
2019, Marh 4th-14th John Von Neumann Institute

Master QCF

Time series/Foreasting, ourse: 16 h + exerises: 8h.

Foreasting disipline is an issue of Statistis. Indeed, the aim is to answer the following

kind of problem: a system X is evolving in time, it is observed and one would like to

predit the future. Exemple: we an try to �ll �holes� in a time series (missing data).

Generally, underlies a modeling problem: it is to �nd the mathematial �model� that

realizes the better onnetion between a variable and the time.

The methods are multiple. The priniple is to �nd a mathematial modeling: for instane

the series X is to foreast as a funtion of time. Given the available observations, we try

the �best� funtion f (the optimality riterion depending on the method) suh as X ≈ f(t)
where t is time. Namely, we onsider that the observations are a set (X(t−i), i = 1, · · · , n).
This ourse presents three types of methods.

- The Smoothing (Brown, Holt and Winters, about the sixties) orresponds to the

intuitive idea of �smoothing� the urve obtained using points observed for a smooth urve;

smoothing provides X(t) in terms of the past of X.

- Linear regression, really simple statistial method.

- Proesses ARMA, ARIMA, SARIMA (Box and Jenkins): sophistiated meth-

ods, where is exhibited a linear funtion of X(t) and its past values X(t− i), i = 1, · · · , n.

Depending on the ases, one or the other of these methods are more suitable. We an not

exlude one of them a priori. In the same study, it is onvenient to use them eah oth-

ers and then ompare their respetive performanes before �xing our hoie. A seletion

riterion is obviously the quality of the foreast. Eah method proposes statistial tests

that allow to judge the quality of �t (between the urve obtained and the observations).

An empirial way ould be added: to reserve some �witnesses spots� and to do the study,

exluding them, and judging the error on witnesses.

For the onrete use of these methods it is reommended to use the free software "R":

https://ran.r-projet.org/do/manuals/r-release/R-intro.pdf

The terminal test will be suh a study on onrete data, with proposed models and

their omparison.
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1 Smoothing

(f. Chapter IV, Gouriéroux-Monfort, [6℄)

1.1 Simple exponential smoothing

1.1.1 De�nition, priniple

This method leads to estimate the values of the series at times T + k as funtion of the

past values, exponentially, meaning:

(1) ∀k ≥ 1, X̂T+k = (1− β)
T−1
∑

i=0

βixT−i

when T observations xi are available, β ∈]0, 1[. The interpretation is the following: xT−j

has less in�uene as j is high (more past).

In ase of β lose to 1, immediate past is less important than deep past; the foreasting

is rigid; In ase of β lose to 0, immediate past is more important than deep past, the

foreasting is �exible.

Warning: the foreasting is onstant in the future: it is smoothing somehow �horizon-

tal�.

1.1.2 Update

Not to have to realulate the total sum of formula (1), we have an � updating� formula:

(2) X̂T+1 = (1− β)xT + βX̂T

The proof is simple: simply apply the formula (1) to k = 1 and k = 0 but with T − 1
observations instead of T and to the linear ombination X̂T+1 − βX̂T to �nd (2). We an

interpret (2) as following:

• either let us do the enter of gravity between the last foreast and the new observa-

tion,

• or in suh similar form X̂T+1 = X̂T + (1 − β)(xT − X̂T ) we add a weighting of

innovation to the previous foreast.

1.1.3 Interpretation

Suppose we seek the better onstant a to �t the series at a onstant using the least squares,
but with an exponential weighting, i.e., we try to minimize the funtion:

F : a 7→
T−1
∑

i=0

βi(xT−i − a)2.

2



The minimum of F is reahed at

ã =
1− β

1− βT

T−1
∑

i=0

βixT−i,

i.e. roughly speaking, X̂T+1 is little di�erent of ã when T is high enough (meaning

a lot of observations). Thus, the interpretation of X̂T+1 is the better onstant �tting

the whole (βi)-weighted series. This allows to onlude that this method is ompletely

inappropriate in ase of trending or seasonality. These points will be the subjet of the

following setions.

1.1.4 How to hoose the onstant β

Reall

• β = 1− ε, rigid, dependene from past,

• β = ε, �exible foreasting, low dependene on the past.

But there is a more objetive riterion for hoosing this smoothing onstant: one hooses

β whih minimizes errors made replaing the observations by their predition, namely, for

t = 1, · · · , T − 1, xt+1 replaed by X̂t+1 = (1− β)
∑t−1

i=0 β
ixt−i. So the aim is to minimize

on the interval [0, 1] the appliation :

F : β 7→
t−1
∑

t=1

(xt+1 − (1− β)

t−1
∑

i=0

βixt−i)
2.

In the general ase, the omputations are tedious and inextriable. Nevertheless, there

is neessarily a solution sine F is a ontinuous funtion on a ompat. The study of

its variations is ompliated. Therefore a speial ase ould be solved when xk are the

values of the random variables Xk, stationary entered 2-order series with the ovariane

funtion γ(k) = ρ|k|, |ρ| < 1. And rather than seek to minimize the sum of observed

squared deviations, we ould minimize their mean:

G : β 7→ E[(Xt+1 − (1− β)

t−1
∑

i=0

βiXt−i)
2].

It yields

G(β) = 1− 2(1− β)

t−1
∑

i=0

βiρi+1 + (1− β)2
∑

i,j≤t−1

βi+jρ|i−j|.

We suppose t high enough and we ompute the last term:

∑

i,j

βi+jρ|i−j| =
∞
∑

i=0

β2i + 2
∞
∑

i=0

∞
∑

j=i+1

βi+jρ|i−j| =
1

1− β2
+

2ρβ

(1− β2)(1− ρβ)

so G(β) = 1− 2
(1− β)ρ

(1− ρβ)
+

1− β

1 + β
+

2ρβ(1− β)

(1 + β)(1− ρβ)
= 2

1− ρ

(1 + β)(1− ρβ)
.
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The optimum is depending on ρ and on the position of

1−ρ

2ρ
with respet to 0 and 1. Let

be the logarithmi derivative of G with respet to β : the denominator is positive and the

numerator is 2ρβ − 1 + ρ.

(i) if 0 < 1−ρ

2ρ
< 1, i.e. ρ > 1/3, the optimum is β̂ = 1−ρ

2ρ
,

(ii) if

1−ρ

2ρ
≥ 1, i.e. ρ ≤ 1/3, the optimum is β̂ = 1.

This means that in the ase of a low orrelation, this is not a good method: the � best�

foreast is X̂ = 0 whih on the one hand is not very interesting and on the other hand

ertainly gives rise to very large errors. We must seek in this ase another method.

In ase (i) (good orrelation), the minimum value of G when β̂ = 1−ρ

2ρ
is:

G(
1− ρ

2ρ
) =

8ρ(1− ρ)

(1 + ρ)2
.

In pratie, if we trae the family of urves representing Gρ(β) we �nd that � good � β
values are in the range of 0.7 to 0.8 orresponding to values of ρ around 0.4.

Another good and solvable example is the ase when the auto-ovariane funtion γ
is zero for |k| large enough, for example, the series in Exerise 4 of the sheet 1. In suh a

ase we an �nd an optimal β.

1.2 Double exponential smoothing=Lissage exponentiel double

1.2.1 De�nition, priniple

This method is onvenient when a linear trend is possible. The priniple is to �t the series

to a line: a1 + (t− T )a2 instead of a onstant:

X̂T+k = â1(T ) + kâ2(T )

where T is the length of the foreasting. We look for the onstants â1(T ) and â2(T ) whih
minimize the following appliation:

F : (a1, a2) 7→
T−1
∑

j=0

βj(xT−j − a1 + a2j)
2

meaning the quadrati mean (weighted exponentially by βj
) of the errors whih are re-

sulting of the replaement of observation xT−j by the estimate with a trend: a1 − a2j.

Using standard formulas

∑

j≥1 jβ
j = β

(1−β)2
or

∑

j≥1 j
2βj = β(1+β)

(1−β)3
we dedue both

partial derivatives of the onvex funtion F , meaning:

−1

2
∇1F ≃

T−1
∑

j=0

βjxT−j − a1
1

1− β
+ a2

β

(1− β)2
,

−1

2
∇2F ≃

T−1
∑

j=0

βjjxT−j − a1
β

(1− β)2
+ a2

β(1 + β)

(1− β)3
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asuming one again T lose to in�nity to simplify the omputations. Let be:

S1(T ) = (1− β)

T−1
∑

j=0

βjxT−j named as �smoothed series� ;

S ′
2(T ) = (1− β)

T−1
∑

j=0

βjjxT−j ,

after tedious but straightforward omputations, the unique pair aneling the gradient F
is:

â1(T ) = (1 + β)S1(T )− (1− β)S ′
2(T ),

â2(T ) = (1− β)S1(T )−
(1− β)2

β
S ′
2(T ).

1.2.2 Update

For updating the oe�ients ai(T ) remark that:

S1(T )− βS1(T − 1) = (1− β)xT ,

and we dedue the simple updating:

S1(T ) = (1− β)xT + βS1(T − 1).

The updating of the sum S2 is more di�ult; we introdue the series � doubly� smoothed:

S2(T ) = (1− β)
T−1
∑

j=0

βjS1(T − j)

Exerise: prove the relation between S2 and S ′
2:

S ′
2(T ) =

1

1− β
S2(T )− S1(T ).

Updating this new sum is a little bit simpler. We prove:

S2(T ) = βS2(T − 1) + (1− β)2xT + β(1− β)S1(T − 1).

Then we dedue (one again after tedious but straightforward omputations!!) the up-

datings:

â1(T ) = xT (1− β2) + β2[â1(T − 1) + â2(T − 1)],

â2(T ) = xT (1− β)2 + â2(T − 1)− (1− β)2[â1(T − 1) + â2(T − 1)].
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1.2.3 Proedure

look for routines in software R

Statgraphis sofware provides some routines: BROWN, three options : simple (no

trend), linear(meaning �double" or linear trend) and quadrati (whih ould be named

�triple" and orresponding to a quadrati trend. We need the smoothing onstant, here

named: �smoothing onstant alpha"...

1.3 Generalized Exponential Smoothing

We will try to �t the observations to more sophistiated funtions, more than the onstant

funtion or the line, in partiular to take in aount the seasonality (periodi funtions).

The �rst to do that was Brown (1962) who proposes the following tool.

1.3.1 State-transition matries

De�nition 1.1. We say that f : Z 7→ R
n
is with State-transition matrix if there exists

a matrix A with non null determinant and suh that:

f(t) = Af(t− 1), ∀t ∈ Z.

The priniple of the generalized exponential smoothing is to �t the series Xt with

ϕ(t− T ) where ϕ(t) =
∑n

i=1 aifi(t). Look at some examples:

(a) ϕ(t) = a is Subsetion 1.1, simple smoothing. It is obtained with the onstant

funtion f(t) = 1 and the matrix A = 1 in 1−dimension. ThenX̂T+k = ϕ(k) = â(T ).

(b) ϕ(t) = a1 + a2t is Subsetion 1.2, double smoothing. It is obtained with the

funtion f(t) = (1, t) and the matrix A in 2−dimension:

1 0

1 1

Atually the determinant of this matrix is non null. Thus, X̂T+k = ϕ(k) = â1(T )+â2(T )k.

() ϕ(t) = a1 sinωt + a2 cosωt, is obtained with the funtion f(t) = (sinωt, cosωt)
and the matrix A in 2−dimension:

cosω sinω

− sinω cosω

Atually the determinant of this matrix is non null. Thus, X̂T+k = ϕ(k) = â1(T ) sinωk+
â2(T ) cosωk.

(d) ϕ(t) = aeαt, is obtained with the funtionf(t) = eαt and the matrix A = eα in

1−dimension. Atually the determinant of this matrix is non null. Thus, X̂T+k = ϕ(k) =
â(T )eαk.
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1.3.2 The method

We foreast Xt with the salar produt in R
n, ϕ(t− T ) = 〈a, f(t− T )〉. The funtion f

being �xed (it is the �form" of the �tting, the smoothing) we look for an optimization with

respet to a, meaning to minimize the appliation, omputed on the available observations:

G : a 7→
T−1
∑

j=0

βj(xT−j − 〈a, f(−j)〉)2,

so we have to anel the gradient of the funtion G, a onvex funtion:

−1

2
∇iG =

T−1
∑

j=0

f i(−j)βj(xT−j − 〈a, f(−j)〉) = 0.

Let be Y the vetor (xT , · · · , xT − j, · · · , x1), Fβ the matrix with general oe�ient

f i(−j)βj
arrow i and olumn j. The above system admits the matrix writing:

Fβ.F
t.a = Fβ.Y.

Let be the optimal vetor:

â(T ) = (Fβ.F
t)−1Fβ.Y.

To be simpler, as above , we suppose T high enough in FβF
t
i.e. T ∼ ∞ and sine 0 < β <

1 all the series are onvergent, so the matrix FβF
t
with general term

∑

k≥0 f
i(−k)βkf j(−k)

does not depend on T .
Exerise: to solve the examples () and (d).

1.3.3 Update

We reall â(T ) = (Fβ.F
t)−1

∑T−1
j=0 βjf(−j)xT−j .

In the expression

∑T−1
j=0 βjf(−j)xT−j we an fous on the last observation:

T−1
∑

j=0

βjf(−j)xT−j = f(0)xT +
T−1
∑

j=1

βjf(−j)xT−j = f(0)xT + β
T−2
∑

j=0

βjf(−j − 1)xT−1−j .

But the hypothesis implies f(t) = Af(t− 1), so f(−j) = Af(−j − 1) and:

â(T ) = (Fβ .F
t)−1f(0)xT + β(Fβ.F

t)−1A−1(Fβ .F
t)â(T − 1).

This means that â(T ) ould be written as gxT + Gâ(T − 1) with g = (Fβ.F
t)−1f(0)

and G = β(Fβ.F
t)−1A−1(Fβ.F

t), and these matries do not depend on time, so they are

omputable from the beginning.

As previously we have some updating formulas whih stress the so alled �innovation�:

â(T ) = (g.f t(1) +G)âT−1 + g(xT − X̂T (T − 1)).

Exerise 4, sheet 2.

The most important problem, given the observations graph, is the reognition of the

smoothing urve dedued from the funtion f . It is less reliable than Box and Jenkins'

methods that we will see in the third hapter, but, nevertheless, it may be useful.
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1.4 Holt et Winters' methods

They are based on Winters (1960, f. [12℄) seminal work, or Harrison [8℄.

1.4.1 No seasonality

The priniple is the �tting of Xt on a1 + (t− T )a2 but with di�erent updating

â1(T ) = (1− α)xT + α[â1(T − 1) + â2(T − 1)], 0 < α < 1

â2(T ) = (1− γ)[â1(T )− â1(T − 1)] + γâ2(T − 1), 0 < α, γ < 1.(3)

The initial onstants are arbitrary, but the pratie advises to take:

â1(2) = x2 ; â2(2) = x2 − x1.

This an be understood as follows: â1(T ) is the �foreast� X̂T with T observations, but

the observation is xT . Otherwise, with T − 1 observations, X̂T = â1(T − 1) + â2(T − 1).
The update â1 is the enter of gravity between these two possibilities of X̂T .
Similarly for â2, we an �foreast� xT+1 either with T observations, and it is â1(T )+ â2(T ),
or with T −1, and it is â1(T−1)+2â2(T −1). In ase of both idential foreasts, it implies

an estimate of â2 equal to −â1(T ) + â1(T − 1) + 2â2(T − 1).
Conerning xT−1, it is �foreasted� either with T observations, so by â1(T ) − â2(T ), or
with T − 1 observations, so by â1(T − 1).
In ase of both idential foreasts, it implies an estimate of â2 equal to â1(T )− â1(T − 1).
Choosing the β-baryenter between these two ases, we get the proposition with γ = 2β.
A similar raisoning with two observations warrants the proposed initialization.

Notie that using X̂T = â1(T − 1) + â2(T − 1), (3) ould be written as:

â1(T ) = (1− α)(xT − X̂T ) + â1(T − 1) + â2(T − 1),(4)

â2(T ) = (1− γ)(1− α)[xT − X̂T ] + â2(T − 1)

to highlight the dependene on the last observation.

In this method, there is two onstants whih allows greater �exibility of use.

Exerise: Compare these update formulas from those obtained in the paragraph 1.2.2:

Exerise 4 Sheet 2.

The interpretation is similar to the previous ase: if these onstants are lose to 1,
foreasts are � smooth� and depend heavily on the past. Thus, the foreast is:

X̂T (k) = â1(T ) + kâ2(T ).

We ould hoose the onstants α and γ minimizing the following funtion, alulated

on available observations:

(α, γ) 7→
T−1
∑

t=1

(xt+1 − X̂t+1)
2 =

T−1
∑

t=1

(xt+1 − â1(T )(α, γ)− (t+ 1− T )â2(T )(α, γ))
2.
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1.4.2 Additive seasonality

We look for a �tting of the series with the funtion:

t 7→ a1 + (t− T )a2 + St

where there is a trend a2 but also a seasonal (here additive) fator St. The authors propose

update formulas following, where s is the number of �season � ', e.g. 12 monthly data, 4
for quarterly data, et.

â1(T ) = (1− α)(xT − ŜT−s) + α[â1(T − 1) + â2(T − 1)],(5)

â2(T ) = (1− γ)[â1(T )− â1(T − 1)] + γâ2(T − 1),(6)

ŜT = (1− δ)[xT − â1(T )] + δŜT−s,(7)

where the onstants α, γ, δ ∈]0, 1[. These formulas are similar to (3) where xT is replaed

by its 'seasonalized' value; the seond is the same; the third is natural enough: we weight

between the previous value and xT − â1(T ) mathing predition relationship given below:

X̂T (0) = â1(T ) + ŜT−s.

Finally the foreast is:

X̂T+k(T ) = â1(T ) + kâ2(T ) + ŜT+k−is, (i− 1)s < k ≤ is, ∀i.
The pratial problem is still the hoie of the smoothing onstants, here α, γ, δ.

Moreover, it is neessary to initialize these onstants. Gouriéroux and Monfort propose

the following set of initial onstants based on the need to have a priori estimates of

Ŝi, i = 1, . . . , s sine, by building, the reurrene begins only at T = s + 1 and requires

the data of Ŝi, i = 1, . . . , s:

â1(3) = 1/8x1 + 1/4x2 + 1/4x3 + 1/4x4 + 1/8x5

â1(4) = 1/8x2 + 1/4x3 + 1/4x4 + 1/4x5 + 1/8x6

â2(4) = â1(4)− â1(3) ; â1(2) = â1(3)− â2(4)

â1(1) = â1(3)− 2â2(4) ; Ŝi = xi − â1(i).

1.4.3 Multipliative seasonality

Here we look for a �tting of the series with the funtion:

t 7→ (a1 + (t− T )a2)St

where a2 is the trend oe�ient but the seasonal fator St is multipliative. The authors

propose the following update formulas, where s is the �season � number, e.g. 12 for

monthly data, 4 for quarterly data, et.

â1(T ) = (1− α)
xT

ŜT−s

+ α[â1(T − 1) + â2(T − 1)],(8)

â2(T ) = (1− γ)[â1(T )− â1(T − 1)] + γâ2(T − 1),(9)

ŜT = (1− δ)
xT

â1(T )
+ δŜT−s,(10)
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where the onstants α, γ, δ ∈]0, 1[. Finally the foreast is:

X̂T (k) = [â1(T ) + kâ2(T )]ŜT+k−is, (i− 1)s ≤ k ≤ is, ∀i.

One again, the pratial problem is the hoie of the smoothing onstants, here α, γ, δ.

1.4.4 Proedure

R Software provides routines HoltWinter. Look at �A little Book of R for Times Series�.
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2 Regression

2.1 Introdution

The priniple of regression applied to foreasting is as follows: let numerial data be

indexed by time, meaning a set of points; the goal is to "�t" these points by a urve and

thus to extrapolate the future (and possibly the past!), or to reonstrut missing data by

interpolation of this urve. So, we have a series (ti, Xi)i = 1, · · · , n, in R
+ × R and we

are looking for a funtion f : R+ → R whih �minimizes� the quantity ((Xi − f(ti))i =
1, · · · , n). Here the riterium is the �least squares riterium", meaning to minimize the

appliation:

f 7→ ‖X − f(t)‖2 =
∑

i=1,··· ,n

(Xi − f(ti))
2.

The most ommon types of �tting are:

f(t) = a+ bt; a + bt + ct2; a n degree polynomial,

or for instane:

f(t) = a cos(ωt+ φ), periodi funtion;

a log t + b;
1

a+ bt
, reiproal funtion;

a.bt; a.bt + c, exponential and modi�ed exponential funtion;

a.tb; a.tb + c, power and modi�ed power funtions;

a

1 + b.ct
, logisti funtion ;

exp[a.bt + c], Gompertz funtion.

Exerise : show whih of these �ttings an be redued to linear regression by one or

more appropriate variable hanges.

The priniple is to "guess at sight" the type of funtion to hoose, aording to the

pro�le of the observed points; then to estimate the parameters by minimizing the quadrati

di�erene; �nally to validate the model by statistial tests on residuals, i.e. the random

variables (εi = Xi − f(ti), i = 1, · · · , n) on whih we make the assumption that the law

is a entered Gaussian law. So we do a Fisher test to know if ε are small enough.

2.2 Linear regression

It is the most used in pratie, even if it is not neessarily the most e�ient!!

De�nition 2.1. The regression line of Y with respet to X is the line x → a+bx where

the parameters (a, b) minimize the quantity:

F (a, b) =

n
∑

i=1

(yi − a− bxi)
2,
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meaning the so alled �least squares method�.

The interpretation of this line is as follows: if we draw on a graph (x, y) the population
points i with oordinates {(xi, yi)i = 1, ..., n}, this line is the one that passes as lose as
possible to all these points. Indeed, for every point i, the quantity (yi − a − bxi)

2
is the

square of the vertial distane between this point and the line x → a+ bx.

2.2.1 Regression parameters

Above we de�ned funtion F , onvex, di�erentiabledepending on two variables. Thus a

point whih anels both partial derivatives is a minimum for F. The onstants a and b
are the solutions of the linear system:

∂aF = −2

n
∑

i=1

(yi − a− bxi) = 0,

∂bF = −2
n

∑

i=1

(yi − a− bxi)xi = 0.(11)

So

n
∑

i=1

yi = na + b
n

∑

i=1

xi

n
∑

i=1

xiyi = a

n
∑

i=1

xi + b

n
∑

i=1

x2
i .

After some omputations, parameters a and b are:

b̂ =
Sx,y

σ2
x

; â = ȳ − x̄b̂,

where

Sx,y =

∑n

i=1 xiyi
n

− x̄ȳ,

x̄ and ȳ denoting the empirial means of the variables X and Y ; σx, σy are they empirial

standard deviations. Moreover here we use the �ovariane�:

De�nition 2.2. The empirial ovariane of the variables X and Y is:

Sxy =
1

n

∑

i=1,...,n

(xi − x̄)× (yi − ȳ) =

∑n

i=1 xiyi
n

− x̄ȳ.

The oe�ients â are b̂ are �estimated regression oe�ients�; the line y = â+ b̂x is a

trend line, �tting Y with respet to X.

Proposition 2.3. We assume εi = Xi−a−bti is a entered Gaussian random variable with

variane σ2; then the estimates b̂ and â are too Gaussian random variables, respetively

N (b, σ2

nV ar(t)
) and N (a, σ2

n
(1 + t̄2

V ar(t)
)).

Standard routines provide these estimates and their law.
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2.2.2 Foreasting

We now an use this �tting line to foreast Y values using observed X values. Or to

foreast X values using new times ti:

yn+1 = â+ b̂xn+1, xn+1 = â+ b̂tn+1.

2.2.3 Correlation

The ovariane value belongs to the interval [−σx × σy, σx × σy]. The following does not

depend on the unit:

De�nition 2.4. The empirial orrelation oe�ient of the statistial variables X
and Y is ρ̂x,y :=

Sxy

σx×σy
, or in temporal �tting ase: ρ̂t,x = Sxt

σx×σt
.

Remark that ρ̂ ∈ [−1,−1].
Exerise: prove ρ̂ ∈ [−1,−1] and moreover

ρ̂ = +1 ou − 1 ⇔ ∀i = 1, ..., n , yi = a+ bxi,

meaning a perfet linear �tting.

Interpretation: more ρ̂2 is lose to 1, better is the link between X and Y , the approx-
imation of Y by a+ bX , of X by a+ bt, is �valuable".

2.2.4 Study of the residuals

Having the estimates of a et b, it remains the di�erenes, the �tting errors.

De�nition 2.5. The residuals are the di�erenes

εi = xi − â− b̂ti.

These ones are supposed to be small sine these are mistakes made when admitting

the model X = a + bt. These residuals satisfy some properties:

- they are entered:

∑

i

εi = nx̄− nâ− b̂nt̄ = 0

using â.

- they are non orrelated with the ti :

∑

i

εi(ti − t̄) =
∑

i

(xi − â− b̂ti)ti = −1

2
∂bF = 0

using Equation (11).

13



- their variane is

s2(ε) =
1

n

n
∑

1

ε2i = σ2
y(1− ρ̂2).

If this quantity is �too high�, we an not aept the model. Indeed, we assume that the εi
are the values taken by a Gaussian random variable.Thus, it makes possible loating aber-

rant values: the probability that the residuals are outside of the interval [−2s(e),+2s(e)]
is small (P{|ε| > 2σ} = 0.0456), and it ould be good to take a loser look at the orre-

sponding points.

Example : Let Y be the son's size and X the father's size. The estimates are

a = 84.843 ; b = 0.532 ; σ2
y = 39.73 ; ρ = 0.533 ; s2(e) = 28.44.

For x = 165m, the average size of the son is estimated by y = 0.532 × 165 + 84.843 =
172.66.
More spei�ally we get:

Proposition 2.6. We asume that εi = Xi−a−bti are entered Gaussian random variables

with variane σ2, the random variable

∑n
i=1

ε2i
σ2 law is the χ2

n−2 law, and it is independent

of the random variables â and b̂.

This result allows to get an unbiaised estimate of σ2, meaning

∑n
i=1

ε2i
n−2

, and a on�dent

interval for this parameter; this is a way to measure the error. In the general ase, we

do not really know this parameter σ2. On the other hand, we have the following result to

ontrol the estimates of a and b.

Proposition 2.7. The law of the random variables

T =
σt(b̂− b)
√

s2(ε)
n−2

=

√
n− 2V ar(t)(b̂− b)

√

V ar(t)V ar(X)− cov2(X, t)
,

and

S =
σt(â− a)

√

s2(ε)(V ar(t)+t̄2)
n−2

=

√

n(n− 2)V ar(t)(â− a)
√

∑

i t
2
i

√

V ar(t)V ar(X)− cov2(X, t)
,

is a Studentn−2 law.

2.2.5 Correlation oe�ient test

There are statistial methods to know if the estimate of the orrelation oe�ient ρ is

�signi�antly� small. Indeed, ρ̂ is the value taken by an estimator, a random variable with

a known law. Atually we show that the assoiated variable F = (n − 2) ρ̂2

1−ρ̂2
law is a

Fisher-Snédéor law of degrees of freedom (1, n− 2), whih makes it possible to test the

hypothesis ρ = 0 against ρ 6= 0. Thus we ompute the value taken by F and we examine

in the Fisher-Snedeor table if this value is small enough or not.

14



Exerise : n = 63 ; ρ̂ = 0.533 ; F = 24.206.
The probability that the random variable Fisher-Snedeor1,61 is so huge is almost negligi-

ble: we an not aept that ρ is zero.

Be areful! : when n is large, the value of F is too large, and almost always signi�ant!

we then tend to rejet the hypothesis ρ = 0..., maybe wrongly.

2.2.6 Regression of X with respet to Y

We an, in the same way that we try to adjust Y aording toX, try to adjustX aording

to Y. By symmetry, we simply �nd another regression line:

x = a′ + b′y, where b′ =
Sx,y

σ2
y

, a′ = x̄− ȳb′,

and we notie that the two slopes b and b′ are linked by the relation:

bb′ = ρ2x,y

whih means that the two lines are even loser than the oe�ient orrelation is loser to

±1. Remind the test on the orrelation oe�ient, f. (2.2.3).

2.2.7 The pratie

Look at these routines in sofware R BUT, there is no regression in 'a Little Book of R for

Time Series'. I will provide another booklet.

Using software Statgraphis, the ommand REG is the one for Simple regression whih

onerns this model. Obviously, we have an interest in reading arefully the manual ...

The following sreen shows where to name the variable to explain, then the explanatory

variable (eg time). We indiate linear for model then the probabilities of on�dene for

the tests to do for validating the model obtained. After turning the proedure, we get a

seond sreen with the digital outputs.

- interept is the ordinate at x or t = 0,

- slope of the regression line.

After that, the standard deviation for â and b̂ are given. These ones allow to produe

on�dent ingterval, the value of Student variable, so we an test the hypotheses T or

S = 0. (f. Proposition 2.7).

- variane analysis: the value residual is the sum of squared errors, with degrees of

freedom Df (here 152), then the F-ratio equal to (n− 2) ρ̂2

1−ρ̂2
; this one allow to do the test

of hypothesis ρ = 0 against ρ 6= 0.

- �nally, the last paragraph provides the ρ̂ estimate of ρ, its square and the estimate

of the standard deviation σ of the residuals. This number, residual, allows to build a

on�dene interval for σ.

Returning to the main sreen allows you to hoose the desired graphis. We an print:
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- plot �tted line, the �tted urve,

- plot residuals, the residueal urve, whih makes it possible to judge whether the

mistakes are atually small or not,

- save residuals allows to put these errors in a �le and to arry out tests on it,

- save preditions,

- lak of �t test .

The ommand OUTLIER allows to exlude points from the analysis (only for the linear

model), for example: outliers, points of a past too far, points of the last period to use test

points. The user manual is idential to that of REG.

2.3 Non linear regression

As we saw in the exerise Setion 2.2.3, it is most often to redue linear regression to

model the least squares aording to the funtions listed below, for example:

f(t) = a cos(ωt+ φ), periodi funtion;

a log t+ b;
1

a + bt
, inverse funtion;

a.bt; a.bt + c, exponent and modi�ed exponent funtions;

a.tb; a.tb + c, power and modi�ed power funtions;

a

1 + b.ct
, logisti funtion;

exp[a.bt + c], Gompertz funtion.

If one an not simply redue to the linear ase, there are ases where one an minimize

by the least squares method.

Exerise: parabola �tting.

This model is solved by the software using the NONLIN proedure where the formula

of the adjustment funtion is expliitly given.

2.4 Multiple Regression

In some eonomi models, foreasting an be done using several explanatory variables.

Indeed, prior statistial studies were able to detet "external" variables, partiularly well

orrelated with the variable studied (to be explained, �internal�.) For example, a ountry's

energy onsumption is a funtion of:

- industrial prodution,

- household onsumption,
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- number of ars, et.

and we try to foreast by the multiple linear regression:

Ŷ = aX1 + bX2 + cX3

where a, b, c are obtained by the least squares method, minimizing the appliation:

(a, b, c) 7→
∑

i

(yi − aX i
1 − bX i

2 − cX i
3 − d)2.

Thus we get the linear system:

∂a : a
∑

i

(X1
i )

2 + b
∑

i

X1
i X

2
i + c

∑

i

X1
i X

3
i + d

∑

i

X i
1 =

∑

i

X1
i Yi,

∂b : a
∑

i

X1
i X

2
i + b

∑

i

(X2
i )

2 + c
∑

i

X2
i X

3
i + d

∑

i

X i
2 =

∑

i

X2
i Yi

∂c : a
∑

i

X1
i X

3
i + b

∑

i

X3
i X

2
i + c

∑

i

(X3
i )

2 + d
∑

i

X i
3 =

∑

i

X3
i Yi

∂d : aX̄1 + bX̄2 + cX̄3 + d = Ȳ .

Exerise : exhibit the optimal estimates â, b̂, ĉ, d̂.

The routine MREG onsists in obtaining the estimates of the oe�ients a, b, c, d. We

enter the name of the variable to be explained (or any other variable obtained by om-

bination of what exists) it is Dep var, then the name of the explanatory variables is

Ind.var.

The STEP proedure seeks, stepwise, the �best� variables to enter one by one, better

in the sense that one �rstly enter the best orrelated with Y (ρ(Y,Xi) = supj ρ(Y,Xj)), we
operate the regression of Y with respet to X , then we hoose the best orrelated variable

with the residual Y − âiXi, and so on until the Fisher test on orrelations beomes not

signi�ant.

Above has to be given in software R

2.5 Quality of the regression

In the linear ase, the histogram of the residuals is examined to hek that they are

"aeptable." The program also provides some riteria:

ME (mean error) is the residuals mean, theoretially it ould be 0,

MSE (mean square error) is the mean of the squared residuals, s2(ε),

MAE (mean absolute error) is the mean of absolute values of the residuals,

MAPE (mean absolute perentage error) is the mean of absolute values of the ratio

residuals/their estimates; the interest is that this mean does not depend on the hosen

unit,

MPE (mean perentage error) is the mean of the values of the ratio residuals/their

estimates; one again, the interest is that this mean does not depend on the hosen unit,
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2.6 Durbin Algorithm

Perhaps Setion to skip.

This method �mixes� both regression and smoothing: indeed, the aim is to foreast Xn+1 using

the k previous observations, meaning (Xn,Xn−1, · · · ,Xn−k+1) using the least square method:

(12) X̂n+1(k) =

k
∑

i=1

ai(k)Xn+1−i

is the L2
projetion on the vetorail subspae generated by (Xn,Xn−1, · · · ,Xn−k+1), so the

parameters ai(k) realize the minimum of the appliation:

F : (ai(k), i = 1, · · · , k) → E[Xn+1 −
k

∑

i=1

ai(k)Xn+1−i]
2

the minimum (=the error) is denoted as vk.

Thus we need some assumptions on the proess Xn :

Hypothesis : the observations xi are the observed values of the random variables Xi, entered,

square integrable, stationary, meaning: for all n , cov(Xn,Xn+k) = γ(k). Remark that the

funtion γ is pair on Z: γ(k) = γ(−k).
De�nition : the funtion γ is the autoovariane funtion .

This funtion ould be estimated using the observed values. Then

Proposition 2.8. Under the previous assumptions, we get the reursive relations:

a1(1) =
γ(1)

γ(0)
; ai(k) = ai(k − 1)− ak(k)ak−i(k − 1) ; i = 1, ...k − 1,(13)

v0 = γ(0) ; v(k) = vk−1(1− ak(k)
2), k ≥ 1(14)

ak(k) =
γ(k)−∑k−1

i=1 γ(k − i)ai(k − 1)

vk−1
, k ≥ 2.(15)

Proof:

(i) k = 1 : X̂2 = a1(1)X1 where a1(1) realizes the minimum of the appliation a1 →
E[(X2 − a1X1)

2]. This appliation is a onvex di�erentiable funtion, so its minimum is realized

when the derivative is null: a1(1) =
γ(1)
γ(0) .

Let us denote:

En,k = the vetorial subspae generated by (Xn, · · · ,Xn−k+1).

and Pn,k the projetor on En,k. Obviously

X̂n+1(k) = Pn,k(Xn+1) =

k
∑

i=1

ai(k)Xn+1−i.

We projet this equality on the smaller vetor spae En,k−1 thus on the one hand

Pn,k−1(X̂n+1) = Pn,k−1(Xn+1) =

k−1
∑

i=1

ai(k − 1)Xn+1−i,
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and on the other hand

Pn,k−1(X̂n+1) =

k−1
∑

i=1

ai(k)Xn+1−i + ak(k)Pn,k−1(Xn−k+1).

We then use the lemma:

Lemma 2.9. There is a �symmetry� between past and future, meaning: Pn+k,k(Xn) =
∑k

i=1 ai(k)Xn+i.

Proof: we get (12) by minimizing the appliation F , di�erentiable onvex funtion, thus

ai(k) are solution of the linear system

∇iF = −2γ(i) + 2

k
∑

j=1

ajγ(|i− j|) = 0, i = 1, · · · , k.

In the lemma, Xn+i oe�ients have to minimize the appliation

ai → G(ai) = E[Xn−
∑k

i=1 ai(k)Xn+i]
2
. We an hek that atually both linear systems are the

same; this ends the proof. •
Thus

Pn,k−1(Xn−k+1) = a1(k − 1)Xn−k+2 + a2(k − 1)Xn−k+3 + · · · + ak−1(k − 1)Xn.

We identify both expressions of Pn,k−1(X̂n+1), then yields the oe�ient of Xn+1−i under two

expressions:

ai(k − 1) = ai(k) + ak(k)ak−i(k − 1),

meaning (13).

(ii) The projetion on {0} is neessarily null, X̂n+1 = 0, v0 =‖ Xn+1 ‖2= γ(0).

For omputing the error vkwe use the Pythagore Theorem:

vk = |Xn+1 − Pn,k(Xn+1)|22,

so:

vk−1 = |Xn+1 − Pn,k−1(Xn+1)|22 = vk + |Pn,k(Xn+1)− Pn,k−1(Xn+1)|22.
But

Pn,k(Xn+1)− Pn,k−1(Xn+1) = ak(k)[Xn−k+1 − Pn,k−1(Xn−k+1)].

Using Lemma 2.9 and the stationarity of the proessX, the squared norm of the vetor Pn,k(Xn+1)−
Pn,k−1(Xn+1) is ak(k)

2vk−1, so:

vk−1 = vk + ak(k)
2vk−1

meaning (14).

(iii) Using one again

Pn,k(Xn+1)− Pn,k−1(Xn+1) = ak(k)[Xn−k+1 − Pn,k−1(Xn−k+1)]

we ompute vk−1 = |Xn−k+1−Pn,k−1(Xn−k+1)|2. Atually, using both forms of this vetor yields:

〈Xn−k+1 − Pn,k−1(Xn−k+1), Pn,k(Xn+1)− Pn,k−1(Xn+1)〉 = ak(k)vk−1
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Using the de�nition of the projetor Pn,k−1(Xn+1) ∈ En,k−1 and the left fator above is orthog-

onal to En,k−1 :

ak(k)vk−1 = 〈Xn−k+1 − Pn,k−1(Xn−k+1), Pn,k(Xn+1)〉 = 〈Xn−k+1 − Pn,k−1(Xn−k+1),Xn+1〉.

But Pn,k−1(Xn−k+1) =
∑k−1

i=1 ai(k − 1)Xn+1−i so:

ak(k)vk−1 = γ(k)−
k−1
∑

i=1

ai(k − 1)γ(k − i).

•
Remark : One an interpret ak(k) as following: this oe�ient is equal to the orrelation

oe�ient between the vetors Xn+1−Pn,k−1(Xn+1) and Xn−k+1−Pn,k−1(Xn−k+1). It is named

partial orrelation oe�ient. Indeed, remind the proof of (iii):

ak(k) =
〈Xn−k+1 − Pn,k−1(Xn−k+1),Xn+1〉

vk−1
(16)

=
〈Xn−k+1 − Pn,k−1(Xn−k+1),Xn+1 − Pn,k−1(Xn+1)〉

vk−1
(17)

so vk−1 is atually the squared norm of these vetors.

2.7 Innovation Algorithm

(f [6℄, page 155 et sq.)

For foreasting, it is interesting not to realulate all the oe�ients eah time a new

information arrives while using it nevertheless. We therefore try to use the estimates

already obtained as well as the new observation to predit at best.

De�nition 2.10. Innovation is the �new� information at time t, meaning:

Zt = Xt − Pt−1(Xt),

where Pt is the projetion on Et, vetorial subspae generated by {X1, · · · , Xt}.

Remarks :

(i) Et is also generated by the vetors {Z1, · · · , Zt}.
(ii) By onstrution, the vetors Zi are mutually orthogonal vetors.

Let vt−1 denote E(Xt − Pt−1(Xt))
2, the quadrati error or "risk". Partiularly v0 =

E(X1 − P0(X1))
2 = E(X1)

2 = γ(0) sine P0(X1) = 0.

Proposition 2.11. Let Pt(Xt+1) denote
∑t

j=1 τj(t)Zj, then reursively:

τ1(t) =
γ(t)

γ(0)

τj(t) =
1

vj−1
[γ(t+ 1− j)−

j−1
∑

i=1

τi(j − 1)τi(t)vi−1]; j ≥ 2(18)

v0 = γ(0), vt = γ(0)−
t

∑

j=1

τ 2j (t)vj−1 ; t ≥ 1(19)

20



Proof: The reursion starts with P0(X1) = 0 so Z1 = X1 and v0 = γ(0).

Firstly remark that for j = 1 minimizing the appliation a ⇒ E(X2 − aX1)
2
yields

τ1(1) =
γ(1)
γ(0)

.

Sine the Zj are orthogonal, if j ≤ t :

〈Xt+1, Zj〉 = 〈Pt(Xt+1), Zj〉 = τj(t)E(Z2
j ) = τj(t)vj−1.

This means that

τj(t) =
〈Xt+1, Xj − Pj−1(Xj)〉

vj−1
;

writing Pj−1(Xj) =
∑j−1

i=1 τi(j − 1)Zi, j ≥ 2, we have to ompute the salars produts

〈Xt+1, Zi〉 = 〈Pt(Xt+1), Zi〉 = τi(t)vi−1, and for j = 1, τ1(t) =
γ(t)
γ(0)

.

Thus (18) is proved.

To prove (19), one again we use the Pythagore theorem:

E(Xt+1)
2 = vt + E[Pt(Xt+1)]

2,

this is exatly (19) sine Pt(Xt+1) is a sum of mutually orthogonal vetors. •

For further foreasting, we have the following proposition :

Proposition 2.12.

X̂n+k(n) = Pn(Xn+k) =
n

∑

i=1

τi(n+ k − 1)Zi.

Proof: standard, with

Pn(Xn+k) = Pn ◦ Pn+k−1(Xn+k) = Pn[

n+k−1
∑

i=1

τi(n+ k − 1)Zi].

Sine Zi are mutually orthogonal vetors, the projetion of Zi, i > n on En is null, so the

result. •
Pratially, the rule is to replae by 0 the innovations of instants n + 1 to n + k − 1

whih atually are still unknown.
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3 Box and Jenkins' methods, general features

Developed in the 70s, these are very powerful methods whih make maximum use of the

fat that the evolution of the studied time series is onsidered as one of the ahievements

of a stohasti proess, endowed with a strong enough struture. Indeed, one highlighted

the struture, this allows to predit more on�dently the future series. The ounterpart

is the need for a fairly long period of observations for that the foreast is reliable. The

authors reommend 5 to 6 periods in the ase of periodi phenomena, and a minimum

of 30 observations in other ases.

These methods work very well for short-term foreasts maroeonomi series, espeially

for the industrial prodution indexes. In Finane, this method does not onern the

foreast of returns, but the one of volatility.

They are based on the assumption that eah observation depends quite strongly on

previous observations. Basially, this addition to the past replaes multipliity of ob-

servations (in Statistis) to estimate the settings by applying the law of large numbers.

So are assumed strong enough assumptions, that the series is stationary, meaning the

two �rst moments do not depend on time. If this is not the ase, they must be done

�stationary� by transformations (alled �lters) that remove trend and seasonality.

3.1 De�nitions

Thus, we onsider proesses, random series, indexed in Z and taking their values in R

(real numbers):

∀n ∈ Z, Xn is a random variable : (Ω,F , P ) → (R,B).

We try to model the appliation n 7→ Xn with a trend part, a seasonal omponent, and

the measurement error.

Hypothesis: The observations xn are the values of a entered, square-integrable, sta-

tionary, random proess (Xn), i.e. there exists a funtion γ on Z suh that ∀n, k ∈
Z , cov(Xn, Xn−k) = γ(k), where

cov(Xn, Xn−k) = E[(Xn − E(Xn))(Xn−k −E(Xn−k))].

Exerise 1: Atually for any k ∈ Z, γ(k) = γ(−k).

De�nition 3.1. : Suh a proess is alled a seond order stationary time series,

S.T.S. for short.

The funtion γ is alled the auto ovariane funtion.

Moreover we de�ne the auto orrelation funtion ρ : k 7→ ρ(k) = γ(k)
γ(0)

.

There exists another notion: �strit stationarity� meaning the vetors (X1, · · · , Xk)
and (Xn+1, · · · , Xn+k) have the same law, for any pair (k, n).
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As for the ovariane funtion γ, for any k ∈ Z, ρ(k) = ρ(−k) and we de�ne the

orrelogram, graph of the appliation ρ, useful tool for analyzing the series as disussed
later.

We also introdue:

De�nition 3.2. The partial auto orrelation funtion, P.A.C.F., is de�ned on N as:

r : N → R ; r(p− n) = or (Xn, Xp/Xn+1, · · · , Xp−1), p > n,

meaning

r(p− n) =
ov (Xn −X∗

n, Xp −X∗
p )

√

Var (Xn −X∗
n) Var (Xp −X∗

p )

whereX∗
j is the orthogonal projetion of Xj on the vetor spae Sn,p generated by (Xn+1, · · · , Xp−1),

and ompleted by r(1) = ρ(1).

Exerise 2: this expression only depends on (p− n).
Finally, we introdue the in�nite dimensional matrix of variane-ovariane proess X.

De�nition 3.3. : The Toeplitz matrix is

Γ, γ(i, j) = r(i− j), i, j ≥ 1.

This is a symmetri matrix.

3.2 Examples of seond order stationary times series, STS

First example of fundamental S.T.S. : the white noise.

De�nition 3.4. The (weak) white noise is a STS (εk) (with ovariane funtion equal

to γ with γ(k) = σ2δk,0.

If moreover there is independene between the random variables (εk), the white noise
is said strong.

For example, it ould be a Gaussian proess with ovariane matrix Γ = σ2Id; in this

ase, there is in addition the orthogonality of the white noise omponents εn in L2
and

their independene, thanks to the Gaussian nature of the series.

A strong white noise is a white noise suh that (εn) are i.i.d. (independent identially

distributed).

This �white noise proess� is used to model the measurement error. If the series is not

entered, the term is named �olored noise�.

Seond example:
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De�nition 3.5. A moving average is a STS as follows:

Xn =
∑

k∈Z

akεn−k,

where the series (ak; k ∈ Z) ∈ l2 and ε is a white noise.

For short: M.A.= �moving average�.

Proposition 3.6. The ovariane funtion of a moving average Xn =
∑

k∈Z akεn−k is

written as γ(p) =
∑

k∈Z ap−ka−k ∀p ∈ Z.

Proof: : We write Xn and Xn−p de�nition; �rstly remark that these series are L2
on-

vergent using the hypothesis that the series (ak; k ∈ Z) ∈ l2. Seondly we ompute their

ovariane, meaning the mean of the produt sine these random variables are entered:

E[XnXn+p] = lim
K→∞

∑

|k|<K

ap+kak.

This limit exists sine

∀K > 0, (
∑

|k|<K

ap+kak)
2 ≤

∑

|k|<K

|ap+k|2
∑

|k|<K

|ak|2 < ∞.

This inequality is proved reursively: it is true for K = 2, and the property for K − 1
implies it for K. •

De�nition 3.7. When there exists a �nite number of non null oe�ients ak, i.e. (a0, · · · , ap),
we say that X is a order p-moving average, MA(p) for short.

Third example: let ε be a white noise, and de�ne the reursive series

Xn = αXn−1 + εn.

Assuming that we know a partiular element of the series, for instane X0, assuming

it is a entered random variable in L2
we prove the following.

Proposition 3.8. Let X be the proess de�ned as

Xn = αXn−1 + εn, ∀n ∈ Z, X0 ∈ L2, E[X0] = 0.

Assuming |α| < 1, and E[X2
n] ≤ M2, ∀n ∈ Z

−, then X is a STS.

Spei�ally, this is a moving average with oe�ients aj = αj , j ≥ 0. Its ovariane

funtion is de�ned by γ(k) = αk

1−α2 .

Exerise: prove this result.

De�nition 3.9. An order 1 auto regressive series X (AR(1) for short) is a proess de-

pending only of the previous observation, step by step.
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At this point we an quote Franq and Zakoian [4℄ pp 7-11: Setions 1.3

Finanial Series and Setion 1.4 Random variane models whih show how ARMA

proesses are not appropriate to model Finanial Series as it is written above

in the introdution

Indeed, one again, the �nanial data present some stylised fats:

• non stationarity of prie series,

• absene of auto orrelation for the prie variations,

• unpreditability of returns,

• auto orrelation of the squared prie returns,

• volatility lustering ⇒ predition of squared returns,

• fat tailed distributions (leptokurtiity),

• leverage e�ets,

• seasonality.

3.3 Delay Operator, ARMA equations

In this subsetion we onsider that X is a STS. In AR(1) example, Xn = aXn−1 + εn
and ∀(εn) (a given white noise) we get Xn as a funtion of Xn−1; more generally it is

interesting to get formal this passage from n−1 to n. Firstly we have to de�ne the spaes
on whih is de�ned this passage.

De�nition 3.10. The losed subspae generated by the set {Xp, p ∈ Z, p ≤ n} in L2
is

denoted as HX
n .

This subspae of L2, HX
n , is named the linear past of X.

We note also:

HX
−∞ = ∩nH

X
n ; HX

+∞ = ∪nH
X
n = HX .

HX
−∞is named the asymptoti past, HX

the linear envelope.

These spaes are used to haraterize two spei� types of STS.

Following Franq and Zakoian [4℄ page 4, we onsider εn := Xn −Pn−1(Xn), weak or

strong white noise, where Pn−1 is the L2
orthogonal projetor on HX

n−1.

De�nition 3.11. When HX
−∞ = {0} the series is regular.

When HX
−∞ = HX

the series is singular. In this ase, the linear pasts are onstant and

the �innovation� does not bring any information.
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A �rst example of regular STS is the white noise: Atually beause the proess ε is

non orrelated, the vetor spae Hε
n = Rεn + Hε

n−1. So if Y ∈ Hε
n ∩ Hε

n−1, �rstly, Y =
aεn + P ε

n−1(Y ). But Y ∈ Hε
−∞ means that Y ∈ Hε

n−1, so a = 0. And so on, Y = 0 and ε
is a regular series.

Exerise, other examples: Look at the regularity of the following SCS:

Xn = g(n)X0 where g is an appliation from Z to R suh that X is a SCS.

A white noise, a moving average, a unilatere moving average, an AR(1).

De�nition 3.12. The operator HX = vet {Xn, n ∈ Z} in L2
whih maps Xn to Xn−1

is named the delay operator denoted SX : SX(Xn) = Xn−1.

Proposition 3.13. The operator SX
is the unique isometry from HX

to HX
whih sends

Xn to Xn−1. Moreover, SX(HX) = HX
.

Proof: : The operator SX
is de�ned on the {Xn, n ≥ 0} and is extended by linearity

on any �nite linear ombinations of Xn. This is an isometry:

‖ SX(
∑

i

aiXi) ‖22 =
∑

i,j

aiajE[Xi−1Xj−1]

=
∑

i,j

aiajγ(i− j) =‖
∑

i

aiXi ‖22 .

Thus we ould extend this operator SX
by ontinuity on the whole HX

.

Uniqueness: it is a onsequene of the fat that if T ould be another solution, T = SX

on any Xn, so on any �nite linear ombinations of Xn so by ontinuity on HX
.

Any element of HX
is a limit of �nite linear ombinations of Xn, image by SX

of �nite

linear ombinations of Xn, so the equality SX(HX) = HX
. •

Theorem 3.14. (WOLD): Any STS ould be written as a unique sum of a regular and a

singular parts:

X = Xr +Xs

so that the spaes HXr

and HXs

are L2
orthogonal.

Proof: Exerise, using Xs
n := PX

−∞(Xn) ; Xr
n := Xn − PX

−∞(Xn).
(i) By de�nition, Xn = Xs

n +Xr
n,

(ii) Any Y ∈ HXr

−∞ ⊂ HX
−∞, Y is orthogonal to HX

−∞ and Y ∈ HX
−∞ .... so Y = 0 and Xr

is a regular series.

(iii)Let Y ∈ HXs

n for any n, by de�nition of Xs
there exists Zn ∈ HX

n suh that Y =
PX
−∞(Zn). Thus Y ∈ HX

−∞ and for any n HXs

n ⊂ HX
−∞.

Conversely, let Y ∈ HX
−∞. So on the one hand Y = PX

−∞(Y ) and on the other hand Y ∈ HX
n

for any n ould be written as Y =
∑

ni≤n ani
Xni

=
∑

ni≤n ani
PX
−∞Xni

=
∑

ni≤n ani
Xs

ni
∈

HXs

n .

•

Proposition 3.15. Both series Xr
and Xs

are too STS.
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Proof: : Firstly by onstrution they are entered and in L2.
Seondly we use the following:

Lemma 3.16. For all n ∈ Z, PX
n ◦ SX = SX ◦ PX

n+1.

Proof: for all p ∈ Z, PX
n ◦SX(Xp) = PX

n (Xp−1) is the unique vetor in HX
n suh that

Xp−1−PX
n (Xp−1) is orthogonal to HX

n . So we have to ompute ∀k ≤ n the salar produt

〈Xk, Xp−1 − SX ◦ PX
n+1(Xp)〉. This salar produt is equal to:

〈Xk, Xp−1 − SX ◦ PX
n+1(Xp)〉 = γ(k − p+ 1)− 〈SX(Xk+1), S

X ◦ PX
n+1(Xp)〉

= γ(k − p+ 1)− 〈Xk+1, P
X
n+1(Xp)〉

sine SX
is an isometry. Then we use ∀k ≤ n,Xk+1 ∈ HX

n+1. Yields:

〈Xk, Xp−1−SX◦PX
n+1(Xp)〉 = γ(k−p+1)−〈Xk+1, P

X
n+1(Xp)〉 = γ(k−p+1)−〈Xk+1, Xp〉 = 0.

•
We apply this lemma to the omputation of the ovariane funtion of the series Xs, with
n ≥ p:

(Xs
n, X

s
p) = (PX

−∞(Xn), P
X
−∞(Xp)) = (SX ◦ PX

−∞(Xn), S
X ◦ PX

−∞(Xp)) =

(PX
−∞ ◦ SX(Xn), P

X
−∞ ◦ SX(Xp)) = (PX

−∞(Xn−1), P
X
−∞(Xp−1))

whih is exatly (Xs
n−1, X

s
p−1) by de�nition of Xs, step by step we go to

(Xs
n, X

s
p) = (Xs

n−p, X
s
0),

whih only depends on the di�erene n − p; this proves the stationarity of the series

(Xs). Then, the part Xr = X − Xs
is too a STS: Xr ∈ L2

with null expetation by

linearity, and we easily hek the stationarity of E[(Xr
n, X

r
p)]. More spei�ally using

E(XnX
s
p) = γs(n− p) we prove:

(Xn −Xs
n, Xp −Xs

p) = γ(n− p)− γs(n− p).

This shows the stationarity of Xr
and the relation between the ovariane funtions

γ = γr + γs. •
Remark 3.17. When a STS is not singular, the strit inlusion ∀n, HX

n−1 ⊂ HX
n is

satis�ed. Indeed, if not, there exists n suh that HX
n−1 = HX

n , and with the lemma and the

delay operator SX
we dedue that ∀n, HX

n−1 = HX
n , so the series is singular.

The following theorem provides a haraterization of regular series.

Theorem 3.18. A series X is regular if and only if there exists a series (dn) in l2(R)
and a white noise ε suh that:

Xn =
∑

p≥0

dpεn−p.

We ould hoose ε so that the linear pasts of X and ε are idential; then this white noise

and the assoiated series (dn) are unique, exept a possible multipliative oe�ient.
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Indiation for the proof: reursively, de�ne εn = Xn − PX
n−1Xn, and

Xn =

p+1
∑

j=0

djεn−j + PX
n−pXn and let p → ∞.

De�nition 3.19. This spei� white noise is named innovation white noise.

The interest of suh series lies in the following orollary: the projetion on the past is

then extremely simple.

Corollary 3.20. Let X be a regular series and ε its innovation white noise; for all m ≤ n,

PX
m (Xn) =

∑

p≥n−m

dpεn−p.

Proof: of the theorem:

By de�nition Xn ∈ Hε
n, so HX

n ⊂ Hε
n, ∩nH

X
n ⊂ ∩Hε

n = {0} sine ε is regular, and X is

regular.

Conversely, let X be a regular series. Let the proess vn = Xn − PX
n−1(Xn); this is a

STS sine we ould ompute its ovariane funtion:

∀n, ‖ vn ‖=‖ SX(Xn+1)− PX
n−1 ◦ SX(Xn+1) ‖=‖ Xn+1 − PX

n (Xn+1) ‖=‖ vn+1 ‖

denoted σ2 = γ(0). By de�nition, vn ∈ HX
n and is orthogonal to HX

n−1 so to the previous

vi: thus it is a STS, and more spei�ally it is a white noise denoted a0εn.

By de�nition, Xn = aεn + PX
n−1(Xn), εn ∈ HX

n and is orthogonal to HX
n−1, thus

HX
n is the diret sum Rεn ⊕ HX

n−1. By indution we get that HX
n is the diret sum

⊕0≤i≤jRεn−i ⊕HX
n−j−1. On this diret sum we get the deomposition

Xn =
∑

0≤i≤j

aiεn−i + PX
n−j−1(Xn)

Sine X is a regular series, limj→∞ PX
n−j−1(Xn) = 0 and X is equal to

∑

0≤i aiεn−i, whih
is the expeted form.

As a onsequene, Xn ∈ Hε
n and sine previously we knew that, εn ∈ HX

n , these two
spaes are idential.

Uniqueness: we assume that there exists a pair (ε′, d′), (white noise, l2(C) element),

solution of the problem, so satisfying

∀n, P ε′

n = PX
n = P ε

n and Xn =
∑

0≤i

diεn−i =
∑

0≤i

d′iε
′
n−i.

On both hands of this equality we apply the operator PX
n−1, we get :

P ε
n−1(Xn) =

∑

1≤i

diεn−i;P
ε′

n−1(Xn) =
∑

1≤i

d′iε
′
n−i.
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But P ε′

n = P ε
n so the di�erene is null and ∀n, d′0ε′n = d0εn meaning the uniqueness exept

a possible multipliative oe�ient. •
The proof of the orollary is obvious sine the operators PX

m and P ε
m are the same, as

are the orresponding spaes HX
m and Hε

m.

Remark 3.21. The identity between these two families of spaes is interpreted as follows:

Linear pasts of X and ε oinide. If X is observed up to time n− 1, the additional infor-
mation provided by really new Xn is represented by aεn = Xn−PX

n−1(Xn), the `innovation'
as we alled it previously.

More generally, we will now study the lass of STS, solution of � ARMA " equations,

written using the delay operator SX .

De�nition 3.22. Let Xbe a STS and let ε be a white noise, P and Q two polynomials.

We say that X is solution of ARMA(P,Q) equation if this proess satis�es for any

n in Z :

(20) P (SX)(Xn) = Q(Sε)(εn),

meaning there exist omplex oe�ients (a0, · · · , ap) and (b0, · · · , bq) suh that ∀n ∈ Z :

(21)

p
∑

i=0

aiXn−i =

q
∑

i=0

biεn−i.

In ase of p = 0, X is MA(q) ; in ase of q = 0, X is AR(p). In the general ase we

say that X is ARMA(p,q).

Suh an equation ould be solved, either to get X funtion of proess ε or the onverse so
that we ould �foreast� Xn based solely on its past. Roughly speaking, this onsists in a

�reverse� of operators P (SX) and = Q(Sε). This is out of our agenda, but the following
Setion 3.4 is an important result whih will be useful in the seond part of this ourse.

3.4 ARMA Equation: resolution

Let AP (X) = AQ(ε) an ARMA equation.

Theorem 3.23. (Fejer-Riesz) Let P et Q be non nul polynomials with no ommon roots,

those of P have modulus 6= 1. Then the ARMA equation is solvable as soon as the modulus

of P roots are > 1 and those of Q ≥ 1.

De�nition 3.24. This ARMA representation of X is alled anonial Fejer-Riesz

anonial representation.
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3.5 Estimate of the ovariane funtion of an ARMA Proess

We ome bak to the observation of a STS, supposed to be stationary, non neessarily

entered:

X1, · · · , XN ,

The �rst step is to estimate E(X) and the ovariane funtion γX .

Aording to standard probability or statistis leture notes in ase of sampling, E(X)
is estimated by Cesàro mean, that is justi�ed by the large numbers law (f. [1℄):

Ê(X) ∼ 1

n

n
∑

i=1

Xi.

But the required assumptions are either the independene of the observations or the

martingale property for the proess. Neither of these assumptions is heked in the ase

of STS. Nevertheless, with similar proofs to those found in a Probability ourse, we get

same type results. This is what will be used to justify approximates of the mean and of

the ovariane funtion.

Insert work with R: 'plotobs(X)' to draw the series graph; mean(X); af(X) to get

orrelogram, variogram, partial orrelogram...see TD-TP Agnes Lagnoux.

3.6 Large numbers law

Lemma 3.25. Let X1, · · · , Xn, n ∈ N be a series of random variables with mean m. We

put Sn :=
∑n

i=1Xi and assume:

∃M > 0, V ar(Xn) ≤ M2, V ar(Sn) ≤ nM2, ∀n ≥ 1.

Then

1
n
Sn → m in L2

and almost surely, when n goes to in�nity.

Proof: : Exerise.

(i) V ar( 1
n
Sn) = E[ 1

n
Sn − m]2 sine by hypothesis E(Sn) = nm. But V ar( 1

n
Sn) =

1
n2V ar(Sn) ≤ 1

n
M2 → 0 when n goes to in�nity, so yields the onvergene in L2.

(ii) Let Zk = sup{| 1
n
Sn −m|, n ∈ [k2, (k + 1)2[}. We put Yj := Xj −m so:

1

n
Sn −m =

1

n
Sk2 +

1

n
(Xk2+1 + · · ·+Xn − nm) =

1

n
(Sk2 − k2m+ Yk2+1 + · · ·+ Yn).

Then we dedue the bound:

Zk ≤
1

k2
(|Sk2 − k2m|+ |Yk2+1|+ · · ·+ |Y(k+1)2−1|)

so the L2
norm satis�es:

‖Zk‖2 ≤
1

k2
(‖Sk2 − k2m‖2 + ‖Yk2+1‖2 + · · ·+ ‖Y(k+1)2−1‖2).
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By hypothesis the �rst term is bounded by Mk, and any of the (k + 1)2 − 1 − k2 = 2k
following terms are equal to the X standard deviation bounded by M :

‖Zk‖2 ≤
1

k2
(Mk + 2kM) = 3M/k.

Thus the series E(
∑

k Z
2
k) =

∑

k E(Z2
k) ≤ ∑

k 9M
2/k2

is onvergent, proving that Zk

onverges almost surely, when k goes to in�nity, exatly meaning

1
n
Sn − m onverges

almost surely to zero, meaning

1
n
Sn onverges almost surely to m when n goes to in�nity.

•
We apply this lemma to a STS: sine V ar(Xn) = γX(0) the �rst hypothesis is satis�ed.

The seond hypothesis onerns

V ar(Sn) = V ar(
n

∑

i=1

Xi) =
∑

1≤i,j≤n

γX(i− j) = nγX(0) + 2(n− 1)γX(1) + · · ·+ 2γX(n− 1)

the bound of whih not neessarily being nM.
But for instane a MA(q) proess satis�es this hypothesis sine in this ase there exists a

�nite number of non null γX(i), γ(k) = 0 for all k > q:

V ar(Sn) ≤ n(γ(0) + · · ·+ γ(q)).

Exerise: under the assumption of the lemma above, in ase of an AR(1), Xn = aXn−1+εn
prove that the ovariane is γX(k) = ak

1−a2
.

3.7 Covariane funtion estimate, af, paf

Let k be �xed in N (if k < 0, γ(k) = γ(−k)). Using the large numbers law (or rather

Lemma 3.25), if the series Y : n → XnXn+k has �good� properties, a γX(k) reasonable
estimate is:

γ̄n(k) =
1

n

n
∑

j=1

XjXj+k.

For that remark that we need observations at least from time 1 to n+ k.
If we have only n observations, we propose:

γ∗
n(k) =

1

n

n−k
∑

j=1

XjXj+k.

Both estimates have the following properties:

(i) Bias

E[γ̄n(k)] = γ(k),

meaning this estimate has a null bias ∀n.

E[γ∗
n(k)] =

n− k

n
γ(k) → γ(k),
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this estimate bias is asymptotially null.

Exerise: ompute the bias of these both estimates.

(ii) Convergene and quadrati error: here we need more hypotheses. To apply

Lemma 3.25, E(XnXn+k) = γ(k) but we also need the existene of a onstant M suh

that V ar(XnXn+k) ≤ M2
and V ar(

∑n

i=1XiXi+k) ≤ nM2
meaning we would need at least

X ∈ L4
and supn E(X4

n) ≤ M2
. Now we detail the seond hypothesis:

∑

1≤i,j≤n

E[XiXi+kXjXj+k]− n2γ2(k) ≤ nM2

we ould (for instane) assume that the series distribution is Gaussian.

Be areful: in ase of �nanial series, it is a stylized fat that prie proesses are not

Gaussian, thus in suh a ase we an not use this hypothesis.

But even if we an not assume Gaussian distribution, we nevertheless get:

Proposition 3.26. (f. Daunha Castelle, p. 104, ref in English?) Let X be a STS in

L4
suh that supn E(X4

n) ≤ M2
and

lim
|n−m|→∞

[E[XnXn+kXmXm+k]− γ2(k)] = 0.

Then γ̄n(k) → γ(k) in L2.

Proof: : to admit.

(iii) Comparison between γ̄ and γ∗
: In the ase where supn E(X4

n) ≤ M2
when

n → ∞, k being �xed, we get,

Exerise: ‖γ̄n(k)− γ∗
n(k)‖2 ≤ k

n
M → 0.

Routines R: af, paf, to give an example.

3.8 ARMA model Identi�ation, estimation of its parameters

Cf. Chapter 5.2 [4℄.

We assume that the hanges in the time series (di�erentiation, seasonal �tting) have been

made so that we have an e�etive entered STS, and that the obtained series is real, with

a rational spetrum meaning that there exists p and q ∈ N, polynomials P degree p
and Q degree q, a white noise ε suh that the series X is solution to the ARMA equation

APX = AQε.

The aim is to �nd p, q, P,Q meaning to identify the model. We have n observations of

X and we suppose that the ovariane funtion γ is known, atually estimated aording

to the method provided in Setion 3.7.

R ommand: arima, monmodele= ; X= ; with model parameters, simulation of proesses,

plotobs(X) ; mean(X) ; af(X) whih gives orrelogram, variogram; paf(X), et.
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3.8.1 Estimation of P oe�ients

Hypothesis: suppose that p, q are known in N and funtion γ is known and put a0 = 1.

(p, q) is minimal, meaning there does not exists polynomials P ′
and Q′

with smaller

degrees than p, q in the ARMA equation.

We detail the ARMA equation APX = AQε:

p
∑

0

aiXn−i =

q
∑

0

blεn−l.

We operate the salar produt in L2
of this equality with Xn−m for any m ≥ q + 1,

using that Xn−m is orthogonal to (AQε)n, yields for any m ≥ q + 1:

p
∑

0

aiγ(m− i) = 0.

This is a set of linear equations, the solution of whih being the vetor a in Rp
:

p
∑

1

aiγ(m− i) = −γ(m), ∀m ≥ q + 1.

Withm = q+1, · · · , q+p, we get a system of equations named Yule-Walker equations;

we denote Rpq the matrix of this system of p equations and p unknown variables:

| γ(q) · · · γ(q + 1− p) |
| · · · · · · · · · |

Rpq = | · · · · · · · · · |
| · · · · · · · · · |
| γ(q − 1 + p) · · · γ(q) |

and Γq+p
q+1 the vetor with oordinates γ(m), m = q + 1, · · · , q + p.

Proposition 3.27. If X is an ARMA(p,q) proess, (p, q) being minimal, the matrix Rpq

is invertible and the oe�ients of the polynomial P are the oordinates of the vetor

a = −R−1
pq Γ

q+p
q+1.

Proof: : to skip, remained for those interested enough.

We assume that detRpq = 0, meaning there exists p oe�ients αi (at least one is non null)

suh that :

p−1
∑

i=0

αiγ(q + j − i) = 0, ∀j = 0, · · · , p− 1.

On the other hand, for j = p, using Yule-Walker equations, we replae γ(q + p− i) :

p−1
∑

i=0

αiγ(q + p− i) = −
p−1
∑

i=0

αi

p
∑

1

ajγ(q + p− i− j) = −
p

∑

j=1

aj

p−1
∑

i=0

αiγ(q + p− i− j)
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whih is a sum of null terms for p − j = p − 1, · · · , 0 sine detRpq = 0. By indution, step by

step, we get for j ≥ 0:
p−1
∑

i=0

αiγ(q + j − i) = 0.

This exatly re�ets the fat that ∀j ≥ 0 :

E[

p−1
∑

i=0

αiXn−iXn−j−q] = 0,

meaning ∀n ≥ 0,
∑p−1

i=0 αiXn−i is orthogonal to HX
n−q = Hε

n−q and we ompute its oordinates

in (Hε
n−q)

⊥
:

〈
p−1
∑

i=0

αiXn−i, εn−q+l〉 =
p−1
∑

i=0

αi〈Xn−i, εn−q+l〉

for l = 1, · · · , q and equal to 0 for l > q. Moreover using stationarity hypothesis 〈Xn−i, εn−q+l〉
does not depend on n: sine the white noise ε is the innovation white noise X is expressed as a

funtion of ε and this salar produt is stationary.

Denoting γl the oordinate of
∑p−1

i=0 αiXn−i on εn−q+l:

p−1
∑

i=0

αiXn−i =

q
∑

l=1

γlεn−q+l,

whih is an ARMA(p-1,q-1) relation and ontradits the hypothesis that the pair (p, q) is 'mini-

mal'. •

3.8.2 Estimation of Q oe�ients

This is a muh more di�ult problem and we will only give a weak approah! We assume

P is known (we estimated it in previous subsetion), q and γ are also known. We put

Yn =

p
∑

0

akXn−k.

We will only put the problem, then its resolution states on numerial analysis. The

existene of solutions is proved, but not the uniqueness.

The Y ovariane funtion is omputed as a funtion of the (bi) using that Y = AQε :

γY (0) =
∑q

0 b
2
k ; γY (1) =

q
∑

1

bkbk−1

γY (j) =
∑q

j bkbk−j ; γY (q) = bqb0

We look for a solution b suh that the orresponding polynomial Q admits only zeros with

modulus ≥ 1.
Exerise: solve this system for q = 1, 2.
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For q = 1, b2i , i = 0, 1 are

1
2

(

γ(0)±
√

γ(0)2 − 4γ(1)2
)

so we need γ(0) ≥ 2γ(1).

For q = 2..... awful omputations !

But the aim is to �nd the polynomial Q and there is another method, easier but using

the omplex numbers and what is alled �spetral density�. Sine Y is MA(q) proess, its

spetral density is known to be

f(λ) =
1

2π

+q
∑

−q

γY (k)e−ikλ =
1

2π
|Q(e−iλ)|2

where you only have to know that z = e−iλ
is 2 dimensional, (cos(λ),− sin(λ)), and

satis�es 1/z = (cos(λ), sin(λ)) = eiλ. So we have to deal with:

Q(z)Q(1/z) = γY (0) +

+q
∑

1

γY (k)(zk + z−k)

With the hange of variable Z = z + 1/z we ompute zk + z−k
as a polynomial of Z, for

instane:

z2 + z−2 = Z2 − 2.

Thus Q(z)Q(1/z) ould be written as a polynomial U(Z) the zero of whih, Zj, are linked
to those of Q by the relation Zj = zj + 1/zj .

Pratially, one found U and its zeros, we dedue those of Q, hosen with modulus ≥ 1.
The oe�ients b are got from the expansion of Πj(z − zj).
Remark: CSS= Conditional Square Sum.

Routines R: for instane for ARMA(2,1) needs arima ommands:

arima(x, order = (2,0,1)),

seasonal = list(order = (2,0,1), period = NA),

xreg = NULL, inlude.mean = TRUE,

transform.pars = TRUE,

�xed = NULL, init = NULL,

method = ("CSS-ML", "ML", "CSS"), n.ond,

SSinit = ("Gardner1980", "Rossignol2011"),

optim.method = "BFGS",

optim.ontrol = list(), kappa = 1e6)

X.ord=(2,9,1)

X.arima=arima(X,ord=X.ord)

3.8.3 Charaterization of parameters p and q

De�nition 3.28. A rational spetrum ARMA proess is said to be with minimal type

(p, q) when in the �anonial Fejer-Riesz relation�, the degrees of P and Q are exatly p
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and q.
More onretely: (p, q) is minimal when there does not exist polynomials P ′

and Q′
with

smaller degrees than p, q in the ARMA equation.

Consequene: if an ARMA(p',q') proess is minimal type (p, q), neessarily p′ ≥ p, q′ ≥ q.

Theorem 3.29. A regular STS X is minimal type (0, q) if and only if

γ(m) = 0, ∀|m| ≥ q + 1 et γ(q) 6= 0.

Proof: Exerise.

Sine Xn =
∑q

j=0 bjεn−j, γ(k) = 0 as soon as |k| ≥ q + 1. For k = q, γ(q) = a0aq 6= 0.

Conversely, is X is regular, HX
n = Hε

n for any n. The assumption γ(m) = 0, ∀|m| ≥ q+1
that X0 is orthogonal to the spae Hε

−q−1. On the other hand, X0 ∈ Hε
0 . So X0 ∈ Hε

0 ∩
(Hε

−q−1)
T
whih is the vetor spae generated by ε0, ....ε−q so X is MA(q). •

De�nition 3.30. Let (p, q) be a pair of positive numbers. We say that a real series

rn, n ∈ Z satis�es a (p, q) indution if there exists oe�ients (α0, · · · , αp) with α0 =
1, αp 6= 0, suh that

∑p

0 αjrm−j = 0, ∀m ≥ q + 1.

The indution is minimal (p, q) if any pair (p′, q′) satisfying the property above are

suh that p′ ≥ p, q′ ≥ q.

As we saw that in Subsetion 3.8.1, the series γ(n) of an ARMA(p,q) satis�es a minimal

(p, q) indution. With the γ (or at least their estimates), we an �nd p and q highlighting
the minimal indution. A priori it is not so obvious but this property is equivalent to

others properties whih are easier to hek numerially.

Lemma 3.31. Let a series (xm, m ∈ Z) and the matrix Rs,t with (i, j) oe�ient equal

to xi−j , i and j going from 1 to s. If rs,0 6= 0, the following are equivalent:

(i) The series (xm, m ∈ Z) satis�es a minimal indution (p, q) relation;

(ii) among the determinants rs,t, we have rs,t 6= 0 while s ≤ p or t ≤ q, and rs,t = 0 if

s ≥ p + 1 and t ≥ q + 1.

(iii) rp+1,q 6= 0 and rp,q+1 6= 0 and rp+1,j = 0 if j ≥ q + 1.

(iv) rp+1,q 6= 0 and rp,q+1 6= 0 and ri,q+1 = 0 if i ≥ p+ 1.

Here rp,q will denote the determinant of the matrix Rp,q de�ned in Setion 3.8.1.

Remark 3.32. In ase of ARMA proess, Rs,0 is the variane matrix of the vetor

(X1, · · · , Xs). The lemma hypothesis orresponds to the ase where the series X is non

singular.

So this hypothesis is not too strong;

Exerise: if X is non singular, prove that rs,0 6= 0. (Meaning: prove that rs,0 = 0 implies

X is singular.)

The lemma proof is tedious, for a omplete proof, look at Azenott and Daunha-

Castelle, pp. 137-138.
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Proposition 3.33. Let X be a rational spetrum STS. It is minimal type ARMA (p, q)
if and only if the ovariane funtion satis�es a minimal (p, q) indution relation.

In this ase the indution relation is the one whih provides the oe�ients (ai) of the

polynomial P :

γ(m) + a1γ(m− 1) + · · ·+ apγ(m− p) = 0, ∀m ≥ q.

De�nition 3.34. The order s partial auto orrelation of X, denoted as Φ(s), is the
last oordinate of the vetor −R−1

s,0Γ
s
1.

Previously it was denoted r (De�nition 3.2)

r(p− n) =
ov (Xn −X∗

n, Xp −X∗
p )

√

Var (Xn −X∗
n) Var (Xp −X∗

p )
.

Proposition 3.35. Let a rational spetrum non singular real STS X. It is an AR(p)

proess if and only if Φ(s) = 0, ∀s ≥ p+ 1 and Φ(p) 6= 0.

Proof: : Neessary ondition as an exerise:

Atually X is a regular series and we deal with an innovation white noise proess ε.
(i) Remark that by de�nition Xn − X∗

n is orthogonal to the vetor spae generated by

{X1, ..., Xn−1} and X∗
0 belongs to this spae so E[(Xn − X∗

n)X
∗
0 ] = 0. Thus r(n) is pro-

portional to E[(Xn −X∗
n)X0].

(ii) Sine X is AR(p), Xn =
∑p

j=1 ajXn−j + εn. Let n > p. So X∗
n =

∑p

j=1 ajXn−j sine εn
is orthogonal to the spae {X1, ..., Xp−1} ⊂ Hε

n−1. Thus E[(Xn −X∗
n)X0] = E(εnX0) = 0.

and r(n) = 0 for all n > p.
(iii) Finally look at r(p) :

Xp =

p
∑

j=1

ajXp−j+εp =

p−1
∑

j=1

ajXp−j+apX0+εp , X
∗
p =

p−1
∑

j=1

ajXp−j+apX
∗
0 , Xp−X∗

p = ap(X0−X∗
0 )+εp

so E[(Xp −X∗
p )X0] = apE[(X0 −X∗

0 )
2] and r(p) = ap 6= 0.

Conversely, to prove the su�ient ondition, we use Lemma 3.31. We onsider the

Cramer system:

Rs,0α = −Γs
1.

We notied that, for a non singular series, rs,0 = det Rs,0 6= 0. By performing the Cramer

resolution, the last oordinate of α is:

−det R′
s,0

rs,0

where R′
s,0 is the matrix Rs,0 with the last olumn replaed by Γs

1. Using a series of s
permutations, we see that R′

s,0 is atually Rs,1, and the last oordinate of α is: (−1)s rs,1
rs,0

.

We then an express the hypothesis

Φ(s) = 0, ∀s ≥ p+ 1 and Φ(p) 6= 0

as rs,1 = 0 ∀s ≥ p+1 and rp,1 6= 0, meaning the property (iv) in Lemma 3.31 when q = 0
whih is a haraterization of an AR(p). •
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