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Abstract

This paper is concerned with the discrete contact problem governed by
Coulomb’s friction law. We propose and study a new technique using mixed
finite elements with two multipliers in order to determine numerically critical
friction coefficients for which multiple solutions to the friction problem ex-
ist. The framework is based on eigenvalue problems and it allows to exhibit
non-uniqueness cases involving an infinity of solutions located on a continuous
branch. The theory is illustrated with several computations which clearly show
the accuracy of the proposed method.

Keywords : Coulomb friction, contact problem, mixed finite elements, eigenvalue problem,
solution multiplicity.

1. Introduction

Friction is one of the most basic phenomena arising in mechanics. The work in this
paper is concerned with an investigation of the well-known Coulomb friction model
in static or quasi-static elasticity (see [6, 16, 9]). Although quite simple in its for-
mulation, the Coulomb friction law shows great mathematical difficulties which have
not allowed a complete understanding of the model. In continuum elastostatics, only
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existence results for small friction are established (see [18, 15, 7]). The corresponding
finite element problem admits always a solution which is unique provided that the
friction coefficient is lower than a critical value vanishing when the discretization pa-
rameter tends to zero (see [8, 9]). In [13] an elementary example involving one finite
element shows that the problem can admit one, multiple or an infinity of solutions
located on a continuous branch and that the number of solutions can eventually de-
crease when the friction coefficient increases. Such an example in the finite element
context completes the results using truss elements in the static or quasi-static cases
(see [14, 2, 17, 3]).

Our aim in this paper is to propose and to study a framework for the finite element
problem based on the ideas introduced for the continuous model in [10, 11] in order
to obtain explicit examples of non-uniqueness. Our method involves finite element
eigenvalue problems written in a mixed form. We show that the real eigenvalues of the
latter problem are precisely critical friction coefficients for which multiple solutions
to the Coulomb frictional contact problem exist. The loss of uniqueness for a specific
friction coefficient has to be analyzed in the context of a varying friction coefficient
during the quasi-static slip.

In section 2, we recall the continuous model which is discretized using mixed finite
elements. An eigenvalue problem is introduced in section 3 and we prove that if a real
eigenvalue exists then the problem is open to non-uniqueness. More precisely, if the
friction coefficient has a critical value then there exist an infinity of solutions located
on a continuous branch. Section 4 is concerned with some analytical calculus of
eigenvalues on elementary finite element meshes. In the case of a single finite element
mesh, the eigenvalue (i.e., the critical friction coefficient) is a bifurcation point. In
section 5, the computations with arbitrary meshes and different finite elements clearly
show that the convergence of the discrete eigenvalue problem is quite satisfactory
independently of the degree and the type of the elements. Moreover, we observe
numerically that there always exist at least a real limit for some discrete eigenvalues
as the discretization parameter vanishes. Such a limit depends only on the geometry
of the material, the partition of the boundary of the body into Dirichlet, Neumann
and frictional contact conditions and on the Poisson ratio. Further computations show
that such limits can be very small on specific geometries. Practically we explain how
a simple non-uniqueness example can be always constructed using a critical friction
coefficient.

2. The continuous and the discrete problems

2.1. The continuous problem

We consider the deformation of an elastic body occupying, in the initial uncon-
strained configuration a domain Ω in R

2 where plane strain assumptions are assumed.
The Lipschitz boundary ∂Ω of Ω consists of ΓD,ΓN and ΓC where the measure of
ΓD does not vanish. The body Ω is submitted to given displacements U on ΓD and
subjected to surface traction forces F on ΓN ; the body forces are denoted f . In the
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initial configuration, the part ΓC is a straight line segment considered as the can-
didate contact surface on a rigid foundation for the sake of simplicity which means
that the contact zone cannot enlarge during the deformation process. The contact
is assumed to be frictional and the stick, slip and separation zones on ΓC are not
known in advance. We denote by µ > 0 the given friction coefficient on ΓC . The
unit outward normal and tangent vectors of ∂Ω are n = (n1, n2) and t = (−n2, n1)
respectively.

The contact problem with Coulomb’s friction law consists of finding the displace-
ment field u : Ω → R

2 satisfying (2.1)–(2.6):

div σ(u) + f =0 in Ω, (2.1)

σ(u) = C ε(u) in Ω, (2.2)

u =U on ΓD, (2.3)

σ(u)n =F on ΓN . (2.4)

The notation σ(u) : Ω → S2 represents the stress tensor field lying in S2, the space
of second order symmetric tensors on R

2. The linearized strain tensor field is ε(u) =
(∇u + ∇

T u)/2 and C is the fourth order symmetric and elliptic tensor of linear
elasticity.

Afterwards we adopt the following notation for any displacement field u and for
any density of surface forces σ(u)n defined on ΓC :

u = unn + utt and σ(u)n = σn(u)n + σt(u)t.

On ΓC , the three conditions representing unilateral contact are given by

un ≤ 0, σn(u) ≤ 0, σn(u)un = 0, (2.5)

and the Coulomb friction law is summarized by the following conditions:







ut = ur
t =⇒ |σt(u)| ≤ µ|σn(u)|,

ut 6= ur
t =⇒ σt(u) = −µ|σn(u)|

ut − ur
t

|ut − ur
t |
,

(2.6)

where ur is the reference displacement and ut − ur
t is the slip. Two choices of ur are

more used in literature. The first one is ur ≡ 0 for the static case. The second one is
used in the incremental formulation of a quasi-static process (see [4]). Indeed, if ∆t
is the time step then u stands for u((i+ 1)∆t) , ur = u(i∆t) and f ,F,U have to be
replaced by f((i+ 1)∆t),F((i+ 1)∆t),U((i+ 1)∆t).

The variational formulation of problem (2.1)–(2.6) in its mixed form consists of
finding (u, λn, λt) ∈ Uad ×Mn ×Mt(−µλn) = Uad × M(−µλn) which satisfy:














a(u,v) −

∫

ΓC

λnvn dΓ −

∫

ΓC

λtvt dΓ =L(v), ∀v ∈ V,
∫

ΓC

(νn − λn)un dΓ +

∫

ΓC

(νt − λt)(ut − ur
t ) dΓ≥ 0, ∀(νn, νt) ∈ M(−µλn),

(2.7)
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where M(−µλn) = Mn ×Mt(−µλn) is defined next. We set

Mn =
{

ν; ν ∈ H− 1

2 (ΓC), ν ≤ 0 on ΓC

}

,

and, for any g ∈ −Mn

Mt(g) =
{

ν; ν ∈ H− 1

2 (ΓC), −g ≤ ν ≤ g on ΓC

}

,

where H− 1

2 (ΓC) is the dual space of H
1

2 (ΓC) (see [1]) and the inequality conditions
incorporated in the definitions of Mn and Mt(g) have to be understood in the dual
sense.

In (2.7), the standard notations are adopted

a(u,v) =

∫

Ω

(Cε(u)) : ε(v) dΩ, L(v) =

∫

Ω

f .v dΩ +

∫

ΓN

F.v dΓ,

for any u and v in the Sobolev space (H1(Ω))2. In these definitions the notations ·
and : represent the canonical inner products in R

2 and S2 respectively.
In (2.7), V and Uad denote following sets of displacement fields :

V =
{

v ∈ (H1(Ω))2; v = 0 on ΓD

}

, Uad =
{

v ∈ (H1(Ω))2; v = U on ΓD

}

.

It is easy to see that if (u, λn, λt) is a solution of (2.7), then λn = σn(u) and λt = σt(u).

2.2. Finite element approximation

The body Ω is discretized by using a family of triangulations (Th)h made of finite
elements of degree k ≥ 1 where h > 0 is the discretization parameter representing
the greatest diameter of a triangle in Th. The set approximating V becomes:

Vh =
{

vh; vh ∈ (C(Ω))2, vh|T ∈ (Pk(T ))2 ∀T ∈ Th, vh = 0 on ΓD

}

,

where C(Ω) stands for the space of continuous functions on Ω and Pk(T ) represents
the space of polynomial functions of degree k on T . Let us mention that we focus on
the discrete problem and that any discussion concerning the convergence of the finite
element problem towards the continuous model is out of the scope of this paper.

Let the notation Uh stand for a convenient approximation of U on ΓD. On the
boundary of Ω, we still keep the notation vh = vhnn + vhtt for every vh ∈ Vh and we
denote by (Th)h the family of monodimensional meshes on ΓC inherited by (Th)h. Set

Wh =
{

ν; ν = vh|ΓC
.n, vh ∈ Vh

}

,

which is included in the space of continuous functions on ΓC which are piecewise of
degree k on (Th)h and coincides with the latter space when ΓC ∩ ΓN = ∅.
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We denote by p the dimension of Wh and by ψi, 1 ≤ i ≤ p the corresponding
canonical finite element basis functions of degree k. For all ν ∈ Wh we shall denote
by F (ν) = (Fi(ν))1≤i≤p the generalized loads at the nodes of ΓC :

Fi(ν) =

∫

ΓC

νψi, ∀ 1 ≤ i ≤ p.

We next introduce the sets of Lagrange multipliers:

Mhn =
{

ν; ν ∈ Wh, Fi(ν) ≤ 0, ∀1 ≤ i ≤ p
}

and, for any g ∈ −Mhn

Mht(g) =
{

ν; ν ∈ Wh, |Fi(ν)| ≤ Fi(g), ∀ 1 ≤ i ≤ p
}

.

Hence, the discrete problem issued from (2.7) becomes: find (uh, λhn, λht) ∈
Uad,h ×Mhn ×Mht(−µλhn) = Uad,h × Mh(−µλhn) such that























a(uh,vh) −

∫

ΓC

λhnvhn dΓ −

∫

ΓC

λhtvht dΓ =L(vh), ∀vh ∈ Vh,
∫

ΓC

(νhn − λhn)uhn dΓ +

∫

ΓC

(νht − λht)(uht − ur
t ) dΓ ≥ 0,

∀(νhn , νht) ∈ Mh(−µλhn).

(2.8)

where

Uad,h =
{

vh; vh ∈ (C(Ω))2, vh|T ∈ (Pk(T ))2 ∀T ∈ Th, vh = Uh on ΓD

}

and Uh denotes a convenient approximation of U on ΓD.
Let Un = (Un)i, Ut = (Ut)i and U r

t = (U r
t )i, 1 ≤ i ≤ p denote the vectors

of components the nodal values on ΓC of uhn, uht and ur
t respectively. It can be

easily checked (see [5]) that the vector formulation of the frictional contact conditions
incorporated in the inequality of (2.8) are:

Fi(λhn) ≤ 0, (Un)i ≤ 0, Fi(λhn) (Un)i = 0, 1 ≤ i ≤ p, (2.9)

|Fi(λht)| ≤ −µFi(λhn), Fi(λht)(Ut − U r
t )i ≤ 0, 1 ≤ i ≤ p, (2.10)

|Fi(λht)| < −µFi(λhn) =⇒ (Ut − U r
t )i = 0, 1 ≤ i ≤ p. (2.11)

Proposition 2.1 For any positive µ, there exists a solution to Coulomb’s discrete
frictional contact problem (2.8).

Proof. See [5], Proposition 3.2.

3. A finite element eigenvalue approach for solution multiplicity

Let us consider a solution (uh, λhn, λht) ∈ Vh×Mh(−µλhn) of the discrete Coulomb
frictional contact problem (2.8). Then we denote by If , Is and Ic the set of nodes of
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ΓC which are currently free (separated from the rigid foundation), the set of nodes
of ΓC which are stuck to the rigid foundation, and the set of nodes of ΓC which
are currently in contact but are candidate to slip, respectively. In other words, if
p = dim(Wh) denotes the number of nodes belonging to ΓC , we can write

If =
{

i ∈ [1, p]; (Un)i < 0
}

,

Is =
{

i ∈ [1, p]; (Un)i = 0, |Fi(λht)| < −µFi(λhn)
}

,

Ic =
{

i ∈ [1, p]; (Un)i = 0, |Fi(λht)| = −µFi(λhn)
}

.

Henceforth, we assume that all the nodes of Ic are slipping (not necessarily in the
same direction), i.e.,

(Ut − U r
t )i 6= 0, ∀i ∈ Ic, (3.1)

and we denote by

γi =
(Ut − U r

t )i

|(Ut − U r
t )i|

, ∀i ∈ Ic,

the sign of the slip at node number i of Ic. Next we consider the following eigenvalue
problem:

Eigenvalue problem. Find the eigenvalue αh ∈ C and the corresponding eigenfunc-
tion(s) (0, 0, 0) 6= (ϕh, θhn, θht) ∈ Vh ×Wh ×Wh such that



































a(ϕh,vh)−

∫

ΓC

θhnvhn dΓ −

∫

ΓC

θhtvht dΓ = 0, ∀vh ∈ Vh,

(Φn)i = (Φt)i = 0, ∀i ∈ Is,

Fi(θhn) =Fi(θht) = 0, ∀i ∈ If ,

(Φn)i = 0, Fi(θht) = αhFi(θhn)γi, ∀i ∈ Ic,

(3.2)

where Φn and Φt denote the vectors of the normal and tangential components, re-
spectively, of ϕh on ΓC .

Proposition 3.1 Let p0 be the number of nodes belonging to Ic. Then problem (3.2)
admits exactly p0 eigenvalues αh and eigenfunctions (ϕh, θhn, θht).

Proof. We number as follows the basis functions of Vh: the normal displacement
basis functions on ΓC from 1 to p (those corresponding to Ic from 1 to p0), the
tangential displacement basis functions on ΓC from p+ 1 to 2p (those corresponding
to Ic from p + 1 to p + p0) and the basis functions of interior nodes from 2p + 1 to
m =dim(Vh). Let us mention that the first equation in (3.2) can be written as follows

KΦ −





F (θhn)
F (θht)

0



 = 0
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where K denotes the stiffness matrix of order m and Φ denotes the vector associated
with ϕh.

Now we consider the following problem which for a given r = (ri)i ∈ R
p0

consists
of finding the solution T (r) = (V,X, Y ) ∈ R

m × R
p × R

p of the following algebraic
system:











































KV −





X
Y
0



 = 0,

(Vn)i = (Vt)i = 0, ∀i ∈ Is,

Xi = Yi = 0, ∀i ∈ If ,

(Vn)i = 0, Yi = ri, ∀i ∈ Ic.

(3.3)

Let us show that for any r ∈ R
p0

there always exists a unique solution to problem
(3.3). The equations in (3.3) can be rewritten as follows (with obvious notations):

K





















0
0

Vn(If )
Vt(Ic)

0
Vt(If )

V̂





















=





















X(Ic)
X(Is)

0
r

Y (Is)
0
0





















, (3.4)

where K = Kij, 1 ≤ i, j ≤ 7. The vectors Vn(If ), Vt(Ic), Vt(If ) and V̂ are the unique
solutions of the symmetric positive definite system:









K33K34K36K37

K43K44K46K47

K63K64K66K67

K73K74K76K77

















Vn(If )
Vt(Ic)
Vt(If )

V̂









=









0
r
0
0









.

The vectors X(Ic), X(Is) and Y (Is) are given by (3.4).
Let us consider the linear operator T : R

p0

→ R
p0

which associates to any r ∈ R
p0

the vector q ∈ R
p0

given by qi = Xiγi for all 1 ≤ i ≤ p0 and let us denote by βi

and bi the p0 eigenvalues and eigenvectors of the operator T , i.e., Tbi = βibi. Now it
becomes straightforward that αh and (ϕh, θhn, θht) are solutions of (3.2) if and only
if (Φ, F (θhn), F (θht)) = T (r) for some eigenvector r of T having 1/αh as eigenvalue
(note that αh = 0 cannot be an eigenvalue in (3.2) and that the components of r are
precisely those of F (θht) on Ic).

Remark 3.2 Let us use the same numbering of the basis functions of Vh ×Wh ×Wh

as in the previous proof and let us suppose, for the sake of simplicity, that p0 = p and
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γi = 1 (i.e., Is = If = ∅ and (Ut − U r
t )i > 0, ∀i ∈ [1, p]). In this case, the eigenvalue

problem (3.2) becomes:

Φ = K−1





F (θhn)
F (θht)

0



 and (Φn)i = 0, Fi(θht) = αhFi(θhn),∀i ∈ [1, p], (3.5)

which is equivalent to solve the following problem: find the eigenvalue −1/αh and the
eigenvector F (θhn) satisfying

(K̃nn)−1K̃nt F (θhn) = −
1

αh

F (θhn). (3.6)

where the following notation is adopted

K−1 =





K̃nn K̃nt K̃ni

K̃nt K̃tt K̃ti

K̃ni K̃ti K̃ii



 . (3.7)

Having at our disposal F (θhn) and αh, we see that F (θht) and Φ can be easily deter-
mined.

Using the eigenvalue problem (3.2) allows us to obtain sufficient conditions for the
non-uniqueness of the solution (uh, λhn, λht) of (2.8). This is achieved in the following
theorem.

Theorem 3.3 Let (uh, λhn, λht) be a solution of Coulomb’s discrete frictional contact
problem (2.8) with µ > 0 as friction coefficient. We assume that Ic 6= ∅ and that (3.1)
holds. Moreover we suppose that

Fi(λhn) < 0, ∀i ∈ Ic. (3.8)

If µ is an eigenvalue of (3.2) then the Coulomb’s frictional contact problem (2.8)
admits an infinity of solutions located on a continuous branch. More precisely, if we
denote by (ϕh, θhn, θht) the corresponding eigenvector then there exists δ0 > 0 such
that (uh + δϕh, λhn + δθhn, λht + δθht) is solution of (2.8) for any δ with |δ| ≤ δ0.

Proof. Let us firstly remark that

(uh + δϕh, λhn + δθhn, λht + δθht)

satisfies the equation in (2.8) for any δ ∈ R.
Next, we have to check that (uh + δϕh, λhn + δθhn, λht + δθht) verifies the fric-

tional contact conditions in the inequality of (2.8) (or equivalently (2.9)–(2.11)) for
a sufficiently small |δ|. Let us recall that Φn and Φt denote the vectors of compo-
nents the normal and tangential values respectively of ϕh on ΓC . To simplify, we set
X = F (θhn) and Y = F (θht) (i.e., the generalized loads corresponding to θhn and θht

respectively).
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Since Fi(λhn) < 0 for all i ∈ Ic∪Is there exists δa > 0 such that Fi(λhn)+δXi ≤ 0,
for all i ∈ Ic ∪ Is and |δ| ≤ δa. Having in mind that Fi(λhn) = Xi = 0 for i ∈ If
we deduce that Fi(λhn) + δXi ≤ 0 for all i ∈ Ic ∪ Is ∪ If . The same technique
can be used to prove that (Un + δΦn)i ≤ 0 for a sufficiently small |δ| and that
(Fi(λhn) + δXi)(Un + δΦn)i = 0. Hence the conditions (2.9) hold.

According to the definition of Is there exists δb > 0 such that |δ| ≤ δb implies
|Fi(λht)| < −µFi(λhn) − δ(|Yi| + µ|Xi|) for all i ∈ Is. Therefore |Fi(λht) + δYi| <
−µ(Fi(λhn) + δXi) and (Ut + δΦt)i = (U r

t )i for all i ∈ Is. So the conditions (2.10)–
(2.11) are satisfied for i ∈ Is.

From the definition of If , we deduce Fi(λhn) = Fi(λht) = Xi = Yi = 0 for all
i ∈ If . As a consequence (2.10) and (2.11) are fulfilled for i ∈ If .

It remains to show that (2.10) and (2.11) hold for i ∈ Ic. Since |Fi(λht)| =
−µFi(λhn), we deduce from the definition of Ic that Fi(λht) = µFi(λhn)γi, ∀i ∈ Ic.
Since Yi = µXiγi we have Fi(λht) + δYi = µ(Fi(λhn) + δXi)γi for all i ∈ Ic. From
(3.8), we get |Fi(λht) + δYi| = −µ(Fi(λhn) + δXi) for |δ| ≤ δc and i ∈ Ic. The
definition of γi on Ic implies that there exists δd > 0 such that γi(Ut + δΦt − U r

t )i =
γi(Ut − U r

t )i + δγi(Φt)i > 0 for |δ| ≤ δd and i ∈ Ic.
Consequently for any |δ| ≤ δ0 = min(δa, δb, δc, δd) all the conditions (2.9)–(2.11)

hold for (uh + δϕh, λhn + δθhn, λht + δθht). This completes the proof.

Remark 3.4 1. The statement in the theorem is a sufficient condition for non-
uniqueness detecting an infinity of solutions located on a continuous branch. The
technique developed in this paper does not allow us to find multiple solutions which
are isolated as in [13].

2. The assumptions considered in the theorem require that the friction coefficient
µ is an eigenvalue in (3.2). The latter eigenvalue problem depends on the geometry
(the domain Ω and the distribution of the different types of boundaries ΓD,ΓN ,ΓC),
on the elastic properties incorporated in the operator C (more precisely on the Poisson
coefficient ν for an isotropic elastic material) and on the finite element mesh (we will
see in the section devoted to the numerical experiments that the mesh and the type of
finite elements used have a little influence on the eigenvalues).

3. The positive eigenvalues represent critical friction coefficients for which the
problem (2.8) is open to non-uniqueness. We will show in the section concerned with
the numerical experiments that if (3.2) admits a positive eigenvalue then an example
of non-uniqueness with an infinity of solutions can be explicitly constructed. This can
be performed by choosing simple loads F,f and a zero reference displacement field
ur. In fact the solution (uh, λhn, λht) of Coulomb’s discrete frictional contact problem
(2.8) for this particular friction coefficient µ must satisfy (3.1) and (3.8).

4. Some elementary examples

In what follows, we consider the commonly used Hooke’s constitutive law corre-
sponding to homogeneous isotropic materials in (2.2):

σij =λδijεkk(u) + 2Gεij(u) in Ω, (4.1)
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where λ and G are the positive Lamé coefficients and δij denotes the Kronecker
symbol. Note that λ = (Eν)/((1 − 2ν)(1 + ν)) and G = E/(2(1 + ν)) where E and
ν represent Young’s modulus and Poisson’s ratio, respectively.

It is easy to see that the only constitutive constant involved in the eigenvalue
problem (3.2) is the Poisson ratio ν and that the eigenvalues and eigenfunctions are
independent of the Young modulus E.

Our aim in this section is to illustrate with simple examples the eigenvalue problem
in (3.6). This means that we determine critical friction coefficients involving an
infinity of solutions located on a continuous branch (with slip only in one direction).

4.1. First example

Here we propose to determine explicitly the eigenvalues for the finite element mesh
comprising one triangular element, depicted in Figure 1, and to exhibit a bifurcation
point between the ”stick solution” and a vertical branch where an infinity of solutions
are located.

Γ
Γ

C

N

D

A Γ
Ω

Figure 1: First example of an elementary finite element mesh

In this case Ic is reduced to the node A. The stiffness matrix becomes:

K =
1

2

(

λ+ 3G λ+G
λ+G λ+ 3G

)

.

Using the notations in (3.7) we get

(K̃nn)−1(K̃nt) = −
λ+G

λ+ 3G
.

In this case there exists a unique eigenvalue (−1/αh) in (3.6). Obviously the unique
critical friction coefficient denoted µcr = αh is

µcr =
λ+ 3G

λ+G
= 3 − 4ν.

Note that the friction coefficient µcr depends in a linear way on ν.
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Let us determine the set of solutions. We have to consider a solution of (2.8)
satisfying the equation:

K

(

Un

Ut

)

−

(

F (λhn)
µF (λhn)

)

=

(

F1

F2

)

(4.2)

with Un = 0, Ut > 0 and F (λhn) < 0. The notations F1 and F2 represent the forces
corresponding to the surface loads on ΓN in the horizontal and vertical directions,
respectively. We suppose in the following that F1/F2 = (λ+G)/(λ+3G), with F2 > 0.
Equation (4.2) becomes:















1

2
(λ+G)Ut − F (λhn) = F1

1

2
(λ+ 3G)Ut − µF (λhn) = F2

(4.3)

For µ = µcr = (λ+3G)/(λ+G) we deduce that the system of equations (4.3) admits
an infinity of solutions verifying:















Ut ∈
(

0,
2F1

λ+G

)

,

F (λhn) =
1

2
(λ+G)Ut − F1 ∈ (−F1, 0).

F12

G

λ +3 G

λ + 

λ + G

U

µ
µ

t

cr =

Figure 2: The bifurcation point µ = µcr between the ”slip solution” and a vertical
branch. (the problem admits an infinity of solutions)

This result corresponds precisely to an infinity of solutions located on a continuous
branch which is represented in Figure 2. In other words, if µ = µcr then there exists
an infinity of solutions to the problem (2.8). As it follows from [13] it can be easily
checked that for all µ ≥ µcr the ”stick position” Ut = Un = 0 is a solution of (2.8).
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Moreover when µ > 0 the slip solution Ut = 2F1/(λ + G) solves (2.8). That means
that the problem has one solution for µ < µcr, an infinity of solutions for µ = µcr and
two (isolated) solutions for µ > µcr. The critical frictional coefficient µcr corresponds
to a bifurcation point (see Figure 2).

4.2. Second example

The next example is concerned with the square of Figure 3 meshed with 4 linear tri-
angles. Here Ic = {A,B} and the number of degrees of freedom for the displacements
is 6.

Γ

Γ
C

N

Γ
D

Γ
N

A B

Ω

Figure 3: Second example of elementary finite element mesh
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Figure 4: The behavior of the critical friction coefficient as a function of Poisson ratio
ν for the second elementary example.
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The corresponding stiffness matrix is:

K =
1

2

















λ+ 3G 1

2
(λ+G) −(λ+G) λ+G 1

2
(−λ+G) −(λ+ 3G)

1

2
(λ+G) λ+ 3G λ+G 1

2
(λ−G) −(λ+G) −(λ+ 3G)

−(λ+G) (λ+G) 4λ+ 12G −(λ+ 3G) −(λ+ 3G) 0
λ+G 1

2
(λ−G) −(λ+ 3G) λ+ 3G −1

2
(λ+G) −(λ+G)

1

2
(−λ+G) −(λ+G) −(λ+ 3G) −1

2
(λ+G) λ+ 3G λ+G

−(λ+ 3G) −(λ+ 3G) 0 −(λ+G) λ+G 4λ+ 12G

















.

The matrix of the eigenvalue problem in (3.6) is

(K̃nn)−1(K̃nt) =
1

(λ+ 2G)(λ+ 5G)

(

−(5G2 + 5λG+ λ2) −G(5G+ 2λ)

G(5G+ 2λ) 5G2 + 5λG+ λ2

)

.

The two critical friction coefficients obtained from (3.6) are

µcr = ±

√

(1 − ν)(5 − 8ν)

ν(3 − 4ν)
= ±

√

(λ+ 2G)(λ+ 5G)

λ(λ+ 3G)
.

Note that these values are opposite since the mesh and the boundary conditions are
symmetric. The behavior of the positive µcr as function of ν is shown in Figure 4.
We observe that the positive eigenvalue tends to infinity when ν → 0 and that it
becomes 1 when ν → 1

2
.

5. Computational examples of non-uniqueness

This section shows two numerical experiments. In the first test we choose again
the square geometry depicted in Figure 3 and we examine the convergence of the
finite element procedure (3.6) with several meshes and types of finite elements. In
the second test we show that the computed eigenvalues can be small (in fact as small
as desired) on specific geometries. We conclude this section by explaining how an
infinity of solutions located on a continuous branch can be always obtained when a
positive critical friction coefficient is known.

5.1. First example

We consider the unit square introduced in Figure 3 and we solve the eigenvalue
problem (3.6) with different meshes and various types of finite elements. We observe
numerically that there always exist a positive eigenvalue that converges to a limiting
value as the discretization parameter tends to zero, and this limit depends only on
Poisson’s ratio. Figure 5 represents the convergence of these critical friction coeffi-
cients obtained with various finite elements. The given Poisson ratio is 0.3 and the
limit is approximately 1.945.



Hassani, Hild, Ionescu, Sakki / Finite element and solution multiplicity for Coulomb friction 14

Figure 5: The convergence of the critical friction coefficient (lowest positive eigen-
value) with the mesh size for various finite elements (ν = 0.3) for the first computa-
tional example.

5.2. Second example

Next, we consider the inclined body represented in Figure 6. The geometrical
properties of Ω are H/L = H/L′ = 3. The computations are performed on a fixed
mesh comprising 28084 linear triangles, 14251 nodes and 51 nodes on ΓC .

Ω Γ

Γ

Γ

Γ

C

NN

D

L’L

H

Figure 6: Setting of the problem for the second computational example.
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Figure 7 shows the behavior of the lowest positive eigenvalue as a function of
Poisson ratio. Let us notice that the computed eigenvalues range between 0.55 and
0.61. Such values are commonly observed friction coefficients. Of course these values
depend also on H,L, L′ and we notice numerically that the eigenvalues tend to zero
when the ratios H/L = H/L′ tend to infinity.

0.55

0.56

0.57

0.58

0.59

0.61

0.60

0.62

0 0.20.1 0.3 0.4 0.5

L
ow

es
t p

os
iti

ve
 e

ig
en

va
lu

e

Poisson ratio, ν

Figure 7: The behavior of the critical friction coefficient (lowest positive eigenvalue)
as a function of Poisson ratio ν for the second computational example.

Finally the eigenfunction Φ corresponding to ν = 0.3 is computed from (3.5) and
depicted in Figure 8. Using the constitutive relation (4.1) allows the computation of
the Von-Mises stress field shown in Figure 9.

When problem (3.6) admits a real eigenvalue µ then the pair geometry-material is
open to the non-uniqueness for the Coulomb friction problem. As a matter of fact,
one can think of a distribution of loads F,f and a displacement field Uh such that a
solution (uh, λhn, λht) of (2.8) for this particular friction coefficient µ satisfies (3.8).
We consider as in the previous examples a geometry Ω in which ΓC is a straight line
segment located on the 0x1−axis with n = (0,−1) and t = (1, 0). We choose as
example

Uh(x) =
(

α+ 2µ
1 − ν

1 − 2ν
x2,−x2

)

, F(x) = σn(x), f = 0

with α > 0 and σ11 = −(Eν)/((1 − 2ν)(1 + ν)), σ22 = −(E(1 − ν))/((1 − 2ν)(1 +
ν)), σ12 = σ21 = −µσ22. Taking uh(x) = Uh(x), for all x ∈ Ω, λhn(x) = σ22, λht =
−σ12, for all x ∈ ΓC , one can easily check that (uh, λhn, λht) is a solution of (2.8).
Since If = Is = ∅, λhn(x) = σ22 < 0 and Ut(x) = α > 0 we deduce that the sufficient
conditions of Theorem 3.3 hold.
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Figure 8: The eigenfunction Φ corresponding to ν = 0.3 for the second computational
example.

6. Conclusion

The problem of uniqueness of the static (or quasi-static) Coulomb friction problem
in linear elasticity is studied using a specific eigenvalue problem involving mixed
finite elements with two multipliers. If this problem admits a positive eigenvalue
called critical friction coefficient, then the Coulomb friction problem is open to non-
uniqueness. More precisely if the friction coefficient is equal with this critical value
then the problem exhibits an infinity of solutions located on a continuous branch. This
critical coefficient depends exclusively on the geometry (the shape of the domain and
the distribution of different types of boundaries) and on the Poisson ratio.

When the mesh size tends to zero the sequence of the “discrete” first eigenvalues is
convergent to a critical friction coefficient. The mixed finite element procedure with
two multipliers used in this paper is very efficient in detecting the eigenvalues. The
numerical experiments obtained with this method clearly show that the computed
critical friction coefficient is independent on the mesh type and on the degree of the
elements.

The loss of uniqueness which exhibits an infinity of non-isolated solutions (con-
tinuous branch) can be associated with a loss of validity of the static or quasi-static
approximations and the presence of dynamic instabilities. This loss of stability for a
specific friction coefficient has to be analyzed in the context of state-dependent fric-
tion coefficients. Indeed for the slip weakening or slip-rate weakening friction models
the friction coefficient is continuously decreasing (from the static value down to a
dynamic value) during the quasi-static slip and the loss of stability (or uniqueness)
occurs for a specific (critical) friction coefficient. These questions are actually under
investigation in [12].
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Figure 9: The Von-Mises stress field corresponding to the eigenfunction Φ for the
second computational example.
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