Generating Entanglement from Frustration-Free Dissipation

Francesco Ticozzi Dept. of Information Engineering, University of Padua Dept. of Physics and Astronomy, Dartmouth College

In collaboration with **P.D.Johnson** (PhD student@Dartmouth) **L. Viola** (Dartmouth College) **Key Reference:** <u>arXiv:1506.07756</u>

Before we start, a couple of things on...

Attainability of Quantum Cooling, Third Law, and all that...

> [T. - Viola Sci.Rep. 2014, arXiv:1403.8143]

Open System Dynamics

Bipartition:

S: system of interest (*finite dimensional*);

B: environment/bath

Unitary joint dynamics:

$$\rho_{SB}(t) = U(t)\rho_S(0) \otimes \rho_B(0)U(t)^{\dagger}$$

Assume the *joint* system is controllable/ U is **arbitrary.**

How well can we cool (or purify) the system? Are there intrinsic limits? Note: with controllability, purification and ground-state cooling are equivalent.

 \mathcal{H}_{B}

Def: By \mathcal{E} - purification at time *t* we mean that exists U and a pure state such that:

 $\rho'_{S} = \operatorname{Tr}_{B}(\rho_{SB}(t))$ satisfies $\|\rho'_{S}, |\psi\rangle\langle\psi\|_{1} \leq \varepsilon, \ \forall \rho_{S}$

Subsystem Principle for Purification

✓ Results in [T-Viola, Sci.Rep. 2014]

Most general subsystem: associated to a tensor factor of a subspace,

 $\mathcal{H}_B = (\mathcal{H}_{S'} \otimes \mathcal{H}_F) \oplus \mathcal{H}_R$

✓[Thm] If the joint system is completely controllable and initially factorized:

(1) \mathcal{E} - purification can be achieved if $\|\rho_B - \tilde{\rho}_B\| \leq \varepsilon$ for some: $\tilde{\rho}_B = (|\psi\rangle \langle \psi| \otimes \rho_F) \oplus 0_R$

(2) Exact (arepsilon=0) purification if and only if $\
ho_B=(|\psi
angle\langle\psi|\otimes
ho_F)\oplus 0_R$

(3) $\mathcal E$ - purification is possible if

$$\varepsilon \ge \tilde{\varepsilon}(\rho_B) \equiv \tilde{\varepsilon} = 1 - \sum_{j=1}^{a_F} \lambda_j(\rho_B) \ge 0$$

Strategy: Swap the state of the system with the subsystem one. **Claim:** (1) is actually "if and only if", i.e. either swap works or nothing does.

Example: Thermal Bath States

✓ In [Wu, Segal & Brumer, No-go theorem for ground state cooling given initial system-thermal bath factorization. Sci.Rep. 2012], it is claimed that a no-go theorem for cooling holds, under similar (actually weaker) hypothesis.

Ok, for perfect cooling, but arbitrarily good cooling is possible!

Comments

- What is this useful for? Why did I speak about this? First steps towards a general/systematic construction that achieve optimal purity/ground state cooling for the target system. Other connections to thermodynamics...
- It is reminiscent of the third law: attaining perfect cooling would imply using infinitely many degrees of freedom, and (likely) infinite energy.

Usual problem: finding a formulation of the third law with clear hypothesis.

- It is connected to Landauer's principle [David's lectures]:
 - Exact purification is erasure.
 - Swap operations seem to be the key.

INTRODUCTION (to the main talk)

Open quantum systems, quantum dynamical semigroups and long-time behavior.

Dissipative state preparation.

Open System Dynamics

Bipartition:

S: system of interest (*finite dimensional*); B: uncontrollable environment Full description via joint Hamiltonian: $H = H_S \otimes \mathbb{I}_B + \mathbb{I}_S \otimes H_B + H_{SB}$

Unitary joint dynamics:

$$\rho_{SB}(t) = U(t)\rho_S(0) \otimes \rho_B(0)U(t)^{\dagger}$$

Under suitable Markovian approximation (weak coupling, singular), generating an effective memoryless, time-invariant bath, we can obtain convenient *reduced* dynamics:

$$\rho_S(t) = \mathcal{E}_t(\rho_S(0)), \quad \{\mathcal{E}_t = e^{\mathcal{L}t}\}_{t \ge 0}$$

Forward composition law: Continuous Semigroup of CPTP linear maps

Quantum Dynamical Semigroups

 Assume the dynamics to be a semigroup (i.e. the environment to be memoryless). The general form of the Markovian generator is:

[Gorini-Kossakovski-Sudarshan/Lindblad, 1974]

$$\begin{split} \dot{\rho}_t &= \mathcal{L}(\rho) = -i[H,\rho_t] + \sum_{k=1}^p L_k \rho_t L_k^{\dagger} - \frac{1}{2} \{ L_k^{\dagger} L_k, \, \rho_t \} \\ \end{split}$$
Hamiltonian part
$$H = H^{\dagger}, \quad L_k \in \mathbb{C}^{n \times n}. \quad \overset{\text{Dissipative,}}{\underset{\text{noisy" part}}{\text{ moisy" part}}}$$

H may contain environment induced terms.

- Linear CPTP system: exponential convergence, well-known theory;
- Uniqueness of the equilibrium implies it is attracting.

Question:

Where does, or can the state asymptotically converge?

Physical Answer

[Davies Generator, 1976]

Under weak-coupling limit, consider:

$$H_{SB} = \sum_{\alpha} S^{\alpha} \otimes B^{\alpha}$$
$$e^{iH_{S}t} S^{\alpha} e^{-iH_{S}t} = \sum_{\omega} S^{\alpha}(\omega) e^{i\omega t}$$

we get:

$$\mathcal{L}(\rho) = -i[H_S, \rho] + \sum_{\omega, \alpha} g^{\alpha}(\omega) (S^{\alpha}(\omega)\rho S^{\alpha\dagger}(\omega))$$
$$-\frac{1}{2} \{S^{\alpha\dagger}(\omega)S^{\alpha}(\omega), \rho\})$$

Let B be a bath at inverse temperature β . Under some additional condition (irreducibility of algebra), it is possible to show that it admits the **Gibbs** state as unique equilibrium: $\rho_{\beta} = \frac{e^{-\beta H_S}}{\text{Tr}(e^{-\beta H_S})}$

Physically consistent, expected result. Why keep looking into it?

New challenge:

Engineering of open quantum dynamics

S: system of interest;

E: environment, including possibly:

B: uncontrollable environment

 \mathcal{H}_{R}

A: auxiliary, engineered system (quantum and/or classical controller)

Full description via Joint Hamiltonian:

 $H = (H_S \otimes \mathbb{I}_E + \mathbb{I}_S \otimes H_E + H_{SE}) + H_c(t)$

 ${\cal H}_E$

Reduced description via controlled generator (not just weak coupling!):

$$\mathcal{L}_t(\rho) = -i[H_S + H_C(t), \rho] + \sum_k \lambda_k(t)(L_k\rho L_k^{\dagger} - \frac{1}{2}\{L_k^{\dagger}L_k, \rho\})$$

Key Applications: Control & Quantum Simulation

Design of Open Quantum Dynamics

- Two Prevailing & Complementary Approaches:
- I. Environment as Enemy: we want to "remove" the coupling.
 Noise suppression methods, active and passive, including
 hardware engineering, noiseless subsystems, quantum error correction,
 dynamical decoupling;
- II. Environment as Resource: we want to "engineer" the coupling. Needed for state preparation, open-system simulation, and much more...

Dissipation for Information Engineering

- Dissipation allows for:
- ✓ EntanglementGeneration

✓ Computing

✓ Open System Simulator ARTICLE

nature physics

PUBLISHED ONLINE: 20 JULY 2009 | DOI: 10.1038/NPHYS1342

Quantum computation and quantum-state engineering driven by dissipation

Frank Verstraete¹*, Michael M. Wolf² and J. Ignacio Cirac³*

An open-system quantum simulator with trapped ions

Julio T. Barreiro¹*, Markus Müller^{2,3}*, Philipp Schindler¹, Daniel Nigg¹, Thomas Monz¹, Michael Chwalla^{1,2}, Markus Hennrich¹, Christian F. Roos^{1,2}, Peter Zoller^{2,3} & Rainer Blatt^{1,2}

LETTER

doi:10.1038/nature12802

Autonomously stabilized entanglement between two superconducting quantum bits

PRL **107**, 080503 (2011) PHYS

PHYSICAL REVIEW LETTERS

S. Shankar¹, M. Hatridge¹, Z. Leghtas¹, K. M. Sliwa¹, A. Narla¹, U. Vool¹, S. M. Girvin¹, L. Frunzio¹, M. Mirrahimi^{1,2} & M. H. Devoret¹

Entanglement Generated by Dissipation and Steady State Entanglement of Two Macroscopic Objects

Hanna Krauter,¹ Christine A. Muschik,² Kasper Jensen,¹ Wojciech Wasilewski,^{1,*} Jonas M. Petersen,¹ J. Ignacio Cirac,² and Eugene S. Polzik^{1,†}

LETTER

Deterministic entanglement of supercondu qubits by parity measurement and feedbac.

D. Ristè¹, M. Dukalski¹, C. A. Watson¹, G. de Lange¹, M. J. Tiggelman¹, Ya. M. Blanter¹, K. W. Lehnert², R. N. Schouten¹ & L. DiCarlo¹

Scalable dissipative preparation of many-body entanglement

Florentin Reiter¹, David Reeb², and Anders S. Sørensen¹ ¹Niels Bohr Institute, University of Copenhagen, Blegdamsvej 17, DK-2100 Copenhagen, Denmark ²Department of Mathematics, Technische Universität München, Boltzmannstr. 3, 85748 Garching, Germany (Dated: January 28, 2015)

Focus: Dissipative State Preparation

- Can we design an environment that "prepares" a desired state? Naive Answer: YES! mathematically easy: $\dot{\rho} = \mathcal{L}(\rho) = \mathcal{E}(\rho) - \rho, \quad \mathcal{E}(\rho) = \rho_{\mathrm{target}} \mathrm{trace}(\rho)$
- Choice is non-unique: "simple" Markov evolutions that do the job always exist:
 - Pure state: generator with single L is enough, with ladder-type operator; [T-Viola, IEEE T.A.C., 2008, Automatica 2009]
 - Mixed state: generator with H and a single L (tri-diagonal matrices); [T-Schirmer-Wang, IEEE T.A.C., 2010]
- However...

Can we do it with experimentally-available controls? Typically NOT. We need to take into account:

- The control method [open-loop, switching, feedback, coherent feedback,...]
- Limits on speed and strength of the control actions;
- Faulty controls;
- Locality constraints.

Physical relevance; Key limitation for large-scale entanglement generation

Main Task

Understanding the role of locality constraints and providing general design rules for dissipative state preparation

Multipartite Systems and Locality

• Consider *n* finite-dimensional systems, indexed:

 Locality notion: from the start, we specify subsets of indexes, or neighborhoods, corresponding to group of subsystems:

$$\langle 0 \rangle \langle 0 \rangle \rangle$$

 $\mathcal{N}_1 = \{1, 2\}$ $\mathcal{N}_2 = \{1, 3\}$ $\mathcal{N}_3 = \{2, 3, 4\}$

- ... on which "we can act simultaneously": how?
 - Neighborhood operator: $M_k = M_{\mathcal{N}_k} \otimes I_{ar{\mathcal{N}}_k}$
 - A Hamiltonian is said Quasi-Local (QL) if:

$$H = \sum_{k} H_{k}, \quad H_{k} = H_{\mathcal{N}_{k}} \otimes I_{\bar{\mathcal{N}}_{k}}$$

This framework encompasses different notions: graph-induced locality, N-body locality, etc...

Neighborhood operators will model the allowed interactions.

Constraints: Frustration-Freeness & Locality

• Consider *n* finite-dimensional systems, and a *fixed* locality notion.

$$a = 1 \quad 2 \quad 3 \quad \cdots$$

- A dynamical generator $\mathcal{L}(\rho)$ is:
- Quasi-Local (QL) if

$$\mathcal{L} = \sum_{k} \mathcal{L}_{\mathcal{N}_{k}} \otimes \mathcal{I}_{\bar{\mathcal{N}}_{k}}$$

Sum of neighborhood components!

 $\mathcal{N}_1 = \{1, 2\} \ \mathcal{N}_2 = \{1, 3\}$

 $\mathcal{N}_3 = \{2, 3, 4\} \cdots$

or, explicitly:

$$H = \sum_{k} H_{k}, \quad H_{k} = H_{\mathcal{N}_{k}} \otimes I_{\bar{\mathcal{N}}_{k}} \quad L_{k,j} = L_{\mathcal{N}_{k}(j)} \otimes I_{\bar{\mathcal{N}}_{k}}$$

• Frustration-Free (FF) [Kastoryano, Brandao, 2014; Johnson-T-Viola, 2015] if it is QL and

$$\mathcal{L}(\rho) = 0 \qquad \Longrightarrow \qquad \mathcal{L}_{\mathcal{N}_k} \otimes \mathcal{I}_{\bar{\mathcal{N}}_k}(\rho) = 0$$

A state is a global equilibrium *if and only if* it is so for the local generators.

Frustration-Freeness as "Robustness"

• Inspired by: Let $ho = |\psi\rangle\langle\psi|$ be a ground state of a QL Hamiltonian:

$$H = \sum_{k} H_k, \quad H_k = H_{\mathcal{N}_k} \otimes I_{\bar{\mathcal{N}}_k}$$

Def: If all $|\psi\rangle$ are eigenvectors of minimal energy for both the global and neighborhood Hamiltonians, namely:

 $\langle \psi | H | \psi \rangle = \min \sigma(H) \implies \langle \psi | H_k | \psi \rangle = \min \sigma(H_k), \quad \forall k.$

such an *H* is said Frustration-Free (FF).

• If the global ground state is unique, we can obtain it by simultaneously "cooling" the system on each neighborhood, **and it does not change if we scale the neighborhood terms:** $H = \sum \alpha_k H_k$, α_1 , $\alpha_k \in \mathbb{R}$

$$H = \sum_{k} \alpha_{k} H_{k}, \ \alpha_{1}, \dots, \alpha_{k} \in \mathbb{R},$$
No fine tuning

Same robustness holds for a FF generator and its equilibria.
 Key Property:
 Summing neighborhood terms in FF generators does not add equilibria.

Relevance: Basic task of QIP; Cooling to ground state; Entanglement generation and preservation; One-way computing; Metropolis-type sampling General Fact in Dissipative Design:

Making a state invariant is the hard part; After that, making everything else converge to it is (relatively) easy.

Invariance-ensuring generators are a zero-measure set. In there, stabilizing ones are generic. [T. et al, IEEE TAC 2012] [T.,Viola, QIC 2014]

Characterizing Invariance: Schmidt Span

When is a state invariant for a FF generator?

FF hypothesis: we have an equilibrium if and only if

$$\mathcal{L}_{\mathcal{N}_k} \otimes \mathcal{I}_{\bar{\mathcal{N}}_k}(\rho_d) = 0, \ \forall k$$

Consider one neighborhood and its complement:

- $\mathcal{N}_k \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \mathcal{N}_k$
- Write the operator Schmidt decomposition with respect to the partition $\mathcal{H}_{\mathcal{N}_k} \otimes \mathcal{H}_{\overline{\mathcal{N}}_k}$: $\rho_d = \sum A_j \otimes B_j$

• Define the Schmidt Span: $\Sigma_k(\rho_d) = \operatorname{span}\{A_j\}$

 $= \operatorname{span}\{A_j\}$ \searrow subspace!

Operator

• Lemma: ρ_d is invariant if and only if $\Sigma_k(\rho_d) \subset \ker(\mathcal{L}_{\mathcal{N}_k}), \quad \forall k$

• This implies invariance of the reduced state: $ho_{\mathcal{N}_k} = ext{trace}_{ar{\mathcal{N}}_k}(
ho_d)$

Invariance is characterized!

Now we have a good idea of what the stabilizing QL generators have to do!

I. Locally preserve the Schmidt spans;

II. Perturb and destabilize everything else;

However....

Towards Stabilization: Distorted Algebras

• $\mathcal{L}_{\mathcal{N}_k}$ is the generator of a CPTP semigroup. The structure of the *fixed points* is well known [Ng,Blume-Kohut,Viola; Wolf], they form a distorted *algebra*:

$$\operatorname{ker}(\mathcal{L}_{\mathcal{N}_k}) = \left(\bigoplus_{\ell} \mathfrak{B}(\mathcal{H}_{\ell}^A) \otimes \tau_{\ell}\right) \oplus \mathbb{O}$$

- Why is this important? We (may) need to enlarge the set of invariant operators with respect to (just) the Schmidt span (~no pancake theorem).
- Let *ρ* be a maximum rank fixed state for *L_{N_k}*. Given the Schmidt span, we can construct the *minimal* distorted algebra *A_k* so that Σ_k(*ρ_d*) ⊆ *A_k*, by making it closed with respect to:
 (*i*) Linear combinations and adjoint;
 (*ii*) Modified product:

$$X \times_{\rho} Y = X \, \rho^{-1} Y$$

with: $ho=
ho_{\mathcal{N}_k}$.

Lemma: ρ_d is invariant if and only if $\mathcal{A}_k \subseteq \ker(\mathcal{L}_{\mathcal{N}_k}), \quad \forall k$

• As we hoped for, for generic states, the condition turns out to be not only necessary, but also sufficient....

Main Result: Full-rank States

• For each neighborhood, we can construct the enlarged distorted algebra: $\mathcal{A}^g_k = \mathcal{A}_k \otimes \mathfrak{B}(\overline{\mathcal{N}}_k)$

Theorem: Assume ρ_d is full rank. Then it is **FFS** if and only if

$$\bigcap_{k} \mathcal{A}_{k}^{g} = \operatorname{span}(\rho_{d})$$

Provides a test

with only two inputs:

the state and the

neighborhoods

• Proof idea: Necessity follows from Lemmas. Proving sufficiency, we consider an explicit choice of generators: $\mathcal{L}_{\mathcal{N}_k}(\rho) = \mathcal{E}_{\mathcal{N}_k}(\rho) - \rho;$

with **CPTP non-orthogonal projections onto the minimal distorted algebras** (dual of conditional expectations):

$$\mathcal{E}_{\mathcal{N}_k}(\rho) \in \mathcal{A}_k; \quad \mathcal{E}^2_{\mathcal{N}_k}(\rho) = \mathcal{E}_{\mathcal{N}_k}(\rho).$$

Key technical point: proving the dynamics is *frustration free.* Then the shared equilibrium is unique, and there cannot be any other one.

Key Result

• Assume that for all *k*, $\mathcal{L}_k = \mathcal{L}_{\mathcal{N}_k(j)} \otimes \mathcal{I}_{ar{\mathcal{N}}_k}$:

$$\operatorname{alg}(\mathcal{L}_k) \subseteq \operatorname{alg}(\mathcal{L})$$

- Note: This is true if there is no Hamiltonian;
- Then we have the following chain of equality/inclusions (with full rank states):

$$\ker(\mathcal{L}) =
ho^{rac{1}{2}} \ker(\mathcal{L}^{\dagger})
ho^{rac{1}{2}} =
ho^{rac{1}{2}} \operatorname{alg}\{\mathcal{L}\}'
ho^{rac{1}{2}}$$
 \wedge
 $\ker(\mathcal{L}_k) =
ho^{rac{1}{2}} \ker(\mathcal{L}_k^{\dagger})
ho^{rac{1}{2}} =
ho^{rac{1}{2}} \operatorname{alg}\{\mathcal{L}_k\}'
ho^{rac{1}{2}},$

• This proves that the chosen generator is FF (does not have Hamiltonian).

Main Result: Comments and Extensions

What is this useful for?

Allows for checking if a target state is **in principle** stabilizable under **given** (and strict) locality constraints, with frustration-free dynamics. The checking procedure can be automated.

- If full quasi-local control/simulation is available, we give a recipe for stabilization of desired state, where possible.
 More constraints can be included later, e.g. via suitable numerical methods.
 Our result gives a preliminary check.
- It can be seen as a way to construct quantum "sampler"
 [Kastoryano,Brandao, 2014] a way to obtain a density we do not have.
 Complements to other work by Temme, Cubitt, Wolf, and co-workers where focus is on studying the scalability/speed, when convergence is already guaranteed.
- For general states, the same necessary condition holds. However, we do not have a full proof for sufficiency.

An additional condition is used, but we conjecture is not needed.

• Full and simpler characterization for pure states.

Specialization for Pure States

• For each *neighborhood* compute the reduced states;

- Being ho_d pure, it can be shown that: $\mathcal{A}_k = \Sigma_k(
 ho) = \mathfrak{B}(\mathrm{supp}(
 ho_{\mathcal{N}_k}))$
- Instead of intersecting distorted algebras, I can just look at heir supports.
- For each neighborhood calculate the *support* of the reduced state times the identity on the rest: $\mathcal{H}_{\mathcal{N}_k} = \operatorname{supp}(\rho_{\mathcal{N}_k} \otimes I_{\bar{\mathcal{N}}_k})$
 - **Theorem** [T.-Viola, 2012]**:**

$$\mathcal{H}_0 := \bigcap_k \mathcal{H}_{\mathcal{N}_k} = \operatorname{supp}(\rho)$$

if and only if ρ is FFS;

IDEA: the support is "where the probability is"; Locally I only see the reduced state, and I try to prepare it.

FFS, Or Not? Physical Interpretation

- Equivalent characterization: $\rho = |\psi\rangle \langle \psi|$ is FFS if and only if it is the unique ground state of a Frustration-Free QL Hamiltonian, that is:
- There exists a QL Hamiltonian for which $|\psi
 angle$ is the unique ground state and

$$H = \sum_{k} H_k, \quad H_k = H_{\mathcal{N}_k} \otimes I_{\bar{\mathcal{N}}_k}$$

such that $\langle \psi | H_k | \psi \rangle = \min \sigma(H_k), \quad \forall k.$

Proof: It suffices to choose $H_k = \prod_{\mathcal{N}_k}^{\perp} \otimes I_{\overline{\mathcal{N}}_k}$, $\prod_{\mathcal{N}_k}^{\perp}$ projects on $\operatorname{supp}(\rho_{\mathcal{N}_k})^{\perp}$.

We retrieve the FF Hamiltonian - the analogy with FF generators fully works!

 Interesting connection to physically-relevant cases, and previous work by Verstraete, Perez-Garcia, Cirac, Wolf, B. Kraus, Zoller and co-workers.

• Differences:

In their setting, the proper locality notion is induced by the target state itself. In our setting, *the locality is fixed a priori. We also prove necessity of the condition.*

Applications

Generating entanglement from quasi-local dissipation.

Is Frustration-Free Enough for Pure States?

Which states are FFS? Using our test, it turns out that...

- All product states are FFS.
- GHZ states (maximally entangled) and W states are not FFS Unless we have neighborhoods that cover the whole network/nonlocal interactions; $\rho_{\rm GHZ} = |\Psi\rangle\langle\Psi|, \quad |\Psi\rangle \equiv |\Psi_{\rm GHZ}\rangle = (|0000\rangle + |1111\rangle)/\sqrt{2}.$

• Any graph state is FFS with respect to the locality induced by the graph; To each node is assigned a neighborhood, which contain all the nodes connected by edges. $U_G |00 \dots 0\rangle = |\varphi_{\mathrm{graph},0}\rangle$

- Generic (injective) MPS/PEPS are FFS for some locality definition... Neighborhood size may be big! [see work by Peres-Garcia, Wolf, Cirac and co-workers]
- Some **Dicke states** *that are not graph* can be stabilized! E.g. on linear graph with NN interaction:

 $\frac{1}{\sqrt{6}}(|1100\rangle + |1010\rangle + |0110\rangle + |0101\rangle + |0011\rangle + |1001\rangle)$

Is Frustration-Free Enough for Mixed States?

- Which states are FFS? Using our test, it turns out that...
 - There are non-entangled states that are not FFS!

$$\rho_{\rm sep} = \frac{1}{2} (00^{\otimes n} + 11^{\otimes n}).$$

 $\rho_G = U_G \left(\bigotimes_{j=1}^n \rho_j \right) U_G^{\dagger},$

• Product graph states are FFS, with locality induced by the graph.

 U_G : prepares the graph basis.

• Commuting Gibbs states are FFS, with locality generated by the Hamiltonian (NNN). $\rho_{\beta} = \frac{e^{-\beta H}}{\text{Tr}(e^{-\beta H})}$

with:

$$H = \sum_{k} H_k, \ H_k = H_{\mathcal{N}_k} \otimes I_{\bar{\mathcal{N}}_k}, \ [H_k, H_j] = 0, \ \forall j, k$$

Some non-commuting Gibbs states are FFS!

e.g. zero-temperature states as certain Dicke states, and their mixtures with e.g. GHZ states!

Summary and Outlook

- Locality constraints are key for state preparation.
- We obtain a way to check if a target state is "compatible" with given constraints
- If it is, we provide intuition on what the stabilizing dynamics should do, as well as one that works.
- We show that there are new (non commuting) states that are genuinely FFS.
- It is possible to relax invariance constraints for preparation of GHZ and W. Two steps: first initialization and then conditional stabilization.

➡Next:

Relation to Encoders and Memories; Numerical approaches; When is FFS generic? More general constraints.

⇒Open problems: The above mentioned conjecture and... Better classification of FFS states; Scalable non-commuting Gibbs; Stabilization beyond Frustration-Free; Discrete-time models; Speed of convergence (when the system size grows - scalability).

A case study: GHZ States

GHZ states are never QLS for non trivial topology:

 $ho_{\text{GHZ}} = |\Psi\rangle\langle\Psi|, \quad |\Psi\rangle \equiv |\Psi_{\text{GHZ}}\rangle = (|000...0\rangle + |111...1\rangle)/\sqrt{2}.$ By symmetry, \mathcal{H}_0 must contain $|000...0\rangle, |111...1\rangle$.

Hence the following orthogonal states must remain stable for the QL dynamics.

$$\begin{split} |\Psi_{\rm GHZ^+}\rangle &= (|000\dots0\rangle + |111\dots1\rangle)/\sqrt{2}; \\ |\Psi_{\rm GHZ^-}\rangle &= (|000\dots0\rangle - |111\dots1\rangle)/\sqrt{2}; \end{split}$$

We need to "select" the right one How? $\sigma_x^{\otimes n} |\Psi_{\rm GHZ^+}\rangle = |\Psi_{\rm GHZ^+}\rangle \quad \sigma_x^{\otimes n} |\Psi_{\rm GHZ^-}\rangle = -|\Psi_{\rm GHZ^-}\rangle$

• Trick: First prepare the system in the +1-eigenspace of $\sigma_x^{\otimes n}$ (e.g. $|+\rangle^{\otimes n}$). Then we show there exists a QL $\{\mathcal{E}_t\}_{t\geq 0}$ that prepares \mathcal{H}_0 leaving the eigenspace invariant.

• By our Theorem, ho_{GHZ} is Conditionally QLS! (scalable on the linear graph)

Conditional Preparation: Some Intuition

If we relax this assumptions, we can obtain scalable protocols!

$$\forall t \ge T > 0 \quad \mathcal{E}_t(\rho) = \rho$$

First I prepare a subspace that (1) is invariant for the QL sequence; (2) is attracted directly to ρ_d **Problem:** finding such \mathcal{H}' !

Conditional Preparation: Definition & Result

• Definition: A state $\rho = |\psi\rangle \langle \psi|$ is Quasi-Local Stabilizable (QLS) conditional to \mathcal{H}' if there exist a dynamical semigroup $\{\mathcal{E}_t\}_{t\geq 0}$ such that

$$\forall t \ge 0 \quad \mathcal{E}_t(\rho) = \rho$$

$$\lim_{t \to \infty} \|\rho_t - \rho\| = 0$$

for every ho_0 with support on \mathcal{H}' .

• Lemma: It is not restrictive to take \mathcal{H}' invariant.

With some additional hypothesis, the search for the subspace can be automated.

 \mathcal{H}_{\cap}

• Theorem: If \mathcal{H}' (1) contains $|\Psi\rangle$; (2) is orthogonal to $\mathcal{H}_0 \ominus \{|\Psi\rangle\}$; (3) is invariant for $\{\mathcal{E}_t\}_{t\geq 0}$ that stabilizes \mathcal{H}_0 ; Then $\rho = |\psi\rangle\langle\psi|$ is QLS conditional to \mathcal{H}' .