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The aim of this paper is to explain how, starting from a Goppa code
C(X, G, P1, . . . , Pn) and a cyclic covering π : Y → X of degree m,
one can twist the initial code to another one C(X, G + Dχ ,

P1, . . . , Pn), where Dχ is a non-principal degree 0 divisor on
X associated to a character χ of Gal(Y /X), in the hope that
�X (G + Dχ ) > �X (G). We give, using a MAGMA program, several
examples where this occurs, and where both the initial and twisted
codes have same minimum distance, so that initial codes have been
improved.

© 2008 Published by Elsevier Inc.

0. Introduction

Let X be a smooth, projective and irreducible genus g curve defined over a finite field K = Fq with
rational function field K (X). If G is a rational divisor on X , then the Riemann–Roch space L X (G) is
defined by

L X (G) = {
f ∈ K (X)∗

∣∣ div( f ) + G � 0
} ∪ {0}.

This is a finite dimensional K -vector space, whose dimension �X (G) is given by Riemann–Roch Theo-
rem:

�X (G) − �X (K X − G) = deg G + 1 − g

where K X is a canonical divisor of X .
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Now, if P1, . . . , Pn are n rational points on X prime to G , Goppa have defined the geometric code
C(X, G, P1, . . . , Pn) as the image of the map

αG : L X (G) → F
n
q,

f �→ (
f (P1), . . . , f (Pn)

)
.

He then proved the following well-known theorem (see for instance [3,5,7] or [8]).

Theorem. (See Goppa, 1981.) If deg G < n, then the parameters [n,k,d] of C(X, G, P1, . . . , Pn) satisfies:

(ı) k = �X (G) � deg G + 1 − g;
(ıı) d � d∗

G = n − deg G.

In this theorem, d∗
G := n − deg G is called the designed minimum distance of C(X, G, P1, . . . , Pn),

while d is its true minimum distance.
Regarding the dimension k of C(X, G, P1, . . . , Pn), it is well known that if deg G > 2g − 2, then

�X (K X − G) vanishes, so that k = �X (G) = deg G + 1 − g is exactly known and depends only on deg G .
On the other hand, if deg G � 2g − 2, then �X (K X − G) in general does not vanishes, and the

dimension k is only lower bounded by what can be called the designed dimension k∗
G := deg G + 1 − g .

We will take advantage in this paper from the fact that if π : Y �→ X is—say for simplicity in the whole
of this paper—a cyclic morphism from another smooth projective irreducible curve Y defined over K
to X , then one can build, for any non-trivial character χ of the Galois group Γ = G(Y /X), a non-
principal degree zero divisor Dχ (see Proposition 1.3.5). Then, the hope is that �X (G + Dχ ) > �X (G), so
that the dimension of C(X, G, P1, . . . , Pn) is strictly less than the twisted code C(X, G + Dχ , P1, . . . , Pn)

one’s. If moreover the true minimum distance of the latter is greater or equal than the former’s one,
then the initial code C(X, G, P1, . . . , Pn) will be improved by its twist by χ .

In a first section, which is a specialization in the cyclic case of results on representation theory on
Riemann–Roch spaces, we give the construction of the divisor Dχ . In a second one, we will give a
MAGMA program, and some examples of codes C(X, G, P1, . . . , Pn) where this method works.

1. Action of cyclic Galois group on some Riemann–Roch spaces

1.1. Introduction

Let X and Y be two irreducible projective smooth curves defined over the finite field K = Fq and
G be a rational divisor on X . Let π : Y → X be a Galois morphism with Galois group Γ = Gal(Y /X).
Then, Γ acts on K (Y ) by γ . f := f ◦ γ −1 for γ ∈ Γ and f ∈ K (Y ). It also acts on Div(Y ) by

γ

(∑
P

dP P

)
:=

∑
P

dP γ (P ).

Hence, γ acts on LY (GY ) for any Γ -invariant divisor of Y . In particular, for any rational divisor G on
X , the divisor π∗(G) on Y is Galois invariant, so that Γ acts on LY (π∗(G)).

For the sake of simplicity, suppose from now on, and in the whole of this paper, that:

(ı) Γ is cyclic of order m;
(ıı) m divides q − 1.

It follows from (ıı) that K contains all the mth roots of unity and the characteristic p of k is
prime to m. Under these assumptions, elementary reduction theory of matrices implies that there is
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a canonical decomposition of LY (π∗(G)) as a direct sum over the characters of Γ of eigenspaces (or
isotrope subspaces):

LY
(
π∗(G)

) =
∑
χ

LY
(
π∗(G)

)
χ
,

where, for any character χ ∈ Γ̂ := Hom(Γ,μm(K )), we denote by LY (π∗(G))χ the subspace

LY
(
π∗(G)

)
χ

:= {
f ∈ LY

(
π∗(G)

); γ . f = χ(γ ) f for any γ ∈ Γ
}
.

1.2. The trivial character

Of course, the invariant subspace LY (π∗(G))Γ is nothing else than LY (π∗(G))χ1 for the trivial
character χ1. The following lemma is well known.

Lemma 1.2.1. π∗ induces an isomorphism L X (G) → LY (π∗G)χ1 .

Proof. Let

π∗ : L X (G) → LY (π∗G),

f �→ f ◦ π.

Then π∗ is a linear injective function, for if f ◦ π = 0, then f = 0 since π is onto. Moreover, for
f ∈ K (Y ) and γ ∈ Γ , one has γ .(π∗ f ) = (π∗ f )◦γ −1 = f ◦π ◦γ −1 = f ◦π = π∗ f since π ◦γ −1 = π ).
Consequently, π∗ : L X (G) ↪→ LY (π∗G)χ1 . Now, if g ∈ LY (π∗G)χ1 , then γ (g) = g for γ ∈ Γ , so that for
any Q ∈ Y , we have g ◦ γ −1(Q ) = g(Q ). Hence there exists f ∈ K (X) such that g = f ◦ π = π∗( f ).
At last, (g) � −π∗G implies ( f ) � −G . �
1.3. Twisting divisors

Lemma 1.3.1. Let π : Y → X be a morphism with Galois Group Γ = Z/mZ. Suppose μm(K ) ⊂ K . Let χ ∈ Γ̂ .
Then there exists fχ ∈ K (Y )∗ , such that γ . fχ = χ(γ ) fχ for any γ ∈ Γ .

Proof. We have:

1 → μm(K ) ↪→ K (Y )∗ → (
K (Y )∗

)m → 1.

We know that H0(Γ, A) = AΓ . So we obtain, using Hilbert 90 theorem:

1 → μm(K )Γ → (
K (Y )∗

)Γ → ((
K (Y )∗

)m)Γ → H1(Γ,μm(K )
) → H1(Γ, K (Y )∗

) = 1.

By definition of Γ and Galois theory, we have:

1 → μm(K ) → K (X)∗ → ((
K (Y )∗

)m)Γ → Hom
(
Γ,μm(K )

) = Γ̂ → 1.

Thus the connecting morphism is onto.
Now, let g = f m ∈ ((K (Y )∗)m)Γ . The connecting morphism (K (Y )∗)m → Γ̂ is defined by

δ(g)(γ ) := γ . f

f
(1.3.1)
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for any γ ∈ Γ . Since δ is onto, for a given χ ∈ Γ̂ , there exists gχ = f m
χ ∈ ((K (Y )∗)m)Γ such that

χ = δ(gχ ). (1.3.2)

Thus (1.3.1) and (1.3.2) altogether imply:

∀χ ∈ Γ̂ , ∃ fχ ∈ K (Y )∗, ∀γ ∈ Γ, χ(γ ) = γ . fχ
fχ

, (1.3.3)

which was to be proved. �
Remark 1.3.2. Let π : Y → X be a morphism of degree m. We consider Γ = Z/mZ = 〈σ 〉. Let χ be
a character of Γ. We look for an explicit rational function fχ ∈ K (Y )∗, such that σ . fχ = χ(σ ) fχ .

Let ζ = χ(σ ). This is an mth root of 1 in K . Let f0 ∈ K (Y ) be such that f0 /∈ K (X). We can as-
sume that σ . f0 
= ζ f0 (otherwise fχ = f0 works.) We define f := ∑m−1

i=0 ζ iσm−i f0. Then σ . f =∑m−1
i=0 ζ iσm−i+1 f0 = ζ f , thus f = fχ works if it does not vanish.

Recall that, has is well known, the map

π∗ : Div(X) → Div(Y )Γ

is an injective morphism. Moreover, if DY ∈ Div(Y )Γ has disjoint support with the ramification locus
Ram(π) of π, then there exists D X ∈ Div(X), such that DY = π∗(D X ). From now on, |D| will denote
the support of a divisor D.

Lemma 1.3.3. In the situation of Lemma 1.3.1 and if |( fχ )| ∩ |Ram(π)| = ∅, there exists a unique divisor
Dχ ∈ Div(X) such that the principal divisor ( fχ ) on Y satisfies ( fχ ) = π∗Dχ . We have Dχ = 1

�Γ
π∗( fχ ).

Proof. Since γ . fχ = χ(γ ) fχ , one has on divisors

γ .( fχ ) = ( fχ ) i.e. ( fχ ) ∈ (Div Y )Γ .

But |( fχ )| is prime to |Ram(π)| by assumption, so that there exists a unique divisor Dχ ∈ Div X such
that ( fχ ) = π∗Dχ .

Now, π∗Dχ = ( fχ ) implies #Γ.Dχ = π∗π∗Dχ = π∗( fχ ), thus the last assertion holds. �
Remark 1.3.4. If one changes fχ to another f ′

χ , then Dχ changes to another D ′
χ , such that

π∗(Dχ − D ′
χ ) = ( fχ/ f ′

χ ) is a principal divisor on Y . In general, Dχ − D ′
χ itself will not be princi-

pal on X .

Proposition 1.3.5. Let π : Y → X be a cyclic morphism with Galois group Γ 
= 1. Let χ be a non trivial
character of Γ such that |( fχ )| ∩ |Ram(π)| = ∅. Then the divisor Dχ of Lemma 1.3.3 is not a principal divisor
on X .

Proof. The long exact sequence of cohomology associated to following short exact sequence

1 → K ∗ → K (Y )∗ → P (Y ) → 1,

where P (Y ) denotes the group of the principal divisors of Y , is:

1 → K ∗ → (
K (Y )∗

)Γ = K (X)∗ → P (Y )Γ → Hom(Γ, K ∗) → H1(Γ, K (Y )∗
) = 1
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i.e.

1 → P (X) → P (Y )Γ → Γ̂ → 1,

where the middle first map is π∗ and the second one is the connecting morphism Δ. Now, the
defining relation of fχ given in Lemma 1.3.1 implies that for the principal divisor ( fχ ), one has
( fχ ) ∈ P (Y )Γ . Equality (1.3.3) means that Δ(( fχ )) = χ. It follows that if χ 
= 1 in Γ̂ , then π∗Dχ =
( fχ ) /∈ KerΔ = Imπ∗, which means that Dχ /∈ P (X). �
Proposition 1.3.6. With the notations and assumptions of Lemma 1.3.1 and Proposition 1.3.5, we have

LY (π∗G)χ � (
LY

(
π∗G + ( fχ )

))Γ
.

Proof. Let

φ : (LY
(
π∗G + ( fχ )

))Γ → LY (π∗G)χ ,

g �→ φ(g) = g fχ .

We know that

LY (π∗G)χ = {
f ∈ LY (π∗G)

∣∣ ∀γ ∈ Γ, γ . f = χ(γ ) f
}
, (1.3.4)

and that

(
LY

(
π∗G + ( fχ )

))Γ = {
g ∈ LY

(
π∗G + ( fχ )

) ∣∣ ∀γ ∈ Γ, γ .g = g
}
. (1.3.5)

We conclude from (1.3.5) and Lemma 1.3.1 that γ .(g fχ ) = (γ .g)(γ . fχ ) = χ(γ )g fχ so φ(g) lies in
LY (π∗G)χ . In order to prove that φ is onto, let f ∈ LY (π∗G)χ . We consider g = f f −1

χ . We have

to check that f f −1
χ ∈ (LY (π∗G + ( fχ )))Γ . Indeed, we know that for γ ∈ Γ , we have γ .( f f −1

χ ) =
(γ . f )(γ . f −1

χ ) = χ(γ ) f χ(γ )−1 f −1
χ = f f −1

χ , hence φ is onto. �
Proposition 1.3.7. (See E. Kani, 1986 [4].) If E ∈ Div(Y )Γ and |E| ∩ |Ram(π)| = ∅, then

LY (E)Γ � fχ .π∗L X

([
1

cardΓ
π∗

(
E + ( fχ )

)])

where [x] denotes the integer part of real number x.

Corollary 1.3.8. π∗ induces an isomorphism L X (G + Dχ ) → LY (π∗G)χ .

Proof. Using Proposition 1.3.6, LY (π∗G)χ � (LY (π∗G + ( fχ )))Γ . With Proposition 1.3.7, we obtain
LY (π∗G + ( fχ ))Γ � L X ([ 1

cardΓ
π∗π∗(G + Dχ )]) = L X (G + Dχ ). �

2. Explicit examples of improved codes

2.1. The hope

Definition 2.1.1. If C = C(X, G, P1, . . . , Pn) is a Goppa code, if π : Y → X is a cyclic covering of degree
m and χ ∈ Γ̂ , we call Cχ := C(X, G + Dχ , P1, . . . , Pn) the twist of C by the character χ .
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The hope is the following. Let C = C(X, G, P1, . . . , Pn) be a given Goppa code over Fq , and
π : Y → X be a cyclic covering of degree m, where m divides q − 1. Then LY (π∗(G)) is a representa-
tion of Γ , which is non-free in general if deg G � 2g − 2, which means that all isotypic components
have not the same dimension. Hence, we can expect that the dimension of the isotypic component
for the trivial character, which is L X (G) by Lemma 1.2.1, is not the greater one. We will see that this
hope is not always realized, for instance for the canonical divisor (see the Remark 3.0.2). However, it
is sometimes realized, as shown by the examples given in the following subsections. If this hope is
achieved for a non-trivial character χ , namely if dim LY (π∗(G))χ > dim LY (π∗(G))χ1 = �X (G), and if
we are lucky enough for the minimum distance of Cχ to be at least equal to C one, then the initial
code C will be improved by its twist Cχ .

2.2. A family of unramified cyclic coverings

We will present here an example which may be well-known. It has been given at least in [2] with
others assumptions on the parameters and with another point of view.

Let n � 2 be any integer, q a power of a prime number, and let m = n2 − n + 1. We consider the
degree m Fermat curve

Fm : um + vm + wm = 0.

Suppose that m divides q − 1, so that Fq contains a primitive mth root of unity ζ . Then the cyclic
group Γ = 〈σ 〉 � Z/mZ acts on Fm by

σ
([u, v, w]) = [

u, ζ v, ζn w
]
.

It is easily seen that this action has no fixed points on Fm , so that the quotient morphism from Fm

to Fm/Γ is cyclic unramified of degree m.
Now, consider the curve

X : xn y + ynz + znx = 0,

which is smooth if m is prime to q, in particular under our assumption that m divides q − 1. Since n
and m are related by m = n2 − n + 1, there is a morphism π : Fm → X given by

π
([u, v, w]) = [

un w, vnu, wn v
]
.

We have

π
(
σ

([u, v, w])) = π
([

u, ζ v, ζn w
])

= [
ζnun w, ζn vnu, ζn2+1 wn v

]
= [

ζnun w, ζn vnu, ζn+m wn v
]

= π
([u, v, w])

since n2 + 1 = n + m ≡ n(mod m). Hence, π , which have degree m, factorizes through the quotient
morphism Fm → Fm/Γ , which is also of degree m. We conclude that X = Fm/Γ , hence π is cyclic
unramified of degree m, under the only assumption that m divides q − 1.

In the following subsections, we will give explicit examples using a MAGMA program where our
hope is satisfied for some values of n, m and q. In all these examples, ω will be a primitive element
on F

∗
q .
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2.3. The MAGMA program

Here is the MAGMA program used for the following computations. The user should enter by hand
the parameter n of Example 2.2, the size q of the alphabet, the length (denoted here by �) of the code
and the function f0 of Remark 1.3.2

(//Declaration of the parameters).
n :=??;
m := n∧2 − n + 1;
q :=??;
assert(IsDivisibleB y(q − 1,m));
(//length of code)
l :=??;
t := (q − 1)div m;

(//Declaration of the curves).
k < w >:= G F (q);
P 2 < x, y, z >:= ProjectiveSpace(k,2);

(//Declaration of the morphism).
f := xn ∗ y + yn ∗ z + x ∗ zn;
h := ym + zm + xm;
X := Curve(P 2, f );
Fm := Curve(P 2,h);
F Fm < a,b >:= F unctionF ield(Fm);
g X := Genus(X);
π := map < Fm− > X |[xn ∗ z, x ∗ yn, y ∗ zn] >;
ζ := wt;

(//Declaration of f0).
f0 :=??;

(//Declaration of the character χ ).
σ := map < Fm− > Fm|[x, ζ ∗ y, ζn ∗ z] >;
f or k := 1 to m do
F Fm < a,b >:= F unctionF ield(Fm);
i f P ullback(σ , f0) eq ζ k ∗ f0 then
fχ := f0;
else;
fχ := f0;
f or j := 1 to m − 1 do
fχ := fχ + ζ k+ j ∗ P ullback(σm− j, f );
end f or;
end i f ;
i f fχ ne 0 then

(//Declaration of the twisted divisor Dχ ).
D := Divisor(Fm, fχ );
E := P ushf orward(π, D);
Dχ := Q uotrem(E,m);

(//Declaration of G).
f or n := 1 to 2 ∗ g X − 2 do
p := X ![0,1,0];
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P 1 := Place(p);
G := n ∗ (DivisorGroup(X) ! P 1); Gχ := G + Dχ ;
i f Dimension(Gχ ) gt Dimension(G) then
repeat
B X := Places(X,1);
T := Support(G) cat Support(Gχ );
f or j := 1 to card(T ) do
P 2 := Random(T );
B X := Exclude(B X , P 2);
T := Exclude(T , P 2);
χ
endf or;
f or s := 1 to card (B X ) − l do
B X := Exclude(B X , P 2);
end f or;

(//Construction of the initial code C and the twisted code Cχ ).
C := AlgebraicGeometricCode(B X , G);
Cχ := AlgebraicGeometricCode(B X , Gχ );

(//Comparison of the parameters).
until MinimumDistance(C) le MinimumDistance(Cχ );
C, Divisor(C);
Cχ , Divisor(Cχ );
end i f ; end f or; end i f ; end f or;

2.4. Example using a cyclic unramified 7-coverings with q = 8

Here, we consider the case n = 3, m = 7 and q = 8. We have Fm := u7 + v7 + w7 and X := x3 y +
y3z + xz3. In this case g X = m − 3 + 2/2 = 3.

We can improve a [6,2,4] code to a [6,3,4] one as follows. With the help of the above MAGMA
program, we get the [6,2,4] Goppa code C over GF(8) whose generator matrix is

( 1 1 0 0 w w
0 0 1 1 w3 w3

)
obtained with the divisor G = 4(0 : 1 : 0). With the choice f0 = ab3, which gives

Dχ = P + 3Q − 4R

where P = (0 : 0 : 1), Q = (1,0,0) and R := (0 : 1 : 0), C is improved to the Goppa code Cχ for the

divisor Gχ = G + Dχ = (1 : 0 : 0) + 3(1 : 0 : 0), whose generator matrix is
( 1 0 0 w4 w5 w

0 1 0 w4 w w5

0 0 1 1 w2 w2

)
. This is a

[6,3,4] Goppa MDS code over GF(8).

2.5. Example using a cyclic unramified 13-coverings with q = 27

Here, we consider the case n = 4, m = 13 and q = 27. We have Fm := u13 + v13 + w13 and X :=
x4 y + y4z + xz4. In this case g X = m − 3 + 2/2 = 6. We choose f0 = b2 in F F13 < a,b > where F F13 is
a function field of F13. MAGMA gives a [8,5,3] code C , with divisor G = 10(0 : 1 : 0), improved by a
MDS [8,6,3] twist Cχ with divisor Gχ = G + Dχ = 8(0 : 1 : 0) + 2(1 : 0 : 0). Here, Dχ = 2(1 : 0 : 0) −
2(0 : 1 : 0). The initial code and twisted one have generator matrix

⎛
⎜⎜⎜⎝

1 0 0 0 0 w22 w4 w4

0 1 0 0 0 2 w16 w2

0 0 1 0 0 w22 w15 w14

0 0 0 1 0 w6 w10 w20

0 0 0 0 1 w17 w17 w17

⎞
⎟⎟⎟⎠
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and

⎛
⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 w3 w9

0 1 0 0 0 0 w16 w4

0 0 1 0 0 0 w12 w10

0 0 0 1 0 0 w19 w18

0 0 0 0 1 0 w15 w12

0 0 0 0 0 1 w10 w15

⎞
⎟⎟⎟⎟⎟⎠ ,

respectively.

3. Some remarks

Remark 3.0.1 (Rational points on the jacobian of X). If the jacobian J X contains a rational point of
order m, then it corresponds by class-field theory (see [6]) to a cyclic unramified covering of degree m.

Remark 3.0.2 (The case of the canonical divisor). The Goppa code C(X, K X , P1, . . . , Pn) constructed from
the canonical divisor K X of X will never be improved by this method. Indeed, the classical Riemann–Roch
theorem can be stated with a Galois action. We have (see for instance in N. Borne [1]).

Theorem 3.0.3 (Equivariant Riemann–Roch Theorem). (See [1].) Let X and Y be two curves and π : Y → X
be an unramified morphism with Galois Group Γ = Z/mZ. Let χ be the character related to representation
of Γ , then for any D ∈ Div(X),

χ
(
LY

(
π∗(D)

)) − χ
(
LY

(
π∗(K X − D)

)) = (
�X (D) − �X (K X − D)

)
χ

(
Fq[Z/mZ])

where K X is a canonical divisor of X .

Remark 3.0.4. This enables us to determine the representation LY (π∗K X ) of Γ . Thanks to Theo-
rem 3.0.3, we obtain the following result:

χ
(
LY (π∗K X )

) − χ
(
LY

(
π∗(K X − K X )

)) = (
�X (K X ) − �X (K X − K X )

)
χ

(
Fq[Z/mZ]).

This gives that

χ
(
LY (π∗K X )

) = 1 + (g X − 1)χ
(
Fq[Z/mZ]),

which means that the left representation is the sum of the trivial representation and of the regular
representation (gx − 1) times. It follows that for the trivial character, dim L X (K X ) = dim LY (K ∗

X )χ1 =
1 + g X − 1 = g X , while for χ 
= χ1, dim LY (K ∗

X )χ = g X − 1 < g X = dim L X (K X ).

Remark 3.0.5. The equivariant Riemann–Roch theorem stated in the preceding remark implies that,
for any Galois covering, all isotypic component have the same dimension if L X (K X − G) vanishes, for
instance if deg G > 2g −2. Hence, our method for improving the dimension of Goppa codes can works
only if deg G � 2g − 2, as stated in the introduction.

Remark 3.0.6. It would be interesting to study also the non-cyclic Galois case!

Remark 3.0.7. Of course, if g X 
= 0, then any divisor of the form D = P − Q is non principal if P 
= Q ,

and it may happen that �(G + P − Q ) > �(G). In this paper we extend the range of possibilities for
the choice of a non principal divisor Dχ for a fixed given π : Y → X by variation χ and f0 (see
Remark 1.3.2).
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