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Time series/Fore
asting, 
ourse: 16 h + exer
ises: 8h.

Fore
asting dis
ipline is an issue of Statisti
s. Indeed, the aim is to answer the following

kind of problem: a system X is evolving in time, it is observed and one would like to

predi
t the future. Exemple: we 
an try to �ll �holes� in a time series (missing data).

Generally, underlies a modeling problem: it is to �nd the mathemati
al �model� that

realizes the better 
onne
tion between a variable and the time.

The methods are multiple. The prin
iple is to �nd a mathemati
al modeling: for instan
e

the series X is to fore
ast as a fun
tion of time. Given the available observations, we try

the �best� fun
tion f (the optimality 
riterion depending on the method) su
h as X ≈ f(t)
where t is time. Namely, we 
onsider that the observations are a set (X(t−i), i = 1, · · · , n).
This 
ourse presents three types of methods.

- The Smoothing (Brown, Holt and Winters, about the sixties) 
orresponds to the

intuitive idea of �smoothing� the 
urve obtained using points observed for a smooth 
urve;

smoothing provides X(t) in terms of the past of X.

- Linear regression, really simple statisti
al method.

- Pro
esses ARMA, ARIMA, SARIMA (Box and Jenkins): sophisti
ated meth-

ods, where is exhibited a linear fun
tion of X(t) and its past values X(t− i), i = 1, · · · , n.

Depending on the 
ases, one or the other of these methods are more suitable. We 
an not

ex
lude one of them a priori. In the same study, it is 
onvenient to use them ea
h oth-

ers and then 
ompare their respe
tive performan
es before �xing our 
hoi
e. A sele
tion


riterion is obviously the quality of the fore
ast. Ea
h method proposes statisti
al tests

that allow to judge the quality of �t (between the 
urve obtained and the observations).

An empiri
al way 
ould be added: to reserve some �witnesses spots� and to do the study,

ex
luding them, and judging the error on witnesses.

For the 
on
rete use of these methods it is re
ommended to use the free software "R":

https://
ran.r-proje
t.org/do
/manuals/r-release/R-intro.pdf

The terminal test will be su
h a study on 
on
rete data, with proposed models and

their 
omparison.
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1 Smoothing

(
f. Chapter IV, Gouriéroux-Monfort, [6℄)

1.1 Simple exponential smoothing

1.1.1 De�nition, prin
iple

This method leads to estimate the values of the series at times T + k as fun
tion of the

past values, exponentially, meaning:

(1) ∀k ≥ 1, X̂T+k = (1− β)
T−1
∑

i=0

βixT−i

when T observations xi are available, β ∈]0, 1[. The interpretation is the following: xT−j

has less in�uen
e as j is high (more past).

In 
ase of β 
lose to 1, immediate past is less important than deep past; the fore
asting

is rigid; In 
ase of β 
lose to 0, immediate past is more important than deep past, the

fore
asting is �exible.

Warning: the fore
asting is 
onstant in the future: it is smoothing somehow �horizon-

tal�.

1.1.2 Update

Not to have to re
al
ulate the total sum of formula (1), we have an � updating� formula:

(2) X̂T+1 = (1− β)xT + βX̂T

The proof is simple: simply apply the formula (1) to k = 1 and k = 0 but with T − 1
observations instead of T and to the linear 
ombination X̂T+1 − βX̂T to �nd (2). We 
an

interpret (2) as following:

• either let us do the 
enter of gravity between the last fore
ast and the new observa-

tion,

• or in su
h similar form X̂T+1 = X̂T + (1 − β)(xT − X̂T ) we add a weighting of

innovation to the previous fore
ast.

1.1.3 Interpretation

Suppose we seek the better 
onstant a to �t the series at a 
onstant using the least squares,
but with an exponential weighting, i.e., we try to minimize the fun
tion:

F : a 7→
T−1
∑

i=0

βi(xT−i − a)2.
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The minimum of F is rea
hed at

ã =
1− β

1− βT

T−1
∑

i=0

βixT−i,

i.e. roughly speaking, X̂T+1 is little di�erent of ã when T is high enough (meaning

a lot of observations). Thus, the interpretation of X̂T+1 is the better 
onstant �tting

the whole (βi)-weighted series. This allows to 
on
lude that this method is 
ompletely

inappropriate in 
ase of trending or seasonality. These points will be the subje
t of the

following se
tions.

1.1.4 How to 
hoose the 
onstant β

Re
all

• β = 1− ε, rigid, dependen
e from past,

• β = ε, �exible fore
asting, low dependen
e on the past.

But there is a more obje
tive 
riterion for 
hoosing this smoothing 
onstant: one 
hooses

β whi
h minimizes errors made repla
ing the observations by their predi
tion, namely, for

t = 1, · · · , T − 1, xt+1 repla
ed by X̂t+1 = (1− β)
∑t−1

i=0 β
ixt−i. So the aim is to minimize

on the interval [0, 1] the appli
ation :

F : β 7→
t−1
∑

t=1

(xt+1 − (1− β)

t−1
∑

i=0

βixt−i)
2.

In the general 
ase, the 
omputations are tedious and inextri
able. Nevertheless, there

is ne
essarily a solution sin
e F is a 
ontinuous fun
tion on a 
ompa
t. The study of

its variations is 
ompli
ated. Therefore a spe
ial 
ase 
ould be solved when xk are the

values of the random variables Xk, stationary 
entered 2-order series with the 
ovarian
e

fun
tion γ(k) = ρ|k|, |ρ| < 1. And rather than seek to minimize the sum of observed

squared deviations, we 
ould minimize their mean:

G : β 7→ E[(Xt+1 − (1− β)

t−1
∑

i=0

βiXt−i)
2].

It yields

G(β) = 1− 2(1− β)

t−1
∑

i=0

βiρi+1 + (1− β)2
∑

i,j≤t−1

βi+jρ|i−j|.

We suppose t high enough and we 
ompute the last term:

∑

i,j

βi+jρ|i−j| =
∞
∑

i=0

β2i + 2
∞
∑

i=0

∞
∑

j=i+1

βi+jρ|i−j| =
1

1− β2
+

2ρβ

(1− β2)(1− ρβ)

so G(β) = 1− 2
(1− β)ρ

(1− ρβ)
+

1− β

1 + β
+

2ρβ(1− β)

(1 + β)(1− ρβ)
= 2

1− ρ

(1 + β)(1− ρβ)
.
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The optimum is depending on ρ and on the position of

1−ρ

2ρ
with respe
t to 0 and 1. Let

be the logarithmi
 derivative of G with respe
t to β : the denominator is positive and the

numerator is 2ρβ − 1 + ρ.

(i) if 0 < 1−ρ

2ρ
< 1, i.e. ρ > 1/3, the optimum is β̂ = 1−ρ

2ρ
,

(ii) if

1−ρ

2ρ
≥ 1, i.e. ρ ≤ 1/3, the optimum is β̂ = 1.

This means that in the 
ase of a low 
orrelation, this is not a good method: the � best�

fore
ast is X̂ = 0 whi
h on the one hand is not very interesting and on the other hand


ertainly gives rise to very large errors. We must seek in this 
ase another method.

In 
ase (i) (good 
orrelation), the minimum value of G when β̂ = 1−ρ

2ρ
is:

G(
1− ρ

2ρ
) =

8ρ(1− ρ)

(1 + ρ)2
.

In pra
ti
e, if we tra
e the family of 
urves representing Gρ(β) we �nd that � good � β
values are in the range of 0.7 to 0.8 
orresponding to values of ρ around 0.4.

Another good and solvable example is the 
ase when the auto-
ovarian
e fun
tion γ
is zero for |k| large enough, for example, the series in Exer
ise 4 of the sheet 1. In su
h a


ase we 
an �nd an optimal β.

1.2 Double exponential smoothing=Lissage exponentiel double

1.2.1 De�nition, prin
iple

This method is 
onvenient when a linear trend is possible. The prin
iple is to �t the series

to a line: a1 + (t− T )a2 instead of a 
onstant:

X̂T+k = â1(T ) + kâ2(T )

where T is the length of the fore
asting. We look for the 
onstants â1(T ) and â2(T ) whi
h
minimize the following appli
ation:

F : (a1, a2) 7→
T−1
∑

j=0

βj(xT−j − a1 + a2j)
2

meaning the quadrati
 mean (weighted exponentially by βj
) of the errors whi
h are re-

sulting of the repla
ement of observation xT−j by the estimate with a trend: a1 − a2j.

Using standard formulas

∑

j≥1 jβ
j = β

(1−β)2
or

∑

j≥1 j
2βj = β(1+β)

(1−β)3
we dedu
e both

partial derivatives of the 
onvex fun
tion F , meaning:

−1

2
∇1F ≃

T−1
∑

j=0

βjxT−j − a1
1

1− β
+ a2

β

(1− β)2
,

−1

2
∇2F ≃

T−1
∑

j=0

βjjxT−j − a1
β

(1− β)2
+ a2

β(1 + β)

(1− β)3
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asuming on
e again T 
lose to in�nity to simplify the 
omputations. Let be:

S1(T ) = (1− β)

T−1
∑

j=0

βjxT−j named as �smoothed series� ;

S ′
2(T ) = (1− β)

T−1
∑

j=0

βjjxT−j ,

after tedious but straightforward 
omputations, the unique pair 
an
eling the gradient F
is:

â1(T ) = (1 + β)S1(T )− (1− β)S ′
2(T ),

â2(T ) = (1− β)S1(T )−
(1− β)2

β
S ′
2(T ).

1.2.2 Update

For updating the 
oe�
ients ai(T ) remark that:

S1(T )− βS1(T − 1) = (1− β)xT ,

and we dedu
e the simple updating:

S1(T ) = (1− β)xT + βS1(T − 1).

The updating of the sum S2 is more di�
ult; we introdu
e the series � doubly� smoothed:

S2(T ) = (1− β)
T−1
∑

j=0

βjS1(T − j)

Exer
ise: prove the relation between S2 and S ′
2:

S ′
2(T ) =

1

1− β
S2(T )− S1(T ).

Updating this new sum is a little bit simpler. We prove:

S2(T ) = βS2(T − 1) + (1− β)2xT + β(1− β)S1(T − 1).

Then we dedu
e (on
e again after tedious but straightforward 
omputations!!) the up-

datings:

â1(T ) = xT (1− β2) + β2[â1(T − 1) + â2(T − 1)],

â2(T ) = xT (1− β)2 + â2(T − 1)− (1− β)2[â1(T − 1) + â2(T − 1)].
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1.2.3 Pro
edure

look for routines in software R

Statgraphi
s sofware provides some routines: BROWN, three options : simple (no

trend), linear(meaning �double" or linear trend) and quadrati
 (whi
h 
ould be named

�triple" and 
orresponding to a quadrati
 trend. We need the smoothing 
onstant, here

named: �smoothing 
onstant alpha"...

1.3 Generalized Exponential Smoothing

We will try to �t the observations to more sophisti
ated fun
tions, more than the 
onstant

fun
tion or the line, in parti
ular to take in a

ount the seasonality (periodi
 fun
tions).

The �rst to do that was Brown (1962) who proposes the following tool.

1.3.1 State-transition matri
es

De�nition 1.1. We say that f : Z 7→ R
n
is with State-transition matrix if there exists

a matrix A with non null determinant and su
h that:

f(t) = Af(t− 1), ∀t ∈ Z.

The prin
iple of the generalized exponential smoothing is to �t the series Xt with

ϕ(t− T ) where ϕ(t) =
∑n

i=1 aifi(t). Look at some examples:

(a) ϕ(t) = a is Subse
tion 1.1, simple smoothing. It is obtained with the 
onstant

fun
tion f(t) = 1 and the matrix A = 1 in 1−dimension. ThenX̂T+k = ϕ(k) = â(T ).

(b) ϕ(t) = a1 + a2t is Subse
tion 1.2, double smoothing. It is obtained with the

fun
tion f(t) = (1, t) and the matrix A in 2−dimension:

1 0

1 1

A
tually the determinant of this matrix is non null. Thus, X̂T+k = ϕ(k) = â1(T )+â2(T )k.

(
) ϕ(t) = a1 sinωt + a2 cosωt, is obtained with the fun
tion f(t) = (sinωt, cosωt)
and the matrix A in 2−dimension:

cosω sinω

− sinω cosω

A
tually the determinant of this matrix is non null. Thus, X̂T+k = ϕ(k) = â1(T ) sinωk+
â2(T ) cosωk.

(d) ϕ(t) = aeαt, is obtained with the fun
tionf(t) = eαt and the matrix A = eα in

1−dimension. A
tually the determinant of this matrix is non null. Thus, X̂T+k = ϕ(k) =
â(T )eαk.
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1.3.2 The method

We fore
ast Xt with the s
alar produ
t in R
n, ϕ(t− T ) = 〈a, f(t− T )〉. The fun
tion f

being �xed (it is the �form" of the �tting, the smoothing) we look for an optimization with

respe
t to a, meaning to minimize the appli
ation, 
omputed on the available observations:

G : a 7→
T−1
∑

j=0

βj(xT−j − 〈a, f(−j)〉)2,

so we have to 
an
el the gradient of the fun
tion G, a 
onvex fun
tion:

−1

2
∇iG =

T−1
∑

j=0

f i(−j)βj(xT−j − 〈a, f(−j)〉) = 0.

Let be Y the ve
tor (xT , · · · , xT − j, · · · , x1), Fβ the matrix with general 
oe�
ient

f i(−j)βj
arrow i and 
olumn j. The above system admits the matrix writing:

Fβ.F
t.a = Fβ.Y.

Let be the optimal ve
tor:

â(T ) = (Fβ.F
t)−1Fβ.Y.

To be simpler, as above , we suppose T high enough in FβF
t
i.e. T ∼ ∞ and sin
e 0 < β <

1 all the series are 
onvergent, so the matrix FβF
t
with general term

∑

k≥0 f
i(−k)βkf j(−k)

does not depend on T .
Exer
ise: to solve the examples (
) and (d).

1.3.3 Update

We re
all â(T ) = (Fβ.F
t)−1

∑T−1
j=0 βjf(−j)xT−j .

In the expression

∑T−1
j=0 βjf(−j)xT−j we 
an fo
us on the last observation:

T−1
∑

j=0

βjf(−j)xT−j = f(0)xT +
T−1
∑

j=1

βjf(−j)xT−j = f(0)xT + β
T−2
∑

j=0

βjf(−j − 1)xT−1−j .

But the hypothesis implies f(t) = Af(t− 1), so f(−j) = Af(−j − 1) and:

â(T ) = (Fβ .F
t)−1f(0)xT + β(Fβ.F

t)−1A−1(Fβ .F
t)â(T − 1).

This means that â(T ) 
ould be written as gxT + Gâ(T − 1) with g = (Fβ.F
t)−1f(0)

and G = β(Fβ.F
t)−1A−1(Fβ.F

t), and these matri
es do not depend on time, so they are


omputable from the beginning.

As previously we have some updating formulas whi
h stress the so 
alled �innovation�:

â(T ) = (g.f t(1) +G)âT−1 + g(xT − X̂T (T − 1)).

Exer
ise 4, sheet 2.

The most important problem, given the observations graph, is the re
ognition of the

smoothing 
urve dedu
ed from the fun
tion f . It is less reliable than Box and Jenkins'

methods that we will see in the third 
hapter, but, nevertheless, it may be useful.
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1.4 Holt et Winters' methods

They are based on Winters (1960, 
f. [12℄) seminal work, or Harrison [8℄.

1.4.1 No seasonality

The prin
iple is the �tting of Xt on a1 + (t− T )a2 but with di�erent updating

â1(T ) = (1− α)xT + α[â1(T − 1) + â2(T − 1)], 0 < α < 1

â2(T ) = (1− γ)[â1(T )− â1(T − 1)] + γâ2(T − 1), 0 < α, γ < 1.(3)

The initial 
onstants are arbitrary, but the pra
ti
e advises to take:

â1(2) = x2 ; â2(2) = x2 − x1.

This 
an be understood as follows: â1(T ) is the �fore
ast� X̂T with T observations, but

the observation is xT . Otherwise, with T − 1 observations, X̂T = â1(T − 1) + â2(T − 1).
The update â1 is the 
enter of gravity between these two possibilities of X̂T .
Similarly for â2, we 
an �fore
ast� xT+1 either with T observations, and it is â1(T )+ â2(T ),
or with T −1, and it is â1(T−1)+2â2(T −1). In 
ase of both identi
al fore
asts, it implies

an estimate of â2 equal to −â1(T ) + â1(T − 1) + 2â2(T − 1).
Con
erning xT−1, it is �fore
asted� either with T observations, so by â1(T ) − â2(T ), or
with T − 1 observations, so by â1(T − 1).
In 
ase of both identi
al fore
asts, it implies an estimate of â2 equal to â1(T )− â1(T − 1).
Choosing the β-bary
enter between these two 
ases, we get the proposition with γ = 2β.
A similar raisoning with two observations warrants the proposed initialization.

Noti
e that using X̂T = â1(T − 1) + â2(T − 1), (3) 
ould be written as:

â1(T ) = (1− α)(xT − X̂T ) + â1(T − 1) + â2(T − 1),(4)

â2(T ) = (1− γ)(1− α)[xT − X̂T ] + â2(T − 1)

to highlight the dependen
e on the last observation.

In this method, there is two 
onstants whi
h allows greater �exibility of use.

Exer
ise: Compare these update formulas from those obtained in the paragraph 1.2.2:

Exer
ise 4 Sheet 2.

The interpretation is similar to the previous 
ase: if these 
onstants are 
lose to 1,
fore
asts are � smooth� and depend heavily on the past. Thus, the fore
ast is:

X̂T (k) = â1(T ) + kâ2(T ).

We 
ould 
hoose the 
onstants α and γ minimizing the following fun
tion, 
al
ulated

on available observations:

(α, γ) 7→
T−1
∑

t=1

(xt+1 − X̂t+1)
2 =

T−1
∑

t=1

(xt+1 − â1(T )(α, γ)− (t+ 1− T )â2(T )(α, γ))
2.
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1.4.2 Additive seasonality

We look for a �tting of the series with the fun
tion:

t 7→ a1 + (t− T )a2 + St

where there is a trend a2 but also a seasonal (here additive) fa
tor St. The authors propose

update formulas following, where s is the number of �season � ', e.g. 12 monthly data, 4
for quarterly data, et
.

â1(T ) = (1− α)(xT − ŜT−s) + α[â1(T − 1) + â2(T − 1)],(5)

â2(T ) = (1− γ)[â1(T )− â1(T − 1)] + γâ2(T − 1),(6)

ŜT = (1− δ)[xT − â1(T )] + δŜT−s,(7)

where the 
onstants α, γ, δ ∈]0, 1[. These formulas are similar to (3) where xT is repla
ed

by its 'seasonalized' value; the se
ond is the same; the third is natural enough: we weight

between the previous value and xT − â1(T ) mat
hing predi
tion relationship given below:

X̂T (0) = â1(T ) + ŜT−s.

Finally the fore
ast is:

X̂T+k(T ) = â1(T ) + kâ2(T ) + ŜT+k−is, (i− 1)s < k ≤ is, ∀i.
The pra
ti
al problem is still the 
hoi
e of the smoothing 
onstants, here α, γ, δ.

Moreover, it is ne
essary to initialize these 
onstants. Gouriéroux and Monfort propose

the following set of initial 
onstants based on the need to have a priori estimates of

Ŝi, i = 1, . . . , s sin
e, by building, the re
urren
e begins only at T = s + 1 and requires

the data of Ŝi, i = 1, . . . , s:

â1(3) = 1/8x1 + 1/4x2 + 1/4x3 + 1/4x4 + 1/8x5

â1(4) = 1/8x2 + 1/4x3 + 1/4x4 + 1/4x5 + 1/8x6

â2(4) = â1(4)− â1(3) ; â1(2) = â1(3)− â2(4)

â1(1) = â1(3)− 2â2(4) ; Ŝi = xi − â1(i).

1.4.3 Multipli
ative seasonality

Here we look for a �tting of the series with the fun
tion:

t 7→ (a1 + (t− T )a2)St

where a2 is the trend 
oe�
ient but the seasonal fa
tor St is multipli
ative. The authors

propose the following update formulas, where s is the �season � number, e.g. 12 for

monthly data, 4 for quarterly data, et
.

â1(T ) = (1− α)
xT

ŜT−s

+ α[â1(T − 1) + â2(T − 1)],(8)

â2(T ) = (1− γ)[â1(T )− â1(T − 1)] + γâ2(T − 1),(9)

ŜT = (1− δ)
xT

â1(T )
+ δŜT−s,(10)
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where the 
onstants α, γ, δ ∈]0, 1[. Finally the fore
ast is:

X̂T (k) = [â1(T ) + kâ2(T )]ŜT+k−is, (i− 1)s ≤ k ≤ is, ∀i.

On
e again, the pra
ti
al problem is the 
hoi
e of the smoothing 
onstants, here α, γ, δ.

1.4.4 Pro
edure

R Software provides routines HoltWinter. Look at �A little Book of R for Times Series�.
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2 Regression

2.1 Introdu
tion

The prin
iple of regression applied to fore
asting is as follows: let numeri
al data be

indexed by time, meaning a set of points; the goal is to "�t" these points by a 
urve and

thus to extrapolate the future (and possibly the past!), or to re
onstru
t missing data by

interpolation of this 
urve. So, we have a series (ti, Xi)i = 1, · · · , n, in R
+ × R and we

are looking for a fun
tion f : R+ → R whi
h �minimizes� the quantity ((Xi − f(ti))i =
1, · · · , n). Here the 
riterium is the �least squares 
riterium", meaning to minimize the

appli
ation:

f 7→ ‖X − f(t)‖2 =
∑

i=1,··· ,n

(Xi − f(ti))
2.

The most 
ommon types of �tting are:

f(t) = a+ bt; a + bt + ct2; a n degree polynomial,

or for instan
e:

f(t) = a cos(ωt+ φ), periodi
 fun
tion;

a log t + b;
1

a+ bt
, re
ipro
al fun
tion;

a.bt; a.bt + c, exponential and modi�ed exponential fun
tion;

a.tb; a.tb + c, power and modi�ed power fun
tions;

a

1 + b.ct
, logisti
 fun
tion ;

exp[a.bt + c], Gompertz fun
tion.

Exer
ise : show whi
h of these �ttings 
an be redu
ed to linear regression by one or

more appropriate variable 
hanges.

The prin
iple is to "guess at sight" the type of fun
tion to 
hoose, a

ording to the

pro�le of the observed points; then to estimate the parameters by minimizing the quadrati


di�eren
e; �nally to validate the model by statisti
al tests on residuals, i.e. the random

variables (εi = Xi − f(ti), i = 1, · · · , n) on whi
h we make the assumption that the law

is a 
entered Gaussian law. So we do a Fisher test to know if ε are small enough.

2.2 Linear regression

It is the most used in pra
ti
e, even if it is not ne
essarily the most e�
ient!!

De�nition 2.1. The regression line of Y with respe
t to X is the line x → a+bx where

the parameters (a, b) minimize the quantity:

F (a, b) =

n
∑

i=1

(yi − a− bxi)
2,

11



meaning the so 
alled �least squares method�.

The interpretation of this line is as follows: if we draw on a graph (x, y) the population
points i with 
oordinates {(xi, yi)i = 1, ..., n}, this line is the one that passes as 
lose as
possible to all these points. Indeed, for every point i, the quantity (yi − a − bxi)

2
is the

square of the verti
al distan
e between this point and the line x → a+ bx.

2.2.1 Regression parameters

Above we de�ned fun
tion F , 
onvex, di�erentiabledepending on two variables. Thus a

point whi
h 
an
els both partial derivatives is a minimum for F. The 
onstants a and b
are the solutions of the linear system:

∂aF = −2

n
∑

i=1

(yi − a− bxi) = 0,

∂bF = −2
n

∑

i=1

(yi − a− bxi)xi = 0.(11)

So

n
∑

i=1

yi = na + b
n

∑

i=1

xi

n
∑

i=1

xiyi = a

n
∑

i=1

xi + b

n
∑

i=1

x2
i .

After some 
omputations, parameters a and b are:

b̂ =
Sx,y

σ2
x

; â = ȳ − x̄b̂,

where

Sx,y =

∑n

i=1 xiyi
n

− x̄ȳ,

x̄ and ȳ denoting the empiri
al means of the variables X and Y ; σx, σy are they empiri
al

standard deviations. Moreover here we use the �
ovarian
e�:

De�nition 2.2. The empiri
al 
ovarian
e of the variables X and Y is:

Sxy =
1

n

∑

i=1,...,n

(xi − x̄)× (yi − ȳ) =

∑n

i=1 xiyi
n

− x̄ȳ.

The 
oe�
ients â are b̂ are �estimated regression 
oe�
ients�; the line y = â+ b̂x is a

trend line, �tting Y with respe
t to X.

Proposition 2.3. We assume εi = Xi−a−bti is a 
entered Gaussian random variable with

varian
e σ2; then the estimates b̂ and â are too Gaussian random variables, respe
tively

N (b, σ2

nV ar(t)
) and N (a, σ2

n
(1 + t̄2

V ar(t)
)).

Standard routines provide these estimates and their law.

12



2.2.2 Fore
asting

We now 
an use this �tting line to fore
ast Y values using observed X values. Or to

fore
ast X values using new times ti:

yn+1 = â+ b̂xn+1, xn+1 = â+ b̂tn+1.

2.2.3 Correlation

The 
ovarian
e value belongs to the interval [−σx × σy, σx × σy]. The following does not

depend on the unit:

De�nition 2.4. The empiri
al 
orrelation 
oe�
ient of the statisti
al variables X
and Y is ρ̂x,y :=

Sxy

σx×σy
, or in temporal �tting 
ase: ρ̂t,x = Sxt

σx×σt
.

Remark that ρ̂ ∈ [−1,−1].
Exer
ise: prove ρ̂ ∈ [−1,−1] and moreover

ρ̂ = +1 ou − 1 ⇔ ∀i = 1, ..., n , yi = a+ bxi,

meaning a perfe
t linear �tting.

Interpretation: more ρ̂2 is 
lose to 1, better is the link between X and Y , the approx-
imation of Y by a+ bX , of X by a+ bt, is �valuable".

2.2.4 Study of the residuals

Having the estimates of a et b, it remains the di�eren
es, the �tting errors.

De�nition 2.5. The residuals are the di�eren
es

εi = xi − â− b̂ti.

These ones are supposed to be small sin
e these are mistakes made when admitting

the model X = a + bt. These residuals satisfy some properties:

- they are 
entered:

∑

i

εi = nx̄− nâ− b̂nt̄ = 0

using â.

- they are non 
orrelated with the ti :

∑

i

εi(ti − t̄) =
∑

i

(xi − â− b̂ti)ti = −1

2
∂bF = 0

using Equation (11).

13



- their varian
e is

s2(ε) =
1

n

n
∑

1

ε2i = σ2
y(1− ρ̂2).

If this quantity is �too high�, we 
an not a

ept the model. Indeed, we assume that the εi
are the values taken by a Gaussian random variable.Thus, it makes possible lo
ating aber-

rant values: the probability that the residuals are outside of the interval [−2s(e),+2s(e)]
is small (P{|ε| > 2σ} = 0.0456), and it 
ould be good to take a 
loser look at the 
orre-

sponding points.

Example : Let Y be the son's size and X the father's size. The estimates are

a = 84.843 ; b = 0.532 ; σ2
y = 39.73 ; ρ = 0.533 ; s2(e) = 28.44.

For x = 165
m, the average size of the son is estimated by y = 0.532 × 165 + 84.843 =
172.66.
More spe
i�
ally we get:

Proposition 2.6. We asume that εi = Xi−a−bti are 
entered Gaussian random variables

with varian
e σ2, the random variable

∑n
i=1

ε2i
σ2 law is the χ2

n−2 law, and it is independent

of the random variables â and b̂.

This result allows to get an unbiaised estimate of σ2, meaning

∑n
i=1

ε2i
n−2

, and a 
on�dent

interval for this parameter; this is a way to measure the error. In the general 
ase, we

do not really know this parameter σ2. On the other hand, we have the following result to


ontrol the estimates of a and b.

Proposition 2.7. The law of the random variables

T =
σt(b̂− b)
√

s2(ε)
n−2

=

√
n− 2V ar(t)(b̂− b)

√

V ar(t)V ar(X)− cov2(X, t)
,

and

S =
σt(â− a)

√

s2(ε)(V ar(t)+t̄2)
n−2

=

√

n(n− 2)V ar(t)(â− a)
√

∑

i t
2
i

√

V ar(t)V ar(X)− cov2(X, t)
,

is a Studentn−2 law.

2.2.5 Correlation 
oe�
ient test

There are statisti
al methods to know if the estimate of the 
orrelation 
oe�
ient ρ is

�signi�
antly� small. Indeed, ρ̂ is the value taken by an estimator, a random variable with

a known law. A
tually we show that the asso
iated variable F = (n − 2) ρ̂2

1−ρ̂2
law is a

Fisher-Snédé
or law of degrees of freedom (1, n− 2), whi
h makes it possible to test the

hypothesis ρ = 0 against ρ 6= 0. Thus we 
ompute the value taken by F and we examine

in the Fisher-Snede
or table if this value is small enough or not.

14



Exer
ise : n = 63 ; ρ̂ = 0.533 ; F = 24.206.
The probability that the random variable Fisher-Snede
or1,61 is so huge is almost negligi-

ble: we 
an not a

ept that ρ is zero.

Be 
areful! : when n is large, the value of F is too large, and almost always signi�
ant!

we then tend to reje
t the hypothesis ρ = 0..., maybe wrongly.

2.2.6 Regression of X with respe
t to Y

We 
an, in the same way that we try to adjust Y a

ording toX, try to adjustX a

ording

to Y. By symmetry, we simply �nd another regression line:

x = a′ + b′y, where b′ =
Sx,y

σ2
y

, a′ = x̄− ȳb′,

and we noti
e that the two slopes b and b′ are linked by the relation:

bb′ = ρ2x,y

whi
h means that the two lines are even 
loser than the 
oe�
ient 
orrelation is 
loser to

±1. Remind the test on the 
orrelation 
oe�
ient, 
f. (2.2.3).

2.2.7 The pra
ti
e

Look at these routines in sofware R BUT, there is no regression in 'a Little Book of R for

Time Series'. I will provide another booklet.

Using software Statgraphi
s, the 
ommand REG is the one for Simple regression whi
h


on
erns this model. Obviously, we have an interest in reading 
arefully the manual ...

The following s
reen shows where to name the variable to explain, then the explanatory

variable (eg time). We indi
ate linear for model then the probabilities of 
on�den
e for

the tests to do for validating the model obtained. After turning the pro
edure, we get a

se
ond s
reen with the digital outputs.

- inter
ept is the ordinate at x or t = 0,

- slope of the regression line.

After that, the standard deviation for â and b̂ are given. These ones allow to produ
e


on�dent ingterval, the value of Student variable, so we 
an test the hypotheses T or

S = 0. (
f. Proposition 2.7).

- varian
e analysis: the value residual is the sum of squared errors, with degrees of

freedom Df (here 152), then the F-ratio equal to (n− 2) ρ̂2

1−ρ̂2
; this one allow to do the test

of hypothesis ρ = 0 against ρ 6= 0.

- �nally, the last paragraph provides the ρ̂ estimate of ρ, its square and the estimate

of the standard deviation σ of the residuals. This number, residual, allows to build a


on�den
e interval for σ.

Returning to the main s
reen allows you to 
hoose the desired graphi
s. We 
an print:
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- plot �tted line, the �tted 
urve,

- plot residuals, the residueal 
urve, whi
h makes it possible to judge whether the

mistakes are a
tually small or not,

- save residuals allows to put these errors in a �le and to 
arry out tests on it,

- save predi
tions,

- la
k of �t test .

The 
ommand OUTLIER allows to ex
lude points from the analysis (only for the linear

model), for example: outliers, points of a past too far, points of the last period to use test

points. The user manual is identi
al to that of REG.

2.3 Non linear regression

As we saw in the exer
ise Se
tion 2.2.3, it is most often to redu
e linear regression to

model the least squares a

ording to the fun
tions listed below, for example:

f(t) = a cos(ωt+ φ), periodi
 fun
tion;

a log t+ b;
1

a + bt
, inverse fun
tion;

a.bt; a.bt + c, exponent and modi�ed exponent fun
tions;

a.tb; a.tb + c, power and modi�ed power fun
tions;

a

1 + b.ct
, logisti
 fun
tion;

exp[a.bt + c], Gompertz fun
tion.

If one 
an not simply redu
e to the linear 
ase, there are 
ases where one 
an minimize

by the least squares method.

Exer
ise: parabola �tting.

This model is solved by the software using the NONLIN pro
edure where the formula

of the adjustment fun
tion is expli
itly given.

2.4 Multiple Regression

In some e
onomi
 models, fore
asting 
an be done using several explanatory variables.

Indeed, prior statisti
al studies were able to dete
t "external" variables, parti
ularly well


orrelated with the variable studied (to be explained, �internal�.) For example, a 
ountry's

energy 
onsumption is a fun
tion of:

- industrial produ
tion,

- household 
onsumption,

16



- number of 
ars, et
.

and we try to fore
ast by the multiple linear regression:

Ŷ = aX1 + bX2 + cX3

where a, b, c are obtained by the least squares method, minimizing the appli
ation:

(a, b, c) 7→
∑

i

(yi − aX i
1 − bX i

2 − cX i
3 − d)2.

Thus we get the linear system:

∂a : a
∑

i

(X1
i )

2 + b
∑

i

X1
i X

2
i + c

∑

i

X1
i X

3
i + d

∑

i

X i
1 =

∑

i

X1
i Yi,

∂b : a
∑

i

X1
i X

2
i + b

∑

i

(X2
i )

2 + c
∑

i

X2
i X

3
i + d

∑

i

X i
2 =

∑

i

X2
i Yi

∂c : a
∑

i

X1
i X

3
i + b

∑

i

X3
i X

2
i + c

∑

i

(X3
i )

2 + d
∑

i

X i
3 =

∑

i

X3
i Yi

∂d : aX̄1 + bX̄2 + cX̄3 + d = Ȳ .

Exer
ise : exhibit the optimal estimates â, b̂, ĉ, d̂.

The routine MREG 
onsists in obtaining the estimates of the 
oe�
ients a, b, c, d. We

enter the name of the variable to be explained (or any other variable obtained by 
om-

bination of what exists) it is Dep var, then the name of the explanatory variables is

Ind.var.

The STEP pro
edure seeks, stepwise, the �best� variables to enter one by one, better

in the sense that one �rstly enter the best 
orrelated with Y (ρ(Y,Xi) = supj ρ(Y,Xj)), we
operate the regression of Y with respe
t to X , then we 
hoose the best 
orrelated variable

with the residual Y − âiXi, and so on until the Fisher test on 
orrelations be
omes not

signi�
ant.

Above has to be given in software R

2.5 Quality of the regression

In the linear 
ase, the histogram of the residuals is examined to 
he
k that they are

"a

eptable." The program also provides some 
riteria:

ME (mean error) is the residuals mean, theoreti
ally it 
ould be 0,

MSE (mean square error) is the mean of the squared residuals, s2(ε),

MAE (mean absolute error) is the mean of absolute values of the residuals,

MAPE (mean absolute per
entage error) is the mean of absolute values of the ratio

residuals/their estimates; the interest is that this mean does not depend on the 
hosen

unit,

MPE (mean per
entage error) is the mean of the values of the ratio residuals/their

estimates; on
e again, the interest is that this mean does not depend on the 
hosen unit,
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2.6 Durbin Algorithm

Perhaps Se
tion to skip.

This method �mixes� both regression and smoothing: indeed, the aim is to fore
ast Xn+1 using

the k previous observations, meaning (Xn,Xn−1, · · · ,Xn−k+1) using the least square method:

(12) X̂n+1(k) =

k
∑

i=1

ai(k)Xn+1−i

is the L2
proje
tion on the ve
torail subspa
e generated by (Xn,Xn−1, · · · ,Xn−k+1), so the

parameters ai(k) realize the minimum of the appli
ation:

F : (ai(k), i = 1, · · · , k) → E[Xn+1 −
k

∑

i=1

ai(k)Xn+1−i]
2

the minimum (=the error) is denoted as vk.

Thus we need some assumptions on the pro
ess Xn :

Hypothesis : the observations xi are the observed values of the random variables Xi, 
entered,

square integrable, stationary, meaning: for all n , cov(Xn,Xn+k) = γ(k). Remark that the

fun
tion γ is pair on Z: γ(k) = γ(−k).
De�nition : the fun
tion γ is the auto
ovarian
e fun
tion .

This fun
tion 
ould be estimated using the observed values. Then

Proposition 2.8. Under the previous assumptions, we get the re
ursive relations:

a1(1) =
γ(1)

γ(0)
; ai(k) = ai(k − 1)− ak(k)ak−i(k − 1) ; i = 1, ...k − 1,(13)

v0 = γ(0) ; v(k) = vk−1(1− ak(k)
2), k ≥ 1(14)

ak(k) =
γ(k)−∑k−1

i=1 γ(k − i)ai(k − 1)

vk−1
, k ≥ 2.(15)

Proof:

(i) k = 1 : X̂2 = a1(1)X1 where a1(1) realizes the minimum of the appli
ation a1 →
E[(X2 − a1X1)

2]. This appli
ation is a 
onvex di�erentiable fun
tion, so its minimum is realized

when the derivative is null: a1(1) =
γ(1)
γ(0) .

Let us denote:

En,k = the ve
torial subspa
e generated by (Xn, · · · ,Xn−k+1).

and Pn,k the proje
tor on En,k. Obviously

X̂n+1(k) = Pn,k(Xn+1) =

k
∑

i=1

ai(k)Xn+1−i.

We proje
t this equality on the smaller ve
tor spa
e En,k−1 thus on the one hand

Pn,k−1(X̂n+1) = Pn,k−1(Xn+1) =

k−1
∑

i=1

ai(k − 1)Xn+1−i,
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and on the other hand

Pn,k−1(X̂n+1) =

k−1
∑

i=1

ai(k)Xn+1−i + ak(k)Pn,k−1(Xn−k+1).

We then use the lemma:

Lemma 2.9. There is a �symmetry� between past and future, meaning: Pn+k,k(Xn) =
∑k

i=1 ai(k)Xn+i.

Proof: we get (12) by minimizing the appli
ation F , di�erentiable 
onvex fun
tion, thus

ai(k) are solution of the linear system

∇iF = −2γ(i) + 2

k
∑

j=1

ajγ(|i− j|) = 0, i = 1, · · · , k.

In the lemma, Xn+i 
oe�
ients have to minimize the appli
ation

ai → G(ai) = E[Xn−
∑k

i=1 ai(k)Xn+i]
2
. We 
an 
he
k that a
tually both linear systems are the

same; this ends the proof. •
Thus

Pn,k−1(Xn−k+1) = a1(k − 1)Xn−k+2 + a2(k − 1)Xn−k+3 + · · · + ak−1(k − 1)Xn.

We identify both expressions of Pn,k−1(X̂n+1), then yields the 
oe�
ient of Xn+1−i under two

expressions:

ai(k − 1) = ai(k) + ak(k)ak−i(k − 1),

meaning (13).

(ii) The proje
tion on {0} is ne
essarily null, X̂n+1 = 0, v0 =‖ Xn+1 ‖2= γ(0).

For 
omputing the error vkwe use the Pythagore Theorem:

vk = |Xn+1 − Pn,k(Xn+1)|22,

so:

vk−1 = |Xn+1 − Pn,k−1(Xn+1)|22 = vk + |Pn,k(Xn+1)− Pn,k−1(Xn+1)|22.
But

Pn,k(Xn+1)− Pn,k−1(Xn+1) = ak(k)[Xn−k+1 − Pn,k−1(Xn−k+1)].

Using Lemma 2.9 and the stationarity of the pro
essX, the squared norm of the ve
tor Pn,k(Xn+1)−
Pn,k−1(Xn+1) is ak(k)

2vk−1, so:

vk−1 = vk + ak(k)
2vk−1

meaning (14).

(iii) Using on
e again

Pn,k(Xn+1)− Pn,k−1(Xn+1) = ak(k)[Xn−k+1 − Pn,k−1(Xn−k+1)]

we 
ompute vk−1 = |Xn−k+1−Pn,k−1(Xn−k+1)|2. A
tually, using both forms of this ve
tor yields:

〈Xn−k+1 − Pn,k−1(Xn−k+1), Pn,k(Xn+1)− Pn,k−1(Xn+1)〉 = ak(k)vk−1
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Using the de�nition of the proje
tor Pn,k−1(Xn+1) ∈ En,k−1 and the left fa
tor above is orthog-

onal to En,k−1 :

ak(k)vk−1 = 〈Xn−k+1 − Pn,k−1(Xn−k+1), Pn,k(Xn+1)〉 = 〈Xn−k+1 − Pn,k−1(Xn−k+1),Xn+1〉.

But Pn,k−1(Xn−k+1) =
∑k−1

i=1 ai(k − 1)Xn+1−i so:

ak(k)vk−1 = γ(k)−
k−1
∑

i=1

ai(k − 1)γ(k − i).

•
Remark : One 
an interpret ak(k) as following: this 
oe�
ient is equal to the 
orrelation


oe�
ient between the ve
tors Xn+1−Pn,k−1(Xn+1) and Xn−k+1−Pn,k−1(Xn−k+1). It is named

partial 
orrelation 
oe�
ient. Indeed, remind the proof of (iii):

ak(k) =
〈Xn−k+1 − Pn,k−1(Xn−k+1),Xn+1〉

vk−1
(16)

=
〈Xn−k+1 − Pn,k−1(Xn−k+1),Xn+1 − Pn,k−1(Xn+1)〉

vk−1
(17)

so vk−1 is a
tually the squared norm of these ve
tors.

2.7 Innovation Algorithm

(
f [6℄, page 155 et sq.)

For fore
asting, it is interesting not to re
al
ulate all the 
oe�
ients ea
h time a new

information arrives while using it nevertheless. We therefore try to use the estimates

already obtained as well as the new observation to predi
t at best.

De�nition 2.10. Innovation is the �new� information at time t, meaning:

Zt = Xt − Pt−1(Xt),

where Pt is the proje
tion on Et, ve
torial subspa
e generated by {X1, · · · , Xt}.

Remarks :

(i) Et is also generated by the ve
tors {Z1, · · · , Zt}.
(ii) By 
onstru
tion, the ve
tors Zi are mutually orthogonal ve
tors.

Let vt−1 denote E(Xt − Pt−1(Xt))
2, the quadrati
 error or "risk". Parti
ularly v0 =

E(X1 − P0(X1))
2 = E(X1)

2 = γ(0) sin
e P0(X1) = 0.

Proposition 2.11. Let Pt(Xt+1) denote
∑t

j=1 τj(t)Zj, then re
ursively:

τ1(t) =
γ(t)

γ(0)

τj(t) =
1

vj−1
[γ(t+ 1− j)−

j−1
∑

i=1

τi(j − 1)τi(t)vi−1]; j ≥ 2(18)

v0 = γ(0), vt = γ(0)−
t

∑

j=1

τ 2j (t)vj−1 ; t ≥ 1(19)
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Proof: The re
ursion starts with P0(X1) = 0 so Z1 = X1 and v0 = γ(0).

Firstly remark that for j = 1 minimizing the appli
ation a ⇒ E(X2 − aX1)
2
yields

τ1(1) =
γ(1)
γ(0)

.

Sin
e the Zj are orthogonal, if j ≤ t :

〈Xt+1, Zj〉 = 〈Pt(Xt+1), Zj〉 = τj(t)E(Z2
j ) = τj(t)vj−1.

This means that

τj(t) =
〈Xt+1, Xj − Pj−1(Xj)〉

vj−1
;

writing Pj−1(Xj) =
∑j−1

i=1 τi(j − 1)Zi, j ≥ 2, we have to 
ompute the s
alars produ
ts

〈Xt+1, Zi〉 = 〈Pt(Xt+1), Zi〉 = τi(t)vi−1, and for j = 1, τ1(t) =
γ(t)
γ(0)

.

Thus (18) is proved.

To prove (19), on
e again we use the Pythagore theorem:

E(Xt+1)
2 = vt + E[Pt(Xt+1)]

2,

this is exa
tly (19) sin
e Pt(Xt+1) is a sum of mutually orthogonal ve
tors. •

For further fore
asting, we have the following proposition :

Proposition 2.12.

X̂n+k(n) = Pn(Xn+k) =
n

∑

i=1

τi(n+ k − 1)Zi.

Proof: standard, with

Pn(Xn+k) = Pn ◦ Pn+k−1(Xn+k) = Pn[

n+k−1
∑

i=1

τi(n+ k − 1)Zi].

Sin
e Zi are mutually orthogonal ve
tors, the proje
tion of Zi, i > n on En is null, so the

result. •
Pra
ti
ally, the rule is to repla
e by 0 the innovations of instants n + 1 to n + k − 1

whi
h a
tually are still unknown.
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3 Box and Jenkins' methods, general features

Developed in the 70s, these are very powerful methods whi
h make maximum use of the

fa
t that the evolution of the studied time series is 
onsidered as one of the a
hievements

of a sto
hasti
 pro
ess, endowed with a strong enough stru
ture. Indeed, on
e highlighted

the stru
ture, this allows to predi
t more 
on�dently the future series. The 
ounterpart

is the need for a fairly long period of observations for that the fore
ast is reliable. The

authors re
ommend 5 to 6 periods in the 
ase of periodi
 phenomena, and a minimum

of 30 observations in other 
ases.

These methods work very well for short-term fore
asts ma
roe
onomi
 series, espe
ially

for the industrial produ
tion indexes. In Finan
e, this method does not 
on
ern the

fore
ast of returns, but the one of volatility.

They are based on the assumption that ea
h observation depends quite strongly on

previous observations. Basi
ally, this addi
tion to the past repla
es multipli
ity of ob-

servations (in Statisti
s) to estimate the settings by applying the law of large numbers.

So are assumed strong enough assumptions, that the series is stationary, meaning the

two �rst moments do not depend on time. If this is not the 
ase, they must be done

�stationary� by transformations (
alled �lters) that remove trend and seasonality.

3.1 De�nitions

Thus, we 
onsider pro
esses, random series, indexed in Z and taking their values in R

(real numbers):

∀n ∈ Z, Xn is a random variable : (Ω,F , P ) → (R,B).

We try to model the appli
ation n 7→ Xn with a trend part, a seasonal 
omponent, and

the measurement error.

Hypothesis: The observations xn are the values of a 
entered, square-integrable, sta-

tionary, random pro
ess (Xn), i.e. there exists a fun
tion γ on Z su
h that ∀n, k ∈
Z , cov(Xn, Xn−k) = γ(k), where

cov(Xn, Xn−k) = E[(Xn − E(Xn))(Xn−k −E(Xn−k))].

Exer
ise 1: A
tually for any k ∈ Z, γ(k) = γ(−k).

De�nition 3.1. : Su
h a pro
ess is 
alled a se
ond order stationary time series,

S.T.S. for short.

The fun
tion γ is 
alled the auto 
ovarian
e fun
tion.

Moreover we de�ne the auto 
orrelation fun
tion ρ : k 7→ ρ(k) = γ(k)
γ(0)

.

There exists another notion: �stri
t stationarity� meaning the ve
tors (X1, · · · , Xk)
and (Xn+1, · · · , Xn+k) have the same law, for any pair (k, n).
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As for the 
ovarian
e fun
tion γ, for any k ∈ Z, ρ(k) = ρ(−k) and we de�ne the


orrelogram, graph of the appli
ation ρ, useful tool for analyzing the series as dis
ussed
later.

We also introdu
e:

De�nition 3.2. The partial auto 
orrelation fun
tion, P.A.C.F., is de�ned on N as:

r : N → R ; r(p− n) = 
or (Xn, Xp/Xn+1, · · · , Xp−1), p > n,

meaning

r(p− n) =

ov (Xn −X∗

n, Xp −X∗
p )

√

Var (Xn −X∗
n) Var (Xp −X∗

p )

whereX∗
j is the orthogonal proje
tion of Xj on the ve
tor spa
e Sn,p generated by (Xn+1, · · · , Xp−1),

and 
ompleted by r(1) = ρ(1).

Exer
ise 2: this expression only depends on (p− n).
Finally, we introdu
e the in�nite dimensional matrix of varian
e-
ovarian
e pro
ess X.

De�nition 3.3. : The Toeplitz matrix is

Γ, γ(i, j) = r(i− j), i, j ≥ 1.

This is a symmetri
 matrix.

3.2 Examples of se
ond order stationary times series, STS

First example of fundamental S.T.S. : the white noise.

De�nition 3.4. The (weak) white noise is a STS (εk) (with 
ovarian
e fun
tion equal

to γ with γ(k) = σ2δk,0.

If moreover there is independen
e between the random variables (εk), the white noise
is said strong.

For example, it 
ould be a Gaussian pro
ess with 
ovarian
e matrix Γ = σ2Id; in this


ase, there is in addition the orthogonality of the white noise 
omponents εn in L2
and

their independen
e, thanks to the Gaussian nature of the series.

A strong white noise is a white noise su
h that (εn) are i.i.d. (independent identi
ally

distributed).

This �white noise pro
ess� is used to model the measurement error. If the series is not


entered, the term is named �
olored noise�.

Se
ond example:
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De�nition 3.5. A moving average is a STS as follows:

Xn =
∑

k∈Z

akεn−k,

where the series (ak; k ∈ Z) ∈ l2 and ε is a white noise.

For short: M.A.= �moving average�.

Proposition 3.6. The 
ovarian
e fun
tion of a moving average Xn =
∑

k∈Z akεn−k is

written as γ(p) =
∑

k∈Z ap−ka−k ∀p ∈ Z.

Proof: : We write Xn and Xn−p de�nition; �rstly remark that these series are L2

on-

vergent using the hypothesis that the series (ak; k ∈ Z) ∈ l2. Se
ondly we 
ompute their


ovarian
e, meaning the mean of the produ
t sin
e these random variables are 
entered:

E[XnXn+p] = lim
K→∞

∑

|k|<K

ap+kak.

This limit exists sin
e

∀K > 0, (
∑

|k|<K

ap+kak)
2 ≤

∑

|k|<K

|ap+k|2
∑

|k|<K

|ak|2 < ∞.

This inequality is proved re
ursively: it is true for K = 2, and the property for K − 1
implies it for K. •

De�nition 3.7. When there exists a �nite number of non null 
oe�
ients ak, i.e. (a0, · · · , ap),
we say that X is a order p-moving average, MA(p) for short.

Third example: let ε be a white noise, and de�ne the re
ursive series

Xn = αXn−1 + εn.

Assuming that we know a parti
ular element of the series, for instan
e X0, assuming

it is a 
entered random variable in L2
we prove the following.

Proposition 3.8. Let X be the pro
ess de�ned as

Xn = αXn−1 + εn, ∀n ∈ Z, X0 ∈ L2, E[X0] = 0.

Assuming |α| < 1, and E[X2
n] ≤ M2, ∀n ∈ Z

−, then X is a STS.

Spe
i�
ally, this is a moving average with 
oe�
ients aj = αj , j ≥ 0. Its 
ovarian
e

fun
tion is de�ned by γ(k) = αk

1−α2 .

Exer
ise: prove this result.

De�nition 3.9. An order 1 auto regressive series X (AR(1) for short) is a pro
ess de-

pending only of the previous observation, step by step.
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At this point we 
an quote Fran
q and Zakoian [4℄ pp 7-11: Se
tions 1.3

Finan
ial Series and Se
tion 1.4 Random varian
e models whi
h show how ARMA

pro
esses are not appropriate to model Finan
ial Series as it is written above

in the introdu
tion

Indeed, on
e again, the �nan
ial data present some stylised fa
ts:

• non stationarity of pri
e series,

• absen
e of auto 
orrelation for the pri
e variations,

• unpredi
tability of returns,

• auto 
orrelation of the squared pri
e returns,

• volatility 
lustering ⇒ predi
tion of squared returns,

• fat tailed distributions (leptokurti
ity),

• leverage e�e
ts,

• seasonality.

3.3 Delay Operator, ARMA equations

In this subse
tion we 
onsider that X is a STS. In AR(1) example, Xn = aXn−1 + εn
and ∀(εn) (a given white noise) we get Xn as a fun
tion of Xn−1; more generally it is

interesting to get formal this passage from n−1 to n. Firstly we have to de�ne the spa
es
on whi
h is de�ned this passage.

De�nition 3.10. The 
losed subspa
e generated by the set {Xp, p ∈ Z, p ≤ n} in L2
is

denoted as HX
n .

This subspa
e of L2, HX
n , is named the linear past of X.

We note also:

HX
−∞ = ∩nH

X
n ; HX

+∞ = ∪nH
X
n = HX .

HX
−∞is named the asymptoti
 past, HX

the linear envelope.

These spa
es are used to 
hara
terize two spe
i�
 types of STS.

Following Fran
q and Zakoian [4℄ page 4, we 
onsider εn := Xn −Pn−1(Xn), weak or

strong white noise, where Pn−1 is the L2
orthogonal proje
tor on HX

n−1.

De�nition 3.11. When HX
−∞ = {0} the series is regular.

When HX
−∞ = HX

the series is singular. In this 
ase, the linear pasts are 
onstant and

the �innovation� does not bring any information.
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A �rst example of regular STS is the white noise: A
tually be
ause the pro
ess ε is

non 
orrelated, the ve
tor spa
e Hε
n = Rεn + Hε

n−1. So if Y ∈ Hε
n ∩ Hε

n−1, �rstly, Y =
aεn + P ε

n−1(Y ). But Y ∈ Hε
−∞ means that Y ∈ Hε

n−1, so a = 0. And so on, Y = 0 and ε
is a regular series.

Exer
ise, other examples: Look at the regularity of the following SCS:

Xn = g(n)X0 where g is an appli
ation from Z to R su
h that X is a SCS.

A white noise, a moving average, a unilatere moving average, an AR(1).

De�nition 3.12. The operator HX = ve
t {Xn, n ∈ Z} in L2
whi
h maps Xn to Xn−1

is named the delay operator denoted SX : SX(Xn) = Xn−1.

Proposition 3.13. The operator SX
is the unique isometry from HX

to HX
whi
h sends

Xn to Xn−1. Moreover, SX(HX) = HX
.

Proof: : The operator SX
is de�ned on the {Xn, n ≥ 0} and is extended by linearity

on any �nite linear 
ombinations of Xn. This is an isometry:

‖ SX(
∑

i

aiXi) ‖22 =
∑

i,j

aiajE[Xi−1Xj−1]

=
∑

i,j

aiajγ(i− j) =‖
∑

i

aiXi ‖22 .

Thus we 
ould extend this operator SX
by 
ontinuity on the whole HX

.

Uniqueness: it is a 
onsequen
e of the fa
t that if T 
ould be another solution, T = SX

on any Xn, so on any �nite linear 
ombinations of Xn so by 
ontinuity on HX
.

Any element of HX
is a limit of �nite linear 
ombinations of Xn, image by SX

of �nite

linear 
ombinations of Xn, so the equality SX(HX) = HX
. •

Theorem 3.14. (WOLD): Any STS 
ould be written as a unique sum of a regular and a

singular parts:

X = Xr +Xs

so that the spa
es HXr

and HXs

are L2
orthogonal.

Proof: Exer
ise, using Xs
n := PX

−∞(Xn) ; Xr
n := Xn − PX

−∞(Xn).
(i) By de�nition, Xn = Xs

n +Xr
n,

(ii) Any Y ∈ HXr

−∞ ⊂ HX
−∞, Y is orthogonal to HX

−∞ and Y ∈ HX
−∞ .... so Y = 0 and Xr

is a regular series.

(iii)Let Y ∈ HXs

n for any n, by de�nition of Xs
there exists Zn ∈ HX

n su
h that Y =
PX
−∞(Zn). Thus Y ∈ HX

−∞ and for any n HXs

n ⊂ HX
−∞.

Conversely, let Y ∈ HX
−∞. So on the one hand Y = PX

−∞(Y ) and on the other hand Y ∈ HX
n

for any n 
ould be written as Y =
∑

ni≤n ani
Xni

=
∑

ni≤n ani
PX
−∞Xni

=
∑

ni≤n ani
Xs

ni
∈

HXs

n .

•

Proposition 3.15. Both series Xr
and Xs

are too STS.
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Proof: : Firstly by 
onstru
tion they are 
entered and in L2.
Se
ondly we use the following:

Lemma 3.16. For all n ∈ Z, PX
n ◦ SX = SX ◦ PX

n+1.

Proof: for all p ∈ Z, PX
n ◦SX(Xp) = PX

n (Xp−1) is the unique ve
tor in HX
n su
h that

Xp−1−PX
n (Xp−1) is orthogonal to HX

n . So we have to 
ompute ∀k ≤ n the s
alar produ
t

〈Xk, Xp−1 − SX ◦ PX
n+1(Xp)〉. This s
alar produ
t is equal to:

〈Xk, Xp−1 − SX ◦ PX
n+1(Xp)〉 = γ(k − p+ 1)− 〈SX(Xk+1), S

X ◦ PX
n+1(Xp)〉

= γ(k − p+ 1)− 〈Xk+1, P
X
n+1(Xp)〉

sin
e SX
is an isometry. Then we use ∀k ≤ n,Xk+1 ∈ HX

n+1. Yields:

〈Xk, Xp−1−SX◦PX
n+1(Xp)〉 = γ(k−p+1)−〈Xk+1, P

X
n+1(Xp)〉 = γ(k−p+1)−〈Xk+1, Xp〉 = 0.

•
We apply this lemma to the 
omputation of the 
ovarian
e fun
tion of the series Xs, with
n ≥ p:

(Xs
n, X

s
p) = (PX

−∞(Xn), P
X
−∞(Xp)) = (SX ◦ PX

−∞(Xn), S
X ◦ PX

−∞(Xp)) =

(PX
−∞ ◦ SX(Xn), P

X
−∞ ◦ SX(Xp)) = (PX

−∞(Xn−1), P
X
−∞(Xp−1))

whi
h is exa
tly (Xs
n−1, X

s
p−1) by de�nition of Xs, step by step we go to

(Xs
n, X

s
p) = (Xs

n−p, X
s
0),

whi
h only depends on the di�eren
e n − p; this proves the stationarity of the series

(Xs). Then, the part Xr = X − Xs
is too a STS: Xr ∈ L2

with null expe
tation by

linearity, and we easily 
he
k the stationarity of E[(Xr
n, X

r
p)]. More spe
i�
ally using

E(XnX
s
p) = γs(n− p) we prove:

(Xn −Xs
n, Xp −Xs

p) = γ(n− p)− γs(n− p).

This shows the stationarity of Xr
and the relation between the 
ovarian
e fun
tions

γ = γr + γs. •
Remark 3.17. When a STS is not singular, the stri
t in
lusion ∀n, HX

n−1 ⊂ HX
n is

satis�ed. Indeed, if not, there exists n su
h that HX
n−1 = HX

n , and with the lemma and the

delay operator SX
we dedu
e that ∀n, HX

n−1 = HX
n , so the series is singular.

The following theorem provides a 
hara
terization of regular series.

Theorem 3.18. A series X is regular if and only if there exists a series (dn) in l2(R)
and a white noise ε su
h that:

Xn =
∑

p≥0

dpεn−p.

We 
ould 
hoose ε so that the linear pasts of X and ε are identi
al; then this white noise

and the asso
iated series (dn) are unique, ex
ept a possible multipli
ative 
oe�
ient.
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Indi
ation for the proof: re
ursively, de�ne εn = Xn − PX
n−1Xn, and

Xn =

p+1
∑

j=0

djεn−j + PX
n−pXn and let p → ∞.

De�nition 3.19. This spe
i�
 white noise is named innovation white noise.

The interest of su
h series lies in the following 
orollary: the proje
tion on the past is

then extremely simple.

Corollary 3.20. Let X be a regular series and ε its innovation white noise; for all m ≤ n,

PX
m (Xn) =

∑

p≥n−m

dpεn−p.

Proof: of the theorem:

By de�nition Xn ∈ Hε
n, so HX

n ⊂ Hε
n, ∩nH

X
n ⊂ ∩Hε

n = {0} sin
e ε is regular, and X is

regular.

Conversely, let X be a regular series. Let the pro
ess vn = Xn − PX
n−1(Xn); this is a

STS sin
e we 
ould 
ompute its 
ovarian
e fun
tion:

∀n, ‖ vn ‖=‖ SX(Xn+1)− PX
n−1 ◦ SX(Xn+1) ‖=‖ Xn+1 − PX

n (Xn+1) ‖=‖ vn+1 ‖

denoted σ2 = γ(0). By de�nition, vn ∈ HX
n and is orthogonal to HX

n−1 so to the previous

vi: thus it is a STS, and more spe
i�
ally it is a white noise denoted a0εn.

By de�nition, Xn = aεn + PX
n−1(Xn), εn ∈ HX

n and is orthogonal to HX
n−1, thus

HX
n is the dire
t sum Rεn ⊕ HX

n−1. By indu
tion we get that HX
n is the dire
t sum

⊕0≤i≤jRεn−i ⊕HX
n−j−1. On this dire
t sum we get the de
omposition

Xn =
∑

0≤i≤j

aiεn−i + PX
n−j−1(Xn)

Sin
e X is a regular series, limj→∞ PX
n−j−1(Xn) = 0 and X is equal to

∑

0≤i aiεn−i, whi
h
is the expe
ted form.

As a 
onsequen
e, Xn ∈ Hε
n and sin
e previously we knew that, εn ∈ HX

n , these two
spa
es are identi
al.

Uniqueness: we assume that there exists a pair (ε′, d′), (white noise, l2(C) element),

solution of the problem, so satisfying

∀n, P ε′

n = PX
n = P ε

n and Xn =
∑

0≤i

diεn−i =
∑

0≤i

d′iε
′
n−i.

On both hands of this equality we apply the operator PX
n−1, we get :

P ε
n−1(Xn) =

∑

1≤i

diεn−i;P
ε′

n−1(Xn) =
∑

1≤i

d′iε
′
n−i.
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But P ε′

n = P ε
n so the di�eren
e is null and ∀n, d′0ε′n = d0εn meaning the uniqueness ex
ept

a possible multipli
ative 
oe�
ient. •
The proof of the 
orollary is obvious sin
e the operators PX

m and P ε
m are the same, as

are the 
orresponding spa
es HX
m and Hε

m.

Remark 3.21. The identity between these two families of spa
es is interpreted as follows:

Linear pasts of X and ε 
oin
ide. If X is observed up to time n− 1, the additional infor-
mation provided by really new Xn is represented by aεn = Xn−PX

n−1(Xn), the `innovation'
as we 
alled it previously.

More generally, we will now study the 
lass of STS, solution of � ARMA " equations,

written using the delay operator SX .

De�nition 3.22. Let Xbe a STS and let ε be a white noise, P and Q two polynomials.

We say that X is solution of ARMA(P,Q) equation if this pro
ess satis�es for any

n in Z :

(20) P (SX)(Xn) = Q(Sε)(εn),

meaning there exist 
omplex 
oe�
ients (a0, · · · , ap) and (b0, · · · , bq) su
h that ∀n ∈ Z :

(21)

p
∑

i=0

aiXn−i =

q
∑

i=0

biεn−i.

In 
ase of p = 0, X is MA(q) ; in 
ase of q = 0, X is AR(p). In the general 
ase we

say that X is ARMA(p,q).

Su
h an equation 
ould be solved, either to get X fun
tion of pro
ess ε or the 
onverse so
that we 
ould �fore
ast� Xn based solely on its past. Roughly speaking, this 
onsists in a

�reverse� of operators P (SX) and = Q(Sε). This is out of our agenda, but the following
Se
tion 3.4 is an important result whi
h will be useful in the se
ond part of this 
ourse.

3.4 ARMA Equation: resolution

Let AP (X) = AQ(ε) an ARMA equation.

Theorem 3.23. (Fejer-Riesz) Let P et Q be non nul polynomials with no 
ommon roots,

those of P have modulus 6= 1. Then the ARMA equation is solvable as soon as the modulus

of P roots are > 1 and those of Q ≥ 1.

De�nition 3.24. This ARMA representation of X is 
alled 
anoni
al Fejer-Riesz


anoni
al representation.
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3.5 Estimate of the 
ovarian
e fun
tion of an ARMA Pro
ess

We 
ome ba
k to the observation of a STS, supposed to be stationary, non ne
essarily


entered:

X1, · · · , XN ,

The �rst step is to estimate E(X) and the 
ovarian
e fun
tion γX .

A

ording to standard probability or statisti
s le
ture notes in 
ase of sampling, E(X)
is estimated by Cesàro mean, that is justi�ed by the large numbers law (
f. [1℄):

Ê(X) ∼ 1

n

n
∑

i=1

Xi.

But the required assumptions are either the independen
e of the observations or the

martingale property for the pro
ess. Neither of these assumptions is 
he
ked in the 
ase

of STS. Nevertheless, with similar proofs to those found in a Probability 
ourse, we get

same type results. This is what will be used to justify approximates of the mean and of

the 
ovarian
e fun
tion.

Insert work with R: 'plotobs(X)' to draw the series graph; mean(X); a
f(X) to get


orrelogram, variogram, partial 
orrelogram...see TD-TP Agnes Lagnoux.

3.6 Large numbers law

Lemma 3.25. Let X1, · · · , Xn, n ∈ N be a series of random variables with mean m. We

put Sn :=
∑n

i=1Xi and assume:

∃M > 0, V ar(Xn) ≤ M2, V ar(Sn) ≤ nM2, ∀n ≥ 1.

Then

1
n
Sn → m in L2

and almost surely, when n goes to in�nity.

Proof: : Exer
ise.

(i) V ar( 1
n
Sn) = E[ 1

n
Sn − m]2 sin
e by hypothesis E(Sn) = nm. But V ar( 1

n
Sn) =

1
n2V ar(Sn) ≤ 1

n
M2 → 0 when n goes to in�nity, so yields the 
onvergen
e in L2.

(ii) Let Zk = sup{| 1
n
Sn −m|, n ∈ [k2, (k + 1)2[}. We put Yj := Xj −m so:

1

n
Sn −m =

1

n
Sk2 +

1

n
(Xk2+1 + · · ·+Xn − nm) =

1

n
(Sk2 − k2m+ Yk2+1 + · · ·+ Yn).

Then we dedu
e the bound:

Zk ≤
1

k2
(|Sk2 − k2m|+ |Yk2+1|+ · · ·+ |Y(k+1)2−1|)

so the L2
norm satis�es:

‖Zk‖2 ≤
1

k2
(‖Sk2 − k2m‖2 + ‖Yk2+1‖2 + · · ·+ ‖Y(k+1)2−1‖2).
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By hypothesis the �rst term is bounded by Mk, and any of the (k + 1)2 − 1 − k2 = 2k
following terms are equal to the X standard deviation bounded by M :

‖Zk‖2 ≤
1

k2
(Mk + 2kM) = 3M/k.

Thus the series E(
∑

k Z
2
k) =

∑

k E(Z2
k) ≤ ∑

k 9M
2/k2

is 
onvergent, proving that Zk


onverges almost surely, when k goes to in�nity, exa
tly meaning

1
n
Sn − m 
onverges

almost surely to zero, meaning

1
n
Sn 
onverges almost surely to m when n goes to in�nity.

•
We apply this lemma to a STS: sin
e V ar(Xn) = γX(0) the �rst hypothesis is satis�ed.

The se
ond hypothesis 
on
erns

V ar(Sn) = V ar(
n

∑

i=1

Xi) =
∑

1≤i,j≤n

γX(i− j) = nγX(0) + 2(n− 1)γX(1) + · · ·+ 2γX(n− 1)

the bound of whi
h not ne
essarily being nM.
But for instan
e a MA(q) pro
ess satis�es this hypothesis sin
e in this 
ase there exists a

�nite number of non null γX(i), γ(k) = 0 for all k > q:

V ar(Sn) ≤ n(γ(0) + · · ·+ γ(q)).

Exer
ise: under the assumption of the lemma above, in 
ase of an AR(1), Xn = aXn−1+εn
prove that the 
ovarian
e is γX(k) = ak

1−a2
.

3.7 Covarian
e fun
tion estimate, a
f, pa
f

Let k be �xed in N (if k < 0, γ(k) = γ(−k)). Using the large numbers law (or rather

Lemma 3.25), if the series Y : n → XnXn+k has �good� properties, a γX(k) reasonable
estimate is:

γ̄n(k) =
1

n

n
∑

j=1

XjXj+k.

For that remark that we need observations at least from time 1 to n+ k.
If we have only n observations, we propose:

γ∗
n(k) =

1

n

n−k
∑

j=1

XjXj+k.

Both estimates have the following properties:

(i) Bias

E[γ̄n(k)] = γ(k),

meaning this estimate has a null bias ∀n.

E[γ∗
n(k)] =

n− k

n
γ(k) → γ(k),
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this estimate bias is asymptoti
ally null.

Exer
ise: 
ompute the bias of these both estimates.

(ii) Convergen
e and quadrati
 error: here we need more hypotheses. To apply

Lemma 3.25, E(XnXn+k) = γ(k) but we also need the existen
e of a 
onstant M su
h

that V ar(XnXn+k) ≤ M2
and V ar(

∑n

i=1XiXi+k) ≤ nM2
meaning we would need at least

X ∈ L4
and supn E(X4

n) ≤ M2
. Now we detail the se
ond hypothesis:

∑

1≤i,j≤n

E[XiXi+kXjXj+k]− n2γ2(k) ≤ nM2

we 
ould (for instan
e) assume that the series distribution is Gaussian.

Be 
areful: in 
ase of �nan
ial series, it is a stylized fa
t that pri
e pro
esses are not

Gaussian, thus in su
h a 
ase we 
an not use this hypothesis.

But even if we 
an not assume Gaussian distribution, we nevertheless get:

Proposition 3.26. (
f. Da
unha Castelle, p. 104, ref in English?) Let X be a STS in

L4
su
h that supn E(X4

n) ≤ M2
and

lim
|n−m|→∞

[E[XnXn+kXmXm+k]− γ2(k)] = 0.

Then γ̄n(k) → γ(k) in L2.

Proof: : to admit.

(iii) Comparison between γ̄ and γ∗
: In the 
ase where supn E(X4

n) ≤ M2
when

n → ∞, k being �xed, we get,

Exer
ise: ‖γ̄n(k)− γ∗
n(k)‖2 ≤ k

n
M → 0.

Routines R: a
f, pa
f, to give an example.

3.8 ARMA model Identi�
ation, estimation of its parameters

Cf. Chapter 5.2 [4℄.

We assume that the 
hanges in the time series (di�erentiation, seasonal �tting) have been

made so that we have an e�e
tive 
entered STS, and that the obtained series is real, with

a rational spe
trum meaning that there exists p and q ∈ N, polynomials P degree p
and Q degree q, a white noise ε su
h that the series X is solution to the ARMA equation

APX = AQε.

The aim is to �nd p, q, P,Q meaning to identify the model. We have n observations of

X and we suppose that the 
ovarian
e fun
tion γ is known, a
tually estimated a

ording

to the method provided in Se
tion 3.7.

R 
ommand: arima, monmodele= ; X= ; with model parameters, simulation of pro
esses,

plotobs(X) ; mean(X) ; a
f(X) whi
h gives 
orrelogram, variogram; pa
f(X), et
.
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3.8.1 Estimation of P 
oe�
ients

Hypothesis: suppose that p, q are known in N and fun
tion γ is known and put a0 = 1.

(p, q) is minimal, meaning there does not exists polynomials P ′
and Q′

with smaller

degrees than p, q in the ARMA equation.

We detail the ARMA equation APX = AQε:

p
∑

0

aiXn−i =

q
∑

0

blεn−l.

We operate the s
alar produ
t in L2
of this equality with Xn−m for any m ≥ q + 1,

using that Xn−m is orthogonal to (AQε)n, yields for any m ≥ q + 1:

p
∑

0

aiγ(m− i) = 0.

This is a set of linear equations, the solution of whi
h being the ve
tor a in Rp
:

p
∑

1

aiγ(m− i) = −γ(m), ∀m ≥ q + 1.

Withm = q+1, · · · , q+p, we get a system of equations named Yule-Walker equations;

we denote Rpq the matrix of this system of p equations and p unknown variables:

| γ(q) · · · γ(q + 1− p) |
| · · · · · · · · · |

Rpq = | · · · · · · · · · |
| · · · · · · · · · |
| γ(q − 1 + p) · · · γ(q) |

and Γq+p
q+1 the ve
tor with 
oordinates γ(m), m = q + 1, · · · , q + p.

Proposition 3.27. If X is an ARMA(p,q) pro
ess, (p, q) being minimal, the matrix Rpq

is invertible and the 
oe�
ients of the polynomial P are the 
oordinates of the ve
tor

a = −R−1
pq Γ

q+p
q+1.

Proof: : to skip, remained for those interested enough.

We assume that detRpq = 0, meaning there exists p 
oe�
ients αi (at least one is non null)

su
h that :

p−1
∑

i=0

αiγ(q + j − i) = 0, ∀j = 0, · · · , p− 1.

On the other hand, for j = p, using Yule-Walker equations, we repla
e γ(q + p− i) :

p−1
∑

i=0

αiγ(q + p− i) = −
p−1
∑

i=0

αi

p
∑

1

ajγ(q + p− i− j) = −
p

∑

j=1

aj

p−1
∑

i=0

αiγ(q + p− i− j)
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whi
h is a sum of null terms for p − j = p − 1, · · · , 0 sin
e detRpq = 0. By indu
tion, step by

step, we get for j ≥ 0:
p−1
∑

i=0

αiγ(q + j − i) = 0.

This exa
tly re�e
ts the fa
t that ∀j ≥ 0 :

E[

p−1
∑

i=0

αiXn−iXn−j−q] = 0,

meaning ∀n ≥ 0,
∑p−1

i=0 αiXn−i is orthogonal to HX
n−q = Hε

n−q and we 
ompute its 
oordinates

in (Hε
n−q)

⊥
:

〈
p−1
∑

i=0

αiXn−i, εn−q+l〉 =
p−1
∑

i=0

αi〈Xn−i, εn−q+l〉

for l = 1, · · · , q and equal to 0 for l > q. Moreover using stationarity hypothesis 〈Xn−i, εn−q+l〉
does not depend on n: sin
e the white noise ε is the innovation white noise X is expressed as a

fun
tion of ε and this s
alar produ
t is stationary.

Denoting γl the 
oordinate of
∑p−1

i=0 αiXn−i on εn−q+l:

p−1
∑

i=0

αiXn−i =

q
∑

l=1

γlεn−q+l,

whi
h is an ARMA(p-1,q-1) relation and 
ontradi
ts the hypothesis that the pair (p, q) is 'mini-

mal'. •

3.8.2 Estimation of Q 
oe�
ients

This is a mu
h more di�
ult problem and we will only give a weak approa
h! We assume

P is known (we estimated it in previous subse
tion), q and γ are also known. We put

Yn =

p
∑

0

akXn−k.

We will only put the problem, then its resolution states on numeri
al analysis. The

existen
e of solutions is proved, but not the uniqueness.

The Y 
ovarian
e fun
tion is 
omputed as a fun
tion of the (bi) using that Y = AQε :

γY (0) =
∑q

0 b
2
k ; γY (1) =

q
∑

1

bkbk−1

γY (j) =
∑q

j bkbk−j ; γY (q) = bqb0

We look for a solution b su
h that the 
orresponding polynomial Q admits only zeros with

modulus ≥ 1.
Exer
ise: solve this system for q = 1, 2.

34



For q = 1, b2i , i = 0, 1 are

1
2

(

γ(0)±
√

γ(0)2 − 4γ(1)2
)

so we need γ(0) ≥ 2γ(1).

For q = 2..... awful 
omputations !

But the aim is to �nd the polynomial Q and there is another method, easier but using

the 
omplex numbers and what is 
alled �spe
tral density�. Sin
e Y is MA(q) pro
ess, its

spe
tral density is known to be

f(λ) =
1

2π

+q
∑

−q

γY (k)e−ikλ =
1

2π
|Q(e−iλ)|2

where you only have to know that z = e−iλ
is 2 dimensional, (cos(λ),− sin(λ)), and

satis�es 1/z = (cos(λ), sin(λ)) = eiλ. So we have to deal with:

Q(z)Q(1/z) = γY (0) +

+q
∑

1

γY (k)(zk + z−k)

With the 
hange of variable Z = z + 1/z we 
ompute zk + z−k
as a polynomial of Z, for

instan
e:

z2 + z−2 = Z2 − 2.

Thus Q(z)Q(1/z) 
ould be written as a polynomial U(Z) the zero of whi
h, Zj, are linked
to those of Q by the relation Zj = zj + 1/zj .

Pra
ti
ally, on
e found U and its zeros, we dedu
e those of Q, 
hosen with modulus ≥ 1.
The 
oe�
ients b are got from the expansion of Πj(z − zj).
Remark: CSS= Conditional Square Sum.

Routines R: for instan
e for ARMA(2,1) needs arima 
ommands:

arima(x, order = 
(2,0,1)),

seasonal = list(order = 
(2,0,1), period = NA),

xreg = NULL, in
lude.mean = TRUE,

transform.pars = TRUE,

�xed = NULL, init = NULL,

method = 
("CSS-ML", "ML", "CSS"), n.
ond,

SSinit = 
("Gardner1980", "Rossignol2011"),

optim.method = "BFGS",

optim.
ontrol = list(), kappa = 1e6)

X.ord=
(2,9,1)

X.arima=arima(X,ord=X.ord)

3.8.3 Chara
terization of parameters p and q

De�nition 3.28. A rational spe
trum ARMA pro
ess is said to be with minimal type

(p, q) when in the �
anoni
al Fejer-Riesz relation�, the degrees of P and Q are exa
tly p
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and q.
More 
on
retely: (p, q) is minimal when there does not exist polynomials P ′

and Q′
with

smaller degrees than p, q in the ARMA equation.

Consequen
e: if an ARMA(p',q') pro
ess is minimal type (p, q), ne
essarily p′ ≥ p, q′ ≥ q.

Theorem 3.29. A regular STS X is minimal type (0, q) if and only if

γ(m) = 0, ∀|m| ≥ q + 1 et γ(q) 6= 0.

Proof: Exer
ise.

Sin
e Xn =
∑q

j=0 bjεn−j, γ(k) = 0 as soon as |k| ≥ q + 1. For k = q, γ(q) = a0aq 6= 0.

Conversely, is X is regular, HX
n = Hε

n for any n. The assumption γ(m) = 0, ∀|m| ≥ q+1
that X0 is orthogonal to the spa
e Hε

−q−1. On the other hand, X0 ∈ Hε
0 . So X0 ∈ Hε

0 ∩
(Hε

−q−1)
T
whi
h is the ve
tor spa
e generated by ε0, ....ε−q so X is MA(q). •

De�nition 3.30. Let (p, q) be a pair of positive numbers. We say that a real series

rn, n ∈ Z satis�es a (p, q) indu
tion if there exists 
oe�
ients (α0, · · · , αp) with α0 =
1, αp 6= 0, su
h that

∑p

0 αjrm−j = 0, ∀m ≥ q + 1.

The indu
tion is minimal (p, q) if any pair (p′, q′) satisfying the property above are

su
h that p′ ≥ p, q′ ≥ q.

As we saw that in Subse
tion 3.8.1, the series γ(n) of an ARMA(p,q) satis�es a minimal

(p, q) indu
tion. With the γ (or at least their estimates), we 
an �nd p and q highlighting
the minimal indu
tion. A priori it is not so obvious but this property is equivalent to

others properties whi
h are easier to 
he
k numeri
ally.

Lemma 3.31. Let a series (xm, m ∈ Z) and the matrix Rs,t with (i, j) 
oe�
ient equal

to xi−j , i and j going from 1 to s. If rs,0 6= 0, the following are equivalent:

(i) The series (xm, m ∈ Z) satis�es a minimal indu
tion (p, q) relation;

(ii) among the determinants rs,t, we have rs,t 6= 0 while s ≤ p or t ≤ q, and rs,t = 0 if

s ≥ p + 1 and t ≥ q + 1.

(iii) rp+1,q 6= 0 and rp,q+1 6= 0 and rp+1,j = 0 if j ≥ q + 1.

(iv) rp+1,q 6= 0 and rp,q+1 6= 0 and ri,q+1 = 0 if i ≥ p+ 1.

Here rp,q will denote the determinant of the matrix Rp,q de�ned in Se
tion 3.8.1.

Remark 3.32. In 
ase of ARMA pro
ess, Rs,0 is the varian
e matrix of the ve
tor

(X1, · · · , Xs). The lemma hypothesis 
orresponds to the 
ase where the series X is non

singular.

So this hypothesis is not too strong;

Exer
ise: if X is non singular, prove that rs,0 6= 0. (Meaning: prove that rs,0 = 0 implies

X is singular.)

The lemma proof is tedious, for a 
omplete proof, look at Azen
ott and Da
unha-

Castelle, pp. 137-138.
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Proposition 3.33. Let X be a rational spe
trum STS. It is minimal type ARMA (p, q)
if and only if the 
ovarian
e fun
tion satis�es a minimal (p, q) indu
tion relation.

In this 
ase the indu
tion relation is the one whi
h provides the 
oe�
ients (ai) of the

polynomial P :

γ(m) + a1γ(m− 1) + · · ·+ apγ(m− p) = 0, ∀m ≥ q.

De�nition 3.34. The order s partial auto 
orrelation of X, denoted as Φ(s), is the
last 
oordinate of the ve
tor −R−1

s,0Γ
s
1.

Previously it was denoted r (De�nition 3.2)

r(p− n) =

ov (Xn −X∗

n, Xp −X∗
p )

√

Var (Xn −X∗
n) Var (Xp −X∗

p )
.

Proposition 3.35. Let a rational spe
trum non singular real STS X. It is an AR(p)

pro
ess if and only if Φ(s) = 0, ∀s ≥ p+ 1 and Φ(p) 6= 0.

Proof: : Ne
essary 
ondition as an exer
ise:

A
tually X is a regular series and we deal with an innovation white noise pro
ess ε.
(i) Remark that by de�nition Xn − X∗

n is orthogonal to the ve
tor spa
e generated by

{X1, ..., Xn−1} and X∗
0 belongs to this spa
e so E[(Xn − X∗

n)X
∗
0 ] = 0. Thus r(n) is pro-

portional to E[(Xn −X∗
n)X0].

(ii) Sin
e X is AR(p), Xn =
∑p

j=1 ajXn−j + εn. Let n > p. So X∗
n =

∑p

j=1 ajXn−j sin
e εn
is orthogonal to the spa
e {X1, ..., Xp−1} ⊂ Hε

n−1. Thus E[(Xn −X∗
n)X0] = E(εnX0) = 0.

and r(n) = 0 for all n > p.
(iii) Finally look at r(p) :

Xp =

p
∑

j=1

ajXp−j+εp =

p−1
∑

j=1

ajXp−j+apX0+εp , X
∗
p =

p−1
∑

j=1

ajXp−j+apX
∗
0 , Xp−X∗

p = ap(X0−X∗
0 )+εp

so E[(Xp −X∗
p )X0] = apE[(X0 −X∗

0 )
2] and r(p) = ap 6= 0.

Conversely, to prove the su�
ient 
ondition, we use Lemma 3.31. We 
onsider the

Cramer system:

Rs,0α = −Γs
1.

We noti
ed that, for a non singular series, rs,0 = det Rs,0 6= 0. By performing the Cramer

resolution, the last 
oordinate of α is:

−det R′
s,0

rs,0

where R′
s,0 is the matrix Rs,0 with the last 
olumn repla
ed by Γs

1. Using a series of s
permutations, we see that R′

s,0 is a
tually Rs,1, and the last 
oordinate of α is: (−1)s rs,1
rs,0

.

We then 
an express the hypothesis

Φ(s) = 0, ∀s ≥ p+ 1 and Φ(p) 6= 0

as rs,1 = 0 ∀s ≥ p+1 and rp,1 6= 0, meaning the property (iv) in Lemma 3.31 when q = 0
whi
h is a 
hara
terization of an AR(p). •
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