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Chapter I

Introduction

Let (Ai)i∈N be a sequence of non-negative random variables with no particular depen-
dence assumed between them. Let Y, Yi, i ∈N be i.i.d. non-negative random variables,
independent of (Ai)i∈N. We look at the equation

(FPE) Y
(d)
=

∑
i∈N

AiYi,

where
(d)
= means equivalence in law. Whether Y satisfies (FPE) or not obviously depends

only on its law L (Y), so we will use the phrases “Y satisfies (FPE)” and “L (Y) satisfies
(FPE)” interchangeably.

The above equation can be seen as the fixed point equation of a transform T on the
space of probability measures, defined by

TL (Y) = L

∑
i∈N

AiYi

 ,
where the Ai and Yi are defined as above. This transformation was called the smoothing
transformation in [HL81], where it appeared in the context of infinite particle systems.

Since we are working with non-negative random variables, we can make use of
Laplace transforms. The above equation and the smoothing transform then become
the functional equation

(FE) φ(x) = Tφ(x) = E[
∏
i∈N

φ(xAi)].

If a Laplace transform of a probability measure φ satisfies (FE) and is not equal to 1,
then we say that φ is a non-trivial solution to (FE) and define L to be the set of non-
trivial solutions to (FE). This set is of course in one-to-one correspondence to the set
of solutions to (FPE) that are not concentrated on 0. Note that we could also consider
more general solutions to (FE), i.e. which are not Laplace transforms, but we won’t do
this here, see for example [Kyp98] for some results in this direction.

The equations (FPE) and (FE) have been extensively studied during the last four
decades in various fields and under various disguises. The first example has probably
been [KP76], where the equation arises in multiplicative cascades. There, the Ai are
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i.i.d. up to a (deterministic) index N and 0 from N + 1 on. The next example is the
already cited paper [HL81], here the Ai are constant multiples of the same variable for
i ≤ N and 0 from N + 1 on, too. The first paper to treat the equations with general Ai,
but still with a finite number of them, was [DL83]. Not only did they provide necessary
and sufficient conditions for L , ∅, they also characterised the solutions to (FPE) and
examined their tail behaviour, i.e. the behaviour of the Laplace transform φ at the
origin. These questions were then considered to be settled, and so for over one decade
it was quiet around the equation (FPE).

The usual way to investigate the fixed points of a transformation T is to repeatedly
apply T, i.e. look at the sequence Tφ, T2φ, T3φ, . . . and to hope that this sequence
converges to some limit satisfying the fixed point equation. The “right” way to do
this in our setting is via branching random walks, which transfer the equation from the
multiplicative to the easier to handle additive scale. Although [DL83] already used
some elements of the theory, it was not until [BK97] that the full dependence between
the two settings was exploited, with the help of new developments, notably those in
the field of branching Brownian motion. Many papers of different authors followed,
the results of which will come up one by one in this paper, so that we don’t cite them
at this place.

The object of this paper is to provide a homogenised view of the analysis of the fixed
point equation (FPE) via branching random walks. The starting point was the article
[BK05], which already gives an overview but leaves out the proofs. Here, we develop
all the results presented in [BK05] from the ground up, so that every probabilist can
delve into the subject without having to consult a pile of articles. The paper strives to
be essentially self-contained, with a few exceptions when the material is too technical
or requires too many results of an external field. What the paper does not try to do,
however, is to give a broad overview of the literature treating this or related subjects,
hence it is not a survey. Although some historical remarks are given, most sources are
only cited if they have a direct influence on the development presented in this paper.

The content is organised as follows. Chapter II presents the branching random
walk and some basic results about it, notably the law of large numbers of the left-
most individual. These results are used to derive a necessary condition for L to be
non-empty. Some results concerning this condition are new, to the knowledge of the
author. They can be identified as those not being associated to any source. Chapter III
establishes sufficient conditions forL to be non-empty. It presents the measure change
of the BRW introduced by [Lyo97] and his proof of Biggins’ martingale convergence
result and shows how to treat the cases not covered by this method. In Chapter IV we
consider a general Markovian branching process in the setting of [BK04] and the theory
of optional lines. Chapter V is devoted to the study of the behaviour of φ ∈ L at the
origin and the consequences of these results. In Chapter VI these results are greatly
refined in a boundary case, with the help of results about branching random walks
with absorption, which are established in this chapter as well.

A few notes about notation are in order. In most cases we are working on a canonical
or an undefined probability space. If the law/probability measure is not specified,
then probability and expectation are written as P() and E[], respectively. However, if
the law/probability measure is specified and called P, say, then P() and P[] specify
probability and expectation, respectively. The indicator function is denoted by 1. If f
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is a function, then f (a•) denotes the function x 7→ f (ax).
I am indebted to my advisor Zhan Shi for offering me to work on this subject and

for his kind help, which I greatly appreciated.
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Chapter II

The branching random walk

In this chapter we introduce the branching random walk and present some basic results
about it. They will have as a corollary a necessary condition for the existence of non-
trivial solutions to (FE).

II.1 Basic definition

The branching random walk (BRW for short) can be seen as a system of individuals
positioned on the real line and reproducing according to the following process: Let x
be the position of an individual. When she dies, she gives birth to a finite or countable
number of children with positions (x+xi)i=1,2,3,..., the tuple/sequence (xi)i=1,2,3,... following
some fixed law. Each child then reproduces in the same way and independently of the
other past and present individuals.

We are going to make this more precise using the Ulam-Harris labelling. We start
with a single ancestor, who forms the 0-th generation and is labelled with the symbol
∅ (empty set). Now, every individual of the n-th generation is labelled with an n-tuple
u ∈ Nn describing its ancestry. For example, the sixth child of the second child of
the third child of the ancestor has the label (3, 2, 6) or 326 for short. This labelling is
obviously injective, thus enabling us to identify an individual with its label and speak
of “the individuals” (1, 5), (3, 17, 2), or ∅, say. Consequently, we define the space of
individuals or universe as the (countable) set

U =
⋃

n∈N0

Nn

and the following operations on U:

• Two individuals u = (u1, . . . ,un) and v = (v1, . . . , vm) can be concatenated, forming
the (n + m)-tuple

uv = (u1, . . . ,un, v1, . . . , vm).

In particular, if u is any individual and i ∈ N, then v = ui is u’s i-th child and u is
v’s mother, also denoted by

m(v) = m(ui) = u.
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II.1. BASIC DEFINITION

• We define the relations ≤ and < on U by

u ≤ v ⇐⇒ ∃w ∈ U : uw = v

and
u < v ⇐⇒ u ≤ v and u , v.

If u ≤ v or u < v we say that u is an ancestor or a proper ancestor of v, respectively.
This obviously renders (U,≤) a partially ordered set and indeed a semi-lattice, i.e.
each finite subset u1, . . . ,un has a greatest lower bound, the last common ancestor,
denoted by u1 ∧ . . . ∧ un.

• If n ∈ N0 and u ∈ Nn, then we define |u| := n and say that u belongs to the n-th
generation.

We can now define the space the branching random walk is going to live in. First
let ∂ < R be some cemetery symbol and set R = R ∪ {∂}. Now set

T := R
U

= {z : U→ R}

and call T the space of labelled trees, endowed with the product σ-field F . If z ∈ T and
u ∈ U, then the interpretation of zu := z(u) is:

• zu = ∂: the individual u does not exist

• zu ∈ R: the individual u exists and zu denotes its position on the real line

If ∂ appears in arithmetic expressions, it should be interpreted as the symbol∞, e.g.
∂ + r = ∂ for all r ∈ R, e−∂ = 0, etc.

In order to describe dynamics we define the filtration (Fn)n∈N0 on T by

Fn = σ (πu; |u| ≤ n) ,

where πu : T → R denotes the projection z 7→ zu. We now have the tools we need to
define the branching random walk:

Definition II.1. Let Q(d~x) be a probability measure on R
N

, P a probability measure
on T and (zu)u∈U the canonical process. For x ∈ R let Qx(d~x) = Q(d(~x + x)), where
~x + x = (x1 + x, x2 + x, . . .). P is called the law of a branching random walk with reproduction
Q iff the following holds:

1. z∅ = 0 P-a.s.

2. If fu : R
N
→ R+, u ∈ U, are measurable functions then

P[
∏
|u|=n

fu ((zui)i∈N) | Fn] =
∏
|u|=n

Qzu[ fu]
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II.2. THE RELATION WITH THE FUNCTIONAL EQUATION

The law P in the above definition is clearly unique and we assign it the symbol
B. A random variable z with values in T following the law B is called a branching
random walk with reproduction Q or simply a branching random walk. If z is a BRW with
reproduction Q and x ∈ R, then z + x = (zu + x)u∈U is called a branching random walk
with reproduction Q starting at x and its law will be denoted by Bx.

The existence of the law B follows by standard methods involving Ionescu Tulcea’s
theorem and the fact that we can count the individuals in such a way that each mother
precedes her children. To see this, note that for each n ∈N0 the finite set

Un = {u ∈ U : |u| ≤ n and max
1≤i≤|u|

ui ≤ n}

can be counted generation-wise and that no u ∈ Un+1\Un is an ancestor of any v ∈ Un.
Hence, if we count first U0, then U1\U0, then U2\U1 and so on, we obtain the desired
counting.

With the monotone class theorem one can show that the lawB satisfies the branching
property:

Proposition II.2. If fu : T→ R+, u ∈ U are measurable functions then

B[
∏
|u|=n

fu ((zu•)) | Fn] =
∏
|u|=n

Bzu[ fu],

i.e. conditionally on Fn the processes (zuv)v∈U for each u ∈ U are independent BRW with
reproduction Q starting at zu and depend on Fn only through zu, u ∈ U.

In what follows, we will often have to do with sums, products, infima, etc. over the
positions of the individuals. In order not to be in trouble because of the individuals
with label ∂, we define the following

Notation: The symbols ∑
|u|=n

,
∏
|u|=n

, inf
|u|=n

, sup
|u|=n

mean sum, product, infimum and supremum over all individuals in the set {|u| = n; zu ,
∂}. If this set is empty, the expressions take the values 0, 1, ∞, −∞, respectively. Similar
rules may apply in obvious manners at other places, e.g.

∑
i∈N f (zi), for some function

f : R→ R.

II.2 The relation with the functional equation

Let us turn back to our primary object of study and see how the functional equation
and the branching random walk are intertwined. We define the random variables xi :=
− log Ai ∈ R, i ∈ N (remember ∂ should be interpreted as ∞) and set Q := L ((xi)i∈N).
Let z be a branching random walk with reproduction Q.

Having thus changed from the multiplicative scale to the additive scale, we obtain
the following important
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II.2. THE RELATION WITH THE FUNCTIONAL EQUATION

Proposition II.3. Let φ be a solution to (FE). Fix x ∈ R+. Then the process

Mn(x) =
∏
|u|=n

φ(xe−zu)

is an (Fn)-martingale.

Proof. Let n ∈N0.

B[Mn(x) | Fn] = B

∏
|u|=n

φ(xe−zu) | Fn


=

∏
|u|=n

Qzu

∏
i∈N

φ(xe−xi)

 by definition II.1

=
∏
|u|=n

Q

∏
i∈N

φ(xe−zue−xi)


=

∏
|u|=n

E

∏
i∈N

φ(xe−zuAi)


=

∏
|u|=n

φ(xe−zu) by equation (FE)

= Mn(x) �

This martingale is called the multiplicative martingale associated to the BRW z and
was first discovered by [Nev88] for branching Brownian motion, an analogue to the
branching random walk in continuous time, then by [BK97] for the branching random
walk. It gives us immediately a necessary condition for the existence of non-trivial
solutions to (FE).

Definition II.4. For a branching random walk z let

Zn(z) = #{u ∈ U : |u| = n, zu ∈ R}

denote the number of individuals in the n-th generation and let

Ln(z) = inf
|u|=n

zu

denote the position of the left-most individual (Ln ∈ [−∞,∞]). Finally, assuming that we
are working on the probability space Ω, define the event of ultimate survival, called
the survival set, by

S := {ω ∈ Ω : ∀n ∈N : Zn(z(ω)) > 0}.

Theorem II.5. Let S be the survival set of the branching random walk z. If

lim inf
n→∞

Ln = −∞ a.s. on S,

then L = ∅. Note that this is trivially true if P(S) = 0.
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II.3. THE LEFT-MOST INDIVIDUAL

Proof. Assume that L , ∅ and let φ ∈ L. Fix x ∈ R+. The martingale (Mn(x)) is clearly
bounded by 1 and positive, therefore it converges a.s. and in L1 to a r.v. M ∈ [0, 1]. If
P(S) = 0, then we have

M(x) = lim
n→∞

∏
|u|=n

φ(xe−zu) = 1

and therefore φ(x) = M0(x) = E[M(x)] = 1, which is a contradiction.
Now assume P(S) > 0 and φ . 1, s.t. φ(∞) = limy→∞ φ(y) < 1. We then have a.s.

M(x) = lim inf
n→∞

∏
|u|=n

φ(xe−zu)

≤ lim inf
n→∞

1S · φ(xe−Ln) + 1Ω\S

= 1S · φ(∞) + 1Ω\S,

so that φ(x) = M0(x) = E[M(x)] = P(S)φ(∞) + 1 − P(S) < 1 for all x. Hence, φ cannot be
a Laplace transform of a probability measure, which is a contradiction. �

Remark II.6. We have for n ∈N0

Zn+1 =
∑
|u|=n+1

1 =
∑
|u|=n
zu,∂

∑
i∈N

1{zui − zu , ∂}
(d)
=

Zn∑
i=1

Xi,

where the Xi are i.i.d., independent of Zn and

Xi
(d)
=

∑
i∈N

1{zi , ∂} = Z1.

Therefore, (Zn) is a Galton-Watson process with reproduction L (Z1). In particular, we
have

P(S > 0) ⇐⇒ E[Z1] > 1

(see any standard text on branching processes for this result, for example [AH83],
Proposition II.1.2).

The next step is to determine conditions under which Theorem II.5 can be applied.
This leads to a study of the behaviour of the left-most individual in the BRW, which we
will develop next.

II.3 The left-most individual

[Big77a] showed that the left-most individual Ln in the branching random walk follows
a law of large numbers, i.e. that Ln

n converges a.s. to a constant on the survival set. We
are going to present his proof but skip some technical details of it.

Before stating the theorem we need some definitions, which will also be important
throughout the rest of this paper. Let µ denote the intensity measure of the (not
necessarily locally finite) point process

∑
i∈N δzi , i.e.

µ(A) := E[
∑
i∈N

1{zi ∈ A}] = E[#{i ∈N : zi ∈ A}]
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II.3. THE LEFT-MOST INDIVIDUAL

for any Borel subset A of R. Now define

v(θ) := log E[
∑
i∈N

e−θzi] = log
∫
R

e−θxµ(dx)

for θ ≥ 0 and v(θ) := +∞ for θ < 0. v is the logarithm of the Laplace transform
of a positive measure and therefore convex, lower semi-continuous, continuous on
{θ : v(θ) < ∞} and differentiable on int{θ : v(θ) < ∞}.

In what follows, we suppose that there exists θ > 0, s.t. v(θ) < ∞. Define

I(a) := sup
θ∈R

{−aθ − v(θ)} ∈ (−∞,∞],

so that I(−a) is the Legendre transform of v. It follows that I is convex and therefore
continuous on {a : I(a) < ∞}. Since v(θ) = ∞ for θ < 0, it follows that I is non-increasing
and thus by convexity strictly decreasing until it reaches its minimum−v(0). We further
define

γ := inf{a : I(a) < 0}.

We may now state the

Theorem II.7. Let v(θ) < ∞ for some θ. Let S be the survival set of the branching random
walk and Ln the left-most individual in the n-th generation. Then:

Ln

n
n→∞
−→ γ a.s. on S.

Before giving the proof a

Remark II.8. The interesting case for the theorem is when P(S) > 0. Since we have

v(0) = log E[
∑
i∈N

1{zi , ∂}] = log E[Z1],

this is exactly the case when v(0) > 0 (see Remark II.6). In this situation, I(a) = 0 ⇐⇒
a = γ and γ < 0, = 0 or > 0 according to whether infθ v(θ) < 0, = 0 or > 0, respectively.

Proof of Theorem II.7. Define

Zn(t) := E[
∑
|u|=n

1{zu ≤ t}]

and
F(t) := E[Z1(t)] = µ((−∞, t]).

The assumption v(θ) < ∞ for some θ > 0 entails that F(t) < ∞ for all t ∈ R, so that
v(θ) =

∫
∞

−∞
e−θxdF(x). We claim that ∀n ∈ N : Fn∗(t) = E[Zn(t)], where Fn∗ denotes the

n-fold Stieltjes convolution of F (F0∗ = δ0). This is obviously true for n = 0. Assume that
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II.3. THE LEFT-MOST INDIVIDUAL

it holds for some n, then

E[Zn+1(t)] = E[
∑
|u|=n

∑
i∈N

1{zui ≤ t}]

= E[
∑
|u|=n

E[
∑
i∈N

1{zui − zu ≤ t − zu} | Fn]]

= E[
∑
|u|=n

F(t − zu)] by definition II.1

=

∫
∞

−∞

F(t − x)dFn∗(x) by ind. hypothesis

= Fn∗(t)

In his paper, Biggins obtained a large deviations result for the family (Fn∗)n∈N, similar
to Cramér’s famous theorem.

Lemma II.9. Let a ∈ R.

a) ∀n ∈N : 1
n log Fn∗(na) ≤ −I(a)

b) 1
n log Fn∗(na) n→∞

−→ −I(a)

We skip the proof of this result, since it is similar to the standard one with some
additional technical difficulties.

By Remark II.8, I(a) is strictly decreasing at γ if P(S) > 0. Theorem II.7 is therefore a
corollary of the following lemma, which is the stochastic equivalent of Lemma II.9.

Lemma II.10. Let a ∈ R.

a) If I(a) > 0, then a.s. Zn(na) = 0 for almost all n.

b) If I(a) < 0, then
1
n

log Zn(na) n→∞
−→ −I(a) a.s. on S.

Proof. For c < I(a) we have

P(
1
n

log Z1(na) ≥ −c) = P(Z1(na) ≥ e−cn)

≤ e cnE[Z1(na)] by the Markov inequality

≤ e (c−I(a))n by Lemma II.9 a)

Hence, lim supn→∞
1
n log Zn(na) ≤ −c by the virtue of the Borel-Cantelli lemma. Letting

c tend to −I(a), this gives

lim sup
n→∞

1
n

log Zn(na) ≤ −I(a).

Since Zn is integer-valued, this means that Zn(na) must be ultimately 0 if I(a) < 0. We
have thus proved part a) and the first half of part b).
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II.3. THE LEFT-MOST INDIVIDUAL

The second half is more delicate and will be tackled by reduction to a known
convergence result about Galton-Watson processes. Assume w.l.o.g. that v(0) > 0
(otherwise P(S) = 0). Then, due to Remark II.6, {x : I(x) < 0} is an open subset of R and
thus there exists b < a s.t. I(b) < 0. Thanks to Lemma II.9, there exists a k0 ∈ N, s.t.
∀k ≥ k0 : Fk∗(kb) > 1.

Fix k ≥ k0 and let j : N → Nk be some bijective function. We define a new process
(ζu): For u1, . . . ,un ∈N let

ζu1···un :=


z j(u1)··· j(un) if z j(u1)··· j(un) , ∂ and

z j(u1)··· j(ui) − z j(u1)··· j(ui−1) ≤ kb, i = 1, . . . ,n
∂ otherwise

Intuitively, this means that the n-th generation of ζ consists of the (nk)-th generation
of z, where we keep only those individuals whose ancestor in the (ik)-th generation is
at most (kb) units to the right of the ancestor in the ((i − 1)k)-th generation. Call this
process the (b, k,∅)-extreme process. Using the branching property (Proposition II.2)
we can repeat the above definition on the set {zu , ∂} for the BRW (zu• − zu) initiated by
u, yielding the (b, k,u)-extreme process.

One can show that conditioned on zu , ∂ the (b, k,u)-extreme process is again a BRW,
so that Nn, the number of individuals in its n-th generation, is a Galton-Watson process
(see Remark II.6. Clearly, E[N1] = Fk∗(kb) > 1. The known result about Galton-Watson
processes mentioned above is

Lemma II.11.
1
n

log Nn
n→∞
−→ log Fk∗(kb)

a.s. on the survival set of (Nn).

This result can be deduced easily from Corollary II.1.6, Lemma II.5.4 or Corollary
III.5.3 of [AH83].

Now fix r ∈ N and s ∈ N with 0 ≤ s < k. If u is an individual in the (rk + s)-th
generation then we can construct the (b, k,u)-extreme process if zu , ∂. Let Nn(u) be
the number of individuals in its n-th generation. The people in the n-th generation of
the (b, k,u)-extreme process lie to the left of zu + nkb and therefore also to the left of
((n + r)k + s)a for large n. Since they are part of the ((n + r)k + s)-th generation of the
original process z, we have

lim inf
m→∞

1
mk + s

log Zmk+s ((mk + s)a)

= lim inf
n→∞

1
nk

log Z(n+r)k+s(((n + r)k + s)a)

≥ lim inf
n→∞

1
nk

log Nn(u)

=
1
k

log Fk∗(kb) by Lemma II.11

(II.1)

a.s. on Sr,u = {ω : zu , ∂ and the (b, k,u)-extreme process survives}. This inequality
therefore holds a.s. on Sr =

⋃
|u|=rk+s Sr,u, which is the event that (zu) has survived until
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II.3. THE LEFT-MOST INDIVIDUAL

the (rk+s)-th generation and that at least one of the extreme processes survived forever.
It is clear that Sr ⊂ Sr+1 ⊂ S ∀r ∈N and one can show that in fact S =

⋃
r Sr a.s., therefore

II.1 holds on S. It follows that

lim inf
n∈∞

1
n

log Zn(na) ≥
1
k

log Fk∗(kb) a.s. on S

and letting k go to infinity, Lemma II.9 gives us lim infn→∞
1
n log Zn(na) ≥ −I(b) a.s. on

S. Since I is continuous at a we can let b tend up to a to see that

lim inf
n→∞

1
n

log Zn(na) ≥ −I(a) a.s. on S.

This completes the proof. �

We can now put the pieces together to formulate

Theorem II.12. If L , ∅, then v(0) > 0 and ∃θ : v(θ) ≤ 0.

Proof. By contradiction. The case v(0) ≤ 0 follows from Theorem II.7, since in this case
P(S) = 0 (see Remark II.8). Assume from now on that v(θ) > 0 for all θ ∈ R, thus
infθ v(θ) ≥ 0.

Let us first look at the case infθ v(θ) = 0. Since v is convex and lower semi-
continuous, this can only happen if v(θ) ↓ 0 for θ → ∞. This implies that µ = δ0 + ν,
where v is a measure concentrated on (0,∞) of strictly positive mass. Comparing this
with (FE) this amounts to saying that for φ ∈ L

φ(x) = E[φ(x)N
·

∏
i∈N
zi>0

φ(xe−zi)],

where N =
∑

i 1{zi = 0} and E[N] = 1. Since ν , 0, there exists a c ∈ (0, 1), s.t. the event
A := {ω : ∃i ∈N : e−zi ∈ (c, 1)} has positive probability. We thus have

φ(x) ≤ E[φ(x)N
· φ(xc)1A] ≤ E[φ(x)N

· φ(x)c1A] = E[φ(x)N+c1A],

where the second inequality stems from the fact that

φ(xc) = E[e xcY] = E[(e xY)c] ≤
(
E[e xY]

)c
= φ(x)c,

because the function x 7→ xc is concave for c < 1. This entails that ϕ(s) := E[sN+c1A] ≥ s
for s in (φ(∞), 1], whence

1 ≥ ϕ′(1) = E[N + c1A] > 1,

which is a contradiction.
Assume now that infθ v(θ) > 0 and further that v(θ) < ∞ for some θ ≥ 0. Then we

have γ < 0 by Remark II.8 and so Ln → −∞ by Theorem II.7. Theorem II.5 enables us
to conclude that L = ∅.

The remaining case v ≡ ∞will be tackled by truncation. We first need the following

Lemma II.13. Assume that L , ∅. Then E[Z1((−∞, a])] ≤ e a for every a ≥ 0.

13



II.3. THE LEFT-MOST INDIVIDUAL

Proof. Let a ≥ 0. Let f be the generating function of the r.v. Z1((−∞, a]), i.e. f (s) =
E[sZ1((−∞,a])]. Let φ ∈ L. We have for x ∈ R+

φ(x) = E[
∏
i∈N

φ(xe−zi)] ≤ E[φ(xe−a)Z1((−∞,a])] = f (φ(xe−a)).

It follows that
1 − f (φ(xe−a)) ≤ 1 − φ(x) ≤ e a(1 − φ(xe−a))

because of the convexity of φ. Hence, 1 − f (s) ≤ e a(1 − s) on (φ(∞), 1] and thus
lims→1 f (s) = 1 and f ′(1) ≤ e a. This proves the lemma. �

We now proceed with the proof of Theorem II.12 for the case v ≡ +∞. Assume
L , ∅ and let φ ∈ L. Lemma II.13 tells us in particular that there exists a β > 0, s.t.∫

[0,∞)
e−βxµ(dx) < ∞. Therefore, µ(−∞, 0) > 0.

Let c < 0. We define the truncated reproduction L ((z(c)
i )i∈N) by:

z(c)
i :=

zi if zi ≥ c
∂ otherwise

Let z(c) be a BRW with this reproduction and define v(c)(θ) := E[
∑

i∈N e−θzi], which
satisfies v(c)(β) < ∞, since µ((−∞, 0]) ≤ 1 by Lemma II.13. Then ∀θ ∈ R:

v(c)(θ) c→∞
−→ v(θ) = +∞.

For c large enough we have v(c)(θ) θ→∞−→ +∞ and so, by convexity,

inf
θ∈R

v(c)(θ) c→∞
−→ +∞.

There exists thus c < 0, s.t. infθ∈R v(c)(θ) > 0. Since v(c)(β) < ∞, we can apply Theorem
II.7 to conclude that L(c)

n , the left-most individual in the n-th generation of the BRW z(c),
satisfies L(c)

n → −∞ a.s., which entails Ln → −∞ a.s. We can thus use Theorem II.5 to
conclude. �

It is astonishing that the function v, although it only depends on the one-dimensional
marginals of (Ai)i∈N, contains enough information about the non-existence of non-trivial
solutions to (FE). Of course, we don’t know if we can further refine the result, and indeed
we are going to show later that v actually has to satisfy infθ∈(0,1] v(θ) ≤ 0. But this is the
best one can do: As we are going to show in the next chapter, the conditions v(0) > 0
and infθ∈(0,1] v(θ) ≤ 0 (plus some other mild assumptions) are also sufficient for L , ∅,
a result that is very satisfying.
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Chapter III

Existence of solutions to the functional
equation

Our goal in this chapter is to establish the existence of solutions to the functional
equation unter the conditions v(0) > 0 and infθ∈(0,1] v(θ) ≤ 0 plus some additional
assumptions that are to be determined.

III.1 The additive martingale

Let us recall the definition of v in terms of (Ai)i∈N: If θ < 0, then v(θ) = +∞ and if θ ≥ 0,
then

v(θ) = E[
∑
i∈N

e−θzi] = E[
∑
i∈N

Aθ
i ] (with the rule 00 = 0).

In particular, v(0) = E[
∑

i∈N 1{Ai > 0}] and v(1) = E[
∑

i∈N Ai]. We define

N :=
∑
i∈N

1{Ai > 0} ∈N0 ∪ {∞}.

Then, E[N] = v(0).
If v(θ) < ∞ and v(θ0) < ∞ for some θ0 < θ, then the left derivative of v exists and

equals
v′(θ) = −E[

∑
i∈N

zie−θzi] = −E[
∑
i∈N

Aθ
i log Ai] (where 0 log 0 = 0).

If there is no such θ0 or if v(θ) = ∞ then E[
∑

i∈N zie−θzi] may be well defined in spite
of this, i.e. either E[

(∑
i∈N zie−θzi

)+
] or E[

(∑
i∈N zie−θzi

)−
] may be finite. In any of there

cases, we say that v′(θ) exists and set

v′(θ) = −E[
∑
i∈N

zie−θzi].

As a first step, we shall look for conditions for (FE) to have non-trivial solutions of
finite mean. Since E[Y] = E[Y] · E[

∑
i Ai] = E[Y] · e v(1) a necessary condition is obviously

v(1) = 0,
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III.1. THE ADDITIVE MARTINGALE

so let us assume this for the sequel.
Define

Wn :=
∑
|u|=n

e−zu .

Then we have

E[Wn+1 | Fn] = E[
∑
|u|=n

∑
i∈N

e−zui+zu−zu | Fn]

=
∑
|u|=n

e−zuE[
∑
i∈N

e−(zui−zu)
| Fn]

=
∑
|u|=n

e−zu · e v(1) = Wn,

so that Wn is an Fn-martingale. Since it is non-negative, it converges a.s. to a limit
W = limn→∞Wn.

Wn is called the additive martingale associated with the BRW and has come up much
earlier than the multiplicative martingale introduced in the previous chapter. Its study
goes back at least to [Big77b], where the author gave an L log L-type condition for this
martingale to be uniformly integrable.

Let us see how the additive martingale is related to solutions to (FE). Define

W
(i)
n :=


∑
|u|=n e−(ziu−zi) if zu ∈ R

0 if zu = ∂

Then
Wn+1 =

∑
i∈N

∑
|u|=n

e−(ziu−zi)−zi =
∑
i∈N

e−zi ·W
(i)
n =

∑
i∈N

Ai ·W
(i)
n ,

and making use of the branching property and the fact that Ai = 0 ⇐⇒ zi = ∂ we
obtain

Wn+1
(d)
=

∑
i∈N

AiW
(i)
n ,

where the (W(i)
n ) are independent copies of (Wn) and independent of (Ai)i∈N.

If Wn converges in L1 to W, then E[
∑

i∈N Ai] < ∞ implies that the right-hand side of the
equation converges in L1 as well and has the limit

∑
i∈N AiW(i), with W(i) = limn→∞W(i)

n . It
follows that L (W) satisfies (FPE) and moreover that E[W] = 1. We have thus obtained
the following

Proposition III.1. Assume v(1) = 0. If the martingale (Wn)n∈N is uniformly integrable, then
there is a non-trivial solution to (FE) of finite mean.

Remark III.2. [Iks04] showed that the L1-convergence is also necessary for (FE) to have a
non-trivial solution to (FE) of finite mean and further generalised this to “α-elementary
fixed points”. The reader should be careful while consulting his article, however, since
it contains several errors (in particular, Propositions 1b and 3c are erroneous).
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III.2. LYONS’ MEASURE CHANGE ARGUMENT

III.2 Lyons’ measure change argument

In view of Proposition III.1, the next step is to determine conditions for the martingale
(Wn) to be uniformly integrable. As said before, the definite criterion is an L log L-type
condition found by [Big77b]. In our proof, we will follow [Lyo97], who presented a
simple proof based on an measure change argument originally introduced in [LPP95]
for the Galton-Watson process. This paper saw a lot of interest, although their argu-
ment was already used before in similar settings, for example in [CR88] for branching
Brownian motion. See [Lyo97] and [LPP95] for further references.

Let z be a BRW with reproduction Q and let B be its law on the space T of labelled
trees (see section II.1). Assume E[

∑
i∈N e−zi] = e v(1) = 1. If ξ0 = ∅, ξ1, ξ2, . . . is a sequence

of individuals with ξi = m(ξi+1) ∀i ∈ N0, then we call ξ = (ξi)i∈N0 a trunk. Note that a
trunk can also be viewed as a sequence (ni)i∈N ∈ NN, hence we define NN as the space
of trunks. Then T∗ = T ×NN is called the space of labelled trees with trunk.

We define two filtrations (F ∗n ) and (G∗n) over T∗ by

F
∗

n = Fn ⊗ σ{ξi; 0 ≤ i ≤ n}

and
G
∗

n = Fn+1 ⊗ σ{ξi; 0 ≤ i ≤ n}.

Then any F ∗n -measurable function f can be written as

f (z, ξ) =
∑
|u|=n

fu(z)1{ξn = u},

where the fu are Fn-measurable.
We define a branching process (z, ξ) on T∗ in the following way: Start with z∅ = 0,

ξ0 = ∅. Now givenF ∗n generate the next generation of the tree as for the BRW except the
children of ξn: (zξni − zξn)i∈N follows the law Q̂ which is defined by its Radon-Nikodym
derivative w.r.t. Q:

dQ̂
dQ

((zi)i∈N) =
∑
i∈N

e−zi .

Note that Q̂(∂, ∂, . . .) = 0. In the second step, conditionally on G∗n, choose ξn+1 = u with
probability e−(zui−zu)/

∑
i∈N e−(zui−zu). We denote the law of the branching process thus

defined by B̂∗.
Another way of seeing this is the following: For n ∈ N0 let B∗n be the (non-

probability) measure over T∗ satisfying∫
f (z, ξ)dB∗n =

∫ ∑
|u|=n

fu(z)dBn. (III.1)

for every measurable function f : T → R+. Let B̂∗n be the restriction of B̂∗ to F ∗n . Then
the above definition translates to:

dB̂∗n+1

dB∗n+1

(z, ξ) =
dB̂∗n
dB∗n

(z, ξ) ·
dQ̂
dQ

((zξni − zξn)i∈N) ·
e−(zξn+1−zξn )∑
i∈N e−(zξni−zξn )

=
dB̂∗n
dB∗n

(z, ξ) · e−(zξn+1−zξn )
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III.2. LYONS’ MEASURE CHANGE ARGUMENT

Hence,
dB̂∗n
dB∗n

(z, ξ) = e−zξn (III.2)

and if B̂ denotes the projection of B̂∗ onto T, it follows for any measurable function
f : T→ R+:∫

f (z)dB̂n =

∫
f (z)dB̂∗n =

∫
f (z)e−zξn dB∗n =

∫ ∑
|u|=n

e−zu f (z)dBn,

and therefore
dB̂n

dBn
(z) =

∑
|u|=n

e−zu = Wn(z) (III.3)

The following result, taken from [Dur91], page 210, Exercise 3.6, will enable us to
study the convergence of Wn with the help of the measure B̂:

Lemma III.3. On some measurable space with a filtration (Fn), let µ and ν be probability
measures and let µn and νn be the restrictions of µ and ν to Fn, respectively. Assume µn � νn

for every n and define X := lim supn→∞
dµn

dνn
. Then

a) µ� ν ⇐⇒ µ(X < ∞) = 1 ⇐⇒ ν[X] = 1

b) µ ⊥ ν ⇐⇒ µ(X = ∞) = 1 ⇐⇒ ν[X] = 0

Remark III.4. It is easy to verify that under the conditions of Lemma III.3, (dµn

dνn
) is always

an (Fn)-martingale under ν and ( dνn
dµn

) an (Fn)-martingale under µ.

Before continuing on the convergence of Wn, we give an important theorem, which
allows us to use random walk techniques to study the branching random walk and
which follows easily from the measure change introduced above.

Theorem III.5. Let n ∈N0 and f : R
n+1
→ R+ be measurable. Then

B[
∑
|u|=n

e−zu f (zv; v ≤ u)] = B̂∗[ f (zξi ; i ≤ n)] = E[ f (Sk; k ≤ n)],

where (Sk)k∈N0 is a random walk starting at S0 = 0 and

E[g(S1)] = B[
∑
i∈N

e−zi g(zi)] =

∫
R

g(t)e−tµ(dt)

for any measurable function g.
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III.2. LYONS’ MEASURE CHANGE ARGUMENT

Proof. We begin with the first equality:

B[
∑
|u|=n

e−zu f (zv; v ≤ u)]

=B∗[
∑
|u|=n

1{ξn = u}e−zu f (zv; v ≤ u)] by equation (III.1)

=
∑
|u|=n

B∗[1{ξn = u}e−zξn f (zξn ; i ≤ n)]

=
∑
|u|=n

B̂∗[1{ξn = u} f (zξn ; i ≤ n)] by equation (III.2)

=B̂∗[ f (zξi ; i ≤ n)]

This equality gives with n = 1: B̂∗[g(zξ1)] = E[g(S1)] and so the second equality
follows since the increments zξi − zξi−1 are independent under B̂∗ by definition. �

We may now state the theorem we were all waiting for:

Theorem III.6. Let v(1) = 0, v′(1) exist with v′(1) < 0 and B[W1 log+(W1)] < ∞. Then Wn

converges in L1.

Proof. For a labelled tree with trunk (z, ξ) we define for all n ∈N0:

ζn,i = zξni − zξn ,

Xn =
∑
i∈N

e−ζn,i and

H the σ-field generated by ξ and the ζn,i, n ∈N0, i ∈N. Then

B̂∗[Wn+1 | H] = B̂∗[
∑
|u|=n
u,ξn

∑
i∈N

e−zui + e−zξn Xn | H]

= B̂∗[
∑
|u|=n
u,ξn

e−zu | H] · e v(1) + e−zξn Xn

= B̂∗[Wn | H] + e−zξn (Xn − 1).

Hence,

B̂∗[Wn | H] = 1 +

n−1∑
k=0

e−zξk (Xk − 1).

Theorem III.5 tells us that zξk is a random walk under B̂∗ with

E[zξ1] = B[
∑
i∈N

zie−zi] = −v′(1) > 0

by assumption. Thus, the terms e−zξk decay at least exponentially B̂∗-a.s.
To estimate the growth of (Xk)k, we will use the following
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III.2. LYONS’ MEASURE CHANGE ARGUMENT

Lemma III.7. On some probability space (Ω,F ,P), let Z1,Z2, . . . be non-negative i.i.d. random
variables. Then, P-a.s.:

lim sup
n→∞

1
n

Zn =

0 if E[Z1] < ∞
∞ if E[Z1] = ∞

Proof. This follows from the Borel-Cantelli lemma and the fact that

1
a

E[Z1] ≤
∞∑

n=0

P(Z1 ≥ na) ≤
1
a

E[Z1 + 1]

for every a > 0. �

We can now apply Lemma III.7 with Zi = log Xi since the Xi are i.i.d. under B̂∗,
X1 = W1 and

B̂∗[log W1] = B̂[log W1]
= B[W1 log W1] by equation (III.3)
< ∞ by assumption.

Thus, lim supn→∞
1
n log Xn = 0 B̂∗-a.s., or, in other words, Xn grows at most subexpo-

nentially B̂∗-a.s. It follows that

lim inf
n→∞

B̂∗[Wn | H] < ∞ B̂∗-a.s.

and so by the conditional Fatou lemma:

B̂∗[lim inf
n→∞

Wn | H] < ∞ B̂∗-a.s.,

whence,
lim inf

n→∞
Wn < ∞ B̂∗-a.s.

and since Wn does not depend on ξ,

lim inf
n→∞

Wn < ∞ B̂-a.s.

But ( 1
Wn

) is a martingale under B̂ (see Remark III.4), hence limn→∞Wn = W exists B̂-a.s.
Applying Lemma III.3 now gives B[W] = 1, which concludes the proof. �

Remark III.8. Under the additional condition v′(1) > −∞, [Lyo97] showed further that
the conditions v′(1) < 0 and B[W1 log+ W1] < ∞ are actually necessary for Wn to
converge in L1, and, furthermore, that the limit is 0 a.s. if Wn does not converge in L1.
[Iks04] established sufficient and necessary conditions for the remaining cases, i.e. if
v′(1) = −∞ or if v′(1) does not exist.

We are now going to drop the condition v(1) = 0 with the help of the so-called stable
transformation coined by [DL83]. We obtain the following
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III.3. THE BOUNDARY CASE

Theorem III.9. Suppose there exists α ∈ (0, 1] with

v(α) = 0, v′(α) < 0 and E[(
∑

i

Aα
i ) log+(

∑
i

Aα
i )] < ∞.

Then L , ∅.

Proof. Set Ãi := Aα
i and define ṽ, L̃ in terms of (Ãi)i. Then ṽ(θ) = v(αθ), so that

ṽ(1) = v(α) = 0, ṽ′(1) = αv′(α) < 0 and E[(
∑

i Ãi) log+(
∑

i Ãi)] < ∞. Theorem III.6 and
Proposition III.1 now imply L̃ , ∅. Let ψ ∈ L̃ and put φ(θ) := ψ(θα). Then

E[
∏
i∈N

φ(θAi)] = E[
∏
i∈N

ψ(θαÃi)] = ψ(θα) = φ(θ).

For φ to be in L, we have to verify that it is indeed a Laplace transform of a
probability measure. Let (X(t))t be the one-sided stable Lévy process with index α. The
Laplace transform of X(t) is e−tθα . Let τ be a r.v. with Laplace transformψ, independent
of X. Then

E[e−θX(τ)] = E[e−θ
ατ] = ψ(θα) = φ(θ),

so that φ is the Laplace transform of X(τ), hence φ ∈ L. �

Remark III.10. The stable transformation we have seen above works only for α ≤ 1, for
if we set φ(θ) = ψ(θα) for some α > 1 and some Laplace transform ψ of a r.v. of finite
mean, then φ′(θ) = αθα−1ψ′(θα), hence φ′(0) = 0 and so φ ≡ 1. This argument will be
extended later for general ψ and will be used to sharpen the necessary condition for
L , ∅ established in the previous chapter (see Theorem II.12).

III.3 The boundary case

Theorem III.9 is already a good start, but not yet satisfying because of the (in our opin-
ion) strict conditions. Following [Big77b] we could now try to drop the L log L condition
by establishing a Seneta-Heyde norming of the martingale (Wn) s.t. the normed process
(Wn/cn) converges in distribution to a non-degenerate r.v. W satisfying the fixed point
equation (FPE). In following this approach one has to keep the assumptions v(1) = 0,
v′(1) < 0 and must introduce another one:

(N) N :=
∑
i∈N

1{Ai > 0} =
∑
i∈N

1{zi ∈ R} < ∞ a.s.

We will follow the more direct approach of [Liu98] instead, which will still need the
assumption (N), but allows for example v′(1) = 0. We’ll obtain the following

Theorem III.11. Suppose that v(0) > 0, infθ∈(0,1] v(θ) ≤ 0 and that the assumption (N) is
verified. Then L , ∅.

Before giving the proof a nice

Proposition III.12. Assume (N). Let φ ∈ L. Then φ(∞) is the extinction probability of the
branching random walk z.
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III.3. THE BOUNDARY CASE

Proof. By dominated convergence, we have

φ(∞) = lim
x→∞

φ(x) = E[lim
x→∞

∏
i∈N

φ(xAi)] = E[φ(∞)N]

Hence, φ(∞) is a fixed point of the generating function f (s) = E[sN] of N and thus, since
φ(∞) < 1, it is the extinction probability of the Galton-Watson process (Zn(z)) defined
in Remark II.6. �

Proof. For this proof, fix the probability space Ω we are working on and let it support
the (Ai)i∈N and Ui ∼ Unif(0, 1) i.i.d. random variables independent of (Ai)i∈N. Also,
assume w.l.o.g. that the Ai are a.s. decreasing with i.

For any M ∈ R+ define

A(M)
i :=

(Ai ∧M) · 1{Ui ≥ e−M
} if i ≤M

0 otherwise

Let vM, LM and NM be defined in terms of (A(M)
i ). Then vM andLM have the following

properties:

1. vM(θ) < ∞ ∀θ ≥ 0 ∀M ∈ R+

2. vM(θ) < v(θ) ∀θ ≥ 0 and therefore

3. minθ∈[0,1] vM(θ) < 0

4. ∀θ ∈ R : vM(θ) ↑ v(θ) as M→∞ by monotone convergence

We deduce from 2. and 4. that there exists M0 ∈ R+, s.t. ∀M ≥M0 : vM(0) > 0. Together
with 1. and 3. this gives:

∀M ≥M0 ∃αM ∈ (0, 1] : vM(α) = 0 and v′M(α) < 0.

In addition, E[
(∑

i(A
(M)
i )αM

)
log+

(∑
i(A

(M)
i )αM

)
] ≤ M ·MαM · log+(M ·MαM) < ∞. Hence,

LM , ∅ for all M ≥M0 by Theorem III.9.
For M ≥ M0 choose ηM ∈ LM and set qM = ηM(∞) < 1. Proposition III.12 then

shows that qM is the extinction probability of the Galton-Watson process with offspring
distribution L (NM) = L (

∑
i∈N 1{A(M)

i > 0}). Since the (A(M)
i ) increase with M, it follows

that qM decreases with M, s.t. q̄ := limM→∞ qM exists and q̄ < 1. If q denotes the
extinction probability of the Galton-Watson process with offspring distribution L (N),
then q ≤ qM ∀M, hence q ≤ q̄.

Now choose cM such that ηM(cM) = 1
2 (qM + 1) and set φM(x) = ηM(cMx). Evidently,

φM ∈ LM and φM(1) = 1
2 (qM + 1). By Helly’s selection theorem for distributions and

Lévy’s continuity theorem for Laplace transforms (see e.g. [Fel71], Theorems VIII.6.1
and XIII.1.2) there exists a sequence Mn →∞ s.t. φMn → φ pointwise as n→∞, where
φ is the Laplace transform of a possibly defective probability measure. Evidently,
φ(1) = limφMn(1) = 1

2 (q̄ + 1).
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III.3. THE BOUNDARY CASE

Since for almost each ω ∈ Ω and every i ∈ N there exists an ni ∈ N s.t. A(Mn)
i =

Ai ∀n ≥ ni, it follows

φMn(x) = E[
N∏

i=1

φMn(xA(Mn)
i ) n→∞

−→

N∏
i=1

φ(xAi) a.s.

It follows by the dominated convergence theorem that φ satisfies (FE).
Letting x ↓ 0 we see that φ(0+) = f (φ(0+)), where f (s) = E[sN]. Thus, φ(0+) ∈ {q, 1}.

But since φ(0+) ≥ φ(1) = 1
2 (q̄ + 1) > q, φ(0+) must be 1. Thus φ is the Laplace transform

of a proper probability distribution and so φ ∈ L. �

We summarise the results of this section in the following

Theorem III.13. Suppose v(0) > 0 and that at least one of the two following conditions hold:

(H1) There exists an α ∈ (0, 1] with v(α) = 0, v′(α) < 0 and E[(
∑

i Aα
i ) log+(

∑
i Aα

i )] < ∞

(H2) infθ∈(0,1] v(θ) ≤ 0 and
∑

i∈N 1{Ai > 0} < ∞ a.s.

Then L , ∅.

Remark III.14. Condition (H2) contains the case where infθ∈(0,1] v(θ) < 0 but there is no
α ∈ (0, 1] with v(α) = 0. This is possible for example if v(θ) < 0 on an interval [a, b] and
v(θ) = +∞ outside of this interval.
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Chapter IV

The general framework

It is now time to present the general framework due to [BK04], of which the boundary
case is a special case. We will further introduce optional lines, the analogue to stopping
times for Markov processes indexed by a subset of the real numbers. We will use this
to prove uniqueness of the solutions to (FE).

IV.1 Branching processes with Markovian reproduction

Let U =
⋃

n∈NN
n be the space of individuals, or universe, as before. Instead of

assigning to each individual a position on the real line, i.e. elements of R, we use an
arbitrary measurable space S, called the label space and define the space of labelled trees
T = SU. Instead of a reproduction Q on SN, we how have a general reproduction kernel
Ps(d~x), s ∈ S, ~x ∈ SN that defines now an individual with label s reproduces. The
filtration (Fn) is defined as before. In analogue to the BRW we present the

Definition IV.1. Let S be a measurable space, s0 ∈ S, Ps(d~x) a reproduction kernel, P
a probability measure on T = SU and z the canonical process. P is called the law of a
branching process with reproduction kernel Ps(d~x) starting at s0 iff

1. z∅ = s0 P-a.s.

2. for all measurable functions fu : SN → R+ we have

P[
∏
|u|=n

fu((zui)i∈N) | Fn] =
∏
|u|=n

Pzu[ fu].

As before, uniqueness is evident and existence follows from Ionescu Tulcea’s theo-
rem, so that we can define As0 := P. If the starting label is not specified (and possibly
a random variable), or if it is implicitly known, then we will also simply write A.

As before, we have the branching property:

Proposition IV.2. For each s ∈ S, let As be the law of a branching process with reproduction
kernel P starting at s. Then for all s0 ∈ S and all measurable functions fu : T→ R+ we have

A[
∏
|u|=n

fu(zu•) | Fn] =
∏
|u|=n

Azu[ fu].
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IV.1. BRANCHING PROCESSES WITH MARKOVIAN REPRODUCTION

One of the primary objects of study in the BRW was the martingale (Wn), so we
would like to generalise it to our new model. The right notion for this is the following

Definition IV.3. Let h : S → R+ be a measurable function. h is called mean-harmonic iff

1. h . 0 and

2. Ps[
∑

i∈N h(xi)] = h(s) ∀s ∈ S.

If (zu) is a branching process with reproduction kernel Ps(d~x), then we define the
additive martingale

Wn(z) :=
∑
|u|=n

h(zu),

which is an (Fn)-martingale, since

A[Wn+1 | Fn] = A[
∑
|u|=n

∑
i∈N

h(zui) | Fn] =
∑
|u|=n

Pzu[
∑
i∈N

h(xi)] = Wn.

To be sure that we are on the right track, we verify that in setting

S = R,

Ps = Qs and
h(s) = e−s

we are indeed in the setting of chapter II.
The measure change of [Lyo97] readily transfers to our new model. Again, we

define a trunk ξ = (ξi)i∈N as a sequence of individuals with ξ0 = ∅ and ξi = m(ξi+1),
i = 0, 1, 2, . . . and identify it with NN. Then we set T∗ = T ×NN the space of labelled
trees with trunk and define F ∗n , G∗n as before.

Again, we note that every F ∗n -measurable function f : T∗ → R can be written as

f (z, ξ) =
∑
|u|=n

fu(z)1{ξn = u},

where the fu are Fn-measurable.
DefineAn the restriction ofA to (Fn) and callA∗n the measure overT∗ which satisfies∫

f (z, ξ)dA∗n =

∫ ∑
|u|=n

fu(z)dAn

for every F ∗n -measurable function f . Define the reproduction kernel P̂s(d~x) by

dP̂s

dPs
(~x) :=


∑

i∈N h(xi)
h(s) if h(s) > 0

1 if h(s) = 0

The mean-harmonicity of h assures that P̂s is indeed a probability measure for every
s ∈ S.
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IV.1. BRANCHING PROCESSES WITH MARKOVIAN REPRODUCTION

Now assume B = Bs0 with s0 ∈ S
h := {s ∈ S : h(s) > 0}. We define a branching

process with trunk as follows: Start with z∅ = s0, ξ0 = ∅. Given F ∗n , generate the next
generation of the tree as for the BRW except the children of ξn: (zξni)i∈N follows the law
P̂zξn

instead. In the second step, conditionally on G∗n choose ξn+1 = u with probability
h(zξni)/

∑
i∈N h(zξni). The law of the branching process thus defined is denoted by Â∗

If Â∗n denotes the restriction of Â∗ to F ∗n , then we see by the above definition, that
we can also define Â∗n recursively by

dÂ∗n+1

dA∗n+1

(z, ξ) =
dÂ∗n
dA∗n

(z, ξ) ·
dP̂ξn

dPξn

((zξni)i∈N) ·
h(ξn+1)∑
i∈N h(ξni)

=
dÂ∗n
dA∗n

(z, ξ) ·
h(ξn+1)
h(ξn)

Then we have the simple relation

dÂ∗n
dA∗n

(z, ξ) =
h(zξn)
h(z∅)

, (IV.1)

which entails for the projection Â of Â∗ to T that

dÂn

dAn
(z) =

Wn(z)
h(z∅)

=
1

h(z∅)
·

∑
|u|=n

h(zu).

On the other hand, taking into account the recursive construction of the process, we
have a result similar to Theorem III.5:

Â∗[ f (zξn+1) | F
∗

n ] = Â∗[
∑
i∈N

h(zξni)∑
j∈N h(zξn j)

· f (zξni) | F ∗n ]

= P̂zξn
[
∑
i∈N

h(xi)∑
j∈N h(xi)

· f (xi)]

=
1

h(zξn)
Pzξn

[
∑
i∈N

h(xi) f (xi)]

This gives us

Proposition IV.4. (ζn) := (zξn) is an (Fn)-Markov chain under Â∗ living on Sh and with
transition kernel

Πs[ f ] :=
1

h(s)
Ps[

∑
i∈N

h(xi) f (xi)] ∀s ∈ Sh.

Remark IV.5. In the case of the BRW, this becomes for s ∈ R:

Πs[ f ] = e s
·Q[

∑
i∈N

e−(s+zi) f (s + zi)] = Q[
∑
i∈N

e−zi f (s + zi)],

so that (ζn) is the random walk defined in Theorem III.5, as expected.
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IV.2. CONVERGENCE OF THE ADDITIVE MARTINGALE

IV.2 Convergence of the additive martingale

In this section we develop criteria for the martingale (Wn) to converge in mean. The
material, taken entirely from [BK04], is fairly advanced and can be skipped by impatient
readers. It will only serve us in section VI.2.

Throughout this section, letA be the law of a branching process z with reproduction
kernel Ps(d~x), let h be some mean-harmonic function and suppose that z∅ is constant
and that z∅ ∈ Sh. As in the proof of Theorem III.6 we set

Xn :=
∑
i∈N

h(zξni)
h(zξn)

and defineH to be the σ-field generated by ξ and the zξni for all n ∈N0, i ∈N. We get
again

Â∗[Wn | H] = 1 +

n−1∑
k=0

h(zξk)(Xk − 1)

and conclude as before that if
∞∑

k=0

h(zξk)Xk < ∞ Â∗-a.s.

then W < ∞ Â-a.s.
On the other hand, since Wn ≥

∑
i∈N h(zξn−1i) = h(xξn−1)Xn−1, we have W = ∞ Â-a.s. if

lim supn→∞ h(zξn)Xn = ∞ Â∗-a.s. An application of Lemma III.3 then gives

Theorem IV.6. a) If
∞∑

n=1

h(zξn)Xn < ∞ Â∗-a.s.,

then A[W] = W0 and so (Wn) converges in L1 to W under A.

b) If
lim sup

n→∞
h(zξn)Xn = ∞ Â∗-a.s.,

then A[W] = 0.

In the proof of Theorem III.6 we used the fact that zξn was a random walk with
positive drift and that the Xn were i.i.d. with E[log+ Xn] < ∞ to conclude that the sum
converged a.s. In general we don’t have there nice conditions, so that we have to work
harder to obtain convergence.

First of all, we will exploit the Markovian character of Â∗ with the help of Lévy’s
conditional Borel-Cantelli lemma (see for example [Che78] for a short proof):

Lemma IV.7. Let (Xn) be a sequence of nonnegative r.v.’s defined on some probability space
(Ω,F ,P), adapted to a filtration (Fn) and uniformly bounded by a constant. Then

∞∑
n=1

Xn < ∞ a.s. ⇐⇒
∞∑

n=1

E[Xn | Fn−1] a.s.
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IV.2. CONVERGENCE OF THE ADDITIVE MARTINGALE

We get the following

Theorem IV.8. Set X := X0 = (W1/W0) and let ζ be the Markov chain defined in Proposition
IV.4.

a) If
∞∑

n=1

Aζn[X · (W0X ∧ 1)] < ∞ a.s.,

then A[W] = W0.

b) If, for all y > 0,
∞∑

n=1

Aζn[X · 1{W0X ≥ y}] = ∞ a.s.,

then A[W] = 0.

Proof. Part a). We have Â∗-a.s.

∞∑
n=1

h(zξn)Xn < ∞ ⇐⇒
∞∑

n=1

(h(zξn)Xn ∧ 1) < ∞

⇐⇒

∞∑
n=1

Â∗[h(zξn)Xn ∧ 1 | F ∗n ] < ∞ by Lemma IV.7

But, Â∗-a.s.:

Â∗[h(zξn)Xn ∧ 1 | F ∗n ] = Â∗zξn
[W0X ∧ 1] = Azξn

[X · (W0X ∧ 1)].

Since (zξn) under Â∗ follows the same law as (ζn), we can apply Theorem IV.6a to prove
part a).

Part b). As in the proof of a) we get for y > 0:

∞∑
n=1

Aζn[X · 1{W0X ≥ y}] = ∞ a.s.

⇐⇒

∞∑
n=1

Â∗[1{h(zξn)Xn ≥ y} | F ∗n ] < ∞ Â∗-a.s.

⇐⇒

∞∑
n=1

1{h(zξn)Xn ≥ y} < ∞ Â∗-a.s. by Lemma IV.7

But this is true iff
lim sup

n→∞
h(zξn)Xn = ∞ Â∗-a.s.

and so an application of Theorem IV.6b proves part b). �

Theorem IV.8 readily applies if we know exactly the laws of (ζn) and of X under As

for all s ∈ Sh. In the example we are going to study in section VI.2, the second point is
the tricky one and we will be glad to have some upper and lower bounds onAs(X > x),
which have some uniformity in s. We will then apply the following
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IV.2. CONVERGENCE OF THE ADDITIVE MARTINGALE

Theorem IV.9. a) Let I ∈N fixed. For i = 1, . . . , I let X∗i be a random variable, gi a positive
function on S and let F ⊂ S, s.t. ζ is eventually in F almost surely. Suppose that

∀s ∈ F : As(X > x) ≤ P(
∑

i

gi(s)X∗i > x)

Let

Ai(x) :=
∞∑

n=1

gi(ζn)1{x ≥ (gi(ζn)h(ζn))−1
}.

Suppose there are positive increasing functions Li(x) slowly varying at infinity, such that
a.s.

max
i

sup
x>0

Ai(x)
Li(x)

< ∞ and max
i

E[X∗i Li(X∗i )] < ∞.

Then A[W] = W0.

b) Suppose there is a r.v. X∗, a positive function g on S and F ⊂ S, s.t.

∀s ∈ F : As(X > x) ≥ P(g(s)X∗ > x)

Let

A(x) :=
∞∑

n=1

g(ζn)1{x ≥ (g(ζn)h(ζn))−1
}1{ζn ∈ F}.

Suppose there is a positive increasing function L(x) slowly varying at infinity, such that,
for some y, a.s.

inf
x>y

A(x)
L(x)

> 0 and E[X∗L(X∗)] = ∞.

Then A[W] = 0.

Proof. Let us first prove the (easier) part b). In view of Theorem IV.8b, we have to show
that

∞∑
n=1

Aζn[X · 1{W0X ≥ y}] = ∞ a.s.,

Since the function (x 7→ x1{wx ≥ y}) is increasing for every w, y > 0, we have for every
s ∈ F:

As[X · 1{W0X ≥ y}] ≥ E[g(s)X∗1{h(s)g(s)X∗ ≥ y]

and therefore (E∗ denotes expectation w.r.t. X∗ only)

∞∑
n=1

Aζn[X · 1{W0X ≥ y}] ≥
∞∑

n=1

E∗[g(ζn)X∗1{h(ζn)g(ζn)X∗ ≥ y)]1{ζn ∈ F}

= E∗[X∗A(X∗/y)],

which equals∞ almost surely, since E[X∗L(X∗)] = ∞ implies E[X∗L(X∗/y)] = ∞ because
L is slowly varying. This proves b).
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IV.2. CONVERGENCE OF THE ADDITIVE MARTINGALE

For part a), note that for any positive w and xi, i = 1, . . . , I:∑
i

xi

 w
∑

i

xi

 ∧ 1

 ≤ ∑
i

xi

 ∑
i

(wxi ∧ 1)

 ≤ I2
∑

i

xi(wxi ∧ 1),

so that for s ∈ F, since the function (x 7→ x(wx ∧ 1)) is increasing, we have

As[X · (W0X ∧ 1)] ≤ E

∑
i

gi(s)X∗i

 h(s)
∑

i

gi(s)X∗j

 ∧ 1


≤ I2

∑
i

E
[
gi(s)X∗i

(
(h(s)gi(s)X∗i ) ∧ 1

)]
.

Hence, in order to apply Theorem IV.8a, we need to show that for every i,

∞∑
n=1

E∗
[
gi(ζn)X∗i

(
(h(ζn)gi(ζn)X∗i ) ∧ 1

)]
< ∞ a.s.,

(where again, E∗ denotes expectation w.r.t X∗ only). We will need the following lemma,
the proof of which can be found in [BK04].

Lemma IV.10. Suppose A is an increasing function with A(0) = 0 and x ≥ 0. Then∫
∞

0

x
y
∧ 1 dA(y) =

∫
∞

1

A(yx)
y2 dy.

Now fix i and set g := gi, X∗ := X∗i and A := Ai. Set C := supx>0(A(x)/L(x)), which is
finite a.s. by assumption. Then∫

∞

1

A(yx)
y2 dy ≤ CL(x)

∫
∞

1

L(yx)
L(x)y2 dy

and the integral on the right side is uniformly bounded for large x (this follows from the
representation theorem for slowly varying functions (see e.g. [Fel71], VIII.9). Hence,∫

∞

1

E∗[X∗A(yX∗)]
y2 < ∞ a.s.,

since E[X∗L(X∗)] < ∞ by assumption. This concludes the proof, because

∞∑
n=1

E∗
[
gi(ζn)X∗i

(
(h(ζn)gi(ζn)X∗i ) ∧ 1

)]
=E∗

∫
∞

0
X∗((X∗/y) ∧ 1)dA(y) by definition of A

=

∫
∞

0
E[X∗((X∗/y) ∧ 1)]dA(y) by Fubini’s theorem

=

∫
∞

1

E∗[X∗A(yX∗)]
y2 by Lemma IV.10 �
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IV.3. OPTIONAL LINES

IV.3 Optional lines

In the paper [Cha88] treating branching Brownian motion, the author had the brilliant
idea to build sums over sets of individuals other that the n-th generation, say. [Jag89]
generalised this concept to general branching Markov processes, similar to the general
model we have just introduced. Further contributions have been made, particularly by
[Kyp00] and [BK04], the results of whom will be useful to us.

The basic object is a line, i.e. a set of individuals l ⊂ U with the property

u, v ∈ l implies u ≮ v

i.e. there is at most one u ∈ l on every line of descent. In this sense, lines cut through
the genealogical tree, “perpendicularly” to the lines of descent. Note however that the
definition does not imply that every individual u ∈ U is either a descendent of or has a
descendent in l. If this is the case, we call l a covering line.

For a line l and u ∈ U, we write u ≥ l if ∃v ∈ l : u ≥ v and say that u stems from l.
Furthermore, we write l1 ≤ l2 for two lines if l1 ≤ u for all u ∈ l2. This renders the set of
lines a partially ordered set and it is indeed a semi-lattice, i.e. for all lines l1, l2 there is
a line l := l1 ∧ l2 with: l ≤ l1, l ≤ l2 and l′ ≤ l for all lines l′ with l′ ≤ l1 and l′ ≤ l2. To see
this, one simply has to set

l := {u ∈ l1 : ∃v ∈ l2 : u ≤ v} ∪ {u ∈ l2 : ∃v ∈ l1 : u ≤ v}

and check that this set has the above properties. The special case l ∧ Nn will be
shorthanded by l ∧ n. We can thus define (with min∅ = ∞)

g(l) := min{n : l ∧ n = l} and
g(l) := min{|u| : u ∈ l}

the last and first generation of l, respectively. We always have g(l) ≤ g(l). Also note that
g(l) < ∞ implies that l is covering.

The real power of lines is unleashed if on considers random lines, i.e. lines that are
random variables, analogously to random times for stochastic processes indexed by a
subset of the reals. In the one-dimensional case, stopping times, i.e. random times T
with {T ≤ t} ∈ Ft for all t are of particular interest, specifically for the strong Markov
property and the optional sampling theorem. We will consider an analogue for random
lines:

Put Fl := {πu; u ≯ l}, where πu : T → S denotes the projection z 7→ zu. Thus, Fl

contains the information about all individuals except of those that are a child or grand-
child or grand-grand-child, etc., of an individual in l. If l is covering, then these are
exactly those individuals u with u ≤ v for some v ∈ l, so thatFl captures the information
about the process until l. Note that the notation is slightly different from Jagers’, since
in his model, every mother stores the information about the position (i.e. birth times)
and types of her children, whereas in our model this information is kept by the children
themselves. The definition of Fl in [Kyp00] and [BK04] is therefore erroneous.

We can now define optional lines in an analogous way to stopping times: A random
line L is called an optional line iff for every line l we have {L ≤ l} ∈ Fl. In this case we
define

FL := {A ∈ F : ∀ line l : A ∩ {L ≤ l} ∈ Fl}.
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IV.3. OPTIONAL LINES

[Jag89] has good news for us:

Theorem IV.11. A branching process A with state space S and reproduction kernel Ps(d~x)
possesses the strong branching property: If L is an optional line, then

A[
∏
u∈L

fu(zu•) | FL] =
∏
u∈L

Pzu[ fu]

We omit the proof.
Setting WL(z) :=

∑
u∈L h(zu), we extend the additive martingale to sums over (op-

tional) lines. Here the question is if an equivalent of the optional sampling theorem
holds, i.e. under which conditions do we haveA[WL] = A[W0] = A[h(z∅)]? An answer
is given by the following

Proposition IV.12. Let L be an optional line with g(L) < ∞ a.s. and let (Wn) be uniformly
integrable. Then

A[W | FL] = WL

and in particular
A[WL] = A[W] = A[W0].

Proof. We first show the following lemma from [BK04]:

Lemma IV.13. For any optional line L, A[Wn | FL] = WL∧n.

Proof. Set Ln := L ∧ n. If we view Ln as a (random) function from U to {0, 1}, we get

Wn =
∑
|u|=n

Ln(u)Wn−|u|(zu•).

Now, if Ln(u) = 1 in the above sum then either

• |u| = n, so that Wn−|u|(zu•) = h(zu), or

• |u| < n, so that u ∈ L. In this case, the strong branching property (Theorem IV.11
gives us A[Wn−|u|(zu•) | FL] = h(zu).

Hence, since Ln(u) is FL-measurable for each u,

A[Wn | FL] =
∑
|u|≤n

Ln(u)A[Wn−|u|(zu•) | FL] =
∑
|u|≤n

Ln(u)h(zu) = WLn .

�

Now, since (Wn) is uniformly integrable, A[Wn | FL] n→∞
−→ A[W | FL] and since

g(L) < ∞, WL∧n
n→∞
−→ WL. Thus, the proposition follows. �

Remark IV.14. In general, if L is an optional line, L ∧ n need not be optional, as the
example

L =

{11, 12, 13, . . . , 2, 3, 4, . . .} if h(11) > 17
N2 if h(11) ≤ 17

shows (L ∧ 1 is not F1-measurable). For simple lines, which we will define next, this is
true however.
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IV.3. OPTIONAL LINES

Definition IV.15. An optional line L is called simple, if for all u ∈ U the function L(u) is
measurable w.r.t. F|u|.

For simple optional lines, [BK04] found an optimal optional sampling theorem:

Theorem IV.16. Let A be the law of a branching process with reproduction kernel, L a simple
optional line, f : S → R+ measurable and τ defined by ξτ ∈ L if there exists an n, s.t. ξn ∈ L
and τ = ∞ otherwise. Then

A[
∑
u∈L

f (zu)
h(zu)
h(z∅)

] = Â∗[1{τ < ∞} f (zξτ)]

Proof. We have

A[
∑
u∈L

f (zu)
h(zu)
h(z∅)

]

=
∑
n≥0

A[
∑
|u|=n

L(u) f (zu)
h(zu)
h(z∅)

]

=
∑
n≥0

A∗n[
∑
|u|=n

L(u) f (zu)
h(zu)
h(z∅)

1{ξn = u}] since L is simple

=
∑
n≥0

Â∗n[L(ξn) f (zξn)] by equation (IV.1)

=Â∗[
∑
n≥0

L(ξn) f (zξn)]

=Â∗[1{τ < ∞} f (zξτ)] �

Corollary IV.17. Let L be a simple optional line and τ be defined as in Theorem IV.16, and let
z∅ be a.s. constant. Then

A[WL] = W0 ⇐⇒ τ < ∞ Â∗-a.s.

Proof. Set f ≡ 1 in Theorem IV.16 �

Later we will often obtain results about the convergence of the martingale (Wn)
by studying the convergence of the process (WLt)t≥0, where Lt are simple optional lines
increasing with t, i.e. Ls ≤ Lt ∀s ≤ t. The key for this will be the combination of Theorem
IV.16 and the next lemma, whose proof is rather technical and will be omitted; the reader
should instead consult [BK04].

Lemma IV.18. Let {Lt; t ≥ 0} be simple optional lines that are increasing with t and satisfy
A[WLt] = h(z∅) for every t. Then (WLt)t≥0 is a positive (FLt)-martingale. If, for each n,
WLt∧n

t→∞
−→Wn A-a.s., then WLt

t→∞
−→W A-a.s.
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Chapter V

Slow variation and consequences

The results from the previous chapter, in particular the theory of optional lines, will
enable us to examine the behaviour at the origin of solutions to the functional equation
and to derive some interesting limit theorems. As a by-product, we will obtain a
criterium for uniqueness of the solutions (FE).

V.1 Slow variation

We return back to the branching random walk and the functional equation (FE) and
study the behaviour of φ ∈ L near the origin under the assumption

(H) v(0) > 0, v(1) = 0, v′(1) ≤ 0 and
∑
i∈N

1{Ai > 0} < ∞ a.s.

Hereby, we are going to use optional lines to reduce the case v′(1) = 0 to the easier one
v′(1) < 0. We define for t ∈ R:

Ct := {u ∈ U : zu > t and zv ≤ t ∀v < u}

and set C := C0. The following theorem due to [BK97] gives us results similar to Lemma
IV.18 but for the multiplicative martingale instead:

Theorem V.1. Let φ ∈ L and {Lt; t ∈ R} be an increasing sequence of optional lines with

g(Lt) < ∞ ∀t ∈ R a.s.

Then, with x ∈ R+ fixed,
MLt(x) =

∏
u∈Lt

φ(xe−zu)

is a (bounded) (FLt)-martingale. Moreover, if

g(Lt)
t→∞
−→ ∞ a.s.,

then MLt

t→∞
−→M a.s. and in L1.
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Proof (sketched). We fix x ∈ R+ and discard it from our notation. Let M be the a.s. and
L1-limit of the martingale (Mn). In a similar way to Proposition IV.12, i.e. in using the
strong branching property, one can show that A[M | FLt] = MLt ∀t ∈ R. This gives for
s < t:

A[MLt | FLs] = A[A[M | FLt] | FLs] = A[M | FLs] = MLs

For the second part, it suffices to see that g(Lt) → ∞ implies A[M | FLt] → M a.s.
and in L1. �

In order to apply this result to the lines (Ct)t∈R, we have to prove that g(Ct) < ∞∀t ≥ 0,
which will follow from the following

Theorem V.2. Assume (H). Let Ln be the left-most individual in the n-th generation of the
BRW. Then we have Ln

n→∞
−→ ∞ a.s.

Proof. We follow [Big98], Theorem 3. Let Y := lim supn→∞ e−Ln . Then
Y ≤ lim supn→∞Wn = W and so, by Fatou’s lemma,

E[Y] ≤ E[W] ≤ lim inf
n→∞

E[Wn] = 1

Splitting the BRW at the first generation gives

Ln+1 = min
i∈N
{zi + min

|u|=n
(ziu − zi)}

(d)
= min

i∈N
{zi + L(i)

n },

where the L(i)
n are i.i.d. copies of Ln, independent of (zi)i∈N. Thus, letting n→∞ gives

Y
(d)
= max

i∈N
{e−ziYi},

with Yi i.i.d. copies of Y independent of (zi)i∈N.
Assume E[Y] > 0. Since v(0) > 0, there are with positive probability at least two

individuals in the first generation, so that

E[Y] = E[max
i∈N
{e−ziYi}] < E[

∑
i∈N

e−ziYi] = e v(1)E[Y] = E[Y],

which is a contradiction. Hence, E[Y] = 0 and thus Ln →∞ a.s. �

Remark V.3. Much more is known about the behaviour of the left-most individual, see
for example [McD95] or [HS09] and the references therein.

With Theorem V.2 we conclude that g(Ct) < ∞ ∀t ∈ R. Moreover, since the assump-
tion (H) implies that every generation is finite a.s., we have g(Ct) → ∞ and so we can
apply both parts of Theorem V.1 to obtain

Corollary V.4. (MCt) is a (bounded) (FCt)-martingale converging a.s. and in L1 to M, the limit
of the martingale (Mn). In particular,

φ(x) = A[
∏
u∈C

φ(xe−zu)].
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In other words: If we enumerate the individuals in C arbitrarily and set (As
i ; i ∈

N) := (e−u1 , e−u2 , . . . ; ui ∈ C), then

(FE*) φ(x) = E[
∏
i∈N

φ(xA∗i )],

i.e. φ is a solution of a functional equation with weights (A∗i )i∈N. The good thing about
(FE*) is that the A∗i behave quite nicely:

Theorem V.5. Let v∗,N∗, µ∗ be defined in terms of (A∗i ) as v,N, µ are in terms of (Ai). Assume
(H). Then:

a) N∗ < ∞ a.s.

b) maxi∈N A∗i < 1 a.s.

c) (H) holds for (A∗i ). Furthermore, v∗ is strictly decreasing on {θ : v∗(θ) < ∞} and in
particular v∗′(1) < 0

d) If the assumption
(A) ∃θ < 1 : v(θ) < ∞

holds for (Ai), then it holds for (A∗i ) with the same θ

Proof. a) follows from the fact that g(C) < ∞ a.s. and N < ∞ a.s., b) from a) and the
definition of C.

To prove c), let τ be defined as in Theorem IV.16. Theorem III.5 tells us that (zξn)n∈N0

is a random walk under B̂∗ with a mean increment of −v′(1) ≥ 0. Therefore τ = inf{n ∈
N : zξn > 0} < ∞ B̂∗-a.s. Corollary IV.17 tells us therefore that

v∗(1) = logB[WC] = log W0 = 0 and

B[#C] > B[
∑
u∈C

e−zu] = B[WC] = 1, thus v∗(0) > 0.

That v∗ is strictly decreasing on {θ : v∗(θ) < ∞} follows immediately from b). Thus, c) is
proved.

Now assume (A). Using Theorem IV.16 we get

B[
∑
u∈C

e−θzu] = B[
∑
u∈C

e (1−θ)zu · e−zu] = B̂∗[e (1−θ)zξτ ] = E[e (1−θ)Sτ],

where S denotes the random walk of Theorem III.5 and τ = inf{n : Sn > 0} in this case.
In random walk theory, Sτ is called the ladder height of the random walk and it is known
that E[e (1−θ)S1] < ∞ implies E[e (1−θ)Sτ] < ∞ (see for example XII (3.6a) in [Fel71]). But
this follows from

E[e (1−θ)S1] =

∫
e (1−θ)xe−xµ(dx) =

∫
e−θxµ(dx) = e v(θ) < ∞.

�

Our first application of Theorem V.5 will be
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V.1. SLOW VARIATION

Theorem V.6. Assume (H). Let φ ∈ L and define

L(x) :=
1 − φ(x)

x
.

Then L is slowly varying at the origin.

Proof. Thanks to Theorem V.5 we can restrict ourselves to the case v′(1) < 0. We follow
[BK97], Theorem 1.4. Fix n ∈ N and order the set {|u| = n} arbitrarily by ≺. Then we
have

L(x) = B[
1 −

∏
|u|=n φ(xe−zu)

x
] = B[

∑
|u|=n

1 − φ(xe−zu)
x

·

∏
v≺u

φ(xe−zu)],

the second equality arising from a telescoping sum. This gives

1 = B[
∑
|u|=n

e−zu
L(xe−zu)

L(x)
·

∏
v≺u

φ(xe−zu)] (V.1)

Since φ is a Laplace transform of a probability measure, L is the Laplace transform of
a positive measure (see [Fel71], XIII.2) and thus monotone decreasing with x. If L(x) is
not slowly varying, then there exists a constant β < 1 and a sequence (xk) with xk ↓ 0

s.t. L(xkβ)
L(xk)

k→∞
−→ η > 1. By monotonicity this implies

lim inf
k→∞

L(xky)
L(xk)

≥ η ∀y ≤ β.

Letting k→∞, equality (V.1) and Fatou’s lemma give

1 ≥ B[
∑
|u|=n

zu≥− log β

e−zuη] + B[
∑
|u|=n

0≤zu<− log β

e−zu]

and since B[
∑
|u|=n e−zu] = 1, this gives

(η − 1)B[
∑
|u|=n

zu≥− log β

e−zu] ≤ B[
∑
|u|=n
zu≤0

e−zu]

and with the notation of Theorem III.5:

(η − 1)P(Sn ≥ − log β) ≤ P(Sn ≤ 0).

Since E[S1] = −v′(1) > 0, the left and right sides tend to one and zero, respectively,
which is a contradiction to η > 1. �

Remark V.7. It is possible to prove Theorem V.6 with v′(1) = 0 directly without too much
pain, as [Kyp98] shows.

Remark V.8. The situation v(α) = 0, v′(α) ≤ 0 for α ∈ (0, 1) is more complex than the case
α = 1. In light of the stable transformation (see Theorem III.9) one could imagine that
1−φ(x)

xα is slowly varying, but this need not be the case when the points {zi; i ∈N} are a.s.
situated on a lattice. In that case periodicities occur, as shown in [DL83] and [Liu98].
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V.2. SOME LIMIT THEOREMS

With Theorem V.6 and the stable transformation we can finally finish the necessary
condition for L , ∅.

Theorem V.9. Assume L , ∅. Then v(0) > 0 and there exists a θ ∈ (0,∞) with v(θ) ≤ 0. If
condition (N) holds and there is a θ, s.t. v(θ) = 0 and v′(θ) ≤ 0, then θ ∈ (0, 1].

Proof. Theorem II.12 gives us the first part. For the second part, assume (N) and that
there exists θ, s.t. v(θ) = 0 and v′(θ) ≤ 0. Let φ ∈ L. Define ψ(x) := φ(x1/θ). Then ψ is a
Laplace transform of a probability measure (see the proof of Theorem III.9) and

ψ(x) = φ(x1/θ) = E[
∏
i∈N

φ(x1/θAi)] = E[
∏
i∈N

ψ(xAθ
i )],

so that ψ ∈ Lθ. Furthermore, vθ(1) = 0, v′θ(1) ≤ 0 and Nθ < ∞. Thus, according to
Theorem V.6, 1−ψ(x)

x is slowly varying at the origin, and therefore

1 − φ(x1/θ)
x1/θ = x1−1/θ1 − ψ(x)

x
x→0
−→ 0.

Hence, ψ′(0) = 0 and thus ψ ≡ 1, contradiction. �

V.2 Some limit theorems

Knowing the slow variation of L, we are able to establish some limit theorems that
involve the limits of the additive and the multiplicative martingale. We start with the
multiplicative one:

Lemma V.10. Assume (H). Let {Lt; t ≥ 0} be an increasing sequence of optional lines with a.s.:

g(Lt) < ∞ ∀t and g(Lt)
t→∞
−→ ∞.

Then a.s.
∀x ∈ R+ : lim

t→∞

∑
u∈Lt

xe−zuL(xe−zu) = − log M(x)

Proof. First note that since g(Li)
t→∞
−→ ∞, we have by Theorem V.2 minu∈Lt zu

t→∞
−→ ∞ a.s.

and therefore
max
u∈Lt

e−zu t→∞
−→ 0.

Fix ε > 0. Then for n large enough, a.s. for all x ∈ R+:

− log MLt(x) = −
∑
u∈Lt

logφ(xe−zu) ≥ −
∑
u∈Lt

(1 − φ(xe−zu))

≥ −(1 − ε)
∑
u∈Lt

logφ(xe−zu) = −(1 − ε) log MLt(x)

Since 1 − φ(xe−zu) = xe−zuL(xe−zu), by passing to the limit as t→∞, we have a.s. for all
x ∈ R+:

−(1 − ε) log MLt(x) ≤ lim inf
n→∞

∑
u∈Lt

xe−zuL(xe−zu) ≤ lim sup
n→∞

∑
u∈Lt

xe−zuL(xe−zu) ≤ − log MLt(x).

Letting ε→ 0 completes the proof. �
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V.2. SOME LIMIT THEOREMS

Lemma V.10 entails

Theorem V.11. Assume (H) and let φ ∈ L. The limit M of the multiplicative martingale
associated to φ satisfies:

a) M(x) ≡M(1)x a.s.

b) − log M(1) has Laplace transform φ

c) P(M(x) = 0) = 0

d) {M(x) < 1} is the survival set, a.s.

Proof. Since L is slowly varying and max|u|=n e−zu → 0 by Theorem V.2, we have

sup
|u|=n

L(xe−zu)
L(e−zu)

n→∞
−→ 1 a.s.

Hence, − log M(x) = limt→∞
∑
|u|=n xe−zuL(e−zu) by Lemma V.10. Thus, a) follows. Since

φ(x) = E[M(x)] = E[M(1)x], b) follows. This implies c), since φ is the Laplace transform
of a proper probability distribution and thus P(M(1) = 0) = 0. For part d), note that
extinction implies M(x) = 1 and that P(M(x) = 1) = φ(∞). But by Proposition III.12,
φ(∞) is the extinction probability and so d) follows. �

Using Lemma V.10 with the optional lines {Ct; t ≥ 0} one could expect
L(e−t)

∑
u∈Ct

e−zu to converge to− log M(1), since zu is approximately equal to t for u ∈ Ct.
In order to estimate the error we are committing there we are going to use results of
the theory of Crump-Mode-Jagers processes, of which we give a quick overview based on
Chapter X in [AH83].

A Crump-Mode-Jagers (CMJ) process (also called general branching process) for historical
reasons) is a system of individuals (indexed for example by the Ulam-Harris labelling)
where to each individual u there is associated

• a point process ξu (the reproduction) on (0,∞) specifying the age of u at the times
when she gave birth to her children

• a r.v. τu ∈ [0,∞], the life length of u

• a collection of [0,∞)-valued stochastic processes (χu(t))t≥0, (ρu(t))t≥0, . . . called
random characteristics.

We assume that the vectors (ξu, τu, χu, ρu, . . .) for u ∈ J are independent copies of some
vector (ξ, τ, χ, ρ, . . .), where J is the set of individuals ever born. No assumptions are
made about the dependence of ξ, τ, χ, ρ, . . .. Note further that in the cases we consider
here, τ is always∞ a.s.

If we set z∅ = 0 and for u ∈ U and i ∈ N : zui = zu + inf{t : ξu[0, t] = i} (remember
∂ is to be treated like ∞), then (zu)u∈U evidently constitutes a branching random walk,
whose reproduction Q satisfies Q(xi > 0 ∀i ∈ N) = 1. In this sense, CMJ-processes can
be studied through techniques of branching random walks. However, the questions
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raised in the field of CMJ processes are different from those concerning the BRW. The
main objects of study are of the form

Zχ(t) :=
∑
u∈J
zu≤t

χu(t − zu),

and one usually tries to prove limit theorems for Zχ(t) and related quantities as t→∞.
Basic examples are χ(t) ≡ 1 and ρ(t) = 1[0, a ∧ τ], then Zχ counts the individuals born
at or before t and Zρ counts those alive at time t and of age less than or equal to a.

First results can be achieved for the mean of Zχ(t) using renewal theory. Let µ be
the intensity measure of the point process ξ and let mχ(t) := E[Zχ(t)]. Then, since the
processes initiated by the children of the ancestor are shifted copies of the original
process, we obtain the renewal equation

mχ(t) = E[χ(t)] +

∫ t

0
mχ(t − u)µ(du) (V.2)

If we want this equation to have a solution m with m(∞) < ∞, we have to normalise
µ. As usual in the theory of branching processes, this is done by multiplication with
an exponential function. We therefore define µα(dt) := e−αtµ(dt) and Zχ

α(t) := e−αtZχ(t).
Then we call µ Malthusian if the Malthusian parameter α, i.e. the (unique) solution to
µα(∞) = 1, exists and if the mean of µα,

∫
(0,∞)

tµα(dt), is finite. Note that this corresponds
to the case v(α) = 0 and |v′(α)| < ∞ in the setting of the branching random walk.
Multiplying (V.2) with e−αt gives

mχ
α(t) = e−αtE[χ(t)] +

∫ t

0
mχ
α(t − u)µα(du)

and thus, if e−αtE[χ(t)] is directly Riemann integrable (see [Fel71], XI.1 for this notion)
and µ non-lattice, the key renewal theorem then gives us

mχ
α(t) t→∞
−→ mχ

α(∞) :=

∫
∞

0
e−αtE[χ(t)]dt∫
∞

0
tµα(dt)

It is a natural question to ask whether one can make Zχ
α(t) converge, too. This was

solved by [Ner81] (Theorem 5.4), who showed that under some mild conditions, Zχ
α(t)

converges a.s. to mχ
α(∞) · W∞, where W is the limit of the Nerman martingale WCt =∑

u∈Ct
e−αzu , the Ct being defined as at the beginning of section V.1. In the context of CMJ

processes, Ct is called the coming generation at time t. With the tools established in chapter
IV we can easily verify that this is indeed a martingale and that W is nothing more that
the limit of the martingale (Wn) (assume α = 1 in order to stay in our setting). In light
of Lemma IV.18 it is enough to show that B[WCt] = 1 ∀t ≥ 0 and that WCt∧n

t→∞
−→ Wn a.s.

for each n. The first follows follows from Corollary IV.17 and the fact that ζn is a RW
with E[ζ1] > 0. The second follows readily from the fact that g(Lt)

t→∞
−→ ∞ a.s.

Since W is simply the limit of (Wn), we know that we need an L log L condition if
we want W to be non-degenerate. Therefore the above result about the convergence of
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Zχ
α(t) is not very useful if this condition is not fulfilled. In this case the following result

about the ratio Zχ
α(t)/Zρ

α(t) for two characteristics χ and ρ is very handy, since it is valid
also without the L log L condition. It is due to [Ner81] (Theorem 6.3) and can also be
found in [AH83] (Theorem X.5.1). The lattice case is proven in [Gat00], Theorem 5.2.

Theorem V.12. Suppose there is a β < α s.t.

•

∫
∞

0
e−βtµ(dt) = E[

∫
∞

0
e−βxξ(dx)] < ∞ and

• E[supi∈R{e
−βtχ(t)}] and E[supi∈R{e

−βtρ(t)}] are both finite and have cadlag paths.

Then, on the survival set of the process,

• if µ is non-lattice:

Zχ
α(t)

Zρ
α(t)

t→∞
−→

∫
∞

0
e−αtE[χ(t)]dt∫

∞

0
e−αtE[ρ(t)]dt

a.s.

• if µ is lattice with span λ, ∀s, t :

Zχ
α(s + nλ)

Zρ
α(t + nλ)

n→∞
−→

∑
∞

k=−∞ e−αkλE[χ(s + kλ)]∑
∞

k=−∞ e−αkλE[χ(s + kλ)]
a.s.

Let us turn back to the branching random walk and see how we can make use of
Theorem V.12 in this context. Using the optional lines (Ct)t∈R we define a CMJ process
embedded in the BRW z. Set J := {u ∈ U : ∃t ∈ R : u ∈ Ct} and for every u ∈ J we keep
zu as her birth time and set

ξu :=
∑

v∈Czu
v≥u

δ(zv−zu),

so that her children are exactly the individuals in {v ∈ Czu : v ≥ u}. The strong branching
property implies that this defines a CMJ process with reproduction

ξ
(d)
=

∑
u∈C

δzu .

Moreover, it is not difficult to show that for every t ∈ R the line Ct is indeed the coming
generation at time t of this embedded process, i.e. if Ct was defined in terms of the
individuals of the embedded process the definitions would match. We now have the
tools we need to prove

Theorem V.13. Assume (H) and (A). Then

L(e−t)
∑
u∈Ct

e−zu t→∞
−→ − log M(1) a.s.

Proof. We follow [BK97], Theorem 8.6 and [BK05], Lemma 19. By Theorem V.11, we
have ∑

u∈Ct

e−zuL(e−zu) t→∞
−→ − log M(1) a.s.
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We decompose Ct into those individuals with zu > t + c for some c > 0 and the
remainder. We thus obtain, a.s. on the survival set,

1 ≤

∑
u∈Ct

e−zuL(e−zu)
L(e−t)

∑
u∈Ct

e−zu

≤
L(e−(t+c))

∑
u∈Ct

e−zu · 1{zu ≤ t + c}
L(e−t)

∑
u∈Ct

e−zu
+

∑
u∈Ct

e−zuL(e−zu) · 1{zu > t + c}
L(e−t)

∑
u∈Ct

e−zu

≤
L(e−(t+c))

L(e−t)
+

∑
u∈Ct

e t−zu(L(e−zu)/L(e−t)) · 1{zu > t + c}
L(e−t)

∑
u∈Ct

e t−zu

(V.3)

Because L is slowly varying (see Theorem V.6), the first term goes to 1 as t→∞. In
order to estimate the second term we use the fact that for a slowly varying function L
and for any ε, ε1 > 0 there is a δ > 0 s.t. for all y < 1:

sup
x<δ

L(yx)
L(x)

≤ (1 + ε1)y−ε

(this follows for example from the integral representation of L, see e.g. [Fel71], VIII.9).
Thus, if e−t < δ and zu > t, we have

e t−zu
L(e−zu)
L(e−t)

= e t−zu
L(e t−zue−t)

L(e−t)
≤ (1 + ε1)e (1−ε)(t−zu).

Thus, if we show that for some ε > 0,

lim
c→∞

lim
t→∞

∑
u∈Ct

e (1−ε)(t−zu)
· 1{zu ≥ t + c}∑

u∈Ct
e t−zu

= 0, (V.4)

then it follows from (V.3) that

lim
t→∞

L(e−t)
∑
u∈Ct

e−zu = lim
t→∞

∑
u∈Ct

e−zuL(e−zu) = − log M(1) a.s.

To prove (V.4), we express numerator and denominator as functions Zχ, Zρ of the
embedded CMJ process with the characteristics

χ(a) = 1{a > 0}
∫
∞

t+c
e−(1−ε)(u−a)ξ(du) and

ρ(a) = 1{a > 0}
∫
∞

t
e−(u−a)ξ(du)

(draw a picture to convince yourself). Now, with the notations of Theorem V.5, µ∗ is the
intensity measure of the embedded CMJ process. Part c) and d) of that theorem now
tell us that assumptions (H) and (A) hold for µ∗, since they hold for µ by assumption.
Thus, the Malthusian parameter of the embedded CMJ process is 1 and there exists
β < 1, s.t. ∫

∞

0
e−βtµ∗(dt) < ∞. (V.5)
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Moreover, if we set ε = 1 − β, we have for t > 0:

e−βtχ(t) =

∫
∞

t+c
e−βuξ(du) ≤

∫
∞

0
e−βuξ(du)

and

e−βtρ(t) = e−βt
∫
∞

t
e t−uξ(du) ≤ e−βt

∫
∞

t
e−β(u−t)ξ(du) ≤

∫
∞

0
e−βuξ(du),

thus supt≥0 e−βtχ(t) and supt≥0 e−βtρ(t) are bounded in mean by (V.5). Thus, we can
apply Theorem V.12 to conclude that

lim
t→∞

∑
u∈Ct

e (1−ε)(t−zu)
· 1{zu ≥ t + c}∑

u∈Ct
e t−zu

=

∫
∞

0
e−εa

(∫
∞

a+c
e−(1−ε)uµ∗(du)

)
da∫

∞

0

∫
∞

a
e−uµ∗(du)da

in the non-lattice case and that

lim sup
t→∞

∑
u∈Ct

e (1−ε)(t−zu)
· 1{zu ≥ t + c}∑

u∈Ct
e t−zu

≤ e 2λ

∑
∞

k=1 e−εkλ
∫
∞

kλ+c
e−(1−ε)uµ∗(du)∑

∞

k=1

∫
∞

kλ
e−uµ∗(du)

in the lattice case. By dominated convergence the denominator tends to 0 as c→ ∞ in
both cases, so that (V.4) holds. This proves the theorem. �

Corollary V.14. Under (H) and (A), the non-trivial solution to the functional equation is
unique up to a multiplicative constant in the argument.

Proof. We follow [BK97], Theorem 1.5. Let φ1, φ2 ∈ L and M1,M2 the corresponding
multiplicative martingales. By parts c) and d) of Theorem V.11 we have

− log M1(1) ∈ (0,∞) and − log M2(1) ∈ (0,∞)

a.s. on the survival set and thus

− log M1(1)
− log M2(1)

= lim
t→∞

L1(e−t)
∑

u∈Ct
e−zu

L2(e−t)
∑

u∈Ct
e−zu

= lim
t→∞

L1(e−t)
L2(e−t)

by Theorem V.13. Hence, the limit c = limt→∞
L1(e−t)
L2(e−t) exists and satisfies 0 < c < ∞.

Thus, log M1(1) = c log M2(1) a.s. and an application of Theorem V.11c completes the
proof. �
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Chapter VI

The boundary case: detailed study

In the last chapter, we will concentrate on the case v′(1) = 0 and will study the behaviour
of L(x) at the origin. For this, we are going to introduce a new martingale and a new
branching process, the branching random walk with absorption.

VI.1 The derivative martingale

In this section, we assume

(H’) v(0) > 0, v(1) = v′(1) = 0 and N :=
∑
i∈N

1{Ai > 0} < ∞ a.s.

Let z be a branching random walk. Define

∂Wn(z) :=
∑
|u|=n

zue−zu

We then have

B[∂Wn+1 | Fn] = B[
∑
|u|=n

∑
i∈N

(zui − zu + zu)e−(zui−zu)−zu | Fn]

=
∑
|u|=n

e−zu(B[
∑
i∈N

(zui − zu)e−(zui−zu)] + zuB[
∑
i∈N

e−(zui−zu)])

by independence of (zui − zu) and Fn

=
∑
|u|=n

e−zu(−v′(1) + zue v(1))

= ∂Wn by assumption (H’)

Therefore, ∂W is a (signed) martingale, which we call the derivative martingale be-
cause it is obtained by formally deriving the expression

∑
|u|=n e−θzu w.r.t. θ. The origins

of the derivative martingale go at least as far as [Nev88], where the analogue for branch-
ing Brownian motion was studied. In [Kyp98] and [Liu00], the authors analysed it in
the same setting as ours, using results about the solutions to our equation (FE). We are
going to take the reverse approach: We will establish results about the convergence of
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the derivative martingale directly and use them to determine the behaviour at the ori-
gin of solutions to (FE). The key will be the following theorem from [BK05]. Remember
that L(x) = (1 − φ(x))/x for φ ∈ L and that Ct = {u ∈ U : zu > t and zv ≤ t ∀v < u}.

Theorem VI.1. Assume (H’) and (A) and let φ ∈ L. Suppose that the process (∂WCt)t∈R

converges a.s. to a finite non-negative limit ∆ as t→∞. Then

P(∆ > 0) > 0 ⇐⇒
L(x)
− log x

x↓0
−→ c ∈ (0,∞)

and
P(∆ = 0) = 1 ⇐⇒

L(x)
− log x

x↓0
−→ ∞

Proof. The proof draws on the proof of Theorem V.13. We will use again the optional
lines Ct to fix individuals with positions “only a bit bigger than t” and use Nerman’s
convergence result about CMJ processes to control the error we are taking there.

Let c > 0. On the survival set, we have

1 ≤

∑
u∈Ct

zue−zu∑
u∈Ct

te−zu

=

∑
u∈Ct

zue−zu1{zu ≤ t + c}∑
u∈Ct

te−zu
+

∑
u∈Ct

zue−zu1{zu > t + c}∑
u∈Ct

te−zu

≤
t + c

t
+

∑
u∈Ct

(zu/t)e t−zu1{zu > t + c}∑
u∈Ct

e t−zu

The first term tends to 1 as t goes to infinity. As for the second term, since for x ≥ 1 and
any ε ∈ (0, 1), εx ≤ e ε(x−1), the second term is less than∑

u∈Ct
1
εe (1−(ε/t))(t−zu)

· 1{zu ≥ t + c}∑
u∈Ct

e t−zu
(VI.1)

For t ≥ 1, this quantity is less than 1
ε times the quantity in equation (V.4) in the proof

of Theorem V.13. Since we have established there that for some ε ∈ (0, 1) that quantity
tends to 0 when first t and then c tend to infinity, the same holds true for (VI.1), so that
we can conclude that

lim
t→∞

t
∑
u∈Ct

e−zu = lim
t→∞

∑
u∈Ct

zue−zu = ∆ a.s.

by assumption.
The result of Theorem V.13 now gives a.s. on the survival set:

∆

− log M(1)
= lim

t→∞

t
∑

u∈Ct
e−zu

L(e−t)
∑

u∈Ct
e−zu

= lim
t→∞

t
L(e−t)

,

which proves the theorem. �

In order to study the convergence of (∂Wn) and (∂WCt), we are going to establish
a link to the branching random walk with absorption, which we will analyse in the next
section with the help of the tools introduced in section IV.2.
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VI.2 Branching random walk with absorption

Let z be a branching random walk with reproduction Q starting at x0 > 0. Assume that
condition (H’) holds (see beginning of the previous section). Define a new branching
process (yu)u∈U by

yu :=

zu if zv > 0 ∀v ≤ u
∂ otherwise

(VI.2)

We call this process a branching random walk with absorption, since the individuals are
“absorbed” when crossing the origin (think of lemmings falling down a cliff ending
at the point 0). Study of this process goes back to [Kes78], we are going to follow the
treatment in [BK04].

From the branching property of the branching random walk it follows that y is a
branching process on (0,∞) ∪ {∂} starting at x0 with reproduction kernel

Ps(x1 ∈ A1, . . . , xn ∈ An) = Qs(x1 ∈ A1, . . . , xn ∈ An)

for all Borel subsets A1, . . . ,An of (0,∞) (without ∂!). We can thus use the machinery of
chapter IV.

Let us first find a suitable mean-harmonic function h. If h satisfies h(∂) = 0, then

Ps(
∑
i∈N

h(xi)) = Qs[
∑
i∈N

h(xi)1{xi > 0}] = Q[
∑
i∈N

h(xi + s)1{xi + s > 0}]

=

∫
R

h(t + s)1{t + s > 0}µ(dt).

If we guess that h(x) is of the form V(x)e−x for some V growing subexponentially, then
the last inequality says that

Ps(
∑
i∈N

V(xi)e−xi) =

∫
R

V(t + s)e−t−s
1{t + s > 0}µ(dt) = e−sE[V(S1 + s)1{S1 + s > 0}],

where (Sn) is the random walk of Theorem III.5 (we recall that the assumption (H’)
implies that E[S1] = 0). Thus, the function V should satisfy

V(s) = E[V(S1 + s)1{S1 + s > 0}] ∀s ≥ 0

Lemma 1 in [Tan89] shows that this is true for

V(s) :=

E[
∑τ

i=0 1{Si > −x}] x > 0
1 x = 0

,

where τ := inf{n : Sn > 0}. Thus, V(s) is the expected number times Sn visits (−x, 0]
before entering (0,∞).

We arrive at

Proposition VI.2.
Wn :=

∑
|u|=n

V(yu)e−yu

is the additive martingale associated to the mean-harmonic function h(s) = V(s)e−s. It is
non-negative and therefore converges a.s.
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The following lemma gives a hint why the BRW with absorption will help us in the
study of the derivative martingale. It comes from [Don80] and we will not prove it.

Lemma VI.3.
V(x)

x
→ c ∈ (0,∞]

and c < ∞ if
∫ 0

−∞
x2e−xµ(dx) < ∞.

Corollary VI.4. If c < ∞, then there are 0 < a < b < ∞ such that a(x + 1) < V(x) < b(x + 1)
for all x ≥ 0.

By Proposition IV.12, the Markov chain (ζn) = (yξn) arising from the measure change
(see section IV.1) has the transition kernel

Πs[ f ] =
e s

V(s)
Ps[

∑
i∈N

f (xi)V(xi)e−xi] =

∫
R

f (t + s)
V(t + s)

V(s)
e−t

1{t + s > 0}µ(dt).

This process will play a crucial role for our study. [Tan89] found that it can be
obtained from the random walk Sn by a certain time reversal similar to the one used
to derive the 3-dimensional Bessel process from Brownian motion. Since the 3-dim.
Bessel process can be regarded as a Brownian motion conditioned to be non-negative,
ζn is also called the “random walk conditioned to be non-negative”, which is further
explained in [BD94], for example. For us, it will be important to know its asymptotic
behaviour as time tends to infinity. In the case of finite variance [Big03] established
a law of the iterated logarithm which tells that this process (and the 3-dimensional
Bessel process as well) eventually stays in a zone around

√
n of height approximately

proportional to log log n. A rigorous formulation is provided by

Theorem VI.5. Assume that the random walk Sn has finite variance, i.e.

(V)
∫
∞

−∞

x2e−xµ(dx) < ∞.

Letϕ(x) = log log x for x > 3. Define D(x) :=
∑
∞

n=0 1{ζn ≤ x}. Then for suitable (non-random)
L and U

lim sup
x→∞

D(x)
x2ϕ(x)

≤ U < ∞ and lim inf
x→∞

D(x)
x2/ϕ(x)

≥ L > 0 a.s.

Setting D̃(x) :=
∑
∞

n=1 V(ζn)−1
1{ζn ≤ x}, Lemma VI.3 and Theorem VI.5 entail (modulo

some rigour)

D̃(x) =

∫ x

0
V(z)−1dD(z)

≤ c1

∫ x

0

1
z

d(z2ϕ(z)) by Lemma VI.3 and Theorem VI.5

≤ c2

∫ x

0

1
z

zϕ(z)dz because ϕ is slowly varying

= c2

∫ x

0
ϕ(z)dz

≤ c3xϕ(x) because ϕ is slowly varying

and analogously for the lower bound. We thus obtain
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Lemma VI.6. Assume (V). For some suitable (non-random) L̃ and Ũ

lim sup
x→∞

D̃(x)
xϕ(x)

≤ Ũ < ∞ and lim inf
x→∞

D̃(x)
x/ϕ(x)

≥ L̃ > 0 a.s.

We now have the tools we need to prove the following theorem, which almost
provides an L log L-condition for the martingale (Wn) to converge in mean.

Theorem VI.7. Assume (V). Let the random vector ~x = (xi)i∈N follow the law Q (the repro-
duction of the BRW). Define the random variables X̃1, X̃2 and X̃3(s) and the (slowly varying)
functions l, L1, L2, L3, L4 by

X̃1 :=
∑
i∈N

xie−xi1{xi > 0} L1(x) := (log x)l(x)

X̃2 :=
∑
i∈N

e−xi L2(x) := (log x)2l(x)

X̃3(s) :=
∑
i∈N

e−xi1{xi > −s} L3(x) := (log x)/l(x)

l(x) := log log log x L4(x) := (log x)2/l(x)

a) If both E[X̃1L1(X̃1)] and E[X̃2L2X̃2] are finite, then Wn converges in L1.

b) If either E[X̃1L3(X̃1)] or E[X̃3(s)L4(X̃3(s))] is infinite for some s, then Wn → 0 a.s.

Proof. In order to apply Theorem IV.9, our goal is to find suitable bounding variables
X∗ and X∗. Let us start with the upper bound. Under As, s > 0, we have

X =
W1

W0

=

∑
i V(yi)e−yi

V(s)e−s

=

∑
i V(zi)e−zi1{zi > 0}

V(s)e−s

(d)
=

∑
i V(xi + s)e−xi−s

1{xi + s > 0}
V(s)e−s

≤

∑
i b(xi + s + 1)e−xi1{xi + s > 0}

V(s)
by Corollary VI.4

≤
b

V(s)

∑
i

xie−xi1{xi > 0} +
b
a

∑
i

e−xi idem

=
bX̃1

V(s)
+

b
a

X̃2.

Thus, putting X∗1 = bX̃1, g1(s) = (V(s))−1, X∗2 = (b/a)X̃2 and g2(s) = 1, we are in the
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setting of Theorem IV.9a. The corresponding functions A1 and A2 are:

A1(x) =

∞∑
n=1

(V(ζn))−1
1{V(ζn)(h(ζn))−1

≤ x} A2(x) =

∞∑
n=1

1{(h(ζn))−1
≤ x}

=

∞∑
n=1

(V(ζn))−1
1{e ζn ≤ x} ≈

∞∑
n=1

1{ζn ≤ log x} for large x

=

∞∑
n=1

(V(ζn))−1
1{ζn ≤ log x} = D(log x)

= D̃(log x)

Theorem VI.5 and Lemma VI.6 now give

A1(x) ≤ ŨL1(x) and A2(x) ≤ (U + 1)L2(x) for large x.

An application of Theorem IV.9 concludes part a). Part b) is treated similarly, the
functions A1 and A2 are even the same, the details are left to the reader. �

We finish the section with the following

Theorem VI.8. (WCt)t∈R is an (FCt)-martingale converging to W = lim Wn.

Proof. In Theorem IV.16, τ is the first time zξn = ζn exceeds t. Theorem VI.5 says in
particular that ζn →∞ a.s., so that τ < ∞ a.s. Hence, E[WCt] = W0 ∀t ∈ R by Corollary
IV.17. Moreover, since every generation is finite, Ct ∧ n is ultimately equal to Nn, so
that WCt∧n

t→∞
−→Wn for every n. Lemma IV.18 then concludes the proof. �

VI.3 Boucler la boucle

Let us come back to the branching random walk z and the derivative martingale
∂Wn =

∑
|u|=n zue−zu and prove the following

Theorem VI.9. Assume (H’) and (V). Then the martingale (∂Wn) and the process (∂WCt)
converge a.s. to the same limit ∆, which is finite and non-negative a.s. and satisfies the fixed
point equation (FPE). If the conditions of Theorem VI.7a hold, then ∆ has infinite mean; if the
conditions of Theorem VI.7b hold, then ∆ = 0 a.s.

Proof. We first note that the martingale Wn(z) converges to 0 A-a.s., by Remark III.8, or
by Theorem IV.6b, since h(zξn)Xn ≥ h(zξn) = e−zξn and zξn is a symmetric random walk
under Â∗.

From z, construct a BRW with absorption at −H called yH, i.e. yH + H is a BRW with
absorption constructed from z + H as in (VI.2). Let the random lines Lt be either Nbtc or
Ct. Then, by Proposition VI.2 and Theorem VI.8,

WH
Lt

=
1

e−HV(H)

∑
u∈Lt

V(H + yH
u )e−H−yH

u =
1

V(H)

∑
u∈Lt

V(H + yH
u )e−yH

u
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is a positive martingale of mean 1. We denote its a.s. limit by WH.
Let AH := {ω : infn Ln(z) ≥ −H}, where Ln is the left-most individual in the n-th

generation. By Theorem V.2, Ln →∞ a.s., and so A(AH) H→∞
−→ 1. We have

WH =
1

V(H)
lim
t→∞

∑
u∈Lt

V(H + yH
u )e−yH

u

=
c

V(H)
lim
t→∞

∑
u∈Lt

(H + yH
u )e−yH

u by Lemma VI.3 and Theorem V.2

≤
c

V(H)
lim
t→∞

∑
u∈Lt

(H + zu)e−zu1{H + zu > 0}

=
c

V(H)
lim
t→∞

WLtH + ∂WLt by Theorem V.2

=
c

V(H)
lim
t→∞

∂WLt ,

with equality on AH. Thus, ∂WLt converges to ∆ = (V(H)/c)WH on AH, which is
obviously finite and non-negative. Since A[AH] → 1 and the convergence takes place
on every AH, we have WLt → ∆ a.s.

Now, if the conditions of Theorem IV.6b hold, WH = 0 a.s. for every H, and so ∆ = 0
a.s. On the other hand, if the conditions of Theorem IV.6a hold, then A[WH] = 1 for
every H, and so A[∆] ≥ V(H)/c for every H because of the above inequalities, hence,
A[∆] = ∞.

That ∆ satisfies (FPE) can be proved directly, but at the end of the proof of Theorem
VI.1 we have already shown that ∆/(− log M(1)) is constant a.s., so that we can conclude
by Theorem V.11b. �

To finish this paper, we resume the results of Theorem VI.1 and Theorem VI.9:

Theorem VI.10. Assume (H’), (A) and (V). Letφ ∈ L. Let X̃1, X̃2 and X̃3(s) and the functions
l, L1, L2, L3, L4 be defined as in Theorem VI.7. Then

a) If both E[X̃1L1(X̃1)] and E[X̃2L2X̃2] are finite, then L(x)
− log x

x↓0
−→ c ∈ (0,∞).

b) If either E[X̃1L3(X̃1)] or E[X̃3(s)L4(X̃3(s))] is infinite for some s, then L(x)
− log x

x↓0
−→ ∞.
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BRW, 5

characteristic, 39
coming generation, 40
conditional Borel-Cantelli lemma, 27
Crump-Mode-Jagers process, 39

derivative martingale, 44
directly Riemann integrable, 40

fixed point equation, 2
functional equation, 2

Galton-Watson process, 9, 12, 17
general branching process, 39
generation, 6

last/first g. of a line, 31

individual, 5, 24
left-most, 8

L log L condition, 16, 40
label, 24
label space, 24
labelled tree, 24

with trunk, 25
ladder height, 36
left-most individual, 8
life length, 39
line, 31

covering, 31
optional, 31

random, 31
simple optional, 33

Malthusian measure, 40
Malthusian parameter, 40
martingale

additive, 16
derivative, 44
multiplicative, 8

mean-harmonic, 25, 46
measure change, 17, 25
mother, 5

non-trivial solution, 2

optional line, 31
simple, 33

random characteristic, 39
random walk, 18, 36
reproduction, 6, 24, 39
reproduction kernel, 24

simple optional line, 33
slow variation, 37
smoothing transformation, 2
space

of individuals, 5, 24
of labelled trees, 6, 24
of labelled trees with trunk, 17, 25
of trunks, 17

stable transformation, 20
strong branching property, 32
survival set, 8

trunk, 17, 25

Ulam-Harris labelling, 5, 39
universe, 5, 24
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