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Abstract

In this work, a contact problem between a linear elastic material and a deformable
obstacle is numerically analyzed. The contact is modelled using the well-known
normal compliance contact condition. The weak formulation leads to a nonlinear
variational equation which is approximated by using the finite element method. A
priori error estimates are recalled. Then, we define an a posteriori error estimator
of residual type to evaluate the accuracy of the finite element approximation of the
problem. Upper and lower bounds of the discretization error are proved for this
estimator.
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1 Introduction and notation

The finite element method is currently used in the numerical approxima-
tion of contact problems occurring in several engineering applications (see
[10,11,14,17,25]) and the a posteriori error estimators are efficient tools for
evaluating numerically the quality of these finite element computations. An
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extensive review of different estimators used in various contexts can be found
in [2,3,9,23,24]. Several error estimators have been chosen and studied for
frictionless or frictional contact problems, in particular in [4,26] (residual ap-
proach using a penalization of the contact condition), in [12,13] (residual ap-
proach for the variational inequality and the corresponding mixed formulation
for unilateral contact), in [6,7] (error in the constitutive relation for unilat-
eral contact with or without Coulomb friction), in [19] (duality approach for
the compliance model with friction) and finally in [8] (residual approach for
BEM-discretizations).

In the present work we are interested in developing residual estimators for the
two-dimensional normal compliance contact model in linear elasticity initially
introduced in [20,21] and studied in [15,16]. As a consequence, we consider
a similar study than the ones in [4,26] since the compliance law could be
seen (to simplify) as a kind of penalization with a fixed penalty parameter
depending on the material characteristics. In [4,26] the authors propose a first
error estimator for a penalization of the unilateral contact law and prove (in
[4]) that the discretization error is bounded by the estimator. In our work
we also prove that the local indicators are bounded by the local discretization
error for the compliance model. To our knowledge, the asymptotic equivalence
between an estimator and the discretization error is a new result for the contact
model with normal compliance.

The paper is organized as follows. In section 2 we introduce the equations
modelling the contact problem between an elastic body and a deformable foun-
dation. We write the problem using a nonlinear variational equation which is
well posed. In the third section, we choose a classical discretization involving
continuous finite elements of degree one, we write the discrete problem and
we recall the corresponding a priori error estimates. Section 4 is concerned
with the study of an a posteriori error estimator: we propose a residual error
estimator and we prove that the discretization error is bounded by the esti-
mator. In addition we prove that the local estimators are bounded by local
discretization errors.

As usual, we denote by (L?(.))? and by (H*(.))¢, s > 0,d = 1,2 the Lebesgue
and Sobolev spaces in one and two space dimensions (see [1]). The usual norm
of (H*(D))%is denoted by ||-||s,p and we keep the same notation when d = 1 or
d = 2. For shortness the (L2(D))%norm will be denoted by || - ||p when d =1
or d = 2. In the sequel the symbol | - | will either denote the euclidian norm
in R?, or the length of a line segment, or the area of a plane domain. Finally
the notation a < b means that there exists a positive constant C' independent
of a and b (and of the meshsize of the triangulation) such that ¢ < C'b. The
notation @ ~ b means that ¢ < b and b < a hold simultaneously. Next, bold
letters like u, v, indicate vector valued quantities, while the capital ones (e.g.,
V,V,,...) represent functional sets involving vector fields.




2 The normal compliance problem in elasticity

Let  represent an elastic body in R? where plane strain assumptions are
assumed. The boundary 9f) is supposed to be polygonal, i.e., it is the union
of a finite number of linear segments. Moreover we suppose that the boundary
consists in three nonoverlapping parts I'p, I'y and I'c with meas(T'p) > 0
and meas(I'c) > 0. The normal unit outward vector on Jf2 is denoted v =
(n1,ne) and we choose as unit tangential vector ¢ = (—ng, 7). In its initial
configuration, the body is in contact on I'c with normal compliance conditions.
The body is clamped on I'p, for the sake of simplicity, and it is subjected to
volume forces f = (fi, f2) € (L*(Q))? and to surface forces g = (g1,92) €
(L*(T'w))%.

Let us denote by © = (u;)1<i<2 the displacement vector and by o = (04;)1<ij<2
the stress tensor such that

ou o
oij(u) = a'ijhlca—x:, i,J,h ke {1,..,2},

where the summation convention of repeated indices is adopted. The functions
aije € L®(Q) are the coefficients of a fourth order tensor, representing the
elastic properties of the material. As usual we assume that a;ae = ajine = anrs;
and the ellipticity condition a;nk&i;&nk > a|€]?, ¥V &; = &4, for some a > 0.

The frictionless contact problem with normal compliance in elastostatics is to
find the displacement field u such that equations (1)—(4) hold (see [15,16,20,21]):

dive(u)+ f=0 inQ, (1)
u=0 onlp, (2)
ocu)r=g on Ty, (3)

where div denotes the divergence operator of tensor valued functions. For each
displacement field v and for each density of surface forces o(v)r defined on
0Q, we adopt the following notation:

v=uv,v+ut and o(v)v =o0,(v)v+ o (v,
where the normal and tangential components of the displacement field are
given by v, = v - v and v; = v - ¢, respectively, while the normal and shear
components of the stress field are defined as 0,(v) = o(v)v - v and oy(v) =

oc(v)v -t

Then the conditions of normal compliance without friction on I'c are written



as follows:

on(u) = —cu(un)i™,

4)

Tt (’LL) = 0,
where (.) stands for the positive part so that (u, )+ represents the penetration
of the body into the foundation. The constant m, > 1, as well as the non-
negative function ¢, in L>(T¢), stand for interface parameters characterizing
the contact behaviour between the body and the deformable foundation.

Remark 1 When m, = 1 and ¢, = €' (where € > 0 is a small positive
parameter) we recover the classical penalty method (see, e.g., [4,14]) used in
the approzimation of unilateral contact problems.

The set of admissible displacements
V={ve (') :v=0 on Tp}
is endowed with the norm of (H'(Q2))?. We denote by a(:,-) the standard
bilinear form of linear elasticity
Ou; 8vh
v) = e(v) dz = [ a, dz,
a(u,v) /Qa(u) g(v) do | Gighi g 5 . x

where € = (g;j)1<i,j<2 stands for the strain tensor where &;;(u) = (Ou;/0z; +
Ou;/0x;)/2. If T'p has positive superficial measure it is well known that the
bilinear form a(-, -) is V-elliptic,

a{v,v >a/2

i,j=1

8vz

dz > dl|lv|iq, YveV, §>0.

The previous boundary value problem leads to the following nonlinear varia-
tional equation (see, e.g., [15,16]),

u €V, alu,v)+ j,(u,v) = Lv), YveEV, (5)

where the linear form L is given by
= [ f(@)-v(@) dz+ [ g(@) v(@) da)

and the normal compliance functional 7, : V x V — R is defined as,

jn(u7 U) = / Cn(”n)Tnvn d"/(:ﬂ)‘

e

Afterwards we use the imbedding (see, e.g., [1]),

HY(Q) — L*(Tc) (6)




for each g € [1, +o0|.

It is obvious that problem (5) admits a unique solution (see, for instance, [14]).
Moreover, it is easy to check that o, (u) € L*(T¢). Since o, (u) = —c,(u,)T",
we find that

o (W)l 2oy = llea(un)T™ 22wy
< leall oo ey I (un) 5" [l 22re)
< lleallzemayllun™ll 2o
= ||enl| oo (o) 1un Tomn (p ey
S llenllzerollullf,

where we use (6) and we obtain the desired regularity.

3 Finite element approximation and a priori error estimate

We approximate problem (5) by a standard finite element method. Namely
we fix a family of meshes T}, h > 0, regular in Ciarlet’s sense (see [5]), made
of closed triangles and assumed to be subordinated to the decomposition of
the boundary 99 into I'p, I'y and T'c. For K € T} we recall that hg is
the diameter of K and h = fr?eaq%f hyi. The regularity of the mesh implies in

particular that for any edge E of K one has hg = |E| ~ hk.

Let us define Ej, (resp. N;,) as the set of edges (resp. nodes) of the triangulation
and set Ei"t = {E € E,, : E C Q} the set of interior edges of T}, (the edges are
supposed to be relatively open). We denote by EY = {F € E; : E C 'y} the
set of exterior edges included into the part of the boundary where we impose
Neumann conditions, and similarly Ef = {E € Ej, : E C T'c} is the set of
exterior edges included into the part of the boundary where we impose the
contact conditions. Set NP = N}, NTp (note that the extreme nodes of To
belong to NP).

For an element K, we will denote by Ex the set of edges of K and according to
the above notation, we set ' = ExNE™ EY = ExNE}, EY = ExNEY.
For an edge F of an element K, introduce vg g = (n1,ny) the unit outward
normal vector to K along F and the tangent vector x5 = Vg g = (—n2,m1).
Furthermore, for each edge E, we fix one of the two normal vectors and denote
it by v and we set tg = v%. The jump of some vector valued function v across
an edge £ € E™ at a point y € E is defined as

HUHE(y) = alin(}+ v(y +avg) —v(y —avg), YE € E™




Note that the sign of H'UHE depends on the orientation of vg. Finally we will

need local subdomains (also called patches). As usual, let wx be the union of
all elements having a nonempty intersection with K. Similarly for a node =
and an edge F, let wy, = Ugizex K and wg = U gw,.

The finite element space used in Q is then defined by
Vi, = {vh € C@)?: VYK ETh wilxe (PuK)? wilr, = o}.

Thus, the discrete formulation of the normal compliance problem (5) is the
following.

uy € Vy, a(uh, ’Uh) -+ jn(uh,vh) = L(’Uh), Vo, € V. (7)

Using the same arguments as in the continuous case (see [15,16]), it is straight-
forward that problem (7) admits a unique solution.

We now consider the quasi-interpolation operator m,: for any v € L*(£2), we
define m,v as the unique element in V;, = {v, € C(Q) : VK € Th, wlx €
P(K), vplr, = 0} such that:

= Y og(v)As, (8)

mENh\J\/'hD
where for any € NV;, \ WP, )\, is the standard basis function in V, satisfying
Ao(2') = 0y 0, for all @' € Nj, \ NP, and «,(v) is defined as follows:

1
]w$| Wy

v(y)dy, Ya €N, \NP.

a(v)
The following estimates hold (see, e.g., [24]).
Lemma 2 ForanyveV={ve H(Q) : v=0 on I'p} we have

v — ol ShallVullwe, YK €Ty,
v — mpvll g <AL Vlle,, VE € Ep.

Since we deal with vector valued functions we can define a vector valued opera-
tor (which we denote again by 7, for the sake of simplicity) whose components
are defined above. Consequently we can directly state the following.

Lemma 3 For any v € V we have

v = mhollie Shilvllieg, VK € Th, 9)
v — molle AL |vlhws, VE € B (10)




We next recall a standard result dealing with the a priori error estimate (see
[18] for the early studies).

Theorem 4 Let u be the solution to problem (5) and let wy, be the solution
to discrete problem (7). If we assume that u € (H*())?, then we have

[ = unllLe S Allulz0

PROOF. Let v, € V. From the V-ellipticity of a(-, ) and the equations in
(5) and (7) we obtain:

(
a(u — up,u — vy) + alu — up, vy, — Up)

=a{u — up, u — V) + Jn(Un, vy — un) — Jn(u, v — un)
a(u — up, u — vy) + Jn(Un, Vh — u) — Jn(u, vy — u)

+In(un, v — up) — Jn(u, u — up). (11)

Using a standard monotonicity argument, we get

In(Uh, ¥ — up) = Jn(u, u — up)

- /Fc Cn((Un) ™™ = (Unn)™) (tn — Upn) dy(z) < 0. (12)

From the inequality

(@) = ()7 <ml(a)s — (0)+| (077" + (B)7 )
<mla—b| (la" "+ p""")  abeRm>1, (13)

we deduce for each uy, us, v € (H*(Q))?

g1, v) = jn (w2, v)]

< o = (jusal ™ ™) ] ()

< lJurn — uanll o) (Hulfn“?;z;id)(rc) + ”u%H;nqn(;ylz—l)(rc)) [onll(re)

S s = wallua (7™ + el 7) Ivlle
(14)
In the previous bounds we use Hélder inequalities with 1/r +1/¢+1/r =1
and g(m, — 1) > 1 together with embedding (6). Note that the case m, =1
is straightforward. Combining (11), (12) and (14), we get




lu —unl? o Sllu — unllollu —ville
Hlw — uallre (Jlullfa™ + lual T ™) luw = vslle

Sllu —unllLallu — vl

In the last expression we used the straightforward property resulting from (5)
and (7) that ||ulj1,o and |Jusl1o are bounded by constants depending on the
loads. .

Therefore, we conclude the proof of the theorem by choosing vy, = [ u, where
I, stands for the Lagrange interpolation operator mapping onto V.

4 A residual a posteriori error estimator
4.1 Definition of the residual error estimator

The element residual of the equilibrium equation (1) is defined by
dive(uy) + f = f on K.

As usual this element residual can be replaced by some finite dimensional
approximation, called approximate element residual (see, e.g., [2])

fr € (Bu(K))*.

A current choice is to take fi = / f(z) /|K|dx since for f € (H'(Q))?,
K

scaling arguments yield || f — fxllx < hx|lfll1.x and it is then negligible with
respect to the estimator n defined hereafter. In the same way g is approximated
by a computable quantity denoted gz on any E € EV.

Definition 5 The local error estimators ng and the the global estimator n are
defined by

4 1/2
Nk = (Z 77@2K> )
i=1

Thk = hK'lfK”K;
1/2

mr=h? | S ealw)lz]|

EcEP'UEY




1/2

mx=hitt | Y lown)ld|

EcEY
1/2
1/2
nax =h | S lenluna)™ + onlun)ll |
E€E§
1/2
n= ( )y 77?<) !
KeT,,

where Jg ,(up) means the constraint jump of wy, in the normal direction, i.e.,

HO‘(’U,h)IIEEE, VE € E%Lnt,
o(uy)vg —gg, VE € E}.

Jen(un)= (15)
The local and global approrimation terms are given by

1/2

(k= | Pk > If — Frolli + b Z lg — g&l% ;

K'Cwg ECEY

- (z @)W.

KeT;,

4.2 Upper error bound

We first study the upper error bound of the discretization error.

Theorem 6 Let u be the solution to nonlinear variational equation (5) and
let uy, be the solution to the corresponding discrete problem (7). Then we have

lu—upllio Sn+C

PROOF. Afterwards we adopt the following notation for the displacement
error term:

e=1u— U

Let v, € V. From the V-ellipticity of a(.,.) and the equations in (5) and (7)
we obtain:




alu,u — up) — a(up, u — up)

= L(u — up) — jn(u,w — up) — alup, u — up)
L(u — vp) — jn(u, u — up) — a(up, u — vy)
+jn('u,h, Uy — 'LL) —i—jn(uh, wu — uh)

< L{w — vp) + jolun, vn — u) — aluy, u — vy)

where we use the monotonicity argument (12).

Integrating by parts on each triangle K and using the definition of Jg ,(us)
in (15) yields:

lel2os & [ Frw—v)det+ [ clwnn)7 (nm ) dr()

_ ZC/E(a(uh)V) (u —vy) dy(z)
- T /E Jen(us) - (u—vy) dy(z)
+ > /E(g—gE)'(u—vh) dy(=).

Splitting up the integrals on T'¢ into normal and tangential components gives:

lelfas ¥ [ F-(u—vs) do

i;c [ (el + o w)) (0 = ) (@)

+ EZE [ otlwn) (o = w) d(a)

- Z [, Tn(un) - (w=v1) dy(@)

+ EZE /. (8- 92)- (=) (@), (16)

We now need to estimate each term of this right-hand side. For that purpose,
we take

vy = up + (U — up), (17)

where 7, is the quasi-interpolation operator defined in Lemma 3.

10




We start with the integral term. Cauchy-Schwarz’s inequality implies

S [ f@-v)de< ¥ Iflklu— vl

KeTy, KET,,

and it suffices to estimate |u — v|/x for any triangle K. From the definition
of v, and (9) we get:

lu —villx = e = mellx S hxllefls e

As a consequence

|7 w=v) da| S (n+ Ollelhen

We now consider the interior and Neumann boundary terms in (16). As we
previously noticed, the application of Cauchy-Schwarz’s inequality leads to

> [ Tsalu) w-w) d@| < S el slu il
EcEMUE) B EBeEmtUEN

Therefore using expression (17) and estimate (10), we obtain

lu—wlle = lle — melle < hi* el
Inserting this estimate in the previous one we deduce that

S [ Jsalun) - (w—vp) dy(a)| S nllele.
EeErMUEY E

Moreover,

> [la=gp)- (w—v) dy(@)| 5 (el
pegN ¥
The two following terms are handled in a similar way as the previous ones so
that

S [ enlunn) + () (v = ) (@) S el

and

> [ otw) o - w) drfa)| S nllelo

EcEY \
Putting together the previous estimates we come to the conclusion that

lu —upllio Sn+¢

11




4.8  Lower error bound

We now consider the local lower error bounds of the discretization error terms.

Theorem 7 For all elements K € Ty, the following local lower error bounds
hold:

mr S llu — uallx + Cx, (18)
mr S llu— ualliw, + (k- (19)

For all elements K such that K N ES # 0, the following local lower error
bounds (with p > 2) hold:

msx Sllu — w1k + Ck, (20)
xS S COWNE un — wnnllzogm) + hillon(uw — un)| & (21)
BeES

PROOF. The estimates of nx and mox in (18) and (19) are standard (see,
e.g., [23]).

We now estimate nsx. Writing wg = wg,v + wgit on E € EIC; and denoting
by bg the edge bubble function associated with E (i.e., bg = 4\, Ag,, When
ay, ay are the two extremities of F; we recall that A\, is the standard basis
function at node x in Vj, satisfying A,(z') = &, for any node 2/, see (8)), we
choose wg, = 0 and wg; = o4(uy)bp in the element K containing E (here we
made a slight abuse of notation to simplify the writing) and wz = 0 in O\ K.
Therefore,

o)~ [ ol dy(@)
= ];a(uh) ce(wg) de
:/K o(up —u): e(wg) de + /I.{a(u) ce(wg) do

= L(wg) + /Kcr(uh —u): e(wg) dx
SIfllgllwelx + lu — unllLxllwel,x
SIFlcllwslx + hetlle -l xllwel x,

where we use an inverse inequality in the last bound. Another inverse inequal-
ity and estimate (18) imply

12




md low(wn)lls Sl = wllug + bl Fllx
Slu = w1k + (k-
This estimate gives the estimate of n3x in (20). The bound of 74k in (21) can

not be obtained as previously by choosing wg, = (¢,(un,) 7" + on(uy))be and
wg: = 0 since we have in general (due to the positive part)

len(unn) + n(un) s 5 [ (ealum)P" + on(un)wen dr(e).

So we use the identity ¢, (u,)7™ +0,(u) = 0 and, keeping in mind that o, (u) €
L3(T¢), we write

ch(uhnﬂ}n + on(un)l e

< lea((urn){™ = (un)T)llE + llon(u — un) |5

< lenll oo 1 ((wnn) T = (un) ") |E + llon(u — un)l|p

< mn“CnHL‘”(E)H(uhn - un)(luhn|mn_l + 'unlmn“1)|]E + llon(u — un)||e

< mn||CnHL°°(E)|Iuhn - un”LP(E) (Huhn”?qn(;i—nw) + Hunu?ﬂgiﬂ)w))
+lon(u —un)le

< OOyl call oo llunn — wallogey (lalls ™ + llul Ta")
+llon(w — wn)le

S Mun = unnll ey + llon(u = ua) |6, (22)

where 1/p+1/q = 1/2, g(m, —1) > 1 (the case m,, = 1 is straightforward) and
we have used the identity (13) and the boundedness of ||ul|1o and [|uslj1,0-

Corollary 8 Assume that w € (H?(Q))? and define:
1/2
m=( X ), 1<i<t
KeTy,

< hforl<i<4. So

~

Then we have 7

ns h.

PROOF. From Theorem 7, we deduce by addition 1 < Jlu — unlli0 + ¢
and the latter quantity is bounded by hl|ul|2,o according to Theorem 4. The
bounds for 7o and 73 are the same. We now consider 7y:

772 S Z he(|lun — uhnHLP(E) + H0'n<'u' - uh)”E)Z

EeEY
< Y hpllun — unnlliom + Y. hellon(u —w)lE (23)
E€Ef EeEf

13




where p > 2. The first term is roughly bounded as follows by using (6)
hillun = unal 7oy < hellun — wnlliers) S hellu—wllio (24)
By using the identity

> hp=1l¢| (25)

EeEC

and Theorem 4 we conclude that

Zo hellun — uhnH%p(E) S hQHUH;Q‘ (26)

The second term is bounded by using the scaled trace inequality
lolle S kg0l + B IV ollus, VE € En, Yo € H' (wg).

Hence, supposing without loss of generality that I'¢ is a straight line segment
parallel to the z—axis and using the latter inequality, we obtain:

hellon(u — up)l = hplloy(u — uy)ll%
Slioyy(w = un)lZ, + bl Voy, (u —us)l,
<llo(u— w2, + hpl|Veo(w)l?,.

By summation, we find that
> hellon(u —wp)lE S lu —unlliq + RPlulllg S Bllulbe. (27)
EeE?

The corollary is proved by putting together (23), (26) and (27).

Remark 9 We redefine the discretization error e = |ju — uyl|1,0 as follows:

1/2
é=llu—wuplio+ ( Y hullon(u— uh)l%) -

EcEY

Such an approach with a modified error has already been used successfully for
the obstacle problem in [22]. Note that in our reference the additional norm
term is mesh dependent contrary to [22]. With this new definition, we can
prove its equivalence with the error estimator n:

ESn+¢, (28)

n<eé+(. (29)

14




We first prove the upper bound (28). Let E € ES . Using the estimate (a+b)? <
2(a® +b?), it gives:

hellon(u — uh)“JZE’ S hel = calun)t" + Cn(uhn)Tn”QE

(30)
+hllen(un) " + on (un) |-
In (22) we prove
llen((unn) 7™ = (un)T)lE S llun = usnl o),
for any E € ES (p>2). As a consequence we deduce from (6) that
llen((unn) T = (un) 2" )E S flun = tnnllzewey S lu =l (31)

Denoting by K the element containing E, using (80) and (31) and the defini-
tion of nux we deduce

helloa(u —un)li S hellu — unliq + 7k
Therefore,
1/2
Y. helloa(u —w)lz | S lu—uslie+m,
EcEl
which together with Theorem 6 yields (28).

Finally, the lower bound (29) is a straightforward consequence of the proof of
Corollary 8 since n; S |lu —uplliao+ ¢ 1 <4 <3 andn S € according to
(28), (24) and (25).
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