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Equilibration and Thermalisation in closed quantum systems

”Pure state quantum statistical mechanics.”

Can closed finite quantum systems equilibrate? (subsystems, physical
observables,...)

And, if they equilibrate, do they reach thermalization? (”Proof” the
appearance of Gibbs states).

Quantum thermodynamics
Gibbs states (and/or thermalisation) are taken for granted.

Examples:

I Heat engines.

I Resource theory of quantum thermodynamics. Gibbs states at
ambient temperature are free resources, and the allowed operations
are,

ρ→ σ = TrB [Uρ⊗ e−βH

Z
U†]

with [U,Hρ + H] = 0.
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However, this picture is not quite true. Systems do not always
thermalize, e.g.,

I strong coupling between system and bath,

I integrable systems,

I ...
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An example: a chain of fermions

H = HS + HB + V

with

HB =
N∑
i=1

a†i ai + g
(
a†i ai+1 + a†i+1ai

)
, HS = εc†c , V = g

(
a†Nc + c†aN

)
.

ρ0 = ρs ⊗
e−βHB

ZB

ρ(t) = Uρ0U
†, U = e−iHt

population = Tr(c†cρ(t))

thermal state =
e−βHS

ZS

Parameters : N = 50, g = 0.3, ε = 2

�������������

���������������

0 10 20 30 40 50 60
0.23

0.24

0.25

0.26

0.27

Time

P
op
ul
at
io
n



An example: a chain of fermions

H = HS + HB + V

with

HB =
N∑
i=1

a†i ai + g
(
a†i ai+1 + a†i+1ai

)
, HS = εc†c , V = g

(
a†Nc + c†aN

)
.

ρ0 = ρs ⊗
e−βHB

ZB

ρ(t) = Uρ0U
†, U = e−iHt

population = Tr(c†cρ(t))

thermal state =
e−βHS

ZS

Parameters : N = 50, g = 0.3, ε = 2

�������������

���������������

0 10 20 30 40 50 60
0.23

0.24

0.25

0.26

0.27

Time

P
op
ul
at
io
n



An example: a chain of fermions

H = HS + HB + V

with

HB =
N∑
i=1

a†i ai + g
(
a†i ai+1 + a†i+1ai

)
, HS = εc†c , V = g

(
a†Nc + c†aN

)
.

ρ0 = ρs ⊗
e−βHB

ZB

ρ(t) = Uρ0U
†, U = e−iHt

population = Tr(c†cρ(t))

thermal state =
e−βHS

ZS

Parameters : N = 50, g = 0.3, ε = 2

�������������

���������������

0 10 20 30 40 50 60
0.23

0.24

0.25

0.26

0.27

Time

P
op
ul
at
io
n



Equilibration in closed quantum systems

Consider a Hilbert space HS ⊗HB , with ds = dim(HS) << dB and an
interacting Hamiltonian1,

H = HS + HB + Hint.

Let a quantum system ρ = |ψ0〉〈ψ0| evolve under H, ρ(t) = e−iHtρe iHt .

Equilibration of subsystems

Equilibration of general observables

Closed finite quantum systems equilibrate for all practical purposes.

1More precisely, a Hamiltonian that has no degenerate energy gaps.
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Consider a Hilbert space HS ⊗HB , with ds = dim(HS) << dB and an
interacting Hamiltonian1,

H = HS + HB + Hint.

Let a quantum system ρ = |ψ0〉〈ψ0| evolve under H, ρ(t) = e−iHtρe iHt .

Equilibration of subsystems 2

For every ρ , the average distinguishability between ρS(t) = TrBρ(t) and
time-averaged state ωS = TrBω satisfies

〈D(ρS(t), ωS)〉t ≤
1

2

√
d2
S

deff
.

where deff = 1∑
k |〈Ek |ψ0〉|4 is the effective dimension.

Equilibration of general observables

Closed finite quantum systems equilibrate for all practical purposes.

1More precisely, a Hamiltonian that has no degenerate energy gaps.
2P. Reimann, PRL. 101,190403 (2008), NJP 12, 055027 (2010); N. Linden,

S. Popescu, A. Short and A. Winter, PRE 061103 (2009), NJP 12, 055021
(2010)
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Let a quantum system ρ = |ψ0〉〈ψ0| evolve under H, ρ(t) = e−iHtρe iHt .

Equilibration of subsystems

Equilibration of general observables 2

For every ρ, and given a finite set of measurements M, it is satisfied that

〈D(ρS(t), ωS)〉t ≤
N (M)

4
√
deff

.

where N (M) is the total number of outcomes for all measurements in
M.
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Equilibration and the time-averaged state

To which state do quantum systems equilibrate?

The state equilibrium state ω is given by the time-averaged state,

ω(ρ,H) := lim
T→∞

1

T

∫ T

0

e−iHt ρ eiHtdt ,

A simple calculation yields,

ω(ρ,H) =
∑
k

PkρPk ,

with H =
∑

k EkPk .
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Thermalization

The equilibrium state ω(ρ,H) will in general not be a Gibbs state. In
particular ω will depend on the initial state ρ.
For a system to thermalize, we further require: 2

1. Bath state independence. The equilibrium state of the system should
not depend on the precise initial state of the bath, but only on its
macroscopic parameters (e.g. its temperature)

2. Subsystem state independence. If the subsystem is small compared to
the bath, the equilibrium state of the subsystem should be independent
of its initial state.

3. Gibbs form of the equilibrium state. Here we distinguish between,

I weak thermal contact, ρS = e−βHS

ZS
.

I beyond weak interactions, ρS = TrB
e−βH

Z .

2N. Linden, S. Popescu, A. Short and A. Winter, PRE 79:061103 (2009).
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Equilibration, thermalisation, and the maximum entropy
principle

Let H =
∑

k EkPk and ρ(t) = e−iHtρe iHt . Consider all conserved
quantities A

d tr(Aρ(t))

dt
= 0, with [H,A] = 0.

If H is non-degenerate, then it suffices to take all Pk .

I If one fixes all the conserved quantities TrAρ(t) ∀A, then the time
averaged state ω = 〈ρ〉t is the state maximizing the Von Nemann
entropy, S = − tr ρ ln ρ .

I The Gibbs state ωGibbs(ρ,H) maximises S when only one constant
of motion, the energy tr(Hρ), is fixed. This maximization yields,

ωGibbs(ρ,H) =
e−βH

Z
where β is found through tr(Hρ) = tr(HωGibbs(ρ,H).

I Generalized Gibbs states3 (GGE) lie in between. Given a set of
conserved quantities {Qi}, the GGE is the state maximising S,
which gives,

ωGGE(ρ,H, {Qi}) =
e−

∑
i βiQi

Z
where βi is found through tr(Qiρ) = tr(QiωGGE(ρ,H, {Qi})).

3Cramer, Dawson, Eisert, Osborne, PRL 100, 030602 (2008), Cassidy,
Clark, Rigol, PRL106, 140405 (2011), Caux, Essler PRL 110, 257203 (2013).
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How to choose the constants of motion

The GGE state is useful because it interpolates among an exact (but
computationally very costly) and a very coarse grained description of the
equilibrium state. However, choosing the constants of motion Qi is not
always easy and is a subject of debate.

Subjective and objective approach to choose Qi

I Subjective approach: the relevant conserved quantities are those
that are experimentally accessible.

I Objective approach: choose the ones that make the GGE as close as
possible (e.g., in trace distance) to the time-averaged-state.
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Choosing the constants of motion, an example.
Consider again a fermonic chain. Since the Hamiltonian is quadratic,

H = HS + V + HB =
∑
ij

cija
†
i aj =

N∑
k=1

εkη
†
kηk =

N∑
k=1

hk

Construct the GGE with N conserved quantities: tr(hkρ).
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Thermodynamics with Generalised Gibbs Ensembles

0. Framework.

1. Entropy production.

2. Work extraction.

3. Optimal protocols and reversibility.



Framework: Quenches and equilibrations.

H = HS(t) + V + HB

Operations
Given some ρ(i), H(i) and

I Quenches: Fast change of the Hamiltonian H(i) → H(i+1). To it we
associate a work cost,

W (ρ(i), {H(i),H(i+1)}) := Tr
(
ρ(i)(H(i+1) − H(i))

)
,

If we only change HS : W = Tr
(
ρ
(i)
S (H

(i+1)
S − H

(i)
S )
)

.

I Equilibration: After the quench, the state evolves as:

ρ(i+1)(t) = e−itH(i+1)

ρ(i)eitH(i+1)

.
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Effective description of the dynamics.
A (cyclic) work-extraction protocol is a sequence of N quenches:

H(0) → H(1) → ...→ H(N−1) → H(0).

Under these quenches, the state of SB evolves as

ρ(0) → ρ(1) → ....→ ρ(N−1) → ρ(N)

ρ(i) =

(⊗
i

Ui

)
ρ

(⊗
i

U†i

)
, Uk = e−itH

(k)

, t � tequilibration.

We use an effective, time-independent description of the evolution:

ρ(0) → ω(1) → ω(2) → ...→ ω(n)

where ω is an equilibrium state (either Gibbs, GGE or time-average).
More precisely,

ω(i+1) = ωGGE

(
ω(i),H, {Qi}

)
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The effective description: An example

ρ(0) → ω(1) → ω(2) → ...→ ω(n)

Effective description with one constant of motion: the energy
Equilibrium states are Gibbs,

ω(i) =
e−β

(i)H(i)

Zi

Notice that the temperature β changes through the protocol. It is find
through the relation, tr(ω(i)H(i+1)) = tr(ω(i+1)H(i+1)).

Recovering the classical thermodynamic limit

Temperature dependence: β(i+1) = β(i) +O
(

Energy of the quench
Total energy S + B

)
.

Weak coupling limit: e−βH ≈ e−βH
(i)
S ⊗ e−βHB .
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Entropy production.



Entropy production
Of course, the exact dynamics satisty,

S(ρ(i+1)) = S(ρ(i))

with S = −Tr(ρ ln ρ).

However, by the very definition of the effective description, it is satisfied
that,

S(ω(i+1)) ≥ S(ω(i))

The entropy of the effective description can only increase. It is a
coarse-grained description.

Remark
The effective entropy defined here is different from the sum of local
entropies,

SSB = S(ρS) + S(ρB),

which is often used to compute entropy production. Note that SSB can
fluctuate when considering strongly interacting systems (it is only
monotonically increasing under natural assumptions in the weak coupling
limit).
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Limit of very slow processes

ρ(0) → ω(1) → ω(2) → ...→ ω(N)

In the limit of slow processes (N →∞), it is satisfied

S(ω(N)) = S(ω(1)) +O
(

1

N

)
.

In other words, no entropy is produced in infinitesimally slow processes.
This introduces a notion of reversibility.

Remark.
Besides N →∞, some further conditions on the Hamiltonian path need
to be imposed to ensure entropy conservation.
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Idea of the proof
By construction, the equilibrium states before and after the quench
satisfy,

tr(Qj+1ω
(i)) = tr(Qj+1ω

(i+1)) ∀j

where Qj are all the conserved quantities. On the other hand, consider
the (generalized) free energy functional
Gβi+1(σ) = S(σ)−

∑
i βi+1Tr(Qi+1σ). Since ω(i+1) is a maximum

Gβi+1(σ), one has S(ω(i+1) + δω)− S(ω(i+1)) = O(δω2).

Remark.
Besides N →∞, some further conditions on the Hamiltonian path need
to be imposed to ensure entropy conservation.
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Work extraction for Gibbs states
The total work cost reads,

W = Tr
(
ρ
(0)
S (H

(0)
S − H

(1)
S )
)

+
n∑

i=1

Tr
(
ρ
(i)
S (H

(i)
S − H

(i+1)
S )

)
= Tr

(
ρ
(0)
SB(H(0) − H

(1)
SB )
)

+
∑
i

Tr
(
ω(i)(H(i) − H(i+1))

)
= Tr

(
H(0)

(
ρ
(0)
SB − ω

(n)
))

where the ω’s are equilibrium states for S+B, and we used that
Tr
(
H(i+1)

(
ω(i) − ω(i+1)

))
= 0.

Clearly, the optimal protocol is the one minimising tr
(
H(0)ω(n)

)
. Since

entropy and energy are monotonically related for Gibbs states, the
optimal protocol is always the one minimising the entropy production.

Note that this property holds for any protocol. That is, once the first
quench is realised, work is always maximised in the slowest path (minimal
work principle).
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Work extraction with GGE

For GGE equilibrium states, the one-to-one correspondence between
energy and entropy is lost. This opens the door towards breaking the
minimal work principle.

A case study: quadratic fermionic Hamiltonians,

H =
∑
ij

cija
†
i aj

with a†i , aj = δij , and {ai , aj} = {a†i , a
†
j } = 0.
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Work extraction from fermonic systems I
Optimal protocol

Consider an idealised scenario where, in order to extract work from ρ, we
can perform quenches to any quadratic Hamiltonian.

The optimal protocol can be found using the notion of passive states6,
and it is found to be reversible, in the sense that no entropy is produced
in our effective description.

The optimal protocol is reversible.

Example: Chain of fermions

Comparison between unitary dynamics and effective description
Excellent agreement.
Our description does not capture fluctuations in time of the magnitude of
interest.

6Pusz and Woronowicz, 78.
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Work extraction from fermonic systems I
The optimal protocol is reversible.

Example: Chain of fermions
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Protocols constrained to actions on S
Now we consider a more realistic scenario where the Hamiltonian
transformations are restricted to S ,

H = HS(t) + HB + V .

Here the extracted work becomes a local quantity.

Case study: a chain of fermions.
Initial conditions: ρ(0) = ρS ⊗ e−βHB

ZB .
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The minimal work principle is not always satisfied for GGE.
Since equilibrium states here are not well described by Gibbs state by
rather by GGE states, it is natural to generalise the initial state to

ρ(0) = ρS ⊗ ωGGE .

Given this new freedom, there are choices of ωGGE , such as,

Tr(ω
(B)
GGEη

(B)†
k η

(B)
k ) =

{
1 k ≥ K
0 k < K

for which the minimal work principle does not hold.
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Conclusions

I Coarse-grained description of the evolution of equilibrium states.

I Entropy production and reversibility in quantum closed systems.

I Implications for the relation between reversibility and maximal work
extraction.

Thank you very much for your attention.
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