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Abstract

This paper is concerned with residual error estimators for finite element approximations
of Coulomb frictional contact problems. A recent uniqueness result by Renard in [72] for the
continuous problem allows us to perform an a posteriori error analysis. We propose, study
and implement numerically two residual error estimators associated with two finite element
discretizations. In both cases the estimators permit to obtain upper and lower bounds of the
discretization error.
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1 Introduction and notation

The numerical approximation of frictional contact problems occurring in structural mechanics
is generally achieved using the finite element method (see [38, 41, 53, 57, 83]). In order to
evaluate and to control the quality of a finite element approximation, a current choice consists
in developing adaptive procedures using a posteriori error estimators. The aim of the estimators
is to provide the user with global and local quantities which represent in the best way the true
error committed by the finite element approximation. Actually there exist various classes of error
estimators, anyone showing its specificities and advantages. Some currently used estimators are
e.g., those introduced in [7] based on the residual of the equilibrium equations, the estimators
linked to the smoothing of finite element stresses (see [85]) and the estimators based on the errors
in the constitutive relation, also called ”equilibrated fluxes” (see [56]). A review of different a
posteriori error estimators can be found in e.g., [3, 8, 37, 79, 80].

The frictionless unilateral contact problem (or the equivalent scalar valued Signorini problem)
shows a nonlinearity on the boundary corresponding to the non-penetration of the materials
on the contact area which leads to a variational inequality of the first kind. For this model
the residual based method was first considered and studied in [21, 39, 84] using a penalized
approach and in [12] by using the error measure technique developed in [9]. More recently
the analysis without penalization term was achieved in [46], and in [47] for the corresponding
mixed finite element approximation (see also [10]). Besides the study of error in the constitutive
relation was performed in [27, 81, 82] for the contact problem and a posteriori estimates for the
boundary element method are studied in [63, 64]. More generally, we mention that the analysis
of residual error estimators for variational inequalities leads generally to important technical
difficulties for any model. Note also that an important work has been devoted to the obstacle
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(or obstacle type) problem in which the inequality condition holds on the entire domain (see
[1, 4, 15, 16, 17, 22, 35, 49, 52, 55, 59, 68, 69, 77, 78]). Other a posteriori error analyzes involving
inequalities linked to plasticity were considered in [20, 70, 71, 75] and the Bingham fluid problem
is studied in [76].

When considering friction in addition to the contact model, there are supplementary non-
linearities which have to be taken into account. The currently used friction model is the one of
Coulomb (although there exist simplified and/or different models: Tresca’s friction, normal com-
pliance, smoothed Coulomb friction... see [53, 74]) whose associated partial differential equation
shows numerous mathematical difficulties which remain unsolved. In our work we consider the
so-called static friction problem introduced in [30, 31] which roughly speaking corresponds to
an incremental problem in the time discretized quasi-static model. For this model, existence
of solutions hold when the friction coefficient is small enough, see [32, 33] and the references
quoted therein. When the friction coefficient is large, neither existence nor nonexistence result
is available. Besides the solutions are generally non unique when the friction coefficient is large
enough, see [43, 44]. More recently a first uniqueness result has been obtained in [72] with the
assumption that a ”regular” solution exists and that the friction coefficient is sufficiently small.
From a numerical point of view it is well known that the finite element problem, associated with
the continuous static Coulomb friction model, always admits a solution and that the solution is
unique if the friction coefficient is small enough (unfortunately the denomination small depends
on the discretization parameter and the bound ensuring uniqueness vanishes as the mesh is re-
fined, see e.g., [41]). Concerning the a posteriori error analysis for the Coulomb model, several
studies have been achieved: error in the constitutive relation in [25, 62] as well as an heuristic
residual based error estimator for BEM-discretizations in [34]. A simpler model, the so-called
Tresca’s friction problem is considered in [13] (see also the study in [14] for a similar problem
where residual estimators are analyzed). Note that the latter model is governed by a variational
inequality of the second kind (see [6]). Finally an a posteriori error analysis is performed for the
friction model with normal compliance in [58].

Our purpose in this paper is to carry out a residual a posteriori error analysis for the Coulomb
friction model and to obtain an error estimator with upper and lower bounds involving the
discretization error. As far as we know, such a result is not available in the literature.

The paper is organized as follows. In section 2 we introduce the equations modelling the
frictional unilateral contact problem between an elastic body and a rigid foundation. We write
the problem using a mixed formulation where the unknowns are the displacement field in the
body and the frictional contact pressures on the contact area. In the third section, we choose a
classical discretization involving continuous finite elements of degree one and continuous piece-
wise affine multipliers on the contact zone. Section 4 is concerned with the study of the residual
estimator which can be seen as the natural one arising from the discrete problem. Thanks to
Renard’s uniqueness result we obtain a global upper bound of the error. Then local lower bounds
of the error are proved. In section 5 we consider a residual estimator resulting from another
discrete model. This second approach has two interesting properties in comparison with the
previous one: first it involves less terms coming from the frictional contact and these terms have
quite simple expressions. Second, the error analysis we achieve leads to better error bounds.
Section 6 is concerned with the numerical experiments and the comparison of both approaches.

Finally we introduce some useful notation and several functional spaces. In what follows,
bold letters like u,v, indicate vector valued quantities, while the capital ones (e.g., V,K, . . .)
represent functional sets involving vector fields. As usual, we denote by (L2(.))d and by (Hs(.))d,
s ≥ 0, d = 1, 2 the Lebesgue and Sobolev spaces in one and two space dimensions (see [2]). The
usual norm of (Hs(D))d is denoted by ‖ · ‖s,D and we keep the same notation when d = 1 or
d = 2. For shortness the (L2(D))d-norm will be denoted by ‖ · ‖D when d = 1 or d = 2. In the
sequel the symbol |·| will denote either the Euclidean norm in R2, or the length of a line segment,
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or the area of a plane domain. Finally the notation a . b means here and below that there
exists a positive constant C independent of a and b (and of the meshsize of the triangulation)
such that a ≤ C b. The notation a ∼ b means that a . b and b . a hold simultaneously.

2 The frictional contact problem in elasticity

We consider the deformation of an elastic body occupying, in the initial unconstrained configu-
ration, a domain Ω in R2 where plane strain assumptions are assumed. The Lipschitz boundary
∂Ω of Ω consists of ΓD,ΓN and ΓC where the measure of ΓD does not vanish. The body Ω is
clamped on ΓD and subjected to surface traction forces F on ΓN ; the body forces are denoted
f . In the initial configuration, the part ΓC is a straight line segment considered as the candidate
contact surface on a rigid foundation for the sake of simplicity which means that the contact
zone cannot enlarge during the deformation process. The contact is assumed to be frictional
and the stick, slip and separation zones on ΓC are not known in advance. We denote by µ ≥ 0
the given friction coefficient on ΓC . The unit outward normal and tangent vectors of ∂Ω are
n = (n1, n2) and t = (−n2, n1) respectively.

The contact problem with Coulomb’s friction law consists of finding the displacement field
u : Ω → R2 satisfying (1)–(6):

divσ(u) + f = 0 in Ω,(1)
σ(u) = C ε(u) in Ω,(2)

u = 0 on ΓD,(3)
σ(u)n = F on ΓN .(4)

The notation σ(u) : Ω → S2 represents the stress tensor field lying in S2, the space of second
order symmetric tensors on R2. The linearized strain tensor field is ε(u) = (∇u + ∇Tu)/2
and C is the fourth order symmetric and elliptic tensor of linear elasticity. Afterwards we adopt
the following notation for any displacement field v and for any density of surface forces σ(v)n
defined on ΓC :

v = vnn + vtt and σ(v)n = σn(v)n + σt(v)t.

On ΓC , the three conditions representing unilateral contact are given by

un ≤ 0, σn(u) ≤ 0, σn(u) un = 0,(5)

and the Coulomb friction law is summarized by the following conditions (see, e.g., [33]):




ut = 0 =⇒ |σt(u)| ≤ µ|σn(u)|,
ut 6= 0 =⇒ σt(u) = −µ|σn(u)| ut

|ut| .
(6)

The variational formulation of problem (1)–(6) in its mixed form consists of finding (u, λ) =
(u, λn, λt) ∈ V ×Mn ×Mt(µλn) = V ×M(µλn) which satisfy (see [48, 72]):

{
a(u,v) + b(λ,v) = L(v), ∀v ∈ V,

b(ν − λ,u) ≤ 0, ∀ν = (νn, νt) ∈ M(µλn),
(7)

where
V =

{
v ∈ (H1(Ω))2; v = 0 on ΓD

}

and M(µλn) = Mn ×Mt(µλn) is defined next. We set

Mn =
{
ν ∈ X ′

n : ν ≥ 0 on ΓC

}
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and, for any g ∈ Mn

Mt(g) =
{
ν ∈ X ′

t : −g ≤ ν ≤ g on ΓC

}

where X ′
n (resp. X ′

t) is the dual space of Xn (resp. Xt) with Xn = {vn|ΓC
: v ∈ V} (resp.

Xt = {vt|ΓC
: v ∈ V}). Note that H

1/2
00 (ΓC) ⊂ Xn ⊂ H1/2(ΓC), H

1/2
00 (ΓC) ⊂ Xt ⊂ H1/2(ΓC)

and that the inequality conditions incorporated in the definitions of Mn and Mt(g) have to be
understood in the dual sense.

Remark 2.1 Note that the previous mixed method is a nonstandard formulation since there is a
bootstrap: find (u, λn, λt) ∈ V×Mn×Mt(µλn) such that (7) holds. This weak formulation could
be written in a different way without the bootstrap and by adding a condition: find (u, λn, λt) ∈
V ×Mn ×X ′

t such that λt ∈ Mt(µλn) and (7) holds.

In (7), f ∈ (L2(Ω))2, F ∈ (L2(ΓN ))2 and the standard notations are adopted

a(u,v) =
∫

Ω
(Cε(u)) : ε(v) dΩ, L(v) =

∫

Ω
f .v dΩ +

∫

ΓN

F.v dΓ,

b(ν,v) = 〈νn, vn〉X′
n,Xn

+ 〈νt, vt〉X′
t,Xt

for any u and v in (H1(Ω))2 and ν = (νn, νt) in X ′
n ×X ′

t. In these definitions the notations ·
and : represent the canonical inner products in R2 and S2 respectively. It is easy to see that if
(u, λn, λt) is a solution of (7), then λn = −σn(u) and λt = −σt(u). The space Xn is equipped
with the norm

‖w‖Xn = inf
v∈V:vn=w on Γc

‖v‖1,Ω,

and a similar expression holds for ‖.‖Xt . The dual space of Xn ×Xt is endowed with the norm

‖ν‖− 1
2
,ΓC

= sup
w∈V\{0}

b(ν,w)
‖w‖1,Ω

, ∀ν = (νn, νt) ∈ X ′
n ×X ′

t.

To avoid more notation, we will skip over the regularity aspects of the functions defined on
ΓC which are beyond the scope of this paper and we write afterwards integral terms instead of
duality pairings. Another classical weak formulation of problem (1)–(6) is an inequality problem:
find u such that

u ∈ K, a(u,v − u)− µ

∫

ΓC

σn(u)(|vt| − |ut|) dΓ ≥ L(v − u), ∀v ∈ K,(8)

where K denotes the closed convex cone of admissible displacement fields satisfying the non-
penetration conditions:

K = {v ∈ V : vn ≤ 0 on ΓC} .

When friction is omitted (i.e., µ = 0) then the condition (6) simply reduces to σt(u) = 0 and
the frictionless contact problem admits a unique solution according to Stampacchia’s theorem
(see e.g., [36, 54]). The existence of a solution to (8) has been first proved for small friction
coefficients in [67] (in two space dimensions) and the bounds ensuring existence have been
improved and generalized in [51] and [32] (see also [33]). More precisely existence holds if
µ ≤ √

3− 4P/(2 − 2P ) where 0 ≤ P < 1/2 denotes Poisson’s ratio. Recently some multi-
solutions of the problem (1)–(6) are exhibited for triangular or quadrangular domains. These
multiple solutions involve either an infinite set of slipping solutions (see [43]) or two isolated (stick
and separation) configurations (see [44]) or two isolated (stick and grazing contact) solutions
in [45]. Note that these examples of non-uniqueness involve large friction coefficients (i.e., µ >√

(1− P )/P ) and tangential displacements with a constant sign on ΓC . Actually, it seems that
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no multi-solution has been detected for an arbitrary small friction coefficient in the continuous
case, although such a result exists for finite element approximations in [42], but for a variable
geometry. The forthcoming partial uniqueness result is obtained in [72]: it defines some cases
where it is possible to affirm that a solution to the Coulomb friction problem is in fact the
unique solution. More precisely, if a ”regular” solution to the Coulomb friction problem exists
(here the denomination ”regular” means, roughly speaking, that the transition is smooth when
the slip direction changes) and if the friction coefficient is small enough then this solution is the
only one.

We now introduce the space of multipliers M of the functions ξ defined on ΓC such that the
following norm ‖ξ‖M is finite:

‖ξ‖M = sup
vt∈Xt\{0}

‖ξvt‖Xt

‖vt‖Xt

.

Since ΓC is assumed to be straight, M contains for any ε > 0 the space H1/2+ε(ΓC) (see [65]
for a complete discussion on the theory of multipliers in a pair of Hilbert spaces). The partial
uniqueness result is given assuming that λt = µλnξ, with ξ ∈ M . It is easy to see that it implies
|ξ| ≤ 1 a.e. on the support of λn. More precisely, this implies that ξ ∈ Dirt(ut) a.e. on the
support of λn, where Dirt(.) is the subdifferential of the convex map xt 7−→ |xt|. This means
that it is possible to assume that ξ ∈ Dirt(ut) a.e. on ΓC .

Proposition 2.2 ([72]). Let (u, λ) be a solution to Problem (7) such that λt = µλnξ, with
ξ ∈ M , ξ ∈ Dirt(ut) a.e. on ΓC and µ‖ξ‖M is small enough. Then (u, λ) is the unique solution
to Problem (7).

The case ξ ≡ 1 corresponds to an homogeneous sliding direction and the previous result is
complementary with the non-uniqueness results obtained in [43, 44, 45]. The multiplier ξ has
to vary from −1 to +1 each time the sign of the tangential displacement changes from negative
to positive. The set M does not contain any multiplier having a discontinuity of the first kind.
Consequently, in order to satisfy the assumptions of Proposition 2.2, the tangential displacement
of the solution u cannot pass from a negative value to a positive value and being zero only at
a single point of ΓC . For a more precise discussion concerning the assumption λt = µλnξ,
ξ ∈ M , ξ ∈ Dirt(ut) and the cases where the assumption cannot be fulfilled independently of
the regularity of the solution, we refer the reader to [48], Remark 2.

3 Mixed finite element approximation

We approximate this problem with a standard finite element method. Namely we fix a regular
family of meshes Th, h > 0, [18, 19, 23], made of closed triangles. For K ∈ Th, let hK be the
diameter of K and h = maxK∈Th

hK . The regularity of the mesh implies in particular that for
any edge E of K one has hE = |E| ∼ hK . Let us define Eh (resp. Nh) as the set of edges (resp.
nodes) of the triangulation and set Eint

h = {E ∈ Eh : E ⊂ Ω} the set of interior edges of Th (the
edges are supposed to be relatively open). We denote by EN

h = {E ∈ Eh : E ⊂ ΓN} the set of
exterior edges included in the part of the boundary where we impose Neumann conditions, and
similarly EC

h = {E ∈ Eh : E ⊂ ΓC}. Set ND
h = Nh ∩ ΓD (note that the extreme nodes of ΓD

belong to ND
h ). For an element K, we will denote by EK the set of edges of K and according

to the above notation, we set Eint
K = EK ∩ Eint

h , EN
K = EK ∩ EN

h , EC
K = EK ∩ EC

h . For each
interior edge E we fix one of the two normal vectors and we denote it by nE . The jump of some
vector valued function v across an edge E ∈ Eint

h at a point y ∈ E is defined as

[[v]]E(y) = lim
α→0+

v(y + αnE)− v(y − αnE), ∀E ∈ Eint
h .
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Note that the sign of [[v]]E depends on the orientation of nE . Finally we introduce the patches:
denoting by x a node, by E an edge and by K an element, let ωx = ∪{K:x∈K}K, ωE = ∪{x:x∈E}ωx

and ωK = ∪{x:x∈K}ωx. The finite element space used in Ω is then defined by

Vh =
{
vh ∈ (C(Ω))2 : ∀K ∈ Th, vh|K ∈ (P1(K))2, vh|ΓD

= 0
}

.

We recall that the contact area is a straight line segment to simplify. The extension to a contact
area which is a broken line can be made without additional technical difficulties (see e.g., [47]).
In order to express the contact constraints by using Lagrange multipliers on the contact zone,
we have to introduce the range of Vh by the normal trace operator on ΓC :

Wh =
{
νh ∈ C(ΓC) : ∃vh ∈ Vh s.t. vh · n = νh on ΓC

}
,

which coincides with the range of Vh by the tangent trace operator on ΓC . The choice of the
space Wh allows us to define the following closed convex cones:

Mhn =
{

νh ∈ Wh :
∫

ΓC

νhψh dΓ ≥ 0, ∀ψh ∈ Wh, ψh ≥ 0
}

and, for g ∈ Mhn:

Mht(g) =
{

νh ∈ Wh :
∣∣∣∣
∫

ΓC

νhψh dΓ
∣∣∣∣ ≤

∫

ΓC

gψh dΓ, ∀ψh ∈ Wh, ψh ≥ 0
}

.

Remark 3.1 It is easy to check that the functions in Mhn are not necessarily nonnegative. In
the same way the functions in Mht(g) do not satisfy |νh| ≤ g everywhere.

The discretized mixed formulation of the frictional contact problem is to find uh ∈ Vh and
λh ∈ Mh(µλhn) = Mhn ×Mht(µλhn) satisfying:

{
a(uh,vh) + b(λh,vh) = L(vh), ∀vh ∈ Vh,

b(νh − λh,uh) ≤ 0, ∀νh = (νhn, νht) ∈ Mh(µλhn).
(9)

Using a fixed point argument it can be proven that the problem (9) admits at least a solution
and that there is a unique solution when µ ≤ C(h) (see [25]). Unfortunately the constant C(h)
vanishes when h vanishes (C(h) ∼ h1/2). The following result proved in [25] gives explicitly the
discrete frictional contact conditions.

Proposition 3.2 ([25]) Let (uh, λh) be a solution of (9). Suppose that dim(Wh) = p and
let ψxi , 1 ≤ i ≤ p denote the basis functions of Wh on ΓC . The p-by-p mass matrix M =
(mij)1≤i,j≤p on ΓC is given by mij =

∫
ΓC

ψxiψxj . Let UN and UT denote the vectors of com-
ponents the nodal values of uhn and uht respectively and let LN and LT denote the vectors of
components the nodal values of λhn and λht respectively. Then the discrete frictional contact
conditions in (9) are as follows; for any 1 ≤ i ≤ p:

(MLN )i ≥ 0, (UN )i ≤ 0, (MLN )i(UN )i = 0,

|(MLT )i| ≤ µ(MLN )i,

|(MLT )i| < µ(MLN )i =⇒ (UT )i = 0,

(MLT )i(UT )i ≥ 0.

Remark 3.3 The a priori error analysis of (9) remains an open problem although an error esti-
mate is obtained in [48] for a slightly different approximation of the frictional contact conditions
(see also [40] for an early convergence result). When friction is absent, an important number
of a priori error analyzes have been achieved (see, e.g. [11, 26, 50] and the references therein).
Note that even in this simpler case, the proof of an estimate of order h in the (H1(Ω))2-norm
with only (H2(Ω))2 regularity (without any additional assumption) remains an open problem.
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We consider the quasi-interpolation operator πh: for any v ∈ L1(Ω), we define πhv as the
unique element in Vh = {vh ∈ C(Ω) : ∀K ∈ Th, vh|K ∈ P1(K), vh|ΓD

= 0} such that:

πhv =
∑

x∈Nh\ND
h

(
1
|ωx|

∫

ωx

v(y) dy
)

ψx,(10)

where for any x ∈ Nh, ψx is the standard basis function in Vh satisfying ψx(x′) = δx,x′ , for all
x′ ∈ Nh. Note that we could also consider other quasi-interpolation operators like the ones in
[22] or in [24]. The following estimates hold (see, e.g., [80]): for any v ∈ H1(Ω) vanishing on ΓD,
we have ‖v − πhv‖K . hK‖∇v‖ωK , ∀K ∈ Th, and ‖v − πhv‖E . h

1/2
E ‖∇v‖ωE , ∀E ∈ Eh. Since

we deal with vector valued functions we can define a vector valued operator (which we denote
again by πh for the sake of simplicity) whose components are defined above. So we get:

Lemma 3.4 For any v ∈ V the following estimates hold

‖v − πhv‖K . hK‖v‖1,ωK ,∀K ∈ Th,(11)

‖v − πhv‖E . h
1/2
E ‖v‖1,ωE ,∀E ∈ Eh.(12)

4 The residual error estimator η

4.1 Definition of the residual error estimator

The element residual of the equilibrium equation (1) is defined by divσ(uh) + f = f on K. As
usual this element residual can be replaced with some simple finite dimensional approximation
fK ∈ (Pk(K))2 and the difference f − fK will be treated as data oscillation. A current choice
is to take fK =

∫
K f(x) /|K|. In the same way F can be approximated by a simple quantity

denoted FE on any E ∈ EN
h .

Definition 4.1 The global residual estimator η and the local residual error estimators ηK are
defined by

η =


 ∑

K∈Th

η2
K




1/2

,

ηK =

(
8∑

i=1

η2
iK

)1/2

,

η1K = hK‖fK‖K ,

η2K = h
1/2
K


 ∑

E∈Eint
K ∪EN

K

‖JE,n(uh)‖2
E




1/2

,

η3K = h
1/2
K ‖λhn + σn(uh)‖K∩ΓC

,

η4K = h
1/2
K ‖λht + σt(uh)‖K∩ΓC

,

η5K =
(∫

K∩ΓC

−λhn+uhn

)1/2

,

η6K = ‖λhn−‖K∩ΓC
,

η7K =
(∫

K∩ΓC

(|λht| − µλhn+)−|uht|+
∫

K∩ΓC

(λhtuht)−

)1/2

,

η8K = ‖(|λht| − µλhn+)+‖K∩ΓC
,
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where the notations + and − denote the positive and negative parts respectively; JE,n(uh) means
the constraint jump of uh in normal direction, i.e.,

JE,n(uh) =
{

[[σ(uh)nE ]]E , ∀E ∈ Eint
h ,

σ(uh)n− FE , ∀E ∈ EN
h .

(13)

The local and global data oscillation terms are defined by

ζK =


h2

K

∑

K′⊂ωK

‖f − fK′‖2
K′ + hE

∑

E⊂EN
K

‖F− FE‖2
E




1/2

, ζ =


 ∑

K∈Th

ζ2
K




1/2

.(14)

Remark 4.2 From the previous definition, we see that there are eight contributions for any
local estimator ηK . There are only two classical contributions (η1K : equilibrium residual and
η2K : interior and Neumann jumps) for all the elements which do not have an edge belonging to
ΓC . The remaining elements on the contact area have six supplementary terms. The terms η3K

and η4K represent the deviation of the traction from the equilibrium in the mixed finite element
approximation, the terms η5K and η6K (resp. η7K and η8K) represent the nonfulfillment of the
unilateral contact conditions (5) (resp. of the friction conditions (6)).

4.2 Upper error bound

We now give an upper bound of the discretization error. In the forthcoming theorem we assume
that the solution to the continuous problem satisfies the uniqueness criterion of [72].

Theorem 4.3 Let (u, λ) be the solution to Problem (7) such that λt = µλnξ, with ξ ∈ M ,
ξ ∈ Dirt(ut) a.e. on ΓC and µ‖ξ‖M is small enough. Let (uh, λh) be a solution to the discrete
problem (9). Then

‖u− uh‖1,Ω + ‖λ− λh‖− 1
2
,ΓC

. η + ζ.

Proof: To simplify the notation we set eu = u − uh. Let vh ∈ Vh; from the V-ellipticity of
a(., .) and the equilibrium equations in (7) and (9) we obtain:

‖eu‖2
1,Ω . a(u− uh,u− uh)

= a(u− uh,u− vh) + a(u− uh,vh − uh)
= L(u− vh)− b(λ,u− vh)− a(uh,u− vh) + b(λh − λ,vh − uh).

Integrating by parts on each triangle K, using the definition of JE,n(uh) in (13) and the com-
plementarity conditions

∫
ΓC

λnun =
∫
ΓC

λhnuhn = 0 gives

‖eu‖2
1,Ω .

∫

Ω
f · (u− vh) +

∑

E∈EN
h

∫

E
(F− FE) · (u− vh)

+b(λh,vh) + b(λ,uh)−
∫

ΓC

λhtuht −
∫

ΓC

λtut

−
∑

E∈EC
h

∫

E
(σ(uh)n) · (u− vh)−

∑

E∈Eint
h ∪EN

h

∫

E
JE,n(uh) · (u− vh).

Splitting up the integrals on ΓC into normal and tangential components gives:

‖eu‖2
1,Ω .

∫

ΓC

λnuhn +
∫

ΓC

λhnun +
∫

ΓC

(λt − λht)(uht − ut) +
∫

Ω
f · (u− vh)

8



−
∑

E∈Eint
h ∪EN

h

∫

E
JE,n(uh) · (u− vh) +

∑

E∈EN
h

∫

E
(F− FE) · (u− vh)

+
∑

E∈EC
h

∫

E
(λhn + σn(uh))(vhn − un) +

∑

E∈EC
h

∫

E
(λht + σt(uh))(vht − ut)

=
∫

ΓC

λnuhn +
∫

ΓC

λhnun +
∫

ΓC

(λt − λht)(uht − ut) + I + II + III + IV + V.(15)

We now need to estimate each term of this right-hand side. For that purpose, we take

vh = uh + πh(u− uh)(16)

where πh is the quasi-interpolation operator defined in Lemma 3.4.
We start with the term I. From the definition of vh and (11) we get:

‖u− vh‖K = ‖eu − πheu‖K . hK‖eu‖1,ωK

for any triangle K. This estimate together with Cauchy-Schwarz inequality implies

|I| . (η + ζ)‖eu‖1,Ω.(17)

We now consider the interior and Neumann boundary terms in (15): as previously the application
of Cauchy-Schwarz’s inequality leads to

|II| ≤
∑

E∈Eint
h ∪EN

h

‖JE,n(uh)‖E‖u− vh‖E .

Therefore using the expression (16) and estimate (12), we obtain

‖u− vh‖E = ‖eu − πheu‖E . h
1/2
E ‖eu‖1,ωE .

Inserting this estimate in the previous one we deduce that

|II| . η‖eu‖1,Ω.(18)

Moreover
|III| . ζ‖eu‖1,Ω.(19)

The two remaining terms are handled in a similar way as the previous ones so that

|IV |+ |V | . η‖eu‖1,Ω.(20)

Noting that uhn ≤ 0 on ΓC , we have
∫

ΓC

λnuhn ≤ 0,(21)

and it remains to estimate two terms in (15). Using the discrete complementarity condition∫
ΓC

λhnuhn = 0 implies
∫

ΓC

λhnun =
∫

ΓC

λhn(un − uhn) =
∫

ΓC

(λhn+ − λhn−)(un − uhn)

≤ −
∫

ΓC

λhn+uhn −
∫

ΓC

λhn−(un − uhn)

≤ η2 −
∫

ΓC

λhn−(un − uhn)

= η2 + V I.(22)
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The last term in the previous expression is estimated using Cauchy-Schwarz’s and Young’s
inequalities:

|V I| ≤
∑

E∈EC
h

‖λhn−‖E‖un − uhn‖E ≤
∑

E∈EC
h

(
α‖un − uhn‖2

E +
1
4α
‖λhn−‖2

E

)
,

for any α > 0. A standard trace theorem implies that

|V I| ≤ α‖un − uhn‖2
ΓC

+
1
4α

∑

E∈EC
h

‖λhn−‖2
E . α‖eu‖2

1,Ω +
η2

4α
.(23)

Estimates (22) and (23) give
∫

ΓC

λhnun . α‖eu‖2
1,Ω + η2

(
1 +

1
4α

)
(24)

for any α > 0.
We now estimate the term corresponding to the friction:
∫

ΓC

(λht − λt)(ut − uht) =
∫

ΓC

(λht − µλhnξ)(ut − uht) +
∫

ΓC

(µλhnξ − λt)(ut − uht)

=
∫

ΓC

(λht − µλhnξ)(ut − uht) +
∫

ΓC

µ(λhn − λn)ξ(ut − uht)(25)

where ξ ∈ M, ξ ∈ Dirt(ut), λt = µλnξ. The second term in (25) is bounded as follows
∣∣∣∣
∫

ΓC

µ(λhn − λn)ξ(ut − uht)
∣∣∣∣ ≤ µ‖ξ‖M‖ut − uht‖Xt‖λn − λhn‖X′

t

. µ‖ξ‖M‖u− uh‖1,Ω‖λ− λh‖− 1
2
,ΓC

. µ‖ξ‖M‖u− uh‖1,Ω(‖u− uh‖1,Ω + η + ζ).

In the last inequality, we have used (30). We deduce from Young’s inequality:
∣∣∣∣
∫

ΓC

µ(λhn − λn)ξ(ut − uht)
∣∣∣∣ . (1 + α)µ‖ξ‖M‖eu‖2

1,Ω +
µ‖ξ‖M

2α

(
η2 + ζ2

)
(26)

for any positive α.
Besides, the first term in (25) is handled next:

∫

ΓC

(λht − µλhnξ)(ut − uht)

=
∫

ΓC

λhtut −
∫

ΓC

µλhn+ξut +
∫

ΓC

µλhn+ξuht +
∫

ΓC

µλhn−ξ(ut − uht)−
∫

ΓC

λhtuht

=
∫

ΓC

(λhtut − µλhn+ |ut|) +
∫

ΓC

µλhn+ξuht +
∫

ΓC

µλhn−ξ(ut − uht)−
∫

ΓC

λhtuht

≤
∫

ΓC

(|λht| − µλhn+)+ |ut|+
∫

ΓC

(µλhn+|uht| − λhtuht) +
∫

ΓC

µλhn−|ut − uht|

≤
∫

ΓC

(|λht| − µλhn+)+|ut − uht|+
∫

ΓC

(|λht| − µλhn+)+|uht|

+
∫

ΓC

(µλhn+|uht| − |λht||uht|) +
∫

ΓC

µλhn−|ut − uht|+
∫

ΓC

(|λht||uht| − λhtuht)
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. ‖u− uh‖1,Ω(‖(|λht| − µλhn+)+‖ΓC
+ µ‖λhn−‖ΓC

)

+
∫

ΓC

[(|λht| − µλhn+)+|uht| − (|λht| − µλhn+)|uht|] + 2
∫

ΓC

(λhtuht)−

. ‖u− uh‖1,Ω(‖(|λht| − µλhn+)+‖ΓC
+ µ‖λhn−‖ΓC

)

+
∫

ΓC

(|λht| − µλhn+)−|uht|+
∫

ΓC

(λhtuht)−.(27)

From (26) and (27), we obtain for any α > 0:
∫

ΓC

(λht−λt)(ut−uht) . (α + (1 + α)µ‖ξ‖M ) ‖eu‖2
1,Ω +

µ‖ξ‖M + 2α + 1 + µ2

2α

(
η2 + ζ2

)
.(28)

Putting together the estimates (17), (18), (19), (20), (21), (24) and (28) with α small enough
in (15), and using Young’s inequality, we deduce that: if µ‖ξ‖M is small enough then

‖u− uh‖1,Ω . η + ζ.(29)

We now search for an upper bound on the discretization error λ− λh corresponding to the
multipliers. Let v ∈ V and vh ∈ Vh. From the equilibrium equations in (7) and (9) we get:

b(λ− λh,v) = b(λ,v − vh)− b(λh,v − vh) + b(λ− λh,vh)
= L(v − vh)− a(u,v − vh)− b(λh,v − vh) + a(uh − u,vh)
= L(v − vh)− a(u− uh,v)− a(uh,v − vh)− b(λh,v − vh).

An integration by parts on each element K gives

b(λ− λh,v) =
∫

Ω
f · (v − vh)− a(u− uh,v)−

∑

E∈Eint
h ∪EN

h

∫

E
JE,n(uh) · (v − vh)

−
∑

E∈EC
h

∫

E
(λhn + σn(uh))(vn − vhn)−

∑

E∈EC
h

∫

E
(λht + σt(uh))(vt − vht)

+
∑

E∈EN
h

∫

E
(F− FE) · (v − vh).

Choosing vh = πhv where πh is the quasi-interpolation operator defined in Lemma 3.4 and
achieving a similar calculation as in (17), (18), (19) and (20) we deduce that

|b(λ− λh,v)| . (‖u− uh‖1,Ω + η + ζ)‖v‖1,Ω

for any v ∈ V. As a consequence

‖λ− λh‖− 1
2
,ΓC

. ‖u− uh‖1,Ω + η + ζ.(30)

Putting together the two estimates (29) and (30) ends the proof of the theorem.

4.3 Lower error bound

Theorem 4.4 Let (uh, λh) be a solution to the discrete problem (9) and let η = η(uh, λh) be
the corresponding estimator. Let (u,λ) be a solution to Problem (7) such that λ ∈ (L2(ΓC))2.
For all elements K, the following local lower error bounds hold:

η1K . ‖u− uh‖1,K + ζK ,(31)
η2K . ‖u− uh‖1,ωK + ζK .(32)
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For all elements K having an edge in ΓC (i.e., K ∩ ΓC = E), the following local lower error
bounds hold:

ηiK . h
1/2
K ‖λ− λh‖E + ‖u− uh‖1,K + ζK , i = 3, 4,(33)

ηjK ≤ 2(1 + µ)
(
‖λ− λh‖E + ‖u− uh‖E + ‖λ− λh‖1/2

E ‖u‖1/2
E + ‖u− uh‖1/2

E ‖λ‖1/2
E

)
,(34)

j = 5, 7,

ηlK ≤ (1 + µ)‖λ− λh‖E , l = 6, 8.(35)

Proof: We mention that we do not suppose that the solution to the continuous problem is
unique. Of course our result holds when (u,λ) is the unique solution given by Proposition 2.2.
Note also that the solution to the discrete problem is not supposed to be unique.

The estimates of η1K and η2K in (31) and (32) are standard (see, e.g., [79]). We now estimate
η3K . Writing wE = wEnn + wEtt on E ∈ EC

K and denoting by bE the edge bubble function
associated with E (i.e., bE = 4ψa1ψa2 , when a1,a2 are the two extremities of E; we recall that
ψx is the standard basis function at node x in Vh satisfying ψx(x′) = δx,x′ for any node x′, see
(10)), we choose wEn = (λhn + σn(uh))bE and wEt = 0 in the element K containing E (here we
make a slight abuse of notation to simplify) and wE = 0 in Ω \K. Therefore

‖λhn + σn(uh)‖2
E ∼

∫

E
(λhn + σn(uh))wEn

= b(λh,wE) +
∫

K
σ(uh) : ε(wE)

= b(λh,wE)−
∫

K
σ(u− uh) : ε(wE) +

∫

K
σ(u) : ε(wE)

= b(λh − λ,wE) + L(wE)−
∫

K
σ(u− uh) : ε(wE)

. ‖λ− λh‖E‖wE‖E + ‖f‖K‖wE‖K + ‖u− uh‖1,K‖wE‖1,K .

An inverse inequality and estimate (31) imply

h
1/2
K ‖λhn + σn(uh)‖E . h

1/2
K ‖λ− λh‖E + ‖u− uh‖1,K + hK‖f‖K

. h
1/2
K ‖λ− λh‖E + ‖u− uh‖1,K + ζK .

This estimate gives the bound of η3K in (33). The estimate of η4K in (33) is obtained as
previously by choosing wEn = 0 and wEt = (λht + σt(uh))bE .

We now consider η5K . If E ∈ EC
K , let F ⊂ E be the part of the edge where λhn = λhn+. So

∫

E
−λhn+uhn =

∫

F
−λhnuhn

=
∫

F
(λhn − λn)(un − uhn)−

∫

F
λhnun −

∫

F
λnuhn

=
∫

F
(λhn − λn)(un − uhn)−

∫

F
(λhn − λn)un −

∫

F
λn(uhn − un)

≤ ‖λ− λh‖E‖u− uh‖E + ‖λ− λh‖E‖u‖E + ‖u− uh‖E‖λ‖E .

The last estimate implies the bound of η5K in (34) by taking the square root.
The estimate of η6K in (35) is obvious. Since λn ≥ 0 we have 0 ≤ λhn− ≤ |λn − λhn| on ΓC .

So
‖λhn−‖E ≤ ‖λn − λhn‖E ≤ ‖λ− λh‖E .
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Next we estimate η7K . If E ∈ EC
K , let F ⊂ E be the part of the edge where −(|λht| − µλhn+) =

(|λht| − µλhn+)−. So
∫

E
(|λht| − µλhn+)−|uht|+

∫

E
(λhtuht)− =

∫

F
(−|λht|+ µλhn+)|uht|+

∫

E
(λhtuht)−

=
∫

F
(−|λht|+ µλhn)|uht|+

∫

E
(λhtuht)− +

∫

F
µλhn−|uht|.(36)

The first term in (36) is estimated as follows using (6):

−
∫

F
(|λht| − µλhn)|uht| = −

∫

F
(|λht| − |λt| − µ(λhn − λn))(|uht| − |ut|)

−
∫

F
(|λht| − |λt| − µ(λhn − λn))|ut|

−
∫

F
(|λt| − µλn)(|uht| − |ut|)

≤ (1 + µ) (‖λ− λh‖E‖u− uh‖E + ‖λ− λh‖E‖u‖E + ‖u− uh‖E‖λ‖E) .

The second term in (36) is estimated by noting that λtut ≥ 0 on ΓC . Hence

0 ≤ (λhtuht)− ≤ |λtut − λhtuht|
= |λt(ut − uht) + (λt − λht)(uht − ut) + (λt − λht)ut|.

So ∫

E
(λhtuht)− ≤ ‖λ− λh‖E‖u− uh‖E + ‖λ− λh‖E‖u‖E + ‖u− uh‖E‖λ‖E .

The third term in (36) yields, using the estimate of η6K

∫

F
µλhn−|uht| ≤

∫

E
µλhn−|uht − ut|+

∫

E
µλhn−|ut| ≤ µ‖λ− λh‖E(‖u− uh‖E + ‖u‖E).

This proves the bound of η7K . Finally we consider the upper bound of η8K . We have

0 ≤ (|λht| − µλhn+)+ = (|λht| − µλhn − µλhn−)+ ≤ (|λht| − µλhn)+.

Since |λt| − µλn ≤ 0, we have

(|λht| − µλhn)+ ≤ ||λht| − |λt| − µλhn + µλn| ≤ |λht − λt|+ µ|λhn − λn|

Hence
‖(|λht| − µλhn+)+‖E ≤ ‖λt − λht‖E + µ‖λn − λhn‖E ≤ (1 + µ)‖λ− λh‖E .

Remark 4.5 Assume that u ∈ (H2(Ω))2 (so λ ∈ (H
1
2 (ΓC))2), and that optimal a priori error

estimates hold (note that this question is entirely open and that the only aim of the present
remark is to try to illustrate our result) and define:

ηi =
( ∑

K∈Th

η2
iK

)1/2
, 1 ≤ i ≤ 8.

Then one would have ηi . h, 1 ≤ i ≤ 4; ηj . h1/4, j = 5, 7; ηl . h1/2, l = 6, 8. So η . h1/4.
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5 A second finite element discretization and the corresponding
estimator η̃

The aim of this section is to consider a finite element discretization of the frictional contact
conditions which allows to obtain a simpler residual error estimator. More precisely a different
quadrature formula is used for the frictional contact conditions (see [53] for the early idea).

5.1 Preliminaries

For any ν = (νhn, νht) ∈ Wh ×Wh and vh ∈ Vh, we define the bilinear form c(., .) such that

c(νh,vh) =
∫

ΓC

(Ih(νhnvhn) + Ih(νhtvht)) dΓ

where Ih is the classical piecewise affine Lagrange interpolation operator at the nodes of ΓC .
Let Khn = {νh ∈ Wh : νh ≥ 0 } be the closed convex cone of nonnegative functions in Wh. For
g ∈ Khn, we set Kht(g) = {νh ∈ Wh : |νh| ≤ g }.

Next, we consider the problem of finding ũh ∈ Vh and (λ̃hn, λ̃ht) = λ̃h ∈ Kh(µλ̃hn) =
Khn ×Kht(µλ̃hn) satisfying:





a(ũh,vh) + c(λ̃h,vh) = L(vh), ∀vh ∈ Vh,

c(νh − λ̃h, ũh) ≤ 0, ∀νh = (νhn, νht) ∈ Kh(µλ̃hn).
(37)

Using the same techniques as in [25] for problem (9), one can prove that the problem (37)
admits at least a solution and that there is a unique solution when µ ≤ C(h). The proof of this
result can be found in the appendix. Besides one can prove that the pointwise discrete frictional
contact conditions incorporated in the inequality of (37) are as follows:

Proposition 5.1 Let (ũh, λ̃h) be a solution of (37). Suppose that dim(Wh) = p and let ψxi , 1 ≤
i ≤ p be the basis functions of Wh on ΓC . Let ŨN and ŨT denote the vectors of components the
nodal values of ũhn and ũht respectively and let L̃N and L̃T denote the vectors of components
the nodal values of λ̃hn and λ̃ht respectively. Then the discrete frictional contact conditions in
(37) are as follows; for any 1 ≤ i ≤ p:

(L̃N )i ≥ 0, (ŨN )i ≤ 0, (L̃N )i(ŨN )i = 0,(38)
|(L̃T )i| ≤ µ(L̃N )i,(39)
|(L̃T )i| < µ(L̃N )i =⇒ (ŨT )i = 0,(40)

(L̃T )i(ŨT )i ≥ 0.(41)

Proof: From λ̃hn ∈ Khn, we immediately get (38). Condition
∫

ΓC

Ih((νhn − λ̃hn)ũhn) dΓ ≤ 0, ∀νhn ∈ Khn

is equivalent to
∫

ΓC

Ih(νhnũhn) dΓ ≤ 0, ∀νhn ∈ Khn and
∫

ΓC

Ih(λ̃hnũhn) dΓ = 0.(42)

Choosing in the inequality of (42), νhn = ψxi and writing
∫
ΓC

Ih(ψxi ũhn) = ũhn(xi)
∫
ΓC

ψxi gives
the second inequality in (38). The equality

∫
ΓC

Ih(λ̃hnũhn) =
∑p

i=1 λ̃hn(xi)ũhn(xi)
∫
ΓC

ψxi = 0
implies (L̃N )i(ŨN )i = 0, 1 ≤ i ≤ p.
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Inequality (39) follows directly from λ̃ht ∈ Kht(µλ̃hn). Since
∫

ΓC

Ih((νht − λ̃ht)ũht) dΓ ≤ 0, ∀νht ∈ Kht(µλ̃hn)(43)

we choose νht in (43) as follows: νht = µλ̃hn at node xi and νht = λ̃ht at the p− 1 other nodes.
We obtain∫

ΓC

Ih((νht − λ̃ht)ũht) dΓ = (µλ̃hn(xi)− λ̃ht(xi))ũht(xi)
∫

ΓC

ψxi dΓ ≤ 0.(44)

Similarly, take νht = −µλ̃hn at node xi and νht = λ̃ht at the p− 1 other nodes. We get
∫

ΓC

Ih((νht − λ̃ht)ũht) dΓ = (−µλ̃hn(xi)− λ̃ht(xi))ũht(xi)
∫

ΓC

ψxi dΓ ≤ 0.(45)

Putting together estimates (44) and (45) implies (40).
It remains to prove (41). Define νht in (43) as follows: νht = 1

2 λ̃ht at node xi and νht = λ̃ht

at the p− 1 other nodes. Therefore
∫

ΓC

Ih((νht − λ̃ht)ũht) dΓ = −1
2
λ̃ht(xi)ũht(xi)

∫

ΓC

ψxi dΓ ≤ 0.

Hence inequality (41).

5.2 Definition of the residual error estimator

As for the first discretization the element residual is defined by divσ(ũh) + f = f on K. The
data f can be replaced by fK ∈ (Pk(K))2 and the difference f − fK will be treated as data
oscillation. Similarly F can be approximated by a simpler quantity denoted FE on any E ∈ EN

h .

Definition 5.2 The global residual estimator η̃ and the local residual error estimators η̃K are
defined by

η̃ =


 ∑

K∈Th

η̃2
K




1/2

,

η̃K =

(
6∑

i=1

η̃2
iK

)1/2

,

η̃1K = hK‖fK‖K ,

η̃2K = h
1/2
K


 ∑

E∈Eint
K ∪EN

K

‖JE,n(ũh)‖2
E




1/2

,

η̃3K = h
1/2
K ‖λ̃hn + σn(ũh)‖K∩ΓC

,

η̃4K = h
1/2
K ‖λ̃ht + σt(ũh)‖K∩ΓC

,

η̃5K =
(∫

K∩ΓC

−λ̃hnũhn

)1/2

,

η̃6K =
(∫

K∩ΓC

(µλ̃hn |ũht| − λ̃htũht)
)1/2

,

where we recall that JE,n(ũh) is the constraint jump of ũh in the normal direction defined by
(13). As in the previous section, the local and global data oscillation terms ζK and ζ are defined
by (14).
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Remark 5.3 From the previous definitions we have η̃1K = η1K . We mention that there is no
term as η6 and η8 in η̃ since λ̃hn ≥ 0 and |λ̃ht| ≤ µλ̃hn.

5.3 Upper error bound

As in the statement of Theorem 4.3 we need to assume that the solution to the continuous
problem satisfies the uniqueness criterion of [72] in order to obtain the upper bound of the
discretization error.

Theorem 5.4 Let (u, λ) be the solution to Problem (7) such that λt = µλnξ, with ξ ∈ M ,
ξ ∈ Dirt(ut) a.e. on ΓC and µ‖ξ‖M is small enough. Let (ũh, λ̃h) be a solution to the discrete
problem (37). Then

‖u− ũh‖1,Ω + ‖λ− λ̃h‖− 1
2
,ΓC

. η̃ + ζ.

Proof: We adopt the following notations for the error term in the displacement: ẽu = u− ũh.
As in Theorem 4.3, we obtain for any vh ∈ Vh

‖ẽu‖2
1,Ω .

∫

Ω
f · (u− vh)−

∑

E∈Eint
h ∪EN

h

∫

E
JE,n(ũh) · (u− vh) +

∑

E∈EN
h

∫

E
(F− FE) · (u− vh)

+
∑

E∈EC
h

∫

E
(λ̃hn + σn(ũh))(vhn − un) +

∑

E∈EC
h

∫

E
(λ̃ht + σt(ũh))(vht − ut)

+
∫

ΓC

(Ih(λ̃hn(vhn − ũhn))− λ̃hn(vhn − ũhn))

+
∫

ΓC

(Ih(λ̃ht(vht − ũht))− λ̃ht(vht − ũht))

+
∫

ΓC

(λ̃hn − λn)(un − ũhn) +
∫

ΓC

(λ̃ht − λt)(ut − ũht)

= Ĩ + ĨI + ˜III + ˜IV + Ṽ + Ṽ I + ˜V II + ˜V III +
∫

ΓC

(λ̃ht − λt)(ut − ũht).(46)

As in Theorem 4.3 we take vh of the form (16). So
∣∣∣Ĩ

∣∣∣ +
∣∣∣ĨI

∣∣∣ +
∣∣∣ ˜III

∣∣∣ +
∣∣∣ ˜IV

∣∣∣ +
∣∣∣Ṽ

∣∣∣ . (η̃ + ζ)‖ẽu‖1,Ω.(47)

Now we estimate the two terms in (46) with the interpolation operator using a basic error
estimate of numerical integration (trapezoidal formula):

∣∣∣Ṽ I
∣∣∣ =

∣∣∣∣
∫

ΓC

(
Ih(λ̃hn(πhẽu)n)− λ̃hn(πhẽu)n

)∣∣∣∣

=

∣∣∣∣∣∣
∑

E∈EC
h

∫

E

(
Ih(λ̃hn(πhẽu)n)− λ̃hn(πhẽu)n

)
∣∣∣∣∣∣

.
∑

E∈EC
h

h3
E |(λ̃hn(πhẽu)n)′′|

.
∑

E∈EC
h

h3
E |λ̃′hn((πhẽu)n)′|

≤
∑

E∈EC
h

h2
E‖λ̃′hn‖E‖((πhẽu)n)′‖E

16



.
∑

E∈EC
h

h
3/2
E ‖λ̃′hn‖E‖πhẽu‖1,K

.
∑

E∈EC
h

h
3/2
E ‖λ̃′hn‖E‖ẽu‖1,ωK

=
∑

E∈EC
h

h
3/2
E ‖(λ̃hn + σn(ũh))′‖E‖ẽu‖1,ωK

.
∑

E∈EC
h

h
1/2
E ‖λ̃hn + σn(ũh)‖E‖ẽu‖1,ωK

. η̃‖ẽu‖1,Ω,(48)

where K is the element containing E. Above we have used the Cauchy-Schwarz inequality, the
H1 stability of πh, proved in Lemma 3.1 of [22] (see also [79]) and the trace inequality on an
element (see [79]). In a similar way, we obtain:

∣∣∣ ˜V II
∣∣∣ .

∑

E∈EC
h

h
1/2
E ‖λ̃ht + σt(ũh)‖E‖ẽu‖1,ωK ≤ η̃‖ẽu‖1,Ω.(49)

Noting that ũhn ≤ 0 and λ̃hn ≥ 0 on ΓC , we have
∫
ΓC

λ̃hnun ≤ 0,
∫
ΓC

λnun = 0 and
∫
ΓC

λnũhn ≤
0. Consequently, we obtain:

˜V III ≤
∫

ΓC

−λ̃hnũhn ≤ η̃2.(50)

It remains to estimate one term in (46): the one coming from the friction approximation. As in
(25) and (26), we obtain

∫

ΓC

(λ̃ht − λt)(ut − ũht) =
∫

ΓC

(λ̃ht − µλ̃hnξ)(ut − ũht) +
∫

ΓC

µ(λ̃hn − λn)ξ(ut − ũht)(51)

where ξ ∈ M, ξ ∈ Dirt(ut), λt = µλnξ, and
∣∣∣∣
∫

ΓC

µ(λ̃hn − λn)ξ(ut − ũht)
∣∣∣∣ . (1 + α)µ‖ξ‖M‖ẽu‖2

1,Ω +
µ‖ξ‖M

2α

(
η̃2 + ζ2

)
(52)

for any positive α. The first term in (51) is handled as follows:
∫

ΓC

(λ̃ht − µλ̃hnξ)(ut − ũht) =
∫

ΓC

λ̃htut −
∫

ΓC

µλ̃hnξut +
∫

ΓC

µλ̃hnξũht −
∫

ΓC

λ̃htũht

=
∫

ΓC

(λ̃htut − µλ̃hn |ut|) +
∫

ΓC

(µλ̃hnξũht − λ̃htũht)

≤
∫

ΓC

(|λ̃ht| − µλ̃hn) |ut|
︸ ︷︷ ︸

≤0

+
∫

ΓC

(−λ̃htũht + µλ̃hn |ũht|)

≤ η̃2.(53)

By (52) and (53), we obtain for any positive α:
∫

ΓC

(λ̃ht − λt)(ut − ũht) . (1 + α)µ‖ξ‖M‖ẽu‖2
1,Ω +

µ‖ξ‖M + 2α

2α

(
η̃2 + ζ2

)
.(54)

Putting together the estimates (47), (48), (49), (50) and (54) in (46) and using Young’s inequal-
ity, we come to the conclusion that if µ‖ξ‖M is small enough (see also (29)):

‖u− ũh‖1,Ω . η̃ + ζ.(55)
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As in the proof of Theorem 4.3, we obtain

‖λ− λ̃h‖− 1
2
,ΓC

. +‖u− ũh‖1,Ω + η̃ + ζ.(56)

Putting together the two estimates (55) and (56) ends the proof of the theorem.

5.4 Lower error bound

Theorem 5.5 Let (ũh, λ̃h) be a solution to the discrete problem (37) and let η̃ = η̃(ũh, λ̃h) be
the corresponding estimator. Let (u,λ) be a solution to Problem (7) such that λ ∈ (L2(ΓC))2.
For all elements K, the following local lower error bounds hold:

η̃1K . ‖u− ũh‖1,K + ζK ,

η̃2K . ‖u− ũh‖1,ωK + ζK .

For all elements K having an edge in ΓC (i.e., K ∩ ΓC = E), the following local lower error
bounds hold:

η̃iK . h
1/2
K ‖λ− λ̃h‖E + ‖u− ũh‖1,K + ζK , i = 3, 4,

η̃5K . η̃
1/2
3K ‖ũh‖1/2

1,K ,(57)

η̃6K . (µη̃3K + η̃4K)1/2‖ũh‖1/2
1,K .(58)

Proof: As in Theorem 4.4 we only need to estimate η̃3K , η̃4K , η̃5K and η̃6K . In addition, the
bounds of η̃3K , η̃4K are obtained as in Theorem 4.4. So we consider η̃5K . If E ∈ EC

K , one has
by the trapezoidal integration formula, an inverse inequality and the scaled trace inequality:

∫

E
−λ̃hnũhn =

∫

E
(Ih(λ̃hnũhn)− λ̃hnũhn)

. h3
E |(λ̃hnũhn)′′|

. h3
E |λ̃′hnũ′hn|

≤ h2
E‖λ̃′hn‖E‖ũ′hn‖E

= h2
E‖(λ̃hn + σn(ũh))′‖E‖ũ′hn‖E

. hE‖λ̃hn + σn(ũh)‖E‖ũ′hn‖E

. h
1/2
E η̃3K‖ũ′hn‖E

. η̃3K‖ũh‖1,K .

The last estimate implies (57) by taking the square root.
Finally we consider η̃6K . According to Proposition 5.1 we have for any node xi in ΓC :

(µλ̃hn|ũht| − λ̃htũht)(xi) = ((µλ̃hn − |λ̃ht|)|ũht|)(xi) = 0. Let E ∈ EC
K ; it is easy to see that ũht

is either of constant sign on E (i.e., nonnegative or nonpositive) or ũht(x1)ũht(x2) < 0 (where
x1 and x2 are the extremities of E) and ũht admits a unique zero denoted m in E.

Let us first consider the second case: we denote E1 = (x1,m) and E2 = (m,x2) and we
suppose without loss of generality that ũht > 0 in E1 and ũht < 0 in E2. We denote by Jh

the piecewise affine Lagrange interpolation operator defined in E at the points x1,m,x2. Since
(µλ̃hn|ũht| − λ̃htũht)(m) = 0 and using the same arguments as for η̃5K , we get:

∫

E
(µλ̃hn |ũht| − λ̃htũht) =

∫

E1

(µλ̃hnũht − λ̃htũht) +
∫

E2

(−µλ̃hnũht − λ̃htũht)

=
∫

E1

(
(µλ̃hnũht − λ̃htũht)− Jh(µλ̃hnũht − λ̃htũht)

)
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+
∫

E2

(
(−µλ̃hnũht − λ̃htũht)− Jh(−µλ̃hnũht − λ̃htũht)

)

. h3
E1
|(µλ̃hnũht − λ̃htũht)′′ |E1

|+ h3
E2
|(−µλ̃hnũht − λ̃htũht)′′ |E2

|
≤ h3

E |(µλ̃hnũht)′′ |E |+ h3
E |(λ̃htũht)′′ |E |

. h3
Eµ|λ̃′hnũ′ht|+ h3

E |λ̃′htũ
′
ht|

≤ h2
Eµ‖λ̃′hn‖E‖ũ′ht‖E + h2

E‖λ̃′ht‖E‖ũ′ht‖E

= h2
Eµ‖(λ̃hn + σn(ũh))′‖E‖ũ′ht‖E + h2

E‖(λ̃ht + σt(ũh))′‖E‖ũ′ht‖E

. hEµ‖λ̃hn + σn(ũh)‖E‖ũ′ht‖E + hE‖λ̃ht + σt(ũh)‖E‖ũ′ht‖E

. h
1/2
E (µη̃3K + η̃4K)‖ũ′ht‖E

. (µη̃3K + η̃4K)‖ũh‖1,K .

Hence (58) by taking the square root. The first case (ũht is either nonnegative or nonpositive in
E) is straightforward and handled as previously.

Remark 5.6 Assume that u ∈ (H2(Ω))2 (so λ ∈ (H
1
2 (ΓC))2), and that optimal a priori error

estimates hold (as for the first finite element approximation, this question is entirely open and
the only aim of the present remark is to try to illustrate our result). We define:

η̃i =
( ∑

K∈Th

η̃2
iK

)1/2
, 1 ≤ i ≤ 6.

Then it is straightforward to check that η̃i . h, 1 ≤ i ≤ 4; ηj . h1/2, j = 5, 6. So η̃ . h1/2.
A deeper insight in the estimates of η̃5K and η̃6K (which we prefer to avoid) would show that
the estimates in [47], Remark 5.7 could also be applied in our case and this would lead to the
estimate: η̃ . (− ln(h))1/4h3/4.

6 Numerical experiments

In this section we achieve the numerical implementation of the residual estimator for both finite
element discretizations. The information given by the error estimators is then coupled with
a mesh adaptivity procedure. In what follows, we suppose that the bodies are homogeneous
isotropic materials so that Hooke’s law (2) becomes:

σ(u) =
EP

(1− 2P )(1 + P )
tr(ε(u))I +

E

1 + P
ε(u)

where I represents the identity matrix, tr is the trace operator, E and P denote Young’s modulus
and Poisson’s ratio, respectively with E > 0 and 0 ≤ P < 1/2.

Our main aim is to discuss the theoretical results by computing the different contributions
of the estimators η and η̃ and their orders of convergence as h vanishes. In particular we are
interested in the following terms (where we adopt the notations of Remarks 4.5 and 5.6):

ηi =
( ∑

K∈Th

η2
iK

)1/2
, 1 ≤ i ≤ 8, η̃i =

( ∑

K∈Th

η̃2
iK

)1/2
, 1 ≤ i ≤ 6.

We will also make use of the frictional contact contributions

ηC =
( 8∑

i=3

η2
i

)1/2
, η̃C =

( 6∑

i=3

η̃2
i

)1/2
.
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In the following we denote by NC , the number of elements of the mesh on ΓC . In the case of
uniform meshes this parameter measures the size of the mesh. Moreover we suppose that the
friction coefficient µ and the meshsize h are such that both discrete problems (9) and (37) admit
unique solutions (uh, λh) and (ũh, λ̃h). In such a case it is easy to check that uh = ũh and that
c(λ̃h,vh) = b(λh,vh), ∀vh ∈ Vh which implies that η2 = η̃2.

6.1 A first example with slip and separation

We consider the domain Ω =]0, 1[×]0, 1[ with material characteristics E = 106 and P = 0.3.
The body is clamped on ΓD = {0}×]0, 1[, it is initially in contact with ΓC = {1}×]0, 1[ and
no force is applied on ΓN =]0, 1[×({0} ∪ {1}). The body Ω is acted on by a uniform vertical
force f = (0, f2) with f2 = −76518 and the friction coefficient µ equals 0.2. We use criss-cross
meshes (this means that the body is divided into identical squares, each of them being divided
into four identical triangles). Figure 1 depicts the initial and deformed configurations with
NC = 32. We first observe that all the nodes on ΓC have a negative tangential displacement

Figure 1: First example. Initial and deformed configurations with µ = 0.2 and NC = 32.

and that ΓC is divided into two parts: an upper part where the body remains in contact with
the axis x = 1 (slipping nodes) and the lower part of ΓC where it separates from this axis with
a separation point near (1, 0.65), (see Figure 2). In Table 1 we report the convergence rates by
averaging the rates between NC = 2 and NC = 64. Note that the convergence rate of the terms:
η1 = η̃1 = h(

∑
K∈Th

‖fK‖2
K)1/2 ∼ h is 1.

Convergence
Errors NC = 1 NC = 2 NC = 4 NC = 8 NC = 16 NC = 32 NC = 64 rates

η2 = η̃2 71943 89950 72476 48412 29533 17687 12504 0.57

η3 32980 21134 6826.6 2366.7 960.54 565.63 322.29 1.21

η̃3 11092 8681.4 4165.7 1868.4 778.11 391.41 223.87 1.06

η4 30028 15319 6299.3 2594.8 1012.5 457.45 244.01 1.19

η̃4 29379 14325 6079.3 2542.3 997.58 448.78 239.20 1.18

η5 13.674 8.1415 3.0994 1.5381 0.50073 0.21377 0.036429 1.56

η̃5 14.503 3.9747 3.1219 0.77988 0.42660 0.13956 0.039897 1.33

η6 12680 11242 1599.8 1945.9 416.70 385.61 79.730 1.43

η̃6 0 0 0 0 0 0 0 −
η7 12.121 13.619 4.8373 4.6372 1.8200 1.4717 0.54418 0.93

η8 2535.9 2248.4 319.95 389.18 83.339 77.122 15.946 1.43

Table 1: Contributions in η and η̃ for the first example.
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Figure 2: First example. Left: normal and tangential displacements (ũhn, ũht) on ΓC . Right:
normal and tangential multipliers (λ̃hn,−λ̃ht) on ΓC .

From the computations we see that all the terms ηi and η̃i converge towards zero as h
vanishes and that η2 = η̃2 is obviously the term converging the slowest towards zero. The main
part of the error in η and η̃ is located near the singular points (0, 0) and (0, 1). The error terms
for which no optimal error analysis is available (i.e., η5, η6, η7, η8, η̃5, η̃6) vanish faster than all
the other ones except η7 which has a slower convergence rate. Note that η̃6 = 0 since uht < 0
and µλ̃hn = −λ̃ht on ΓC . We note also that the error η̃5 is located on one element near the
separation point whereas η5, η6, η7, η8 are located on ΓC , especially in the separation area.

Next we couple the error estimator with a mesh adaptivity procedure. The aim of adaptive
procedures is to offer the user a level of accuracy denoted η0 with a minimal computational
cost. We use the h-version in which the size and the topology of the elements are modified but
the same kind of basis functions for the different meshes are retained. A mesh T ∗ is said to be
optimal with respect to a measure of the error η∗ if (see [61]):

{
η∗ = η0

N minimal (N : number of unknowns (or degrees of freedom) when using T ∗)(59)

To solve problem (59), the following procedure is applied:

1. an initial analysis is performed on a relatively uniform and coarse mesh T ,

2. the corresponding global error η (resp. η̃) and the local contributions ηK (resp. η̃K) are
computed,

3. the characteristics of the optimal mesh T ∗ are determined in order to minimize the com-
putational costs in respect of the global error,

4. a second finite element analysis is performed on the mesh T ∗.

The optimal mesh T ∗ is determined by the computation of a size modification coefficient rK on
each element K of the mesh T : rK = h∗K/hK , where h∗K represents the size that must be imposed
to the elements of T ∗ in the region of K in order to ensure optimality. The computation of the
coefficients rK uses the rate of convergence of the error which depends on the used element but
also on the regularity of the solution [28]. So, to compute the coefficients rK , we use a technique
detailed in [29] that automatically takes into account the steep gradient regions. The mesh T ∗ is
generated by an automatic mesher able to respect accurately a map of sizes. If the user wishes
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more accuracy, then the procedure is repeated as far as a precision close to η0 is reached (see
[28]).

Applying this procedure to the example, we obtain a family of adapted meshes which are
refined near the singularities (0, 0) and (0,1) (see Figure 3). We also observe that the difference
between the values of η and η̃ is not significant when refining and we note that the contact
contributions ηC (resp. η̃C) are dominated by η3, η4 (resp. η̃3, η̃4), the other terms being small
(this observation also holds for examples 2 and 3 considered hereafter). Denoting by N the
number of unknowns, we observe that the estimators η and η̃, computed on adaptively generated
meshes, behave like N−0.5 and that the contact contributions behave approximately like N−0.8.
Figure 3 depicts η̃ and η̃C as functions of N .

100

1000

10000

1e+05

100 1000 10000
degrees of freedom

error
estimator

frictional contact
contribution of

slope = -0.8

slope = -0.5

Figure 3: First example. Left: Adapted mesh. Right: Convergence of the error estimator η̃ and
its frictional contact contribution η̃C with adaptive refinement.

6.2 A second example with stick, slip and separation

Next we study an example where none of the terms ηi and η̃i vanish (i ≥ 2), where the three
different zones characterizing friction (stick, slip, separation) exist and with softer corner singu-
larities than in the previous example. We consider the geometry Ω̂ =]0, 2[×]0, 1[ and we adopt
symmetry conditions (i.e., un = 0, σt(u) = 0) on ΓS = {1}×]0, 1[. We achieve the computations
on the square Ω =]0, 1[×]0, 1[. We set ΓC =]0, 1[×{0} and ΓN = (]0, 1[×{1}) ∪ ({0}×]0, 1[). A
Poisson ratio of P = 0.2, a Young modulus of E = 104 and a friction coefficient µ = 0.5 are cho-
sen. A density of surface forces F of magnitude 1 oriented inwards Ω is applied on {0}×]0.5, 1[
and ]0.5, 1[×{1}. Such a configuration corresponds to a K-elliptic case (see [41], Theorem 6.3).
Figure 4 depicts the initial and deformed configurations of the body. Here again ΓC shows a
separation and a contact part with a transition point near (0.26, 0). In addition the contact part
is divided into a slip part (on its left) and a stick part (on its right) with a transition point from
slip to stick near (0.47, 0), (see Figures 4 and 5).

It is easy to check that the symmetry conditions on ΓC lead to supplementary error terms
similar to the ones in η4 and η̃4 and we add these terms to η2 = η̃2. Moreover we have η1 = η̃1 = 0.
The results concerning η and η̃ are reported in Table 2 where the convergence rates are averaged
between NC = 2 and NC = 128.
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Figure 4: Second example. Initial and deformed configurations with µ = 0.5 and NC = 32
(deformation is amplified by a factor 2000).
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Figure 5: Second example. Left: normal and tangential displacements (ũhn, ũht) on ΓC . Right:
normal and tangential multipliers (λ̃hn,−λ̃ht) on ΓC .

Errors Convergence
×105 NC = 2 NC = 4 NC = 8 NC = 16 NC = 32 NC = 64 NC = 128 rates

η2 = η̃2 87774 53444 32022 18577 10449 5740.85 3109.85 0.80

η3 16925 5164.72 2111.32 857.613 359.365 113.333 43.3032 1.44

η̃3 10176 4448.27 1665.89 642.493 256.814 93.1164 35.8664 1.36

η4 17166 7553.27 3860.54 1818.65 848.092 388.834 184.881 1.09

η̃4 9237.09 5292.69 2825.89 1376.62 631.021 278.175 127.115 1.03

η5 39.1890 6.22418 3.65335 3.48613 2.18880 0.873704 0.113440 1.41

η̃5 52.2094 24.4419 9.21759 2.94782 0.220389 0.544605 0.197534 1.34

η6 8624.25 1500.79 228.240 505.892 647.810 226.079 8.07287 1.68

η̃6 34.2719 16.9743 6.48435 1.95881 0.607762 0.212090 0.0769817 1.47

η7 33.4342 19.1663 9.98284 7.51870 6.30249 3.09423 0.494072 1.01

η8 4157.91 780.210 509.431 501.907 323.932 113.182 9.04330 1.47

Table 2: Contributions in η and η̃ for the second example.

We observe that the errors η and η̃ are mainly located near the singularities (0, 0.5) and
(0.5, 1) and also near the transition point between contact and separation. The error near the
transition point between stick and slip is much smaller. As in the previous example, η2 = η̃2
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is the main term in the estimator with the lowest (but greater then in the previous example)
convergence rate and the error terms for which no optimal convergence result is available (i.e.,
η5, η6, η7, η8, η̃5, η̃6) vanish with an higher rate than theoretically expected. The particularity
in this example is that many terms (in particular η6) converge towards 0 with a nonuniform
convergence rate.

We then apply the adaptive procedure described before and we depict the initial mesh and
two refined meshes in Figure 6. As previously the error decay using refinement behaves like
N−0.5 and it is a bit faster than the error decay using refined meshes (near N−0.45, see Figure
7). Figure 7 also shows the convergence of the contact contribution η̃C and we observe that
η̃C/η̃ ∼ N−0.2 which therefore vanishes when N →∞. The results are similar when considering
η instead of η̃.

Figure 6: Second example. Initial (left) and refined meshes in adaptive procedure
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Figure 7: Second example. Left: Convergence of the error estimator η̃ with uniform and adaptive
refinement. Right: Convergence of the error estimator η̃ and its frictional contact contribution
η̃C with adaptive refinement.

6.3 Third example: a case with small friction, comparison with an example
in the literature

Finally we consider an example from the literature (see [81], ”square on a plane”) which
is somewhat more regular than the previous ones. Namely we consider the geometry Ω̂ =
]0, 1[×]0, 1[ with symmetry conditions on ΓS = {0.5}×]0, 1[ and we compute the solutions
on Ω =]0, 0.5[×]0, 1[. We set ΓC =]0, 0.5[×{0}, ΓN = (]0, 0.5[×{1}) ∪ ({0}×]0, 1[), P = 0.3
and E = 104. A density of inward oriented surface forces F(x, y) = −x2(1 − x)2 (resp.
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F(x, y) = 2y2(1 − y)2) is applied on ]0, 0.5[×{1} (resp. {0}×]0, 1[). We choose a small fric-
tion coefficient µ = 0.1 keeping in mind that the numerical example in [81] is frictionless. Figure
8 depicts the initial and deformed configurations of the body (with NC = 64). The boundary
part ΓC shows a transition point between contact and separation near (0.08, 0). Due to the
(small) friction we observe that (only) the last contact element near (0.5, 0) is stuck on the
foundation. Figure 9 shows the surface displacements and tractions on ΓC . The adaptive

Figure 8: Third example. Left: Initial and deformed configurations with µ = 0.1. Right: Zoom
near the separation zone.
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Figure 9: Third example. Left: normal and tangential displacements (ũhn,−ũht) on ΓC . Right:
normal and tangential multipliers (λ̃hn, λ̃ht) on ΓC .

procedure is summarized in Figures 10 and 11. The initial mesh and two refined meshes are
shown in Figure 10; the refined meshes are more uniform than in the previous examples and
contain more small elements near the boundary (except where symmetry holds). Note that the
error decay is optimal (like N−0.5) when uniform meshes are used and that the frictional contact
contribution in the error estimator behaves approximately like N−0.85, see Figure 11. These
results obtained for a small friction coefficient show many similarities with the ones obtained in
[81] without friction.

25



Figure 10: Third example. Initial (left) and refined meshes in adaptive procedure
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Figure 11: Third example. Left: Convergence of the error estimator η̃ with uniform and adaptive
refinement. Right: Convergence of the error estimator η̃ and its frictional contact contribution
η̃C with adaptive refinement.

7 Conclusion and perspectives

In this paper we propose, analyze and implement two residual error estimators η and η̃ corre-
sponding to two finite element discretizations of the static Coulomb friction problem by using the
partial uniqueness result obtained in [72]. To our knowledge our study yields the first results (for
the Coulomb friction problem) involving residual estimators with both upper and lower bounds
of the discretization error. From the definitions and the theoretical estimates we observe that
η̃ is simpler to define and it yields better bounds. From the numerical experiments, we observe
that all the terms in η and η̃ for which no optimal theoretical results can be provided behave
better than theoretically expected and that both approaches are worth to be considered.

Another line of research could consist in obtaining a uniqueness result for the quasi-static
problem by adapting the techniques in [72] and then to perform an a posteriori analysis (note
that the existence results obtained in [5, 73] for the quasi-static problem are of the same type
than the ones for the static problem).

Another (difficult) study consists to extend the estimators obtained in this paper to the so-
called XFEM method for crack problems (see [66]) where frictional contact occurs on the crack
lips and where the mesh of the body does not coincide with the crack. This study is actually
under investigation in [60].
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Appendix

Proposition 7.1 For any positive µ, Problem (37) admits at least a solution.

Proof: Let µ > 0 be given. We introduce the problem of friction P (ghn) with a given threshold
µghn and ghn ∈ Khn. It consists of finding uh ∈ Vh and (λhn, λht) = λh ∈ Kh(µghn) =
Khn ×Kht(µghn) satisfying:

P (ghn)

{
a(uh,vh) + c(λh,vh) = L(vh), ∀vh ∈ Vh,

c(νh − λh,uh) ≤ 0, ∀νh = (νhn, νht) ∈ Kh(µghn).
(60)

Problem (60) is equivalent of finding a saddle-point (uh, λhn, λht) = (uh, λh) ∈ Vh ×Kh(µghn)
verifying

L(uh, νh) ≤ L(uh,λh) ≤ L(vh, λh), ∀vh ∈ Vh, ∀νh ∈ Kh(µghn),

where
L(vh, νh) =

1
2
a(vh,vh) +

∫

ΓC

Ih(νhnvhn) dΓ +
∫

ΓC

Ih(νhtvht) dΓ− L(vh).

By using standard arguments on saddle-point problems as in [41] (Theorem 3.9, p.339), we
deduce that there exists such a saddle-point. The strict convexity of a(., .) implies that the first
argument uh is unique. Suppose that the second argument is not unique: then the equality in
(60) implies

c(λ1
h − λ2

h,vh) = 0, ∀vh ∈ Vh.

The definition of Wh allows us to choose vh = λ1
h − λ2

h on ΓC . From the definition of c(., .) we
come to the conclusion that λ1

h − λ2
h = 0. Consequently, the second argument λh is unique

and (60) admits a unique solution. The next lemma is a straightforward consequence of the
definition of problems (37) and (60).

Lemma 7.2 The solutions of Coulomb’s discrete frictional contact problem (37) are the solu-
tions of P (λ̃hn) where λ̃hn is a fixed point of Φh. The functional Φh is defined as follows:

Φh : Khn −→ Khn

ghn 7−→ λhn,

where (uh,λh) is the solution of P (ghn).

To establish existence of a fixed point of Φh, we use Brouwer’s fixed point theorem. First we
prove that the mapping Φh is continuous. Set Ṽh = {vh ∈ Vh : vht = 0 on ΓC} . From the
definition of Wh, it is easy to check that the definition of ‖.‖− 1

2
,h given by

‖ν‖− 1
2
,h = sup

vh∈Ṽh

∫

ΓC

Ih(νvhn) dΓ

‖vh‖1,Ω
,

is a norm on Wh. Let (uh, λhn, λht) and (uh, λhn, λht) be the solutions of P (ghn) and P (ghn)
respectively. On the one hand, we get

a(uh,vh) +
∫

ΓC

Ih(λhnvhn) dΓ = L(vh), ∀vh ∈ Ṽh,

a(uh,vh) +
∫

ΓC

Ih(λhnvhn) dΓ = L(vh), ∀vh ∈ Ṽh.
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Subtracting the previous equalities and using the continuity of the bilinear form a(., .) gives
∫

ΓC

Ih((λhn − λhn)vhn) dΓ = a(uh − uh,vh) . ‖uh − uh‖1,Ω‖vh‖1,Ω ∀vh ∈ Ṽh.

Hence, we get a first estimate

‖λhn − λhn‖− 1
2
,h . ‖uh − uh‖1,Ω.(61)

On the other hand, we have from (37)

a(uh,vh) +
∫

ΓC

Ih(λhnvhn) dΓ +
∫

ΓC

Ih(λhtvht) dΓ = L(vh), ∀vh ∈ Vh,(62)

a(uh,vh) +
∫

ΓC

Ih(λhnvhn) dΓ +
∫

ΓC

Ih(λhtvht) dΓ = L(vh), ∀vh ∈ Vh.(63)

Choosing vh = uh − uh in (62) and vh = uh − uh in (63) implies by addition:

a(uh − uh,uh − uh) =
∫

ΓC

Ih((λhn − λhn)(uhn − uhn)) dΓ

+
∫

ΓC

Ih((λht − λht)(uht − uht)) dΓ.(64)

Let us notice that the inequality in (60) is obviously equivalent to the two following conditions:
∫

ΓC

Ih((νhn − λhn)uhn) dΓ ≤ 0, ∀νhn ∈ Khn,(65)
∫

ΓC

Ih((νht − λht)uht) dΓ ≤ 0, ∀νht ∈ Kht(µghn).(66)

According to the definition of Khn, we can choose νhn = 0 and νhn = 2λhn in (65) which gives
∫

ΓC

Ih(λhnuhn) dΓ = 0 and
∫

ΓC

Ih(νhnuhn) dΓ ≤ 0, ∀νhn ∈ Khn,

from which we deduce that
∫

ΓC

Ih((λhn − λhn)(uhn − uhn) dΓ ≤ 0.

Hence (64) becomes

‖uh − uh‖2
1,Ω .

∫

ΓC

Ih((λht − λht)(uht − uht)) dΓ.(67)

From the definition of Kht(µghn), we get
∫

ΓC

Ih(λhtuht) dΓ ≤
∫

ΓC

Ih(|λht| |uht|) dΓ ≤
∫

ΓC

Ih(µghn |uht|) dΓ.

A similar expression can be obtained when integrating the term Ih(λhtuht). Besides from (66),

−
∫

ΓC

Ih(λhtuht) dΓ ≤ −
∫

ΓC

Ih(νhtuht) dΓ

= −
p∑

i=1

νht(xi)uht(xi)
∫

ΓC

ψxi dΓ, ∀νht such that |νht| ≤ µghn.
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If uht(xi) ≥ 0, we choose νht(xi) = µghn(xi) and if uht(xi) ≤ 0, we choose νht(xi) = −µghn(xi).
This yields the following bound:

−
∫

ΓC

Ih(λhtuht) dΓ ≤ −µ

p∑

i=1

ghn(xi) |uht(xi)|
∫

ΓC

ψxi dΓ = −
∫

ΓC

Ih(µghn |uht|) dΓ.

A similar expression can be obtained when integrating the term Ih(λhtuht). Finally, (67) becomes

‖uh − uh‖2
1,Ω . µ

∫

ΓC

Ih((ghn − ghn)(|uht| − |uht|) dΓ

≤ µ

∫

ΓC

Ih(|ghn − ghn| |uht − uht|) dΓ

= µ

p∑

i=1

|(ghn − ghn)(xi)| |(uht − uht)(xi)|
∫

ΓC

ψxi dΓ

. µ

(
p∑

i=1

|(ghn − ghn)(xi)|2
) 1

2
(

p∑

i=1

|(uht − uht)(xi)|2
) 1

2

. µC(h)‖ghn − ghn‖− 1
2
,h ‖uh − uh‖1,Ω,(68)

where the equivalence of norms in finite dimensional spaces have been used as well as the trace
theorem. Combining (68) and (61) implies that there exists a constant C(h) such that

‖λhn − λhn‖− 1
2
,h . µC(h)‖ghn − ghn‖− 1

2
,h.(69)

Hence Φh is continuous.
Let (uh, λhn, λht) be the solution of P (ghn). Taking vh = uh in (60) gives

a(uh,uh) +
∫

ΓC

Ih(λhnuhn) dΓ +
∫

ΓC

Ih(λhtuht) dΓ = L(uh).(70)

According to ∫

ΓC

Ih(λhnuhn) dΓ = 0 and
∫

ΓC

Ih(λhtuht) dΓ ≥ 0,

we deduce from (70), the V-ellipticity of a(., .) and the continuity of L(.):

‖uh‖2
1,Ω . a(uh,uh) ≤ L(uh) . ‖uh‖1,Ω.

So, we deduce that ‖uh‖1,Ω is bounded. In other respects

a(uh,vh) +
∫

ΓC

Ih(λhnvhn) dΓ = L(vh), ∀vh ∈ Ṽh,

leads to ∫

ΓC

Ih(λhnvhn) dΓ . ‖uh‖1,Ω‖vh‖1,Ω + ‖vh‖1,Ω, ∀vh ∈ Ṽh.

Therefore ‖Φh(ghn)‖− 1
2
,h = ‖λhn‖− 1

2
,h . ‖uh‖1,Ω + 1 . 1, for all ghn ∈ Mhn. This boundedness

of Φh together with the continuity of Φh proves that there exists at least a solution of Coulomb’s
discrete frictional contact problem according to Brouwer’s fixed point theorem.

Remark 7.3 From (69), we obtain a mesh size dependent uniqueness result when µ C(h) < 1.
This means that uniqueness holds when µ is small enough where the denomination “small”
depends on the discretization parameter. A more detailed study would show that this uniqueness
criterion disappears when h vanishes (i.e., limh→0 C(h) = +∞).

This work is supported by ”l’Agence Nationale de la Recherche”, project ANR-05-JCJC-0182-01.
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