=1

1

σ̃4
t (θ̂(n))

(∇θσ̃
2)(θ̂(n))(∇θσ̃

2)′(θ̂(n)).

Proposition 9.1 Under assumptions in Theorem 8.4 (ii), a test of assumption H0 at
level α is defined by the critical region

{Tn :=
√
n
〈c, θ̂(n)〉 − 1√
(κ̂η − 1)c′Ĵ−1c

> Φ−1(1− α)}

where Φ is the normal Gaussian law distribution function.
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9.2 Case of θ0 ∈ ∂Θ

This subsection is to skip in a first reading, cf. [6] Section 8.2 page 187.

Recall l̃t(θ) =
ε2t
σ̃2
t

+ log σ̃2
t , Ĩn(θ) = 1

n

∑
t l̃t(θ) and the Hessian matrix Jn(= D2

θ Ĩn)(θ0). We define the

normalized score vector
Zn := −J−1

n

√
n(∇θIn)(θ0).

Theorem 9.2 (Theorem 8.1 [6])

Under convenient hypotheses, the asymptotic distribution of
√
n(θ̂(n)− θ0) is the one of the statistic

λΛ := arg min
λ∈Λ

(λ− Z)′J(λ− Z)

where J law is N (0, (κη − 1)J−1.

9.3 Portmanteau tests, [6] p. 205

The “residuals methods” mean that we extract the residuals, which could be a white noise,
so we have to check the correlogram of these residuals.
Concerning the ARMA models we test the significance of the residual correlations. For
GARCH models, we look at the square residual auto covariances

r̂(h) :=
1

n

∑
t=1+|h|

(η̂2
t − 1)(η̂2

t−|h| − 1), where η̂2
t :=

ε2
t

σ̃2
t (θ)

.

We recall the following estimates:

κ̂η :=
1

n

∑
t

ε4
t

σ̃4
t (θ̂(n))

; Ĵ :=
1

n

∑
t

1

σ̃4
t (θ̂(n))

(∇θσ̃
2)(θ̂(n))(∇θσ̃

2)′(θ̂(n)),

and the m× (p+ q + 1) matrix Ĉm defined as:

Ĉm(i, j) = − 1

n

∑
t

(η̂2
t−i − 1)

1

σ̃2
t (θ̂(n))

(∂θj σ̃
2)(θ̂(n)).

Theorem 9.3 Let the matrix D̂ := (κ̂η − 1)2Im − (κ̂η − 1)ĈmĴ
−1Ĉ ′m.

Under assumptions in Theorem 8.4 (ii), nr̂′nD̂
−1r̂n →L χ2

m.
Thus we reject the GARCH(p,q) model when

nr̂′nD̂
−1r̂n > χ2

m(1− α).

Remark that the GARCH(1,1) model is too often assumed by the practitioners as [6]
presents page 205. Here they show that CAC or S&P are not GARCH(1,1) but could be
better modeled as ARCH(5).
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Look at the tables from [6], Table page 205 H0 is rejected when the p-value, p =
PH0 [χ

2
m ≤ nr̂′nD̂

−1r̂n computed ], is more than α.
Table page 206 is testing GARCH(1,1) against others GARCH and use statisticsWn, Rn, Ln,
defined in [6] section 8.3.1. The table provides the corresponding p-values.

Use in R routines: residuals-methods.

GED, see https://en.wikipedia.org/wiki/Generalized normal distribution, means ‘General Ex-

ponential Distribution’.

10 Some extensions, [6] Chapter 10.

Above, we modeled the conditional variances σt as linear functions of the squared past
innovations εt−h, h > 0. But from an empirical point of view, there exist important draw-
backs: actually in the previous models, we do not take in account the sign of innovations.
However, the conditional asymmetry is a stylized fact: the volatility µ increase due to a
price decrease is stronger than the one resulting from a price increase of the same magni-
tude.
Think of pt ↓ yields (∆σt)

− and pt ↑ yields (∆σt)
+, then (∆σt)

− ≥ (∆σt)
+.

If the law is symmetric, cov(σt, εt−h) = 0, ∀h > 0, which is equivalent to cov(ε+
t , εt−h) =

cov(ε−t , εt−h) = 0, ∀h > 0. This is an hypothesis which could be often rejected, look at
table below ([6] p. 246) where the correlations ρ((εt, εt−h), ρ(ε+

t , εt−h) and ρ(ε−t , εt−h) are
not equal to zero altogether. We can observe cov(σt, εt−h) < 0, meaning a leverage effect:
the volatility increases dramatically after bad news, but increases moderately after good
news.

h 1 2 3 4 5 10 20 40

ρ(εt, εt−h): 0.030 0.005 −0.032 0.028 −0.046* 0.016 0.003 −0.019

ρ(|εt|, |εt−h|) : 0.090* 0.100* 0.118* 0.099* 0.086* 0.118* 0.055* 0.032

ρ(ε+
t , εt−h): 0.011 −0.094* −0.148* −0.018 −0.127* −0.039* −0.026 −0.064*

Table 1: Empirical autocorrelations CAC40 series, period 1988-1998

10.1 Exponential GARCH model: EGARCH

Definition 10.1 Let η a strong white noise. Then (εt) is called an EGARCH process if
it satisfies

εt = σtηt,

log σ2
t = ω +

q∑
i=1

αig(ηt−i) +

p∑
j=1

βj log σ2
t−j,(7)
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where

(8) g(ηt−i) = θηt−i + ζ(|ηt−i| − E(|ηt−i|),

and ω, β, θ, ζ ∈ R.

Exercise 23: Remark that the volatility σ has a multiplicative dynamics. The log allows
the coefficients to be negative or positive. Actually εt = σtηt and the dynamics of σ is

σ2
t = exp ◦ lnσ2

t = eωΠq
i=1 exp(αig(ηt−i))Π

p
j=1(σt−j)

2βj .

However we would like that the innovations of large modulus should increase the volatility.
Thus we add some constraints on the coefficients, for instance

−ζ < θ < ζ, αi ≥ 0, βj ≥ 0.

The coefficient θ reflects the asymmetry property: look at the model log σ2
t = ω + θηt−1

with θ < 0. ([6] page 247, 3):
in this case σ2

t = eωeθηt−1 and σ2
t − eω = eω(eθηt−1 − 1).

If ηt−1 < 0, the variation σ2
t − eω = eω(eθηt−1 − 1) is less than the one when ηt−1 > 0,

because of the asymetry of the function exp, e−a < ea when a > 0.

The specification g(ηt−i) = θηt−i + ζ(|ηt−i| − E(|ηt−i|) allows for sign and modulus
effects:
• sign effect with θηt−i,
• modulus effect with ζ(|ηt−i| − E(|ηt−i|).

So we also could take θ depending on the lag:

log σ2
t = ω +

q∑
i=1

αi(θiηt−i + |ηt−i| − E(|ηt−i|) +

p∑
j=1

βj log σ2
t−j.

Theorem 10.2 Assume that g(ηt) is not almost surely equal to zero and that the poly-
nomials α(z) =

∑q
i=1 αiz

i and β(z) = 1 −
∑p

j=1 βjz
j have no common root, α(z) being

non identically null. Then the system (7) admits a strictly stationary and F-adapted so-
lution if and only if the roots zi of polynomial β are outside the unit circle (meaning in R,

|zi| > 1 for any i). This solution satisfies E[(log ε2
t )

2] <∞ as soon as E[(log η2
t )

2] <∞ and
E[g2(ηt)] <∞,

Proof exercise 24: Prove the theorem in case of p = 1, |β| < 1, E[(log η2
t )

2] < ∞ and
G = E[g2(ηt)] <∞.

(i) We here have to use Theorem 2.14 in Section 2.1: ω +
∑q

i=1 αig(ηt−i) + β log σ2
t−1

could be seen as an AR(1,q) equation

log σ2
t − β log σ2

t−1 = ω +

q∑
i=1

αig(ηt−i)
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with the polynomials Q(z) =
∑q

i=1 z
i and P (z) = 1 − β1z. Theorem in Section 2.1 asks

P and Q have no common root and β < 1.
(ii) Since ε2

t = η2
t σ

2
t , log ε2

t = log η2
t + log σ2

t , and E[(log η2
t )

2] < ∞ we have to prove
E[(log σ2

t )
2] <∞.

(iii) The asumption E[g2(ηt)] <∞ and the fact that (ηt) are uniformly distributed implies

E[(

q∑
i=1

αig(ηt−i))
2] =

q∑
i=1

α2
iE[(g(η)2] <∞.

(iv) Since |β| < 1, admitting log σ2
t−k almost surely bounded in the past, the induction

log σ2
t = β log σ2

t−1 + ω +

q∑
i=1

αig(ηt−i)

is solved as

log σ2
t =

ω

1− β
+

q∑
i=1

αi
∑
k≥0

βkg(ηt−i−k).

Thus the L2 norm of log σ2
t exists as soon as G = E[(g(η))2] <∞ and

E[(

q∑
i=1

αi
∑
k≥0

βkg(ηt−i−k))
2] = G

∑
j≥1

β2j(

q∑
i=1

αiβ
−i)2].

The following theorem is to skip.

Theorem 10.3 Let m be an integer and suppose

µ2m := E[η2m
t ] <∞; Π∞i=1E[exp(|mλig(ηt)|)] <∞

then E[ε2m
t ] = µ2me

mω∗Π∞i=1gη(mλi) where λi are defined as the coefficient of the development

of α(z)
β(z) =

∑
i λiz

i, ω∗ = ω/β(1), gη(x) = E[exp(xg(ηt))].

10.2 Threshold GARCH model: TGARCH

To take in account asymmetry, we specify the conditional variance of positive and negative
part of εt: ε

+
t = sup(εt, 0), ε−t = sup(−εt, 0), εt = ε+

t − ε−t , |εt| = ε+
t + ε−t .

Definition 10.4 Let η be a strong white noise. Then (εt) is called an TGARCH if it
satisfies

εt = σtηt,

σt = ω +

q∑
i=1

(αi+ε
+
t−i + αi−ε

−
t−i) +

p∑
j=1

βjσt−j,(9)

where ω, βj, αi± ∈ R.
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Remark that if ω > 0 and αi±, βj ≥ 0, then σt > 0. In this case σt =
√
E[ε2

t/Ft−1] is the
conditional standard deviation. Such a model allows the lags i to have an influence on
the past, so the asymmetry is taken into account.

Figure 10.1 in [6] page 251 stress the difference between GARCH and TGARCH.
GARCH is symmetric: εt =

√
1 + 0.38ε2

t−1ηt and TGARCH is asymmetric:
εt = (1− 0.5ε+

t−1 − 0.2ε−t−1)ηt.

Under the constraints ω > 0 and α, β ≥ 0, since σ > 0, then ε±t = σtη
±
t , and the

conditional standard deviation is σt = ω +
∑max(p,q)

i=1 ai(ηt−i)σt−i, with ai(z) = αi+z
+ +

αi−z
− + βi.

In case of TGARCH(1,1) model, if E[log(α1+η
+ + α1−η

− + β1)] < 0, then the model
is stationary (cf. Theorem 6.12).

Finally, we look at the moments of σt to go to the kurtosis. We can prove that the
mth moment exists if and only if E[am(ηt)] < 1.
Exercise 25: TGARCH(1,1) model, εt = ηtσt, σt = ω + a(ηt−1)σt−1, with a(z) = α+z

+ +
α−z

− + β, assume E[am(ηt)] < 1.
(i) Prove that the assumption ‖a(η)‖2 < 1 implies the condition E[ln a(η)] < 0 in case of
β = 1 and symmetrical law for the ηt, ;

(ii) Compute the moments of ηt to provide skewness and kurtosis κε = 3
E[σ4

t ]

(E[σ2
t ])2

. Cf. [6]
p. 252.

(0) Case β1 = 0: a(η) = α+η
++α−η

− = α+|η|1η>0+α−|η|1η<0 = |η|(α+1η>0+α−1η<0)
so looking at the two disjoint sets according to the sign of η:

log a(η) = log |η|+ log(α+)1η>0 + logα−1η<0.

Using the symmetry of η law

E[log a(η)] = E[log |η|] +
1

2
(log(α+) + logα−) = E[log |η|] + log

√
α+α−
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or E[2 log a(η)]) = E[log |η|2] + log(α+α−) meaning

expE[2 log a(η)]) = (α+α−) expE[log |η|2].

We now use (α+α−) ≤ 1
2
(α2

+ + α2
−) and Minkowski inequality:

expE[log |η|2] ≤ E[exp log |η|2] = E[|η|2], so

expE[2 log a(η)]) ≤ 1

2
(α2

+ + α2
−)E[|η|2] = E[(a(η)2],

and we conclude that E[(a(η)2] < 1 yields expE[2 log a(η)] < 1 and E[2 log a(η)] < 0.

(i) We first control the mth moment of εt by the bound ‖εt‖m = ‖η‖m‖σt‖m since ηt
are iid and ηt is independant on σt.

(ii)From ‖σt‖m ≤ |ω|+ ‖a(η)‖m‖σt−1‖m, we recursively deduce

‖σt‖m ≤ |ω|
1− ‖a(η)‖km
1− ‖a(η)‖m

+ ‖a(η)‖km‖σt−k‖m.

If moreover supt≤−N ‖σt−k‖m are uniformly bounded, the following are too and ‖σt‖m <
∞.

(iii) Now compute these moments: E[σt] = ω+E[a(ηt−1)]E[σt−1] = ω+‖a(η)‖1E[σt−1].
Under the previous assumptions we solve this induction:

E[σt] =
ω

1− ‖a(η)‖1

.

Now let σ2
t = ω2 + 2ωa(ηt−1)σt−1 + a2(ηt−1)σ2

t−1, so

E[σ2
t ] = ω2 + 2ω‖a(η)‖1E[σt−1] + ‖a(η)‖2

2E[σ2
t−1]

= ω2 + 2ω‖a(η)‖1
ω

1− ‖a(η)‖1

+ ‖a(η)‖2
2E[σ2

t−1] = ω2 1 + ‖a(η)‖1

1− ‖a(η)‖1

+ ‖a(η)‖2
2E[σ2

t−1],

we solve this induction: E[σ2
t ] = ω2(1+‖a(η)‖1)

(1−‖a(η)‖1)((1−‖a(η)‖22)
.

(iii) Skewness is a measure of the asymmetry of the probability distribution of a real-valued
random variable about its mean: E

[
(σt−µ

σ
)3
]
.

Now let σ3
t = ω3 + 3ω2a(ηt−1)σt−1 + 3ωa2(ηt−1)σ2

t−1 + a3(ηt−1)σ3
t−1, after once again a

standard induction:

E[σ3
t ] =

ω3(1 + 2‖a(η)‖1 + 2‖a(η)‖2
2 + ‖a(η)‖1‖a(η)‖2

2)

(1− ‖a(η)‖1)((1− ‖a(η)‖2
2)(1− ‖a(η)‖3

3)
.

(iv) Fourth moment: after tedious computations, to be checked !! Denote ai =
‖a(η)‖ii, i = 1, 2, 3, 4.

E[σ4
t ] = ω4 1 + 3a1 + 5a2 + 3a3 + 3a1a2 + 5a1a3 + 3a2a3 + a1a2a3

(1− a1)((1− a2)(1− a3)(1− a4)
.
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10.3 Asymmetric Power GARCH model, APAGARCH, APARCH

The following gathers GARCH, TGARCH, Log-GARCH.

Definition 10.5 Let η a strong white noise. Then (εt) is called an APAGARCH process
if it satisfies

εt = σtηt,

σδt = ω +

q∑
i=1

(αi(|εt−i| − ζiεt−i)δ +

p∑
j=1

βjσ
δ
t−j,(10)

where ω > 0, δ > 0, and β, α ∈ R+.

• We recover GARCH model with δ = 2, ζ = 0.
• The case δ = 1 is the TGARCH model.
• Using log σt = limδ→0

σδt−1

δ
, the log-GARCH model can be interpreted as the limit of

APAGARCH when δ goes to 0.

The role of parameter ζ in ARCH(1) model can be seen in the following :

σ2
t = ω + α1(1− ζ1)2ε2

t−1 when εt−1 ≥ 0,

σ2
t = ω + α1(1 + ζ1)2ε2

t−1 when εt−1 < 0.

Thus the choice of ζ1 > 0 ensures that a negative innovation ε has more impact on the
current volatility σ2

t than positive ones of the same magnitude.

Stationarity : we can write

σδt = ω +

p∨q∑
i=1

ai(ηt−i)σ
δ
t−i,

with ai(z) = αi(|z|− ζz)δ +βi. Remind Theorem 6.12: Such a process is stationary if and
only if

E[log(α1(|ηt| − ζ1ηt) + β1)δ] < 0.

Exercise 26: In the case β1 = 0 and when the law of ηt is symmetric, express this condi-
tion, cf. [6] (10.24) page 257.
σδt = ω + α(|εt−1| − ζεt−1)δ = ω + a(η)σδt−1.

log a(η) = logα + log |η|δ + 1η>0 log(1− ζ)δ + 1η<0 log(1 + ζ)δ.

We use the symetry of η law

E[log a(η] = logα+E[log |η|δ]+1

2
(log(1−ζ)δ+log(1+ζ)δ) = logα+E[log |η|δ]+1

2
log(1−ζ2)δ.

The condition E[log a(η] < 0 is equivalent to

E[log |η|δ] < − log(α(1− ζ2)
δ
2 ).
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Remark that expE[log |η|δ] ≤ E[exp log |η|δ] = E[|η|δ], so a sufficient condition for
E[log a(η] < 0 is

E[|η|δ] < 1

α(1− ζ2)
δ
2

.

•

11 Financial Applications, [6] Chapter 12, pp. 311-

326.

11.1 Relation between GARCH and continuous time models

Consider a Wiener filtered probability space (Ω,F , (Ft),P) with a Brownian motion W .
Recall a stochastic differential equation (SDE) for Xt = log pt, p being a price process.

dXt = µ(Xt)dt+ σ(Xt)dWt, X0 = x0.

Under convenient hypotheses on the volatility σ and the drift µ (Lipschitz property, sub
linear increase) there exists a unique strong solution. The concrete interpretation of these
parameters µ and σ is:

µ(x) = lim
h→0

h−1E[Xt+h −Xt/Xt = x]; σ(x)σ(x)′ = lim
h→0

h−1V ar[Xt+h −Xt/Xt = x].

• To this diffusion X is associated an infinitesimal operator

L = µ∂x +
1

2
σ2∂2

xx.

Using Itô’s formula we get for any C2
b function ϕ

ϕ(Xt)− ϕ(x0)−
∫ t

0

Lϕ(Xs)ds is a martingale.

Such diffusion could have a stationary distribution. For instance look at

dXt = (ω + µXt)dt+ σXtdWt, X0 = x0.

Actually it can be proved that, for any t, the distribution density of Xt law is

1

Γ(ζ)

(
2ω

σ2

)ζ
exp(− 2ω

xσ2
)x−1−ζ where ζ = 1− 2µ

σ2
,

and the distribution of 1/Xt is the law Γ(2ω
σ2 , ζ), [6] page 313.

• A second point concerns the simulation of these diffusion trajectories (paths). We
can proceed to the Euler discretization:

X̃h
(n+1)h = X̃h

nh + hµ(Xh
nh) + σ(Xh

nh)(W(n+1)h −Wnh), X̃
h
0 = x0.
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Actually, we consider the increment W(n+1)h−Wnh as
√
hεn+1 where ε is a Gaussian white

noise. It can be proved that the process X̃n converges in distribution to X when h→ 0.
Black-Schole’s model admits an exact simulation. Indeed

logXt = (µ− 1

2
σ2)t+ σWt

so

logXt+h = logXt + (µ− 1

2
σ2)h+ σ

√
hεt.

• The third point considers the GARCH models as approximation of a diffusion(cf.
[6] page 315). Let µt be the conditional mean of the returns

µt = ξ + λσt, λ > 0,

where λ and µ are some parameters and (σt) is the volatility process. In GARCH model,
(σ2

t ) is an ARCH. More generally, let η be a white noise and look at the system [6] 12.16

Xt = Xt−1 + f(σt) + σtηt,

g(σt) = ω + a(ηt−1)g(σt−1).(11)

With g(z) = z2 and a(z) = αz2 + β in (11) we get a GARCH(1,1) model.

Recall the results on stationarity (Theorem 6.12): E[log a(ηt)] < 0⇒ Xt−Xt−1 exists
as an adapted and strictly stationary process. Thus the approximation is

X̃nh = X̃(n−1)h + f(σ̃nh) +
√
hσ̃nhη

h
n,

g(σ̃(n+1)h) = ωh + ah(η
h
n)g(σ̃nh).(12)

The following theorem is th 12.2 in [6].

Theorem 11.1 Assume ∃δ > 0, ωh, η
h
n, ah, 0 < ρ2 ≤ ζ, such that when h→ 0

(13)
h−1ωh → ω; h−1(1− E[ah(η

h
n)])→ δ; h−1V ar[ah(η

h
n)]→ ζ; h−1/2Cov(ah(η

h
n), ηhn)→ ρ,

lim sup
h→0

h−1−δE
[
(ah(η

h
n)− 1)2(1+δ)

]
< +∞,

then when h→ 0, the system (12) converges to

dXt = f(σt)dt+ σtdW
1
t ,(14)

dg(σt) = (ω − δg(σt))dt+ g(σt)(ρdW
1
t +

√
ζ − ρ2dW 2

t .

Exercise 27: in the following example, check the above assumptions (13).
Example: ωh = hω, ah(z) = 1− hδ +

√
h(ρz +

√
ζ − ρ2η′),

η′ being independent of η; η and η′ ∈ L2(1+δ).
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11.2 Option pricing

• The aim is to ”price” the derivatives, for instance option (call and put option), at the
“maturity” T . We denote K the ‘strike’ (or ‘exercise’, cf. Stochastic calculus applied to
Finance): considering the assets price process (St), we look for the price of (ST −K)+ or
(K − ST )+. In Black-Scholes model the dynamics is

St = µStdt+ σStdWt, logSt = logS0 + (µ− 1

2
σ2)t+ σWt.

The discretized version is

logSt − logSt−1 = µ− 1

2
σ2 + σεt

where ε is a Gaussian white noise.
But actually, σ is not constant (cf. estimated volatility with data from ”Bourse de Paris”).
The price is given by Feymann-Kac formula:

(15) C(S, t) = e−r(T−t)EQ[g(ST )/Ft]

where Q is a risk neutral probability measure. So is deduced the famous Black-Scholes’
formula (cf. Lecture Notes Stochastic Calculus applied to Finance). In particular, the
partial derivative ∂SC(St, t) provides the hedging portfolio (named “delta”). We want to
extend such a scheme to more general diffusions:

dSt = µ(t, St)dt+ σ(t, St)dWt.

• Actually the drift µ has no influence on the hedge price, the important point is the
volatility σ. We first consider the ”historic” volatility based on the observations, for
instance (S0, S1, · · · , Sn) :

σ̂2
n =

1

n

n−1∑
i=0

(Si − Si−1)2

is an estimate of σ2 if this one is constant on the observed period.

An alternative solution is the ”implied volatility”: actually the formula (15) depends
on σ (as a constant). The application σ → C(S, σ, t) is increasing and the prices (St) are
observed. This application is not analytically invertible. But with numerical computa-
tions, we can extract σ from the observations.
Exercise 28: prove that σ → C(S, σ, t) is increasing (cf. Jeanblanc-Yor) so at least nu-
merically invertible.
This is the ”implied volatility”, and in the practical cases, it is not a constant.

• We now turn to the option pricing when the underlying volatility is a GARCH process.
We observe the process Z (which as usually generates the filtration F) up to the maturity
T . Suppose that at the time t < T there exists a price Ct(Z, g, T ) for the payoff g(ZT ).
It can be proved that there exists a random variable Mt,T > 0, FT -measurable, which is
called stochastic discount coefficient (SDF) and such that

Ct(Z, g, T ) = E[g(ZT )Mt,T/Ft].
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suite A RETRAVAILLER

This applied to the ”zero-coupon bond” of maturity T (meaning g = 1) yields
B(t, T ) = E[Mt,T/Ft]. So Ct(Z, g, T ) = E[g(ZT )Mt,T/Ft] can be written as

Ct(Z, g, T ) = B(t, T )E[g(ZT )
Mt,T

B(t, T )
/Ft].

• So we can introduce the “forward risk neutral probability”

πt,T := Mt,TP,

we deduce (using the probability change formula)

Eπt,T [g(ZT )/Ft] =
E[g(ZT )Mt,T/Ft]
E[Mt,T/Ft]

,

and Ct(Z, g, T ) = B(t, T )Eπt,T [g(ZT )/Ft].

• Suppose that actually (in discrete time) Mt,T = ΠT−1
i=t Mi,i+1. Notice the constraints

(16) B(t, t+ 1) = E[Mt,t+1/Ft], St = E[St+1Mt,t+1/Ft],

this is (12.41) in [6] which actually is the martingale property for the discounted price
process, which means that StMt,t = Eπt,t+1 [St+1Mt,t+1/Ft].
So recursively

E[g(ZT )Mt,T/Ft] = B(t, t+ 1)E[g(ZT )ΠT−1
i=t+1B(i, i+ 1)ΠT−1

i=t

Mi,i+1

B(i, i+ 1)
/Ft].

We introduce a “risk neutral probability measure”

π∗t,T := E[ΠT−1
i=t

Mi,i+1

B(i, i+ 1)
/Ft]× P

such that

E[g(ZT )Mt,T/Ft] = B(t, t+ 1)E∗[g(ZT )ΠT−1
i=t+1B(i, i+ 1)/Ft].

• Pricing formulas, two exercises

Exercise 29: Look at Black-Scholes model, Zt = logSt− logSt−1 = µ− 1
2
σ2 + σεt, one

step SDF is defined as B(t, t+ 1) = e−r, Mt,t+1 = exp(a+ bZt+1).
With the constraint B(t, t+ 1) = E[Mt,t+1/Ft] (16) we get e−r = E[exp(a+ bZt+1/Ft],
and St = E[St+1Mt,t+1/Ft] means 1 = E[ea+(b+1)Zt+1/Ft].

Use that the law of Zt+1 given Ft is the Gaussian law (µ− 1
2
σ2, σ2)

to prove the existence of a and b. Then define the risk neutral probability with its
characteristic function Eπ(euZt+1 ]
E(eaX) = ema+ 1

2a
2σ2

if X Gaussian (m,σ2)
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Exercise 30: GARCH-type model: Zt = logSt − logSt−1 = µt + εt, εt = σtηt where η
is a white noise. Suppose that the filtrations generated by ε, Z, η are the same. Once
again B(t, t+ 1) = e−r, and the SDF Mt,t+1 = exp(at + btηt+1), where the processes a and
b are F -adapted. The constraints (16) lead to at = −r − 1

2
b2
t , btσt+1 = r − µt+1 − 1

2
σ2
t+1.

The risk neutral probability measure πt,t+1 will be defined through its characteristic func-
tion. Under the probability measure πt,t+1,

Zt = r − 1

2
σ2 + ε∗t , ε

∗
t = σtη

∗
t

where η∗ = 1
σt

(Zt − r + 1
2
σ2) is a white noise under the risk neutral probability measure.

We can check that (12.49) [6]:

Ct(Z, g, T ) = e−r(T−t)Eπt,T [g(ZT )/FSt ] = E[g(ZT )ΠT−1
i=t Mi,i+1/FSt ].

• Under the hypothesis that a and b do not depend on t, we consider a numerical pricing
of Option Prices since a closed expression is not available. (cf. Example 12.5 [6] p. 325).
We consider the GARCH model:

log(St/St−1) = r + λσt −
1

2
σ2
t + εt,

εt = σtηt ; σ2
t = ω + αε2

t−1 + βσ2
t−1.

Such a pricing is done using independent simulations of the η paths, at the step i

SiT = Sit exp[(T − t)r − 1

2

T∑
s=t+1

(σis)
2 +

T∑
i=t+1

σisη
i
s,

where (σis)
2 = ω̂ + (σis−1)2(α̂ηis−1 + β̂) is computed recursively.

11.3 Value at risk and other risk measures

Market risk is the risk of change in the value of a financial position ; Credit risk is the risk
of not receiving repayments on outstanding loans (borrower default); Model risk can be
defined as the risk due to the use of a mis-specified model; etc. There is also operational
risk, liquidity risk... These risks increased in the two last decades. So Basel Committee
on Banking Supervision set new rules against these risks, meaning Basel I, Basel II, for
instance look at https://en.wikipedia.org/wiki/Basel II

11.3.1 Value at risk, VaR

This one is the most widely used risk measure in financial institutions. Look at
http://www.gloriamundi.org/
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Definition 11.2 V aR(α) is the value such that the portfolio value V satisfies

P{Vt − Vt+h > V aR(α)/Ft} < α.

This means that the loss Vt − Vt+h has to be less than V aR(α) with probability greater
than 1− α. V aR(α) is the (1− α)-quantile of the conditional loss distribution.

We consider the value V of a portfolio on d assets, and the loss between time t and t+ h:

Vt =
d∑
i=1

aiS
i
t , Lt,t+h = −

d∑
i=1

aiS
i
t(e

rt,t+h − 1) = Vt − Vt+h.

We can prove that

V aRt,h(α) = inf{x ∈ R, P{Lt,t+h ≤ x/Ft} ≥ α}.

Recall rit,t+h := logSit+h − logSit .

11.3.2 Other risk measures

• Previously, the variance (volatility) is only used to measure the risk. Anyway, this one
hides the sign of the variations.
• In insurance is used expected shortfall, ES(α):

Definition 11.3

ESt,h(α) = Et [Lt,t+h/{Lt,t+h > V aRt,h(α)}]

where Et means E[./Ft].

When L+
t,t+h ∈ L1, and admits a distribution absolutely continuous,

Et[Lt,t+h1Lt,t+h>V aRt,h(α)}] = Et[Lt,t+h/Lt,t+h > V aRt,h(α)]× Pt{Lt,t+h > V aRt,h(α)}

By definition of the VaR, actually Pt{Lt,t+h > V aRt,h(α)} = α so

ESt,h(α) =
1

α
Et[Lt,t+h1Lt,t+h>V aRt,h(α)}].

Exercise 31: prove that in this last case ESt,h(α) = 1
α

∫ α
0
V aRt,h(u)du, Exercise 12.16 in

[6].
Plus: example 12.11 page 332.

Let X be a Gaussian random variable (m,σ2): by definition,

1− α = P{X ≤ V aR(α)} = P{m+ σX0 ≤ V aR(α)} = Φ(
V aR(α)−m

σ
)
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Thus, by monotonicity, Φ−1(1− α) = V aR(α)−m
σ

and V aR(α) = m+ σΦ−1(1− α).

We now look at

1

α

∫ α

0

V aRt,h(u)du =
1

α

∫ α

0

(m+σΦ−1(1−u))du = m+
σ

α

∫ α

0

Φ−1(1−u)du = m+
σ

α

∫ 1

1−α
Φ−1(v)dv

We now operate the change of variable v = Φ(y) so∫ 1

1−α
Φ−1(v)dv =

∫ ∞
Φ−1(1−α)

yφ(y)dy

• Distortion risk measure (DRM) when Lt,t+h admits a density law strictly positive f
and note the distribution function F, F ′ = f.
We remark that ESt,h(α) = 1

α

∫ 1

0
F−1(1− u)1[0,α](u)du, (using

1
αEt[Lt,t+h1Lt,t+h>V aRt,h(α)}] = 1

α

∫∞
V aRt,h(α) lf(l)dl and the change of variable l = F−1(1 − u))

so more generally, we introduce for any distribution G on [0, 1]

r(F ;G) =

∫ 1

0

F−1(1− u)1[0,α](u)dG(u).

We then recover the previous risk measures:

• V ar(α) with G is Dirac in α,

• ES(α) with G uniform law on [0, α].

We skip Coherent risk measures page 333, def 12.2.

11.3.3 Estimation methods

We here only present the so called GARCH-based estimation: we observe K returns (for
instance K = 250): rt+h−i = log pt+h−i− log pt−i, i = h, h+K−1, ∆Pt = log pt− log pt−1.
Consider the example 12.9 [6] page 330: h = d = a = 1.

(∆Pt)
2 = (ω + α1(∆Pt−1)2)U2

t

Ut standard Gaussian law. It is exactly an ARCH(1): εt = ∆Pt, Ut = ηt, σt =√
ω + α1(εt−1)2. Then the conditional law of the loss Lt,t+1 is N (0, ω+α1(∆Pt)

2). There-
fore

V aRt,1(α) =
√
ω + α1(∆Pt)2Φ−1(1− α).

It is more problematic when h > 1... Then we work with rt = ∆1 ln pt assumed to be
stationary, then we get V aRt,1(α) = (1− eqt(1,α))pt where qt(1, α) is the α quantile of the
conditional law of rt+1. This one, qt(1, α), can be estimated by

σ̂t+1F̂
−1(α)
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where σ̂2
t is the conditional variance estimated by a GARCH model, and F−1 is an estimate

of the distribution of the normalized residuals.

The suggested steps are the following

• Fit a model for instance on a GARCH(1,1) on the n observations and deduce an estimate
of σ̂2

t , t = 1, · · · , n+ 1.

• Simulate a large number N of εn+1, · · · , εn+h:

- simulate the values of the iid (according to the distribution function F̂ ) ηin+1, · · · , ηin+h,

- set σin+1 = σ̂n+1 and εin+1 = σin+1η
i
n+1,

- for k = 2, · · · , h, recursively set

(σin+k)
2 = ω̂ + α̂(εin+k−1)2 + β̂(σin+k−1)2; εin+k = σin+kη

i
n+k).

• Determine the empirical quantile of simulations εin+h, i = 1, ..., N.

11.4 Exercises on second part

15. Proof of Proposition 6.2.

16. (i) Proof of Proposition 6.3.
(ii) Proof of Proposition 6.4.

17. Proof of Proposition 6.6.

18. In case of a linear model, X being an AR(1) process, Xt = µ + ρXt−1 + εt, prove
recursively:

∀h > 0, E[Xt/Ft−h] = µ+ ρE[Xt−1/Ft−h] = µ

(
1− ρh

1− ρ

)
+ ρhXt−h.

19. Proof of Proposition 6.8.

20. Let a GARCH(p,q) process ε. Prove that it is an ARMA(sup(p, q), p) process.

21. Let a GARCH(1,1) process with η a Gaussian white noise: εt = ηtσt, σ
2
t = α0 +

α1ε
2
t−1 + β1σ

2
t−1. Prove that εt ∈ L4 only if (α1 + β1)2 + 2α2

1 < 1.

In this case prove that kurtosis = 3 1−(α1+β1)2

1−(α1+β1)2−2α2
1
.

22. Give the log likelihood of an ARCH(1) process εt = (
√
ω + αε2

t−1)ηt, where (ηt)
are iid, standard Gaussian law.

23. Let an EGARCH process: εt = σtηt, log σ2
t = ω +

∑q
i=1 αig(ηt−i) +

∑p
j=1 βj log σ2

t−j,
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where g(ηt−i) = θηt−i + ζ(|ηt−i| −E(|ηt−i|), and ω, β, θ, ζ ∈ R. Prove that the volatility σ
has a multiplicative dynamics.

24. Proof of Th. 10.2 in case p = 1, |β| < 1, E[(log η2
t )

2] <∞ and G = E[g2(ηt)] <∞.

25. TGARCH(1,1) model: εt = ηtσt, σt = ω+a(ηt−1)σt−1, with a(z) = α+z
+ +α−z

−+β,
assume E[am(ηt)] < 1.
(i)Prove that the assumption ‖a(η)‖2 < 1 implies the condition E[ln a(η)] < 0 in case of
β = 1 and symmetrical law for the ηt, ;

(ii) Compute the moments of ηt to provide skewness and kurtosis κε = 3
E[σ4

t ]

(E[σ2
t ])2

. Cf. [6]
p. 252.

26. APAGARCH: In the case β1 = 0 and when the law of ηt is symmetric, express
the condition E[log(α1(|ηt| − ζ1ηt) + β1)δ] < 0, cf. [6] (10.24) page 257.

27. In the following example, ωh = hω, ah(z) = 1 − hδ +
√
h(ρz +

√
ζ − ρ2η′), η′ being

independent of η, η and η′ ∈ L2(1+δ), check the assumptions:
h−1ωh → ω; h−1(1 − E[ah(η

h
n)]) → δ; h−1V ar[ah(η

h
n)] → ζ; h−1/2Cov(ah(η

h
n), ηhn) → ρ,

lim suph→0 h
−1−δE

[
(ah(η

h
n)− 1)2(1+δ)

]
< +∞,

28. Feymann-Kac formula for the option price: C(S, t) = e−r(t−T )EQ[g(ST )/Ft] : prove
that σ → C(S, σ, t) is increasing (cf. Jeanblanc-Yor) so at least numerically invertible.

29. Look at Black-Scholes model, Zt = log St − logSt−1 = µ − 1
2
σ2 + σεt, one step

SDF is defined as B(t, t+ 1) = e−r, Mt,t+1 = exp(a+ bZt+1).
With the constraint B(t, t+ 1) = E[Mt,t+1/Ft] (16) we get e−r = E[exp(a+ bZt+1)/Ft],
and St = E[St+1Mt,t+1/Ft] means 1 = E[ea+(b+1)Zt+1/Ft].
Using that the law of Zt+1 given Ft is the Gaussian law (µ − 1

2
σ2, σ2), prove the exis-

tence of a and b. Then define the risk neutral probability with its characteristic function
Eπ[euZt+1 ]
E(eaX) = ema+ 1

2a
2σ2

if X Gaussian (m,σ2)

30. GARCH-type model: Zt = logSt − logSt−1 = µt + εt, εt = σtηt where η is a
white noise. Suppose that the filtrations generated by ε, Z, η are the same. Once again
B(t, t+ 1) = e−r, and the SDF Mt,t+1 = exp(at + btηt+1), where the F -adapted processes
a and b are to be provided.

31. Prove that the expected shortfall satisfies ESt,h(α) = 1
α

∫ α
0
V aRt,h(u)du.

(Exercise 12.16 in [6], look also at Example 12.11 page 332).
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