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Before we start, a couple of things on...

Attainability of Quantum Cooling,
Third Law, and all that...

[T. - Viola Sci.Rep. 2014,
arXiv:1403.8143]

http://arxiv.org/abs/1403.8143
http://arxiv.org/abs/1403.8143


Bipartition:
  S: system of interest (finite dimensional);
  B: environment/bath

Unitary joint dynamics:

Assume the joint system is controllable/ U is arbitrary.
How well can we cool (or purify) the system? Are there intrinsic limits?
Note: with controllability, purification and ground-state cooling are 
equivalent.
Def: By     - purification at time t we mean that exists U and a pure state 
such that:

⇢SB(t) = U(t)⇢S(0)⌦ ⇢B(0)U(t)†
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Open System Dynamics
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Subsystem Principle for Purification
✓Results in [T-Viola, Sci.Rep. 2014]

Most general subsystem: associated to a tensor factor of a subspace,

✓[Thm] If the joint system is completely controllable and initially factorized:

(1)      - purification can be achieved if 
      for some:

(2) Exact (           ) purification if and only if

(3)      - purification is possible if 

Strategy: Swap the state of the system with the subsystem one.
Claim: (1) is actually “if and only if”, i.e. either swap works or nothing does.
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Example: Thermal Bath States
✓ In [Wu, Segal & Brumer, No-go theorem for ground state cooling given initial 

system-thermal bath factorization. Sci.Rep. 2012], it is claimed that a no-go 
theorem for cooling holds, under similar (actually weaker) hypothesis. 

Ok, for perfect cooling, but arbitrarily good cooling is possible!

✓ E.g. Qubit target:

1) Choose a good
subspace;

2) Construct a 
2D subsystem;

3) Swap the state
with the qubit of 
interest;



•  What is this useful for? Why did I speak about this?
First steps towards a general/systematic construction that achieve optimal 
purity/ground state cooling for the target system. 
Other connections to thermodynamics...

• It is reminiscent of the third law: attaining perfect cooling would imply
using infinitely many degrees of freedom, and (likely) infinite energy.

Usual problem: finding a formulation of the third law with clear hypothesis.

• It is connected to Landauer’s principle [David’s lectures]:
 
- Exact purification is erasure.

- Swap operations seem to be the key.

Comments



INTRODUCTION (to the main talk)

Open quantum systems,
quantum dynamical semigroups

and long-time behavior.

Dissipative state preparation.



Bipartition:
  S: system of interest (finite dimensional);
  B: uncontrollable environment
Full description via joint Hamiltonian:

Unitary joint dynamics:

Under suitable Markovian approximation (weak coupling, singular),
generating an effective memoryless, time-invariant bath,
we can obtain convenient reduced dynamics:

⇢SB(t) = U(t)⇢S(0)⌦ ⇢B(0)U(t)†

HB

HS

H = HS ⌦ IB + IS ⌦HB +HSB

⇢S(t) = Et(⇢S(0)), {Et = eLt}t�0

Forward 
composition law: 

Continuous 
Semigroup of CPTP 

linear maps

Open System Dynamics



• Assume the dynamics to be a semigroup (i.e. the environment to be 
memoryless). The general form of the Markovian generator is:

[Gorini-Kossakovski-Sudarshan/Lindblad, 1974]

H may contain environment induced terms.

- Linear CPTP system: exponential convergence, well-known theory;
- Uniqueness of the equilibrium implies it is attracting.

Question:
Where does, or can the state asymptotically converge?

H = H†, Lk � Cn�n.

Quantum Dynamical Semigroups

Hamiltonian part Dissipative, 
“noisy” part

�̇t = L(�) = �i[H, �t] +
p�
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Lk�tL
†
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1
2
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[Davies Generator, 1976]
Under weak-coupling limit, consider:

we get:

Let B be a bath at inverse temperature     . Under some additional condition 
(irreducibility of algebra), it is possible to show that it admits the Gibbs 
state as unique equilibrium:

Physically consistent, expected result. 
Why keep looking into it?

HB

HS

Physical Answer
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New challenge: 

Engineering of open quantum dynamics
S: system of interest;
E: environment, including possibly:
      B: uncontrollable environment
      A: auxiliary, engineered system (quantum and/or classical controller)
Full description via Joint Hamiltonian: 

Reduced description via controlled generator (not just weak coupling!):
H = (HS ⌦ IE + IS ⌦HE +HSE) +Hc(t)

HB

HA

HS

HE

Key Applications:
Control &

Quantum Simulation

Lt(⇢) = �i[HS +HC(t), ⇢] +
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• Two Prevailing & Complementary Approaches:

I.  Environment as Enemy: we want to “remove” the coupling.
Noise suppression methods, active and passive, including
hardware engineering, noiseless subsystems, quantum error correction, 
dynamical decoupling;

II. Environment as Resource: we want to “engineer” the coupling.
Needed for state preparation, open-system simulation, and much more... 

Design of Open Quantum Dynamics



Entanglement Generated by Dissipation and Steady State Entanglement
of Two Macroscopic Objects

Hanna Krauter,1 Christine A. Muschik,2 Kasper Jensen,1 Wojciech Wasilewski,1,* Jonas M. Petersen,1

J. Ignacio Cirac,2 and Eugene S. Polzik1,†

1Niels Bohr Institute, Danish Quantum Optics Center QUANTOP, Copenhagen University, Copenhagen, Denmark
2Max-Planck-Institut für Quantenoptik, Garching, Germany
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Entanglement is a striking feature of quantum mechanics and an essential ingredient in most

applications in quantum information. Typically, coupling of a system to an environment inhibits

entanglement, particularly in macroscopic systems. Here we report on an experiment where dissipation

continuously generates entanglement between two macroscopic objects. This is achieved by engineering

the dissipation using laser and magnetic fields, and leads to robust event-ready entanglement maintained

for 0.04 s at room temperature. Our system consists of two ensembles containing about 1012 atoms and

separated by 0.5 m coupled to the environment composed of the vacuum modes of the electromagnetic

field. By combining the dissipative mechanism with a continuous measurement, steady state entanglement

is continuously generated and observed for up to 1 h.

DOI: 10.1103/PhysRevLett.107.080503 PACS numbers: 03.67.Bg, 03.65.Ud, 03.67.Hk, 42.50.!p

To date, experiments investigating quantum superposi-
tions and entanglement are hampered by decoherence. Its
effects have been studied in several systems [1]. However, it
was recognized [2] that the engineered interaction with a
reservoir can drive the system into a desired steady state. In
particular, dissipation common for two systems can drive
them into an entangled state [3]. The idea of using and
engineering dissipation rather than relying on coherent
evolutions only represents a paradigm shift with potentially
significant practical advantages. Contrary to other methods,
entanglement generation by dissipation does not require the
preparation of a system in a particular input state and exists,
in principle, for an arbitrary long time, which is expected to
play an important role in quantum information protocols
[4–7]. These features make dissipative methods inherently
stable against weak random perturbations, with the dissi-
pative dynamics stabilizing the entanglement.

We report on the first demonstration of purely dissipa-
tive entanglement generation [8]. In contrast to previous
approaches [9–11], entanglement is obtained without using
measurements on the quantum state of the environment
(i.e., the light field). The dissipation-based method imple-
mented here is deterministic and unconditional and there-
fore fundamentally different from standard approaches
such as the quantum-nondemolition-based method [9] or
the Duan-Lukin-Cirac-Zoller (DLCZ) protocol [4], which
yield a separable state if the emitted photons are not
detected. Furthermore, we report the creation of a steady
state atomic entanglement by combining the dissipative
mechanism proposed in [12] with continuous measure-
ments. The generated entanglement is of the EPR type,
which plays a central role in continuous variable quantum
information processing [6,13], quantum sensing [14], and
metrology [11,15,16].

Figure 1(a) presents the principles of engineered dissi-
pation in our system consisting of two 133Cs ensembles,
interacting with a y-polarized laser field at !L. A pair
of two-level systems is encoded in the 6S1=2 ground
state sublevels j "iI " j4; 4iI, j #iI " j4; 3iI, and j "iII "
j4;!3iII, j #iII " j4;!4iII. Operators J#I;II with J! ¼PN

i¼1 j "iih# j describe collective spin flips, where N is the
number of atoms. The atoms are placed in a magnetic
field in the x direction and the collective operators
Jy ¼

ffiffiffi
2

p
ðJþ þ J!Þ and Jz ¼ i

ffiffiffi
2

p
ðJþ ! J!Þ are defined

in the frame rotating at the Larmor frequency !. The
two ensembles are initialized by optical pumping along
the x axis in the extreme states mF ¼ 4 and mF ¼ !4,
respectively, corresponding to hJxi " hJx;Ii ¼ !hJx;IIi (
4N (see Fig. 1). Within the Holstein-Primakoff approxi-

mation, we introduce the canonical variables XI;II ¼
Jy;I;II=

ffiffiffiffiffiffiffiffiffiffiffi
jhJxij

p
and PI;II ¼ #Jz;I;II=

ffiffiffiffiffiffiffiffiffiffiffi
jhJxij

p
[6]. The EPR

entanglement condition [9,17] for such ensembles is given
by !¼"J=ð2jhJxijÞ¼varðXI!XIIÞ=2þvarðPIþPIIÞ=2<1,
where "J ¼ varðJy;I ! Jy;IIÞ þ varðJz;I ! Jz;IIÞ.
The entangling mechanism is due to the coupling to the

x-polarized vacuum modes in the propagation direction z
of the laser field (Fig. 1), which are shared by both ensem-
bles and provide the desired common environment. Spin
flip processes in the two samples accompanied by forward
scattering result in indistinguishable photons leading
to quantum interference and entanglement of the ensem-
bles. These spin flips and the corresponding photon
scattering (see level schemes in Fig. 1) are descri-
bed by the interaction Hamiltonian of the type H /R
#!ls

dkðAayk þ AyakÞ þ
R
#!us

dkðBayk þ ByakÞ, where

the integrals cover narrow bandwidths centered around
the lower and upper sideband at !L )!, respectively,
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Dissipation for Information Engineering
• Dissipation 

allows for:

✓Entanglement 
Generation

✓Computing

✓Open System 
Simulator
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Anopen-systemquantum simulatorwith
trapped ions
Julio T. Barreiro1*, Markus Müller2,3*, Philipp Schindler1, Daniel Nigg1, Thomas Monz1, Michael Chwalla1,2, Markus Hennrich1,
Christian F. Roos1,2, Peter Zoller2,3 & Rainer Blatt1,2

The control of quantum systems is of fundamental scientific interest and promises powerful applications and
technologies. Impressive progress has been achieved in isolating quantum systems from the environment and
coherently controlling their dynamics, as demonstrated by the creation and manipulation of entanglement in various
physical systems. However, for open quantum systems, engineering the dynamics of many particles by a controlled
coupling to an environment remains largely unexplored. Herewe realize an experimental toolbox for simulating an open
quantum system with up to five quantum bits (qubits). Using a quantum computing architecture with trapped ions, we
combine multi-qubit gates with optical pumping to implement coherent operations and dissipative processes. We
illustrate our ability to engineer the open-system dynamics through the dissipative preparation of entangled states,
the simulation of coherentmany-body spin interactions, and the quantumnon-demolitionmeasurement ofmulti-qubit
observables. By adding controlled dissipation to coherent operations, this work offers novel prospects for open-system
quantum simulation and computation.

Every quantum system is inevitably coupled to its surrounding
environment. Significant progress has been made in isolating systems
from their environment and coherently controlling the dynamics of
several qubits1–4. These achievements have enabled the realization of
high-fidelity quantum gates and the implementation of small-scale
quantum computing and communication devices, as well as the
measurement-based probabilistic preparation of entangled states in
atomic5,6, photonic7, NMR8 and solid-state set-ups9–11. In particular,
successful demonstrations of quantum simulators12,13, which allow
one to mimic and study the dynamics of complex quantum systems,
have been reported14.
In contrast, controlling themore general dynamics of open systems

amounts to engineering both the Hamiltonian time evolution of
the system as well as the coupling to the environment. In previous
work15–18, controlled decoherence has been used to systematically
study the detrimental effects of decoherence on many-body or
multi-qubit open systems. The ability to design dissipation can,
however, be a useful resource, as in the context of the preparation of
a desired entangled state from an arbitrary initial state19–21, and in the
closely related fields of dissipative quantum computation22 and
quantummemories23. It also enables the preparation andmanipulation
of many-body states and quantum phases20, and provides an enhanced
sensitivity in precision measurements24. In particular, by combining
suitably chosen coherent and dissipative operations, one can engineer
the system–environment coupling, thus generalizing the concept of
Hamiltonian quantum simulation to open quantum systems13,25.
Here we provide an experimental demonstration of a toolbox of

coherent and dissipative multi-qubit manipulations to control the
dynamics of open systems. In a string of trapped ions, each ion
encoding a qubit, we subdivide the qubits into ‘system’ and ‘environ-
ment’. The system–environment coupling is then engineered
through the universal set of quantum operations available in ion-trap
quantum computers26,27, whereas the environment ion is coupled to

the dissipative bath of vacuummodes of the radiation field via optical
pumping. Following ref. 22 (see also ref. 28), these quantum resources
provide a complete toolbox to engineer general Markovian open-
system dynamics in our multi-qubit system25,29.
We first illustrate this engineering by dissipatively preparing a Bell

state in a 211 ion system (that is, two system ions and one ancilla
ion), such that an initially fully mixed state is pumped into a given
Bell state. Similarly, with 411 ions, we also dissipatively prepare a
four-qubit Greenberger–Horne–Zeilinger (GHZ) state, which can be
regarded as a minimal instance of Kitaev’s toric code30. Besides the
dissipative elements, we show coherent n-body interactions by imple-
menting the fundamental building block for four-spin interactions. In
addition, we demonstrate a readout of n-particle observables in a
non-destructive way with a quantum-non-demolition (QND) mea-
surement of a four-qubit stabilizer operator. We conclude by out-
lining future perspectives and implications of the present work for
quantum information processing and simulation, as well as open-
system quantum control scenarios including feedback25.

Open-system dynamics and Bell-state pumping
The dynamics of an open quantum system S coupled to an environ-
ment E can be described by the unitary transformation rSE.UrSEU

{,
with rSE the joint density matrix of the composite system S1 E. Thus,
the reduced density operator of the system will evolve as
rS5TrE(UrSEU

{). The time evolution of the system can also be
described by a completely positive Kraus map

rS.E rSð Þ~
X

k

EkrSE
{
k ð1Þ

with Ek operation elements satisfying
X

k
E{
kEk~1, and initially

uncorrelated system and environment31. If the system is decoupled
from the environment, the general map (1) reduces to rS.USrSU

{
S ,

withUS the unitary time evolution operator acting only on the system.

1Institut für Experimentalphysik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria. 2Institut für Quantenoptik und Quanteninformation, Österreichische Akademie der Wissenschaften,
Technikerstrasse 21A, 6020 Innsbruck, Austria. 3Institut für Theoretische Physik, Universität Innsbruck, Technikerstrasse 25, 6020 Innsbruck, Austria.
*These authors contributed equally to this work.
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Quantum computation and quantum-state
engineering driven by dissipation
Frank Verstraete1*, Michael M.Wolf2 and J. Ignacio Cirac3*
The strongest adversary in quantum information science is
decoherence, which arises owing to the coupling of a system
with its environment1. The induced dissipation tends to destroy
and wash out the interesting quantum effects that give rise
to the power of quantum computation2, cryptography2 and
simulation3. Whereas such a statement is true for many
forms of dissipation, we show here that dissipation can also
have exactly the opposite effect: it can be a fully fledged
resource for universal quantum computation without any
coherent dynamics needed to complement it. The coupling to
the environment drives the system to a steady state where
the outcome of the computation is encoded. In a similar
vein, we show that dissipation can be used to engineer a
large variety of strongly correlated states in steady state,
including all stabilizer codes, matrix product states4, and their
generalization to higher dimensions5.

The situation we have in mind is shown in Fig. 1. A quantum
system composed of N particles (such as qubits) is organized in
space according to a particular geometry (in the figure, a one-
dimensional lattice). Neighbouring systems are coupled to some
local environments, which are dissipative in nature and tend to
drive the system to a steady state. Our idea is to engineer those
couplings, so that the environments drive the system to a desired
final state. The coupling to the environmentwill be static, so that the
desired state is obtained after some time without having to actively
control the system. Note that the role of the environments is to
dissipate (or, more precisely, evacuate) the entropy of the system,
and by choosing the couplings appropriately we can use this effect
to drive our system.

We will show first how to design the interactions with
the environment to implement universal quantum computation.
This new method, which we refer to as dissipative quantum
computation (DQC), defies some of the standard criteria for
quantum computation because it requires neither state preparation,
nor unitary dynamics6. However, it is nevertheless as powerful as
standard quantum computation. Thenwewill show that dissipation
can be engineered7 to prepare ground states of frustration-free
Hamiltonians. Those include matrix product states4,8,9 (MPSs) and
projected entangled pair states5,9 (PEPSs), such as graph states10
and Kitaev11 and Levin–Wen12 topological codes. Both DQC and
dissipative state engineering (DSE) are robust in the sense that,
given the dissipative nature of the process, the system is driven
towards its steady state independent of the initial state and hence
of eventual perturbations along the way.

Here, we will concentrate first on DQC, showing how given
any quantum circuit one can construct a locally acting master
equation for which the steady state is unique, encodes the outcome
of the circuit and is reached in polynomial time (with respect to
the one corresponding to the circuit). Then we will show how

1Fakultät für Physik, Universität Wien, 1090Wien, Austria, 2Niels Bohr Institute, 2100 Copenhagen, Denmark, 3Max-Planck-Institut für Quantenoptik,
85748 Garching, Germany. *e-mail: fverstraete@gmail.com; ignacio.cirac@mpq.mpg.de.

to construct dissipative processes that drive the system to the
ground state of any frustration-free Hamiltonian. In the Methods
section, we will prove that MPS (ref. 9) and certain kinds of
PEPS (ref. 9) can be efficiently prepared using this method, and
in Supplementary Information we will give details of the proofs.
In this letter we will not consider specific physical set-ups where
our ideas can be implemented. Nevertheless, the Methods section
will provide a universal way of engineering the master equations
required for DQC and DSE, which can be easily adapted to current
experiments13 based on, for example, atoms in optical lattices14
or trapped ions15. Thus, we expect that our predictions may be
experimentally tested in the near future.

Let us start with DQC by considering N qubits in a line and a
quantum circuit specified by a sequence of nearest-neighbour qubit
operations {Ut }Tt=1. We define |�t � :=UtUt�1 ...U1|0�1⌅ ...|0�N, so
that |�T � is the final state after the computation. Our goal is to find
amaster equation ⇧̇ = L(⇧)with a Liouvillian in Lindblad form16

L(⇧)=
↵

k

Lk⇧L†
k � 1

2
⇤
L†
kLk,⇧

⌅
+ (1)

where the Lk acts locally and has a steady state, ⇧0: (1) that is unique;
(2) that can be reached in a time poly(T ); (3) such that �T can be
extracted from it in a time poly(T ). As in Feynman’s construction
of a quantum simulator3, we consider another auxiliary register
with states {|t �}Tt=0, which will represent the time. We choose
the Lindblad operators

Li = |0�i�1|⌅|0�t �0|

Lt =Ut ⌅ |t +1��t |+U †
t ⌅ |t ��t +1|

where i= 1,...,N and t = 0,...,T . It is clear that the L terms act
locally except for the interaction with the extra register, which can
be made local as well. Furthermore,

⇧0 = 1
T +1

↵

t

|�t ���t |⌅ |t ��t |

is a steady state, that is, L(⇧0)=0.Given such a state, the result of the
actual quantum computation can be read out with probability 1/T
by measuring the time register. In Supplementary Information, we
show that ⇧0 is the unique steady state and that the Liouvillian has
a spectral gap ⌦=�2/(2T +3)2. This means indeed that the steady
state will be reached in polynomial time in T . Note that this gap is
independent ofN as well as of the actual quantum computation that
is carried out (that is, independent of the Ut ). It is also shown that
the same gap is retained if the clock register is encoded in the unary

NATURE PHYSICS | VOL 5 | SEPTEMBER 2009 | www.nature.com/naturephysics 633



• Can we design an environment that “prepares” a desired state?
Naive Answer: YES! 
mathematically easy:

• Choice is non-unique: “simple” Markov evolutions that do the job always exist:
‣ Pure state: generator with single L is enough, with ladder-type operator; 
[T-Viola, IEEE T.A.C., 2008, Automatica 2009]

‣ Mixed state: generator with H and a single L (tri-diagonal matrices); 
[T-Schirmer-Wang, IEEE T.A.C., 2010]

• However... 
Can we do it with experimentally-available controls? Typically NOT. 
We need to take into account:
‣ The control method [open-loop, switching, feedback, coherent feedback,...]
‣ Limits on speed and strength of the control actions;
‣ Faulty controls;
‣ Locality constraints.

Focus: Dissipative State Preparation 

Physical relevance;
Key limitation for large-scale 

entanglement generation

⇢̇ = L(⇢) = E(⇢)� ⇢, E(⇢) = ⇢targettrace(⇢)



Main Task

Understanding the role of locality constraints
and providing general design rules

for dissipative state preparation



Multipartite Systems and Locality
• Consider n finite-dimensional systems, indexed:

• Locality notion: from the start, we specify subsets of indexes, 
or neighborhoods, corresponding to group of subsystems: 

...on which “we can act simultaneously”: how?

‣ Neighborhood operator:

‣ A Hamiltonian is said Quasi-Local (QL) if:

Neighborhood operators will model the allowed interactions.

HQ =
nO

a=1

Ha

a = 1 2 3 · · ·

N1 = {1, 2}
N2 = {1, 3}
N3 = {2, 3, 4}

H =
X

k

Hk, Hk = HNk ⌦ IN̄k

This framework 
encompasses different 
notions: graph-induced 
locality, N-body locality, 

etc...

Mk = MNk ⌦ IN̄k



Constraints: Frustration-Freeness & Locality
• Consider n finite-dimensional systems, and a fixed locality notion.

• A dynamical generator            is:

•  Quasi-Local (QL) if

or, explicitly:

• Frustration-Free (FF) [Kastoryano,Brandao, 2014; Johnson-T-Viola, 2015]  if it is QL and

•  A state is a global equilibrium if and only if it is so for the local generators.

a = 1 2 3 · · ·

N1 = {1, 2} N2 = {1, 3}
N3 = {2, 3, 4}

H =
X

k

Hk, Hk = HNk ⌦ IN̄k

· · ·

L(⇢)

L(⇢) = 0 =) LNk ⌦ IN̄k
(⇢) = 0

L =
X

k

LNk ⌦ IN̄k

Sum of neighborhood 
components!

Lk,j = LNk(j) ⌦ IN̄k



Frustration-Freeness as “Robustness”

•  Inspired by:  Let                       be a ground state of a QL Hamiltonian:

Def: If  all         are eigenvectors of minimal energy for both the global and 
neighborhood Hamiltonians, namely:

such an H is said Frustration-Free (FF).

• If the global ground state is unique, we can obtain it by simultaneously 
“cooling” the system on each neighborhood, and it does not change if we 
scale the neighborhood terms:

• Same robustness holds for a FF generator and its equilibria. 
Key Property: 
Summing neighborhood terms in FF generators does not add equilibria.

H =
X

k

Hk, Hk = HNk ⌦ IN̄k

⇢ = | ih |

h |Hk| i = min �(Hk), 8k.

| i

h |H| i = min �(H) =)

H =
X

k

↵kHk, ↵1, . . . ,↵k 2 R,
No fine tuning!



� � D(H) := {� = �† > 0, trace(�) = 1}

Asymptotic State Stabilization

⇢2

⇢1

⇢2

⇢1

Task:  Prepare a target state
irrespective of the initial one. 

When is it possible with FF dynamics?

Define:       is Frustration-Free Stabilizable [FFS] if it is 
1) Invariant:

2) Attracting:

for some quasi-local FF dynamics.
Relevance: Basic task of QIP; Cooling to ground state;  

Entanglement generation and preservation; One-way computing; 
Metropolis-type sampling

Many-to-one
Preparation

8⇢ 2 D(H), lim
t!+1

eLt(⇢) = ⇢d

⇢d

⇢d

L(⇢d) = 0

Constraints!



General Fact in Dissipative Design:

Making a state invariant is the hard part;
After that, making everything else converge to it 

is (relatively) easy.

Invariance-ensuring 
generators are a zero-measure set.

In there, stabilizing ones are generic.
[T. et al, IEEE TAC 2012]

[T.,Viola, QIC 2014]



• When is a state invariant for a FF generator?

FF hypothesis: we have an equilibrium if and only if

Consider one neighborhood and its complement:

•  Write the operator Schmidt decomposition
with respect to the partition                       :

• Define the Schmidt Span:

• Lemma:        is invariant if and only if
 

• This implies invariance of the reduced state:

⌃k(⇢d) = span{Aj}

Characterizing Invariance: Schmidt Span

LNk ⌦ IN̄k
(⇢d) = 0, 8k

⇢d =
X

j

Aj ⌦BjHNk ⌦HNk

⇢Nk = traceN̄k
(⇢d)

⇢d ⌃k(⇢d) ⇢ ker(LNk), 8k

· · ·Nk N k

Operator 
subspace!



Invariance is characterized!
Now we have a good idea of what the stabilizing 
QL generators have to do!

I.  Locally preserve the Schmidt spans;
II. Perturb and destabilize everything else;

However....

Stabilizing Dynamics?



•             is the generator of a CPTP semigroup. The structure of the fixed points 
is well known [Ng,Blume-Kohut,Viola; Wolf], they form a distorted algebra:

• Why is this important? We (may) need to enlarge the set of invariant operators 
with respect to (just) the Schmidt span (~no pancake theorem).

• Let     be a maximum rank fixed state for          . Given  the Schmidt span, we 
can construct the minimal distorted algebra       so that                             ,                              
by making it closed with respect to:
(i)  Linear combinations and adjoint;
(ii) Modified product:

    with:                    .  

Lemma:         is invariant if and only if 

•  As we hoped for, for generic states, the condition turns out to be not only 
necessary,  but also sufficient....
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Towards Stabilization: Distorted Algebras
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• For each neighborhood, we can construct the 
enlarged distorted algebra:

Theorem:  Assume        is full rank.  Then it is FFS if and only if

• Proof idea: Necessity follows from Lemmas. Proving sufficiency, we 
consider an explicit choice of generators: 

with CPTP non-orthogonal projections onto the minimal distorted 
algebras (dual of conditional expectations):

Key technical point: proving the dynamics is frustration free. 
Then the shared equilibrium is unique, and there cannot be any other one.
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Main Result: Full-rank States
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Provides a test 
with only two inputs:

the state and the 
neighborhoods



• Assume that for all k,                                        :

 

• Note: This is true if there is no Hamiltonian;

• Then we have the following chain of equality/inclusions (with full rank states):

• This proves that the chosen generator is FF (does not have Hamiltonian).

alg(Lk) ✓ alg(L)

Key Result

Lk = LNk(j) ⌦ IN̄k



•  What is this useful for?
Allows for checking if a target state is in principle stabilizable under 
given (and strict) locality constraints, with frustration-free dynamics.
The checking procedure can be automated.

• If full quasi-local control/simulation is available, we give a recipe for 
stabilization of desired state, where possible. 
More constraints can be included later, e.g. via suitable numerical methods.
Our result gives a preliminary check.

• It can be seen as a way to construct quantum “sampler”
 [Kastoryano,Brandao, 2014] - a way to obtain a density we do not have. 
Complements to other work by Temme, Cubitt, Wolf, and co-workers where focus 
is on studying the scalability/speed, when convergence is already guaranteed. 

• For general states, the same necessary condition holds. However, we do 
not have a full proof for sufficiency. 
An additional condition is used, but we conjecture is not needed.

• Full and simpler characterization for pure states.

Main Result: Comments and Extensions



• For each neighborhood compute the reduced states;

• Being        pure, it can be shown that:

• Instead of intersecting distorted algebras, I can just look at heir supports.

• For each neighborhood calculate the support of the reduced state times the 
identity on the rest:

• Theorem [T.-Viola, 2012]: 

if and only if      is FFS; 

IDEA: the support is “where the probability is”;  
Locally I only see the reduced state, and I try to prepare it. 

Ak = ⌃k(⇢) = B(supp(⇢Nk))

Specialization for Pure States
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FFS, Or Not? Physical Interpretation

• Equivalent characterization:                       is FFS if and only if 
it is the unique ground state of a Frustration-Free QL Hamiltonian, that is:

‣ There exists a  QL Hamiltonian for which         is the unique ground state and

such that 

Proof: It suffices to choose                                  ,         projects on                   .
‣ We retrieve the FF Hamiltonian - the analogy with FF generators fully works!

‣ Interesting connection to physically-relevant cases, and previous work by Verstraete, 
Perez-Garcia, Cirac, Wolf, B. Kraus, Zoller and co-workers.

‣ Differences:
In their setting, the proper locality notion is induced by the target state itself.
In our setting, the locality is fixed a priori. We also prove necessity of the condition.
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Applications

Generating entanglement
from quasi-local dissipation.



1p
6
(|1100i+ |1010i+ |0110i+ |0101i+ |0011i+ |1001i)

Is Frustration-Free Enough for Pure States?
• Which states are FFS? Using our test, it turns out that...

• All product states are FFS.
• GHZ states (maximally entangled) and W states are not FFS 

Unless we have neighborhoods that cover the whole network/nonlocal interactions;

• Any graph state is FFS with respect to the locality induced by the graph; 
To each node is assigned a neighborhood, which contain all the nodes connected by edges. 
         

• Generic (injective) MPS/PEPS are FFS for some locality definition...
Neighborhood size may be big! [see work by Peres-Garcia, Wolf, Cirac and co-workers]

• Some Dicke states that are not graph can be stabilized! 
E.g. on linear graph with NN interaction:

UG|00 . . . 0i = |'graph,0i

⇢GHZ = | ih |, | i ⌘ | GHZi = (|0000i+ |1111i)/
p
2.



• Which states are FFS? Using our test, it turns out that...

•  There are non-entangled states that are not FFS!

• Product graph states are FFS, with locality induced by the graph.
 
       : prepares the graph basis.                                                                                                                                                                                           

• Commuting Gibbs states are FFS, with locality generated by the 
Hamiltonian (NNN).

with:

• Some non-commuting Gibbs states are FFS!
e.g. zero-temperature states as certain Dicke states, 
and their mixtures with e.g. GHZ states!
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Is Frustration-Free Enough for Mixed States?
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Summary and Outlook
‣ Locality constraints are key for state preparation.

‣ We obtain a way to check if a target state is “compatible” with given 
constraints

‣ If it is, we provide intuition on what the stabilizing dynamics should 
do, as well as one that works.

‣ We show that there are new (non commuting) states that are 
genuinely FFS.

‣ It is possible to relax invariance constraints for preparation of GHZ 
and W. Two steps: first initialization and then conditional stabilization. 

➡Next: 
Relation to Encoders and Memories; Numerical approaches; 
When is FFS generic? More general constraints.

➡Open problems: The above mentioned conjecture and...
Better classification of FFS states; Scalable non-commuting Gibbs;
Stabilization beyond Frustration-Free; Discrete-time models;
Speed of convergence (when the system size grows - scalability).



A case study: GHZ States
• GHZ states are never QLS for non trivial topology:

By symmetry,        must contain                                   .

Hence the following orthogonal states must remain stable for the QL dynamics.

We need to “select” the right one  How?

• Trick: First prepare the system in the +1-eigenspace of           (e.g.             ).    
Then we show there exists a QL                 that prepares         leaving the 
eigenspace invariant.

• By our Theorem,             is Conditionally QLS!  (scalable on the linear graph)

⇢GHZ = | ih |, | i ⌘ | GHZi = (|000 . . . 0i+ |111 . . . 1i)/
p

2.
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H0 :=
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8 t � 0 Et(⇢) = ⇢

8 t � T > 0 Et(⇢) = ⇢

Conditional Preparation: Some Intuition

⇢2

⇢1

FFS Problem: unfeasible global 
stabilization task because

 I can only prepare (nec. cond.):

⇢d

⇢0

The necessity follows from:

⇢2

⇢1

⇢d

First I prepare a subspace that
(1) is invariant for the QL sequence;

(2) is attracted directly to     .
Problem: finding such      !

⇢d

H0

H0

H0

If we relax this assumptions,
we can obtain scalable protocols!



• Definition: A state                        is Quasi-Local Stabilizable (QLS) 
conditional to          if there exist a dynamical semigroup                   such 
that

for every        with support on        .

• Lemma: It is not restrictive to take       invariant.

• Theorem: If        
(1) contains         ;
(2) is orthogonal to                          ;
(3) is invariant for                 that stabilizes        ;
Then                        is QLS conditional to      .           

lim
t!1

kEt(⇢0)� ⇢k = 0

⇢0

Conditional Preparation: Definition & Result
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With some 
additional hypothesis, the 

search for the subspace 
can be automated.

lim
t!1

k⇢t � ⇢k = 0


