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Definition

Let Ω be a set

Definition
A ⊂ P(Ω) is a σ-algebra on Ω if the following conditions are satisfied

1 Ω ∈ A

2 A is stable by the complementary operation i.e if A ∈ A then Ac ∈ A

3 A is stable by countable union i.e if (An)n is a countable family of
elements of A i.e An ∈ A for all n ∈ N then

⋃
n An ∈ A

1 {∅,Ω} is the smallest σ − algebra
2 P(Ω) is called the trivial σ − algebra, usually considered when Ω is

discrete
3 When Ω is a topologic space equipped with a family of open sets, the

smallest σ− algebra which contains all these open is called the Borel
σ−algebra. We denote it by B(Ω). Why does it always exists?
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Definition

A set Ω equipped with a σ−algebra A is called a measurable space and
we denote it by (Ω,A)

Definition
A measure µ on (Ω,A) is an application from A → [0,+∞] such that

1 µ(∅) = 0
2 If (An)n is a countable family of elements of A mutally disjoints i.e

Ai ∩ Aj = ∅ if i , j then

µ(
⋃
n∈N

An) =
∑
n∈N

µ(An)

Dirac measure δa . Counting measure
∑

n∈N δn.

Lebesgue measure
λ([a, b]) = λ(]a, b]) = λ([a, b[) = λ(]a, b[) = b − a
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Definition

1 The triplet (Ω,A, µ) is called a measured set.
2 When µ is of mass 1 that is µ(Ω) = 1 we speak about probability

measure. In this case we denote µ by P.
3 A probability space is then a measurable space (Ω,A) equipped

with a probability measure P: (Ω,A,P)

4 One important situation in statistics is when the probability measure P
depends on a unknown parameter θ∗. We usually denote Pθ∗ this
probability.

5 We shall assume that the probability Pθ∗ belongs to a class of
probability measure that we shall denote P.

6 One of the aim of statistics is to find how can we obtain information on
this parameter?
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Definition

Definition
Let E and F be two sets equipped with σ−algebras A for E and B for F .
An application f : (E,A)→ (E,B) is called measurable if

∀B ∈ B, f−1(B) ∈ A

Recall that a random variable X is a measurable function from Ω to R
or a discrete or countable space

Let us throw two dices and compute the sum
S : {1, . . . , 6}2 → {2, . . . , 12} : S(i, j) = i + j is a r.v

When is X is valued on Rk , k > 1, we usually speak of random
vectors
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Statistical Model

Definition
A statistical model is a triplet (Ω,A,P) where

1 Ω is called the space of realizations
2 A is a σ−algebra
3 P is a family of probability measure defined on A

Family of Gaussian laws:

P = {N(m, σ2),m ∈ R, σ ∈ R∗+}

Recall that the density of N(m, σ2) is given by

fN(m,σ2)(x) =
1

σ
√

2π
e−

1
2 ( x−m

σ )
2

Family of Bernoulli laws:

P = {B(θ), θ ∈ [0, 1]}
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Definition

The examples
Family of Gaussian laws:

P = {N(m, σ2),m ∈ R, σ ∈ R∗+}

Family of Bernoulli laws:

P = {B(θ), θ ∈ [0, 1]}

are usually associated with a random variable X whose law is either
Gaussian or Bernoulli.

Assume you want to extract information on m, σ or θ (these are
unknown parameters). You can easily guess that one realization (one
observation) of the value of X is not enough.

Usually we are faced to n independent realizations of the same
random variable. This way we consider X1, . . . ,Xn n r.v independent
and identically distributed such as Xi ∼ X for all i ∈ {1, . . . , n}
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Definition

In the situation where you have n observations i.i.d X1, . . . ,Xn, the statical
models can be described by

Gaussian: Ω = Rn = R × . . . × R (n times), A = B(Rn),

P = {N⊗n(m, σ),m ∈ R, σ ∈ R∗+}

Bernoulli: Ω = {0, 1}n, A = P(Ω)

P = {B⊗n(θ), θ ∈ [0, 1]}

the notation ⊗n means that we consider the product of measure on the
cartesian product Rn or {0, 1}n. This corresponds to the fact that we
consider independent situation.

Exercise: describe the statistical model where you throw 100 times 10
dices and you just look at the sum of each result.
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Definition

1 Other situations. Assume you observe n realizations of random
variables Xi valued in R such that

E[Xi] = iθ

where θ is an unknown parameter and the law of Xi are unknown (you
do not know the forme of the density for example). Your focus is on θ!
only and not on the distribution of Xi

Ω = Rn

P =
{
PX1 ⊗ . . . ⊗ PXn ,

∫
R

xdPXi (x) = iθ, θ ∈ R
}

2 Assume simply that you observe n independent and identical
realizations of X . What can you say?
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Definition

Definition
1 Parametric Model: the family law is parametrized by a subset of Rd .
2 Semi- parametric Model: the family laws is not parametrized by a

subset of Rd but the quantity of interest is.
3 Non parametric models: all the other cases.
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Definition

1 Now we have clearly defined what is a statistical model and what kind
of different model we can address let us come back to the main
statistical questions.

2 Estimation

3 Hypothesis testing
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Definition

1 Estimation: Assume you want to estimate an unknown parameter θ or
a function g(θ). This estimation has to be based only on the
observations; this is done by the notion of estimator. We shall
concentrate only the i.i.d situation

Definition
Let X1, . . . ,Xn be a sample that is the r.v are independent and identically
distributed. An estimator is a measurable function of the observations.

2 An estimator can not be defined with unknown parameters
3 Usual estimator take the form T = f(X1, . . . ,Xn). An estimator is a r.v.

When you have an observations (x1, . . . , xn), the quantity
t = f(x1, . . . , xn) is a realization of T and is called an estimation

4 Examples:

T =
1
n

n∑
i=1

Xi , T = max(X1, . . . ,Xn)

can be considered as estimators
16 / 150
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Definition

1 Hypothesis testing: Assume that your unknown parameter
θ∗ ∈ Θ = Θ1 ∪Θ2 where the union is disjoint.

2 Within the observations you want to take a decision: the parameter θ∗

belongs either to Θ1 or to Θ2

3 Again this decision has to be made in a measurable way with respect
to the observations. A test is a measurable function of (X1, . . . ,Xn)

4 We won’t study the theory of hypothesis testing in this course and we
shall concentrate on estimation
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Definition

1 Before going further: Important point: making statistic is assuming
that you are going to make mistakes, errors.

2 Indeed you won’t be able, in general, to be sure having founded the
unknown parameter only with a finite number of observations

3 Statisticians are Mathematicians who are able to control the error
they will make by establishing qualitative analysis of their estimators
or tests.

4 Before going into the details, we shall recall some basic probability
result.
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Probability background

19 / 150



First concentration inequality

This part will be a glossary of notions of probability we shall need in
the sequel

Let us start with two useful concentration inequalities. Let us consider
a random variable X on a probability space (Ω,A,P).

If X ∈ L1, the mean, average, expectation is denoted by E[X ]

If X ∈ L2, the variance is denoted by
Var(X) = E[(X − E[X ])2] = E[X2] − E[X ]2

If X is L1: Markov inequality

P(|X | > t) 6
E(|X |)

t

If X is L2: Bienaymé-Tchebychev inequality

P(|X − E(X)| > t) 6
Var(X)

t2
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Characteristic function

Definition
The characteristic function of a r.v X is defined by

φX (t) = E[e itX ],∀t ∈ R

The characeristic function of a random vector is

φX (u) = E[e i<u,X>],∀u ∈ Rd ,

where <, > denote the scalar product on Rd .
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characteristic function

X ∼ B(p) then φX (t) = 1 − p + pe it

X ∼ B(n, p) then φX (t) = (1 − p + pe it )n

X ∼ P(λ) then φX (t) = exp(λ(e it − 1))

X ∼ U([a, b]) then φX (t) = e ibt−e iat

(b−a)it

X ∼ E(λ) then φX (t) = λ
λ−it

X ∼ C(a) then φX (t) = exp(−a |t |)

X ∼ N(m, σ2) then φX (t) = exp(imt − σ2t2

2 )
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characteristic function and moments

Proposition
Let X be a r.v which admits a moment of order p then its characteristic
function is p times differentiable and we have

φ
(p)
X (0) = ipE[Xp]

23 / 150



Other transformation

The moment generator function of a r.v X with values in S(X) ⊂ N
and pk = P(X = k) is

GX (t) = E[tX ] =
∑

k

pk tk

This function is C∞ on [0, 1[ and p times differentiable on 1 if
E[Xp] < +∞

G(k)
X (0) = k !pk , k ∈ N

If the mean exists, we have G′X (1) = E(X)

Laplace transform. For a r.v X , we call its Laplace transform

φX (t) = E[etX ]
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Other transformation

1 As we shall see in the sequel, we shall be interested in limits of
estimator when the number of observations n goes to infinity.

2 This asks for convergence of random variables.
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Definition

Definition
Let (Xn) be a sequence of r.v and X be a r.v. We say that (Xn) converge
towards X

Almost surely a.s if P(lim Xn = X) = 1 we note Xn
a.s
−→X

In Lp norm if lim
n→+∞

E[|Xn − X |p] = 0 we note Xn
Lp

−→X

In probability if ∀ε > 0, lim
n→+∞

P[|Xn − X | > ε] = 0 we note Xn
P
−→X

In law if for all continuous and bounded functions f we have
lim

n→+∞
E[f(Xn)] = E[f(X)] we note Xn

L
−→X

When the law of X depends on a unknown parameter θ we make appear
this dependency.
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Convergence en loi

For a r.v we denote its partition function FX and recall that φX denotes its
characteristic function

Theorem
(Xn) converge in law towards X if and only if

FXn (t)→ FX (t)

in all points where FX is continuous i.e in all points t such that
P(X = t) = 0

Theorem
(Xn) converges in law towards X if and only if

φXn (t)→ φX (t)

for all t ∈ R.
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Usual Convergence mode

In order to finish let us recall the usual convergence mode

Theorem
Beppo Levy Theorem: let (Xn) be a non decreasing sequence of
non negative numbers then if lim

n
Xn = X we have

lim
n
E[Xn] = E[X ]

Fatou Lemma: let (Xn) be a sequence of non negative numbers then

E[lim inf
n

Xn] 6 lim inf
n
E[Xn]

Lebesgue dominated convergence Theorem: let (Xn) be a
sequence such that Xn converges a.s to X. Let Y such that
E[|Y |] < ∞ and |Xn | < Y | then

lim
n
E[Xn] = E[lim

n
Xn]
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Links between convergence modes

Recall the usual links

Almost sure convergence =⇒ Convergence in probability

Lp Convergence p > 1 =⇒ L1 Convergence =⇒ Convergence in
probability

All convergence modes =⇒ Convergence in law

Almost surely convergence + domination =⇒ L1 convergence

L1 convergence =⇒ Almost sure convergence for a sub-sequence
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Slutsky

When (Xn) converges in law to X and (Yn) converges in law to Y this
does not implies in general that (Xn,Yn) converges in law to (X ,Y).
But we have this useful result:

Proposition
(Slutsky)

If (Xn) converges in law to X and (Yn) converges in law to c then
(Xn,Yn) converges in law to (X , c)
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Slutsky

In the sequel we shall also need the notion of ◦P
We say that Xn = ◦P(Yn) if

Xn

Yn

P
−→ 0

Note that if R is a continuous function such that R(h) = ◦(‖h‖p) and
(Xn) is a sequence which converges in probability to 0 then

R(Xn) = ◦P(‖Xn‖
p)

Here we shall use the fact that if Xn
P
−→X then for all continuous

function f(Xn)
P
−→ f(X)
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Law of Large Numbers (LLN)
and Central Limit Theorem

(CLT)
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Objectif

The objective of this section is to understand the convergence of

X̄n =
1
n

n∑
i=1

Xi

√
n(X̄n −m) =

1
√

n

n∑
i=1

(Xi −m)

when (Xn) is a sequence of i.i.d random variables where m = E[X1].

As we shall see the first quantity is a good estimator of m and the
second quantity allows to control the error we make when making
estimation
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Weak Law of Large Numbers L2 and L1

Theorem
Let (Xn) be a sequence of i.i.d r.v which are L2 then

X̄n =
1
n

n∑
i=1

Xi
P
→E[X1]

Let (Xn) be a sequence of i.i.d r.v B(p) then Mn :=
1
n

n∑
i=1

Xi
P
→ p

First step towards estimation of an unknown proportion

Theorem
Let (Xn) be a sequence of i.i.d r.v which are L1 then

X̄n =
1
n

n∑
i=1

Xi
P
→E[X1]
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Law of Large Numbers

Theorem
Law of Large Numbers: Let (Xn) be a sequence of i.i.d r.v and L1 then

1
n

n∑
i=1

Xi
a.s
→ E[X1]

Application: Monte Carlo Method. Let f be a measurable function
such that f(X1) Let L1

1
n

n∑
i=1

f(Xi)
a.s
→ E[f(X1)]

Rq: note that the advantage of this method is that we do not require
any regularity property of f .
X̄n = 1

n
∑n

i=1 Xi and σ̂2
n = 1

n
∑n

i=1(Xi − X̄n)2 = 1
n
∑n

i=1 X2
i − X̄2

n are
estimators of the mean and of the variance
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Central Limit Theorem

Theorem
Central Limit Theorem: Let (Xn) be a sequence of i.i.d r.v which are L2.
Let m be the common mean and σ2 the common variance. We put

Sn =
n∑

i=1

Xi = nX̄n

then
1
√

nσ2

n∑
i=1

(Xi −m) =
Sn − nm
√

nσ2

L
→N(0, 1)
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Central Limit Theorem

This is a strong refinement of the LLN: somehow it gives the rate of
convergence of the empirical mean towards the mean.

As we shall see later, this allows to construct confidence interval

Sometimes we need to consider f(X̄n) for f sufficiently smooth. It is
easy to see that

f(X̄n)
a.s
→ f(E[X1])

using the continuity of f

Concerning extension of CLT one is interested in convergence in law
of

√
n(f(X̄n) − f(E[X1]))

This asks for the so called Delta method which will be exposed at the
end of the next part concerning Gaussian laws.
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Gaussian Vectors
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Definition

Definition
A random vector X = (X1, . . . ,Xd)t is called Gaussian vector if all linear
combination of its coordinates are Gaussian, that is for all a ∈ Rd the r.v

< a,X >=
d∑

i=1

aiXi

is a Gaussian r.v.

If X is a Gaussian vector then for all matrices A the vector AX is still a
Gaussian vector
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matrix de covaroiance

Definition
Let X = (X1, . . . ,Xd)t be a Gaussian vector we note K its covariance
matrix defined by

Ki,j = Cov(Xi ,Xj) = E[XiXj] − E[Xi]E[Xj],

for all i, j = 1, . . . , d. We shall also note

m = E[X ] = (E[X1], . . . ,E[Xd ])t

the vector of mean. We shall note X ∼ Nd(m,K)

The matrix K is semi-definite positive
E[< a,X >] =< a,E[X ] >

Var(< a,X >) = Var

 d∑
i=1

aiXi

 =
d∑

i,j=1

aiajCov(Xi ,Xj) = a tKa =<

a,Ka >
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characteristic function

One can check that

φ<a,X>(t) = exp

(
i < a,m > t −

1
2

a tKa t2
)

φX (x) = E[e i<x,X>] = φ<x,X>(1)

Proposition
The characteristic function of a Gaussian vector is given by

φX (x) = exp

(
i < x,m > −

1
2

x tKx
)

The coordinates of a Gaussian vector are independent if and only if
its covariance matrix is diagonal
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Transformation linéaire

Proposition
Let X ∼ Nd(m,K) then for all matrices A ∈ Mp,d(R) then

AX ∼ Np(AX ,AKA t )

If X ∼ Nd(0, Id) then the law of X is invariant by all rotation.
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Centrer and réduire un Gaussian vector

We shall say that a Gaussian vector X is degenerate if its covariance
matrix K is non invertible

In the degenerate case, there exists a such that Ka = 0 which implies
that

Var(< a,X >) = 0

and then < a,X >= b a.s. Then X leaves in the affine space

{< a, x >= b , x ∈ Rd}

If K is invertible then
√

K−1(X −m) ∼ N(0, Id)

If N ∼ N(0, Id) then X =
√

KN + m ∈ N(m,K)
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Density

If X ∼ Nd(0, Id) then the coordinates (Xi)i=1,...,d are i.i.d and
X1 ∼ N(0, 1). Then the density of X is given by the product of
densities i.e

fX (x1, . . . , xd) =
1
√

2πd
exp

−1
2

d∑
i=1

x2
i


In the case where K is invertible we have

fX (x1, . . . , xd) =
1√

(2π)d det K
exp(−

1
2
< (x −m),K−1(x −m) >)

Rq: if X is Gaussian all its coordinates are Gaussian, the converse is
not true in general.
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CLT multidimensional

Theorem

Let X (n) be a sequence of random vectors of Rd which are i.i.d and L2 of
mean vector m and of covariance matrix K. We put S(n) =

∑n
i=1 X (i) then

we have
n−1/2

√
K−1(S(n) − nm)

L
→Nd(0, Id)

or
n−1/2(S(n) − nm)

L
→Nd(0,K)
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Transformation of Gaussian law

Let X ∼ N(0, 1) and consider Z = X2. Let f be a continuous and
bounded function

E[f(Z)] = E[f(X2)]

=

∫
R

f(x2)
1
√

2π
e−

x2
2 dx

= 2
∫ +∞

0
f(x2)

1
√

2π
e−

x2
2 dx

=

∫ +∞

0
f(z)

1
√

2π
e−

z
2 (
√

z)−1dz

Then Z ∼ χ2(1) where fZ (z) = 1√
2π

e−
z
2 (
√

z)−11z>0
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Transformation of Gaussian law

Let X = (X1, . . . ,Xd) a Gaussian random vector where (Xi) are i.i.d of
law N(0, 1) then

Z =
d∑

i=1

X2
i

is a random variable whose law is χ2(d) where d is called the degree
of freedom

The density of this r.v is

fZ (z) =
1

2Γ(k/2)
z

k
2−1e−

z
2 1z>0

where Γ is the Gamma function
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Transformation of Gaussian law

Let X ∼ N(0, 1) and Z ∼ χ2(k) then the r.v

T =
X
√

Z/k

is said to be distributed as the Student law of degree k

The density is given by

fT (t) =
1
√

kπ

Γ( k+1
2 )

Γ( k
2 )

(1 +
t2

2
)−

k+1
2
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Cochran Theorem

Proposition

Let X ∼ Nd(0, Id) and let Rd = F1 ⊕ . . . ⊕ Fk a decomposition in orthogonal
space with dim(Fi) = di . We note PFi , i = 1, . . . , k the orthogonal
projectors associated with space Fi , i = 1 . . . , k . In this case the vectors
PF1(X), . . . ,PFk (X) are independent Gaussian vectors. We have also

‖PFi (X)‖2 ∼ χ2(di), i = 1, . . . , k

This is linear algebra

We can express a more general result X ∼ N(0,K) with non
degenerate K by introducing a scalar product with respect to K i.e
< a, b >K =< a,Kb >.
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chi2 Test

Test of adequation χ2:
We observe a random variable X where the set of values
S(X) = {a1, . . . , ar } and pj = P(X = aj) = Q({aj}), j = 1, . . . , r
unknown. We note p = (p1, . . . , pr) the corresponding vector of
probability.
We consider a reference probability Q0 =

∑
i πiδi with same support

but with a known vector π = (π1, . . . , πr) where πi > 0
The Hypothesis testing is H0 : Q = Q0 against H1 : Q , Q0.
Let (Xn) be a sequence of i.i.d.r.v of law Q . For n ∈ N, we put

Nj =
n∑

i=1

1Xi=aj

The random vector N = (N1,N2, . . . ,Nr)
t follows a multinomial law

M(n, p1, . . . , pr) i.e

P(N1 = n1, . . . ,Nr = nr) =
n!

n1! . . . nr !
pn1

1 . . . pnr
r , n1 + . . . + nr = n

50 / 150



chi2 Test

Test of adequation χ2:
We observe a random variable X where the set of values
S(X) = {a1, . . . , ar } and pj = P(X = aj) = Q({aj}), j = 1, . . . , r
unknown. We note p = (p1, . . . , pr) the corresponding vector of
probability.
We consider a reference probability Q0 =

∑
i πiδi with same support

but with a known vector π = (π1, . . . , πr) where πi > 0
The Hypothesis testing is H0 : Q = Q0 against H1 : Q , Q0.
Let (Xn) be a sequence of i.i.d.r.v of law Q . For n ∈ N, we put

Nj =
n∑

i=1

1Xi=aj

The random vector N = (N1,N2, . . . ,Nr)
t follows a multinomial law

M(n, p1, . . . , pr) i.e

P(N1 = n1, . . . ,Nr = nr) =
n!

n1! . . . nr !
pn1

1 . . . pnr
r , n1 + . . . + nr = n

50 / 150



chi2 Test

Test of adequation χ2:
We observe a random variable X where the set of values
S(X) = {a1, . . . , ar } and pj = P(X = aj) = Q({aj}), j = 1, . . . , r
unknown. We note p = (p1, . . . , pr) the corresponding vector of
probability.
We consider a reference probability Q0 =

∑
i πiδi with same support

but with a known vector π = (π1, . . . , πr) where πi > 0
The Hypothesis testing is H0 : Q = Q0 against H1 : Q , Q0.
Let (Xn) be a sequence of i.i.d.r.v of law Q . For n ∈ N, we put

Nj =
n∑

i=1

1Xi=aj

The random vector N = (N1,N2, . . . ,Nr)
t follows a multinomial law

M(n, p1, . . . , pr) i.e

P(N1 = n1, . . . ,Nr = nr) =
n!

n1! . . . nr !
pn1

1 . . . pnr
r , n1 + . . . + nr = n

50 / 150



chi2 Test

Test of adequation χ2:
We observe a random variable X where the set of values
S(X) = {a1, . . . , ar } and pj = P(X = aj) = Q({aj}), j = 1, . . . , r
unknown. We note p = (p1, . . . , pr) the corresponding vector of
probability.
We consider a reference probability Q0 =

∑
i πiδi with same support

but with a known vector π = (π1, . . . , πr) where πi > 0
The Hypothesis testing is H0 : Q = Q0 against H1 : Q , Q0.
Let (Xn) be a sequence of i.i.d.r.v of law Q . For n ∈ N, we put

Nj =
n∑

i=1

1Xi=aj

The random vector N = (N1,N2, . . . ,Nr)
t follows a multinomial law

M(n, p1, . . . , pr) i.e

P(N1 = n1, . . . ,Nr = nr) =
n!

n1! . . . nr !
pn1

1 . . . pnr
r , n1 + . . . + nr = n

50 / 150



chi2 Test

Test of adequation χ2:
We observe a random variable X where the set of values
S(X) = {a1, . . . , ar } and pj = P(X = aj) = Q({aj}), j = 1, . . . , r
unknown. We note p = (p1, . . . , pr) the corresponding vector of
probability.
We consider a reference probability Q0 =

∑
i πiδi with same support

but with a known vector π = (π1, . . . , πr) where πi > 0
The Hypothesis testing is H0 : Q = Q0 against H1 : Q , Q0.
Let (Xn) be a sequence of i.i.d.r.v of law Q . For n ∈ N, we put

Nj =
n∑

i=1

1Xi=aj

The random vector N = (N1,N2, . . . ,Nr)
t follows a multinomial law

M(n, p1, . . . , pr) i.e

P(N1 = n1, . . . ,Nr = nr) =
n!

n1! . . . nr !
pn1

1 . . . pnr
r , n1 + . . . + nr = n

50 / 150



Test of chi2

We put

Tn =
r∑

j=1

(Nj − nπj)
2

nπj

Under H0 this quantity is close to 0 whereas under H1 this quantity is
big.

Theorem
Under H0 we have

Tn
L
→ χ2(r − 1)

Under H1 we have
Tn

a.s
→+∞

Homogeneity Test, Independency Test
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Delta method

Let (Xn) be a sequence of i.i.d r.v L2. Denote θ = E[X1] and
σ2 = Var(X1). Recall

X̄n =
1
n

n∑
i=1

Xi

Recall that the CLT says

√
n(X̄n − θ)

L
→N(0, σ2)

As already announced, for a particular class of f we would like to
understand the convergence of

√
n
(
f(X̄n) − f(θ)

)
To this end we use the delta method
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Delta method

Keep in mind the CLT

√
n(X̄n − θ)

L
→N(0, σ2)

First let us consider f(x) = ax + b then we have

√
n
(
aX̄n − aθ)

) L
→ aN(0, σ2) = N(0, a2σ2)

Now suppose that f is differentiable in θ you can write
f(x) = f(θ) + f ′(θ)(x − θ) + ◦(|x − θ|). Since X̄n − θ converges to 0
almost surely it converges to 0 in probability which allows to write

f(X̄n) = f(θ) + f ′(θ)(X̄n − θ) + ◦P(|X̄n − θ|)
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Delta method

Plugging
f(X̄n) = f(θ) + f ′(θ)(X̄n − θ) + ◦P(|X̄n − θ|)

into
√

n(f(X̄n) − f(θ)), we get
√

n(f(X̄n) − θ) =
√

nf ′(θ)(
√

n(X̄n − θ))(1 + ◦P(1))

Now the term 1 + ◦P(1) converges towards 1 in probability and then in
Law (since the limit is a constant). Using the Slutsky Lemma allows to
conclude that

√
n(f(X̄n) − f(θ))

L
→ f ′(θ)N(0, σ2) = N(0, f ′(θ)2σ2)

Note that it is easy to extend such result to situation where (Tn)
satisfy that there exist a sequence (rn) and a r.v T (non necessary
Gaussian) such that

rn(Tn − θ)
L
→T
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Delta method: General version

Theorem
Let θ in Rk . Let φ be an application from Rk to Rm differentiable in θ. We
denote Dθφ(.) the corresponding differential application. Let (Tn) be a
sequence of random vectors of Rk such that there exists a sequence (rn)
and a random vector T such that

rn(Tn − θ)
L
→T

then we have
rn(φ(Tn) − φ(θ))

L
→Dθφ(T)

In the Gaussian case if Z ∼ N(0,K) where K is the covariance matrix
and Z a Gaussian vector, then we have

Dθφ(Z) ∼ N(0, JθφKJθφt ),

where Jθφ is the Jacobian matrix of φ.
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Conditioning
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Definition

Definition
Let B be a event of non zero probability i.e P(B) , 0. For all events A we
define the conditional probability A knowing B by

PB(A) = P(A |B) =
P(A ∩ B)

P(B)

P(A ∩ B) = P(A |B)P(B)

The application P(·|B) defines a measure on (Ω,A)

If A y B then P(A |B) = P(A)
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Total probability law formula and Bayes formula

Total probability law:

P(A) = P(A |B)P(B) + P(A |Bc)P(Bc)

Two players A and B owns respectively a and b euros. They throw a
dice where a odd number apear with probability p. The player B gives
1 euro to A if a odd number appear and the converse if a even
number appears. We define ua the probability that A bankrupt. We
have

ua = pua+1 + (1 − p)ua−1

Bayes law:

P(B |A) =
P(A |B)P(B)

P(A)

In the practice, the total probability law is used to compute P(A).

58 / 150



Total probability law formula and Bayes formula

Total probability law:

P(A) = P(A |B)P(B) + P(A |Bc)P(Bc)

Two players A and B owns respectively a and b euros. They throw a
dice where a odd number apear with probability p. The player B gives
1 euro to A if a odd number appear and the converse if a even
number appears. We define ua the probability that A bankrupt. We
have

ua = pua+1 + (1 − p)ua−1

Bayes law:

P(B |A) =
P(A |B)P(B)

P(A)

In the practice, the total probability law is used to compute P(A).

58 / 150



Total probability law formula and Bayes formula

Proposition
Let A1, . . . ,AN a partition of Ω then

P(A) =
N∑

i=1

P(A |Ai)P(Ai)

P(Ai |A) =
P(A |Ai)P(Ai)

P(A)
=

P(A |Ai)P(Ai)∑N
i=1 P(A |Ai)P(Ai)
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Conditional Law

Let X and Y two random variables. One can write

P(Y ∈ A ,X ∈ B) =

∫
P(Y ∈ A |X = x)PX (dx) = E[1BP(Y ∈ A |X)]

The quantity P(Y ∈ A |X = x) is a notation which corresponds to the
Radon Nykodym derivative

The family (P(Y ∈ ·|X = x)x∈R is called conditional probability law
family of Y knowing X .

The conditional law of Y knowing X is denoted by P(Y ∈ ·|X)
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Conditional Law

In the discrete case, the conditional probability law family is easy to
obtain. In particular

P(Y = y |X = x) =
P(Y = y,X = x)

P(X = x)

we have then

P(Y ∈ ·|X) =
∑

x∈S(X)

P(Y = y |X = x)1X=x

In the continuous case, we speak about conditional density. To this
end, we put

fY |X=x(y) =
fX ,Y (x, y)

fX (x)
1fX (x)>0

with
fX (x) =

∫
fX ,Y (x, y)dy
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Conditional expectation

So far we have addressed conditional probability. We want to
construct a notion of conditional expectation. Let us consider the
following

P[A |B] =
P[A ∩ B]

P[B]
= E[1A |B]

Then one is tempting to define the conditional expectation of a r.v
knowing an event by

E[X |B] =
E[X1B ]

P[B]

Now we aim to extend this notation to the conditional expectation to a
r.v knowing a σ-algebra B:

E[X |B]???
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Conditional expectation

Let (Ω,A,P) be a probability space and let B such that 0 < P[B] < 1.
Consider B = σ(B) the σ-algebra generated by B.

B = {∅,B ,Bc ,Ω},

We put for X a L1 r.v

E[X |B] = E[X |B]1B + E[X |Bc ]1Bc

This is a random variable called conditional expectation of X knowing
B.

Note that this r.v is measurable with respect to B
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Conditional expectation

Let us investigate the property of this random variable

Y = E[X |B] = E[X |B]1B + E[X |Bc ]1Bc

First note that

E[Y1B ] = E[(E[X |B]1B + E[X |Bc ]1Bc ) 1B ]

= E[(E[X |B]) 1B ]

= E[X |B]E[1B ]

=
E[X1B ]

P[B]
P[B]

= E[X1B ]

E[Y1Bc ] = E[X1Bc ]

We easy see also that E[Y1∅] = E[X1∅] and
E[Y ] = E[Y1Ω] = E[X1Ω] = E[X ]
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Conditional expectation

As a conclusion we can see that for all event G ∈ B = {∅,B ,Bc ,Ω} we
have

E[Y1G] = E[X1G] (1)

The r.v Y = E[X |B] is the only r.v B mesurable satisfying the above
property.

Indeed a B mesurable r.v Z can be written in form of

Z = α1B + β1Bc

then asking (1) implies α = E[X |B] and β = E[X |Bc ]
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Conditional expectation

Let us go further and consider B = σ{Bi , i = 1, . . . ,N}, where Bi is a
partition of Ω, that is

Ω =
N⋃

i=1

Bi , Bi ∩ Bj = ∅, i , j

We define

E[X |B] =
N∑

i=1

E[X |Bi]1Bi

One can verify that for all G ∈ B

E [E[X |B]1G] = E[X1G]

and this is the only B mesurable r.v satisfying such a property.
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Conditional expectation

We have the following theorem

Theorem
Let (Ω,A,P) be a probability space and let B ⊂ A. Let X be a L1 r.v.
There exists a unique r.v Y with is B mesurable such that

E[Y1G] = E[X1G],

for all G ∈ B. We denote this r.v

E[X |B]

the conditional expectation knowing B
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Conditional expectation

The conditioning calls for partial information and as we shall see the
r.v E[X |B] is somehow best "approximation" of X knowing only the
information included in B.

Come back to B = {∅,B ,Bc ,Ω} we recall that

E[X |B] = E[X |B]1B + E[X |Bc ]1Bc (2)

=
√
P[B]E[X |B]

1B√
P[B]

+
√
P[Bc ]E[X |Bc ]

1Bc√
P[Bc ]

(3)

= E

X 1B√
P[B]

 1B√
P[B]

+ E

X 1Bc√
P[Bc ]

 1Bc√
P[Bc ]

(4)
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Conditional expectation

If X is L2 one can write

E[X |B] = E

X 1B√
P[B]

 1B√
P[B]

+ E

X 1Bc√
P[Bc ]

 1Bc√
P[Bc ]

(5)

in the form

E[X |B] =

〈
X ,

1B√
P[B]

〉
1B√
P[B]

+

〈
X ,

1Bc√
P[Bc ]

〉
1Bc√
P[Bc ]

(6)

where
〈X ,Y〉 = E[XY ],

is the scalar product in L2

Note that one can easily check that
{

1B√
P[B]

,
1Bc
√
P[Bc ]

}
is an

orthonormal basis of L2((Ω,B,P))

E[X |B] is then just the L2 orthonormal projection of X onto
L2((Ω,B,P)).
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Conditional expectation

In fact, in the case where X is L2, the property

E[E[X |B]1G] = E[X1G]

for all G ∈ B means that E[X |B] is the orthogonal projection of X onto
L2((Ω,B,P))

We can then express the following result which is useful in some
situation (for example in the Gaussian context)

Theorem
Let (Ω,A,P) be a probability space and let B ⊂ A. Let X be a L2 r.v.

The conditional expectation of X knowing B is the orthogonal projection of
X onto L2((Ω,B,P))
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Conditional expectation

Recall that the conditional law of Y knowing X was given by

fY |X=x(y) =
fX ,Y (x, y)

fX (x)
1fX (x)>0, fY |X (y) =

fX ,Y (X , y)

fX (X)
1fX (x)>0

with
fX (x) =

∫
fX ,Y (x, y)dy

Let denote E[h(Y)|X ] = E[h(Y)|σ(X)], where σ(X) is the σ-algebra
generated by X

We have
E[h(Y)|X ] =

∫
h(y)fY |X (X , y)dy
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Conditional expectation

Some useful properties

E[E[X |B]] = E[X ]

if X is independent of B

E[X |B] = E[X ]

If X is B mesurable
E[X |B] = X

If Z is B mesurable
E[X Z |B] = E[X |B]Z
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Estimation
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Generality

Let us consider a parametric model where θ is an unknown parameter
valued in Θ ⊂ Rd

Recall that an estimator of θ is a r.v which is measurable with respect
to a n sample X1, . . . ,Xn

Definition
An estimator T is said to be unbiased if for all θ ∈ Θ

Eθ[T ] = θ

T is said to be consistent if for all θ ∈ Θ

T(X1, . . . ,Xn)→n→∞ θ

in probability or almost surely (with respect to Pθ)

T is said asymptotically normal if there exists a sequence (an) converging to ∞ such that

an (T(X1, . . . ,Xn) − θ)→ N(0, 1)
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Moment estimation

Let (X1, . . . ,Xn) a sample
Recall that the moment of order k for a r.v is

E[Xk
1 ] = E[Xk

i ], i = 1, . . . , k

We can replace these moments by their empirical version that is

X̄k
n =

1
n

n∑
i=1

Xk
i

The centered version
E

[
(X1 − E[X1])k

]
X̄k

n =
1
n

n∑
i=1

(Xi − X̄n)k
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Moment estimation

Method principle

Assuming that you can apply the Law of large numbers we have

X̄k
n =

1
n

n∑
i=1

Xk
i

a.s
−→EXk

1

Assume that X = (X1, . . . ,Xn) is distributed along Pθ where θ ∈ Θ is
unknown.

Hope: extract information on θ by knowing the moment
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Moment estimation

Example
Bernoulli of parameter θ: B(θ)

E[X1] = θ

we can use the first moment

T = X̄n =
1
n

n∑
i=1

Xi
a.s
−→ θ

We also have
E[X2

1 ] = θ

we can use the second moment

X̄n
a.s
−→ θ, T = X̄2

n =
1
n

n∑
i=1

X2
i

a.s
−→ θ
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Moment estimation

Example
Binomial of parameter (k , θ). Assume you know k and just want to
estimate θ

E[X1] = kθ

we can use the first moment

T =
1
k

X̄n =
1
n

n∑
i=1

Xi
a.s
−→ θ

Assume you do not know k and need to estimate k and θ you should
use also the second moment

Var(X1) = E[(X1 − E(X1))2] = kθ(1 − θ) = E[X1](1 − θ)

Then

θ = 1 −
Var(X1)

E[X1]
, k =

E[X1]

1 − Var(X1)
E[X1]
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Moment estimation

Then

θ = 1 −
Var(X1)

E[X1]
, k =

E[X1]

1 − Var(X1)
E[X1]

Then we can estimate k and θ by putting

X̄n =
1
n

n∑
i=1

Xi , σ̂2
n =

1
n

n∑
i=1

(Xi − X̄n)2

and defining

θ̂(X1, . . . ,Xn) = 1 −
σ̂2

n

X̄n
, k̂(X1, . . . ,Xn) =

X̄n

1 − σ̂2
n

X̄n
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Moment estimation

Case of a sample (X1, . . . ,Xn) whose density is fθ(x) = θe−θx1R+(x)

simple computation shows that

E[X1] =
1
θ

Then our estimator of θ can be chosen as

θ̂ =
1

X̄n

Exercise: do the same job for (X1, . . . ,Xn) distributed along N(µ, σ2)
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Moment estimation

In order to summarize. Assume you want to estimate g(θ). First you
should find h such that

E[h(X1)] = g(θ)

Determine the number p of moments you shall need to recover g(θ)

Then compute the p moments you need and connect them to the
quantity you aim to estimate

Replace these p moments by their empirical version.

Unbiaised, asymptotic normality, Delta method
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Moment estimation

Comme back to the initial question with the notion of bias and
asymtptotic normality.

If you have found h such that E[h(X1)] = g(θ) then using

T =
1
n

n∑
i=1

h(Xi)
a.s
−→ g(θ)

T is an unbiaised estimator of g(θ)

Assume that Var(h(X1)) = σ2(θ) then we have

√
n
(
T − g(θ)

σ(θ)

)
Lθ
−→N(0, 1)
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Moment estimation

One can see that the moment method has weakness

First you can see that in the study of asymptotically normality one see
that it depends on σ(θ) which is also unknown.

You can avoid this obstacle using Slutsky Lemma, you look at

√
n
(
T − g(θ

σ̂2
n

)
Lθ
−→N(0, 1)
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Moment estimation

It is not evident to find h such that E[h(X1)] = g(θ). For example the
density case where fθ(x) = θe−θx1R+(x), the estimator of θ was

T =
n

X1 + . . . + Xn

and it is not even easy to compute E[T ] which makes the study of
bias not straightforward.

Concerning the asymptotically normality property you have to use
delta method to get

√
n
(
X̄n −

1
θ

)
Lθ
−→N(0, 1/θ2), then

√
n (T − θ)

Lθ
−→N(0, θ2)
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Maximum likelihood

The framework is the following, we consider a parametric model
P = {Pθ, θ ∈ Θ} and we consider that the model is dominated in the
sense that for all θ there exists fθ such that for all A ∈ A:

Pθ(A) =

∫
A

fθ(x)dµ(x)

Definition (Vraissemblance)
Let (X1, . . . ,Xn) be a n-sample of probability Pθ, we call likelihood of this
sample, the joint density of this sample with respect to µ. We denote it as

L (x1, . . . , xn; θ; ) .

In general this can be expressed as

L (x1, . . . , xn; θ) =
n∏

i=1

fθ(xi).
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MLE

In the discrete case it takes the form

Ln(x1, . . . , xn, θ) = Pθ(X1 = x1) . . . Pθ(Xn = xn)

In the continuous case

Ln(x1, . . . , xn, θ) = fθ(x1) . . . fθ(xn)

where fθ corresponds to the density of X1 with respect to the
Lebesgue measure.
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MLE

Example

Let (X1, . . . ,Xn) be a n-sample of law N(m, σ2). Assume that the
unknown parameters are θ = (m, σ2) ∈ R × R+.

L (x1, . . . , xn; θ) =
n∏

i=1

1√
2
∏
σ2

e−
(xi−m)2

2σ2 =
1

(2
∏
σ2)n/2

e−
∑n

i=1(xi−m)2

2σ2 .

Let (X1, . . . ,Xn) be a n-sample of law P(θ). Assume that the unknown
parameter θ ∈ R.

L (x1, . . . , xn; θ) =
n∏

i=1

e−θ
θxi

xi!
= e−nθ θ

∑n
i=1 xi∏n

i=1 xi!
.
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MLE

Definition
Let consider a statistical model dominated by a measure µ and let L(X , θ)
be its likelihood function. All statistic θ̂MV

n = θ̂MV
n (X1, . . . ,Xn) such that

L(X1, . . . ,Xn, θ̂
MV
n ) = max

θ
L(X1, . . . ,Xn, θ)

is called estimator of the maximum likelihood. We shall denote

θ̂MV
n = argmax L(X1, . . . ,Xn, θ)

if there are several point where the maximum is reached, we can replace
= by ∈
In the sequel, we shall denote the so-called log likelihood

ln(θ) = −
1
n

n∑
i=1

ln L(Xi , θ).

Note that the max-like estimator cannot exist !!!!! 88 / 150
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MLE

Example

Laplace model f(x, θ) = 1
2σ exp

(
−
|x−θ|
σ

)
, θ ∈ R, unknown and σ known.

ln(θ) = ln(2σ) +
1

nσ

n∑
i=1

|Xi − θ|.

We shall need to find the minium of
∑
|Xi − θ|. Note that this function

is almost surely differentiable and its differential h is given by

−

n∑
i=1

sign(Xi − θ) = h(θ).

if n is even the differential vanishes on every point of [X(n/2),X(n/2+1)]
and then any point of this interval is an MLE. If n is odd a unique MLE
is the mediane but there is no point where the differential vanishes.
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MLE

Cauchy law f(x) = 1
π(1+(x−θ)2)

.
The critical point study is not explicit, in general there exists many
critical point and then many MLE.

Consider a model of the form

f(x, θ) = f0(x − θ)

with

f0(x) =
e−|x |/2

2
√

2π|x |
.

then the likelihood converges towards +∞ when θ → Xi for all i then
tehre is no MLE.
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MLE

Normal case N(µ, σ2)

Bernoulli case: B(θ)

Uniform law case: U([0, θ])
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MLE

What can we say about the asymptotic behaviour of the MLE

First we shall address the consistency

To this end we introduce an assumption∫
| ln fθ(x)|fθ∗(x)dµ(x) < ∞, ∀θ ∈ Θ. (7)

This means that the r.v

− ln(fθ(X1)) ∈ L1

and then we can applied the LLN to get that

ln(θ)
Pθ∗a.s
−→ J(θ) := −

∫
f(x, θ∗) ln f(x, θ)dµ
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MLE

1 We have J(θ) > J(θ∗).
2 If moreover the model is identifiable the inequality is strict as soon as
θ , θ∗.

3 Now we know that ln(θ) converges towards J(θ) we can hope that the
argmin of ln(θ) converges towards the argmin of J(θ) which appears
to be θ∗ under the hypotheses of identifiability.
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MLE

Theorem
Suppose that Θ is an open set of R and

1 that for all x the density f(x, θ) is continuous in θ,
2 that the model is identifiable
3 that the Hypothesis (7) is satisfied
4 that for all n θ̂MV

n exists and that the set of local minima of ln(θ) is a
bounded closed interval include in θ.

then θ̂MV
n is a consistant estimator (which converges in probability with

respect to Pθ∗).
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MLE

Weibull Model of density f(x, θ) = θxθ−1 exp(−xθ)1x>0. We then obtain

ln(θ) = − ln θ − (θ − 1)
1
n

n∑
i=1

ln Xi +
1
n

n∑
i=1

Xθ
i

l′n(θ) = −
1
θ
−

1
n

n∑
i=1

ln Xi +
1
n

∑
Xθ

i ln Xi

l′′n (θ) =
1
θ2

+
1
n

∑
Xθ

i (ln Xi)
2 > 0.

a study of the function shows that there exists only one critival point which
is then a global minimum, we have then existence and uniqueness θ̂MV

n . It
remains just to verify that

Eθ∗
(∣∣∣ln fθ(X)

∣∣∣) < +∞.

and then we conclude that θ̂MV
n is consistent.
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MLE

We shall say that a model is ML regular if
1 The model is dominated
2 Θ is an open set of R and f(x, θ) > 0 ⇐⇒ f(x, θ′) > 0
3 The functions f and l = ln f are C2 in θ.
4 ∀θ∗ there exists a neighborhood of θ∗ denoted by U and a function

Λ(x) such that
|l′′(x, θ)| 6 Λ(x), |l′(x, θ)| 6 Λ(x), |l′(x, θ)|2 6 Λ(x) for all θ ∈ U and µ
almost surely in x and∫

Λ(x) sup
θ∈U

f(x, θ)dµ < ∞.

5 I(θ) := Eθ∗
[
l′(X , θ∗)l′(X , θ∗)t

]
= −Eθ∗ [l′′(X , θ∗)] > 0, ∀θ ∈ Θ.
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MLE

Theorem (T.C.L pour θ̂MV
n )

Suppose that the model M.V. is regular and Let θ̂MV
n be a sequence of

consistent de square root of l′n(θ) = 0. Then ∀θ∗ ∈ θ
√

n(θ̂MV
n − θ∗)→ N(0, 1/I(θ∗)).

The quantity

I(θ) := Eθ∗
[
l′(X , θ∗)l′(X , θ∗)t

]
= −Eθ∗ [l′′(X , θ∗)]

is usually called the Fisher information
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MLE

Why are we interested by unbiased estimator?

Let (Tn) an estimator of θ, we have the quadratic risk defined by

E((Tn − θ)2)

which corresponds to the L2 distance between our estimator Tn and
the target θ

One can write

E((Tn − θ)2)

= E((Tn − E(Tn) + E(Tn) − θ)2)

= E((Tn − E(Tn))2 + 2E((Tn − Tn)(E(Tn) − θ)) + (E(Tn) − θ)2

= E((Tn − E(Tn))2 + (E(Tn) − θ)2

which is called the variance-bias decomposition. The bias makes the
distance larger.
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Confidence set

In this section we shall follow an example to make clear the idea
behind the confidence set

Essentially when we make an estimation we are forced to make an
error. Confidence set are here to control this error.

The idea is to construct a random interval (or set in higher dimension)
who contains the true parameter with high probability.

For example if µ̄ is an estimation we want to determine ε such that a
true parameter satisfies

P[µ ∈ [−ε + µ̄, ε + µ̄]] = 1 − α

where α is small (such that P[µ ∈ [−ε + µ, ε + µ]] is close to 1)

100 / 150



Confidence set

In this section we shall follow an example to make clear the idea
behind the confidence set

Essentially when we make an estimation we are forced to make an
error. Confidence set are here to control this error.

The idea is to construct a random interval (or set in higher dimension)
who contains the true parameter with high probability.

For example if µ̄ is an estimation we want to determine ε such that a
true parameter satisfies

P[µ ∈ [−ε + µ̄, ε + µ̄]] = 1 − α

where α is small (such that P[µ ∈ [−ε + µ, ε + µ]] is close to 1)

100 / 150



Confidence set

Let consider the guiding example of (X1, . . . ,Xn) a n-sample of
Bernoulli law of parameter θ∗: B(θ∗)

As we have seen a good estimator is

X̄n =
1
n

n∑
i=1

Xi

We know that
X̄n

Pθ∗
−→ θ∗

Let us try to estimate

P[θ∗ ∈ [X̄n − ε, X̄n + ε]] = Pθ∗ [|X̄n − θ
∗| 6 ε]
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Confidence set

First let us check that

E[X̄n] =
1
n

n∑
i=1

E[Xi] = E[X1] = θ∗

and

Varθ
(
X̄n

)
=

1
n2

n∑
i=1

Var[Xi] =
θ∗(1 − θ∗)

n
.

Then we can apply Bienaymé Chebyschev

P[|X̄n − θ
∗| > ε] 6

Var(X̄n)

ε2
(8)

=
θ∗(1 − θ∗)

nε2
(9)
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Confidence set

Now one can see that for all x ∈ [0, 1]

x(1 − x) 6
1
4

then
P[|X̄n − θ

∗| > ε] 6
1

4nε2

Fixing

α =
1

4nε2

which imposes

ε =
1
√

4nα

103 / 150



Confidence set

Now one can see that for all x ∈ [0, 1]

x(1 − x) 6
1
4

then
P[|X̄n − θ

∗| > ε] 6
1

4nε2

Fixing

α =
1

4nε2

which imposes

ε =
1
√

4nα

103 / 150



Confidence set

We can then conclude that

P[|X̄n − θ
∗| >

1
√

4nα
] 6 α

which finally yields

P[θ∗ ∈ [X̄n −
1
√

4nα
, X̄n +

1
√

4nα
]] > 1 − α

As we can see through this approach we can adjust the parameter α
to make the above probability close to 1. This parameter represents a
risk.

Often we choose α = 0, 05 = 5.10−2
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Confidence set

The confidence interval is then

[X̄n −
1
√

4nα
, X̄n +

1
√

4nα
]

Assume you want a small interval this imposes

1
√

4nα

to be small

For example for α = 0, 05 if you want 1√
4nα

= 0, 1 you need n =

For example for α = 0, 05 if you want 1√
4nα

= 0, 01 you need n =

Note that since this is
√

n which is involved, when you want to obtain
a smallr interval (gaining a significative number you need a sample
100 times bigger).
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Confidence set

Using this approach you can see that you can need a large number n.
But when n is large enough you can use the Central Limit Theorem.

Recall that
√

n

 X̄n − θ√
θ(1 − θ∗)

 Lθ∗−→N(0, 1)

Since
X̄n

Pθ∗
−→ θ∗,

then by Slutsky we have

√
n

 X̄n − θ
∗√

X̄∗n(1 − X̄∗n)

 =

√
θ(1 − θ∗)√

X̄∗n(1 − X̄∗n)

√
n

 X̄n − θ√
θ(1 − θ∗)

 Lθ∗−→N(0, 1)
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Confidence set

Keep in mind that for n large enough we have

√
n

 X̄n − θ√
X̄∗n(1 − X̄∗n)

 Lθ∗' N(0, 1)

We can say that

Pθ∗


X̄n − q1−α/2

√
X̄n(1 − X̄n)

n
; X̄n + q1−α/2

√
X̄n(1 − X̄n)

n

 3 θ∗


= Pθ∗

∣∣∣X̄n − θ
∗
∣∣∣ 6 q1−α/2

√
X̄n(1 − X̄n)

n


= Pθ∗


∣∣∣∣∣∣∣∣∣
√

n
θ̂∗n − θ

∗√
X̄∗n(1 − X̄∗n)

∣∣∣∣∣∣∣∣∣ 6 q1−α/2

 ' P[|X | 6 q1−α/2], (10)

where X ∼ N(0, 1).
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Confidence set

So far we have

Pθ∗


X̄n − q1−α/2

√
X̄n(1 − X̄n)

n
; X̄n + q1−α/2

√
X̄n(1 − X̄n)

n

 3 θ∗


(11)

' P[|X | 6 q1−α/2], (12)

Now we can say what is q1−α/2,

P(|X | 6 q1−α/2) = 1 − (α/2 + α/2) = 1 − α

Figure: Représentation du quantile q1−α/2 d’ordre 1 − α/2 de the law N(0, 1).
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Confidence set

This way we have construct a confidence intervalX̄n − q1−α/2

√
X̄n(1 − X̄n)

n
; X̄n + q1−α/2

√
X̄n(1 − X̄n)

n


For example for α = 0, 05, we get q1−α/2 = 1, 96. This can be read on
table of the N(0, 1) law.
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Confidence set

Can we compare the two interval that we have constructed. In fact we
can show that

lim
n→∞
Pθ∗

([
X̄n −

1
√

4nα
; X̄n +

1
√

4nα

]
3 θ

)
> 1 − exp

(
−

1
2α

)
= 1 − ◦(α)

Essentially this means that for large n, we haveX̄n − q1−α/2

√
X̄n(1 − X̄n)

n
; X̄n + q1−α/2

√
X̄n(1 − X̄n)

n

 (13)

⊂

[
X̄n −

1
√

4nα
; X̄n +

1
√

4nα

]
(14)

then for large n the confidence interval obtained via the CLT is better
than the one obtained by Bienaymé Chebychev
The interest of Bienaymé Tchebychev is that it is true for all n. This
can give information for small sample.
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Confidence set

In general for a n-sample (X1, . . . ,Xn) of a law Pθ∗ for using Bienaymé
Tchebychev we need to control the variance independently of θ∗.
Here for B(θ∗) we have used

Var(X̄n) =
θ∗(1 − θ∗)

n
6

1
4n

For Poisson random variable P(θ∗) we have

Var(X̄n) =
θ∗

n

and conditions on θ∗ have to be known to construct a confidence
interval with B-T (example you know that θ∗ 6 M for a known value M.

For using CLT one can use the same trick by replacing the variance in
terms of X̄n and justify it via Slustsky theorem.
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Confidence set

In general if we are not in such a situation, in order to use the CLT, we
have to estimate the variance. To this end we have the following
estimator

σ̂2
n =

1
n

n∑
i=1

(Xi − X̄n)2

and the corresponding confidence interval isX̄n − q1−α/2

√
σ̂2

n

n
; X̄n + q1−α/2

√
σ̂2

n

n


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Confidence set

Let us concentrate on this estimator

σ̂2
n =

1
n

n∑
i=1

(Xi − X̄n)2 =
1
n

n∑
i=1

(Xi)
2 − (X̄n)2

As we said it is an estimator of the variance. If you come back to the
previous chapter, let us adress the usual question, bias,
consistency....
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Confidence set

Let us start with the bias

E[σ2
n] =

1
n

n∑
i=1

E[X2
i ] − E[(X̄n)2]

= E(X2
1 ) − E


1
n

n∑
i=1

Xi

2
= E(X2

1 ) −
1
n2

∑
i,j

E[XiXj]

= E(X2
1 ) −

1
n2

∑
i=j

E[(Xi)
2] +

∑
i,j

E[Xi]E[Xj]


= E(X2

1 ) −
1
n
E[X2

1 ] −
1
n2

∑
i,j

E[X1]2

=
n − 1

n
E[X2

1 ] −
n − 1

n
E[X1]2 =

n − 1
n

Var(X1)
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Confidence set

Let us start with the bias

E[σ2
n] =

n − 1
n

Var(X1)

Then considering

S2
n =

n
n − 1

σ2
n =

1
n − 1

n∑
i

(Xi − X̄n)2,

we have an unbiased estimator.
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Confidence set

Let assume that (X1, . . . ,Xn)t be a Gaussian vector of law N(m, σ2).
We have

n − 1
σ2

S2
n ∼ χ

2(n − 1)

Indeed note that Y = 1
σ(X1 −m, . . . ,Xn −m)t ∼ Nn(0, In)

Define F = Vect(1n) where 1n = (1, . . . , 1)t . We easily have
dim(F) = 1 and dim(F⊥) = n − 1.

Now note that PF (X) =
〈

1n√
n
,X

〉
1n√

n
= 1

σ(X̄n −m, . . . X̄n −m)t and then

PF⊥(X) = X − PF (X) =
1
σ

(X1 − X̄n, . . . ,Xn − X̄n)t

The Cochran Theorem then says that ‖PF⊥(X)‖2 ∼ χ2(n − 1). Now it
is easy to see that

‖PF⊥(X)‖2 =
n − 1
σ2

S2
n

116 / 150



Confidence set

Let assume that (X1, . . . ,Xn)t be a Gaussian vector of law N(m, σ2).
We have

n − 1
σ2

S2
n ∼ χ

2(n − 1)

Indeed note that Y = 1
σ(X1 −m, . . . ,Xn −m)t ∼ Nn(0, In)

Define F = Vect(1n) where 1n = (1, . . . , 1)t . We easily have
dim(F) = 1 and dim(F⊥) = n − 1.

Now note that PF (X) =
〈

1n√
n
,X

〉
1n√

n
= 1

σ(X̄n −m, . . . X̄n −m)t and then

PF⊥(X) = X − PF (X) =
1
σ

(X1 − X̄n, . . . ,Xn − X̄n)t

The Cochran Theorem then says that ‖PF⊥(X)‖2 ∼ χ2(n − 1). Now it
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σ2

S2
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Confidence set
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Confidence set

This allows to construct confidence interval for the variance of a
Gaussian law. Let denote χk

1−α the quantile of the χ2(k) law that is if
T ∼ χ2(k) then

P[χk
α/2 6 T 6 χk

1−α/2] = 1 − α

Then we have

P

[
χk
α/2 6

n − 1
σ2

S2
n 6 χ

n−1
1−α/2

]
= 1 − α

This implies

P

 n − 1
χn−1

1−α/2

S2
n 6 σ

2 6
n − 1
χn−1
α/2

S2
n

 = 1 − α

and then the interval  n − 1
χn−1

1−α/2

S2
n ,

n − 1
χn−1
α/2

S2
n


is a confidence interval of level α for the variance σ2 of X1.
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Confidence set

Other possible interesting result when X1, . . . ,Xn are Gaussian
N(m, σ2)

√
n
(
X̄n −m
σ

)
∼ N(0, 1)

then if σ2 is known this allows to construct a confidence interval for µ

If σ2 is not known replace σ by Sn and we have

√
n
(
X̄n −m

Sn

)
∼ Tn−1

where Tn−1 is a r.v distributed along a Student law of n − 1 degree of
freedom.
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Confidence set

In the above example the confidence interval are bounded but we can also consider bounds
which are infinite (only one of course)

Definition
Let α ∈ [0, 1] fixé and let θ∗ ∈ Rk

1 When k = 1, we call confidence interval of level 1 − α for θ∗ all random interval I of the form
[a (X1, . . . ,Xn) , b (X1, . . . ,Xn)] xhere a (X1, . . . ,Xn) and b (X1, . . . ,Xn) are statistics
(independent of θ∗) satisfying

Pθ (θ ∈ [a (X1, . . . ,Xn) , b (X1, . . . ,Xn)]) = 1 − α.

1 if a (X1, . . . ,Xn) > −∞ and b (X1, . . . ,Xn) < ∞ we speak about bilateral interval
2 if a (X1, . . . ,Xn) = −∞ we speak about left unilateral interval
3 if b (X1, . . . ,Xn) = ∞ we speak about right unilateral interval

2 When k > 1 we speak about confidence set of level 1 − α for θ all random subset R (X1, . . . ,Xn)
of Rk which depends on (X1, . . . ,Xn) in a measurable way and is independent of θ satisfying

Pθ (θ ∈ R (X1, . . . ,Xn)) = 1 − α.
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Confidence set

We can relax the previous definition by allowing > instead of =

Definition
Let α ∈ [0, 1] fixé and let θ∗ ∈ Rk

1 When k = 1, we call confidence interval of level 1 − α for θ∗ all random interval I of the form
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Pθ (θ ∈ R (X1, . . . ,Xn)) > 1 − α.
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Confidence set

We can also have asymptotic confidence set

Definition
Let α ∈ [0, 1] fixé and let θ∗ ∈ Rk

1 When k = 1, we call confidence interval of level 1 − α for θ∗ all random interval I of the form
[a (X1, . . . ,Xn) , b (X1, . . . ,Xn)] xhere a (X1, . . . ,Xn) and b (X1, . . . ,Xn) are statistics
(independent of θ∗) satisfying

lim
n

Pθ (θ ∈ [a (X1, . . . ,Xn) , b (X1, . . . ,Xn)]) = 1 − α.

1 if a (X1, . . . ,Xn) > −∞ and b (X1, . . . ,Xn) < ∞ we speak about bilateral interval
2 if a (X1, . . . ,Xn) = −∞ we speak about left unilateral interval
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2 When k > 1 we speak about confidence set of level 1 − α for θ all random subset R (X1, . . . ,Xn)
of Rk which depends on (X1, . . . ,Xn) in a measurable way and is independent of θ satisfying

lim
n

Pθ (θ ∈ R (X1, . . . ,Xn)) = 1 − α.
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Confidence set

One can also use open set for confidence set
In general there is an infinity of confidence interval. For example with
the CLT we can choose −∞, X̄n − q1−α

√
σ2

n

n


Can it be interested to have a interval bound which is infinite? It looks
like not sharp!
Imagine that you known that the unknow quantity is non negative
(decibel of a night club, number of student attending the summer
school in France); then the part ] −∞, 0] is useless and the interval0, X̄n − q1−α

√
σ2

n

n

 ⊂
0, X̄n − q1−α/2

√
σ2

n

n


which makes the interval

]
0, X̄n − q1−α

√
σ2

n
n

]
more relevant.
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Basic of Regression
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Basic of Regression

First let us start with a simple situation. Let Y be a L2 r.v. You want to
approximate Y by a constant a by minimizing the quadratic error that
is you want to find

argmina∈RE[(Y − a)2]

In fact it is easy to check that

min
a∈R
E[(Y − a)2]

is reached for a = E[Y ].
Indeed one can think in terms of projection of Y onto the subspace of
constant function.
If you do not have the possibility to consider the L2 norma, one could
have thought

argmina∈RE[|Y − a |]

and you would have founded the median
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Basic of Regression

Now imagine you have a couple (X ,Y) whose you know the joint
distribution. Suppose that X and Y are L2.
Consider the situation where you only observe a realization of X let
say x. You want to estimate Y knowing this realization. Without
further information it is not possible since Y knowing x is random.
An idea is to approximate Y as an affine function of X , i.e Y = aX + b
and you to minimise

min
a,b
E[(Y − aX + b)2]

Here, you see that, you need to find the orthogonal projection onto
the subspace of affine function of X . Computations give

a =
Cov(X ,Y)

σ2(X)
, b = E[Y ] −

Cov(X ,Y)

σ2(X)
E[X ]

125 / 150



Basic of Regression

Now imagine you have a couple (X ,Y) whose you know the joint
distribution. Suppose that X and Y are L2.
Consider the situation where you only observe a realization of X let
say x. You want to estimate Y knowing this realization. Without
further information it is not possible since Y knowing x is random.
An idea is to approximate Y as an affine function of X , i.e Y = aX + b
and you to minimise

min
a,b
E[(Y − aX + b)2]

Here, you see that, you need to find the orthogonal projection onto
the subspace of affine function of X . Computations give

a =
Cov(X ,Y)

σ2(X)
, b = E[Y ] −

Cov(X ,Y)

σ2(X)
E[X ]

125 / 150



Basic of Regression

Now imagine you have a couple (X ,Y) whose you know the joint
distribution. Suppose that X and Y are L2.
Consider the situation where you only observe a realization of X let
say x. You want to estimate Y knowing this realization. Without
further information it is not possible since Y knowing x is random.
An idea is to approximate Y as an affine function of X , i.e Y = aX + b
and you to minimise

min
a,b
E[(Y − aX + b)2]

Here, you see that, you need to find the orthogonal projection onto
the subspace of affine function of X . Computations give

a =
Cov(X ,Y)

σ2(X)
, b = E[Y ] −

Cov(X ,Y)

σ2(X)
E[X ]

125 / 150



Basic of Regression

At this stage let us introduce the so called correlation coefficient

ρ =
Cov(X ,Y)

σ(X)σ(Y)
, |ρ| 6 1

Note that X and Y independent implies ρ = 0

In terms of ρ one can check

min
a,b
E[(Y − aX + b)2] = σ2(Y)(1 − ρ2)

The error is small when |ρ| is close to 1

When ρ = 0 the error is maximum. In this case the best
approximation is E[Y ]
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Basic of Regression

In statistics, i.e in the true life we do not know the law of the couple
(X ,Y). We have n realizations ((X1,Y1), . . . , (Xn,Yn)) and you want
to minimize

min
a,b

n∑
i=1

(Yi − (aXi + b))2

In terms of realizations, in concrete terms you want to minimize

min
a,b

n∑
i=1

(yi − (axi + b))2

Concretely, you replace

a =
Cov(X ,Y)

σ2(X)
, b = E[Y ] −

Cov(X ,Y)

σ2(X)
E[X ]

by their empirical versions (variance, covariance, expectation...)
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Basic of Regression

More generally you can ask to approximate Y as a function u(X) and
then minimize

min
u
E[(Y − u(X))2]

As we already seen this quantity is obtained by using the conditional
expectation that is

E[Y |X ]

The curve
x → E[Y |X = x]

is called the regression curve (regression function).
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Basic of Regression

Example of a couple (X ,Y) with density

f(x, y) = 2e−(x+y)106x6y

The conditional expectation is then fY |X=x = fx,y(x, y)/fX (x) where

fX (x) = 2e−2x106x , (exponential law)

We then have
fY |X=x(y) = ex−y106x6y

We can then compute

E[Y |X = x] =

∫
yfY |X=x(y)dy =

∫ +∞

x
exye−ydy = x + 1
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Basic of Regression

Come back to the Gaussian case
Let (X ,Y) be a Gaussian vector, one can check

E[Y |X ] = E[Y ] +
Cov(X ,Y)

Var(X)
(X − E[X ])

Theorem
In the Gaussian world the regression curve and the regression line are the
same!

E[Y |X ] is supposed to be the orthogonal projection of Y onto

L2(X) = {f(X),E[f(X)2] < ∞}

but here it reduces to the orthogonal projection onto

Vect{1,X}
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Basic of Regression

On Vect{1,X} one can check that

1,
X − E[X ]√

Var(X)

is an orthonormal basis.

One can then check

E[Y |X ] = 〈1,Y〉1 +

〈
X − E[X ]√

Var(X)
,Y

〉
X − E[X ]√

Var(X)

which is exactly another way of writting

E[Y |X ] = E[Y ] +
Cov(X ,Y)

Var(X)
(X − E[X ])
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Regression Hyperplan

Let X = (X1, . . . ,Xn) be a random vector, we aim to approximate Y by
a hyperlan which minimizes

min
a1,...,an ,b

E

(Y −
b +

n∑
i=1

aiXi

2
We suppose that the dispersion matrix

ΓX = E[(X − E[X ])(X − E[X ])t ]

The regression hyperplan is given by

πH(Y) = E[Y ] + ΓY ,X Γ−1
X (X − E[X)),

where ΓY ,X = E[(Y − E(Y))(X − E(X))] is the covariance line matrix
(Cov(Y ,X1), . . . ,Cov(Y ,Xn))
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(Cov(Y ,X1), . . . ,Cov(Y ,Xn))
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Regression Hyperplan

Let X = (X1, . . . ,Xn) be a random vector, we aim to approximate Y by
a hyperlan which minimizes

min
a1,...,an ,b

E
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Regression Hyperplan

We can also compute the quadratic error

E[(Y − πH(Y))2] = ΓY − ΓY ,X Γ−1
X ΓX ,Y

Gaussian situation

Theorem
In the Gaussian world if (X1, . . . ,Xn,Y) is a Gaussian vector, we have

E[Y |X ] = E[Y ] + ΓY ,X Γ−1
X (X − E[X))

then the Hyperplan of regression is equal to the conditional expectation.
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Principal Component
Analysis: Overview
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PCA

Will be developed in details in the 3rd week

Assume you have access to p datas (age, sex, color of hair, rate of
alcohol in the blood ...) of n people

The parameter p can be huge and unless for p 6 3 it is not possible to
represent these datas on a graph

We want to determine q < p variables which explains the phenomena,
we study, and which can be represented in a graph (q = 2, 3)
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PCA

The datas are grouped in a matrix X of size n × p

X = ( X1, . . . . . . . . . . . . ,Xp) (15)

X =



X1,1 . . . . . . X1,p
... . . . . . .

...

Xi,1 . . . . . . Xi,p
... . . . . . .

...

Xn,1 . . . . . . Xn,p


=



X1
...

Xi
...

Xn


(16)

Introduce X̄ =
(

X̄1 . . . . . . X̄p
)
, where X̄k is the mean of the

variable Xk . Denote s2
k = Var(Xk ) = 1

n
∑n

i=1(Xik − X̄k )2 the
corresponding variance.

The number of people belongs to Rn and the variables to Rp where
the average is made by column
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PCA

The centered version

Y =



X1,1 − X̄1 . . . . . . X1,p − X̄p

... . . . . . .
...

Xj,1 − X̄1 . . . . . . Xj,p − X̄p

... . . . . . .
...

Xn,1 − X̄1 . . . . . . Xn,p − X̄p


(17)

The centered and reduced version

Z =



X1,1−X̄1

s1
. . . . . .

X1,p−X̄p

sp
... . . . . . .

...
Xj,1−X̄1

s1
. . . . . .

Xj,p−X̄p

sp
... . . . . . .

...
Xn,1−X̄p

s1
. . . . . .

Xn,p−X̄p

sp


, Var(Z j) = 1, j = 1, . . . , p(18)
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PCA

Let us speak about the distance between two people. To this end
consider a symmetric definite positive matrix M of size p × p and
denote

〈x, y〉M = 〈x,My〉 = x tMy

and ‖x‖M =
√
〈x, x〉M as well as

dM(x, y) = ‖x − y‖M

Often we consider matrix M of diagonal form M = diag(mi) and in this
case

〈x, y〉M =

p∑
i=1

mixiyi

d2
M(x, y) =

p∑
i=1

mi(xi − yi)
2
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PCA

Let us make the link between the matrix X ,Y ,Z and the above
distance. Let us consider a diagonal matrix M = diag(mi)

‖Xi‖
2
M =

p∑
k=1

mk X2
ik , d2

M(Xi ,Xj) =

p∑
k=1

mk (Xi,k − Xj,k )2

In the case where M = Ip we have

d2
Ip (Xi ,Xj) =

p∑
k=1

(Xi,k − Xj,k )2 = d2
Ip (Yi ,Yj)

In the case where M = diag(1/s2
1 , . . . , 1/s

2
p) we have

d2
M(Xi ,Xj) = d2

Ip (Zi ,Zj)

139 / 150



PCA

Let us make the link between the matrix X ,Y ,Z and the above
distance. Let us consider a diagonal matrix M = diag(mi)

‖Xi‖
2
M =

p∑
k=1

mk X2
ik , d2

M(Xi ,Xj) =

p∑
k=1

mk (Xi,k − Xj,k )2

In the case where M = Ip we have

d2
Ip (Xi ,Xj) =

p∑
k=1

(Xi,k − Xj,k )2 = d2
Ip (Yi ,Yj)

In the case where M = diag(1/s2
1 , . . . , 1/s

2
p) we have

d2
M(Xi ,Xj) = d2

Ip (Zi ,Zj)

139 / 150



PCA

Let us make the link between the matrix X ,Y ,Z and the above
distance. Let us consider a diagonal matrix M = diag(mi)

‖Xi‖
2
M =

p∑
k=1

mk X2
ik , d2

M(Xi ,Xj) =

p∑
k=1

mk (Xi,k − Xj,k )2

In the case where M = Ip we have

d2
Ip (Xi ,Xj) =

p∑
k=1

(Xi,k − Xj,k )2 = d2
Ip (Yi ,Yj)

In the case where M = diag(1/s2
1 , . . . , 1/s

2
p) we have

d2
M(Xi ,Xj) = d2

Ip (Zi ,Zj)

139 / 150



PCA

Now let us define the notion of inertia. Introducing the diagonal matrix
M = diag(mi) allows to consider weight. We define the inertia as

I(X) =

p∑
k=1

mid2(Xi , X̄) =

p∑
k=1

mis2
j

It measures the dispersion of the data Xi with respect to the
barycenter X̄ .

In the case M = diag(1/s2
1 , . . . , 1/s

2
p) we have

I(Z) = p
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PCA

The p column of X represent a so-called scatter graph.

Regarding the weight introduced before we shall concentrate on
mj = 1 in the context of PCA.

If we analyze Y we shall say we do non-normalized PCA

If we analyze Z we do normed PCA and we are going to focus on this
case
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PCA

In PCA you can have two points of view
Either you analyze the n point people and you will choose the metric
with M = Ip
Or you analyze the p datas and you will choose the metric given by
N = 1

n In

We already have seen the effect of M = Ip on the line of the matrix

The effect of the matrix N is on the column. Note that

Var(X j) =
1
n

n∑
i=1

(Xi,j − X̄ i)2 = ‖Y j‖2N

Var(Z j) = ‖Y j‖2N = 1
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PCA

The covariance between Xj and Xj′ is given by

cjj′ =
1
n

n∑
i=1

(Xi,j − X̄ j)(Xi,j′ − X̄ j′) = 〈Y i ,Y j〉N

In particular one can easily see that the covariance matrix

C = Y tNY

The correlation between Xj and Xj′ is given by

rjj′ =
1
n

n∑
i=1

(
Xi,j − X̄ j

sj
)(

Xi,j′ − X̄ j′

sj′
) = 〈Y i ,Y j〉N

In particular one can easily see that the correlation matrix

R = Z tNZ
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PCA

Let us start by concentrating on the people

For example an reasonable objective is to find the projection plan
such that the distance between the people are the better conserved.

Let us speak about the projection of a guy. We are in the case M = Ip
and we want to project Zj ∈ R

p for example on an axis defined by ∆α

which is directed by a vector vα of norm 1. The coordinate will be
given by

fjα = 〈Zj , vα〉 = Z t
j vα

Define now
fα := (f1α, . . . , fnα)t = Zvα

this the vector of each coordinate of each projection of the Zj

We can rewrite

fα = Zvα =

p∑
j=1

vjαZ j
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PCA

Method: we are looking for an axis ∆1 with generator v1 such that

v1 = argmaxv1/‖v1‖=1Var(Zv1)

We can show that this optimization problem can be written as

max
v/‖v‖=1

‖Rv‖2

with R = 1
n Z tZ

Then this maximum is reached for v1 the eigenvector associated to
the maximum eigenvalue of R
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PCA

Then f1 = Zv1 is the first principal coomponent

If we want to find a plan we look for v2 such that

v2 = argmaxv2/v2⊥v1‖v2‖=1Var(Zv2)

v2 appears as the second eigenvector corresponding to the second
higher eigenvalue. The vector f2 = Zv2 is the second principal
component

and so on

Note that f1 and f2 are orthogonal and then non correlated.

Conclusion: to find the principal component we need to diagonalize
R.
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PCA

If you denote λ1 > λ2 > . . . > λr the eigenvalues of R (here r
corresponds to the rank of Z), we can show easily that

Var(fi) = λi

An important question is how many component shall we need. This
can be quantified by looking at the quantity

λ1 + . . . + λq

λ1 + . . . + λr
=
λ1 + . . . + λq

Tr(R)

You can fix a level 1 − α and you stop to the first time (first q) where

λ1 + . . . + λq

Tr(R)
> 1 − α
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PCA

In practice to find the first eigenvector v1 and the first eigenvalue λ1

you can use the power method. Define

wn+1 =
Rwn

‖Rwn‖

We have
‖Rwn‖ →n λ1

and
wn → v1

In order to find the second eigenvector and the second eigenvalue
you do the same job on the orthogonal vectv1

⊥
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PCA

You can also take the problem from the the p variable size by
considering Z t instead of Z and do the same job.
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PCA

Moment method for N(µ, σ2)

MLE forU([0, θ]). Consistency? Confidence set ?

Consider the density

fθ(x) =
|x − θ|

2
e−|x−θ| ,

Moment method ? Two type of confidence interval ?
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