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O. Introduction

Let ¢ be a power of some prime number p, and let F, be the field with ¢ elements.
Coding theorists are interested in explicitly described function fields over F, having
a large number of F,-rational places {(or, equivalently, irreducible complete smooth
algebraic curves over F, with many F,-rational points). For small values of the genus,
such function fields are often abelian extensions of the rational function field Fy(z). For
instance, this is the case for Hermitian curves, some Fermat curves, and some Artin-
Schreier extensions of F,(2). Moreover, one way to exhibit families of function fields
E/F, of genus growing to infinity and having good asymptotic behaviour (i.e., the ratio
(number of rational places/genus) has a limit > 0), is to construct a tower of function
fields By C E, C E;,... over Fy, each step F;,/E; being Galois with an abelian Galois
group. In other words, solvable extensions may have a good asymptotic behaviour,
of. [3].

One aim of our paper is to show that abelian extensions E;/F (where F is some fixed
function field over F',, and F, is assumed to be the full constant field of F' and all
E;,i > 1) are asymptotically bad (i.e., the ratio (number of rational places/genus) tends
to 0 as the genus of E;/F, goes to infinity).

It should be pointed out that our method uses only elementary results from Hilbert’s
ramification theory, cf. [2,4], and the finiteness of the residue class fields. In the case of
global fields, one may also use class field theory in order to obtain some results of this

paper.

1. Hilbert’s Ramification Theory for Locally Abelian Extensions

In this section, we consider the following situation. K is some field, ¢ C K a discrete
valuation ring and p C o the maximal ideal of o. Let L/K be a finite abelian field
extension with Galois group G (i.e. L/K 1s Galois, and its Galois group G is abelian).
Let O C L be a discrete valuation ring of L with o C O and maximal ideal P, hence
g = PNo. Throughout section 1, we suppose that O is the only discrete valuation ring
of L containing o. Let k:= o/p and | := O/P denote the residue class fields of o resp.
O. Then l/k is a finite field extension, and we shall always assume that I/k is separable.
We choose some P-prime element & € P (i.e., P is the principal ideal generated by x),
and consider the groups

Go:={c€G|oz=2z mod P forall z € O}
and, for i > 1,

Gi:={c €Gy|ox =7 mod ’P"“}.



It is well-known that the definition of G; is independent of the choice of x, and
GD2G2G 2...2 G, = {1} for sufficiently large n > 1, see [2,4]. The factor groups
P /P (for i 2 0) are considered as vector spaces over [ via

(z+P)-(a+P*):=za+P*  (z€0,aeP),
and G acts on Pi /P! by |
r(a + P*!) := r(a) + P!

(in order to see that this action is well-defined observe that O is the only extension of
o in L, hence 7(P) = P for all 7 € G). We set

X;:={a4+ P PP |r(a+P*)=a+P* forall 7€G}.
Clearly, X; is a k-subspace of P*/Pi+1,
Proposition 1: The dimension of X; as a vector space over k is at most one.

Proof: By Hilbert’s ramification theory l/k is a normal field extension. Due to our
assumption {/k being separable we obtain that [/k is Galois. Moreover, any automor-
phism 7 in the Galois group of I/k is induced by some 7 € G, i.e. o(z+P) = r(z)+P
for any z + P € OfP = [, see [2]. In order to prove the proposition we can assume
that X; # {0}. We choose a + Pi*! € X; with a € P\P**!, Since Pi/Pit! jsa
one-dimensional vector space over [ (this is obvious) we have for all a; + P*! € X; :
ay + Pt = (¢ 4+ P) - (a + P**1) for some ¢ € O. For any 7 € G, the following holds:

(¢ +P)-(a+P*) =a; + P =1(a) + P*)
=1(c+P) -r(a+P*) =7(c+P) - (a + P'*),

consequently 7(c + P) = ¢ + P for any 7 € G. Thus ¢ + P is invariant under any auto-
morphism of I/k,i.e. ¢+ P € k. This proves Proposition 1. .

It is well known that the mappings
v {G’o/Gl — It

o —_ 5;"-'- mod P
resp. for1 > 1 .
i : {Gi/Gi+1 — PP

o4 —+ Z£—-1 mod Ppitl

are embeddings of Go/G) into the multiplicative group of I (resp. of Gi/Gi4 into the
additive group P*/P**+?), and the definition of ¥ and ¢; is independent of the choice of
the prime element #. For our purposes, the following refinement is essential;



Proposition 2: Under the hypotheses of this section, the image of ¢ is contained in
k*, and the image of ¢; is contained in X; for any s > 1.

Proof: (a) Let ¢ € G. We have to show that 79(1(0)) = ¥(o) for all 7o in the Galois
group of 1/k. As before, 1o is induced by some 7 € G, and we obtain

ro(¢¥(0)) = 1o — + 'P) :_(Em;) +P= 0(1&(7;)) +P= l,b(a')
(we have used that G is abelian and 7() is a P-prime element as well).
(b) An analogous argument proves that @;(¢) € X; for any ¢ € G;. =~

We recall some facts from ramification theory. Let f = f(P | ) = [ : k] denote the
residue class degree and e := e(P | p) the ramification index of P over p, i.e. pO = P*.
Since O is the only extension of o in L and I/k is separable, we have e - f = [L : K].
Let s:= char(k) be the characteristic of the residue class field and g; := ord G; for any
¢ > 0. Then G, is the unique s-Sylow subgroup of Gy, and go = e. The extension P | p
is said to be tame if g = 1 (hence (s, e) = 1), otherwise P | p is wildly ramified.

Let W C k* be the group of roots of unity in k. If W is finite, we set w := #W.

Corollary 3: In addition to the hypotheses of this section, suppose that & contains
only finitely many roots of unity. If P | p is tame then e < w.

Proof: Consider the map ¢ : Gy — [* as before. Since G, = 1,4 is a monomorphism.
By Propogition 2, the image of ¥ is contained in W. u

In order to obtain a similar estimate for the ramification index also in the case of wild
ramification, we introduce the followmg notion: an integer 3 > 0 is called a jump (for

P|p)if Gi # Gina.

Corollary 4: In addition to the hypotheses of this section, assume that k is a finite
field. Then e < (#k)" where r denotes the number of jumps.

Proof: e = go = (go/91) - (91/92) - ... - (9n/9n+1) Where n is chosen such that gn4+y = 1.
Proposition 1 and 2 yield g;/gi+1 < #kfor anyi > 0. The corollary follows immediately.m

Hilbert’s formula [2,4] states that the different ezponent d := d(P | p) is given by

d= (gi—1).

i>0

This formula can be restated as follows. We consider the set {11,...,7,.} of jumps
(where 0 < ») <13 <... < v and r is the number of jumps) and set

hi=n+l;, ti=vi—-y for i=2,...,r
Then
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d= Zf: ti(gv, — 1).

i=1
Since G is abelian, the Hasse-Arf theorem [2] applies. It yields
ti-9,;, =0 mod e
for i =1,...,r. Combining this with Hilbert’s formula we obtain

Proposition 5: Under the hypotheses of this section, the different exponent d satisfies
the estimate

dzére '

where r denotes the number of jumps.

Proof:
d=)Y tig.(1-g;')
i=1
1 « 1
2= igv; 2 =
23 ;tg ; 2re
by the Hasse-Arf theorem. n

2. The Different of Abelian Extensions of Global Fields

In this section, F' denotes a global field. This means that either F is a number field, or
F is an algebraic function field of one variable over a finite field Fy (we assume that F
is the full constant field of F'). A place of F is the maximal ideal of a discrete valuation
ring of F. If p is a place of F, its corresponding valuation ring will be denoted by
op. The residue class field o, /p is a finite field, and in the function field case we have
Fq C op. The degree of p is defined by

degp := log #(0p/p)

(in the number field case, log is taken with respect to the basis e = 2,718...;if Fisa
function field over Fy, we take log = log, - the logarithm with respect to the basis ¢).
The definition of the degree is extended to divisers of F' (a divisor is a formal finite sum
of places) by linearity.
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Let E/F be an abelian eztension of F and Gal(E/F') be its Galois group. If p is a place
of F, there are g = g(p) places Py,..., P, of E lying over p (i.e. p C P,). All of them
have the same ramification index e(p) := e(P, | p) and the same residue class degree

(@) :== f(P. | p), and we have e(p) - f(p) - 9(g) = [E : F]- For an extension P = P,
of pin E/F, we consider the decomposition group

G(p) == G(P | p) := {0 € Gal(E/F) | 0P = P}

(this is independent of the choice of the extension P since E/F is abelian), and the
decomposition field Z = Z(p), i.e. F C Z C E and G(p) = Gal(E/Z).

There exists the unique mezimal unramified subeztension F C M C E. This means
that all places of F' are unramified in M/F, and M is a maximal subfield of E with this
property. Let S := S(E/F) be the set of places of F which are ramified in E/F (it is
well-known that S is finite).

Lemma 6: With the notations as above, we have

) " loge(p) > log[E : F] —log[M : F].

pES

Proof: For any p € S, let Go(p) C G be the inertia group of p, see [2,4]. Its order is
e(p), and if U C G is the subgroup of G generated by all Go(p) (with p € S), then M is
the fixed field of U. Therefore ord U = [E : M| = [E : F|/[M : F]. Since G is abelian,

ord U< [[ord G(p) =[] ele)-

pES pES
Taking logarithms yields the assertion of the lemma. n

Let D(E/F) be the different of E/F. The main result of this section is the following:

Theorem 7: Suppose that E/F is an abelian extension of global fields and

F C M C E is the maximal unramified subextension. In the function field case we
assume, in addition, that E and F have the same constant field Fy. Then the degree
of the different D(E/F') satisfies

degD(E/F) > 5[E: F] - (loglE : F] ~ loglM : F).

Proof: For p € S, let d(p) be the different exponent of a place P of E lying over p, and
r(p) be the number of jumps, cf. section 1 (observe that we can apply the results of
section 1 if F' is replaced by the decomposition field Z(p)). We obtain
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deg D(E{F) =Y > d(p)-degP

PES Plp
=Y 9(p)- dlp)- f(p) - degp
PES
23 >3 " g(p)-7(p) - (p)- f(p) - degp  (by Proposition 5)
pES

=-[E F1- ) r(p)-degp

pES

> E[E F1- Y loge(p) (by Corollary 4)
pES

> 2[E : F]-(loglE : F] - loglM : F]) (by Lemma 6).

3. Abelian Extensions of Function Fields Are Asymptotically Bad

We want to prove a slightly more general result than we announced in the introduction.
For an algebraic function field E/F, (with F, as its full constant field) we set

g(E) =genusof E
N(E) = number of rational places of E/F,.

If E/F is a Galois extension with Galois group G, we let G’ be the commutator subgroup
of G. The fixed field E2® D F of G' is the mazimal abelian eztension of F contained in
E. In particular, if G is abelian, G' = {1} and E** = E.

Theorem 8: Let F/F, be an algebraic function field and (E,),>1 be a sequence of
extension fields of F' with the following properties: '

(i) F, is the full constant field of F and all E,.
(i) E,/F is Galois with Galois group G,.
(iii) ord (G,/GlL) —r 00 asv — co.

Then the quotient N(E,)/g(E,) tends to zero as ¥ —+ co .

Proof: There is a constant A (the class number of F') such that any abelian unramified
extension M/F with the same constant field F is of degree [M : F] < h, f. [1]. We
consider the maximal abelian extension F, C E, of F contained in E,. By (iii), the
degree n := [F, : F] ~ o0 as ¥ —+ o0 , and the degree d, of the different D(F, /F)
satisfies the estimate
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dy > %n.,(logn, —logh)
by Theorem 7. The Hurwitz genus formula yields

9(F) 2 mu(e(F) = 1)+ 34,
> ny(9(F) ~ 1+ 7logn, — logh).

On the other hand, we have the trivial estimate N(F,) < n, - N(F), hence

N(F,) N(F)
9(F) ~ ¢(F)—1+ ¢ (logn, —logh)
for v — co. Eventually, since N(E,) < [E, : F,] - N(F,) and

9(&)) 2 (B, : F)(g(F) - 1) > 3[E, : F} - g(F,) (observe that g(F,) —+ oo for
v —+ 00), we obtain N(E, )/g(E,) — 0. ]

+ 0
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