
Modularity-Driven Clustering of
Dynamic Graphs∗

Robert Görke1, Pascal Maillard2, Christian Staudt1, and Dorothea Wagner1

1 Institute of Theoretical Informatics
Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany

{rgoerke,christian.staudt,wagner}@ira.uka.de
2 Laboratoire de Probabilités et Modèles Aléatoires

Université Pierre et Marie Curie (Paris VI), Paris, France
pascal.maillard@upmc.fr

Abstract. Maximizing the quality index modularity has become one of
the primary methods for identifying the clustering structure within a
graph. As contemporary networks are not static but evolve over time,
traditional static approaches can be inappropriate for specific tasks. In
this work we pioneer the NP-hard problem of online dynamic modu-
larity maximization. We develop scalable dynamizations of the currently
fastest and the most widespread static heuristics and engineer a heuristic
dynamization of an optimal static algorithm. Our algorithms efficiently
maintain a modularity-based clustering of a graph for which dynamic
changes arrive as a stream. For our quickest heuristic we prove a tight
bound on its number of operations. In an experimental evaluation on
both a real-world dynamic network and on dynamic clustered random
graphs, we show that the dynamic maintenance of a clustering of a chang-
ing graph yields higher modularity than recomputation, guarantees much
smoother clustering dynamics and requires much lower runtimes. We con-
clude with giving recommendations for the choice of an algorithm.

1 Introduction

Graph clustering is concerned with identifying and analyzing the group struc-
ture of networks. Generally, a partition (i.e., a clustering) of the set of nodes is
sought, and the size of the partition is a priori unknown. A plethora of formal-
izations for what a good clustering is exist, good overviews are, e.g., [21, 3]. In
this work we set our focus on the quality function modularity, coined by Girvan
and Newman [4], which has proven itself feasible and reliable in practice, espe-
cially as a target function for maximization (see [2] for further references), which
follows the paradigm of parameter-free community discovery [5]. The foothold
of this work is that most networks in practice are not static. Iteratively clus-
tering snapshots of a dynamic graph from scratch with a static method has
several disadvantages: First, runtime cannot be neglected for large instances or

∗This work was partially supported by the DFG under grant WA 654/15-1. The
full version of this extended abstract is available as a technical report [1].

environments where computing power is limited [6], even though very fast clus-
tering methods have been proposed recently [7, 8]. Second, heuristics for the
NP-hard [2] optimization of modularity suffer from local optima—this might
be avoided by dynamically maintaining a good solution. Third, static heuris-
tics are known not to react in a continuous way to small changes in a graph.

G G′∆

C(G) C′(G′)A
TT

Fig. 1: Problem setting

The lefthand figure illustrates the general situation for
updating clusterings. A graph G is updated by some
change ∆, yielding G′. We investigate procedures A
that update the clustering C(G) to C′(G′) without re-
clustering from scratch, but work towards the same
aim as a static technique T does.

Related Work. Dynamic graph clustering has so far been a rather un-
trodden field. Recent efforts [9] yielded a method that can provably dynamically
maintain a clustering that conforms to a specific bottleneck-quality requirement.
Apart from that, there have been attempts to track communities over time and
interpret their evolution, using static snapshots of the network, e.g. [10, 11], be-
sides an array of case studies. In [12] a parameter-based dynamic graph clustering
method is proposed which allows user exploration. Parameters are avoided in [13]
where the minimum description length of a graph sequence is used to determine
changes in clusterings and the number of clusters. In [14] an explicitly bicri-
terial approach for low-difference updates and a partial ILP are proposed, the
latter of which we also discuss. To the best of our knowledge no fast procedures
for updating modularity-based clustering in general dynamic graphs have been
proposed yet. Beyond graph theory, in data mining the issue of clustering an
evolving data set has been addressed in, e.g., [15], where the authors share our
goal of finding a smooth dynamic clustering. The literature on static modular-
ity-maximization is quite broad and we recommend [2, 3, 16] for further reading.
Spectral methods, e.g., [17], and techniques based on random walks [18, 19], do
not lend themselves well to dynamization due to their non-continuous nature.
Variants of greedy agglomeration [20, 7], however, work well, as we shall see.

Our Contribution. In this work we present, analyze and evaluate a num-
ber of concepts for efficiently updating modularity-driven clusterings. We prove
the NP-hardness of dynamic modularity optimization and develop heuristic dy-
namizations of the most widespread [20] and the fastest [7] static algorithms,
alongside apt strategies to determine the search space. For our fastest procedure,
we can prove a tight bound of Θ(log n) on the expected number of operations
required. We then evaluate these and a heuristic dynamization of an ILP. We
compare the algorithms with their static counterparts and evaluate them ex-
perimentally on random preclustered dynamic graphs and on large real-world
instances. We reveal that the dynamic maintenance of a clustering yields higher
quality than recomputation, smoother clustering dynamics and lower runtimes.

Notation. Throughout this paper, we will use the notation of [21]. We as-
sume that G = (V,E, ω) is an undirected, weighted, and simple graph with
the edge weight function ω : E → R≥0. We set |V | =: n, |E| =: m and C =
{C1, . . . , Ck} to be a partition of V . We call C a clustering of G and sets Ci clus-

ters. C(v) is C 3 v. A clustering is trivial if either k = 1 (C1), or all clusters con-
tain only one element, i.e., are singletons (CV). We identify a cluster Ci with its
node-induced subgraph of G. Then E(C) :=

⋃k
i=1E(Ci) are intra-cluster edges

and E \E(C) inter-cluster edges, with cardinalities m(C) and m(C), respectively.
Further, we generalize degree deg(v) to clusters as deg(C) :=

∑
v∈C deg(v).

When using edge weights, all the above definitions generalize naturally by us-
ing ω(e) instead of 1 when counting edge e. Weighted node degrees are called
ω(v). A dynamic graph G = (G0, . . . , Gtmax) is a sequence of graphs, with
Gt = (Vt, Et, ωt) being the state of the dynamic graph at time step t. The
change ∆(Gt, Gt+1) between timesteps comprises a sequence of b atomic events
on Gt, which we detail later. We have the sequence of changes arrive as a stream.

The Quality Index Modularity. In this work we set our focus on modu-
larity [4], a measure for the goodness of a clustering. Just like any other quality
index for clusterings (see, e.g., [21, 3]), modularity does have certain drawbacks
such as non-locality and scaling behavior [2] or resolution limit [22]. However, be-
ing aware of these peculiarities, modularity can very well be considered a useful
measure that closely agrees with intuition on a wide range of real-world graphs,
as observed by myriad studies. Modularity can be formulated as

mod(C) :=
m(C)
m
− 1

4m2

∑
C∈C

(∑
v∈C

deg(v)

)2

(weighted analogous) . (1)

Roughly speaking, modularity measures the fraction of edges which are covered
by a clustering and compares this value to its expected value, given a random
rewiring of the edges which, on average, respects node degrees. This definition
generalizes in a natural way as to take edge weights ω(e) into account, for a
discussion thereof see [23] and [24]. ModOpt, the problem of optimizing modu-
larity is NP-hard [2], but modularity can be computed in linear time and lends
itself to a number of greedy maximization strategies. For the dynamic setting,
the following corollary corroborates the use of heuristics (see [1] for a proof).

Corollary 1 (DynModOpt is NP-hard). Given graph G, a modularity-opti-
mal clustering Copt(G) and an atomic event ∆ to G, yielding G′. It is NP-hard
to find a modularity-optimal clustering Copt(G′).

Measuring the Smoothness of a Dynamic Clustering. By comparing con-
secutive clusterings, we quantify how smooth an algorithm manages the transi-
tion between two steps, an aspect which is crucial to both readability and ap-
plicability. An array of measures exist that quantify the (dis)similarity between
two partitions of a set; for an overview and further references, see [25]. Our
results strongly suggest that most of these widely accepted measures are qual-
itatively equivalent in all our (non-pathological) instances (see full version [1]).
We thus restrict our view to the (graph-structural) Rand index [25], being a
well known representative; it maps two clusterings into the interval [0, 1], i.e.,
from equality to maximum dissimilarity: Rg(C, C′) := 1−(|E11|+ |E00|)/m, with
E11 = {{v, w} ∈ E : C(v) = C(w) ∧ C′(v) = C′(w)}}, and E00 the analog for in-
equality. We use the intersection of two graphs when comparing their clusterings.
Low distances correspond to smooth dynamics.

2 The Clustering Algorithms

Formally, a dynamic clustering algorithm is a procedure which, given the pre-
vious state of a dynamic graph Gt−1, a sequence of graph events ∆(Gt−1, Gt)
and a clustering C(Gt−1) of the previous state, returns a clustering C′(Gt) of
the current state. While the algorithm may discard C(Gt−1) and simply start
from scratch, a good dynamic algorithm will harness the results of its previous
work. A natural approach to dynamizing an agglomerative clustering algorithm
is to break up those local parts of its previous clustering, which are most likely
to require a reassessment after some changes to the graph. The half finished
instance is then given to the agglomerative algorithm for completion. A crucial
ingredient thus is a prep strategy S which decides on the search space which is to
be reassessed. We will discuss such strategies later, until then we simply assume
that S breaks up a reasonable part of C(Gt−1), yielding C̃(Gt−1) (or C̃(Gt) if
including the changes in the graph itself). We call C̃ the preclustering and nodes
that are chosen for individual reassessment free (can be viewed as singletons).

Formalization of Graph Events. We describe our test instances in more
detail later, but for a proper description of our algorithms, we now briefly formal-
ize the graph events we distinguish. Most commonly edge creations and removals
take place, and they require the incident nodes to be present before and after the
event. Given edge weights, changes require an edge’s presence. Node creations
and removals in turn only handle degree zero nodes, i.e., for an intuitive node
deletion we first have to remove all incident edges. To summarize such compound
events we use time step events, which indicate to an algorithm that an updated
clustering must now be supplied. Between time steps it is up to the algorithm
how it maintains its intermediate clustering. Additionally, batch updates allow
for only running an algorithm after a scalable number of b timesteps.

2.1 Algorithms for Dynamic Updates of Clusterings

Alg. 1: Global(G, C)
while ∃Ci, Cj ∈ C : dQ(Ci, Cj) ≥ 0 do1

(C1, C2)← arg max
Ci,Cj∈C

dQ(Ci, Cj)
2

merge(C1, C2)3

The Global Greedy Algo-
rithm. The most prominent algo-
rithm for modularity maximiza-
tion is a global greedy algo-
rithm [20], which we call Global
(Alg. 1). Starting with singletons,
for each pair of clusters, it determines the increase in modularity dQ that can
be achieved by merging the pair and performs the most beneficial merge. This is
repeated until no more improvement is possible. As the static (pseudo-dynamic)
algorithm sGlobal3, we let this algorithm cluster from scratch at each timestep
for comparison. By passing a preclustering C̃(Gt) to Global we can define the
properly dynamic algorithm dGlobal. Starting from C̃(Gt) this algorithm lets
Global perform greedy agglomerations of clusters.

3For historical reasons, sGlobal appears in plots as StaticNewman, dGlobal as New-
man, sLocal as StaticBlondel and dLocal as Blondel, based on the algorithms’ authors.

The Local Greedy Algorithm. In a recent work [7] the simple mechanism
of the aforementioned Global has been modified as to rely on local decisions (in
terms of graph locality), yielding an extremely fast and efficient maximization.
Instead of looking globally for the best merge of two clusters, Local, as sketched
out in Alg. 2, repeatedly lets each node consider moving to one of its neighbors’
clusters, if this improves modularity ; this potentially merges clusters, especially
when starting with singletons. As soon as no more nodes move, the current
clustering is contracted, i.e., each cluster is contracted to a single node, and
adjacencies and edge weights between them are summarized. Then, the process
is repeated on the resulting graph which constitutes a higher level of abstraction;
in the end, the highest level clustering is decisive about the returned clustering:
The operation unfurl assigns each elementary node to a cluster represented by the
highest level cluster it is contained in. We again sketch out an algorithm which
serves as the core for both a static and a dynamic variant of this approach, as
shown in Alg. 2. As the input, this algorithm takes a hierarchy of graphs and
clusterings and a search space policy P . Policy P affects the graph contractions,
in that P decides which nodes of the next level graph should be free to move.
Note that the input hierarchy can also be flat, i.e., hmax = 0, then line 11
creates all necessary higher levels. Again posing as a pseudo-dynamic algorithm,

Alg. 2: Local(G0...hmax , C0...hmax , P)

h← 01

repeat2

(G, C)← (Gh, Ch)3

repeat4

forall free v ∈ V do5

if max
v∈N(u)

dQuv ≥ 0 then
6

w ← arg max
v∈N(u)

dQuv
7

move(u, C(w))8

until no more changes9

Ch ← C10

(Gh+1, C̃h+1)←contractP (Gh, Ch)11

h← h+ 112

until no more real contractions13

C(G0)← unfurl(Ch−1)14

the static variant (as in [7]), sLo-
cal, passes only (Gt,C̃V) to Lo-
cal, such that it starts with sin-
gletons and all nodes freed, in-
stead of a proper preclustering.
Policy P is set to tell the algo-
rithm to start from scratch on
all higher levels and to not work
on previous results in line 11,
i.e., in C̃h+1 again all nodes in
the contraction are free single-
tons. The dynamic variant dLo-
cal remembers its old results. It
passes the changed graph, a cur-
rent preclustering of it and all
higher-level contracted structures
from its previous run to Local:
(Gt, G

1,...,hmax
old , C̃, C1,...,hmax

old , P). In
level 0, the preclustering C̃ defines
the set of free nodes. In levels beyond 0, policy P is set to have the contract-
procedure free only those nodes of the next level, that have been affected by
lower level changes (or their neighbors as well, tunable by policy P). Roughly
speaking, dLocal starts by letting all free (elementary) nodes reconsider their
cluster. Then it lets all those (super-)nodes on higher levels reconsider their
cluster, whose content has changed due to lower level revisions.

ILP. While optimality is out of reach, the problem can be cast as an ILP [2].
A distance relation Xuv indicates whether elements u and v are in the same
cluster, and simple constraints keep these X-variables consistent. Since runtimes
for the full ILP reach days for more than 200 nodes, a promising idea pioneered
in [14] is to solve a partial ILP (pILP). Such a program takes a preclustering—of
much smaller complexity—as the input, and solves this instance, i.e., finishes the
clustering, optimally via an ILP; a singleton preclustering yields a full ILP. We
introduce two variants, (i) the argument noMerge prohibits merging pre-clusters,
and only allows free nodes to join clusters or form new ones, and (ii) merge allows
existing clusters to merge. For both variants we need to add constraints and
terms to the standard formulation using solely variables Xuv. Roughly speaking,
for (i), variables YuC indicating the distance of node u to cluster C are introduced
constraints ensure their consistency with the X-variables; for (ii), we additionally
need variables ZCC′ for the distance between clusters, constrained just as Xuv.
See the full paper [1] for details on all these ILP formulations. The dynamic
clustering algorithms which first solicit a preclustering and then call pILP are
called dILP. Note that they react on any edge event; accumulating events until
a timestep occurs can result in prohibitive runtimes.

Table 1: EOO operations, al-
lowed/disallowed via parameters

Operation Effect

merge(u,v) C(u) ∪ C(v)
shift(u,v) C(u)− u, C(v) + u
split(u) ({u}, C(u) \ u)← C(u)

Elemental Optimizer The elemental op-
erations optimizer, EOO, performs a limited
number of operations, trying to increase the
quality. Specifically, we allow moving or split-
ting off nodes and merging clusters, as listed
in Table 1. Although rather limited in its op-
tions, EOO or very similar tools for local op-
timization are often used as post-processing tools (see [26] for a discussion). Our
algorithm dEOO simply calls EOO at each time step.

2.2 Strategies for Building the Preclustering

We now describe prep strategies which generate a preclustering C̃, i.e., define
the search space. We distinguish the backtrack strategy, which refines a cluster-
ing, and subset strategies, which free nodes. The rationale behind the backtrack
strategy is that selectively backtracking the clustering produced by Global en-
ables it to respect changes to the graph. On the other hand, subset strategies are
based on the assumption that the effect of a change on the clustering structure
is necessarily local. Both output a half-finished preclustering.

The backtrack strategy (BT) records the merge operations of Global and
backtracks them if a graph modification suggests their reconsideration. We detail
in the full paper [1] what we mean by “suggests”, but for brevity we just state
that the actions listed for BT provably require very little asymptotic effort and
offer Global a good chance to find an improvement. Speaking intuitively, the
reactions to a change in (non-)edge {u, v} are as follows (weight changes are
analogous): For intra-cluster additions we backtrack those merge operations that
led to u and v being in the same cluster and allow Global to find a tighter cluster
for them, i.e., we separate them. For inter-cluster additions we track back u

and v individually, until we isolate them as singletons, such that Global can re-
classify and potentially merge them. Inter-cluster deletions are not reacted on.
On intra-cluster deletions we again isolate both u and v such that Global may have
them find separate clusters. Note that this strategy is only applicable to Global;
conferring it to Local is neither straightforward nor promising as Local is based
on node migrations in addition to agglomerations. Anticipating this strategy’s
low runtime, we can give a bound on the expected number of backtrack steps
for a single call of the crucial operation isolate (proven in the full paper [1]).

Theorem 1. Assume that a backtrack step divides a cluster randomly. Then,
for the number I of steps isolate(v) requires, it holds: E{I} ∈ Θ(lnn).

A subset strategy is applicable to all dynamic algorithms. It frees a subset
Ṽ of individual nodes that need reassessment and extracts them from their
clusters. We distinguish three variants which are all based on the hypothesis
that local reactions to graph changes are appropriate. Consider an edge event
involving {u, v}. The breakup strategy (BU) marks the affected clusters Ṽ =
C(u)∪C(v); the neighborhood strategy (Nd) with parameter dmarks Ṽ = Nd(u)∪
Nd(v), where Nd(w) is the d-hop neighborhood of w; the bounded neighborhood
strategy (BNs) with parameter s marks the first s nodes found by a breadth-first
search simultaneously starting from u and v.

3 Experimental Evaluation of Dynamic Algorithms4

Instances. We use both generated graphs and real-world instances. We briefly
describe them here, but for more details please see [27] and [14].

Random Graphs {ran}. Our Erdős-Rényi-type generator builds upon [28] and
adds to this dynamicity in all graph elements and in the clustering, i.e., nodes
and edges are inserted and removed and ground-truth clusters merged and split,
always complying with sound probabilities. The generator’s own clustering serves
as a reference to compare our algorithms to, see [27] for details. In later plots we
use selected random instances, however, descriptions apply to all such graphs.4

EMail Graph Ge. The network of email contacts at the department of com-
puter science at KIT is an ever-changing graph with an inherent clustering:
Workgroups and projects cause increased communication. We weigh edges by
the number of exchanged emails during the past seven days, thus edges can
completely time out; degree-0 nodes are removed from the network. Ge has be-
tween 100 and 1500 nodes depending on the time of year, and about 700K events
spanning about 2.5 years. It features a strong power-law degree distribution.

arXiv Graphs {arx}. Since 1992 the arXiv.org e-Print archive5 is a popular
repository for scientific e-prints, stored in several categories alongside times-
tamped metadata. We extracted networks of collaboration between scientists

4For many more experimental results and plots as well as for implementation
notes see the full paper [1], supplementary information is stored at i11www.iti.uni-
karlsruhe.de/projects/spp1307/dyneval

5Website of e-print repository: arxiv.org

based on coauthorship. E-prints induce equally weighted clique-edges among the
contributors such that each author gains a total edge weight of 1.0 per e-print
contributed to. E-prints time out after two years and disconnected authors are
removed.5 As these networks are ill-natured for local updates, we use them as
tough trials. We show results on two categories with large connected components.

Fundamental Results. For the sake of readability, we use a moving av-
erage in plots for distance and quality in order to smoothen the raw data. We
consider the criteria quality (modularity), smoothness (Rg) and runtime (ms),
and additionally |C| as a structural indicator.

Discarding dEOO. In a first feasibility test, dEOO immediately falls behind all
other algorithms in terms of quality (see full paper [1]), an observation substan-
tiated by the fact that dEOO works better if related to some base algorithm [26].
Moreover, runtimes for dEOO as the sole technique are infeasible for large graphs.

Local Parameters. It has been stated in [7] that the order in which Local
considers nodes is irrelevant. In terms of average runtime and quality we can
confirm this for sLocal, though a random order tends to be less smooth; for
dLocal the same observation holds (see full version [1]). However, since node
order does influence specific values, a random order can compensate the effects
this might have in pathological cases. Considering only affected nodes or also
their neighbors in higher levels, does not affect any criterion on average.

pILP Variants. Allowing the ILP to merge existing clusters takes longer, and
clusters coarser and with a slightly worse modularity ; we therefore reject it.

Heuristics vs. dILP. A striking observation about dILP is the fact that it
yields worse quality than dLocal and sLocal with identical prep strategies. Being
locally optimal seems to overfit, a phenomenon that does not weaken over time
and persists throughout most instances. Together with its high runtime and only
small advantages in smoothness, dILP is ill-suited for updates on large graphs.

Static Algorithms. Briefly comparing sGlobal and sLocal we can state that
sLocal consistently yields better quality and a finer yet less smooth clustering
(see full version [1]). This generally applies to the corresponding dynamic algo-
rithms as well. In terms of speed, however, sGlobal hardly lags behind sLocal,
especially for small graphs with many connected components, where sLocal can-
not capitalize on its strength of quickly reducing the size of a large instance.
For such instances, separately maintaining and handling connected components
could thus reasonably speed up sLocal, but would also do so for sGlobal.

Prep Strategies. We now determine the best choice of prep strategies
and their parameters for dGlobal and dLocal. In particular, we evaluate Nd for
d ∈ {0, 1, 2, 3} and BNs for s ∈ {2, 4, 8, 16, 32}, alongside BU and BT. Through-
out our experiments d = 0 (or s = 2) proved insufficient, and is therefore ignored
in the following. For dLocal, increasing d has only a marginal effect on quality
and smoothness, while runtime grows sublinearly, which suggests d = 1. For
dGlobal, Nd risks high runtimes for depths d > 1, especially for dense graphs. In
terms of quality N1 is the best choice, higher depths seem to deteriorate quality—
a strong indication that large search spaces contain local optima. Smoothness
approaches the bad values of sGlobal for d > 2. For BN, increasing s is essen-

0 500 1000 1500 2000

0.05

0.10

0.15

0.20

0.25

Fig. 2: Rg, {ran} (top to bottom at
right end): sGlobal (1st) and sLocal
(2nd) are less smooth (factor 100) than
dLocal@BN4, dGlobal@BN16 (bottom);
dGlobal@BT (3rd) competes well.

500 1000 1500 2000

0.38

0.40

0.42

0.44

Fig. 3: Modularity, {ran} (top to bot-
tom at right end): dGlobal@BT (4th) and
dGlobal@BN16 (3rd) beat sGlobal (5th);
dLocal@BN4 (1st) beats sLocal (2nd).

tially equivalent to increasing d, only on a finer scale. Consequently, we can
report similar observations. For dLocal, BN4 proved slightly superior. dGlobal’s
quality benefits from increasing s in this range, but again at the cost of speed
and smoothness, so that BN16 is a reasonable choice. BU clearly falls behind
in terms of all criteria compared to the other strategies, and often mimics the
static algorithms. dGlobal using BT is by far the fastest algorithm, confirming
our theoretical predictions from Sec. 2.2, but still produces competitive qual-
ity. However, it often yields a smoothness in the range of sGlobal. Summarizing,
our best dynamic candidates are the algorithms dGlobal@BT and dGlobal@BN16

(achieving a speedup over sGlobal of up to 1k and 20 at 1k nodes, respectively)
and algorithm dLocal@BN4(speedup of 5 over sLocal).

Comparison of the Best. As a general observation, as depicted in Fig. 3,
each dynamic candidate beats its static counterpart in terms of modularity.
On the generated graphs, dLocal is superior to dGlobal, and faster. In terms of
smoothness (Fig. 2), dynamics (except for dGlobal@BT) are superior to statics
by a factor of ca. 100, but even dGlobal@BT beats them.

Trials on arXiv Data. As an independent data set, we use our arXiv grahps
for testing our results from Ge and the random instances. These graphs consist
solely of glued cliques of authors (papers), established within single timesteps
where potentially many new nodes and edges are introduced. Together with
modularity’s resolution limit [22] and its fondness of balanced clusters and a
non-arbitrary number thereof in large graphs [30], these degenerate dynamics are
adequate for fooling local algorithms that cannot regroup cliques all over as to
modularity’s liking: Static algorithms constantly reassess a growing component,
while dynamics using N or BN will sometimes have no choice but to further
enlarge some growing cluster. Locally this is a good choice, but globally some
far-away cut might qualify as an improvement over pure componentwise growth.

However, we measured that dGlobal@BT easily keeps up with the static algo-
rithms’ modularity, being able to adapt its number of clusters appropriately. The
dynamic algorithms using other prep strategies do struggle to make up for their

inability to re-cluster; however, they still only lag behind by about 1%. Figures 4
and 5 show modularity for coarse and fine batches, respectively, using the arXiv
category Nuclear Theory (1992-2010, 33K e-prints, 200K elementary events, 14K
authors). As before, dynamics are faster and smoother. For the coarse batches,
speedups of 10 to 2K (BT) are attained; for fine batches, these are 100 to 2K.
In line with the above observations, their clusterings are slightly coarser (except
for dGlobal@BT) (see full paper [1] for further insights).

Summary of Insights. The outcomes of our evaluation are very favorable
for the dynamic approach in terms of all three criteria. Furthermore, the dynam-
ics exhibit the ability to react quickly and adequately to changes in the random
generator’s ground-truth clustering (see full paper [1]).

We observed that dLocal is less susceptible to an increase of the search space
than dGlobal. However, our results argue strongly for the locality assumption in
both cases—an increase in the search space beyond a very limited range is not
justified when trading off runtime against quality. On the contrary, quality and
smoothness may even suffer for dLocal. Consequently, N and BN strategies with a
limited range are capable of producing high-quality clusterings while excelling at
smoothness. The BT strategy for dGlobal yields competitive quality at unrivaled
speed, but at the expense of smoothness. For dLocal a gradual improvement of
quality and smoothness over time is observable, which can be interpreted as an
effect reminiscent of simulated annealing, a technique that has been shown to
work well for modularity maximization [29]. Our data indicates that the best
choice for an algorithm in terms of quality may also depend on the nature of
the target graph. While dLocal surpasses dGlobal on almost all generated graphs,
dGlobal is superior on our real-world instance Ge. We speculate that this is due to
Ge featuring a power law degree distribution in contrast to the Erdős-Rényi-type
generated instances. In turn, our arXiv trial graphs, which grow and shrink in a

Fig. 4: Modularity, {arx}, batch size 50 e-
prints (top to bottom at right end): Back-
tracking (dGlobal@BT) (2nd) easily fol-
lows the static algorithms (sLocal (1st)
and sGlobal (3rd)); even dLocal@BN4

(4th) and dGlobal@BN16 (5th) lag behind
by only ∼ 1%.

Fig. 5: Modularity, {arx}, batch size
1 e-print, dynamics only (top to bot-
tom at right end): dGlobal@BT (1st)
excels, followed by dLocal@N1 (3rd)
and dLocal@BN4 (2nd) and then
dGlobal@BN16 (4th) and dGlobal@N1

(5th) whom finer batches don’t help.

volatile but local manner, allow a for a small margin of quality improvement, if
the clustering is regularly adapted globally (re-balanced and coarsened/refined).
Only the statics and dGlobal@BT are able to do this, however, at the cost of
smoothness. Universally, the latter algorithm is the fastest. Concluding, some
dynamic algorithm always beats the static algorithms; backtracking is preferable
for locally concentrated or monotonic graph dynamics and a small search space
is to be used for randomly distributed changes in a graph.

4 Conclusion
As the first work on modularity-driven clustering of dynamic graphs, we deal
with the NP-hard problem of updating a modularity-optimal clustering after a
change in the graph. We developed dynamizations of the currently fastest and
the most widespread heuristics for modularity-maximization and evaluated them
and a dynamic partial ILP for local optimality. For our fastest update strategy,
we can prove a tight bound of Θ(log n) on the expected number of backtrack
steps required. Our experimental evaluation on real-world dynamic networks and
on dynamic clustered random graphs revealed that dynamically maintaining a
clustering of a changing graph does not only save time, but also yields higher
modularity than recomputation—except for degenerate graph dynamics—and
guarantees much smoother clustering dynamics. Moreover, heuristics are better
than being locally optimal at this task. Surprisingly small search spaces work
best, avoid trapping local optima well and adapt quickly and aptly to changes
in the ground-truth clustering, which strongly argues for the assumption that
changes in the graph ask for local updates on the clustering.

References

1. Görke, R., Maillard, P., Staudt, C., Wagner, D.: Modularity-Driven Clustering of
Dynamic Graphs. Technical report, Universität Karlsruhe (TH) (2010), Informatik,
TR 2010-5.

2. Brandes, U., Delling, D., Gaertler, M., Görke, R., Höfer, M., Nikoloski, Z., Wagner,
D.: On Modularity Clustering. IEEE TKDE 20(2) (2008) 172–188

3. Fortunato, S.: Community detection in graphs. Elsevier Phys. R. 486(3–5) (2009)
4. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in

networks. Physical Review E 69(026113) (2004)
5. Keogh, E., Lonardi, S., Ratanamahatana, C.A.: Towards Parameter-Free Data

Mining. In: Proc. of the 10th ACM SIGKDD Int. Conf., ACM (2004) 206–215
6. Schaeffer, S.E., Marinoni, S., Särelä, M., Nikander, P.: Dynamic Local Clustering

for Hierarchical Ad Hoc Networks. In: Proc. of Sensor and Ad Hoc Communications
and Networks, 2006. Volume 2., IEEE 667–672

7. Blondel, V., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of commu-
nities in large networks. Journal of Statistical Mechanics: The. and Exp. 2008(10)

8. Delling, D., Görke, R., Schulz, C., Wagner, D.: ORCA Reduction and ContrAction
Graph Clustering. In Goldberg, A.V., Zhou, Y., eds.: Proc. of the 5th Int. Conf. on
Alg. Asp. in Information and Management. LNCS 5564, Springer (2009) 152–165

9. Görke, R., Hartmann, T., Wagner, D.: Dynamic Graph Clustering Using Minimum-
Cut Trees. In: Alg. and Data Structures, 11th Int. WS. LNCS 5664, Springer (2009)

10. Hopcroft, J.E., Khan, O., Kulis, B., Selman, B.: Tracking Evolving Communities
in Large Linked Networks. Proceedings of the National Academy of Science of the
United States of America 101 (April 2004)

11. Palla, G., Barabási, A.L., Vicsek, T.: Quantifying social group evolution. Nature
446 (April 2007) 664–667

12. Aggarwal, C.C., Yu, P.S.: Online Analysis of Community Evolution in Data
Streams. [31]

13. Sun, J., Yu, P.S., Papadimitriou, S., Faloutsos, C.: GraphScope: Parameter-Free
Mining of Large Time-Evolving Graphs. In: Proc. of the 13th ACM SIGKDD
Int. Conference, ACM Press (2007) 687–696

14. Hübner, F.: The Dynamic Graph Clustering Problem - ILP-Based Approaches
Balancing Optimality and the Mental Map. Master’s thesis, Universität Karlsruhe
(TH), Fakultät für Informatik (May 2008)

15. Chakrabarti, D., Kumar, R., Tomkins, A.S.: Evolutionary Clustering. In: Proc. of
the 12th ACM SIGKDD Int. Conference, ACM Press (2006) 554–560

16. Schaeffer, S.E.: Graph Clustering. Computer Science Review 1(1) (2007) 27–64
17. White, S., Smyth, P.: A Spectral Clustering Approach to Finding Communities in

Graphs. [31] 274–285
18. Pons, P., Latapy, M.: Computing Communities in Large Networks Using Random

Walks. Journal of Graph Algorithms and Applications 10(2) (2006) 191–218
19. van Dongen, S.M.: Graph Clustering by Flow Simulation. PhD thesis, University

of Utrecht (2000)
20. Clauset, A., Newman, M.E.J., Moore, C.: Finding community structure in very

large networks. Physical Review E 70(066111) (2004)
21. Brandes, U., Erlebach, T., eds.: Network Analysis: Methodological Foundations.

Volume 3418 of Lecture Notes in Computer Science. Springer (February 2005)
22. Fortunato, S., Barthélemy, M.: Resolution limit in community detection. PNAS

104(1) (2007) 36–41
23. Newman, M.E.J.: Analysis of Weighted Networks. P. R. E70(056131) (2004) 1–9
24. Görke, R., Gaertler, M., Hübner, F., and Wagner, D.: Computational Aspects of

Lucidity-Driven Graph Clustering. JGAA, 14(2) (2010)
25. Delling, D., Gaertler, M., Görke, R., Wagner, D.: Engineering Comparators for

Graph Clusterings. In: Proc. of the 4th Int. Conf. on Alg. Asp. in Information and
Management (AAIM’08). LNCS 5034., Springer (June 2008) 131–142

26. Noack, A., Rotta, R.: Multi-level Algorithms for Modularity Clustering. In: Proc. of
the 8th Int. Symp. on Exp. Algorithms. LNCS 5526, Springer (2009) 257–268

27. Görke, R., Staudt, C.: A Generator for Dynamic Clustered Random Graphs. Tech-
nical report, Universität Karlsruhe (TH) (2009), Informatik, TR 2009-7.

28. Brandes, U., Gaertler, M., Wagner, D.: Experiments on Graph Clustering Al-
gorithms. In: Proc. of the 11th Annual European Symposium on Algorithms
(ESA’03). LNCS 2832 , Springer (2003) 568–579

29. Guimerà, R., Amaral, L.A.N.: Functional Cartography of Complex Metabolic Net-
works. Nature 433 (February 2005) 895–900

30. Good, B. H., de Montjoye, Y. and Clauset, A.: The performance of modularity
maximization in practical contexts. arxiv.org/abs/0910.0165 (2009)

31. Proceedings of the fifth SIAM International Conference on Data Mining. In: Pro-
ceedings of the fifth SIAM International Conference on Data Mining, SIAM (2005)

