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1. Introduction

Taming Maxwell’'s demon: a never ending story made short

1871: Maxwell's demon violates the 2" Law

1929: Szilard’s engine converts information into work

1956: Birillouin: irreversibility of quantum measurement processes
1961: Landauer: logically irreversible operations dissipate heat

© 6 0 o

AQ = kg T log 2 per bit

@ 1982: Bennett exorcises the demon
@ 1999: Earman-Norton criticism...

@ ... many attempts to “prove” Landauer’s principle from *first
principles” (stat. mech.) or conceive classical and quantum
systems that violate it ...
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Thermodynamic “derivation” of Landauer’s Principle

The ideal gas 1-bit memory (pV = kg T)
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Thermodynamic “derivation” of Landauer’s Principle

The ideal gas 1-bit memory (pV = kg T) J

S R \ *

Assume there is a process which perform the reset operation (0 or 1) — 0 with energy cost

SFCSSI
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Thermodynamic “derivation” of Landauer’s Principle

Build a cyclic process )

A

77777

/
-

7

2. Partition AE =0
3. Reset AE = &t
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Thermodynamic “derivation” of Landauer’s Principle

Work extracted during isothermal quasi-static expansion

v V kT
W:/ pdV = ——dV =kgTlog2
v/2 vie V

The second law imposes

grc%cl 2 kB T |09 2
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Thermodynamic “derivation” of Landauer’s Principle

Work extracted during isothermal quasi-static expansion

v V kT
W:/ pdV = ——dV =kgTlog2
v/2 vie V

The second law imposes

grc%cl 2 kB T |09 2

[Landauer *61] The energy injected in the reset process is released as heat in the
reservoir. kg T log 2 is the minimal energy dissipated by a reset operation. Moreover

kgTlog2 = TAS

AS being the decrease in entropy of the system in the reseting process (erasing
entropy). Note that Landauer’s bound ... > TAS is saturated by the reverse process
of quasi-static isothermal compression.
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2. Landauer’s Principle from statistical mechanics

[Earman-Norton 1999, Bennett 2003, Leff-Rex 2003, ...] All known
derivations of Landauer’s Principle assume the validity of one or another
form of the 2" Law.

v

[Shizume 1995, Piechocinska 2000, ...] Landauer’s Principle from classi-
cal and quantum microscopic dynamics of specific systems

y

[Reeb-Wolf 2014] Much of the misunderstanding and controversy around
Landauer’s Principle appears to be due to the fact that its general state-
ment has not been written down formally or proved in a rigorous way in
the framework of quantum statistical physics

v
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2. Landauer’s Principle from statistical mechanics

[Earman-Norton 1999, Bennett 2003, Leff-Rex 2003, ..] All known
derivations of Landauer’s Principle assume the validity of one or another
form of the 2" Law.

v

[Shizume 1995, Piechocinska 2000, ...] Landauer’s Principle from classi-
cal and quantum microscopic dynamics of specific systems

y

[Reeb-Wolf 2014] Much of the misunderstanding and controversy around
Landauer’s Principle appears to be due to the fact that its general state-
ment has not been written down formally or proved in a rigorous way in
the framework of quantum statistical physics

v

This formulation will definitively not close the philosophical discussions about Maxwell’s
demon and the relation between thermodynamics and information theory, but at least it
provides a sound statement with well defined assumptions.
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Landauer’s Principle in statistical mechanics [Reeb-Wolf *14]

Finite quantum system S coupled to finite reservoir R at temperature T > 0 )

o Finite dimensional Hilbert space H = Hs ® Hr, reservoir Hamiltonian Hg
@ Product initial state + thermal reservoir w; = p; ® v;

vj = e~ (BHR+l0gZ) 8= ﬁ’ Z=tr <e7BHR)
B

(]

Unitary state transformation U : w; — wf = Uw;U*
Reduced final states

©

pr = tryp, (W), vf = tryg g (wr)

(]

Energy dissipated in the reservoir R:

AQ = tr((vr — vi)HR)

@ Decrease in entropy of the system S:
AS = S(pj) — S(py)
where S(p) = —kg tr (plog p) is the von Neumann entropy of p
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Landauer’s Principle in statistical mechanics

Landauer’s bound [Reeb-Wolf ’14, Tasaki ’00]

AQ=T(AS+ o), c>0 1)
o =0iff AQ = TAS = 0, in which case one has

vi=vj

and py is unitarily equivalent to p;.
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Landauer’s Principle in statistical mechanics

Landauer’s bound [Reeb-Wolf ’14, Tasaki ’00]

AQ=T(AS+ o), c>0 1)
o =0iff AQ = TAS = 0, in which case one has

Vi =Vj

and py is unitarily equivalent to p;.

Remark 1. If S is a qubit,

p’:[1(/)2 1(/)2}’ pf:“ 8]

then the transformation p; — py implements the state change (0 or 1) — 0 and
TAS = kg Tlog2

However, this transition can not be induced by a finite reservoir at positive temperature
(more later).
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Landauer’s Principle in statistical mechanics

[Reeb-Wolf '14, Tasaki '00]

AQ=T(AS+ o), c>0 (1)
o =0iff AQ = TAS = 0, in which case one has

Vi =Vj

and py is unitarily equivalent to p;.

Remark 1. If S is a qubit,

pf:r(/)2 1(/)2}’ pf:“ 8}

then the transformation p; — py implements the state change (0 or 1) — 0 and
TAS = kg Tlog2

However, this transition can not be induced by a finite reservoir at positive temperature
(more later).

Remark 2. Von Neumann entropy is the quantum version of Shannon information
theoretic entropy. It only coincides with thermodynamic (Clausius) entropy for thermal
equilibrium states.
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Landauer’s Principle in statistical mechanics

Landauer’s bound [Reeb-Wolf ’14, Tasaki ’00]

AQ=T(AS+ o), c>0
o =0iff AQ = TAS = 0, in which case one has

Vi =Vj

and py is unitarily equivalent to p;.

Proof. Very basic tool: Relative entropy of two states w, v, given by
tr(w(logw —logv)) if Ran(w) C Ran(v);
S(wlv) = .
+00 otherwise;

is such that S(w|v) > 0 with equality iff w = v [Klein’s inequality].
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Landauer’s Principle in statistical mechanics

Landauer’s bound [Reeb-Wolf ’14, Tasaki ’00]

AQ=T(AS+ o), c>0
o =0iff AQ = TAS = 0, in which case one has

Vi =Vj

and py is unitarily equivalent to p;.

Proof. Very basic tool: Relative entropy of two states w, v, given by

s | t(w(logw —logv)) if Ran(w) C Ran(v);
() = +o0 otherwise;

is such that S(w|v) > 0 with equality iff w = v [Klein’s inequality].

set kg = 1

0 <o = S(wrlpr ® v;)
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Landauer’s Principle in statistical mechanics

Landauer’s bound [Reeb-Wolf ’14, Tasaki ’00]

AQ=T(AS+ o), c>0
o =0iff AQ = TAS = 0, in which case one has

Vi =Vj

and py is unitarily equivalent to p;.

Proof. Very basic tool: Relative entropy of two states w, v, given by

s | t(w(logw —logv)) if Ran(w) C Ran(v);
() = +o0 otherwise;

is such that S(w|v) > 0 with equality iff w = v [Klein’s inequality].

log pf @ v; = log ps ® I + I ® log v;

0 < o = S(wrlpr ® vj) = tr(wr log wy) — tr(wr(logps ® 1)) — tr(wr (! ® log v;))
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Landauer’s Principle in statistical mechanics

Landauer’s bound [Reeb-Wolf ’14, Tasaki ’00]

AQ=T(AS+ o), c>0
o =0iff AQ = TAS = 0, in which case one has

Vi =Vj

and py is unitarily equivalent to p;.

Proof. Very basic tool: Relative entropy of two states w, v, given by

s | t(w(logw —logv)) if Ran(w) C Ran(v);
() = +o0 otherwise;

is such that S(w|v) > 0 with equality iff w = v [Klein’s inequality].

wrlogws = U(wjlogw;)U*

0 <o = S(wrlpr ® vj) = tr(wylog wy) — tr(wy(logpr ® 1)) — tr(wr( ® log v;))
= tr(wjlogwj) — tr(pr log pr) — tr(vr log vy)
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Landauer’s Principle in statistical mechanics

Landauer’s bound [Reeb-Wolf ’14, Tasaki ’00]

AQ=T(AS+ o), c>0
o =0iff AQ = TAS = 0, in which case one has

Vi =Vj

and py is unitarily equivalent to p;.

Proof. Very basic tool: Relative entropy of two states w, v, given by
tr(w(logw —logv)) if Ran(w) C Ran(v);
S(wlv) = .
+00 otherwise;

is such that S(w|v) > 0 with equality iff w = v [Klein’s inequality].
logw; = log p; ® I + | ® log v;
0 <o = S(wrlpr ® vj) = tr(wylog wy) — tr(wy(logpr ® 1)) — tr(we(/ ® log v;))

= tr(wjlogwj) — tr(pr log pr) — tr(vr log vy)
= tr(pjlog p;) + tr(vjlog v;) — tr(pflog pf) — tr(vs log vj)
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Landauer’s Principle in statistical mechanics

Landauer’s bound [Reeb-Wolf ’14, Tasaki ’00]

AQ=T(AS+ o), c>0
o =0iff AQ = TAS = 0, in which case one has
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and py is unitarily equivalent to p;.

Proof. Very basic tool: Relative entropy of two states w, v, given by
tr(w(logw —logv)) if Ran(w) C Ran(v);
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+00 otherwise;
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Landauer’s Principle in statistical mechanics

Remark 3. Landauer’s bound is not optimal for finite dimensional reservoirs. The
most interesting part of the analysis in [Reeb-Wolf *14] consists in refining it. A simple
improvement, based on the well-known inequality

jtr (w = )A)?

e < 2tr(w(logw — logv))

ko — w13 = sup
A#0

is given by
BAQ > 1+1_— V1-AS8/S AS
14 /1—-AS/Sy

where Sy = 3202 /8 and ¢ = diam spec(Hg )

.
BAQ

AS
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3. Algebraic framework — Abstract Landauer’s Principle

[Reeb-Wolf '14] Conjecture: Landauer’s Principle can probably be formu-
lated within the general statistical mechanical framework of C* and W*
dynamical systems and an equality version akin to (1) can possibly be
proven.

Macroscopic reservoir should be idealized as infinitely extended J

the Thermodynamic Limit ...

Familiar objects (Hamiltonians, density matrices,...) lose their meaning in
...but other structures emerge (modular theory) J

We shall work in the C* setting, but the analysis extends to the W* case J
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The algebraic framework |

C*-dynamical system (O, 1)

o Unital C*-algebra O (observables).

@ Strongly continuous group t — 7! = ¢! € Aut(©) (Heisenberg dynamics).

State w
o Positive linear functional w : © — C such that w(1) = 1.
@ Schrédinger evolution wy = w o 71.
@ 7-invariant if wy = w for all .

Thermal equilibrium state w at inverse temperature g =1/T

o (1, 8)-KMS state: w(Ar!15(B)) = w(r!(B)A).
@ T-invariant.

Relative entropy of positive linear functionals

o Finite dimensional case: S(¢1|¢2) = tr(¢1(log ¢4 — log ¢2)).
o Extends to general C*/W* setting [Umegaki '62, Araki '75].

@ (1(1) = ¢2(1) = S(¢11¢2) € [0, +oc], and S(¢11¢2) = 01iff {1 = Ca.
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Setup for Landauer’s Principle

The system S
0 Os = B(Hs) finite dimensional C*-algebra.
@ Initial state p;(A) = tr(p;A).

The Thermal reservoir R
@ C*-dynamical system (Ox,™r)-
o 7'7t2 =efOR,
@ Initial state is a (7r, 8)-KMS state v;.

@ Self-adjoint Liouvillean Lz implements 7 in the GNS representation of O
induced by v;.

Joint system S + R
0 0=05®0p.
0 wi = pi Q.
@ Inner automorphism ay(A) = U* AU, for some unitary U € O.
o State transformation w; — wy = wj o ay.
o Reference “state” n = 1 ® v;.
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Abstract form of Landauer’s Principle

Set
AS=S(p) — S(pr),  AQ=—iw(Usr(U))

Theorem 1

Assume that U € Dom(éR ).
o
BAQ = AS + o, c>0

@ If the point spectrum of the Liouvillean Lz is finite then o = 0 iff AS = BAQ = 0.
In this case vy = v; and py is unitarily equivalent to p;.
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o
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@ If the point spectrum of the Liouvillean Lz is finite then o = 0 iff AS = BAQ = 0.
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Remark 1. Interpretation of AQ as dissipated heat requires more structure.
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Abstract form of Landauer’s Principle
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AS=S(p) — S(pr),  AQ=—iw(Usr(U))

Assume that U € Dom(éR ).
o
BAQ = AS + o, c>0

@ If the point spectrum of the Liouvillean Lz is finite then o = 0 iff AS = BAQ = 0.
In this case vy = v; and py is unitarily equivalent to p;.

Remark 1. Interpretation of AQ as dissipated heat requires more structure.
Remark 2. If R is confined then 6z = i[Hr, -] and hence
AQ = wj(ay(Hr) — HR) = wi(HR) — wi(HR)

Moreover, the spectrum of Lx is finite = Reeb-Wolf formulation of Landauer’s
Principle.

Claude-Alain Pillet (CPT — Université de Toulon), Landauer's Principle in Quantum Statistical Mechanics, 15/27



Abstract form of Landauer’s Principle

Set
AS=S(p) — S(pr),  AQ=—iw(Usr(U))

Assume that U € Dom(éR ).
o
BAQ = AS + o, c>0

@ If the point spectrum of the Liouvillean Lz is finite then o = 0 iff AS = BAQ = 0.
In this case vy = v; and py is unitarily equivalent to p;.

Remark 1. Interpretation of AQ as dissipated heat requires more structure.
Remark 2. If R is confined then 6z = i[Hr, -] and hence
AQ = wj(ay(Hr) — HR) = wi(HR) — wi(HR)

Moreover, the spectrum of Lx is finite = Reeb-Wolf formulation of Landauer’s
Principle.

Remark 3. If v; is ergodic, a natural assumption for a thermal reservoir, then 0 is the
only eigenvalue of Lz and the second part of the theorem applies.
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Abstract form of Landauer’s Principle

Set
AS=S(p) — S(pr),  AQ=—iw(Usr(U))

Assume that U € Dom(éR ).
o
BAQ = AS + o, c>0

@ If the point spectrum of the Liouvillean Lz is finite then o = 0 iff AS = BAQ = 0.
In this case vy = v; and py is unitarily equivalent to p;.

Remark 1. Interpretation of AQ as dissipated heat requires more structure.
Remark 2. If R is confined then 6z = i[Hr, -] and hence
AQ = wj(ay(Hr) — HR) = wi(HR) — wi(HR)

Moreover, the spectrum of Lx is finite = Reeb-Wolf formulation of Landauer’s
Principle.

Remark 3. If v; is ergodic, a natural assumption for a thermal reservoir, then 0 is the
only eigenvalue of Lz and the second part of the theorem applies.

Remark 4. It is an interesting open problem to characterize all reservoirs for which this
second part holds.
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The algebraic framework Il

GNS-Representation (H, 7, Q)

H a Hilbert space.

m: O — B(H) a *x-morphism.

Q € H a vector such that 7(O)Q is dense in H.

(A) = (2, 7(A)Q).

N set of n-normal states A — tr(pm(A)) (p a density matrix on ).
mork(A) = eflrR (A 1R,

®© 6 6 6 ¢ o

Ergodic/Mixing state
o v;is ergodic if, forall ¢ e Nand A € O
lim /t o 75 (A)ds = v;(A)
f~>oo? 0 C R =i

@ and mixing if
tlim ¢oTh(A) = vi(A)
de )

@ Ergodicity/mixing can be characterized by spectral properties of the Liouvillean
L.
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The entropy balance equation

Theorem (Perturbation of KMS structure) [Araki '73]

o If K =K* € O, then 6y = ér +i[K, -] generates a C*-dynamical systems
(0, k).
@ There is a continuous map
O>5K=K"— WK

such that w is the unique (7, 8)-KMS state in \V.
@ For any positive linear functional ¢

S(¢lw) = S(¢In) + BL(K) + log [le~Ptr 4 ()/2q)2

Combining Araki’s theorem and Tomita-Takesaki’s theory one can show

Theorem (Entropy balance) [Pusz-Woronowicz ’78]
[Ojima-Hasegawa-Ichiyanagi '88] [Jaksi¢-P '01]

If U € Dom(ér) and n = I ® v; (un-normalized (7r, 8)-KMS) then
S(w o ayln) = S(w|n) — iBw(Uér (U))

for any state w on O (both sides may be infinite).
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The entropy balance equation

Proof of Theorem 1 J

Araki’s perturbation theorem with 7 = 7, w = n = @ v; and K = —3~ " log p yields
wi = p@vi = S(Clp @ v;) = S(¢|n) — ¢(log p) 2

for any state p on Os and ¢ on O. In particular, with p = p; and ¢ = w; the LHS of (2)
vanishes and

S(wiln) = wi(log pi) = tr(p;log p;) = —S(pj)
So we can write the entropy balance equation
S(wtln) — S(wiln) = —iBuw;(U*5r (U))
as
S(pi) — S(pf) + S(wrln) + S(pr) = —iBwi(U*or (U))
which means
AS+ o0 =pBAQ

whith the entropy production term
o = S(wrln) + S(er)
Using again (2) with ¢ = wy and p = ps we finally get
o= S(wrlpr®@v;) 20

with equality iff wy = pr ® vj. The proof of the second part of the theorem relies on the
spectral analysis of modular operators (A, |.,; = Tw;(U)Aw; 7w, (U)*)
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4. Tightness of Landauer’s bound

@ Can we identify AQ with dissipated heat ?

o |s Landauer’s bound SAQ > AS tight? i.e., how to achieve o = 0
for a given state transition p; — pr ?

@ What about non-faithful target states, e.g., pr = ) (¥| ?
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“Hamiltonian” dynamics

o Let]0, [> t — K(t) = K(t)* € Dom(d ) be a C? map with bounded first and
second derivatives

7k is dynamics generated by 6z + i[K(t), -] J

@ Interaction picture
Th(A) = Uk(t)" e (A) Uk (1)
Uk (t) € Dom(d ) is the family of unitaries satisfying

10Uk (1) = TR (K(D)) Uk (1),  Uk(0) =1
@ Since wj o Tl = wj o ar, (s With Tk (t) = 7' (Uk(t)), Theorem 1 yields

AS+ o =BAQ )

AS=S(p)~S(py),  py =wioTilos
AQ = —iwi(Uk(t)*0r (Ux (%)), & = S(wjo7(lpy @ vi)
@ The energy balance is given by
ty
AQ + [0 TR — i (KO)] = [ wior@ik(®)at
0

hence, if K(0), K(t;) € Os then AQ is the energy released in R.
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Adiabaticaly switched interactions

Set ty = 1 and rescale K7 (t) = K(t/T)

T;{T dynamics generated by dr + i[K7(t), -] for t € [0, T] J

The previous analysis yields

AST + o1 = BAQT J

with
ASr =S(pi) = S(p1),  PT=wioTk |os

AQr = —iwi(Uk, (T) "0 (Uk (T))), o1 = S(wjo 74 |pT @ 1)

In order to deal with the adiabatic limit T — oo we shall make

Assumption P. v; is extremal (7, 3)-KMS state (pure phase) J
Assumption A. For v €]0, 1[ the (x(-), B)-KMS state 1, is ergodic for the
dynamical system (O, Ti(.)) J
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The adiabatic limit

Combining the gapless adiabatic theorem of [Avron-Elgart '99], [Teufel '01] and Araki’'s
perturbation theory of KMS states leads to

Theorem 4
Suppose that Assumptions P and A hold. Then one has

; T _ _
T“_T)() ko) © Ty — Byl =0

forall v € [0, 1].

A similar result was obtained and used by [Abou Salem-Fréhlich '05] to analyse
quasi-static thermodynamic processes.
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The adiabatic limit

According to the above adiabatic theorem, to implement a given state transition
pi — printhe limit T — oo it suffices to supplement Assumption A with the boundary
conditions
Ko=—-B""logp;,  Ki=—B""logps
which imply px, = p; ® v and pk, = pr ® v; so that

lim wior) = R v;
am Wi e Tkr Pf i
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The adiabatic limit
According to the above adiabatic theorem, to implement a given state transition
pi — printhe limit T — oo it suffices to supplement Assumption A with the boundary
conditions
Ko=—B""logp;,  Ki=—pB""logp
which imply px, = p; ® v and pk, = pr ® v; so that

lim wior) = R v;
Wi Tkr Pf i

It follows that
AS = _lim ASr = S(p) — S(pr)
— 00

The energy balance equation, written as

1
AQr = /0 i 03T (03K(1)) dy — B wy o 7 (log o) + B~ wi(log pr)

further gives

;
AQ=_lim AQr= /0 1) (05 K(7)) dy + 671 AS
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The adiabatic limit
According to the above adiabatic theorem, to implement a given state transition
pi — printhe limit T — oo it suffices to supplement Assumption A with the boundary
conditions
Ko=—B""logp;,  Ki=—pB""logp
which imply px, = p; ® v and pk, = pr ® v; so that

lim wior) = R v;
am Wi e Tkr Pf i

It follows that
AS = _lim ASr = S(p) — S(pr)
— 00

The energy balance equation, written as
AQr = /01 wi o TR (05K(¥)) dy = B~ w0 ¢ _(log pr) + B~ 'wi(log py)
further gives
80 = im 80r = [ (@ K@) by + 5788
which yields Landauer’s Principle

1
pAQ=AS+o, o= Im ar =5 [ ) (@K =0
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The adiabatic limit

For this adiabatic process we expect saturation of the Landauer bound. Indeed,
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The adiabatic limit

For this adiabatic process we expect saturation of the Landauer bound. Indeed,

c=0

Remark 1.The proof of the above proposition requires modular theory. It is a simple
adaptation of the following elementary calculation which holds for finite reservoirs

1 1¢r (e—ﬁ(HnJrK(v))awK(,y))
/0 HK(A/)(a'yK(’Y))d’Y:/O tr (e~ P(HRTK())

1/ —B( K()
= —— Hr+K(y
= /0 aw log tr (e ) dvy

— 5 (ogu(py © 1) ~ logu(p © 1)) =0

Note however that Theorem 4 and existence of limr_, ., o7 can not hold for finite
reservoir.
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The adiabatic limit

For this adiabatic process we expect saturation of the Landauer bound. Indeed,

c=0

Remark 2. Non-faithful target states, e.g., pr = |¢) (|, are thermodynamically singular
and cannot be reached by coupling S to a reservoir at non-zero temperature. Indeed,
approximating ps by faithful p one observes that 0 — oo as p — py for Hamiltonian
dynamics and hence AQ — oco. However, this instability does not occur in the
adiabatic limit since ¢ = 0. Thus, adiabatic processes can reach a singular target state
with arbitrary precision without producing entropy.
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3. Summary |
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Summary

@ The entropy balance relation is a model independent structural identity. It is
tautological for confined systems
S(w o ay|n) — S(w|n) = tr (UwU*(UlogwlU* — logn) — w(logw — logn))
= tr (w(U* lognU — logn))
= —Bur (w(U"HRr U — HR))
It follows from Araki’s perturbation theory of KMS structure for extended systems.
It plays a central role in the analysis of the second law in open quantum systems.
It provides a natural approach to LP in quantum statistical mechanics with precise

hypotheses that also set limits to its validity ([Allahverdian-Nieuwenhuizen '01],
[Alicki "147).
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= tr (w(U* lognU — logn))
= —Bur (w(U"HRr U — HR))
It follows from Araki’s perturbation theory of KMS structure for extended systems.
It plays a central role in the analysis of the second law in open quantum systems.
It provides a natural approach to LP in quantum statistical mechanics with precise
hypotheses that also set limits to its validity ([Allahverdian-Nieuwenhuizen '01],
[Alicki "147).
@ The thermodynamic behavior of the coupled system S + R emerges in the limit of
infinitely extended reservoir. For example, it is only in this limit that the system can
settle in a steady state in the large time limit.
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Summary

@ The entropy balance relation is a model independent structural identity. It is

tautological for confined systems
S(w o ay|n) — S(w|n) = tr (UwU*(UlogwlU* — logn) — w(logw — logn))

= tr (w(U* lognU — logn))

= —Bur (w(U"HRr U — HR))
It follows from Araki’s perturbation theory of KMS structure for extended systems.
It plays a central role in the analysis of the second law in open quantum systems.
It provides a natural approach to LP in quantum statistical mechanics with precise
hypotheses that also set limits to its validity ([Allahverdian-Nieuwenhuizen '01],
[Alicki "147).

@ The thermodynamic behavior of the coupled system S + R emerges in the limit of
infinitely extended reservoir. For example, it is only in this limit that the system can
settle in a steady state in the large time limit.

@ The large time limit is intimately linked to ergodic properties.
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Summary

@ The entropy balance relation is a model independent structural identity. It is
tautological for confined systems

S(w o ayln) — S(wln) = tr (UwU* (UlogwU* —logn) — w(logw — logn))
= tr (w(U* log nU — log 1))
= —pr (w(U"Hr U — HR))

It follows from Araki’s perturbation theory of KMS structure for extended systems.
It plays a central role in the analysis of the second law in open quantum systems.
It provides a natural approach to LP in quantum statistical mechanics with precise
hypotheses that also set limits to its validity ([Allahverdian-Nieuwenhuizen '01],
[Alicki "147).

@ The thermodynamic behavior of the coupled system S + R emerges in the limit of
infinitely extended reservoir. For example, it is only in this limit that the system can
settle in a steady state in the large time limit.

@ The large time limit is intimately linked to ergodic properties.

@ The same properties (our Assumptions A and P) are essential in the analysis of
the LP, and in particular in establishing the optimality of Landauer’s bound for
physically relevant models of quasi-static processes.
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Summary

@ The entropy balance relation is a model independent structural identity. It is
tautological for confined systems

S(w o aln) — S(wln) = tr (UsU* (UlogwU* —logn) — w(logw — log))
= tr (w(U* log nU — log 1))
= —pr (w(U"Hr U — HR))

It follows from Araki’s perturbation theory of KMS structure for extended systems.
It plays a central role in the analysis of the second law in open quantum systems.
It provides a natural approach to LP in quantum statistical mechanics with precise
hypotheses that also set limits to its validity ([Allahverdian-Nieuwenhuizen '01],
[Alicki '14]7).

@ The thermodynamic behavior of the coupled system S + R emerges in the limit of
infinitely extended reservoir. For example, it is only in this limit that the system can
settle in a steady state in the large time limit.

@ The large time limit is intimately linked to ergodic properties.

@ The same properties (our Assumptions A and P) are essential in the analysis of
the LP, and in particular in establishing the optimality of Landauer’s bound for
physically relevant models of quasi-static processes.

@ These ergodic properties have been established for various models
[Botvich-Malyshev 83, Aizenstadt-Malyshev '87, Jaksi¢-P '96,

Bach-Frohlich-Sigal '00, Jaksic-P '02, Derezinski-Jaksi¢ '03,
Fréhlich-Merkli-Ueltschi ’03, Aschbacher-Jaksi¢-Pautrat-P '06, Jaksi¢-Ogata-P '06,
Merkli-Muck-Sigal '07, de Roeck-Kupianien 11 ]. Further progress in this direction
requires novel ideas and techniques in the study of the Hamiltonian dynamics of

avtandad ecvetame
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Thank you !
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