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Résumé : Le nombre A(q) est la limite supérieure du nombre maximum de points d'une courbe 
algébrique définie sur le corps fini à q éléments, divisé par le genre. J.-P. Serre a montré que    
A(q) ≥ c logq, où c est une constante positive non nulle. Sa méthode, liée à l'existence de tours 
infinies de corps de classes de Hilbert, peut donner de meilleurs résultats ; on donne ici de 
nouvelles minorations de A(q) pour certaines valeurs de q, après avoir montré comment on peut 
en déduire de nouvelles valeurs de q  pour lesquelles il existe  des familles de codes sur Fq 

dépassant la borne de Varshamov-Gilbert. 
 
 
Abstract : The number A(q) is the superior limit of the maximum number of points of an 
algebraic curve defined over the finite field with q elements, divided by the genus. It has been 
shown by J.-P. Serre  that A(q) ≥ c logq, where c is a positive constant. His method, based on 
the existence of infinite towers of Hilbert-class fields, can give better results ; we give here some 
new lower bounds for A(q) for certain values of q, and we deduce from these some new values 
of q for which there exists families of codes defined over Fq, exceeding the Varshamov-Gilbert 

bound. 
 
 
I. The domain of codes. 
 
Let q be a power of a prime number, and Cq be the set of codes defined over Fq. To each code C 
of Cq, we can associate its three parameters [n, k, d]q : lenght, dimension and minimum weight. 

Let us note δ(c) = d/n the relative distance of C, and R(c) = k/n its transmission rate. We put 
Vq = {(δ(c), R(c)) ; C ∈ Cq}, and we denote by  Uq the set of limit points of Vq. Uq is called the 
domain of codes over Fq. The question is to study this set. For more details, see [ 3 ] .The first 

result is the following : 
 
Theorem 1. (Manin). For 0 ≤ δ ≤ 1, let aq(δ) = Sup {R ; (δ,R) ∈ Uq}.  

1) aq is a continuous, decreasing function on [ 0,1], vanishing on [ 
q

q-1  ,1]. 

2) Uq = {(δ,R) ; 0 ≤ δ ≤  
q

q-1  ; 0 ≤ R ≤ aq(δ)}. 

3) aq(0) = 1 ; aq(δ) ≤ Max (1 - 
q

q-1  δ ; 0). 
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For a proof of this theorem, see [2]. The majoration 3) is called the Plotkin majoration, and is a 
trivial consequence of the bound of the same name. We can, in an other direction, give a very 
important lower bound for aq : 

 
Theorem 2. (Varshamov-Gilbert). For 0 ≤ δ ≤ 1, let αq(δ) = 1 - Hq (δ), with  

 Hq(δ) = δ logq(q-1) - δ logq δ - (1-δ) logq (1-δ) 

 
 the entropy function. Then, for 0 ≤ δ ≤ 1, αq(δ) ≤ aq(δ). 

 
 
More than twenty five years of research made it plausible to think that this boundary is the best 
possible. Throughout this lecture, we  say that a family of code is excellent if its parameters 
have a limit point lying above the Varshamov-Gilbert bound. The purpose of this lecture is to 
prove the existence of excellent families of codes for certain values of q. 
 
 
II. Goppa codes. 
 
These codes, also called geometric codes, are constructed from algebraic curves defined over 
Fq, e.g. sets defined by a finite number of polynomial equations with coefficients in Fq. To each  

irreductible smooth curve X, it is possible to associate a positive integer, g, called the genus of 
X. One can show that given a curve X of genus g, having at least n points with coordinates in 
Fq, and of an integer a satisfying 0 < a < n, then one can construct a Fq - code, with parameters : 

 
 [n ; k ≥ a - g + 1 ; d ≥ n - a]q . 

 
If, in addition, a > 2g - 2, then k = a - g + 1. For more details, see for example [1]. It is clear that 
these codes satisfy the following : 
 
 
Proposition 3 : Let C = [n ; k ≥ a - g + 1 ; d ≥ n - a]q be a Goppa code, constructed from a curve 

X of genus g. Then : 
 

 R(C) + δ(C) ≥ 1 +  
1 - g

n    . 
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Remarks: 1) A code C is said to be MDS (Maximum Distance Separable) if its parameters 

satisfy              R(c) + δ(c) = 1 + 
1
n  . Proposition 3 shows that Goppa codes constructed from 

curves of genus 0, e.g. from P1(Fq), are MDS. 

2) The family of Goppa codes is not particular. In fact, each code can be obtained as a subcode 
of a Goppa code (see [1]). For example, Michon (see [4]) showed how to obtain BCH codes as 
Goppa codes. It would be interesting to obtain the Golay code in this way. 
 
 
 
Proposition 3 shows the importance of the number g/n associated to a curve X : the smaller will 
be this number, the better will be the parameters of the code so constructed. For g ∈ Ν , let Nq(g)  
be the maximum number of points of a curve X defined over Fq, of genus g, and let  

 A(q) = g∅+•
lim sup 

Nq(g)
g    . 

The study of A(q) requires number theory and algebraic geometry. The following theorem, and 
its corollaries, precise the impact of this study for coding theory : 
 
 

Theorem 4. (Tsfasman). The intersection of the line R + δ = 1 - 
1

A(q)  with the square              
[0,1] x [0,1], is included in the domain of codes Uq . 

 
See [6] for a proof. 
 
 
Corollary 5. If 

 
1

A(q)   < logq  
2q-1

q   ,  

 
then there exist excellent families of codes defined over Fq. 

 
 
Corollary 6. For every δ ∈ [0,1],  
 aq(δ) ≥ Max (αq(δ) ; 1 - δ - A(q)-1) . 
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Remark : It is clear that these two corollaries remain true if we replace A(q) by any lower 

bound    A- (q)  of A(q). 
 
 
Corollary 6 is an easy consequence of theorems 2 and 4. Next, we prove corollary 5 : the 
Varshamov - Gilbert curve is convex, decreasing, and has as Tangent line of slope - 1 the line 

R + δ = 1 - logq 
2q-1

q   . Since this line is parallel to the line R + δ = 1 - A(q)-1, the latter will lie 

above to the former if and only if A(q)-1 < logq 
2q-1

q   . In this case, the latter cut the   

Varshamov-Gilbert curve in two distinct points, and the segment of the line R + δ = 1 - A(q)-1 

delimited by these two points lies above the Varshamov - Gilbert curve, and is included in Uq by 

theorem 4. 
 
 
So we have to find lower bound of A(q) as great as possible. 
 
 
III. Lower bounds of A(q). 
 
1. The first lower bound, obtained in [7] by Tsfasman, Vladut and Zink, was the following : if q 
is a square, then A(q) ≥ √q – 1. Ihara proved using Weil's formulae that for all q, A(q) ≤ √q – 1. 
Hence, this can be reformulated as follows :   
 
 
Theorem 7. If q is a square, then  A(q) = √q – 1 . 
 
 
One can remark that, for q  square, the inequality  

A(q)-1 = 
1

√q – 1   < logq 
2q-1

q   

 is true if q ≥ 49. So, corollary 5 shows the well known : 
 
 
 
Corollary 8. If q is a square, q ≥ 49, then there exist excellent families of codes over Fq. 
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The proof of theorem 7 is hard. It involves the reduction modulo q of Shimura curves. 
Unfortunately, these curves are intractable in practice, e.g. they do not permit an effective 
construction of the excellent families of codes introduced in corollary 8 (see [3] ). We  give, in 
the end of the paper, two constructive lower bounds for A(q). 
 
 
2. Serre's lower bound. 
 
Theorem 9. (Serre). There exists a constant  c > 0, such that for all q : 
 
 A(q) ≥ c logq. 
 
 
The key point of theorem 9 is the following : 
 
 
Lemma 10. Let l be a prime number, q ≡ 1 (mod l ). If there exists A and B included in Fq, 

disjoint, | A | = a ≥ 2, | B | = b ≥ 1, such that : 
a) B - A  ⊂  F q

xl   = {xl ; x ∈ Fq
x },  

b) a + lb - 1 ≤ (a - 1)2/4 , 
c) (a, l ) = 1 , 
then : 

  A(q) ≥  
2lb

(a - 1)(l - 1)   . 

 
 
 
The proof of this lemma involves class field theory. More precisely, we search a condition, for a 
given function field of one variable over Fq (which is a global field), to have an infinite l -tower 

of class fields. For more details, see [5]. We will simply show how to deduce theorem 9 from 
lemma 10. 
 
 
Lemma 11. Let (S,E) be a graph, ω = | S |, and let a, b and m three positive integers. We 
suppose that :  
1) ∀ y ∈ S, | S-1{y} | = | {x ∈ S ; (x,y) ∈ E} | ≥ m. 
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2) b(a
ω  ) ≤ ω ( a

m ). 

Then there exist A, B ⊂  S, | A | = a, | B | = b, such that A x B ⊂   E. 
 
 
Proof : Let T = {(A,y) ∈ 2S x S ; | A | = a ; A x {y} ⊂  E}. 
. We consider the surjective map  ψ : T → S , given by : (A,y) → y. The first hypothesis shows 
that | ψ-1{y} | ≥ ( a

m ). Since the inverse images of points are disjoint, | T | ≥ | S | ( a
m ) = ω ( a

m ). 

. We next consider the surjective map ϕ : T → (Sa ) ={X ⊂  S ; | X | = a }, given by : (A,y) → A. 

Since  | T | ≥ ω ( a
m ), and since T is the union of inverse images by ϕ of the elements of (Sa ), 

there exists at least one element A0 of (Sa ), such that | ϕ-1(A0) | ≥ 
ω( a

m)

| (a
S) |

  ≥ b by 2). Now let                 

B0 ⊂  ϕ-1 (A0), | B0 | = b. The pair A0, B0 satisfy the conclusion of lemma 11. 

 
 
 
Corollary 12. Let  l = 2 (resp. 3) if q is odd (resp. even). Let a(q) and b(q) two integer valued 
functions of q, such that a(q) ~ d1 logq, b(q) ~ d2 log2q ≤ qε for q large, where d1, d2 and ε are 

three real numbers satisfying  ε + d1 logl < 1. Then there exist, for q large enough, A and            
B ⊂  Fq, | A | = a(q), | B | = b(q), such that A - B ⊂  F q

xl  . 

 
 
 
Proof : This is a consequence of lemma 11 with S = Fq, E = {(x,y) ∈ Fq,2  ; x - y ∈ F q

xl  }, and 

m = 
q-1
l  . The inequality 

 b(q) (a(q)
q  ) ≤ q(a(q)

m  ) 
 holds for q sufficiently large if  1 - ε - d1 log l > 0. One can see that by using Stirling formulae. 

 
Next, theorem 9 is an easy consequence of lemma 10 and corollary 12. 
 
 

Remarks : 1) If q is odd, q ≥ 13, then A(q) ≥ α logq, with α = 0,08734.. > 
1

12  . If q is even,    q 

≥ 32, then A(q) > β logq, with β = 0,02727.. > 
1

37  . In order to compute the constant c of 
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theorem 9, it is enough to minore A(3), A(5), ..., A(11), and A(2), A(4), A(8), and A(16). For 

example, Serre  showed that A(2) > 
8

39  . 

 
 
 
2) Since 

 logq 
2q-1

q    ~  
log2
logq   , 

the existence of excellent families of codes over Fq for q large enough would result from 

corollary 5 and theorem 9 if we could show that c > 
1

log2  . Unfortunately, this bound has not 

been obtened yet. 
 
 
 
 
3. The main theorems. 
 
a) The first is the following : 
 
Theorem 13. Let l be a prime number, and suppose that q > 4l + 1. Let k be a positive integer. 
If q is a primitive k-root of the unity in Fl , then : 

A(ql) ≥  
√l   – 2l

l – 1         if k = 1 (e.g. if q ≡ 1 (mod l  )), 

and 

A(qk) ≥  
√l   – 2l

l – 1           if k ≥  2 . 

 
 
 
For example : 1) If q ≡ 1 (mod 3 ), or if q ≡ 2 or 4 (mod 7 ), and if q > 13, then : 

A(q3) ≥  
√3
2  q-1  –  3. 

2) If q ≡ 1 (mod 5), and if q > 21, then : 

A(q5) ≥  
√5
4  q-1  –  

5
2  . 

 
 
Theorem 13 will be a consequence of the following lemma : 
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Lemma 14 : If Q is a power of q, q > 4l + 1, Q ≡ 1 (mod l ), and if all elements of Fq  are         l 
-power in FQ, then : 

A(Q) ≥ 
√l   – 2l

l – 1   . 

 
   
This lemma imply theorem 13 thank to the following remarks : 
-If q ≡ 1 (mod l ), then all elements of  Fq  is a  l -power in Fql . 
-If ( l,q-1) =1, then all elements of Fq  is a  l -power in  Fq , hence in  Fqk . 
Then one can apply lemma 10, with Q = ql  (resp. qk), since in the first case  ql ≡  1 (mod l ), and 
in the second case qk ≡ 1 (mod l ), which is a fundamental hypothesis of lemma 14. 
 
 
 
We have now to give a demonstration of lemma 14. we choose as a pair A,B of lemma 10 a 
partition of  Fq.The condition b) of lemma 10, together with a + b = q, enable us to calculate a 
and b as better as possible. Taking few precautions so that (a, l ) = 1, the lower bound of lemma 
10 gives the lower bound of lemma 14.  
 
 
 
b) Finally, theorem 13, together with corollary 5, shows that : 
 
Theorem 15. Under the assumptions and notations of theorem 13, if 
 

  
l – 1
√l  – 2l   < logql   

2ql – 1
ql       , 

(resp. if 

                  
l – 1
√l  – 2l    < logqk   

2qk – 1
 qk      ), 

 
then there exist excellent families of codes over  Fql  (resp. Fqk). 
 
 
 
For example, our construction shows the existence of excellent families of Fql - codes in the 
following cases : 
1) l = 2, q ≥ 191 and q odd, which is not as good as the result of corollary 8. 
1) l = 3, q ≥ 1657, and q ≡ 1 (mod 3) or q ≡ 2 or 4 (mod 7); 
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2) l = 5, q ≥ 16981 , and q ≡ 1 (mod 5).  
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