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Abstract
The study of asymptotically hyperbolic Einstein metric is a rich field in theoretical physic and geometry. Pedersen
introduced a family of example for the dimension 4, and we look in this paper into some of it’s conformal
invariant, namely renormalized volume and Yamabe-type energy, as their comparaison give couter-example to the
converse of well-known theorem, as well as other propositions of same nature.
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Introduction
The study of conformal invariant for asymptotically hyperbolic manifold has been of great importance in physics

since the introduction by J Maldacena in [1] of the AdS-CFT correspondance. A great idea is to try to extract
information from conformal structure at infinity. An example of such a result is proved by Quing in [9] (see also
[10], and another proof from Han-Gursky in [11]) 1 :

Theorem 1. Let (Mn+1
, BMn, g+) be a conformally compact Poincaré-Einstein manifold of class C2 satisfying

that either the dimension 3 ď n+ 1 ď 5 or that the dimension n+ 1 ě 6 and M is spin.
If we let (BM, [γ]) denote its conformal infinity and if it Yamabe energy satisfy : Y (BM, [γ]) ą 0,

then the first type of Yamabe-Escobar energy must be positive :

Y 1(M, BM, g+) ą 0

Natural question are then if the converse could be true, and if we could get the same type of result for the
renormalized volume instead of the first type of Yamabe-Escobar energy. This paper show that it both are not
possible with an explicit calculation with a well known family of metric.

Pedersen introduced in [2] a family of conformally hyperbolic Einstein metrics on the 4-ball with non isometric
conformal infinity (the Berger sphere), which has given a great deal of examples or counter-examples in the study
of such riemannian metrics.

The aim of the present paper is to give a general comprehension of some conformal invariants for these metrics,
namely the renormalized volume, the sign of the infinity’s Yamabe energy and the sign of the Yamabe-Escobar
energy. More precisely, we will prove :

Theorem 2. Let m>-1 and gm be the Pedersen metric of parameter m,

(a) The renormalised volume of this Pedersen metric is :

V (B1(R4), gm) =
4π2

3

(
1 ´

m2

(1 +m)2

)
,

and it is positive for ´ 1
2 ď m and negative otherwise,

(b) The infinity’s conformal Yamabe energy is positive for ´ 3
4 ď m and negative otherwise

(c) There exist m0 ď ´ 9
10such that the conformal Yamabe-Escobar energy is positive for m0 ď m and negative

otherwise.
Furthermore, m0 is the only solution in ]-1,0[ of the equation 4

?
´m = ln

(
1+

?
´m

1´
?

´m

)
.

In part 1, we recall the definition of the metric constructed by Pedersen, before recalling the riemannian curvature
of such metric in an adapted orthonormal frame in 2, which allow us to calculate the L2 norm of the Weyl curvature.
Then in part 3 we prove the point (a), in 4 the point (b) and in 5 the point (c).

1. the definition of the Yamabe energy is recalled in section4 and the one of the Yamabe-Escobar energy is in section 5
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1 Definition of the metrics
Let’s remember that on S3(R) there is a continuous family of Riemannian non locally isometric metrics called

Berger sphere. They are defined via the natural isomorphism which links S3(R) Ă C2 to the Lie group SU(2)

(z, w) ÞÑ

(
z ´w

w̄ z̄

)
,

The Lie algebra su(2) at identity is then spawned by X̃1 =

(
0 ´1

1 0

)
, X̃2 =

(
0 ´i

´i 0

)
, and X̃3 =

(
i 0

0 ´i

)
. We

then consider the unique left-invariant vector field (we abusively keep the same notation).
We then define the Berger metric hλ on the sphere by fixing that these fields are orthogonal with X̃1 and X̃2

normed and X̃3 of norm λ.
As X3 is tangent to the Hopf orbit, the Berger spheres are created from the canonic metric by multiplying the Hopf
fiber by λ.
We can notice that when λ = 1 we get the usual sphere.

Remark : We have [X̃1, X̃2] = 2X̃3, [X̃2, X̃3] = 2X̃1, and [X̃3, X̃1] = 2X̃2,

Definition 3. We call Berger sphere (of parameter λ) the Riemannian manifold ( S3(R), hλ)

Now we can introduce the family of conformally hyperbolic Einstein metrics with conformal infinity the Berger
sphere that Pedersen highlighted in [2].
Let’s consider the family of vector fields (X̃1, X̃2, X̃3) over B1(R4) Ă R4 that extends X̃1, X̃2 and X̃3 with the same
Lie bracket and staying tangent to all spheres. Let (dr, σ1, σ2, σ3) be the dual basis of (Br, X̃1, X̃2, X̃3), where r
denote the usual radial coordinate. Then, Pedersen showed that :

Proposition 4. Let m>-1, the metric

gm =
4

(1 ´ r2)2

(
1 +mr2

1 +mr4
dr2 + r2(1 +mr2)(σ2

1 + σ2
2) +

r2(1 +mr4)

1 +mr2
σ2
3

)
is Einstein (Ricc(gm) = ´3gm), asymptotically hyperbolic with the Berger sphere h 1

1+m
as conformal infinity.

Furthermore, this metric is the only asymptotically hyperbolic Einstein (with constant 3) metric with conformal
infinity h 1

1+m
and self-dual conformal structure.

Remark : As the parameter can take negative values, we change the original m2 to a simple m.
Remark 2 : m=0 is the hyperbolic metric in spherical coordinates.

Definition 5. In this paper, we call Pedersen metric with parameter m the Riemannian manifold (B1(R4), gm)
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2 Riemann tensor of Pedersen metrics and norm L2 of Weyl curvature
For the following, we fix m ą ´1.
There is a natural orthonormal frame (Xi)iP[[0,4]] for the Pedersen metric of parameter m , namely :

X0 =
1 ´ r2

2

c

1 +mr4

1 +mr2
Br X1 =

1 ´ r2

2r
?
1 +mr2

X̃1 X2 =
1 ´ r2

2r
?
1 +mr2

X̃2 X3 =
1 ´ r2

2r

c

1 +mr2

1 +mr4
X̃3

Then a lengthy calculation using the Koszul formula allows to calculate the Riemannian tensor of this metric
from its Levi-Cevita connexion. We get :

Proposition 6. Let m>-1, gm the Pedersen metric of parameter m, and R the riemannian tensor of gm.
 In the basis (Xi), we have :

R0101 = R0202 = R1313 = R2323 = ´1 ´
m

2

(
1 ´ r2

1 +mr2

)3

,

R0303 = R1212 = ´1 +m

(
1 ´ r2

1 +mr2

)3

,

R0123 = ´
1

2
R0312 =

m

2

(
1 ´ r2

1 +mr2

)3

.

And the terms that do not come from symmetries of these are zero.

Remark : We can from here really easily find again the result in [3] by Cortés and Saha about the parameter for
which the metric has negative sectional curvature everywhere (m ď 1).

Corolary 7. Let m>-1, gm the Pedersen metric of parameter m, and W the Weyl curvature tensor of gm. If
we denote dVgm the volume form associated to gm, we have :

ż

M

||W ||2gmdVgm = 8π2 m2

(1 +m)2
.

Proof. First, let’s note that since gm is Einstein, if we note ? the Kulkarni–Nomizu product, we have
W = Riem(gm)+gm ?gm. So the norm of the Weyl curvature as an element of S2Λ2M is easy to compute,
particularly using the orthonormal basis (Xi) :

||W ||2gm =W 2
0101 + 2W 2

0123 +W 2
0202 + 2W 2

0213 +W 2
0303 + 2W 2

0312 +W 2
1212 +W 2

1313 +W 2
2323,

= 4

(
m(1 ´ r2)3

2(1 +mr2)3

)2

+ 2

(
m(1 ´ r2)3

(1 +mr2)3

)2

+ 12

(
m(1 ´ r)3

2(1 +mr2)3

)2

,

=
6m2(1 ´ r2)6

(1 +mr2)6
.

Now to integrate with ease, we choose to work with spherical coordinates, and note that

dVgm =

(
2

1 ´ r2

)4

(1 +mr2)r3 sin2(ψ) sin(θ)dr ^ dψ ^ dθ ^ dϕ,

to conclude that
ż

M

||W ||2gmdVgm = 8π2

ż 1

0

24m2 r
3(1 ´ r2)2

(1 +mr2)5
dr.
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and from here, as :

m2r3(1 ´ r2) =
r

m
(1 +mr2)3 ´

(2m+ 3)r

m
(1 +mr2)2 +

(m2 + 4m+ 3)r

m
(1 +mr2) ´

m2 + 2m+ 1

m
r,

a simple computation allows to conclude that
ż

M

||W ||2gmdVgm = 8π2 m2

(1 +m)2
.

3 Renormalized volume of Pedersen metrics
From the theorem 0.1 of [4], we have that for (M,g) a complete AH Einstein 4-manifold,

1

8π2

ż

M

||W ||2gmdVgm = χ(M) ´
3

4π2
V (M, g),

where we have denoted χ(M) the Euler characteristic and V (M, g) the renormalised volume of g (see again [4] for
the definition), and W the weyl curvature of g.

Now since the Pedersen metrics are complete AH Einstein manifold on the 4-ball, we immediately get :

Theorem 8. Let m>-1 and gm be the Pedersen metric of parameter m, the renormalised volume of this
Pedersen metric is :

V (B1(R4), gm) =
4π2

3

(
1 ´

m2

(1 +m)2

)
.

Remark :This gives here a result which could be found again in a more general but less explicit way in the following
preprint [8].

4 Sign of the conformal Yamabe energy of the conformal infinity
Let’s recall that for a riemannian compact manifold without boundary (N,g̃) of dimension n>2, we have a

conformal invariant : the conformal Yamabe energy defined as :

Q(g) :=

ş

N
ScalgdVg(ş

M
dVg
)n´2

n

, Y ([g̃]) := inf
gP[g̃]

Q(g).

Remark :A first point to notice is that if the metric g̃ has a scalar curvature of constant sign, then the sign of the
conformal Yamabe energy is the same as the sign of the scalar curvature . In the case Scalg̃ ď 0, this is direct as Y
is an infimum and in the case Scalg̃ ě 0 it results of the transformation (with cn = 4(n´1)

n´2 )

Q(u
4

n´2 g̃) =

ş

N
cn|∇u|2g̃ + u2Scalg̃dVg̃(

ş

M
u

2n
n´2 dVg̃

)n´2
n

We want to know the sign of the conformal Yamabe energy for the conformal infinity of the Pedersen metrics,
the Berger spheres.

From the result in part 3.4.2 of the Petersen’s book ([5]), it is easy to get that h 1
1+m

(see 3 for the definition)
has a scalar curvature of 8 ´ 2

1+m , which is positive for m ě ´ 3
4 and negative otherwise. It immediately follows

that the sign of the conformal Yamabe energy Y (gm) has the same distinction.
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5 Sign of the conformal Yamabe-Escobar energy
The generalization of the conformal Yamabe energy is the conformal Yamabe-Escobar (first type) energy, defined

for a riemannian compact manifold with boundary (M, BM, g̃) as :

Q1(g) :=

ş

M
ScalgdVg + 2

ű

BM
HgdVg|BM(ş

M
dVg
)n´2

n

, Y 1([g̃]) := inf
gP[g̃]

Q(g).

Where Hg is the mean curvature of BM (with inward normal vector).
It was shown that in the case were the conformal Yamabe energy of the boundary is positive, then the first

Yamabe-Escobar energy is also positive, see [6] and citation within (in particular [7]). In this section we find a better
estimation of the parameters for which the first Yamabe-Escobar energy is positive than the one we get from this
propriety (m ě ´ 3

4 ).
We have the following :

Proposition 9. Let 0>m>-1, gm the Pedersen metric of parameter m, and gm := ( 1´r2

2 )2gm the compactified
metric associated.
Then Y 1([gm]) has the same sign as

f(m) := 4 ´
1

?
´m

ln
(
1 +

?
´m

1 ´
?

´m

)
,

where f is an increasing function with f(´0.92) « ´0.03 and f(´0.91) « 0.07

Proof. Similarly to the case without boundary, we have the law of transformation under conformal change :

Q(u
4

n´2 g̃) =

ş

M
cn|∇u|2g̃ + u2Scalg̃dVg̃ + 2

ű

BM
Hg̃u

2dVg̃|BMdVg̃(
ş

M
u

2n
n´2 dVg̃

)n´2
n

With the same argument as in section 4, if g P [g̃] is such that Rg = 0 and with mean curvature of constant
sign, then the first Yamabe-Escobar conformal energy has the same sign as the mean curvature.
 

Let’s recall the transformation law : if h is a riemannian metric on a manifold of dimension n , with ν

the inward normal vector, and u is a positive function, and if we define h̃ := u
2

n´2h, then

∆hu+
n´ 2

4(n´ 1)
Rhu =

n´ 2

4(n´ 1)
u

n+2
n´2Rh̃ (5.1)

Hh̃ := u´ n
n´2

(
´2

n´ 1

n´ 2

Bu

Bν
+Hhu

)
(5.2)

Applying 5.1 to gm := ( 1´r2

2 )2gm and using the fact that gm is Einstein with Rgm = ´12, we get that
Rgm = ´6 8mr2

1+mr2 .

To get the mean curvature, recall that :

gm =
1 +mr2

1 +mr4
dr2 + r2(1 +mr2)(σ2

1 + σ2
2) +

r2(1 +mr4)

1 +mr2
σ2
3
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so we have again a natural orthonormal basis :

X0 = ´

b

1+mr4

1+mr2 Br := f0Br X1 = 1
r

?
1+mr2

X̃1 := f1X̃1

X2 = 1
r

?
1+mr2

X̃2 := f2X̃2 X3 = 1
r

b

1+mr2

1+mr4 X̃3 := f3X̃3,

and again with the Koszul formula, we get the second form fundamental of the boundary as

Π(Xi, Xj) := δijδi‰0f0
Brfi
fi

X0,

and in particular,
Hgm = 3

1 + 2m

1 +m

We will look for an analytic u :=
ř

akr
k such that g̃m := u

2
n´2 gm has a null scalar curvature Rg̃m .

The fact that u must be a solution to

0 = ∆gm(u) +
1

6
Rgmu,

= ´
1

r3(1 +mr2)
Br

(
r3(1 +mr2)

1 +mr4

1 +mr2
Bru

)
´

8mr2

1 +mr2
u,

tells us that a1 = a2 = a3 = 0 and for k ě 0, ak+4(k+4)(k+6) = (´m) ˆ (k(k + 6) + 8)) ak , so that such
a solution must be :

u(r) := a0
ÿ

kě0

(´m)k

2k + 1
r4k.

For a0 = 1 this solution is well defined and positive on [0,1] for ´1 ă m ă 0, and in what follow, we will
call um(r) :=

ř (´m)k

2k+1 r
4k.

 As said in the beginning of the proof, we just have to look at the sign of the mean curvature of g̃m := u
2

n´2
m gm

to conclude. From 5.2, this is the same (since m>-1) as looking at the sign of

(1 + 2m)um(1) + (1 +m)u1
m(1)

(1 + 2m)um(1) + (1 +m)u1
m(1) = (1 + 2m)

ÿ

kě0

(´m)k

2k + 1
+ (1 +m)

ÿ

kě0

4k(´m)k

2k + 1

= 1 +
ÿ

kě1

(
1

2k + 1
´ 2

1

2k ´ 1
+

4k

2k + 1
´

4k ´ 4

2k ´ 1
)(´m)k

= 1 ´
ÿ

kě1

(´m)k

2k + 1

= 1 ´
1

?
´m

ÿ

kě1

1

2k + 1
(
?

´m)2k+1

We recognise in the sum a primitive of the analytic fonction
ř

kě1X
2k = X2

1´X2 . Since such a primitive
is of the form x ÞÑ ´x+ 1

2 ln( 1+x
1´x ) + c and there is no constant (as a fonction of

?
´m) term, we get that :

(1 + 2m)um(1) + (1 +m)u1
m(1) = 2 ´

1

2
?

´m
ln(

1 +
?

´m

1 ´
?

´m
).

Since the last affirmation of the proposition easily follows from a simple calculation of the derivative of the
sum, we have proven our claim.
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