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Before we start, a couple of things on...

Attainability of Quantum Cooling,
Third Law, and all that...

[T. - Viola Sci.Rep. 2014,
arXiv:1403.8143
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Open System Dynamics

Bipartition:
S: system of interest (finite dimensional);
B: environment/bath

Unitary joint dynamics:
psp(t) = U(t)ps(0) @ pp(0)U(t)T

Assume the joint system is controllable/ U is arbitrary.
How well can we cool (or purify) the system? Are there intrinsic limits?

Note: with controllability, purification and ground-state cooling are
equivalent.

Def: By &£- purification at time t we mean that exists U and a pure state
such that:

os = Trp(psp(t) satisfies  [|pls, [¥) (Wlll1 < e, Vs




Subsystem Principle for Purification

v Results in [T-Viola, Sci.Rep. 2014]
Most general subsystem: associated to a tensor factor of a subspace,

Hp = (Hs @ Hr) ® Hr

v [Thm] If the joint system is completely controllable and initially factorized:

(1) € - purification can be achieved if ||pp — pB|| < ¢

O s = (W) (W] ® pr) @ Og

(2) Exact (& = 0) purification if and only if p = (|V) (Y| ® pr) ® Og

(3) & - purification is possible if

dp
e>é(pg)=€=1 Z




—xample: Thermal Bath States

Y In [Wu, Segal & Brumer, No-go theorem for ground state cooling given initial
system-thermal bath factorization. Sci.Rep. 2012], it is claimed that a no-go
theorem for cooling holds, under similar (actually weaker) hypothesis.

Ok, for perfect cooling, but arbitrarily good cooling is possible!

v E.g. Qubit target:

1) Choose a good
subspace;

2) Construct a
2D subsystem;




Comments

 What is this useful for? Why did | speak about this?

First steps towards a general/systematic construction that achieve optimal
purity/ground state cooling for the target system.
Other connections to thermodynamics...

It is reminiscent of the third law: attaining perfect cooling would imply
using infinitely many degrees of freedom, and (likely) infinite energy.

Usual problem: finding a formulation of the third law with clear hypothesis.

It is connected to Landauer’s principle [David’s lectures]:
- Exact purification is erasure.

- Swap operations seem to be the key.




INTRODUCTION (to the main talk)

‘Open quantum systems,
quantum dynamical semigroups
and long-time behavior.

Dissipative state preparation.




Open System Dynamics

Bipartition:
S: system of interest (finite dimensional);
B: uncontrollable environment

Full description via joint Hamiltonian:

H=Hs®lp+1ls® Hp+ Hgsp

Unitary joint dynamics:
psp(t) =U(t)ps(0) @ pp(0)U (1)

Under suitable Markovian approximation (weak coupling, singular),
generating an effective memoryless, time-invariant bath,

we can obtain convenient reduced dynamics: Forward

composition law:
Continuous

,OS (t) — gt (,05’(0)), {Et — eﬁt}tzo Semigroup of CPTP

linear maps




Quantum Dynamical Semigroups

« Assume the dynamics to be a semigroup (i.e. the environment to be
memoryless). The general form of the Markovian generator is:

(Gorini-Kossakovski-Sudarshan/Lindblad, 1974]

p
: . 1
pt = L(p) = —i[H, pt] + E LthL;J; — i{L};Lka Pt}

k=1

Hamiltonian part| [ — HT L. € (oSt Dissipative,
’ k " | “noisy” part

H may contain environment induced terms.

- Linear CPTP system: exponential convergence, well-known theory;
- Unigueness of the equilibrium implies it is attracting.

Question:
Where does, or can the state asymptotically converge?




Physical Answer

[Davies Generator, 1976]
Under weak-coupling limit, consider:

Hsp = ZSO‘ ® B“
6iHstSa€—iHst _ Z ga (w)eiwt
we get:
HS7 +Zg IOSaT( )

——{SO‘T( )5%(w), p})

Let B be a bath at inverse temperature ﬁ . Under some additional condition
(irreducibility of algebra), it is possible to show that it admits the Gibbs

state as unique equilibrium: e BHs
PB = Tr(e—FHs)

Physically consistent, expected resulit.

Why keep looking into it?




New challenge:

Key Applications:

Engineering of open quantum dynamics
Control &

S: system of interest; , |
Quantum Simulation

E: environment, including possibly:

B: uncontrollable environment

A: auxiliary, engineered system (quantum and/or classical controller)
Full description via Joint Hamiltonian:

H=(Hs®lg+1s® Hg + Hsg) + H.(t)

Reduced description via controlled generator (not just weak coupling!):

,Ct( ) [HS + HC —|— Z)\k LkaT — —{LTLk ,0})




Design of Open Quantum Dynamics

 Two Prevailing & Complementary Approaches:

|. Environment as Enemy: we want to “remove” the coupling.
Noise suppression methods, active and passive, including
hardware engineering, noiseless subsystems, quantum error correction,
dynamical decoupling;

Il. Environment as Resource: we want to “engineer” the coupling.
Needed for state preparation, open-system simulation, and much more...




Dissipation for Information Engineering
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Focus: Dissipative State Preparation

- Can we design an environment that “prepares” a desired state?
Naive Answer: YES! .

E(p) = prargettrace(p)

« Choice is non-unique: “simple” Markov evolutions that do the job always exist:

» Pure state: generator with single L is enough, with ladder-type operator;
[T-Viola, IEEE T.A.C., 2008, Automatica 2009]

» Mixed state: generator with H and a single L (tri-diagonal matrices);
[T-Schirmer-Wang, IEEE T.A.C., 2010]

- However...
Can we do it with experimentally-available controls? Typically NOT.
We need to take into account:

» The control method [open-loop, switching, feedback, coherent feedback,...]

» Limits on speed and strength of the control actions;

» Faulty controls; Physical relevance;
] ) Key limitation for large-scale
» Locality constraints. entanglement generation




Main Task

“Understanding the role of locality constraints
and providing general design rules
for dissipative state preparation




Multipartite Systems and Locality

- Consider n finite-dimensional systems, indexed:

O O O O Ho = (Mo
a=1 2 3 a=1

 Locality notion: from the start, we specify subsets of indexes,
or neighborhoods, corresponding to group of subsystems:
N1 = {17 2}

NQ — {173}
NS — {27374}

...on which “we can act simultaneously”: how?

» Neighborhood operator: My = My, ® Iy,

This framework
encompasses different
notions: graph-induced
locality, N-body locality,

H =Y Hy, H,=Hy,®I, ctc..
k

» A Hamiltonian is said Quasi-Local (QL) if:

Neighborhood operators will model the allowed interactions.




Constraints: Frustration-Freeness & Locality

- Consider n finite-dimensional systems, and a fixed locality notion.

N ={1,2} No ={1,3}

* A dynamical generator £( ,0) S: aneighbc,@
_ components!
- Quasi-Local (QL) if

or, explicitly: :
H=Y Hy, Hy=Hy,®Iy, Li;=Ly,) ® Ly,
k

* Frustration-Free (FF) [Kastoryano,Brandao, 2014; Johnson-T-Viola, 2015] if it is QL and

Lp)=0 = Ln,®Ix,(p)=0

» A state is a global equilibrium if and only if it is so for the local generators.




Frustration-Freeness as “Robustness”

. Inspired by: Let p = |¢)(¥| be a ground state of a QL Hamiltonian:

H =Y Hy, H,=Hy,®I,
k

Def: If all ‘¢> are eigenvectors of minimal energy for both the global and
neighborhood Hamiltonians, namely:

(Y|H|Y) =mino(H) =  (Y|Hk|Y) = min o(Hy), Vk.

such an H is said Frustration-Free (FF).

- If the global ground state is unique, we can obtain it by simultaneously
“cooling” the system on each neighborhood, and it does not change if we

scale the neighborhood terms: 7 _ § : arHy. o ar € R
, ’ e o o 7 7
k

No fine tuning!
- Same robustness holds for a FF generator and its equilibria.

Key Property:
Summing neighborhood terms in FF generators does not add equilibria.




Asymptotic State Stabilization
p € D(H) :={p=p' >0, trace(p) = 1} B

3 .

> P1 O\ pa
Task: Prepare a target state

irrespective of the initial one. 09

When is it possible with FF dynamics?

Define: pq is Frustration-Free Stabilizable [FFS] if it is
1) Invariant: L(pg) =0

2) Attracting: Vp € D(H), t hﬂ_ﬂ eCt(p) = py
—> T 00
for some quasi-local FF dynamics. g‘mmmtb

Relevance: Basic task of QIP; Cooling to ground state;
Entanglement generation and preservation; One-way computing;
Metropolis-type sampling




General Fact in Dissipative Design:

Making a state invariant is the hard part;
After that, making everything else converge to it

Invariance-ensuring
generators are a zero-measure set.
In there, stabilizing ones are generic.
[T. et al, IEEE TAC 2012]

[T.,Viola, QIC 2014 ]




Characterizing Invariance: Schmidt Span

* When is a state invariant for a FF generator?

FF hypothesis: we have an equilibrium if and only if
L, @IJ\‘/—k (,Od) =0, Vk

Consider one neighborhood and its complement:

« Write the operator Schmidt decomposition
with respect to the partition #Hn,, @ Hyy,

/—\
Operator
b !
- Define the Schmialt Span: Y. (pq) = span{ 4, } M

+ Lemma: Oq is invariantif and only if Y1 (pg) C ker(Lyar, ), VEk

» This implies invariance of the reduced state: pA;, = trace N ( pd)




Stabilizing Dynamics”?

Invariance is characterized!
Now we have a good idea of what the stabilizing
QL generators have to do!

. Locally preserve the Schmidt spans;

Il. Perturb and destabilize everything else;

However....




Towards Stabilization: Distorted Algebras

- L N, Is the generator of a CPTP semigroup. The structure of the fixed points
Is well kKnown [Ng,Blume-Kohut, Viola; Wolf], they form a distorted algebra:

ker(Lys, ) = <€9%(7—[f) & Tg) ® O
¢

- Why is this important? We (may) need to enlarge the set of invariant operators
with respect to (just) the Schmidt span (~no pancake theorem).

» Let P be a maximum rank fixed state for L, . Given the Schmidt span, we
can construct the minimal distorted algebra A;. so that > (pq) C A ,
by making it closed with respect to:

(i) Linear combinations and adjoint;

(i) Modified product:
Xx,Y=Xp 'Y

with: P = PN, .

Lemma: A4 is invariant if and only if Ak C ker(ﬂj\/k), VEk

* As we hoped for, for generic states, the condition turns out to be not only
necessary, but also sufficient....




Main Result: Full-rank States

* For each neighborhood, we can construct the Provides a test
enlarged distorted algebra: Va ith only two inputs:
g g Ag _ Ak @%(Nk) with only two inputs

the state and the
neighborhoods

Theorem: Assume pPgq is full rank. Then it is FFS if and only if

* Proof idea: Necessity follows from Lemmas. Proving sufficiency, we
consider an explicit choice of generators: . :
LA, (/0) = &N (IO) — P

with CPTP non-orthogonal projections onto the minimal distorted
algebras (dual of conditional expectations):

En,(p) € Ay EXr (p) = En ().

Key technical point: proving the dynamics is frustration free.
Then the shared equilibrium is unique, and there cannot be any other one.




Key Result

» Assume that forall k, L, = L, () ® Iy, :
alg(Ly) C alg(L)

 Note: This is true if there is no Hamiltonian;

 Then we have the following chain of equality/inclusions (with full rank states):

ker(£) = prker(Lh)pz = pralg{L} p>

IA

ker(Lx) = peker(L)p? = palg{L}p?,




Main Result: Comments and Extensions

* What is this useful for?

Allows for checking if a target state is in principle stabilizable under
given (and strict) locality constraints, with frustration-free dynamics.
The checking procedure can be automated.

e If full quasi-local control/simulation is available, we give a recipe for
stabilization of desired state, where possible.
More constraints can be included later, e.g. via suitable numerical methods.
Our result gives a preliminary check.

|t can be seen as a way to construct quantum “sampler”

[Kastoryano,Brandao, 2014] - a way to obtain a density we do not have.
Complements to other work by Temme, Cubitt, Wolf, and co-workers where focus
is on studying the scalability/speed, when convergence is already guaranteed.

* For general states, the same necessary condition holds. However, we do
not have a full proof for sufficiency.
An additional condition is used, but we conjecture is not needed.

* Full and simpler characterization for pure states.




Specialization for Pure States

* For each neighborhood compute the reduced states;

Being (Od pure, it can be shown that: 4, — Y, (,0) — B (Supp(ka ))
» Instead of intersecting distorted algebras, | can just look at heir supports.

* For each neighborhood calculate the support of the reduced state times the
identity on the rest: = -
Y Hn,, = supp(pn;, @ Iy,

« Theorem [T.-Viola, 20127

Ho = ﬂ?’[_/\/‘k = supp(p)
k

if and only if 0 is FFS;

IDEA: the support is “where the probability is”;
Locally | only see the reduced state, and | try to prepare it.




FFS, Or Not”? Physical Interpretation

» Equivalent characterization: p = |¢) (1| is FFS if and only if
it is the unique ground state of a Frustration-Free QL Hamiltonian, that is:

» There exists a QL Hamiltonian for which |¢> Is the unique ground state and

H=Y) Hy Hp=Hy, ®Ig,
k

such that (¢|Hg|y) = min o(Hy), Vk.

Proof: It suffices to choose H; = kak ® 1 N Hk/k projects on Supp(p/\/’k).J"

» We retrieve the FF Hamiltonian - the analogy with FF generators fully works!

» Interesting connection to physically-relevant cases, and previous work by Verstraete,
Perez-Garcia, Cirac, Wolf, B. Kraus, Zoller and co-workers.

» Differences:
In their setting, the proper locality notion is induced by the target state itself.
In our setting, the locality is fixed a priori. We also prove necessity of the condition.




Applications

Generating entanglement
from quasi-local dissipation.




s Frustration-Free Enough for Pure States®

- Which states are FFS? Using our test, it turns out that...

- All product states are FFS.

- GHZ states (maximally entangled) and W states are not FFS
Unless we have neighborhoods that cover the whole network/nonlocal interactions;

pauz = [U)(¥], |¥) = [Tauz) = (/0000) + [1111))/v2.

- Any graph state is FFS with respect to the locality induced by the graph;

To each node is assigned a neighborhood, which contain all the nodes connected by edges.
Ug|00...0) = |@graph,o)

- Generic (injective) MPS/PEPS are FFS for some locality definition...
NeighborhOOd size may be blg' [see work by Peres-Garcia, Wolf, Cirac and co-workers]

- Some Dicke states that are not graph can be stabilized!
E.g. on linear graph with NN interaction:

1
7(|1100> +]1010) + |[0110) + |0101) + [0011) + |1001))




s Frustration-Free Enough for Mixed States?

- Which states are FFS? Using our test, it turns out that...

- There are non-entangled states that are not FFS! 1
_ XN Rn
psep — 5 (OO _|_ 1 1 ).

- Product graph states are FFS, with locality induced by the graph.

Uc : prepares the graph basis. PG & gpﬂ G
- Commuting Gibbs states are FFS, with locality generated by the
Hamiltonian (NNN). o—BH
PB = Tr(e—FAH)
with:

H =Y Hy, Hy=Hy, ® Iy, | [Hp, H;] =0, Vj, k
k

- Some non-commuting Gibbs states are FFS!
e.g. zero-temperature states as certain Dicke states,
and their mixtures with e.g. GHZ states!




Summary and Outlook

» Locality constraints are key for state preparation.

» We obtain a way to check if a target state is “compatible” with given
constraints

» If it is, we provide intuition on what the stabilizing dynamics should
do, as well as one that works.

» We show that there are new (non commuting) states that are
genuinely FFS.

» It is possible to relax invariance constraints for preparation of GHZ
and W. Two steps: first initialization and then conditional stabilization.

= Next:
Relation to Encoders and Memories; Numerical approaches;
When is FFS generic? More general constraints.

=Open problems: The above mentioned conjecture and...
Better classification of FFS states; Scalable non-commuting Gibbs;
Stabilization beyond Frustration-Free; Discrete-time models;
Speed of convergence (when the system size grows - scalability).




A case study: GHZ States

- GHZ states are never QLS for non trivial topology:

penz = |V (¥|, |¥) = |Tanz) = (]000...0) + |111...1))/v/2.
By symmetry, Hy must contain [000...0),|111...1).

Hence the following orthogonal states must remain stable for the QL dynamics.

Wagg) = (]000...0) 4 [111...1))/v2;
Wogg-) = (]000...0) —[111...1))/V2;

We need to “select” the right one How?
U§n|\IJGHZ+> = [Yanz+) U:(?n’\PGHZ—> = —[Vguz-)

- Trick: First prepare the system in the +1-eigenspace of U?n (e.q. |+>®”).

Then we show there exists a QL {&; }+>( that prepares Hg leaving the

eigenspace invariant.

- By our Theorem, PGH7Z is Conditionally QLS! (scalable on the linear graph)



Conditional Preparation: Some Intuition

FFS Problem: unfeasible global AR ARl A e
stabilization task because

| can only prepare (nec. cond.): Vi>T >0 &Elp)=p
7‘[0 = ﬂHNk
k

we can obtain scalable protocols!

The necessity follows from:
Vt>0 &lp)=p

First | prepare a subspace that
(1) is invariant for the QL sequence;
(2) is attracted directly to Pd

Problem: finding such H'!




Conditional Preparation: Definition & Result

- Definition: A state p = |1)) (1| is Quasi-Local Stabilizable (QLS)
conditionalto ' if there exist a dynamical semigroup {& }i>0 such
that N

Vi>0 &(p)=p  lim [[p; = pl| =0

for every pg with support on 7‘[, :

With some

. . /. : additional hypothesis, the
« Lemma: It is not restrictive to take 7‘[ Invariant. search for the subspace

can be automated.

- Theorem: If 7’
(1) contains |\IJ> ,
(2) is orthogonal to Ho © {|¥) };
(3) is invariant for {5t}t20 that stabilizes ?—[O :
Then p = [} (1| is QLS conditional to H."




