# On generators of the group $\widehat{H}^{-1}\left(\operatorname{Gal}(L / K), E_{L}\right)$ in some abelian $p$-extension $L / K$ 

Emmanuel Hallouin and Marc Perret*

September 14, 2007

À Gille Lachaud, en l'honneur de ses soixante ans.

## Introduction

The main motivation of this work is Shafarevich theorem on class fields towers, as in the spirit of [?], Chap I, §4.4. Let $L / K$ be a unramified (here, unramifiedness refers also to the infinite primes throughout) Galois extension of number fields whose Galois group $G$ is a finite $p$-group ( $p$ a prime integer). We know that:

$$
d_{p} H^{3}(G, \mathbb{Z})=d_{p} H^{2}(G, \mathbb{Z} / p \mathbb{Z})-d_{p} H^{1}(G, \mathbb{Z} / p \mathbb{Z})
$$

where $d_{p} \mathcal{G}$ denotes the $p$-rank of a finite $p$-group $\mathcal{G}$. If moreover the class number of $L$ is not divisible by $p$ then:

$$
\begin{equation*}
d_{p} H^{3}(G, \mathbb{Z}) \leq r_{1}+r_{2} \tag{1}
\end{equation*}
$$

where $\left(r_{1}, r_{2}\right)$ is the signature of the number field $K$. Briefly, the proof works as follows. Let $C_{L}$ be the idèle class group of $L$ and $E_{L}$ its unit group, then:

$$
\forall q \in \mathbb{Z}, \quad \widehat{H}^{q}\left(G, C_{L}\right) \simeq \widehat{H}^{q+1}\left(G, E_{L}\right) \quad \text { and } \quad \widehat{H}^{q}\left(G, C_{L}\right) \simeq \widehat{H}^{q-2}(G, \mathbb{Z})
$$

The first isomorphism follows from the fact that $L$ has a class number not divisible by $p$ while the second one is part of class field theory. Thus:

$$
\begin{equation*}
\widehat{H}^{q+1}\left(G, E_{L}\right) \simeq \widehat{H}^{q-2}(G, \mathbb{Z}) \tag{2}
\end{equation*}
$$

The inequality (??) comes from the specialization at $q=-1$ of this isomorphism since the rank of $\widehat{H}^{0}\left(G, E_{L}\right)=$ $E_{K} / N_{L / K}\left(E_{L}\right)$ is easily bounded thanks to Dirichlet's unit theorem.

Together with Golod-Shafarevich inequality, which states that $d_{p} H^{2}(G, \mathbb{Z} / p \mathbb{Z})>\left(d_{p} H^{1}(G, \mathbb{Z} / p \mathbb{Z})\right)^{2} / 4$, inequality (??) implies that:

$$
\frac{\left(d_{p} H^{1}(G, \mathbb{Z} / p \mathbb{Z})\right)^{2}}{4}-d_{p} H^{1}(G, \mathbb{Z} / p \mathbb{Z})<r_{1}+r_{2}
$$

A famous consequence is the following: if a number field $K$ satisfies the quadratic (in $d_{p} \mathrm{Cl}(K)$ ) inequality:

$$
\left(d_{p} \mathrm{Cl}(K)\right)^{2} / 4-d_{p} \mathrm{Cl}(K) \geq r_{1}+r_{2}
$$

then its $p$-class field tower is infinite.
A cubic (in $d_{p} \mathrm{Cl}(K)$ ) infinitness criterion of the $p$-class field tower over a field $k$ already exists (see [?], proof of corollary 10.8.11, chapter 10$)$. Unfortunately, it works only if there is an action of $G a l\left(k / k_{0}\right)$ for a quadratic subfield $k_{0}$ of $k$. In order to find an unconditional cubic analogue of this criterion, one can specialize the isomorphism (??) at $q=-2$. This yields the following equality:

$$
d_{p} \widehat{H}^{-1}\left(G, E_{L}\right)=d_{p} H^{3}(G, \mathbb{Z} / p \mathbb{Z})-d_{p} H^{2}(G, \mathbb{Z} / p \mathbb{Z})+d_{p} H^{1}(G, \mathbb{Z} / p \mathbb{Z})
$$

hence, it is crucial as a first step to find an upper bound for the p-rank $d_{p} \widehat{H}^{-1}\left(G, E_{L}\right)$ when $\mathrm{Cl}(L)$ is trivial. In this paper, we prove results about generators of this group in some special cases. More precisely, we compute the $p$-rank and exhibit an explicit basis of $\widehat{H}^{-1}\left(G, E_{L}\right)$ when $L / K$ is an unramified abelian $p$-extension whose Galois group has exactly two generators..

[^0]Notations - Let $K$ be a number field. We denote by $\Sigma_{K}$ the set of its finite places, $\operatorname{Div}(K)$ its ideal group and $\mathrm{Cl}(K)$ its ideal class group. To each finite place $v \in \Sigma_{K}$ one can associate a unique prime ideal $\mathfrak{p}_{v}$ of $K$ and to each $x \in K^{*}$, there corresponds a principal ideal $\langle x\rangle_{K}$ of $K$.

If $L / K$ is a Galois extension of number fields, then for each $v \in \Sigma_{K}, \Sigma_{L, v}$ denotes the subset of places $w \in \Sigma_{L}$ above $v$ (for short $w \mid v$ ) and $f_{v}$ the residual degree of any $w \in \Sigma_{L, v}$ over $K$. The map $j_{L / K}: \operatorname{Div}(K) \rightarrow \operatorname{Div}(L)$ is the usual extension of ideals.

Let $G$ be a finite group and $M$ be a multiplicative $G$-module. The norm map $N_{G}: M \rightarrow M$ is defined by $x \mapsto \prod_{g \in G} g(x)$; its kernel is denoted by $M\left[N_{G}\right]$. The augmentation ideal $I_{G} M=\left\langle\frac{g(x)}{x}, x \in M, g \in G\right\rangle$ is of importance. Of course, one has $I_{G} M \subset M\left[N_{G}\right]$; the quotient of these two subgroups is nothing else than the Tate cohomology group:

$$
\widehat{H}^{-1}(G, M) \stackrel{\text { def. }}{=} \frac{M\left[N_{G}\right]}{I_{G} M}
$$

in which we are interested (see [?] for an introduction to the negative cohomology groups). For $u \in M\left[N_{G}\right]$, we denote by $[u]$ the class of $u$ in $\widehat{H}^{-1}(G, M)$.

## 1 The cyclic case

Let $L / K$ be a cyclic extension with Galois group $G=\langle g\rangle$. A classical consequence of Hilbert 90 theorem states that the kernel of the norm $N_{G}$ equals the augmentation ideal: $L^{*}\left[N_{G}\right]=I_{G} L^{*}$. In cohomological terms, this means that:

$$
H^{1}\left(G, L^{*}\right)=\{1\} \quad \Longrightarrow \quad \widehat{H}^{-1}\left(G, L^{*}\right)=\{1\}
$$

Another easy consequence already known is that:
Proposition 1 Let $L / K$ be an unramified cyclic extension with Galois group $G=\langle g\rangle$. Then the map:

$$
\begin{array}{ccc}
\varphi_{g}: \quad \operatorname{Ker}(\mathrm{Cl}(K) \rightarrow \mathrm{Cl}(L)) & \longrightarrow & \widehat{H}^{-1}\left(G, E_{L}\right) \\
{[I]} & \longmapsto & {\left[\frac{g(y)}{y}\right]}
\end{array}
$$

is a group isomorphism, where $[I]$ denotes the ideal class of $I$ and $y$ is any generator of the extension of $I$ to $L$.
Proof - The only non-trivial assertion is the surjectivity of the map. Let $u \in E_{L}\left[N_{G}\right]$, then there exists $y \in L^{*}$ such that $u=\frac{g(y)}{y}$. Thus the ideal $\langle y\rangle_{L}$ is fixed by the action of $G$. The extension $L / K$ being unramified, the ideal $\langle y\rangle_{L}$ is the extension to $L$ of some ideal $I$ of $K: j_{L / K}(I)=\langle y\rangle_{L}$. Then $[u]=\varphi_{g}([I])$.

This proposition implies the following corollary:
Corollary 2 Let $K$ be a number field whose ideal class group is a cyclic p-group and $L$ be its Hilbert class field. Suppose that $L$ has class number one. Then for any generator $g$ of $\operatorname{Gal}(L / K)$ and any generator $\pi$ of a prime ideal of $L$ whose Frobenius equal to $g, \widehat{H}^{-1}\left(G, E_{L}\right)$ is a cyclic p-group generated by the class of $\sigma(\pi) / \pi$ :

$$
\widehat{H}^{-1}\left(G, E_{L}\right)=\left\langle\left[\frac{g(\pi)}{\pi}\right]\right\rangle
$$

## 2 Some experiments with magma

With the help of magma and pari/gp, we have made some experiments and collect datas about the 2-rank of the group $\widehat{H}^{-1}\left(G, E_{K^{i}}\right)$ in unramified finite 2-extensions $K^{i} / K(i=1,2)$. In each case, we start with a quadratic complex number field $K$ whose class group is a 2-group; tables of such fields can be found in [?]. We compute $K^{1}=$
 further. We compute $K^{2}=\left(K^{1}\right)^{\text {hilb. }}$ and the group structure of $\widehat{H}^{-1}\left(E_{K^{2}}\right) \stackrel{\text { def. }}{=} \widehat{H}^{-1}\left(\operatorname{Gal}\left(K^{2} / K\right), E_{K^{2}}\right)$.

Here is the magma program we used:

```
clear ;
Q := RationalField() ;
dis := -84 ;
K<x> := QuadraticField(dis) ;
"Computation of K^hilb..." ;
Khilb := AbsoluteField(HilbertClassField(K)) ;
Khilb<y> := OptimizedRepresentation(Khilb) ;
"... compuation of the unit group of K^hilb..." ;
E_Khilb, e_Khilb := UnitGroup(Khilb) ;
Gal_Khilb_Q, Aut_Khilb_Q, i := AutomorphismGroup(Khilb) ;
G := FixedGroup(Khilb, K) ;
Norm_G := map < Khilb -> Khilb | y :-> &* [i(g)(y) : g in G] > ;
N := hom < E_Khilb -> E_Khilb | [(e_Khilb * Norm_G * Inverse(e_Khilb))(E_Khilb.i) :
    i in [1..NumberOfGenerators(E_Khilb)]] > ;
Ker_N := Kernel(N) ;
I_G := [i(g)(u)/u : u in Generators(E_Khilb) @ e_Khilb, g in G] ;
I_G := sub < E_Khilb | I_G @@ e_Khilb > ;
assert(I_G subset Ker_N) ;
printf "... structure of H* (-1)(G, E_M) = %o\n", Ker_N / I_G ;
```

Unfortunately, because of the difficulty of computing the unit group of a number field, only few computations achieved. In the following table, the notation $2 \cdot 4$ means that the group is isomorphic to $\mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 4 \mathbb{Z}$.

| $\operatorname{dis}(K)$ | $\mathrm{Cl}(K)$ | $\mathrm{Cl}\left(K^{1}\right)$ | $\widehat{H}^{-1}\left(E_{K^{1}}\right)$ | $\mathrm{Cl}\left(K^{2}\right)$ | $\widehat{H}^{-1}\left(E_{K^{2}}\right)$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| -84 | $2 \cdot 2$ | 1 | $2 \cdot 2 \cdot 2$ |  |  |
| -120 | $2 \cdot 2$ | 2 | 4 | 1 | 8 |
| -260 | $2 \cdot 4$ | 2 | $2 \cdot 4$ | 1 | $2 \cdot 8$ |
| -280 | $2 \cdot 2$ | 4 | 4 | 1 | 16 |
| -308 | $2 \cdot 4$ | 1 | $2 \cdot 2 \cdot 4$ |  |  |
| -399 | $2 \cdot 8$ | 1 | $2 \cdot 2 \cdot 8$ |  |  |
| -408 | $2 \cdot 2$ | 2 | $2 \cdot 2 \cdot 2$ | 1 | $2 \cdot 2 \cdot 4$ |
| -420 | $2 \cdot 2 \cdot 2$ | $2 \cdot 2$ | $2 \cdot 2 \cdot 2 \cdot 4$ | 1 | unkown |
| -456 | $2 \cdot 4$ | 1 | $2 \cdot 2 \cdot 4$ |  |  |

In the following section, we will explain why $d_{2} \widehat{H}^{-1}\left(E_{K^{1}}\right)=3$ when $d_{2} \mathrm{Cl}(K)=2$ and $d_{2} \mathrm{Cl}\left(K^{1}\right)=1$. In all the remaining known cases, we point out that $d_{2} \widehat{H}^{-1}\left(E_{K^{1}}\right)=d_{2} \widehat{H}^{-1}\left(E_{K^{2}}\right)$.

## 3 When the Galois group has two generators

The goal of this section is to extend the results of $\S ? ?$ to the case of extensions whose Galois group is an abelian group generated by two elements.

First, we need to investigate the cohomology group with values in $M^{*}$. We still have:
Theorem 3 Let $K$ be a number field and $M / K$ be an unramified abelian extension whose Galois group $G$ is a $p$-group generated by two elements. Then $\widehat{H}^{-1}\left(G, M^{*}\right)=1$.

Proof - Since $M / K$ is an unramified abelian extension, there exists a subgroup $G^{\prime}$ of $\mathrm{Cl}(K)$ such that $G \simeq$ $\mathrm{Cl}(K) / G^{\prime}$. Let $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ be primes of $K$ whose classes generate $G^{\prime}$. If $G \simeq \mathbb{Z} / p^{\alpha} \mathbb{Z} \times \mathbb{Z} / p^{\beta} \mathbb{Z}$ with $\alpha \leq \beta$, we complete these primes by choosing $\mathfrak{p}, \mathfrak{q}$ primes of $K$ such that their decomposition groups in $M / K$ satisfy $D(\mathfrak{p})=$ $\langle(1,1)\rangle$ and $D(\mathfrak{q})=\langle(0,1)\rangle$. Adjoining $\mathfrak{p}, \mathfrak{q}$ to the $\mathfrak{p}_{i}$ 's leads to a system of generators of $\mathrm{Cl}(K)$.

Let $H=\langle(1,0)\rangle$. Then $H$ and $G / H$ are cyclic and, by construction, the decomposition groups in $M / K$ satisfy:

$$
\forall 1 \leq i \leq r, \quad D\left(\mathfrak{p}_{i}\right) \cap H=\{\operatorname{id}\}, \quad D(\mathfrak{p}) \cap H=\{\operatorname{id}\}, \quad D(\mathfrak{q}) \cap H=\{\mathrm{id}\}
$$

Theorem ?? is implied by the two following lemmas.
Lemma 4 Let $H$ be a normal cyclic subgroup of $G$. Then:

$$
\widehat{H}^{-1}\left(G, M^{*}\right)=\{1\} \Longleftrightarrow \widehat{H}^{-1}\left(G / H, N_{H}\left(M^{*}\right)\right)=\{1\}
$$

Proof - Suppose that $\widehat{H}^{-1}\left(G, M^{*}\right)=\{1\}$. If $y \in N_{H}\left(M^{*}\right)\left[N_{G / H}\right]$, then there exists $z \in M^{*}$ such that $y=N_{H}(z)$ and $N_{G}(z)=N_{G / H}\left(N_{H}(z)\right)=N_{G / H}(y)=1$. Thus, by hypothesis, $z \in M^{*}\left[N_{G}\right]=I_{G} M^{*}$ :

$$
\exists z_{i} \in M, g_{i} \in G, \quad z=\frac{g_{1}\left(z_{1}\right)}{z_{1}} \times \cdots \times \frac{g_{r}\left(z_{r}\right)}{z_{r}}
$$

Hence:

$$
y=N_{H}(z)=\frac{g_{1}\left(N_{H}\left(z_{1}\right)\right)}{N_{H}\left(z_{1}\right)} \times \cdots \times \frac{g_{r}\left(N_{H}\left(z_{r}\right)\right)}{N_{H}\left(z_{r}\right)} .
$$

Therefore $y \in I_{G / H} N_{H}\left(M^{*}\right)$.
Conversely, suppose that $\widehat{H}^{-1}\left(G / H, N_{H}\left(M^{*}\right)\right)=\{1\}$. If $z \in M^{*}\left[N_{G}\right]$ then $1=N_{G}(z)=N_{G / H}\left(N_{H}(z)\right)$ and thus $N_{H}(z) \in N_{H}\left(M^{*}\right)\left[N_{G / H}\right]$. By hypothesis, there exist $z_{1}, \ldots, z_{r} \in M^{*}$ and $g_{1}, \ldots g_{r} \in G$ such that:

$$
N_{H}(z)=\frac{g_{1}\left(N_{H}\left(z_{1}\right)\right)}{N_{H}\left(z_{1}\right)} \times \cdots \times \frac{g_{r}\left(N_{H}\left(z_{r}\right)\right)}{N_{H}\left(z_{r}\right)}=N_{H}\left(\frac{g_{1}\left(z_{1}\right)}{z_{1}} \times \cdots \times \frac{g_{r}\left(z_{r}\right)}{z_{r}}\right)
$$

It follows that:

$$
z \in I_{G} M^{*} \times M^{*}\left[N_{H}\right]=I_{G} M^{*} \times I_{H} M^{*}=I_{G} M^{*}
$$

because, $H$ being cyclic, one has $M^{*}\left[N_{H}\right]=I_{H} M^{*}$.

Lemma 5 Let $H$ be a cyclic subgroup of $G$ such that $G / H$ is also cyclic. If $\mathrm{Cl}(K)$ can be generated by primes whose decomposition groups intersect $H$ trivially, then $\widehat{H}^{-1}\left(G / H, N_{H}\left(M^{*}\right)\right)=\{1\}$.

Proof - Let $h$ be a generator of $H$ and $g \in G$ such that $G=\langle g, h\rangle$. Let $L=M^{H}$ so that $\operatorname{Gal}(L / K)=\langle g\rangle$.
Let $y \in N_{H}\left(M^{*}\right)\left[N_{G / H}\right]$. Since $G / H$ is cyclic generated by $g$, there exists $b \in L$ such that $y=\frac{g(b)}{b}$.
Since $y \in N_{H}\left(M^{*}\right)$, it is a norm everywhere locally:

$$
\begin{aligned}
\forall w \in \Sigma_{L}, w(y) \equiv 0 \quad\left(\bmod f_{w}\right) & \Longrightarrow \forall w \in \Sigma_{L}, w \circ g(b) \equiv w(b) \quad\left(\bmod f_{w}\right) \\
& \Longrightarrow \forall v \in \Sigma_{K}, \forall w, w^{\prime} \in \Sigma_{L, v}, w^{\prime}(b) \equiv w(b) \quad\left(\bmod f_{w}\right)
\end{aligned}
$$

Note that there is no condition at infinity since infinite places are unramified by assumption. The last assertion implies that the ideal $J$ of $L$ defined by:

$$
J=\prod_{w \in \Sigma_{L}} \mathfrak{p}_{w}^{-w(b) \bmod f_{w}} \quad\left(\text { for } x \in \mathbb{Z}, \text { we choose } x \bmod f_{w} \in\left[0 . . f_{w}-1\right]\right)
$$

is the extension to $L$ of the ideal $I$ of $K$ defined by:

$$
\left.I=\prod_{v \in \Sigma_{K}} \mathfrak{p}_{v}^{-w(b) \bmod f_{w}} \quad \text { (for each } v \in \Sigma_{K}, \text { we choose } w \text { a place of } \Sigma_{L, v}\right)
$$

By hypothesis, $\mathrm{Cl}(K)$ can be generated by prime ideals $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{r}$ of $K$ whose decomposition groups satisfy $D\left(\mathfrak{p}_{i}\right) \cap H=\{\mathrm{id}\}$. This means that all primes of $L$ above each $\mathfrak{p}_{i}$ split totally in $M$. There exists $a \in K$ and $e_{1}, \ldots, e_{r} \in \mathbb{N}$ such that $\langle a\rangle=I \times \prod_{i} \mathfrak{p}_{i}^{e_{i}}$. By construction, the ideal $a b$ of $L$ has support on primes of $L$ which split totally in $M$.

Now, recall that the local-global principle holds form norm equations in cyclic extensions. Thus, we deduce that $a b \in N_{H}\left(M^{*}\right)$. Finally, because $a \in K$, we have:

$$
y=\frac{g(b)}{b}=\frac{g(a b)}{a b} \in I_{G / H} N_{H}\left(M^{*}\right)
$$

which was to be proved.
As in the cyclic case, the triviality of the -1 cohomological group with values in $M^{*}$ implies something on the -1 cohomological group with values in $E_{M}$. To beguin with, let us state the following easy proposition:

Proposition 6 Let $K$ be a number field and $M / K$ be an unramified abelian extension with Galois group $G$ a p-group of p-rank d. If $M$ is principal, then $d_{p} \widehat{H}^{-1}\left(G, E_{M}\right)=\frac{d\left(d^{2}+5\right)}{6}$.

Proof - In [?] §4.4, thanks to class field theory, it is proved that:

$$
\forall q \in \mathbb{Z}, \widehat{H}^{q+1}\left(G, E_{M}\right) \simeq \widehat{H}^{q-2}(G, \mathbb{Z})
$$

Hence, for $q=-2$, we obtain:

$$
\widehat{H}^{-1}\left(G, E_{M}\right) \simeq \widehat{H}^{-4}(G, \mathbb{Z})
$$

By duality, it is enough to compute the $p$-rank of $H^{4}(G, \mathbb{Z})$. To this end, we start with the exact sequence of $G$-modules (trivial action) $0 \rightarrow \mathbb{Z} \xrightarrow{p} \mathbb{Z} \rightarrow \mathbb{Z} / p \mathbb{Z} \rightarrow 0$ and we consider the long cohomology exact sequence:

$$
\begin{aligned}
0 \rightarrow H^{1}(G, \mathbb{Z} / p \mathbb{Z}) \rightarrow & H^{2}(G, \mathbb{Z}) \xrightarrow{p} H^{2}(G, \mathbb{Z}) \rightarrow H^{2}(G, \mathbb{Z} / p \mathbb{Z}) \rightarrow \\
& H^{3}(G, \mathbb{Z}) \xrightarrow{p} H^{3}(G, \mathbb{Z}) \rightarrow H^{3}(G, \mathbb{Z} / p \mathbb{Z}) \rightarrow H^{4}(G, \mathbb{Z})[p] \rightarrow 0 .
\end{aligned}
$$

The logarithm of the product of the orders of these groups equals 0 , therefore:

$$
d_{p} H^{4}(G, \mathbb{Z})=d_{p} H^{3}(G, \mathbb{Z} / p \mathbb{Z})-d_{p} H^{2}(G, \mathbb{Z} / p \mathbb{Z})+d_{p} H^{1}(G, \mathbb{Z} / p \mathbb{Z})
$$

(recall that in a finite abelian $p$-group $A$, one has: $\# A[p]=p^{d_{p} A}$ ). It is now easy to conclude because:

$$
d_{p} H^{2}(G, \mathbb{Z} / p \mathbb{Z})=\frac{d(d+1)}{2} \quad \text { and } \quad d_{p} H^{3}(G, \mathbb{Z} / p \mathbb{Z})=\frac{d(d+1)(d+2)}{6}
$$

as it can be proved using Künneth's formula (see [?], exercice 7, page 96).
Remark - The isomorphism of the beginning of this proof for $q=-1$ is a key step in the proof of Golod-Shafarevich's theorem.

Let us return to the case where $d_{p}(G)=2$. Then, due to proposition ??, one has $d_{p}\left(G, E_{M}\right)=3$. As in corollary ??, one can be more precise and exhibit a basis of $\widehat{H}^{-1}\left(G, E_{M}\right)$.

Proposition 7 Let $K$ be a number field and $M / K$ an unramified abelian extension with Galois group $G$. If $M$ has class number one and if $\widehat{H}^{-1}\left(G, M^{*}\right)=\{1\}$ then:

$$
\widehat{H}^{-1}\left(G, E_{M}\right)=\left\langle\left[\frac{\sigma_{\pi}(\pi)}{\pi}\right], \pi \text { a prime element of } M\right\rangle
$$

where $\sigma_{\pi}$ denotes the Frobenius at $\pi$.
Proof - Let $\pi$ be a prime element of $M$ and $g, g^{\prime} \in G$ such that $g \equiv g^{\prime} \bmod D(\pi)$, where $D(\pi)$ denotes the decomposition group of the ideal $\langle\pi\rangle_{M}$. Then there exists $\alpha \in \mathbb{N}$ such that $g^{-1} g^{\prime}=\sigma_{\pi}^{\alpha}$ and thus:

$$
\frac{g^{\prime}(\pi)}{g(\pi)}=g\left(\frac{g^{-1} g^{\prime}(\pi)}{\pi}\right)=g\left(\frac{\sigma_{\pi}^{\alpha}(\pi)}{\pi}\right) \equiv \frac{\sigma_{\pi}^{\alpha}(\pi)}{\pi} \equiv\left(\frac{\sigma_{\pi}(\pi)}{\pi}\right)^{\alpha} \quad\left(\bmod I_{G} E_{M}\right)
$$

For every $v \in \Sigma_{K}$, we choose a generator $\pi_{v}$ of one of the primes of $M$ above $\mathfrak{p}_{v}$. We fix a section $\sigma \mapsto \widetilde{\sigma}$ of the cononical projection map $G \rightarrow G / D\left(\pi_{v}\right)$. The elements $\widetilde{\sigma}\left(\pi_{v}\right)$, when $v$ runs in $\Sigma_{K}$ and $\sigma \in G / D(v)$, describe a system of prime elements of $M$. Then every $z \in M$ factorizes into:

$$
z=u \prod_{v \in \Sigma_{K}}\left(\prod_{\sigma \in G / D(v)} \tilde{\sigma}\left(\pi_{v}\right)^{e_{v, \sigma}}\right) \quad \Longrightarrow \quad g(z)=g(u) \prod_{v \in \Sigma_{K}}\left(\prod_{\sigma \in G / D(v)} g \widetilde{\sigma}\left(\pi_{v}\right)^{e_{v, \sigma}}\right)
$$

for every $g \in G$. Of course $g \widetilde{\sigma} \equiv \widetilde{g \sigma} \bmod D\left(\pi_{v}\right)$, therefore there exists $\alpha_{v, \sigma} \in \mathbb{N}$ such that:

$$
\begin{aligned}
g \widetilde{\sigma}\left(\pi_{v}\right) & =\left(\frac{\sigma_{v}\left(\pi_{v}\right)}{\pi_{v}}\right)^{\alpha_{v, \sigma}} \widetilde{g \sigma}\left(\pi_{v}\right) \\
& \Longrightarrow \quad g(z) \in\langle g(u)\rangle\left\langle\frac{\sigma_{\pi}(\pi)}{\pi}, \pi \text { a prime element of } M\right\rangle\left\langle\widetilde{\sigma}\left(\pi_{v}\right), v \in \Sigma_{K}, \sigma \in G / D(v)\right\rangle
\end{aligned}
$$

Now start with $u \in E_{M}\left[N_{G}\right]$. By hypothesis, we know that $\widehat{H}^{-1}\left(G, M^{*}\right)=\{1\}$, i.e. $M^{*}\left[N_{G}\right]=I_{G} M^{*}$. Hence, if $G=\left\langle g_{1}, \ldots, g_{r}\right\rangle$, there exists $z_{1}, \ldots, z_{r} \in M^{*}$ such that $u=\frac{g_{1}\left(z_{1}\right)}{z_{1}} \ldots \frac{g_{r}\left(z_{r}\right)}{z_{r}}$. Factorizing $z_{1}, \ldots, z_{r}$ into primes of $M$ of the form $\widetilde{\sigma}\left(\pi_{v}\right)$, one shows that:

$$
u \in I_{G} E_{M}\left\langle\frac{\sigma_{\pi}(\pi)}{\pi}, \pi \text { a prime element of } M\right\rangle\left\langle\widetilde{\sigma}\left(\pi_{v}\right), v \in \Sigma_{K}, \sigma \in G / D(v)\right\rangle ;
$$

But, in this decomposition, since $u$ is invertible, the element in the third group must be equal to 1 .

Theorem 8 Let $K$ be a number field whose ideal class group is a p-group of rank two and $M / K$ its Hilbert class field. Suppose that $M$ has class number one. Then for any generators $g_{1}, g_{2}$ of $\operatorname{Gal}(M / K)$ and any generators $\pi_{1}, \pi_{2}, \pi_{12}$ of prime ideals of $M$ with Frobenius equal to $g_{1}, g_{2}$ and $g_{1} g_{2}$ respectively, $\widehat{H}^{-1}\left(G, E_{M}\right)$ is generated by the classes of $g_{1}\left(\pi_{1}\right) / \pi_{1}, g_{1}\left(\pi_{2}\right) / \pi_{2}$ and $g_{1} g_{2}\left(\pi_{12}\right) / \pi_{12}$ :

$$
\widehat{H}^{-1}\left(G, E_{M}\right)=\left\langle\left[\frac{g_{1}\left(\pi_{1}\right)}{\pi_{1}}\right],\left[\frac{g_{2}\left(\pi_{2}\right)}{\pi_{2}}\right],\left[\frac{g_{1} g_{2}\left(\pi_{12}\right)}{\pi_{12}}\right]\right\rangle
$$

Proof - For any prime element $\pi$ of $M$, we denote its Frobenius by $\sigma_{\pi}$. By theorem ??, we have $\widehat{H}^{-1}\left(G, M^{*}\right)=$ $\{1\}$ and thanks to the preceding result the group $\widehat{H}^{-1}\left(G, E_{M}\right)$ is generated by the classes of the elements $\frac{\sigma_{\pi}(\pi)}{\pi}$. Therefore, we only have to prove that the class modulo $I_{G} E_{M}$ of the element $u=\frac{\sigma_{\pi}(\pi)}{\pi}$ is contained in the subgroup generated by the $\frac{g_{i}\left(\pi_{i}\right)}{\pi_{i}}$ for $i=1,2,12$.

To this end, put $H=\left\langle g_{12}\right\rangle, L=M^{H}$ and $\mathfrak{p}=\langle\pi\rangle_{M} \cap K, \mathfrak{p}_{1}=\left\langle\pi_{1}\right\rangle_{M} \cap K, \mathfrak{p}_{2}=\left\langle\pi_{2}\right\rangle_{M} \cap K$.
There exits $\alpha_{1}, \alpha_{2} \in \mathbb{N}$ such that $\sigma_{\pi}=g_{1}^{\alpha_{1}} g_{2}^{\alpha_{2}}$ and, by Artin map, $\mathfrak{p}=a \mathfrak{p}_{1}^{\alpha_{1}} \mathfrak{p}_{2}^{\alpha_{2}}$ with $a \in K^{*}$. Since $\left\langle\sigma_{i}\right\rangle \cap H=$ $\{\operatorname{Id}\}$ for $i=1,2$, the primes $\mathfrak{p}_{i}, i=1,2$, totally split between $L$ and $M$. Thus:

$$
\left\{\begin{array}{l}
j_{L / K}(\mathfrak{p})=\left\langle N_{H}(\pi)\right\rangle_{L} \\
j_{L / K}\left(\mathfrak{p}_{\mathfrak{i}}\right)=\left\langle N_{H}\left(\pi_{i}\right)\right\rangle_{L}, i=1,2
\end{array} \quad \Longrightarrow \quad N_{H}(\pi)=\operatorname{av} N_{H}\left(\pi_{1}\right)^{\alpha_{1}} N_{H}\left(\pi_{2}\right)^{\alpha_{2}}\right.
$$

where $v \in E_{L}$. Hence:

$$
N_{H}(u)=N_{H}\left(\frac{\sigma_{\pi}(\pi)}{\pi}\right)=\frac{\sigma_{\pi}\left(N_{H}(\pi)\right)}{N_{H}(\pi)}=\frac{\sigma_{\pi}(a)}{a} \frac{\sigma_{\pi}(v)}{v} N_{H}\left(\frac{\sigma_{\pi}\left(\pi_{1}\right)}{\pi_{1}}\right)^{\alpha_{1}} N_{H}\left(\frac{\sigma_{\pi}\left(\pi_{2}\right)}{\pi_{2}}\right)^{\alpha_{2}}
$$

Let us study the four terms in the right hand product. The first one is equal to 1 because $a \in K$. Since local-global principal occurs in cyclic extensions and since $M / L$ is unramified, there exists $w \in E_{M}$ such that $v=N_{H}(w)$. Thus the second term $\frac{\sigma_{\pi}(v)}{v}$ equals $N_{H}\left(\frac{\sigma_{\pi}(w)}{w}\right)$. The thirst and fourth terms go in the same way: since $g_{1}, g_{2}$ generate $G$, the elements $g_{1}$ and $g_{1} g_{2}$ also generate $G$ and there exists $\beta_{1}, \beta_{2} \in \mathbb{N}$ such that $\sigma_{\pi}=g_{1}^{\beta_{1}}\left(g_{1} g_{2}\right)^{\beta_{2}}$. It follows that:

$$
N_{H}\left(\frac{\sigma_{\pi}\left(\pi_{1}\right)}{\pi_{1}}\right)=N_{H}\left(\frac{g_{1}^{\beta_{1}}\left(\pi_{1}\right)}{\pi_{1}}\right)=N_{H}\left(\frac{g_{1}\left(w_{1}\right)}{w_{1}}\left(\frac{g_{1}\left(\pi_{1}\right)}{\pi_{1}}\right)^{\beta_{1}}\right)
$$

where $w_{1} \in E_{M}$.
In conclusion, $u$ satisfies:

$$
\begin{aligned}
N_{H}(u) & =N_{H}\left(\frac{\sigma_{\pi}(w)}{w} \frac{g_{1}\left(w_{1}\right)^{\alpha_{1}}}{w_{1}} \frac{g_{2}\left(w_{2}\right)^{\alpha_{1}}}{w_{2}}\left(\frac{g_{1}\left(\pi_{1}\right)}{\pi_{1}}\right)^{\alpha_{1} \beta_{1}}\left(\frac{g_{2}\left(\pi_{2}\right)}{\pi_{2}}\right)^{\alpha_{2} \beta_{2}}\right) \\
& \Longrightarrow u \times\left(\frac{\sigma_{\pi}(w)}{w}{\frac{g_{1}\left(w_{1}\right)^{\alpha_{1}}}{w_{1}}}^{\Longrightarrow} \frac{g_{2}\left(w_{2}\right)^{\alpha_{2}}}{w_{2}}\left(\frac{g_{1}\left(\pi_{1}\right)}{\pi_{1}}\right)^{\alpha_{1} \beta_{1}}\left(\frac{g_{2}\left(\pi_{2}\right)}{\pi_{2}}\right)^{\alpha_{2} \beta_{2}}\right)^{-1} \in E_{M}\left[N_{H}\right]
\end{aligned}
$$

Finally, due to the cyclic case, we know that $E_{M}\left[N_{H}\right]=I_{H} E_{M}\left\langle\frac{g_{1} g_{2}\left(\pi_{12}\right)}{\pi_{12}}\right\rangle$ and thus:

$$
u \bmod I_{G} E_{M} \in\left\langle\frac{g_{1}\left(\pi_{1}\right)}{\pi_{1}}, \frac{g_{2}\left(\pi_{2}\right)}{\pi_{2}}, \frac{g_{1} g_{2}\left(\pi_{12}\right)}{\pi_{12}}\right\rangle
$$

which was to be proved.
Remark - All these results hold in the function field case for $S$-units where $S$ is any non-empty finite set of places.

## References

[Lem] Franz Lemmermeyer. A survey on class field towers. http://www.rzuser.uni.heidelberg.de/~hb3/cft.html.
[NSW00] Jurgen Neukirch, Alexander Schmidt, and Kay Wingberg. Cohomology of Number Fields, volume 323 of A Series of Comprehensive Studies in Mathematics. Springer, 2000.
[Ser68] Jean-Pierre Serre. Corps locaux. Hermann, troisième edition, 1968.
[Ser94] Jean-Pierre Serre. Galois Cohomology. Springer, 1994.


[^0]:    *Laboratoire Emile Piacrd, Institut de Mathématiques de Toulouse, France.

