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Abstract

This work deals with the approximation of a time dependent variational in-
equality modelling the unilateral contact problem of elastic-viscoplastic bodies
in a bidimensional context. The problem is approximated in the space variable
with nonconforming finite element methods which allow the handling of non-
matching meshes on the contact zone. Several error estimates are established
and the corresponding numerical experiments are achieved.
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1 Introduction and problem set-up

In computational structural mechanics, the contact phenomena between deformable
solids are generally simulated using finite element methods (see [13, 14, 18, 23]). The
contact problems in which we are interested in this paper involve the (large) class of
elastic-viscoplastic materials (see [7, 17, 19, 20]). Considering the contact problem
between two bodies, we focus on the finite element approximations which involve
nonmatching meshes on the contact part. Such a configuration in which the nodes




inherited from the discretizations of the bodies may not coincide arises in computa-
tional situations when the different bodies are independently meshed and/or there
is an initial distance between the bodies and/or an evolution process is considered.
Our first aim is to study the convergence of finite element methods for such models in
generalizing the techniques developed in [2] for linear elastic bodies with nonmatching
meshes and the discussion in [12] concerning the elastic-viscoplastic case with match-
ing meshes. Our second aim is to carry out the numerical experiments associated
with the theoretical studies.

The paper is outlined as follows. We first begin with introducing the equations
modelling the problem and the associated weak formulation is exhibited. In the
second section, we present a fully discrete approximation based on nonconforming
finite element methods in space and an implicit scheme in time. In these approxima-
tions, nonmatching meshes are allowed on the contact part and two different ways
for defining the discrete non penetration conditions are proposed: a local approach
of node-on-segment type and a global approach corresponding to a generalization of
the mortar finite element method (see [3]) to the variational inequality from the uni-
lateral contact model. The third section is dedicated to the convergence analysis of
the approximations. We provide an extension of Falk’s lemma to our problem which
leads us to establish the error estimates. In the fourth section, we describe the algo-
rithm which is adopted in our finite element computations. Finally, the fifth section
shows the results of some numerical experiments in which both local and global finite

element approaches are implemented.
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Figure 1: Contact problem between two viscoplastic bodies.

We consider two elastic-viscoplastic bodies which occupy two bounded domains O
and Q2 of R? and we denote by [0,7], T > 0, the time interval during which the
evolution of the bodies will be investigated (see Figure 1). For £ = 1,2, the boundary



I of Q¢ is assumed to be “smooth” and is the union of three nonoverlapping portions
'), ', and 4. Assume that both bodies are submitted to prescribed displacements
(supposed equal to zero for the sake of simplicity although other admissible situations
could also be considered) on I'4 x (0,T). The normal unit outward vector on I'f
is denoted v* = (v4,15). Both bodies are subjected to densities of volume forces
FE) = (FA1), fA(t) on QFx (0,7 and densities of surface forces g*(t) = (gt (1), g5(1))
are assumed on 'y x (0, 7). In the time interval [0, 7], the bodies can be in contact
on their common boundary part I'y, = I'Z which we denote by I'c, and frictionless
unilateral contact conditions without initial gap are assumed on I'c x (0,7). We

assume that the contact process is quasistatic.

This frictionless unilateral contact problem consists of finding in the time interval
[0, 7] the displacement fields u = (u!,u?) (where the notation u’ stands for u|q:)
with u/ = (uf), 1 < i < 2 and the stress tensor field o = (o', 0?) (where the

¢
ij

notation of stands for olqe) with o = (0f,), 1 < i,j < 2 which satisfy equations

and conditions (1.1)-(1.10) for £ = 1,2.
The following equation

dot.
— 4 ff=0 in Q% (0,7), 1<i<2, (1.1)
a:vj
is the equilibrium equation where the summation convention of repeated indices is
adopted and where the stress tensor field o is linked to the displacement field by the

constitutive relation of rate-type elastic-viscoplastic models
ot = Ee(i) + G (o!, e(uh)) in ¢ x (0,7). (1.2)

In (1.2) and in all what follows the upper dot indicates the time derivative, the
notation & = (&;;), 1 <1,j <2 stands for the linearized strain tensor field:

oty L0 O
sig(w) = 2<8:cj + @:z:i)’

and £ and G* are constitutive functions (see, for example, [7]).

The equations on the boundary parts submitted to prescribed displacements and

prescribed loads are:

ut =0 on I'Y x (0,7, (1.3)
oclvt =g' on Iy x (0,7). (1.4)

The conditions on the boundary part I'c x (0,7") submitted to frictionless unilateral



contact conditions incorporate the Signorini type conditions:
vi(a'vh) =vi (o) =0,
w'. v 4w <0,
o, <0,
o, (ut v + 4P v?) =0,
where the notation - represents the inner product in R%. The conditions stating the

absence of friction are

oclvt =01t on I'c x (0,7), (1.9)

which means that for £ = 1,2 the density of surface forces o‘v* on the contact zone

are parallel to the normal. The initial conditions at ¢ = 0 and £ = 1,2 are as follows

uf(0) = u® and &%(0) = o in O°. (1.10)

Let us begin by introducing some useful notation and several functional spaces.

Let Q be an open bounded subset of R? whose generic point is denoted & = (21, 3)
and denote by L*(Q) the Hilbert space of square integrable functions endowed with

the inner product

(60) = [ dlepi(z) do.
Given m € N, introduce the Sobolev space
H™(Q) = {4 € (), Dy € 13@), o] <m},

where o = (@), az) represents a multi-index in N* and |a| = a1 + a;. The notation
D* denotes a partial derivative and the convention H°(Q2) = L*() is adopted. The
spaces H™(§2) are equipped with the norm

lamier = (3 10¥lm)

laf<m

In order to give the variational formulation associated with problem (1.1)-(1.10), we
introduce the spaces V(Qf) and H(QF) for £ =1 and £ = 2 as follows:

V() = {vf —(of), e HYQY, wi=0onT% 1<i< 2}7

HOY) = {r' = (75), the X0, 1<ij<2).
The Hilbert spaces V(0¢) and H(Q*) are endowed with their canonical inner products
denoted (., .)v(ay and (., )y(ae. Setting V. =V(Q")xV(Q?) and H = H(Q') x H(O?)
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these product spaces are equipped with the inner products (.,.)v and (.,.)x; the
associated norms are denoted ||.|[v and ||.][» respectively. Let S; be the space of
second order symmetric tensors in R? and let the notations - and |.| denote the inner

product and the norm on these spaces.

Next, we specify the properties satisfied by the functions & and G* (¢ =1,2) incor-
porated in the constitutive law (1.2).

Function & : Qf x S; — S, is a bounded symmetric positive definite fourth order

tensor
g]kl € LOO<Q€)7 1 S i?jakyl S 27
or=0. 81, Vo,1eS,, (1.11)

Jaf>0s.t Efrr > fr)?, Vre S

Function G : Qf x Sy x Sy — S, satisfies

JLE> 05t |G, 0,€) — Gz, 0,€)| < L(|lo — o] +|e — &),

Vo,5,6,6 €8,y, a.e. in O

G-, o,€) @+ Gz, 0,€) € Sy is measurable for any o,€ € &y, (1.12)
aij(aO’O)
i

G*(-,0,0) € H(NY) and , € LN, 1<i,5<2.
J

The given densities of forces verify
FEeW(0,T; (1)) and g € WH(0,T5 (L3(I'y)))-

For the sake of simplicity, we shall adopt the following notations:
e(v) = (e(v'),e(v?)), Yo = (v',v?) € V,Ee = (E'e!, £%6%), Ve = (¢',€?) € H and
G(o,e) = (G'(o',e"),G*(0?,€Y)), Ve = (e!,e?) € H, Vo = (0',0°) € H.

Let V' be the strong dual of V and let <., > denote the duality pairing between V
and V’. For all t € [0,T], let F(¢) denote the element of V' given by

[\

U> Z L2 04)) Z L9 r¢,))2 Vo = (UI;'UQ) eEV.

Z:
Using the regularity assumptions on £ and g¢, we deduce that
F ¢ Whe(0,T;V').
The convex set of admissible displacements is defined as follows

K={v=(v'v)eV, [v.v] <0on ¢}, (1.13)




where [v.v] = v'.v! 4+ v?.1? denotes the jump of the relative normal displacement

across interface I'c.
Let us suppose that
w’ = (v u®?) e K and (0% e(v—u’))y > (F(0),v—u®) YvecK. (1.14)

The variational formulation of the elastic-viscoplastic unilateral contact problem (see
[19]) consists then of finding the displacement fields w : [0,7] — K and the stress
fields o : [0,7] — H; such that:

(1) = Ee(a(t)) + G(o(t),e(u(t), ae. te(0,T), (1.15)

The existence and uniqueness statement for this problem has been established (see
[19]). We recall this result in the following proposition.

Proposition 1.1. Let the assumptions (1.11), (1.12) and (1.14) hold. Then there
exists a unique solution (u, o) of problem (1.15) having the regularity

(w, o) € WH2(0, T, K x H).

2 Discretization

2.1 The nonconforming finite element approximations

We suppose that each subdomain ¢, £ = 1,2, is a polygon. With each subdomain QF,
we then associate a regular family of discretizations 7, made of triangular elements
denoted & such that Qf = Une7;f %. The discretization parameter hy on £ is given by
he = max, 7t h, where h,, denotes the diameter of the triangle x. We suppose that the
end points ¢; and ¢, of the contact zone ['¢ are common nodes of the triangulations
7' and 72 and that the monodimensional traces of triangulations of 7' and 7,” on
I'c denoted ! and 67 are uniformly regular. For any integer ¢ > 1, the notation
P, (k) represents the space of the polynomials with the global degree < g on «.

The space of constant symmetrical tensors on each element of the mesh is chosen for

the approximation of the stress fields:
Q) = {7l € (L@ s Thle € (Po(w)hyr VrETE],
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and we set Q5 = Qn(0) x Qa(02?).

The finite element space used in f for the displacement fields is defined by (see [6])

Vh(Qe) = {'vﬁ € (C(_QZ))Q, ’Uﬂn € (731(/{»2, \V//i & 7;L€, Ui!rg et O}

Denoting V5, = V(1) x V,(Q2), it is straightforward that (V) C Qn. Moreover,
we assume that G(Qn, @n) C Qp and (V) C Q.

To translate in the finite element context the noninterpenetration conditions con-
tained in (1.13), define

WETe) = {tn:Te - R by, € Pi(r), Vre oy,

1, continuous on each straight line segment of I'¢}.

We also consider the subspace
Mi(Te) = {¢h € WHT o), ¥r € 02, duls € Pul(r) and 9], € Po(r) if e or ¢; € T}.

This allows to introduce the following operator m§ on W/ (I'¢) defined for any function
é:Te — R, piecewise continuous on I'g, by:

Wﬁgb € I/V;f(rc),
(mid)(c) = d(es), for © =1 and 2,

/ (6= rloyn dU=0, Vi € MU(T0).
e

Remark 2.1. IfT'¢ is a straight line segment, operator 7t coincides with the mortar

projection operator whose stability and approzimation properties can be found in [3, 1].
Moreover, let us note that operator wt is very “close” to the orthogonal projection
operator 7t onto W(T'c), defined for any function ¢ € L*(I¢) by 7hg € Wi(Te)
and frc(gb — 7Y dU = 0, Vipy, € WE(Dg). The latter operator can be used in the

numerical ezperiments (without loss of quality of computations) in our simple case
involving only two bodies in contact without domain decomposition.

Another approach to discretize the contact condition is based on the linear piecewise
interpolation operator on the mesh #¢ that we denote by Zf. It is also defined for any
function ¢ : ¢ — R, plecewise continuous on ¢, by:

where y,, y, are the nodes of 7 € 6.



We must notice that if T'¢ is a straight line segment, Zf coincides with the usual

Lagrange interpolation operator of order one in 05,

The next step consists of defining the discrete convex cone (approximating K) involv-

ing the latter projection operator
r = {vh = (v],0?) € V4(Q!) x V,(0?), wvjv' +mi(vi.r?) <0on Pc},
and another approximation convex cone using the Lagrange interpolation operator
K = {vh = (v},v3) € V4(QY) x V,(QF), vpv' + T (vi.v?) <0on FC}.

Note that both approximations are different and nonconforming so that generally
K7 # KI, K7 ¢ K and Ki ¢ K. This means that (slight) interpenetrations are
allowed in these approximations. It is easy to see that if all the nodes of the mesh
of 02 on I'c are also nodes of the mesh of Q! then Kf = KI ¢ K. In particular,
the case in which matching meshes are considered was studied by Han and Sofonea
(see [12]) and the comparison between K7 and K% was performed in the static linear

elastic case (see [15]).

Moreover, it is straightforward that the choice of K7 corresponds to the classical local
node-on-segment contact conditions and that the choice of K leads to more global
conditions due to the global character of the projection operator. Finally, notice also
that the symmetrical definitions of K7 and K? using 77 and Z}? could also be chosen.
Talking of that, let us mention that we are not able to exhibit a discrete approximation
of K in which both bodies play the same role and which leads to reasonable a priori

error estimates.

2.2 Fully discrete approximation: implicit scheme

We consider a fully discrete approximation of problem (1.15). Given a partition of
time interval [0,7]: 0 = #o < ¢; < ... < ty = T, we denote by k, the step size
tn —tn_q forn=1,2,...,N. Let k = max, k, be the time discretization parameter.
Given a sequence {w"}Y_,, we define dw™ = (w* — w" ')/k,. Finally, we denote
F" = F(t,), u® = u(t,), u'" = ul(t,), u*" = u?(t,), 0" = o(t,), o) = o,(t,) for
n=20,1,...,N.

i

The discretized problem derived from (1.15) uses the above-mentioned nonconforming
finite element approaches and a backward Euler scheme. It consists then of finding the
displacement fields wp, = {uf,}_, C K; and the stress fields oy, = {07}y C Qn



such that:
up, € Kp, oy € Qn,
So7, = Ede(u},) + Gloh,. e(uy)), n=12...,N, (2.1)
(07, e(vn —up))u > (F*op —uly), VoreKpn=12,...,N,

where K, = K} or K, = K%

The following existence and uniqueness statement holds for problem (2.1).

Proposition 2.1. Let the assumptions of Proposition 1.1 still hold. Let K, =Kj
or Kj, = KI. There eaists a constant ko > 0, such that if k < ko then problem (2.1)
admils « unique solution (wpg, opk) € Kp x Qp.

Proof. Since K7 and KI are nonempty closed convex sets (cones), it is easy to check
that the proof of the conforming case (with matching meshes) obtained in [12] which
uses a fixed point technique is still valid in our context. O

3 Error analysis

The purpose of this section is to prove the convergence of the discrete solution
(wpg, ohi) towards (u,o) for both local and global approaches introduced in the
previous section. The key tool is an extension of Falk’s lemma (see [9]) to a fully
discrete approximation problem. This result is as follows.

Proposition 3.1. Let the assumptions of Proposition 1.1 still hold. Let (u,0) be
the solution of (1.15). Suppose that w and o are such that u' € L*=(0,T; (H2(9Y))?),
u? € L°(0,T; (H*(02)?) and o, € L=(0,T; L*(T'¢)). Let (wng, o) be the solution
of (2.1). Then

max (HO’ —orullu + ||u" — uhk“V) < O(HU — oyl + JJu’ - uhle)

1<n<N
1
)

+C max{ inf (Hfuh—u]lqu‘/ vy, — u").V|

1<n<N | vpeKy
E)

(s))) ds — ZkiG(ai,s(ui))’},

+ inf (]/F (v — u}y).V]

veK




where Kj, = K] or Kj, = K% and constant C' is independent of hy, ho and k.

Proof. Let t =t, withn=1,...,N and v € K,v, € K;. We have

(o7 — ohy,e(u”) —e(up))n =
(0", e(u)u + (o, e(ui))n — (07, e(wp))u = (o5 £(w"))x-
The variational inequalities in (1.15) and (2.1) can be written

(0", e(u))

(hee(uhy)

(0", e(v))y — <F“, v — u”>,

(o7, e(vi)n — (F" vn — ujy).
Hence

(0" — oy, e(u” —up))u < (o, — o e(vn —u"))u
+(o", e(vy — u™))y — (F", vp — u")

+(0'n7€(v - ’U’Zk»% - <Fn7 v — u2k>
From (2.1), we get
ot = Ee(uiy) + ka G0k, e(uf))) + o7 — Eelufy™),

and we deduce

o = Ee(upy) + ZkiG("'zmg(ulﬁk)) + ofy, — Ee(upy).

=1

Integrating the constitutive law in (1.15) from ¢ = 0 to ¢ = ¢, yields

o"=Ee(u / Glo u(s))) ds + o° — Ee(u®).

Subtracting both previous equalities gives

Ee(u” ~ ujy) = 0" - ormzk( ohoe(uy) — Glo',s(u)

/ Glo ds—|—ZkGa e(u'))

=1

+0?, — 0% — Ee(up), —u’).

Denote for n =1,..., N

/O " Glo(s), e(uls))) ds — POLTEILIEC

I, =

10

(3.1)

(3.2)



and forn =0,...,. N
en = |07 — ol + [[w" — upiliv.

From (3.2), properties (1.11) and (1.12) and Korn’s inequality, we obtain:

o~ ufillv < Cllo™ = el + € S ks (s = 'l + ke — )

+C1I, + Ceq. (3.3)
Putting together (3.1) and (3.2) leads to
(0" —oh, €7 (0" — oh))u < (of, — 0" e(vh — u"))n
+(o" e(vy —u™))y — (F" vp — u”)
+(o" e(v — ufy ) — (F" 0 —ujy)

o™ = ot (O3 killlots = o'l +Hluhy = wlv) + C Lt Ceo).

1=1
Using the definition of F and Green’s formula, we get

o™ — ahplln < Cllon —w"|lv

+0}/F o™[(vh — u™).v] dT

L
2

kY
2

+O! /F o™[(v — u?,).w] dT

10N kil — ol + b — w'llv) + CLut Ceo. (3.4)

i=1
Combining (3.3) and (3.4), we obtain for any v, € Kj, and any v € K

Ju” — ufllv + lo" — ol < Cllop —u™|lv

+C"/r o’ [(vy, — u™).v] dl’

1
2

g +C]n+060

+O‘/ o™[(v — u?,).v] dT
T'e

+C Y killloh, — ollx + llun — wllv). - (3.5)

i=1

Set form=1,... ,N
1 1
Gn = Jvn —u"|lv + I / ol(vy — u") V] dF}2 + ‘ / o™(v —ul).w] dl|” + I, + eo.
l FC r‘C‘
From (3.5), we get

en < Cga+C> ke,  n=1,...,N.

=1
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Using Gronwall’s discrete inequality, one obtains under the assumption that E =

max, k, is small enough:

en§C’gn—|—C’Zkigi, n=1,...,N.

1=1

Consequently
n o I no_ n < .
12?%(“"’ ol + llu uhk“V) S Clgla;](\,gn
That ends the proof. O

Clearly, the previous proposition divides the error committed by the approximation
into four different quantities: the error on the initial conditions, the approximation
error comprising a norm and an integral term, the consistency error coming from
the nonconformity of the finite element methods and an integration error term on
(. We restrict us to the case where I'c is a straight line segment for many reasons:
because operator ¢ could be decomposed on each straight line segment of I'c into
different projection operators, to use the already existing results of [2] established in
the case of a straight line segment and to avoid a lenghty supplementary convergence
study in this paper. Therefore, in the following lemma, we give the estimates for the

approximation and the consistency error terms in the case Kj = Kj and K, = K?.

Lemma 3.1. Let the hypothesis of Proposition 3.1 still hold. Assume the following
additional conditions:
a) Uc is a straight line segment. (3.6)
b) If TN To #0, then for alla € Ty N T'e we have:

i) the line segments of 'Y, and T'¢ which contain a form an angle

different of . (3.7)
i) [uy(D)](a) = us (H)(a@) = 0 ¥t € [0, ).
¢) o, € L°(0,T; H (Te)). (3.9)

(1) Let Ky = Kf and let n = 0,1,... ,N. There exists vy, € K} that satisfies the

estimates

T < Cu) (b + ha),

|lvp — u™||v + ’ / ol|(vp —u").v] dl
Ie
where constant C(u™) depends linearly on ||[u™|| 2y and |u?™ || (m2(02))2-

Also, there exists v € K that salisfies the estimates

[ ottto—uthod ] < (Clurhaa = i)+ CA b

12



where constant C(u™) depends linearly on ||ut™||(gz2rye and [|[u®”||(zre(02))2-

i1) Let K, = K% and let n = 0,1,... ,N. There exists vy € KI that satisfies the
h h

estimates
fon =l +] [ otlten — |’ s i + ha)

where constant C’(u”) depends linearly on ||ub™||zr2(ary2 and || u"||(m2(2))2-

Also, there exists v € K that satisfies the estimates

[ ol i)

where constant C(u™) depends linearly on ||u'™||(m2uye and [[w?™||(z2(02))2-

P (cmmbie - ugv) T+ @]+,

Proof. The two bounds in (i) have been proved in the (technical) Lemma 4.2 and
Lemma 4.4 of [2]. Replacing projection operator 7} with interpolation operator T} in
these lemmas yields the less satisfactory bounds of (iz). The loss of convergence rate
in the consistency term of (47) comes from the poor approximation properties of the
Lagrange interpolation operator in dual Sobolev spaces (see [16]). O

Remark 3.1. If we do not assume hypothesis (3.7), then we obtain an error estimate

of order v — ¢/2 where r = 5 if Ky =KJ and r = 5 f Kj, = KI (see [10]).

We finally obtain the convergence result of the fully discrete approximation.

Theorem 3.1.  Assume the hypothesis of Lemma 3.1 still hold. Let (u,0) €
Whee(0, T; K x Hy) be the solution of (1.15). Set K = Kj or Kj = KZI and let
{fur W, {0, be the solution of (2.1). Let h = max(hy,ha). We have the

following error estimates:

ma (I = willy + o = o) < O —willy + 10 = ol
+C(h" + k),

where = % if Ky, = K] andr = % if K, = KI and constant C is independent of h
and k.

Proof. Let us consider the error terms involved in Proposition 3.1. Using (1.12) the

13



integration error committed on the functional G is bounded as follows:
tn e . .
’/0 G(o(s),e(uls)) ds — 3 kiGlo’, e(w)
=1
n t . .
<Y [ 16(o(s),elul) - Glo' e(u)] ds
i=1 Vi1

<oy / o) = o+ llsCuls) — () ds

<OTk(| 6 limrn + (@)= 00 )-

The announced result is now obtained using the approximation and consistency error
bounds of Lemma 3.2 in Proposition 3.1 and writing

(Clurfu —ufyliv)” <l = ullv + = )hl,

(with 8 =11f K, =K} and 3 = S Ky, = KZ) for an arbitrary v small enough. O

4 Solution of the fully discrete problem

Let V), and Qp be the finite element spaces defined in section 2.1 and composed by
piecewise linear and constant functions respectively. We first write problem (2.1) in

an equivalent form:

Find the displacements fields up, = {“Zk}nNzo c K, and the stress fields o, =
{o7 WY, C Qp such that:

ul, €K, o), €Qn andforn=12...,N
o = o+ Ee(upy) — Ee(upy!) + kaG(ohy, e (uhy)),

(4.1)
(Ee(up,),e(vn — ufy))n + (kaG(oy, e(uhy)), e(vn — wi))u 2

(Fr v — ufy) + (Ee(upyt) — ohp ' e(vn —ui))n,  Von € Ky,
where K, = K} or Kj = K%

In order to solve problem (4.1) we apply the same fixed point algorithm as in the
proof of Proposition 1.1 and Proposition 2.1 (see [12, 19] for details). This algorithm

is formulated as follows:
n—1

For some n between 1 and N, let us assume u};' and o' are known, and let
1%, € Qn be given. For s = 0,1,2,..., let {(“nzwfnzkmif)}szo be the sequence

14



obtained when solving the following problems (4.2) and (4.3):
up:, € Ky,
(Ee(uns, ), e(vn — unps, ) H > (F", vy —un:, ) (4.2)
+(Ee(upyt) — ot = kamiy,e(vn —umg, ))u, Yo € Ky,
where K, = KJ or Kj = K% and
oy, = o+ Ee(uny,) — (i) + ki, @3)
nint = Glon;,,e(un;,)). .
It can be shown (see [12], Theorem 4.1) that if k is sufficiently small then

Im ups = ur..
$=300 ik hk

In order to determine the unique solution uq:  of the variational inequality (4.2), we
use a penalty-duality algorithm (see, e.g., [11, 5, 21, 22]) which is described below.

Given ¢, € Ey = {q1 € L}T¢), V7 € 0}, al- € Pu(7)}, w > 0 an arbitrary real
number and p € (0,1], let {(u},, ¢ox)}r>0 C Vi X Ej be the sequence constructed when
solving the following problems (4.4) and (4.5) :

(Ee(up), e(vn))n
+W/ (upy - v+ PHupy - v)(wh - v + PR v dl = (4
e

(B, vs) + (Ee(up) = o5 — Funy, e(0)n

‘"/ grp(vh - v+ P (v} V) dl, Yo, € Vi,
e}

~p r r 2 1 r
Ahr = 2(“}1{1\: vt 4 Pl(uzzz}g V) + G

+

Q}Zk = W(Q}Tm - QPUh(gzk))ﬂ (4-5)

Gt = pg? + (1 - p)s

where Py, is the L*(T¢)-projection operator over the closed convex set Uy defined by:
U,=1{qg. € Er; g <0 onTlc¢},

and P! is either ©} or I}. From [3], we get:

lim u), = ups .
ryoo Dk Mhx
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Remark 4.2. Problem (4.4) is equivalent to a linear system having the following
form:

(A+w'BB)u, =b-"Bg,,
where A represents the stiffness matriz, b is the loading vector, W, is the nodal dis-
placements field vector, G, is the multipliers vector and B is a rectangular matriz

related to the operator
v = vl -v 4 PHo? v

If P! is the interpolation operator Z}, the matrix formulation of Problem (4.4) is very
similar to that of the compatible meshes case and the ideas of [5] have been followed.
If P! is the projection operator 7}, some technical difficulties must be solved in order
to calculate the matrix B. Some ideas of [4] are used (see [10] for details).

5 Numerical experiments

In order to verify the accuracy and the performance of the numerical methods de-
scribed in the previous sections, some experiments have been performed in test prob-
lems. In this section we show some results for constitutive models (1.2) when G* is

Perzyna’s viscoplastic function (see [8, 17]):

1
Gi(at et = __Q_ngé(o-é — Pge(oh)),

where A is a viscosity constant and Pge is the projection operator (with respect to
the norm || 7|2 = (7%, £47")3qr)) on the plasticity convex set B¢ C S, defined by:

Bt ={r e S,;|rlvm <ob},
where | - |y a is the Von-Mises norm for stresses:
Tlvn = (T + 7y — T+ 375)12, YT E S,

and o} represents the uniaxial yield stress. Moreover, both plane stress elasticity

tensors £ (£ = 1,2) are given by :

E.éﬂ_f Ee
(T et T IS @B S

5137_32
1+ &t

where the notations E¢ and s’ denote Young’s modulus and Poisson’s ratio respec-

tively of the material occupying domain 0.
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Figure 2: KJ: Contact boundary is a straight line.

5.1 Test 1: The contact boundary is a straight line

We consider the contact problem between two viscoplastic bodies depicted in Figure
9. The body 02 is submitted to a loading g* linearly increasing in time. Embedding
conditions hold on the left part of the structure and symmetry conditions (normal dis-
placement and tangential component of the stress vector equal to zero) are prescribed

on the upper and lower parts of the structure.
The following data have been used for calculations:

T =1 sec,,

fl=0N/m? f*=0N/m? g"'=0N/m,
g*(z1,32,t) = (10¢,0) N/m,

o =0N/m?, u’=0m,

E¢ =102 MPa, x*=03, (=12,

ot = /10 N/m?, M =100N -sec/m?, £=1,2.

The finite element meshes of O and Q2 are composed by 214 triangles and 358 nodes
and 141 triangles and 216 nodes, respectively and they do not match together on the

contact zone (see Figure 3).

In Figure 4 we show the deformed configuration and the Von Mises stress norm at final
time T = 1 sec. using the discrete set of admissible displacements K7 to approximate

K.
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Figure 3: KT: Non conforming finite element mesh.
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Figure 4: KT: Contours of the Von-Mises stress norm and deformed configuration after 1sec.

5.2 Test 2: Comparison of local and global discrete contact

conditions

In order to compare results obtained via (local) approximation set K7 and (global)
approximation set K7, we implement both methods for the simple problem shown in

Figure 5.

This problem involves two viscoplastic bodies (E* = 3 x 10° M Pa, * = 0.3, \* =
100 N - sec/m?, ot = /10 N/m?, £ = 1,2) whose right boundaries as well as the
lower boundary of Q? are submitted to symmetry conditions. A density of forces
g (z1,22,t) = (0,—10t) N/m linearly increasing in time is applied on the upper
boundary of Q! whereas body forces are absent. Problem (1.1)-(1.10) is now con-
sidered with the following data: 7 =1 sec., ° = 0 N/m? and u’ = O0m.

Figure 5 shows also the deformed boundaries and the deformed meshes when adopting
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Figure 5: K7: Initial and deformed boundaries at final time 7' = 1 sec. and contact area.

K7. We remark that no interpenetration has been produced and the obtained stress

field is constant (011 = 012 = 0, o1, 22,t) = 101).

In the case where the local approach is chosen, the deformed meshes near the contact

area are shown in Figure 6. We now discover a non negligible and non realistic

penetration of 02 into Q! as well as artificial stresses, particularly near the contact

zone.
| } 20 22.05
0 — ‘ 19 .. 21.35
i ! 18 20.57
< 17 19.80
} 16 19.03
! s . 18.25
: 2 14 17.48
| | i 13 16.71
- > S 12 15.93
< 11 15.16
0 14.39
[ J— 13.61
8 . 12.84
7 12.07
6 11.30
5 10.52
4 . 9.750
3 8.976
2 8.203
1 7.430

Figure 6: KZ: Contact area and stress field at final time 7" = 1 sec.
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5.3 Test 3: The contact boundary is a piecewise straight line

In this last test, we consider a more general contact problem in which the contact
boundary is the union of several straight lines (see Figure 7). No body forces are
assumed and a boundary force g'(z1,zs,t) = (0, —10¢) N/m pushing down the upper
body to the lower one is applied. The embedding conditions are depicted in Figure
7.

The initial conditions o = 0 N/m? «® = Om and a final time of T = 1 sec. are
chosen. The material characteristics are E! = 102M Pa, x* = 0.3, \* = 1000/ -
sec/m?, ot = VION/m?, { =1,2.

Ll

S <8
T I !
gD l’_‘— Il:l Q’l“—‘_l FD<§
S ) c 2 2 <8
§V\FD () I;f Iy &

Figure 7: A case with a piecewise straight line as contact boundary.

A first computation using the global contact approach and the nonmatching finite
element meshes suggested in Figure 8 is performed.

Figure 8: (Non-matching meshes): Initial boundaries and deformed meshes af final time T" = 1 sec.
using K}

The Von-Mises stress norm at the final time T is plotted (in the deformed configu-
ration) in Figure 9. These results show a good agreement with those obtained when
using matching meshes (see Figures 10 and 11).

This work is supported by DGESIC-Spain (Project PB98-0637).

20




20 88.64
84.46
79.84
75.22
70.60
65.98
61.36
56.74
52.12
47.49
42.87
38.25
JE— 33.63

29.01

T

J— 24.39
. 19.77
- 15.15
10.53
5.906
1.283

HNWR OO S ® Y

Figure 9: (Non-matching meshes): Von-Mises stress norm at final time T = 1 sec. using Kj

Figure 10: (Matching meshes): Initial boundaries and deformed meshes at final time 7' = 1 sec.
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