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Introduction

The main motivation of this work is Shafarevich theorem on class fields towers, as in the spirit of [?], Chap I, §4.4.
Let L/K be a unramified (here, unramifiedness refers also to the infinite primes throughout) Galois extension of
number fields whose Galois group G is a finite p-group (p a prime integer). We know that:

dpH
3(G, Z) = dpH

2(G, Z/pZ) − dpH
1(G, Z/pZ).

where dpG denotes the p-rank of a finite p-group G. If moreover the class number of L is not divisible by p then:

dpH
3(G, Z) ≤ r1 + r2 (1)

where (r1, r2) is the signature of the number field K. Briefly, the proof works as follows. Let CL be the idèle class
group of L and EL its unit group, then:

∀q ∈ Z, Ĥq(G, CL) ≃ Ĥq+1(G, EL) and Ĥq(G, CL) ≃ Ĥq−2(G, Z).

The first isomorphism follows from the fact that L has a class number not divisible by p while the second one is
part of class field theory. Thus:

Ĥq+1(G, EL) ≃ Ĥq−2(G, Z). (2)

The inequality (??) comes from the specialization at q = −1 of this isomorphism since the rank of Ĥ0(G, EL) =
EK/NL/K(EL) is easily bounded thanks to Dirichlet’s unit theorem.

Together with Golod-Shafarevich inequality, which states that dpH
2(G, Z/pZ) > (dpH

1(G, Z/pZ))2/4, in-
equality (??) implies that:

(dpH
1(G, Z/pZ))2

4
− dpH

1(G, Z/pZ) < r1 + r2.

A famous consequence is the following: if a number field K satisfies the quadratic (in dp Cl(K)) inequality:

(dp Cl(K))2/4 − dp Cl(K) ≥ r1 + r2,

then its p-class field tower is infinite.
A cubic (in dp Cl(K)) infinitness criterion of the p-class field tower over a field k already exists (see [?],

proof of corollary 10.8.11, chapter 10). Unfortunately, it works only if there is an action of Gal(k/k0) for a
quadratic subfield k0 of k. In order to find an unconditional cubic analogue of this criterion, one can specialize
the isomorphism (??) at q = −2. This yields the following equality:

dpĤ
−1(G, EL) = dpH

3(G, Z/pZ) − dpH
2(G, Z/pZ) + dpH

1(G, Z/pZ).

hence, it is crucial as a first step to find an upper bound for the p-rank dpĤ
−1(G, EL) when Cl(L) is trivial. In

this paper, we prove results about generators of this group in some special cases. More precisely, we compute the
p-rank and exhibit an explicit basis of Ĥ−1(G, EL) when L/K is an unramified abelian p-extension whose Galois
group has exactly two generators..
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Notations — Let K be a number field. We denote by ΣK the set of its finite places, Div(K) its ideal group
and Cl(K) its ideal class group. To each finite place v ∈ ΣK one can associate a unique prime ideal pv of K and
to each x ∈ K∗, there corresponds a principal ideal 〈x〉K of K.

If L/K is a Galois extension of number fields, then for each v ∈ ΣK , ΣL,v denotes the subset of places w ∈ ΣL

above v (for short w | v) and fv the residual degree of any w ∈ ΣL,v over K. The map jL/K : Div(K) → Div(L)
is the usual extension of ideals.

Let G be a finite group and M be a multiplicative G-module. The norm map NG : M → M is defined

by x 7→
∏

g∈G g(x); its kernel is denoted by M [NG]. The augmentation ideal IGM =
〈

g(x)
x , x ∈ M, g ∈ G

〉
is of

importance. Of course, one has IGM ⊂ M [NG]; the quotient of these two subgroups is nothing else than the Tate
cohomology group:

Ĥ−1(G, M)
def.
=

M [NG]

IGM

in which we are interested (see [?] for an introduction to the negative cohomology groups). For u ∈ M [NG], we

denote by [u] the class of u in Ĥ−1(G, M).

1 The cyclic case

Let L/K be a cyclic extension with Galois group G = 〈g〉. A classical consequence of Hilbert 90 theorem states
that the kernel of the norm NG equals the augmentation ideal: L∗[NG] = IGL∗. In cohomological terms, this
means that:

H1(G, L∗) = {1} =⇒ Ĥ−1(G, L∗) = {1}.

Another easy consequence already known is that:

Proposition 1 Let L/K be an unramified cyclic extension with Galois group G = 〈g〉. Then the map:

ϕg : Ker(Cl(K) → Cl(L)) −→ Ĥ−1(G, EL)

[I] 7−→
[

g(y)
y

] ,

is a group isomorphism, where [I] denotes the ideal class of I and y is any generator of the extension of I to L.

Proof — The only non-trivial assertion is the surjectivity of the map. Let u ∈ EL[NG], then there exists y ∈ L∗

such that u = g(y)
y . Thus the ideal 〈y〉L is fixed by the action of G. The extension L/K being unramified, the

ideal 〈y〉L is the extension to L of some ideal I of K: jL/K(I) = 〈y〉L. Then [u] = ϕg([I]). �

This proposition implies the following corollary:

Corollary 2 Let K be a number field whose ideal class group is a cyclic p-group and L be its Hilbert class field.

Suppose that L has class number one. Then for any generator g of Gal(L/K) and any generator π of a prime

ideal of L whose Frobenius equal to g, Ĥ−1(G, EL) is a cyclic p-group generated by the class of σ(π)/π:

Ĥ−1(G, EL) =

〈[
g(π)

π

]〉
.

2 Some experiments with magma

With the help of magma and pari/gp, we have made some experiments and collect datas about the 2-rank of the
group Ĥ−1(G, EKi) in unramified finite 2-extensions Ki/K (i = 1, 2). In each case, we start with a quadratic
complex number field K whose class group is a 2-group; tables of such fields can be found in [?]. We compute K1 =

Khilb. and the group structure of Ĥ−1(EK1)
def.
= Ĥ−1(Gal(K1/K), EK1). If Cl(K1) is not trivial, we try to go

further. We compute K2 = (K1)hilb. and the group structure of Ĥ−1(EK2)
def.
= Ĥ−1(Gal(K2/K), EK2).

Here is the magma program we used:
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clear ;

Q := RationalField() ;

dis := -84 ;

K<x> := QuadraticField(dis) ;

"Computation of K^hilb..." ;

Khilb := AbsoluteField(HilbertClassField(K)) ;

Khilb<y> := OptimizedRepresentation(Khilb) ;

"... compuation of the unit group of K^hilb..." ;

E_Khilb, e_Khilb := UnitGroup(Khilb) ;

Gal_Khilb_Q, Aut_Khilb_Q, i := AutomorphismGroup(Khilb) ;

G := FixedGroup(Khilb, K) ;

Norm_G := map < Khilb -> Khilb | y :-> &* [i(g)(y) : g in G] > ;

N := hom < E_Khilb -> E_Khilb | [(e_Khilb * Norm_G * Inverse(e_Khilb))(E_Khilb.i) :

i in [1..NumberOfGenerators(E_Khilb)]] > ;

Ker_N := Kernel(N) ;

I_G := [i(g)(u)/u : u in Generators(E_Khilb) @ e_Khilb, g in G] ;

I_G := sub < E_Khilb | I_G @@ e_Khilb > ;

assert(I_G subset Ker_N) ;

printf "... structure of H^(-1)(G, E_M) = %o\n", Ker_N / I_G ;

Unfortunately, because of the difficulty of computing the unit group of a number field, only few computations
achieved. In the following table, the notation 2 · 4 means that the group is isomorphic to Z/2Z × Z/4Z.

dis(K) Cl(K) Cl(K1) Ĥ−1(EK1) Cl(K2) Ĥ−1(EK2)
−84 2 · 2 1 2 · 2 · 2
−120 2 · 2 2 4 1 8
−260 2 · 4 2 2 · 4 1 2 · 8
−280 2 · 2 4 4 1 16
−308 2 · 4 1 2 · 2 · 4
−399 2 · 8 1 2 · 2 · 8
−408 2 · 2 2 2 · 2 · 2 1 2 · 2 · 4
−420 2 · 2 · 2 2 · 2 2 · 2 · 2 · 4 1 unkown
−456 2 · 4 1 2 · 2 · 4

In the following section, we will explain why d2Ĥ
−1(EK1) = 3 when d2 Cl(K) = 2 and d2 Cl(K1) = 1. In all

the remaining known cases, we point out that d2Ĥ
−1(EK1) = d2Ĥ

−1(EK2).

3 When the Galois group has two generators

The goal of this section is to extend the results of §?? to the case of extensions whose Galois group is an abelian
group generated by two elements.

First, we need to investigate the cohomology group with values in M∗. We still have:

Theorem 3 Let K be a number field and M/K be an unramified abelian extension whose Galois group G is a

p-group generated by two elements. Then Ĥ−1(G, M∗) = 1.

Proof — Since M/K is an unramified abelian extension, there exists a subgroup G′ of Cl(K) such that G ≃
Cl(K)/G′. Let p1, . . . , pr be primes of K whose classes generate G′. If G ≃ Z/pα

Z × Z/pβ
Z with α ≤ β, we

complete these primes by choosing p, q primes of K such that their decomposition groups in M/K satisfy D(p) =
〈(1, 1)〉 and D(q) = 〈(0, 1)〉. Adjoining p, q to the pi’s leads to a system of generators of Cl(K).

Let H = 〈(1, 0)〉. Then H and G/H are cyclic and, by construction, the decomposition groups in M/K satisfy:

∀1 ≤ i ≤ r, D(pi) ∩ H = {id}, D(p) ∩ H = {id}, D(q) ∩ H = {id}.

Theorem ?? is implied by the two following lemmas. �

Lemma 4 Let H be a normal cyclic subgroup of G. Then:

Ĥ−1(G, M∗) = {1} ⇐⇒ Ĥ−1(G/H, NH(M∗)) = {1}.
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Proof — Suppose that Ĥ−1(G, M∗) = {1}. If y ∈ NH(M∗)[NG/H ], then there exists z ∈ M∗ such that y = NH(z)
and NG(z) = NG/H(NH(z)) = NG/H(y) = 1. Thus, by hypothesis, z ∈ M∗[NG] = IGM∗:

∃zi ∈ M, gi ∈ G, z =
g1(z1)

z1
× · · · ×

gr(zr)

zr
.

Hence:

y = NH(z) =
g1(NH(z1))

NH(z1)
× · · · ×

gr(NH(zr))

NH(zr)
.

Therefore y ∈ IG/HNH(M∗).

Conversely, suppose that Ĥ−1(G/H, NH(M∗)) = {1}. If z ∈ M∗[NG] then 1 = NG(z) = NG/H(NH(z)) and
thus NH(z) ∈ NH(M∗)[NG/H ]. By hypothesis, there exist z1, . . . , zr ∈ M∗ and g1, . . . gr ∈ G such that:

NH(z) =
g1(NH(z1))

NH(z1)
× · · · ×

gr(NH(zr))

NH(zr)
= NH

(
g1(z1)

z1
× · · · ×

gr(zr)

zr

)
.

It follows that:
z ∈ IGM∗ × M∗[NH ] = IGM∗ × IHM∗ = IGM∗,

because, H being cyclic, one has M∗[NH ] = IHM∗. �

Lemma 5 Let H be a cyclic subgroup of G such that G/H is also cyclic. If Cl(K) can be generated by primes

whose decomposition groups intersect H trivially, then Ĥ−1(G/H, NH(M∗)) = {1}.

Proof — Let h be a generator of H and g ∈ G such that G = 〈g, h〉. Let L = MH so that Gal(L/K) = 〈g〉.

Let y ∈ NH(M∗)[NG/H ]. Since G/H is cyclic generated by g, there exists b ∈ L such that y = g(b)
b .

Since y ∈ NH(M∗), it is a norm everywhere locally:

∀w ∈ ΣL, w(y) ≡ 0 (mod fw) =⇒ ∀w ∈ ΣL, w ◦ g(b) ≡ w(b) (mod fw)

=⇒ ∀v ∈ ΣK , ∀w, w′ ∈ ΣL,v, w′(b) ≡ w(b) (mod fw).

Note that there is no condition at infinity since infinite places are unramified by assumption. The last assertion
implies that the ideal J of L defined by:

J =
∏

w∈ΣL

p
−w(b) mod fw

w (for x ∈ Z, we choose x mod fw ∈ [0..fw − 1]),

is the extension to L of the ideal I of K defined by:

I =
∏

v∈ΣK

p
−w(b) mod fw

v (for each v ∈ ΣK , we choose w a place of ΣL,v).

By hypothesis, Cl(K) can be generated by prime ideals p1, . . . , pr of K whose decomposition groups sat-
isfy D(pi) ∩ H = {id}. This means that all primes of L above each pi split totally in M . There exists a ∈ K
and e1, . . . , er ∈ N such that 〈a〉 = I ×

∏
i p

ei

i . By construction, the ideal ab of L has support on primes of L
which split totally in M .

Now, recall that the local-global principle holds form norm equations in cyclic extensions. Thus, we deduce
that ab ∈ NH(M∗). Finally, because a ∈ K, we have:

y =
g(b)

b
=

g(ab)

ab
∈ IG/HNH(M∗),

which was to be proved. �

As in the cyclic case, the triviality of the −1 cohomological group with values in M∗ implies something on the
−1 cohomological group with values in EM . To beguin with, let us state the following easy proposition:

Proposition 6 Let K be a number field and M/K be an unramified abelian extension with Galois group G a

p-group of p-rank d. If M is principal, then dpĤ
−1(G, EM ) = d(d2+5)

6 .
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Proof — In [?] §4.4, thanks to class field theory, it is proved that:

∀q ∈ Z, Ĥq+1(G, EM ) ≃ Ĥq−2(G, Z).

Hence, for q = −2, we obtain:
Ĥ−1(G, EM ) ≃ Ĥ−4(G, Z).

By duality, it is enough to compute the p-rank of H4(G, Z). To this end, we start with the exact sequence

of G-modules (trivial action) 0 → Z
p
→ Z → Z/pZ → 0 and we consider the long cohomology exact sequence:

0 → H1(G, Z/pZ) →H2(G, Z)
p
→ H2(G, Z) → H2(G, Z/pZ) →

H3(G, Z)
p
→ H3(G, Z) → H3(G, Z/pZ) → H4(G, Z)[p] → 0.

The logarithm of the product of the orders of these groups equals 0, therefore:

dpH
4(G, Z) = dpH

3(G, Z/pZ) − dpH
2(G, Z/pZ) + dpH

1(G, Z/pZ)

(recall that in a finite abelian p-group A, one has: #A[p] = pdpA). It is now easy to conclude because:

dpH
2(G, Z/pZ) =

d(d + 1)

2
and dpH

3(G, Z/pZ) =
d(d + 1)(d + 2)

6

as it can be proved using Künneth’s formula (see [?], exercice 7, page 96). �

Remark – The isomorphism of the beginning of this proof for q = −1 is a key step in the proof of Golod-Shafarevich’s

theorem.

Let us return to the case where dp(G) = 2. Then, due to proposition ??, one has dp(G, EM ) = 3. As in

corollary ??, one can be more precise and exhibit a basis of Ĥ−1(G, EM ).

Proposition 7 Let K be a number field and M/K an unramified abelian extension with Galois group G. If M

has class number one and if Ĥ−1(G, M∗) = {1} then:

Ĥ−1(G, EM ) =

〈[
σπ(π)

π

]
, π a prime element of M

〉
.

where σπ denotes the Frobenius at π.

Proof — Let π be a prime element of M and g, g′ ∈ G such that g ≡ g′ mod D(π), where D(π) denotes the
decomposition group of the ideal 〈π〉M . Then there exists α ∈ N such that g−1g′ = σα

π and thus:

g′(π)

g(π)
= g

(
g−1g′(π)

π

)
= g

(
σα

π (π)

π

)
≡

σα
π (π)

π
≡

(
σπ(π)

π

)α

(mod IGEM ).

For every v ∈ ΣK , we choose a generator πv of one of the primes of M above pv. We fix a section σ 7→ σ̃ of
the cononical projection map G → G/D(πv). The elements σ̃(πv), when v runs in ΣK and σ ∈ G/D(v), describe
a system of prime elements of M . Then every z ∈ M factorizes into:

z = u
∏

v∈ΣK


 ∏

σ∈G/D(v)

σ̃(πv)ev,σ


 =⇒ g(z) = g(u)

∏

v∈ΣK


 ∏

σ∈G/D(v)

gσ̃(πv)ev,σ




for every g ∈ G. Of course gσ̃ ≡ g̃σ mod D(πv), therefore there exists αv,σ ∈ N such that:

gσ̃(πv) =

(
σv(πv)

πv

)αv,σ

g̃σ(πv)

=⇒ g(z) ∈ 〈g(u)〉

〈
σπ(π)

π
, π a prime element of M

〉
〈σ̃(πv), v ∈ ΣK , σ ∈ G/D(v)〉 .

Now start with u ∈ EM [NG]. By hypothesis, we know that Ĥ−1(G, M∗) = {1}, i.e. M∗[NG] = IGM∗. Hence,

if G = 〈g1, . . . , gr〉, there exists z1, . . . , zr ∈ M∗ such that u = g1(z1)
z1

· · · gr(zr)
zr

. Factorizing z1, . . . , zr into primes
of M of the form σ̃(πv), one shows that:

u ∈ IGEM

〈
σπ(π)

π
, π a prime element of M

〉
〈σ̃(πv), v ∈ ΣK , σ ∈ G/D(v)〉 ;

But, in this decomposition, since u is invertible, the element in the third group must be equal to 1. �
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Theorem 8 Let K be a number field whose ideal class group is a p-group of rank two and M/K its Hilbert

class field. Suppose that M has class number one. Then for any generators g1, g2 of Gal(M/K) and any genera-

tors π1, π2, π12 of prime ideals of M with Frobenius equal to g1, g2 and g1g2 respectively, Ĥ−1(G, EM ) is generated

by the classes of g1(π1)/π1, g1(π2)/π2 and g1g2(π12)/π12:

Ĥ−1(G, EM ) =

〈[
g1(π1)

π1

]
,

[
g2(π2)

π2

]
,

[
g1g2(π12)

π12

]〉
.

Proof — For any prime element π of M , we denote its Frobenius by σπ . By theorem ??, we have Ĥ−1(G, M∗) =

{1} and thanks to the preceding result the group Ĥ−1(G, EM ) is generated by the classes of the elements σπ(π)
π .

Therefore, we only have to prove that the class modulo IGEM of the element u = σπ(π)
π is contained in the

subgroup generated by the gi(πi)
πi

for i = 1, 2, 12.

To this end, put H = 〈g12〉, L = MH and p = 〈π〉M ∩ K, p1 = 〈π1〉M ∩ K, p2 = 〈π2〉M ∩ K.
There exits α1, α2 ∈ N such that σπ = gα1

1 gα2

2 and, by Artin map, p = ap
α1

1 p
α2

2 with a ∈ K∗. Since 〈σi〉 ∩H =
{Id} for i = 1, 2, the primes pi, i = 1, 2, totally split between L and M . Thus:

{
jL/K(p) = 〈NH(π)〉L
jL/K(pi) = 〈NH(πi)〉L , i = 1, 2

=⇒ NH(π) = avNH(π1)
α1NH(π2)

α2 ,

where v ∈ EL. Hence:

NH(u) = NH

(
σπ(π)

π

)
=

σπ (NH(π))

NH(π)
=

σπ(a)

a

σπ(v)

v
NH

(
σπ(π1)

π1

)α1

NH

(
σπ(π2)

π2

)α2

.

Let us study the four terms in the right hand product. The first one is equal to 1 because a ∈ K. Since local-global
principal occurs in cyclic extensions and since M/L is unramified, there exists w ∈ EM such that v = NH(w).

Thus the second term σπ(v)
v equals NH

(
σπ(w)

w

)
. The thirst and fourth terms go in the same way: since g1, g2

generate G, the elements g1 and g1g2 also generate G and there exists β1, β2 ∈ N such that σπ = gβ1

1 (g1g2)
β2 . It

follows that:

NH

(
σπ(π1)

π1

)
= NH

(
gβ1

1 (π1)

π1

)
= NH

(
g1(w1)

w1

(
g1(π1)

π1

)β1

)

where w1 ∈ EM .
In conclusion, u satisfies:

NH(u) = NH

(
σπ(w)

w

g1(w1)

w1

α1 g2(w2)

w2

α1
(

g1(π1)

π1

)α1β1
(

g2(π2)

π2

)α2β2

)

=⇒ u ×

(
σπ(w)

w

g1(w1)

w1

α1 g2(w2)

w2

α2
(

g1(π1)

π1

)α1β1
(

g2(π2)

π2

)α2β2

)−1

∈ EM [NH ].

Finally, due to the cyclic case, we know that EM [NH ] = IHEM

〈
g1g2(π12)

π12

〉
and thus:

u mod IGEM ∈

〈
g1(π1)

π1
,
g2(π2)

π2
,
g1g2(π12)

π12

〉
,

which was to be proved. �

Remark – All these results hold in the function field case for S-units where S is any non-empty finite set of places.
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