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Time series/Forecasting, course: 16 h + exercises: 8h.

Forecasting discipline is an issue of Statistics. Indeed, the aim is to answer the following

kind of problem: a system X is evolving in time, it is observed and one would like to
predict the future. Exemple: we can try to fill “holes” in a time series (missing data).
Generally, underlies a modeling problem: it is to find the mathematical “model” that
realizes the better connection between a variable and the time.
The methods are multiple. The principle is to find a mathematical modeling: for instance
the series X is to forecast as a function of time. Given the available observations, we try
the “best” function f (the optimality criterion depending on the method) such as X ~ f(t)
where ¢ is time. Namely, we consider that the observations are a set (X (t—i),i = 1,---,n).
This course presents three types of methods.

- The Smoothing (Brown, Holt and Winters, about the sixties) corresponds to the
intuitive idea of “smoothing” the curve obtained using points observed for a smooth curve;
smoothing provides X () in terms of the past of X.

- Linear regression, really simple statistical method.

- Processes ARMA, ARIMA, SARIMA (Box and Jenkins): sophisticated meth-
ods, where is exhibited a linear function of X (¢) and its past values X (t—1), i =1,--- n.

Depending on the cases, one or the other of these methods are more suitable. We can not
exclude one of them a priori. In the same study, it is convenient to use them each oth-
ers and then compare their respective performances before fixing our choice. A selection
criterion is obviously the quality of the forecast. Each method proposes statistical tests
that allow to judge the quality of fit (between the curve obtained and the observations).
An empirical way could be added: to reserve some “witnesses spots” and to do the study,
excluding them, and judging the error on witnesses.

For the concrete use of these methods it is recommended to use the free software "R":
https://cran.r-project.org/doc/manuals/r-release/R-intro.pdf

The terminal test will be such a study on concrete data, with proposed models and
their comparison.



1 Smoothing

(cf. Chapter IV, Gouriéroux-Monfort, [6])

1.1 Simple exponential smoothing
1.1.1 Definition, principle

This method leads to estimate the values of the series at times 7' + k£ as function of the
past values, exponentially, meaning:

T-1

(1) Vk Z 1, XT—I—k = (1 — 6) ZﬁixT_i

i=0
when T observations x; are available, 5 €]0, 1. The interpretation is the following: x7_;

has less influence as j is high (more past).

In case of 3 close to 1, immediate past is less important than deep past; the forecasting
is rigid; In case of 3 close to 0, immediate past is more important than deep past, the
forecasting is flexible.

Warning: the forecasting is constant in the future: it is smoothing somehow “horizon-
tal”.

1.1.2 Update

Not to have to recalculate the total sum of formula (1), we have an “ updating” formula:
(2) Xrp1 = (1= B)ar + Xy

The proof is simple: simply apply the formula (1) to k = 1 and k = 0 but with 7" — 1
observations instead of 7" and to the linear combination Xp.; — X7 to find (2). We can
interpret (2) as following:

e cither let us do the center of gravity between the last forecast and the new observa-
tion,

e or in such similar form XT—H = X+ (1 = B)(zr — XT) we add a weighting of
innovation to the previous forecast.

1.1.3 Interpretation

Suppose we seek the better constant a to fit the series at a constant using the least squares,
but with an exponential weighting, i.e., we try to minimize the function:

T-1

F:aw— Z B (zp_i —a)?.

=0



The minimum of F' is reached at
T-1
~ 1 - 5 7
a= ﬁ E B'rr_,
i=0

i.e. roughly speaking, XT-H is little different of @ when 7' is high enough (meaning
a lot of observations). Thus, the interpretation of X741 is the better constant fitting
the whole (3%)-weighted series. This allows to conclude that this method is completely
inappropriate in case of trending or seasonality. These points will be the subject of the
following sections.

1.1.4 How to choose the constant

Recall
e =1 — ¢, rigid, dependence from past,
o 3 = ¢, flexible forecasting, low dependence on the past.

But there is a more objective criterion for choosing this smoothing constant: one chooses
[ which minimizes errors made replacing the observations by their prediction, namely, for
t=1,---,T—1, x4, replaced by X,y = (1 — B) 32'_ B'w;_;. So the aim is to minimize
on the interval [0, 1] the application :

F: ﬁ'—>2$t+1— 1-p Zﬁliﬂt i)

In the general case, the computations are tedious and inextricable. Nevertheless, there
is necessarily a solution since F' is a continuous function on a compact. The study of
its variations is complicated. Therefore a special case could be solved when x; are the
values of the random variables X, stationary centered 2-order series with the covariance
function (k) = pl*l |p] < 1. And rather than seek to minimize the sum of observed
squared deviations, we could minimize their mean:

G:f— E[(Xp1—(1-5 ZﬁZXt i

It yields
t—1
G(ﬁ) —1— 2(1 _ 5) Zﬁip“—l + (1 . 5)2 Z ﬁHjP‘i_ﬂ.
i=0 ij<t—1

We suppose ¢ high enough and we compute the last term:

i+j li—j] 21 i+j |z Jl — 1 2pﬁ
20 Zﬁ DI =5 - o)

i,] i=0 j=i+1
(1—5)p+1—6+ 2060—-P) _, 1-p
1—=pB) 1+8 (@+B)(1—-pB) (1+pB)(1—pB)
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The optimum is depending on p and on the position of lz;pp with respect to 0 and 1. Let
be the logarithmic derivative of G with respect to [ : the denominator is positive and the
numerator is 2p5 — 1 + p.

) if0< L <1 ie p>1/3, theoptunumlsﬁ——p
(i) if 42 > 1, i.e. p < 1/3, the optimum is B=1.

This means Athat in the case of a low correlation, this is not a good method: the * best”

forecast is X = 0 which on the one hand is not very interesting and on the other hand

certainly gives rise to very large errors. We must seek in this case another method.

In case (i) (good correlation), the minimum value of G when = =2 is:

2

2p (1+p)?
In practice, if we trace the family of curves representing G,(5) we find that “ good ” /3
values are in the range of 0.7 to 0.8 corresponding to values of p around 0.4.

Another good and solvable example is the case when the auto-covariance function vy
is zero for |k| large enough, for example, the series in Exercise 4 of the sheet 1. In such a
case we can find an optimal [3.

1.2 Double exponential smoothing—=Lissage exponentiel double
1.2.1 Definition, principle

This method is convenient when a linear trend is possible. The principle is to fit the series
to a line: a; + (t — T')ay instead of a constant:

Xpip = ay(T) + kay(T)
where 7' is the length of the forecasting. We look for the constants a;(7") and ay(7") which

minimize the following application:

T-1

F:(ar,a0) = Y 5 (w0 — ar + azj)’

=0

meaning the quadratic mean (weighted exponentially by 7) of the errors which are re-
sulting of the replacement of observation zp_ j by the estimate with a trend: a; — asj.

Using standard formulas >1jﬁ = B = or Z]>1j = fl(l—;i we deduce both
partial derivatives of the convex function F meaning:
T-1
1 : 1 g
-V, F ~ I —
2! ;ﬁx“ “ToE T
1 B B +5)
—=VoF ~ J
2" Zﬁ‘”’“ - pE AP



asuming once again 7" close to infinity to simplify the computations. Let be:

T-1

Si(T) = (1— Zﬁ xp_; named as “smoothed series” ;
7=0
T—1

Sy(T) = (1=p5) ) BFjvry,
=0

after tedious but straightforward computations, the unique pair canceling the gradient F
is:

a1 (T) = (1 + B)Si(T) — (1 — B)Sy(T),

ax(T) = (1 - B)S,(T) — ‘65) S,(T).

1.2.2 Update
For updating the coefficients a;(7") remark that:

SU(T) = BSH(T = 1) = (1 - Bar,
and we deduce the simple updating:

SUT) = (1= Blar + BSI(T - 1).

The updating of the sum S5 is more difficult; we introduce the series “ doubly” smoothed:
T—1
So(T) = (1= )Y FSu(T ~j)
§=0

Exercise: prove the relation between Sy and S):

SY(T) = 1= 5a(T) ~ Su(T).

Updating this new sum is a little bit simpler. We prove:

So(T) = BSo(T — 1) + (1 = B)’wr + B(1 — B)Si(T - 1).
Then we deduce (once again after tedious but straightforward computations!!) the up-
datings:

@1(T) = wr(1 = B%) + B*[ax(T — 1) + az(T — 1)],
a2(T) = 27(1 = B)* + a2(T — 1) = (1 = B)*[as(T — 1) + (T — 1)].



1.2.3 Procedure

look for routines in software R

Statgraphics sofware provides some routines: BROWN, three options : simple (no
trend), linear(meaning “double" or linear trend) and quadratic (which could be named
“triple" and corresponding to a quadratic trend. We need the smoothing constant, here
named: “smoothing constant alpha'...

1.3 Generalized Exponential Smoothing

We will try to fit the observations to more sophisticated functions, more than the constant
function or the line, in particular to take in account the seasonality (periodic functions).
The first to do that was Brown (1962) who proposes the following tool.

1.3.1 State-transition matrices

Definition 1.1. We say that f : Z — R" is with State-transition matrix if there exists
a matriz A with non null determinant and such that:

Ft) = Af(t—1), Vte Z.

The principle of the generalized exponential smoothing is to fit the series X; with
o(t —T) where ¢(t) = > r , aifi(t). Look at some examples:

(a) p(t) = a is Subsection 1.1, simple smoothing. It is obtained with the constant
function f(t) = 1 and the matrix A = 1 in 1—dimension. ThenXr,, = o(k) = a(T).

(b) ¢(t) = a; + ast is Subsection 1.2, double smoothing. It is obtained with the

function f(t) = (1,¢) and the matrix A in 2—dimension:

10
1

Actually the determinant of this matrix is non null. Thus, X7 = @(k) = ay(T)+ao(T)k.

(c) ¢(t) = aysinwt + ag coswt, is obtained with the function f(t) = (sinwt, coswt)
and the matrix A in 2—dimension:

cosw Ssinw

—sinw cosw

Actually the determinant of this matrix is non null. Thus, X7, = @(k) = a,(T) sinwk +
as(T') cos wk.

(d) o(t) = ae™, is obtained with the functionf(t) = ¢** and the matrix A = e in
1—dimension. Actually the determinant of this matrix is non null. Thus, X7, = (k) =
a(T)e*,



1.3.2 The method

We forecast X; with the scalar product in R", ¢(t —T') = (a, f(t —T')). The function f

being fixed (it is the “form" of the fitting, the smoothing) we look for an optimization with

respect to a, meaning to minimize the application, computed on the available observations:
T—1

G:am Y Bler;—{a f(—5)))
=0
so we have to cancel the gradient of the function G, a convex function:

——VG Zf DB (@r—; — (a, (=) = 0.

Let be Y the vector (xp,---,zr — j,---,21), Fp the matrix with general coefficient
fi(—7)B? arrow i and column j. The above system admits the matrix writing:
Fﬁ.Ft.a = FgY

Let be the optimal vector:

a(T) = (Fg.FY) ' Fg.Y.
To be simpler, as above , we suppose T high enough in FzF"i.e. T ~ oo and since 0 < 3 <
1 all the series are convergent, so the matrix FF" with general term Y, - f*(—k)B" f7(—k)
does not depend on 7. -
Exercise: to solve the examples (c¢) and (d).

1.3.3 Update

We recall a(T') = (Fj. Ft)_1 ZT_l If(=f)xr—;.
In the expression Z 0 LB f f(—j)xr_; we can focus on the last observation:

T-2

25] IL'T - = ZET + Zﬁ] ZET —j = f(O)xT + ﬁZﬁjf(—j - 1)55T—1—j-
=0
But the hypothesis implies f(t) = Af(t — 1), so f(—j) = Af(—j — 1) and:

A(T) = (F5 F') ™ f (0)wr + B(F5. ')~ A~ (Fp Fa(T — 1),
This means that a(7) could be written as grr + Ga(T — 1) with g = (Fs.F*) 7! f(0)
and G = B(Fs.F')"* A~ (Fs.F"), and these matrices do not depend on time, so they are
computable from the beginning.

As previously we have some updating formulas which stress the so called “innovation”
a(T) = (9.f'(1) + Qar_1 + g(zr — Xr(T — 1)).

Exercise 4, sheet 2.
The most important problem, given the observations graph, is the recognition of the
smoothing curve deduced from the function f. It is less reliable than Box and Jenkins’
methods that we will see in the third chapter, but, nevertheless, it may be useful.
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1.4 Holt et Winters’ methods

They are based on Winters (1960, cf. |[12]) seminal work, or Harrison [8].

1.4.1 No seasonality

The principle is the fitting of X; on a; + (¢t — T)as but with different updating

(M) =1—-a)zr+afa(T—1)+a(T—-1)], 0<a<1
3) ax(T) = (1= [ar(T) — aa(T — 1] + 9T — 1), 0 < a7 < 1.

The initial constants are arbitrary, but the practice advises to take:
d1(2) = T2 ; d2(2) = T9 — T1.

This can be understood as follows: a;(7) is the “forecast” X with T observations, but
the observation is z7. Otherwise, with 7' — 1 observations, X7 = a;(T — 1) 4 a(T — 1).
The update a; is the center of gravity between these two possibilities of Xr.

Similarly for a,, we can “forecast” x7; either with 7' observations, and it is a; (7) +ao(T),
or with 7'—1, and it is a1 (7" — 1) +2a2(7T'—1). In case of both identical forecasts, it implies
an estimate of as equal to —a,(T") + a1 (T — 1) + 2a2(T — 1).

Concerning zr_1, it is “forecasted” either with 7" observations, so by a,(71") — a(7"), or
with 7" — 1 observations, so by a; (7 — 1).

In case of both identical forecasts, it implies an estimate of @y equal to a; (7)) —a (T —1).
Choosing the [-barycenter between these two cases, we get the proposition with v = 24.
A similar raisoning with two observations warrants the proposed initialization.

Notice that using X7 = a1(T — 1) + (T — 1), (3) could be written as:
(4) a(T) = (1 — a)(ar — X7) + @ (T — 1) + ax(T — 1),
a(T) = (1=~ —a)fxzr — Xr] + ao(T — 1)
to highlight the dependence on the last observation.

In this method, there is two constants which allows greater flexibility of use.

Exercise: Compare these update formulas from those obtained in the paragraph 1.2.2:
Exercise 4 Sheet 2.

The interpretation is similar to the previous case: if these constants are close to 1,
forecasts are “ smooth” and depend heavily on the past. Thus, the forecast is:

Xr(k) = ar(T) + kao(T).

We could choose the constants o and v minimizing the following function, calculated
on available observations:

(a,7) — i(iﬂtﬂ — Xi11)* = ] (a1 — @ (T)(,7) = (t+ 1 = T)as(T) (e, 7))*.



1.4.2 Additive seasonality

We look for a fitting of the series with the function:
t|—>a1+(t—T)a2+St

where there is a trend ay but also a seasonal (here additive) factor S;. The authors propose
update formulas following, where s is the number of “season ”’, e.g. 12 monthly data, 4
for quarterly data, etc.

(5) a(T) = (1—a)(wr —Sr—) + alar(T — 1) + ax(T — 1)),
(6) a(T) = (I=a(T) —a(T = 1)] +va(T — 1),
(7) Sr = (1=8)[ar — a(T)] + 65—,

where the constants a, 7,0 €0, 1[. These formulas are similar to (3) where x7 is replaced
by its ’seasonalized’ value; the second is the same; the third is natural enough: we weight
between the previous value and x7 — a;(7") matching prediction relationship given below:

X7(0) = a(T) + St
Finally the forecast is:
Xpw(T) = ay(T) + kao(T) + Spip_is, (i —1)s < k < is, Vi.
The practical problem is still the choice of the smoothing constants, here «, ~, d.

Moreover, it is necessary to initialize these constants. Gouriéroux and Monfort propose
the following set of initial constants based on the need to have a priori estimates of
Siyi=1,.. ., s since, by building, the recurrence begins only at 7' = s + 1 and requires
the data of S;,i =1,...,s:

(3) = 1/8x1+1/4wy+ 1/4x5+ 1/4xy + 1/825
(4) = 1/8xy+1/4x3+ 1/4x4 + 1 /425 + 1/8x
(1) = a1(3) —2a2(4) ; S; = z; — aq(3).

1.4.3 Multiplicative seasonality

Here we look for a fitting of the series with the function:
t— (0,1 + (t — T)ag)St

where ay is the trend coefficient but the seasonal factor S; is multiplicative. The authors
propose the following update formulas, where s is the “season ” number, e.g. 12 for
monthly data, 4 for quarterly data, etc.

(8) a(T) = (1-a) S +alin (T — 1) + as(T — 1)],
(9) is(T) = (1—)[ax(T) — (T — 1)] + vaa(T — 1),
(10) Sp = (1—5)%”5&_5,



where the constants «, 7, d €]0, 1[. Finally the forecast is:
Xr(k) = [ay(T) + kao(T)]Srqnis, (i —1)s <k <is, Vi.

Once again, the practical problem is the choice of the smoothing constants, here a; v, 9.

1.4.4 Procedure

R Software provides routines Holt Winter. Look at “A little Book of R for Times Series”.
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2 Regression

2.1 Introduction

The principle of regression applied to forecasting is as follows: let numerical data be
indexed by time, meaning a set of points; the goal is to "fit" these points by a curve and
thus to extrapolate the future (and possibly the past!), or to reconstruct missing data by
interpolation of this curve. So, we have a series (t;, X;)i = 1,---,n, in R x R and we
are looking for a function f :R* — R which “minimizes” the quantity ((X; — f(t;))i =
1,--+,n). Here the criterium is the “least squares criterium", meaning to minimize the
application:
X =017 =Y (Xi— f(t)
i=1,--,n

The most common types of fitting are:
f(t) =a+bt;a + bt + ct?; a n degree polynomial,
or for instance:

f(t) = acos(wt+ ¢), periodic function;

alogt + b;
1

a-+bt’
a.b';a.b" + ¢, exponential and modified exponential function;

reciprocal function;

a.t’; a.t’ + ¢, power and modified power functions;

@ ogistic functi
S EE— 0Og1St1C Tunction )
1+b.ct’ &

expla.b’ + ¢|, Gompertz function.

Exercise : show which of these fittings can be reduced to linear regression by one or
more appropriate variable changes.

The principle is to "guess at sight" the type of function to choose, according to the
profile of the observed points; then to estimate the parameters by minimizing the quadratic
difference; finally to validate the model by statistical tests on residuals, i.e. the random
variables (g; = X; — f(t;), i = 1,--+ ,n) on which we make the assumption that the law
is a centered Gaussian law. So we do a Fisher test to know if ¢ are small enough.

2.2 Linear regression

It is the most used in practice, even if it is not necessarily the most efficient!!
Definition 2.1. The regression line of Y with respect to X is the line v — a+bx where
the parameters (a,b) minimize the quantity:

n

F(a,b) = (yi —a—bx;)*,

1=1
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meaning the so called “least squares method”.
The interpretation of this line is as follows: if we draw on a graph (x,y) the population
points ¢ with coordinates {(z;,y;)i = 1,...,n}, this line is the one that passes as close as
possible to all these points. Indeed, for every point i, the quantity (y; — a — bx;)? is the
square of the vertical distance between this point and the line x — a + bzx.

2.2.1 Regression parameters

Above we defined function F', convex, differentiabledepending on two variables. Thus a
point which cancels both partial derivatives is a minimum for F. The constants a and b
are the solutions of the linear system:

0.F = =2 (yi—a—bx;) =0,
=1
(11) 81)F = =2 Z(y, —a— bl’Z)ZL’Z = 0.
i=1
So

where

7 and y denoting the empirical means of the variables X and Y'; 0., 0, are they empirical
standard deviations. Moreover here we use the “covariance”:

Definition 2.2. The empirical covariance of the variables X and Y is:

_ ~ STl
Sey = - Z(zi—x)x(yi—y) = *—xy.
i=1,...,n

The coefficients a are b are “estimated regression coefficients”; the line y = a + br is a
trend line, fitting Y with respect to X.

Proposition 2.3. We assume ¢; = X;—a—bt; is a centered Gaussian random variable with

variance o?; then the estimates b and G are too Gaussian random variables, respectively
2 2 2
N, 7)) and N(a, Z-(1 + ).

> nVar(t Var(t)

Standard routines provide these estimates and their law.

12



2.2.2 Forecasting

We now can use this fitting line to forecast Y values using observed X values. Or to
forecast X values using new times t;:

Yns1 = @+ bxpyy, xpni1 = a+ by,

2.2.3 Correlation

The covariance value belongs to the interval [—o, X 0,, 0, X g,]. The following does not
depend on the unit:

Definition 2.4. The empirical correlation coeflicient of the statistical variables X
and Y s Py = Sru_op i temporal fitting case: py, = Sat

OgXoy’ ogxXot "

Remark that p € [—1, —1].
Exercise: prove p € [—1, —1] and moreover

p=+lou —1&Vi=1,...,n, vy, =a+ bx;,

meaning a perfect linear fitting.

Interpretation: more p? is close to 1, better is the link between X and Y, the approx-
imation of Y by a + bX, of X by a + bt, is “valuable".

2.2.4 Study of the residuals

Having the estimates of a et b, it remains the differences, the fitting errors.

Definition 2.5. The residuals are the differences

~
A

€i:l’i—a—bti.

These ones are supposed to be small since these are mistakes made when admitting
the model X = a + 0t. These residuals satisfy some properties:

- they are centered:
Zéi:ni’—nd—bnfzo
i

using a.

- they are non correlated with the ¢; :
~ 1
it —1) = i—a—bt)t; = —=0F =0
Dot =0 = Yo~ )t = =50
using Equation (11).

13



- their variance is .

s(e) = = Zaf =0, (1—7p%).

1

If this quantity is “too high”, we can not accept the model. Indeed, we assume that the ¢;
are the values taken by a Gaussian random variable. Thus, it makes possible locating aber-
rant values: the probability that the residuals are outside of the interval [—2s(e), +2s(e)]
is small (P{|e| > 20} = 0.0456), and it could be good to take a closer look at the corre-
sponding points.

Example : Let Y be the son’s size and X the father’s size. The estimates are

a=84843; b=0.532; o) =39.73; p=0.533; s%(e) = 28.44.

For x = 165c¢m, the average size of the son is estimated by y = 0.532 x 165 + 84.843 =
172.66.

More specifically we get:

Proposition 2.6. We asume that ¢; = X;—a—0bt; are centered Gaussian random variables

with variance o, the random variable % law is the X2 _, law, and it is independent

of the random variables a and b.

This result allows to get an unbiaised estimate of 02, meaning ?712 and a confident
interval for this parameter; this is a way to measure the error. In the general case, we
do not really know this parameter o2. On the other hand, we have the following result to

control the estimates of a and b.
Proposition 2.7. The law of the random variables

o(b—b) Vi =2Var(t)(b—b)
52( ) \/Var OVar(X) — cov?(X,t)’

-2

T_

and
o(a—a) Vvn(n—2)Var(t)(a —a)

LEVar®+?) /3, 12/ Var(t)Var( X) —co?(X, 1)
n—2

18 a Student,_o law.

2.2.5 Correlation coefficient test

There are statistical methods to know if the estimate of the correlation coefficient p is
“significantly” small. Indeed, p is the value taken by an estimator, a random Varlable Wlth
a known law. Actually we show that the associated variable F' = (n — 2)2

—p2
Fisher-Snédécor law of degrees of freedom (1,7 — 2), which makes it possible to test the

hypothesis p = 0 against p # 0. Thus we compute the value taken by F' and we examine
in the Fisher-Snedecor table if this value is small enough or not.

14



Exercise : n =63 ; p=0.533 ; F = 24.206.

The probability that the random variable Fisher-Snedecor; ¢ is so huge is almost negligi-
ble: we can not accept that p is zero.

Be careful! : when n is large, the value of F' is too large, and almost always significant!
we then tend to reject the hypothesis p = 0..., maybe wrongly.

2.2.6 Regression of X with respect to Y

We can, in the same way that we try to adjust Y according to X, try to adjust X according
to Y. By symmetry, we simply find another regression line:
vay /!

r=d +by, where V) = =%, d =7 — gl
o
Yy

and we notice that the two slopes b and V' are linked by the relation:
r_ 2
bb - px,y

which means that the two lines are even closer than the coefficient correlation is closer to
+1. Remind the test on the correlation coefficient, cf. (2.2.3).

2.2.7 The practice

Look at these routines in sofware R BUT, there is no regression in ’a Little Book of R for
Time Series’. [ will provide another booklet.

Using software Statgraphics, the command REG is the one for Simple regression which
concerns this model. Obviously, we have an interest in reading carefully the manual ...
The following screen shows where to name the variable to explain, then the explanatory
variable (eg time). We indicate linear for model then the probabilities of confidence for
the tests to do for validating the model obtained. After turning the procedure, we get a
second screen with the digital outputs.

- intercept is the ordinate at x or ¢t = 0,

- slope of the regression line.
After that, the standard deviation for a and b are given. These ones allow to produce
confident ingterval, the value of Student variable, so we can test the hypotheses T or
S = 0. (cf. Proposition 2.7).

- variance analysis: the value residual is the sum of squared errors, with degrees of
2

freedom Df (here 152), then the F-ratio equal to (n — 2)#; this one allow to do the test
of hypothesis p = 0 against p # 0.

- finally, the last paragraph provides the p estimate of p, its square and the estimate
of the standard deviation o of the residuals. This number, residual, allows to build a
confidence interval for o.

Returning to the main screen allows you to choose the desired graphics. We can print:
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- plot fitted line, the fitted curve,

- plot residuals, the residueal curve, which makes it possible to judge whether the
mistakes are actually small or not,

- save restduals allows to put these errors in a file and to carry out tests on it,

- save predictions,

- lack of fit test .

The command OUTLIER allows to exclude points from the analysis (only for the linear
model), for example: outliers, points of a past too far, points of the last period to use test
points. The user manual is identical to that of REG.

2.3 Non linear regression

As we saw in the exercise Section 2.2.3, it is most often to reduce linear regression to
model the least squares according to the functions listed below, for example:

f(t) = acos(wt+ ¢), periodic function;
alogt + b;

1
, inverse function;
a—+ bt
a.b';a.b' + ¢, exponent and modified exponent functions;

a.t’;a.t’ + ¢, power and modified power functions;
a

——, logistic function;

1+ b.c &

expla.b’ + ¢|, Gompertz function.

If one can not simply reduce to the linear case, there are cases where one can minimize
by the least squares method.
Exercise: parabola fitting.

This model is solved by the software using the NONLIN procedure where the formula
of the adjustment function is explicitly given.

2.4 Multiple Regression

In some economic models, forecasting can be done using several explanatory variables.
Indeed, prior statistical studies were able to detect "external" variables, particularly well
correlated with the variable studied (to be explained, “internal”.) For example, a country’s
energy consumption is a function of:

- industrial production,

- household consumption,
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- number of cars, etc.
and we try to forecast by the multiple linear regression:

Y =aX' +bX% +cX?
where a, b, c are obtained by the least squares method, minimizing the application:

(a,b,c) = > (y; — aXj — bX3 — eXi — d)*.

Thus we get the linear system:

Z +bZX X2+cZX X3+dZX1 = Y X,
aZX X2+bz X2)? +cZX2X3+dZXZ = Y XY,
80:aZX}Xf’+bZXf’Xf+cZ(Xf’)2+dZX§ = > X,

8d:aX1+bX2+cX3+d = Y

Exercise : exhibit the optimal estimates a, b, ¢, d.

The routine MREG consists in obtaining the estimates of the coefficients a, b, c,d. We
enter the name of the variable to be explained (or any other variable obtained by com-
bination of what exists) it is Dep wvar, then the name of the explanatory variables is
Ind.var.

The STEP procedure seeks, stepwise, the “best” variables to enter one by one, better
in the sense that one firstly enter the best correlated with Y (p(Y, X;) = sup, p(Y, X)), we
operate the regression of Y with respect to X, then we choose the best correlated variable
with the residual Y — @;X;, and so on until the Fisher test on correlations becomes not
significant.

Above has to be given in software R

2.5 Quality of the regression

In the linear case, the histogram of the residuals is examined to check that they are
"acceptable." The program also provides some criteria:

ME (mean error) is the residuals mean, theoretically it could be 0,
MSE (mean square error) is the mean of the squared residuals, s*(¢),
MAE (mean absolute error) is the mean of absolute values of the residuals,

MAPE (mean absolute percentage error) is the mean of absolute values of the ratio
residuals/their estimates; the interest is that this mean does not depend on the chosen
unit,

MPE (mean percentage error) is the mean of the values of the ratio residuals/their
estimates; once again, the interest is that this mean does not depend on the chosen unit,
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2.6 Durbin Algorithm

Perhaps Section to skip.
This method “mixes” both regression and smoothing: indeed, the aim is to forecast X, 1 using
the k previous observations, meaning (X, X;,—1, -+, X;,_k+1) using the least square method:

k
(12) n+1 Zaz n+1—i
i=1

is the L? projection on the vectorail subspace generated by (X, X,—1,--+, Xp_k+1), so the
parameters a;(k) realize the minimum of the application:
k
F:(ai(k),i=1,-- k) = E[Xps1 — Y a;(k)Xni1-]°
i=1

the minimum (—the error) is denoted as vy,.

Thus we need some assumptions on the process X,
Hypothesis : the observations x; are the observed values of the random variables X;, centered,
square integrable, stationary, meaning: for all n , cov(X,, X,,1x) = (k). Remark that the
function ~ is pair on Z: (k) = y(—k).
Definition : the function « is the autocovariance function .

This function could be estimated using the observed values. Then

Proposition 2.8. Under the previous assumptions, we get the recursive relations:

1
(13) a(l) = ::EO; ai(k) = a;(k — 1) — ap(k)ap_i(k — 1) ; i=1,..k — 1,
(14) vg = (0); v(k) = (1 —ap(k)?),k>1
k Pk —d)ai(k - 1
Vk—1
Proof:
(i) k =1 : X = a1(1)X; where a;(1) realizes the minimum of the application a; —
E[(X2 — a1 X1)?]. This application is a convex differentiable function, so its minimum is realized
— 2

when the derivative is null: a;(1) = OB

Let us denote:
E, j = the vectorial subspace generated by (X, -, X;—p11).

and P, j the projector on E, ;.. Obviously

Xn—i—l(k) - n n+1 Zaz n+1—i-

We project this equality on the smaller vector space F,, ;1 thus on the one hand
Pn,k—l(Xn—i—l) - Pn,k 1 n+1 Zaz - 1 n+1l—i
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and on the other hand

k—1

Pui1(Xng1) =Y ai(k) Xpg1—i + ai(k) Poj—1(Xn—p1)-
i=1

We then use the lemma:

Lemma 2.9. There is a “symmetry” between past and future, meaning: Py 1(X,) = Zle a; (k) Xt

Proof: we get (12) by minimizing the application F', differentiable convex function, thus
a;(k) are solution of the linear system

k
VIF=-29(i)+2) ajy(li—j))=0,i=1,- k.
j=1

In the lemma, X,,; coefficients have to minimize the application
a; — G(a;) = E[X,, — Zle a;(k)X,1:]?. We can check that actually both linear systems are the
same; this ends the proof. °

Thus

Prop—1(Xn—py1) = a1k — 1) Xy _pq2 +ao(k — 1) Xy pq3 + - +ap_1(k — 1) X,

We identify both expressions of P, j_1(Xp41), then yields the coefficient of X,,41—; under two
expressions:

a;j(k —1) = a;(k) + ar(k)ar—i(k — 1),
meaning (13).
(ii) The projection on {0} is necessarily null, X, 11 = 0, vy =|| Xns1 [|?= 7(0).
For computing the error vpwe use the Pythagore Theorem:

v = ’Xn+1 - Pn,k(Xn-i—l)‘%?

SO:
Vg—1 = |Xn+1 - Pn,k—l(Xn—i-l)@ = Uk + |Pn7k(Xn+1) - Pmk—l(Xn—i-l)@-
But
P ie(Xnt1) — Poj—1(Xn41) = ap(k)[Xn—r+1 — Prp—1(Xn—r+41)]-

Using Lemma 2.9 and the stationarity of the process X, the squared norm of the vector P, j(Xpn41)—
Pri—1(Xpt1) is ag(k)?vg_1, so:

Vip_1 = UV + ak(/ﬁ)ka_l

meaning (14).

(iii) Using once again
P i(Xnt1) = Pog—1(Xng1) = ar (k) [Xn—g+1 — Pnp—1(Xp—r+1)]

we compute Vg1 = | Xp— k11— Png—1(Xn—k+1)]?. Actually, using both forms of this vector yields:

(Xn—tt+1 — Pop—1(Xn—k+1), Po e (Xns1) = Poj—1(Xn41)) = ap(k)vp—1
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Using the definition of the projector P, ;—1(Xy+41) € Ep k-1 and the left factor above is orthog-
onal to Ej, j_1 :

ap(k)vp—1 = (Xn—kt1 — Pop—1(Xn—p11)s Pop(Xng1)) = (X1 — Pop—1(Xn—it1), Xng1)-
But Pn,k—l(Xn—k—i-l) = 2?2—11 ai(k — 1)Xn+1_i SO:

k-1
ap(k)yor—1 = v(k) = > ai(k — 1)y(k — ).
i—1

[
Remark : One can interpret ag(k) as following: this coefficient is equal to the correlation
coefficient between the vectors X, 41— P g—1(Xpn+1) and X, 41— Py g—1(Xp—k+1). It is named
partial correlation coefficient. Indeed, remind the proof of (iii):

<Xn—k+1 - Pn,k—l(Xn—k—l—l)a Xn+1>
Vk—1
<Xn—k+1 - Pn,k—l(Xn—k—l—l)a Xn+1 - Pn,k—l(Xn+l)>
Vk—1

(16) ap(k) =

(17) -

S0 vg_1 is actually the squared norm of these vectors.

2.7 Innovation Algorithm

(cf 6], page 155 et sq.)

For forecasting, it is interesting not to recalculate all the coefficients each time a new
information arrives while using it nevertheless. We therefore try to use the estimates
already obtained as well as the new observation to predict at best.

Definition 2.10. Innovation is the “new” information at time t, meaning:
Zy = Xy — P (Xy),

where Py is the projection on E, vectorial subspace generated by { X1, -+, X}

Remarks :
(i) E; is also generated by the vectors {Z;, .-, Z;}.
(ii) By construction, the vectors Z; are mutually orthogonal vectors.

Let v;_; denote E(X; — P,_1(X;))?, the quadratic error or "risk". Particularly vy =
E(Xl — Po(X1>>2 = E( ) ( ) since Po(Xl) = 0.
)

Proposition 2.11. Let P,(X;,1) denote Zt 7;(t)Z;, then recursively:

_ )
Tl(t) = )

~(0) |
(18) Ti(t) = U,_lh(Hl—j) Y 7ild = Dri(t)vima)s J =2
(19) vo =(0), v, = 7(0)—27 vy ; t>1



Proof: The recursion starts with Py(X;) =0 so Z; = X3 and vy = 7(0).

Firstly remark that for j = 1 minimizing the application a = F (X, — aX;)? yields

’7'1(1) = %

Since the Z; are orthogonal, if 7 <1 :
(Xes1,Zj) = (Pi(Xe), Z5) = 7,() E(Z7) = 75(t)vj1.

This means that % X _p (X
Tj(t) _ < t4+15 <5 _ j—l( j)>;
Vi1

writing P;_1(X;) = Y020 7(j — 1)Z;,j > 2, we have to compute the scalars products
(Xit1, Zi) = (Pi(Xii1), Zi) = 7i(t)vi1, and for j = 1,7(t) = 13-

Thus (18) is proved.

To prove (19), once again we use the Pythagore theorem:

E(Xi1)? = v + E[P(Xe1)),
this is exactly (19) since P;(X441) is a sum of mutually orthogonal vectors. .

For further forecasting, we have the following proposition :

Proposition 2.12.

n

Xnsk(n) = Po(Xppi) = > _7i(n+k—1)Z;.

1=1

Proof: standard, with

n+k—1

Po(Xnik) = Po o Pagro1(Xnsr) = P Y mln+k—1)Z)].

i=1

Since Z; are mutually orthogonal vectors, the projection of Z;,7 > n on E, is null, so the
result. °

Practically, the rule is to replace by 0 the innovations of instants n + 1 ton +k — 1
which actually are still unknown.
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3 Box and Jenkins’ methods, general features

Developed in the 70s, these are very powerful methods which make maximum use of the
fact that the evolution of the studied time series is considered as one of the achievements
of a stochastic process, endowed with a strong enough structure. Indeed, once highlighted
the structure, this allows to predict more confidently the future series. The counterpart
is the need for a fairly long period of observations for that the forecast is reliable. The
authors recommend 5 to 6 periods in the case of periodic phenomena, and a minimum
of 30 observations in other cases.

These methods work very well for short-term forecasts macroeconomic series, especially
for the industrial production indexes. In Finance, this method does not concern the
forecast of returns, but the one of volatility.

They are based on the assumption that each observation depends quite strongly on
previous observations. Basically, this addiction to the past replaces multiplicity of ob-
servations (in Statistics) to estimate the settings by applying the law of large numbers.
So are assumed strong enough assumptions, that the series is stationary, meaning the
two first moments do not depend on time. If this is not the case, they must be done
“stationary” by transformations (called filters) that remove trend and seasonality.

3.1 Definitions

Thus, we consider processes, random series, indexed in Z and taking their values in R
(real numbers):

Vn € Z, X, is a random variable : (2, F, P) — (R, B).

We try to model the application n — X,, with a trend part, a seasonal component, and
the measurement error.

Hypothesis: The observations x,, are the values of a centered, square-integrable, sta-
tionary, random process (X,), i.e. there exists a function v on Z such that Vn,k €
Z , cov(Xp, Xn_) = v(k), where

cov( X, Xn—i) = E[(X,, — E(X0))(Xpek — E(Xu—i))].
Exercise 1: Actually for any k € Z, v(k) = v(—k).

Definition 3.1. : Such a process is called a second order stationary time series,
S.T.S. for short.

The function v 1s called the auto covariance function.

Moreover we define the auto correlation function p : k — p(k) = %.
There exists another notion: “strict stationarity” meaning the vectors (Xi,---, Xj)

and (X, 11, -, X,1x) have the same law, for any pair (k,n).
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As for the covariance function 7, for any k € Z, p(k) = p(—k) and we define the
correlogram, graph of the application p, useful tool for analyzing the series as discussed
later.

We also introduce:

Definition 3.2. The partial auto correlation function, P.A.C.F., is defined on N as:
r: N=>R;r(p—n)= cor (X,, Xp/Xnt1,--+, Xp-1),p > n,

meaning
cov (X,, — X7, Xp — X))

V/WW(XH—}i)Vm(Xb—Ag)

r(p—n)=

where X7 is the orthogonal projection of X; on the vector space Sy, generated by (Xpi1, -+,
and completed by r(1) = p(1).

Exercise 2: this expression only depends on (p — n).
Finally, we introduce the infinite dimensional matrix of variance-covariance process X.

Definition 3.3. : The Toeplitz matrix is
I, g) =r(i—j), i,j = 1.

This is a symmetric matrix.

3.2 Examples of second order stationary times series, STS

First example of fundamental S.T.S. : the white noise.

Definition 3.4. The (weak) white noise is a STS (ex) (with covariance function equal
to v with y(k) = 020k 0.

If moreover there is independence between the random variables (¢;), the white noise
is said strong.
For example, it could be a Gaussian process with covariance matrix I' = ¢2I;; in this
case, there is in addition the orthogonality of the white noise components €, in L? and
their independence, thanks to the Gaussian nature of the series.
A strong white noise is a white noise such that (&,,) are i.i.d. (independent identically
distributed).
This “white noise process” is used to model the measurement error. If the series is not
centered, the term is named “colored noise”.

Second example:
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Definition 3.5. A moving average is a STS as follows:

Xn = E ArEn—*k,

where the series (ay; k € Z) € 1* and ¢ is a white noise.
For short: M.A.= “moving average”.

Proposition 3.6. The covariance function of a moving average Xy, = Y, _, QrEn_j 08
written as Y(p) = D ycy Gp—kG—k Vp € Z.

Proof: : We write X, and X,,_, definition; firstly remark that these series are L? con-
vergent using the hypothesis that the series (ax; k € Z) € (2. Secondly we compute their
covariance, meaning the mean of the product since these random variables are centered:

E[X,Xnyy] = lim > apesay.

|k|<K

This limit exists since

VK >0, (Z apyrar)’ < Z |ap | Z |ax|* < oo.

|k|<K |k|<K |k| <K

This inequality is proved recursively: it is true for K = 2, and the property for K — 1
implies it for K. °

Definition 3.7. When there ezists a finite number of non null coefficients ay, i.e. (ag,--- ,a,),
we say that X is a order p-moving average, MA(p) for short.

Third example: let € be a white noise, and define the recursive series

X, =aX,_1+e,.
Assuming that we know a particular element of the series, for instance X, assuming
it is a centered random variable in L? we prove the following.
Proposition 3.8. Let X be the process defined as
X,=aX, 1+e, WneZ X, L*E[X)=0.

Assuming |a] < 1, and E[X2] < M?, Vn € Z~, then X is a STS.

Specifically, this is a moving average with coefficients a; = o7, j > 0. Its covariance

function is defined by (k) = 1?22.

Exercise: prove this result.

Definition 3.9. An order 1 auto regressive series X (AR(1) for short) is a process de-
pending only of the previous observation, step by step.
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At this point we can quote Francq and Zakoian [4] pp 7-11: Sections 1.3
Financial Series and Section 1.4 Random variance models which show how ARMA
processes are not appropriate to model Financial Series as it is written above
in the introduction

Indeed, once again, the financial data present some stylised facts:

e non stationarity of price series,

e absence of auto correlation for the price variations,
e unpredictability of returns,

e auto correlation of the squared price returns,

e volatility clustering = prediction of squared returns,
e fat tailed distributions (leptokurticity),

e leverage effects,

e seasonality.

3.3 Delay Operator, ARMA equations

In this subsection we consider that X is a STS. In AR(1) example, X,, = aX,,_1 + &,
and V(e,) (a given white noise) we get X,, as a function of X,,_;; more generally it is
interesting to get formal this passage from n —1 to n. Firstly we have to define the spaces
on which is defined this passage.

Definition 3.10. The closed subspace generated by the set {X,,p € Z,p < n} in L* is
denoted as HX.

This subspace of L?, HZX, is named the linear past of X.

We note also:

HY =n,Hy; HY =U,HYX=HY.

HX_is named the asymptotic past, HX the linear envelope.

These spaces are used to characterize two specific types of STS.
Following Francq and Zakoian [4] page 4, we consider ¢, := X, — P,,_1(X,,), weak or
strong white noise, where P,_; is the L? orthogonal projector on HX ;.

Definition 3.11. When HX_ = {0} the series is regular.
When HX = HX the series is singular. In this case, the linear pasts are constant and
the “innovation” does not bring any information.

25



A first example of regular STS is the white noise: Actually because the process ¢ is
non correlated, the vector space H, = Re, + H; . Soif Y € H: N H;_,, firstly, Y =
ac, + P:_,(Y). But Y € H®__ means that Y € H 1, s0a=0. And soon, Y =0 and ¢
is a regular series.

o0

Exercise, other examples: Look at the regularity of the following SCS:
X, = g(n)X, where g is an application from Z to R such that X is a SCS.

A white noise, a moving average, a unilatere moving average, an AR(1).

Definition 3.12. The operator H* = wect {X,,, n € Z} in L* which maps X,, to X,,_,
is named the delay operator denoted S~ : SX(X,) = X,_1.

Proposition 3.13. The operator S¥ is the unique isometry from H™ to HX which sends
X, to X,,_1. Moreover, SX(HX) = HX.

Proof: : The operator S¥ is defined on the {X,,n > 0} and is extended by linearity
on any finite linear combinations of X,,. This is an isometry:

15X a) I = Zaaj =
- Zaaﬂl—J I a3

Thus we could extend this operator S¥ by continuity on the whole H*.

Uniqueness: it is a consequence of the fact that if 7" could be another solution, 7' = Sx
on any X,,, so on any finite linear combinations of X,, so by continuity on H*X.

Any element of HX is a limit of finite linear combinations of X,,, image by S¥ of finite
linear combinations of X,,, so the equality S*(H~) = HX. o

Theorem 3.14. (WOLD): Any STS could be written as a unique sum of a reqular and a
singular parts:
X=X"4+X°

so0 that the spaces HX  and HX" are L? orthogonal.

Proof: Exercise, using X? := PX _(X,); X! := X, — PX_(X,).
(i) By definition, X,, = X + X,
(i) Any Y € HXT C H*_, Y is orthogonal to HX_and Y € H*_ ... soY =0 and X"
is a regular series.
(iii)Let Y € HX" for any n, by definition of X* there exists Z, € H. such that Y =
PX _(Z,). Thus Y € HX_ and for any n H;\" C HX .
Conversely, let Y € Hfoo. So on the one hand Y = PX_(Y) and on the other hand Y € HX
for any n could be written as V' =37 _ an, Xo, = >, o a0, PX X, =30 an, X5 €
HX.

Proposition 3.15. Both series X" and X° are too STS.
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Proof: : Firstly by construction they are centered and in L2
Secondly we use the following:

Lemma 3.16. For alln € Z, PX o S =S¥ o PX .

Proof: for all p € Z, PX o S¥(X,) = PX(X,_) is the unique vector in HX such that

n

X, 1—PX(X,_1) is orthogonal to H;*. So we have to compute Yk < n the scalar product

(Xk, Xp—1 — S% 0 PX 1 (X,)). This scalar product is equal to:
(Xi, Xpo1 = ST 0 PLL(X)) = Ak —p+1) = (S¥(Xep1), S¥ 0 Py (X))
= 7k =p+1) = (X1, P (X))

since S* is an isometry. Then we use Vk < n, Xj1 € H, ;. Yields:
(X, Xpo1 =8 oP%, (X)) = y(k=p+1) = (Xir1, Py (Xp)) = (k—p+1)—(Xiy1, X,) = 0.

We apply this lemma to the computation of the covariance function of the series X?®, with
n > p:

(X3, X5) = (PXo(X,), PXU(X,) = (%0 PX (X,),8% o PX (X)) =
(PY, 0 5%(X,), PX 05%(X,)) = (PX (Xn1), PY(Xpm))

—00 —00

which is exactly (X3

n—1»

X;_1) by definition of X*, step by step we go to
(X5, Xp) = (X5, X5),

n—p’

which only depends on the difference n — p; this proves the stationarity of the series
(X*®). Then, the part X" = X — X* is too a STS: X" € L? with null expectation by
linearity, and we easily check the stationarity of E[(X;, X7)]. More specifically using
B(X, X)) =~°(n — p) we prove:

(Xn — X5, Xp = XJ) =v(n—p) —=7*(n —p).
This shows the stationarity of X" and the relation between the covariance functions
T=9"+ .

Remark 3.17. When a STS is not singular, the strict inclusion ¥n, HX | C HX is
satisfied. Indeed, if not, there exists n such that HX | = HX and with the lemma and the
delay operator S* we deduce that Vn, HX | = HX, so the series is singular.

n

The following theorem provides a characterization of regular series.

Theorem 3.18. A series X is reqular if and only if there exists a series (d,) in [*(R)
and a white noise € such that:
X, = Z dpEn—p-

p=>0

We could choose € so that the linear pasts of X and € are identical; then this white noise
and the associated series (d,) are unique, except a possible multiplicative coefficient.
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Indication for the proof: recursively, define ¢, = X,, — PX | X,,, and

p+1
X, = Z djen—j + P;LX_an and let p — oo.

=0

Definition 3.19. This specific white noise is named innovation white noise.

The interest of such series lies in the following corollary: the projection on the past is
then extremely simple.

Corollary 3.20. Let X be a regqular series and € its innovation white noise; for allm < n,

PX(Xp)= > dyeny

p=n—m

Proof: of the theorem:
By definition X,, € HE, so HX C HE, N,HX C NH: = {0} since ¢ is regular, and X is
regular.

Conversely, let X be a regular series. Let the process v, = X,, — P (X,,); this is a
STS since we could compute its covariance function:

Vi, v =] $% (Xns1) = Pty 0 8% (Xns) =] Xor = B (K1) 1= v |
denoted o = v(0). By definition, v, € H;X and is orthogonal to HX ; so to the previous
v;: thus it is a STS, and more specifically it is a white noise denoted agpe,,.

By definition, X,, = ae, + PX (X,), €, € HX and is orthogonal to HX |, thus
HX is the direct sum Re, & H; . By induction we get that H/ is the direct sum
Do<i<jRen_; @ H;f_j_l. On this direct sum we get the decomposition

X, = Z Ai€n—i + P;LX_]'_l(Xn)

0<i<y

Since X is a regular series, lim;_,., P:X

e j—1(Xn) =0 and X is equal to ), a;e,—, which
is the expected form.

As a consequence, X,, € H: and since previously we knew that, &, € H-X, these two
spaces are identical.

Uniqueness: we assume that there exists a pair (¢/,d’), (white noise, [*(C') element),
solution of the problem, so satisfying

Vn, Py = PX =P, and X,, =Y dign_i = Y _die]

i“n—i*
0<i 0<i

On both hands of this equality we apply the operator P |, we get :

Pri(X,) = Z di€n—i; Pﬁl—l(Xn) = Z dien_i-

1<i 1<i
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But P’ = P: so the difference is null and Vn, dje’, = doe,, meaning the uniqueness except
a possible multiplicative coefficient. °

The proof of the corollary is obvious since the operators P> and P< are the same, as
are the corresponding spaces HX and HE,.

Remark 3.21. The identity between these two families of spaces is interpreted as follows:
Linear pasts of X and € coincide. If X s observed up to time n — 1, the additional infor-
mation provided by really new X, is represented by as, = X,,— P 1(X,,), the ‘innovation’
as we called it previously.

More generally, we will now study the class of STS, solution of “ ARMA " equations,
written using the delay operator S*.

Definition 3.22. Let Xbe a STS and let € be a white noise, P and Q) two polynomials.
We say that X is solution of ARMA (P, Q) equation if this process satisfies for any
nim:

(20) P(S%)(Xa) = Q(S%)(en),

meaning there exist complex coefficients (ag, - ,a,) and (by, - - ,b,) such that Vn € Z :
p q

(21) Z aan_i = Z bign—i-
i=0 i=0

In case of p =0, X is MA(q) ; in case of ¢ = 0, X is AR(p). In the general case we
say that X is ARMA(p,q).
Such an equation could be solved, either to get X function of process € or the converse so
that we could “forecast” X,, based solely on its past. Roughly speaking, this consists in a
“reverse” of operators P(S%) and = Q(S¢). This is out of our agenda, but the following
Section 3.4 is an important result which will be useful in the second part of this course.

3.4 ARMA Equation: resolution

Let Ap(X) = Ag(e) an ARMA equation.

Theorem 3.23. (Fejer-Riesz) Let P et () be non nul polynomials with no common roots,
those of P have modulus # 1. Then the ARMA equation is solvable as soon as the modulus
of P roots are > 1 and those of Q) > 1.

Definition 3.24. This ARMA representation of X 1is called canonical Fejer-Riesz
canonical representation.
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3.5 Estimate of the covariance function of an ARMA Process

We come back to the observation of a STS, supposed to be stationary, non necessarily

centered:
X, X,

The first step is to estimate F(X) and the covariance function yx.

According to standard probability or statistics lecture notes in case of sampling, F/(X)
is estimated by Cesaro mean, that is justified by the large numbers law (cf. |1]):

X~ 13X,
1=1

But the required assumptions are either the independence of the observations or the
martingale property for the process. Neither of these assumptions is checked in the case
of STS. Nevertheless, with similar proofs to those found in a Probability course, we get
same type results. This is what will be used to justify approximates of the mean and of
the covariance function.

Insert work with R: ’plotobs(X)’ to draw the series graph; mean(X); acf(X) to get
correlogram, variogram, partial correlogram...see TD-TP Agnes Lagnouz.

3.6 Large numbers law

Lemma 3.25. Let X4, ---,X,, n € N be a series of random variables with mean m. We
put Sy = > | X; and assume:

M >0, Var(X,) < M?* Var(S,) <nM?, ¥n > 1.

Then %Sn — m in L? and almost surely, when n goes to infinity.

Proof: : Exercise.
(i) Var(1S,) = E[1S, — m]? since by hypothesis E(S,) = nm. But Var(15,) =
LVar(S,) < 2M? — 0 when n goes to infinity, so yields the convergence in L2,

(ii) Let Zy = sup{|2S, —m|, n € [k?, (k + 1)*[}. We put Y; := X; — m so:
1

1 1 1
Sy —m= =S+ —(Xpeg1 +-+ Xy —nm) = —(Sp2 — k*m+ Yy +---+ V).
n n n n
Then we deduce the bound:
1
Zp < p(|5k2 — E*m| + [Yiesa| + - + [Yegy2—1])
so the L? norm satisfies:

1
1Zll> < 75 1Sk = Fmll2 + [Viewalls + - + [¥Yern2-all2).
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By hypothesis the first term is bounded by Mk, and any of the (k + 1) — 1 — k? = 2k
following terms are equal to the X standard deviation bounded by M:

1
120l < - (M + 2kM) = 3M/k.

Thus the series E(>°, Z7) = >, E(Z7) < >, 9M?/k? is convergent, proving that Z
converges almost surely, when k goes to infinity, exactly meaning %Sn — m converges
almost surely to zero, meaning %Sn converges almost surely to m when n goes to infinity.

[ J

We apply this lemma to a STS: since Var(X,) = 7*(0) the first hypothesis is satisfied.
The second hypothesis concerns

Var(S,) = Var(z X;) = Z V(=) =nyX(0) +2(n — D)y (1) +- -+ 29" (n — 1)

1<i,j<n

the bound of which not necessarily being nM.
But for instance a MA(q) process satisfies this hypothesis since in this case there exists a
finite number of non null 4*(4), v(k) = 0 for all k > ¢:

Var(Sn) <n(y(0) + - +v(q)).

Exercise: under the assumption of the lemma above, in case of an AR(1), X, = a X, _1+¢,

ak

1—a?"

prove that the covariance is v~ (k) =

3.7 Covariance function estimate, acf, pacf

Let k be fixed in N (if £ < 0, y(k) = y(—k)). Using the large numbers law (or rather
Lemma 3.25), if the series Y : n — X, X,, 44 has “good” properties, a vX (k) reasonable
estimate is:

_ 1 ¢
(k) = — > XXk
=1

For that remark that we need observations at least from time 1 to n + k.
If we have only n observations, we propose:

n—k
. 1
Y (k) = - XXk
j=1

Both estimates have the following properties:
(i) Bias
EPn (k)] = (k).
meaning this estimate has a null bias Vn.

n—k

Ely, (k)] = v(k) = v(k),
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this estimate bias is asymptotically null.
Exercise: compute the bias of these both estimates.

(ii) Convergence and quadratic error: here we need more hypotheses. To apply
Lemma 3.25, F(X, X,.+x) = v(k) but we also need the existence of a constant M such
that Var(X, X,+r) < M? and Var(3)! | XiX;1r) < nM? meaning we would need at least
X € L* and sup,, E(X}}) < M?. Now we detail the second hypothesis:

> E[XiXiX; X ) — 0y (k) < n?

1<i,j<n

we could (for instance) assume that the series distribution is Gaussian.

Be careful: in case of financial series, it is a stylized fact that price processes are not
Gaussian, thus in such a case we can not use this hypothesis.
But even if we can not assume Gaussian distribution, we nevertheless get:

Proposition 3.26. (¢f. Dacunha Castelle, p. 104, ref in English?) Let X be a STS in
L* such that sup, E(X?}) < M? and

im  [E[X0 X e X Xomer] — 72 (k)] = 0.

[n—m|—o00

Then ,(k) — y(k) in L2

Proof: : to admit.

(iii) Comparison between ¥ and v*: In the case where sup, F(X?) < M? when
n — 00, k being fixed, we get,
Exercise: [|[3,(k) — v (k)|l2 < £M — 0.

Routines R: acf, pacf, to give an example.

3.8 ARMA model Identification, estimation of its parameters

Cf. Chapter 5.2 [4].

We assume that the changes in the time series (differentiation, seasonal fitting) have been
made so that we have an effective centered STS, and that the obtained series is real, with
a rational spectrum meaning that there exists p and ¢ € N, polynomials P degree p

and @ degree ¢, a white noise € such that the series X is solution to the ARMA equation
APX = AQS.

The aim is to find p, ¢, P, ) meaning to identify the model. We have n observations of
X and we suppose that the covariance function ~ is known, actually estimated according
to the method provided in Section 3.7.
R command: artma, monmodele= ; X= ; with model parameters, simulation of processes,
plotobs(X) ; mean(X) ; acf(X) which gives correlogram, variogram; pacf(X), etc.
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3.8.1 Estimation of P coefficients

Hypothesis: suppose that p, ¢ are known in N and function v is known and put ag = 1.

(p,q) is minimal, meaning there does not exists polynomials P’ and @’ with smaller
degrees than p, q in the ARMA equation.
We detail the ARMA equation ApX = Age:

p q
E aan—i = E blgn—l-
0 0

We operate the scalar product in L? of this equality with X,_,, for any m > ¢ + 1,
using that X,,_,, is orthogonal to (Age),, yields for any m > ¢ + 1:

Z a;y(m —1i) = 0.

This is a set of linear equations, the solution of which being the vector a in RP:
p
> ary(m—i) = —y(m), Ym > q+1.
1

Withm = q¢+1, -+ ,q+p, we get a system of equations named Yule-Walker equations;
we denote [?,, the matrix of this system of p equations and p unknown variables:

| 7(q) o g+ 1-p) |
Ryg = | |
| y@—1+p) - 7(q) |
and ngﬁ’ the vector with coordinates v(m), m=q+1,---,q+ p.
Proposition 3.27. If X is an ARMA(p,q) process, (p,q) being minimal, the matriz R,,
15 tnvertible and the coefficients of the polynomial P are the coordinates of the vector

_ _ p-lpate
a=—-R T 7

Proof: : to skip, remained for those interested enough.

We assume that detR,, = 0, meaning there exists p coeflicients a; (at least one is non null)
such that :

> ainlg+j—i)=0,Yj=0-,p—1

On the other hand, for j = p, using Yule-Walker equations, we replace v(q +p — i) :

—_
—_

p— P p—

p
meqﬂ)—z =Y Y apyqg+p—i—j) ==Y a; ¥y aivlqg+p—i—j)
=0 1 7j=1

=0
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which is a sum of null terms for p —j = p —1,---,0 since detR,, = 0. By induction, step by
step, we get for j > 0:

p—1
> anlg+i—i)=0.
i=0

This exactly reflects the fact that Vj > 0 :

p—1
B> aiXp iXn_jq =0,
=0

meaning Vn > 0, Zf:_ol ; Xp—; is orthogonal to Hg_q = H:__ and we compute its coordinates

n—q
in (HE_ )"

p—1 p—1

<Z o; Xp—i, €n—q+l> = Z 67 <X1’L—i7 5n—q+l>

i=0 i=0
for { =1,---,q and equal to 0 for [ > ¢q. Moreover using stationarity hypothesis (X, _;, en—g+1)

does not depend on n: since the white noise ¢ is the innovation white noise X is expressed as a
function of € and this scalar product is stationary.
Denoting +; the coordinate of Zf:_ol ; Xp—i O Ep_gq:

p—1 q
§ ;i Xp_; = E ViEn—q+15
=0 =1

which is an ARMA(p-1,g-1) relation and contradicts the hypothesis that the pair (p, ¢) is 'mini-
mal’. °

3.8.2 Estimation of () coefficients

This is a much more difficult problem and we will only give a weak approach! We assume
P is known (we estimated it in previous subsection), ¢ and ~ are also known. We put

Yn = Zp: aan_k.
0

We will only put the problem, then its resolution states on numerical analysis. The
existence of solutions is proved, but not the uniqueness.
The Y covariance function is computed as a function of the (b;) using that Y = Age :

q
) =300 A () =D bebk
1
YG) =0 bkbi—y 5 7Y (@) = bebo

We look for a solution b such that the corresponding polynomial () admits only zeros with
modulus > 1.
Exercise: solve this system for ¢ = 1, 2.
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For g =1,b%,i=0,1 are § <fy(0) + 1/7(0)2 — 47(1)2) so we need v(0) > 2v(1).
For ¢ = 2..... awful computations !

But the aim is to find the polynomial () and there is another method, easier but using
the complex numbers and what is called “spectral density”. Since Y is MA(q) process, its
spectral density is known to be

+q 1

FO) = 5= S (B)e™ = Qe )P

"o
—q

where you only have to know that z = e~* is 2 dimensional, (cos(\), —sin())), and
satisfies 1/2 = (cos()),sin(\)) = e™. So we have to deal with:

+q
Q(2)Q(1L/2) =77 (0) + > A (k)" +27F)

With the change of variable Z = 2z + 1/2 we compute 2* + 27* as a polynomial of Z, for
instance:
24+z?2=27-2.

Thus Q(2)Q(1/z) could be written as a polynomial U(Z) the zero of which, Z;, are linked
to those of @) by the relation Z; = z; + 1/z;.

Practically, once found U and its zeros, we deduce those of (), chosen with modulus > 1.
The coefficients b are got from the expansion of II;(z — z;).
Remark: CSS= Conditional Square Sum.

Routines R: for instance for ARMA(2,1) needs arima commands:
arima(z, order — ¢(2,0,1)),

seasonal = list(order = ¢(2,0,1), period = NA),
xreq = NULL, include.mean = TRUE,
transform.pars = TRUE,

fired = NULL, init = NULL,

method = ¢("CSS-ML", "ML", "CSS"), n.cond,
SSinit = c¢("Gardner1980", "Rossignol2011"),
optim.method = "BFGS",

optim.control = list(), kappa = 1e6)
X.ord=c(2,9,1)
X.arima=arima(X,ord=X.ord)

3.8.3 Characterization of parameters p and q

Definition 3.28. A rational spectrum ARMA process is said to be with minimal type
(p,q) when in the “canonical Fejer-Riesz relation”, the degrees of P and Q) are exactly p
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and q.
More concretely: (p,q) is minimal when there does not exist polynomials P' and Q" with
smaller degrees than p,q in the ARMA equation.

Consequence: if an ARMA(p’,q’) process is minimal type (p, ¢), necessarily p’ > p,q' > q.
Theorem 3.29. A regular STS X is minimal type (0, q) if and only if

Y(m) =0, ¥lm| > q+1 et 4(q) 0.

Proof: Exercise.
Since X, = > 7_(bjen—j, 7(k) = 0 as soon as |k| > ¢+ 1. For k = ¢, 7(q) = apay # 0.
Conversely, is X is regular, HX = HE for any n. The assumption y(m) =0, V|m| > ¢+1
that X, is orthogonal to the space HZ ;. On the other hand, X, € Hj. So Xy € H§ N
(H<,_ ;)" which is the vector space generated by e, ....e_q so X is MA(q). .
Definition 3.30. Let (p,q) be a pair of positive numbers. We say that a real series
rn, n € Z satisfies a (p,q) induction if there exists coefficients (ap, - - - , o) with oy =

1, ap, # 0, such that > ojrm—; =0, Vm > g+ 1.
The induction is minimal (p,q) if any pair (p',q'") satisfying the property above are
such that p' > p,q > q.

As we saw that in Subsection 3.8.1, the series v(n) of an ARMA (p,q) satisfies a minimal
(p, q) induction. With the 7 (or at least their estimates), we can find p and ¢ highlighting
the minimal induction. A priori it is not so obvious but this property is equivalent to
others properties which are easier to check numerically.

Lemma 3.31. Let a series (xy,, m € Z) and the matriz Ry, with (i,7) coefficient equal
to x,—;, i and j going from 1 to s. If rso # 0, the following are equivalent:

(i) The series (T, m € Z) satisfies a minimal induction (p,q) relation;

(ii) among the determinants rs, we have rsy # 0 while s <p ort < q, and rg; = 0 if
s>p+landt>qg+1.

(171) Tps1.4 # 0 and 1y g1 #0 and rp1;, =0 if j > ¢+ 1.
(1v) Tpr14 # 0 and rp g1 #0 and 1401 =0 if i > p+ 1.

Here r, , will denote the determinant of the matrix R, , defined in Section 3.8.1.

Remark 3.32. In case of ARMA process, R, is the variance matriz of the vector
(X1, -+, Xs). The lemma hypothesis corresponds to the case where the series X is non
singular.

So this hypothesis is not too strong;
Exercise: if X is non singular, prove that r,o # 0. (Meaning: prove that ;o = 0 implies
X is singular.)

The lemma proof is tedious, for a complete proof, look at Azencott and Dacunha-
Castelle, pp. 137-138.
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Proposition 3.33. Let X be a rational spectrum STS. It is minimal type ARMA (p, q)
if and only if the covariance function satisfies a minimal (p, q) induction relation.

In this case the induction relation is the one which provides the coefficients (a;) of the
polynomial P:

y(m) +ay(m —1) + -+ a,y(m —p) =0, Vm > q.

Definition 3.34. The order s partial auto correlation of X, denoted as ®(s), is the
last coordinate of the vector —R;(l]f‘f.

Previously it was denoted r (Definition 3.2)
cov (X,, — X7, Xp, — X))
\/ Var (X, — Xz) Var (X, — X2)

r(p—n)=

Proposition 3.35. Let a rational spectrum non singular real STS X. It is an AR(p)
process if and only if ®(s) =0, Vs > p+ 1 and ®(p) # 0.

Proof: : Necessary condition as an exercise:
Actually X is a regular series and we deal with an innovation white noise process ¢.
(i) Remark that by definition X,, — X is orthogonal to the vector space generated by
{X1,..., X,—1} and X belongs to this space so E[(X, — X})X{] = 0. Thus r(n) is pro-
portional to E[(X, — X})Xj].
(i) Since X is AR(p), X, = >"_  a; X j+en. Let n > p. So X =370 a; X, since e,
is orthogonal to the space {Xi,..., X,_1} C H:_,. Thus E[(X, — X})Xo] = E(¢,Xo) = 0.
and r(n) = 0 for all n > p.
(iii) Finally look at r(p) :

p p—1 p—1
X, =Y a;Xp ey =Y a; X, j+a,Xote,, Xy =Y a;X, j+0,X;5, X,—X; = a,(Xo—X;)+,
j=1 j=1 j=1

so E[(X, — X)) Xo] = a, E[(Xo — X§)?] and 7(p) = a, # 0.

Conversely, to prove the sufficient condition, we use Lemma 3.31. We consider the
Cramer system:
R&(]Oé = —Fi

We noticed that, for a non singular series, ry o = det R, # 0. By performing the Cramer
resolution, the last coordinate of « is:

 det R,

Ts,0

where R is the matrix R, with the last column replaced by I'{. Using a series of s
permutations, we see that 1|, is actually R, and the last coordinate of avis: (—1)* 7.
We then can express the hypothesis

P(s) =0, Vs >p+1and ®(p) #0
as s, =0Vs >p+1and r,; # 0, meaning the property (iv) in Lemma 3.31 when g = 0

which is a characterization of an AR(p). o
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