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Département de Mathématiques M1 - EDP

TD 1: First elliptic equations

Exercise 1. Let Ω = (0, 1). Establish the following Poincaré inequality

∀f ∈ H1
0 (Ω), ‖f‖L2(Ω) ≤

1

π
‖f ′‖L2(Ω),

and prove that the constant 1/π is optimal.
Hint: Use Fourier series.

Exercise 2. Let Ω = (0, 1). The purpose of this exercice is to prove with a variational method
that given a function f ∈ L2(Ω), there exists a unique function u ∈ H2(Ω) ∩H1

0 (Ω) satisfying

− u′′ + sinh(u) = f in L2(Ω). (1)

1. Preliminaries: LetH be a real Hilbert space and J : H → R be a continuous convex functional.
We assume that J is coercive, that is, J(x) → +∞ when ‖x‖ → +∞. Prove then that there
exists x? in H such that J(x?) = infx∈H J(x).

2. In this question, we prove that there exists a unique u ∈ H1
0 (Ω) such that

∀v ∈ H1
0 (Ω),

∫ 1

0
(u′(x)v′(x) + sinh(u(x))v(x)− f(x)v(x)) dx = 0. (2)

To that end, we introduce the functional J : H1
0 (Ω)→ R defined for all v ∈ H1

0 (Ω) by

J(v) =

∫ 1

0

(
1

2
|v′(x)|2 + cosh(v(x))− f(x)v(x)

)
dx.

a) Check that the functional J is well-defined, strictly convex and coercive.
b) Prove that the functional J is differentiable on H1

0 (Ω) and give the expression of its
derivative.

c) Deduce from the preliminary question that the variational problem (2) admits a unique
solution u ∈ H1

0 (Ω).

3. Prove that the unique function u ∈ H1
0 (Ω) satisfying (2) belongs to H2(Ω) and is also the

unique function that satisfies (1).

4. When the function f is continuous on [0, 1], check that u ∈ C2(Ω̄) is a strong solution of (1),
in the sense that

∀x ∈ [0, 1], −u′′(x) + sinh(u(x)) = f(x).

Exercise 3. Let Ω = (0, 1). We aim at proving that there exists a unique u ∈ H1
0 (Ω) ∩ H2(Ω)

satisfying {
−u′′ + u = cos(u),

u(0) = u(1) = 0.
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1. Given v ∈ L2(Ω), check that the following problem{
−u′′ + u = cos(v),

u(0) = u(1) = 0,

admits a unique solution u ∈ H1
0 (Ω) ∩H2(Ω).

Hint: Use Riesz’ representation theorem in H1
0 (Ω).

2. Conclude by using the Banach-Picard fixed-point theorem on the space L2(Ω).

Exercise 4. Let ρ be a compactly supported C∞ function on R3. We are looking for a function
u ∈ C2(R3) satisfying

−∆u = ρ, (3)

under the following decreasing conditions at infinity

x 7→ |x|u(x) is bounded, x 7→ |x|2∇u(x) is bounded. (4)

1. Check that the function x 7→ 1/|x| is of class C2 on R3 \ {0} and compute its Laplacian.

2. Let Ω be a smooth open subset of R3. We denote by n(x) the unit normal vector exiting at
x ∈ ∂Ω and dσ the measure surface on ∂Ω. We consider two functions u, v of class C2 on Ω.
By using Stokes’ formula, prove Green’s formula for the Laplacian:∫

Ω
(v∆u− u∆v) dx =

∫
∂Ω

(
v
∂u

∂n
− u∂v

∂n

)
dσ(x).

3. For 0 < α < β, we define the following sphere and annulus

Sα =
{
x ∈ R3 : |x| = α

}
and Aα,β =

{
x ∈ R3 : α ≤ |x| ≤ β

}
.

Let 0 < ε < R. We consider u ∈ C2(R3) satisfying (4). For all x ∈ R3, prove the following
identity

1

ε2

∫
Sε

u(x+ y) dσ(y) =

∫
Aε,R

(−∆u)(x+ y)

|y|
dy +O

(
1

R

)
+O(ε).

4. Prove that the unique solution of (3) satisfying (4) is given for all x ∈ R3 by

u(x) =
1

4π

∫
R3

ρ(y)

|x− y|
dy.

5. Let p ∈ [1, 3). Check that there exists a constant Cp independent of ρ, such that

‖∇u‖L∞(R3) ≤ Cp‖ρ‖
p/3
Lp(R3)

‖ρ‖1−p/3
L∞(R3)

.

Hint: Consider the domains {|x− y| ≤ r} and {|x− y| > r}, and optimize with respect to r.

6. Prove the following formula:

‖∇u‖2L2(R3) =
1

4π

∫
R3

∫
R3

ρ(x)ρ(y)

|x− y|
dx dy.
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Département de Mathématiques M1 - EDP

TD 2: Sobolev spaces

Exercise 1.
1. Show that u(x) = |x| belongs to W 1,2(−1, 1) but not to W 2,2(−1, 1).

2. Check that v(x) = sin(x2)√
1+x2

belongs to L2(R) but not to W 1,2(R).

3. Show that H1(R2) is not included in L∞(R2).
Hint: Consider a function of the form x 7→ χ(|x|) |log |x||1/3.

Exercise 2. Let Ω = (0, 1).
1. Prove that the following continuous embeddings hold

W 1,1(Ω) ↪→ C0(Ω̄) and W 1,p(Ω) ↪→ C0,1−1/p(Ω̄) when p ∈ (1,∞],

with the convention 1/∞ = 0.
2. Prove that for all 1 ≤ p <∞, the space W 1,p

0 (Ω) is given by

W 1,p
0 (Ω) =

{
u ∈W 1,p(Ω) : u(0) = u(1) = 0

}
.

Exercise 3. The aim of this exercise is to give a characterization of the space H1(0, 1).
1. (a) Prove that if u ∈ C1[0, 1], then we have for any α ∈ (0, 1/2), x ∈ (α, 1 − α) and h ∈ R

such that |h| < α,

|u(x+ h)− u(x)|2 ≤ h2

∫ 1

0
|u′(x+ sh)|2 ds.

(b) Deduce that for any u ∈ H1(0, 1), any α ∈ (0, 1/2) and h ∈ R such that |h| < α, we have

‖τhu− u‖L2(α,1−α) ≤ |h|‖u′‖L2(0,1).

2. Conversely, we assume that u ∈ L2(0, 1) is such that there exists a constant C > 0 such that
for any α ∈ (0, 1/2) and for any h ∈ R such that |h| < α, we have

‖τhu− u‖L2(α,1−α) ≤ C|h|.

(a) Let φ ∈ C1
0 (0, 1) and α > 0 such that φ is supported in (α, 1 − α). Prove that for any

|h| < α, we have∫ 1−α

α
(u(x+ h)− u(x))φ(x) dx =

∫ 1

0
u(x)(φ(x− h)− φ(x)) dx.

Deduce that ∣∣∣∣ ∫ 1

0
u(x)φ′(x) dx

∣∣∣∣ ≤ C‖φ‖L2(0,1).
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(b) Conclude that u ∈ H1(0, 1).

Exercise 4. Let p ∈ [1,+∞) and let Ω be an open subset of Rd.
1. Assume that Ω is bounded in one direction, meaning that Ω is contained in the region between

two parallel hyperplanes. Prove Poincaré’s inequality: there exists c > 0 such that for every
f ∈W 1,p

0 (Ω),
‖f‖Lp(Ω) ≤ c‖∇f‖Lp(Ω).

Hint: Consider first the case Ω ⊂ Rd−1×[−M,M ].
2. Assume that Ω is bounded. Prove Poincaré-Wirtinger’s inequality: there exists a constant
c > 0 such that for any f ∈W 1,p(Ω) satisfying

∫
Ω f = 0,

‖f‖Lp(Ω) ≤ c‖∇f‖Lp(Ω).

Exercise 5. Let Ω be an open subset of Rd and let p ∈ (1,+∞). Prove that for all F ∈W 1,p
0 (Ω)′,

there exist f0, f1, . . . , fd ∈ Lq(Ω) (with 1
p + 1

q = 1) such that for all g ∈W 1,p
0 (Ω),

〈F, g〉
W 1,p

0 (Ω)′,W 1,p
0 (Ω)

=

∫
Ω
f0g dx+

d∑
i=1

∫
Ω
fi∂ig dx.

Assuming that Ω is bounded, prove that we may take f0 = 0.

Exercise 6. Given some real number s ∈ R, we define the Sobolev space Hs(Rd) by

Hs(Rd) =
{
u ∈ S′(Rd) : 〈ξ〉sû ∈ L2(Rd)

}
,

equipped with the following scalar product

〈u, v〉Hs =

∫
Rd

〈ξ〉2sû(ξ)v̂(ξ) dξ, u, v ∈ Hs(Rd).

1. Prove that there exists a positive constant c > 0 such that for all u ∈ S(R3),

‖u‖L∞(R3) ≤ c ‖u‖
1/2
H1(R3)

‖u‖1/2
H2(R3)

.

Hint: Considering R > 0, use the following decomposition

‖û‖L1(R3) =

∫
|ξ|≤R

〈ξ〉|û(ξ)| dξ
〈ξ〉

+

∫
|ξ|>R

〈ξ〉2|û(ξ)| dξ

〈ξ〉2
.

2. (a) Prove that if s > d/2, the space Hs(Rd) embeds continuously to C0
→0(Rd), the space of

continuous functions u on Rd satisfying u(x)→ 0 as |x| → +∞.
(b) State an analogous result in the case where s > d/2 + k for some k ∈ N. Deduce that⋂

s∈RH
s(Rd) ⊂ C∞(Rd).

Exercise 7. Let us consider the function

γ0 : ϕ(x′, xd) ∈ C∞0 (Rd) 7→ ϕ(x′, xd = 0) ∈ C∞0 (Rd−1).

Prove that for all s > 1/2, the function γ0 can be uniquely extended as an application mapping
Hs(Rd) to Hs−1/2(Rd−1).
Hint: For all ϕ ∈ C∞0 (Rd), begin by computing the Fourier transform of the function γ0φ.
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Département de Mathématiques M1 - EDP

TD 3: Weak formulation of elliptic equations

Exercise 1 (Ellipticity). For each of the following linear differential operator L, give the symbol,
the principal symbol of L, and discuss the ellipticity and uniform ellipticity.

1. Lu(x) = −
∑d

i,j=1 aij(x) ∂2u
∂xi∂xj

+
∑d

i=1 bi(x) ∂u
∂xi

+ c(x)u, x ∈ Ω ⊂ Rd,

2. Lf(x, v) = v · ∇xf + F (x) · ∇vf , x, v ∈ Rd, F : Rd → Rd,
3. Lu(t, x) = ∂tu−∆u, t > 0, x ∈ Rd,
4. Lu(t, x) = ∂tu− i∆u, t > 0, x ∈ Rd.

Exercise 2 (Faber-Krahn inequality). Let Ω be an open bounded subset of Rd with d ≥ 3 and
V ∈ L∞(Ω) such that V ≥ 0. We consider the problem

(1)

{
−∆u = V u in Ω,

u = 0 on ∂Ω.

1. Give the definition of a weak solution to (1).
2. Can you apply the Lax-Milgram theorem here?
3. Let r > d

2 . Show that there is a constant cd > 0 depending on d only such that, if (1) has a
non-trivial weak solution, then

|Ω|
2
d
− 1

r ‖V ‖Lr(Ω) ≥ cd.
Hint: Use the following Sobolev inequality

‖u‖L2∗ (Ω) ≤Md‖∇u‖L2(Ω),
1

2∗
=

1

2
− 1

d
,

which holds for all u ∈ H1
0 (Ω), where Md depends on d only.

4. What do you obtain in the particular case V = λ = cst ?

Exercise 3 (Dirichlet problem). Let Ω be an open bounded subset of Rd, f ∈ L2(Ω) and F ∈
L2(Ω)d. Show that the following elliptic problem with Dirichlet boundary condition{

−∆u = f − divF in Ω,

u = 0 on ∂Ω,

has a unique weak solution u ∈ H1
0 (Ω).

Exercise 4 (Neumann problem). Let Ω be an open bounded subset of Rd with smooth boundary,
the exterior unit normal being denoted by n, and f ∈ L2(Ω). Show that, for all µ > 0, the elliptic
problem with Neumann boundary condition

(2)

 −∆u+ µu = f in Ω,
∂u

∂n
= 0 on ∂Ω,

has a unique weak solution u ∈ H1(Ω). In the case µ = 0, give a necessary condition on
∫

Ω f to the
existence of a weak solution to (2).
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Exercise 5 (Fourier condition). Let Ω ⊂ Rd be an open bounded set with smooth boundary,
f ∈ L2(Ω), g ∈ L2(∂Ω) and λ > 0. We consider the following elliptic problem with Fourier
boundary condition

(3)

 −∆u = f in Ω,

λu+
∂u

∂n
= g on ∂Ω.

1. Give the variational formulation of the problem (3).
2. Prove that there exists a positive constant CΩ > 0 only depending on Ω such that for all
u ∈ H1(Ω),

‖u‖2L2(Ω) ≤ CΩ

(
‖∇u‖2L2(Ω) + λ‖γ0u‖2L2(∂Ω)

)
,

where γ0 denotes the trace operator γ0 : H1(Ω)→ L2(∂Ω).
3. Prove that (3) has a unique weak solution.
4. ∗ Is this weak solution a strong solution ?

Exercise 6 (The method of continuity).
1. Solve the equation u−∆u = f on Td and show that it defines a map L2(Td)→ H2(Td).
2. Let X, Y be some Banach spaces. Let (Tt)t∈[0,1] be a continuous path of continuous linear

operators from X to Y satisfying

(4) ∃C ≥ 0, ∀u ∈ X,∀t ∈ [0, 1], ‖u‖X ≤ C‖Ttu‖Y .

Prove that T0 is onto if and only if T1 is onto as well.
3. Let A ∈ C1(Td,Md(R)). We assume that the following ellipticity condition holds

∃α ∈ (0, 1),∀x ∈ Td, ∀ξ ∈ Rd, A(x)ξ · ξ ≥ α|ξ|2.

We define the path (Tt)t∈[0,1] of operators H2(Td)→ L2(Td) by the formula

Ttu = u− div(A(t)(x)∇u), A(t) = tA+ (1− t)Id.

(a) Show that t 7→ Tt is continuous.
(b) Check that (4) is satisfied.
(c) Conclude.

Exercise 7 (Resolution by minimization). Let Ω ⊂ R3 be open, bounded with smooth boundary.
The purpose is to prove that the following elliptic problem has a non-trivial weak solution{

−∆u = u3 in Ω,
u = 0 on ∂Ω.

1. Prove that there exists a solution to the following minimization problem

(5) inf
{
‖∇v‖L2(Ω) : v ∈ H1

0 (Ω), ‖v‖L4(Ω) = 1
}
.

Recall : Since d = 3 here, the continuous embedding H1
0 (Ω) ↪→ Lq(Ω) holds for all 1 ≤ q ≤ 6,

and is moreover compact when 1 ≤ q < 6.
2. Prove that if the function v ∈ H1

0 (Ω) solves (5), there exists a positive constant λ > 0 such
that −∆v = λv3 weakly in Ω.

3. Conclude.
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Département de Mathématiques M1 - EDP

TD 4: Elliptic regularity and maximum principles

Exercise 1 (Control of the L∞ norm). Let Ω be an open bounded subset of Rd of class C2. Let
A ∈ C1(Ω, Sd(R)) satisfying the following ellipticity condition

(1) ∃α > 0, ∀(x, ξ) ∈ Ω× Rd, A(x)ξ · ξ ≥ α|ξ|2.

Let f ∈ L2(Ω) and u ∈ H1
0 (Ω) be the weak solution of the following Dirichlet problem{

−div(A(x)∇u) = f in Ω,

u = 0 on ∂Ω.

1. In this question, we assume that d ≤ 3. Show that there exists a constant C ≥ 0 depending
only on Ω and d such that

(2) ‖u‖L∞(Ω) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)).

2. We assume that Ω = B(0, R) where R ∈ (0, 1).

(a) Compute ∆v when v(x) = ψ(|x|) is a radial function.
(b) By considering the function u(x) = ln | ln |x|| and the case A(x) = Id, discuss the validity

of the estimate (2) when d ≥ 4.

Remark: One can prove (this is a bit technical) that when d ≥ 4 and f ∈ Lp(Ω), where p > d/2,
there exists a positive constant C > 0 only depending on d, Ω and p such that the following estimate,
somehow analogous to (2), holds

‖u‖L∞(Ω) ≤ C(‖f‖Lp(Ω) + ‖u‖L2(Ω)).

Exercise 2 (Hölder regularity). The purpose of this exercise is to show a gain of derivatives in
Hölder spaces for the solution u to the Poisson equation −∆u = ρ, where ρ ∈ C0(R3) is a function
with compact support. Let G be the Green function of the Laplacian in dimension 3. Let us recall
that the function

u(x) = (G ∗ ρ)(x) =
1

4π

∫
R3

ρ(y)

|x− y|
dy,

is solution of the Poisson equation in R3. We assume that ρ ∈ Cα(R3) for a given α ∈ (0, 1), and
we set

[ρ]Ċα(R3) = sup
x 6=z∈R3

|ρ(x)− ρ(y)|
|x− y|α

< +∞.

Let K be a compact of R3. We want to prove that u,∇u ∈ Cα(K) and that there exists a positive
constant c > 0 only depending on K, d, α and on the support of ρ such that

(3) [u]Ċα(K) + [∇u]Ċα(K) ≤ c[ρ]Ċα(R3).
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1. Show that u ∈ Cα(K) and that the estimate (3) holds for u.
2. By introducing a cut-off function ωε of the form ωε(x) = θ(ε−1|x|) and considering the ap-

proximation uε = (Gωε) ∗ ρ, prove that ∇u ∈ Cα(K) and that the estimate (3) holds for the
function ∇u.

Remark: By using similar techniques, one can prove that for all δ ∈ (0, α), we have ∇2u ∈ Cδ(K)
and also that there exists a positive constant c′ > 0 depending only on K, d, α, δ and the support
of the function ρ such that

[∇2u]Ċδ(K) ≤ c
′[ρ]Ċα(R3).

Exercise 3 (Weak maximum principle). Let Ω be a bounded open subset of Rd with smooth
boundary and u ∈ C2(Ω) ∩ C0(Ω) satisfying ∆u ≤ 0 on Ω. Proof by hand that

min
Ω
u = min

∂Ω
u.

Hint: Assume first that ∆u < 0.

Exercise 4 (Weak maximum principle for weak solutions). Let Ω ⊂ Rd be a bounded open set.
We consider the following operator L = −div(A(x)∇·), where A ∈ L∞(Ω,Md(R)) satisfies the
following ellipticity assumption

∃α > 0, ∀(x, ξ) ∈ Ω× Rd, A(x)ξ · ξ ≥ α|ξ|2.

We want to prove that if u ∈ H1
0 (Ω) is a weak solution of the equation Lu ≤ 0, then u ≤ 0 a.e. in

the set Ω.
1. Prove that there exists a non-negative function G ∈ C1(R) with bounded derivative such that
G′ > 0 on (0,+∞) and G′ = 0 on (−∞, 0].

2. Check that we have ∫
Ω
|∇u(x)|2(G′ ◦ u)(x) dx ≤ 0.

3. Conclude.

Exercise 5 (No solution). Let L > 0. We aim at proving that when L � 1 is large enough,
there is no smooth solution u satisfying −u′′ = eu in (0, L) and u(0) = u(L) = 0. We assume by
contradiction that such a solution u ∈ C0[0, L] ∩ C2(0, L) exists.

1. Given ε > 0, we consider the function w = u + ε. Give the equation satisfied by this new
function w.

2. We consider the family of functions (vλ)λ≥0 defined on [0, L] by vλ(x) = λ sin(πx/L). Give
the equations satisfied by these functions.

3. Prove that when L � 1 is large enough, the function w is a sub-solution of the equation
established in the above question. Check moreover that when 0 < λ� 1 is sufficiently small,
then vλ < w on [0, L].

4. Let us now start increasing λ until the graphs of vλ and w touch at some point

λ0 = sup
{
λ ≥ 0 : ∀x ∈ [0, L], vλ(x) < w(x)

}
.

By considering the function p = vλ0 − w and using the weak maximum principle, obtain a
contradiction.
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Département de Mathématiques M1 - EDP

TD 5: Heat equation

Exercise 1 (Heat kernel). Let d ≥ 1 and Ed ∈ S′(Rt ×Rdx) be the tempered distribution defined
by

Ed(t, x) =
1

(2πt)d/2
e−

|x|2
2t 1]0,+∞[(t).

Prove that Ed is a fundamental solution of the heat operator, that is, satisfies(
∂t −

1

2
∆
)
Ed = δ(t,x)=(0,0) in S′(Rt × Rdx).

Check that Ed is unique under the condition SuppEd ⊂ R+ × Rd.

Exercise 2 (Heat equation on Rd). Let u0 ∈ L2(Rd). We consider the homogeneous heat equation
posed on the whole space Rd:

(1)

{
∂tu− 1

2∆u = 0 on (0,+∞)× Rd,
u(0, ·) = u0 on Rd.

1. (Regularity) Compute explicitly the solution of the equation (1). What is its regularity ?
2. (Energy estimate) Show that for all t ≥ 0,

‖u(t, ·)‖2L2(Rd) +

∫ t

0
‖∇u(s, ·)‖2L2(Rd) ds = ‖u0‖2L2(Rd).

3. (Maximum principle) Show that if u0 ∈ L∞(Rd), then u(t, ·) ∈ L∞(Rd) for all t ≥ 0 and

sup
t≥0
‖u(t, ·)‖L∞(Rd) ≤ ‖u0‖L∞(Rd).

4. (Infinite speed of propagation) Prove that if u0 ≥ 0 is a function being not identically equal
to zero and non-negative, then u > 0 in R+ × Rd.

Exercise 3 (Spectral theory). Let Ω be a bounded open subset of Rd.
1. Prove that there exists a continuous operator T ∈ L(L2(Ω), H1

0 (Ω)) satisfying 〈f, v〉L2(Ω) =
〈Tf, v〉H1

0 (Ω) for all f ∈ L2(Ω) and v ∈ H1
0 (Ω).

2. Let ι : H1
0 (Ω) → L2(Ω) be the canonical injection. Check that the operator T ◦ ι : H1

0 (Ω) →
H1

0 (Ω) is non-negative, selfadjoint, one to one and compact.
3. Deduce that the spectrum of the Laplacian operator −∆ with Dirichlet boundary condition

is a sequence (λn)n≥0 of positive real numbers which is increasing and diverges to +∞, and
also that there exists a Hilbert basis (en)n≥0 of H1

0 (Ω) composed of eigenfunctions of −∆ and
such that −∆en = λnen for all n ≥ 0.

4. Compute explicitly those eigenvalues and those eigenfunctions when d = 1 and Ω = (0, 1).
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Exercise 4 (Heat equation on bounded domains). Let Ω be a bounded open subset of Rd with
regular boundary, T > 0 be a final time, u0 ∈ L2(Ω) be an initial datum and f ∈ L2((0, T ), L2(Ω))
be a source term. We aim at proving that there exists a unique solution u ∈ L2((0, T ), H1

0 (Ω)) ∩
C0([0, T ], L2(Ω)) to the following heat equation with Dirichlet boundary conditions

(2)


∂tu−∆u = f a.e. in (0, T )× Ω,

u = 0 a.e. on (0, T )× ∂Ω,

u(0, ·) = u0 a.e. in Ω.

We will also check that this solution satisfies the following energy estimate for all 0 ≤ t ≤ T ,

(3) ‖u(t, ·)‖2L2(Ω) +

∫ t

0
‖∇u(s, ·)‖2L2(Ω) ds ≤ C

(
‖u0‖2L2(Ω) +

∫ t

0
‖f(s, ·)‖2L2(Ω) ds

)
,

where C > 0 is a positive constant only depending on Ω. In the following, we consider (en)n≥0 a
Hilbert basis of L2(Ω) composed of eigenfunctions of the operator −∆. Moreover, we set λn the
eigenvalue associated with the eigenfunction en.

1. We first prove that there exists a unique u ∈ L2((0, T ), H1
0 (Ω)) ∩ C0([0, T ], L2(Ω)) satisfying

d

dt
〈u(t, ·), v〉L2(Ω) +

∫
Ω
∇u(t, ·) · ∇v = 〈f(t, ·), v〉L2(Ω) ∀v ∈ H1

0 (Ω), ∀t ∈ (0, T ),

u(0, ·) = u0.

a) Define properly this variational formulation.
b) Give the formal expansion in the Hilbert basis (en)n≥0 of such a solution.
c) Prove that this expansion converges in L2((0, T ), H1

0 (Ω)) and also in C0([0, T ], L2(Ω)).
d) Conclude.

2. We now want to prove that this weak solution u is a strong solution, that is, is solution of the
problem (2).

a) Check that the boundary condition and the initial value condition hold.
b) ∗ Prove that ∂tu−∆u = f a.e. in (0, T )× Ω.

3. When f = 0, check that

∀t ≥ 0, ‖u(t, ·)− 〈u0, e0〉L2(Ω)e
−λ0te0‖L2(Ω) ≤ e−λ1t‖u0‖L2(Ω).

Exercise 5 (Maximum principle). Let Ω be a bounded open subset of Rd with smooth boundary,
T > 0 be a final time, u0 ∈ H1

0 (Ω) be an initial datum and f ∈ L2((0, T ), L2(Ω)) be a source term.
We consider u ∈ L2((0, T ), H1

0 (Ω))∩C0([0, T ], L2(Ω)) the unique solution of the problem (2). Prove
that when f ≥ 0 a.e. in (0, T )× Ω and u0 ≥ 0 a.e. in Ω, then u ≥ 0 a.e. on (0, T )× Ω.
Hint: Admit that ∂tu ∈ L2((0, T ), L2(Ω)) and u ∈ L2((0, T ), H2(Ω)) ∩ C0([0, T ], H1

0 (Ω)).

Application ∗: Assume now that u0 ∈ H1
0 (Ω) ∩ L∞(Ω) and f ∈ L∞([0,+∞)× Ω). Show that

sup
t≥0
‖u(t, ·)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) +

diam(Ω)2

2d
sup
t≥0
‖f(t, ·)‖L∞(Ω).
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Exercise 1. We consider the following reaction-diffusion equation:

(1)

{
∂tu−∆u = u2 in (0,+∞)× R,

u(0, ·) = u0 in R.

1. Establish a priori energy estimates for any smooth solution of the equation (1).

2. Assume that u0 ∈ H1(R). We aim at proving, by using an iterative method, that there exist
T > 0 and a solution u ∈ C0([0, T ], H1(R)) of the equation (1). We therefore consider the
sequence (un)n≥0 recursively defined by u0 = u0 and

(2)

{
∂tu

n+1 −∆un+1 = (un)2 in (0,+∞)× R,

un+1(0, ·) = u0 in R.

(a) Discuss the well-posedness of the sequence (un)n≥0.

(b) (Bound in H1) Prove that there exists a positive time T1 > 0 and a positive constant
c1 > 0 such that for all n ≥ 0 and 0 ≤ t ≤ T1,

‖un(t, ·)‖H1(R) ≤ c1.

(c) (Convergence in H1) Prove that there exists another positive time 0 < T2 < T1 and
another positive constant c2 > 0 satisfying that for all n ≥ 0 and 0 ≤ t ≤ T2,

‖un+1(t, ·)− un(t, ·)‖H1(R) ≤
c2

2n
.

(d) Conclude.

3. Is this solution unique ?

Exercise 2. Let u0 ∈ H1(R) be a smooth initial datum. We consider T > 0 the positive time
and u ∈ C0([0, T ], H1(R)) the solution of the equation (1), both given by the previous exercise. By
using a bootstrap argument, prove that the function u is smooth, precisely u ∈ C∞(]0, T [×R).

Exercise 3. By adapting the strategy used in the first exercise, investigate the existence of solu-
tions for the following reaction-diffusion equation:

(3)

{
∂tu−∆u = arctan(u) in (0,+∞)× Rd,

u(0, ·) = u0 in Rd,

with initial datum u0 ∈ L2(Rd). Assuming then that d = 1 and 〈x〉u0, 〈x〉∂xu0 ∈ L2(R), prove
pointwise estimates for the function u.
Hint: The function arctan is globally Lipschitz continuous, only L2 estimates are required.

1



Exercise 4. Let T > 0 and u0 ∈ L2(Rd). We consider the following initial value problem:

(4)

{
∂tu−∆u =

√
1 + u2 − 1, in (0, T ]× Rd,

u(0, ·) = u0 in Rd,

We say that a continuous function u ∈ C0([0, T ], L2(Rd)) is a mild solution of the initial value
problem (4) when it satisfies the following integral equation for all 0 ≤ t ≤ T :

u(t) = et∆u0 +

∫ t

0
e(t−s)∆(

√
1 + u(s)2 − 1) ds,

where, for all v ∈ L2(Rd), et∆v denotes the solution of the heat equation posed on Rd with initial
datum v.

1. We consider the function F : C0([0, T ], L2(Rd))→ C0([0, T ], L2(Rd)) defined by

(Fu)(t) = et∆u0 +

∫ t

0
e(t−s)∆(

√
1 + u(s)2 − 1) ds.

By using a fixed-point theorem on the function F , prove that the equation (4) admits a unique
mild solution u ∈ C0([0, T ], L2(Rd)).

2. Check that the function u0 ∈ L2(Rd) 7→ u ∈ C0([0, T ], L2(Rd)) is Lipschitz continuous.

Exercise 5. Study the existence of mild solutions for the equation (3) and make the link with
the solution constructed by iterative method in Exercise 3.

Exercise 6. Let Ω = (0, 1), t0 > 0 and u0 ∈ H1
0 (Ω). We aim at proving that there exist a positive

time t∗ > 0 and a unique function u ∈ C0([t0, t
∗[, H1

0 (Ω)) solution of the following integral equation
for all t0 ≤ t < t∗:

(5) u(t) = e(t−t0)∆u0 +

∫ t

t0

e(t−s)∆ sinh(u(s)) ds.

Let us recall that there exists a Hilbert basis (en)n≥0 of the space H1
0 (Ω) composed of eigenvalues

of the operator −∆. In the above integral equation, the operator et∆ ∈ L(H1
0 (Ω)) is defined by

et∆ =
+∞∑
n=0

e−tλn〈·, en〉H1
0
en,

with λn > 0 the eigenvalue associated with the eigenfunction en.

1. By using a fixed-point theorem, prove that there exists a positive time t1 > t0 such that the
equation (5) has a solution in the space C0([t0, t1], H1

0 (Ω)).

2. Explain how this solution can be extended to the interval [t0, t1 + δ] with δ > 0. Deduce,
proceeding by contradiction, that if [t0, t

∗[ stands for the maximal interval of existence of the
solution u and if t∗ < +∞, then

lim
t↗t∗
‖u(t)‖H1

0 (Ω) = +∞.

3. Investigate the uniqueness of such a solution.

4. Of which equation is the function u a mild solution ?
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Exercise 1. Let Ω ⊂ Rd be a bounded open set, T > 0 be a final time and QT = (0, T ]× Ω. We
consider the following differential operator

L = −
d∑

i,j=1

ai,j(t, x)∂xi∂xj +

n∑
i=1

bi(t, x)∂xi + c(t, x), (t, x) ∈ QT ,

the coefficients ai,j , bi and c being bounded on QT , with moreover ai,j = aj,i. We assume that the
operator ∂t + L is uniformly parabolic, that is,

∃θ > 0,∀(t, x) ∈ QT , ∀ξ ∈ Rd,
d∑

i,j=1

ai,j(t, x)ξiξj ≥ θ|ξ|2.

State as many maximum principles as you can for the parabolic operator ∂t + L.

Exercise 2. Let Ω ⊂ Rd be a bounded open set, T > 0 be a positive time and QT = (0, T ]× Ω.
We also consider f ∈ C1(R) a smooth function. Let u, v ∈ C2(QT ) ∩ C0(QT ) be two functions
satisfying {

∂tv −∆v − f(v) ≤ ∂tu−∆u− f(u) in QT ,
v ≤ u on ΓT .

Prove that v ≤ u on QT .

Application: Consider u ∈ C2(QT ) ∩ C0(QT ) a solution of the equation
∂tu−∆u = u(1− u)(u− a) in QT ,

u = 0 on (0, T ]× ∂Ω,

u(0, ·) = u0 in Ω,

where 0 < a < 1 is a positive constant and u0 is a smooth initial datum satisfying 0 ≤ u0 ≤ 1 in Ω.
Prove that the function u is bounded as follows

∀(t, x) ∈ QT , 0 ≤ u(t, x) ≤ 1.

Can you be more precise when assuming 0 ≤ u0 < a in Ω ?

Exercise 3. Let L > 0. Prove that there exists a critical length Lc > 0 such that the equation

(1)

{
q′′ + q(1− q) = 0 x ∈ (0, L),

q(0) = q(L) = 0,

has a non-trivial non-negative solution if and only if L > Lc.
Hint: The function H(q1, q2) = q21/2 + q22/2− q31/3 is a Lyapunov function for this equation.

1



Exercise 4. Let 0 < L < π be a length, u0 ∈ L2(0, L) be an initial datum such that 0 ≤ u0 ≤ 1
a.e. and u be the solution of the Fisher-KPP equation

(2)


∂tu− ∂xxu = u(1− u), t > 0, x ∈ (0, L),

u(t, 0) = u(t, L) = 0, t > 0,

u(0, x) = u0(x), x ∈ (0, L),

1. Prove the following estimate

∀t ≥ 0, ‖u(t)‖L2(0,L) ≤ e(1−π
2/L2)t ‖u0‖L2(0,L),

and deduce that u(t)→ 0 in L2(0, L) as t→ +∞.

2. We now aim at proving that u(t, x)→ 0 as t→ +∞ for all x ∈ [0, L].

(a) Find a subsolution u of the equation (2).

(b) We consider u the solution of the equation
∂tu− ∂xxu = u t > 0, x ∈ (0, L),

u(t, 0) = u(t, L) = 0 t > 0,

u(0, x) = u0(x) x ∈ (0, L),

Check that u is a supersolution of the equation (2).

(c) Prove that u(t, x)→ 0 for all x ∈ [0, L] as t→ +∞ and conclude.

Exercise 5. We still consider the Fisher-KPP equation (2). Assuming this time that L > π, we
aim at proving that there exists a supersolution u of the equation (2) such that u(t, x) ≤ u(t, x)
for all t ≥ 0 and x ∈ (0, L), and satisfying u(t, x) →t→+∞ q(x) for all x ∈ [0, L], where q is the
non-trivial non-negative steady state given by Exercice 3.

1. Let u be the solution of the equation
∂tu− ∂xxu = u(1− u), t > 0, x ∈ (0, L),

u(t, 0) = u(t, L) = 0, t > 0,

u(0, x) = M, x ∈ (0, L),

with M = max(1, sup(0,L) u0). Prove that u is a supersolution of the equation (2) which
dominates the function u.

2. By comparing u(t + h, x) and u(t, x), prove that for all x ∈ [0, L], the limit w(x) =
limt→+∞ u(t, x) exists and satisfies the estimate 0 ≤ w(x) ≤M .

3. Admit that w is a solution of the equation (1). Deduce then that w = q and conclude.

Remark: One can also prove that there exists a subsolution u converging pointwise to q and bounding
the function u from below. As a consequence, u(t, x)→t→+∞ q(x) for all x ∈ [0, L].
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Exercise 1. We aim at proving that there are traveling waves solutions for the Fisher-KPP
equation

(1) ∂tu− ∂xxu = u(1− u), t > 0, x ∈ R,

i.e. solutions of the form u(t, x) = φ(x− ct) for some function φ : R → [0, 1] and c ∈ R. Precisely,
we are interested in traveling wavefronts, i.e. satisfying lim+∞ φ = 0 and lim−∞ φ = 1.

1. Check that a traveling wave is solution of the equation (1) if and only if the wave profile φ
satisfies the following ordinary equation,

φ′′(z) + cφ′(z) + φ(z)(1− φ(z)) = 0, z ∈ R,

where z = x− ct denotes the co-moving frame.

2. Write this equation as a system of two first order ordinary equations.

3. Study the stationary points of this system.

4. Explain why such a traveling wave does not exist when 0 < c < 2.

5. Admitting that such a travelling wave exists when c ≥ 2, prove that the wave profile φ has
the following asymptotics

φ(z, c) =
1

1 + ez/c
+

1

c2
ez/c

(1 + ez/c)2
ln

(
4ez/c

(1 + ez/c)2

)
+O(c−4).

Hint: Set ε = 1/c2 and ξ = z/c, and consider the expansion of φ in powers of ε, that is,
φ(ξ, ε) = φ0(ξ) + εφ1(ξ) + ε2φ2(ξ) + · · ·

Exercise 2. We still consider the Fisher-KPP equation (1). The purpose is now to deal with the
appearance of propagation speeds in the reality. Assume that the initial condition of the equation
(1) is given by

u(0, x) = e−a|x|, x ∈ R,

where a > 0 is a positive constant.

1. By considering supersolutions of the form

u(t, x) = e±sa(x±cat), t > 0, x ≥ 0,

where ca > 0 and sa > 0 are positive constants depending on a, establish an estimate of the
form

∀t ≥ 0,∀x ∈ R, |u(t, x)| ≤ e−sa(|x|−cat).

1



2. Deduce that
∀c > a+

1

a
, lim

t→+∞
sup
|x|≥ct

|u(t, x)| = 0, when 0 < a < 1,

∀c > 2, lim
t→+∞

sup
|x|≥ct

|u(t, x)| = 0, when a ≥ 1.

3. Draw a picture, admitting that

∀0 < c < a+
1

a
, lim

t→+∞
sup
|x|≤ct

|1− u(t, x)| = 0, when 0 < a < 1,

∀0 < c < 2, lim
t→+∞

sup
|x|≤ct

|1− u(t, x)| = 0, when a ≥ 1.

Remark: Those limits can be obtained by constructing adapted subsolutions.

4. Comment.

Exercise 3. Rabies may infect all warm-blooded animals, also birds, and also humans, and affects
the central nervous system. Vaccines are available (but expensive); but no further cure is known.
The spread seems to occur in waves, e.g. one coming from the Polish-Russian border; the spread
velocity is approx. 30-60 km/year.

Let us consider two groups of foxes:

. Susceptible foxes (S), with no diffusion (as they are territorial),

. Infective foxes (I), with diffusion (loss of sense of territory), constant death rate.

The infection rate is assumed to be proportional to their densities, no reproduction or further spread:{
∂tS = −rIS, t > 0, x ∈ R,

∂tI = rIS − aI + ν∂2xxI, t > 0, x ∈ R.

The non-dimensionalised version of the above system is the following:{
∂tS = −IS, t > 0, x ∈ R,

∂tI = IS −mI + ∂2xxI, t > 0, x ∈ R,

with m = a/(rS0), S0 being the initial (maximum) susceptible density. We look for a travelling
wave solution of this system of the form

S(t, x) = S(x− ct) = S(z) and I(t, x) = I(x− ct) = I(z),

where z = x− ct, the wave fronts S and I satisfying 0 ≤ S ≤ 1 and 0 ≤ I ≤ 1.

1. Write the system of ODEs satisfied by the functions S and I.

2. Justify the following boundary conditions: S(+∞) = 1, I(+∞) = 0, S′(−∞) = 0, I(−∞) = 0.

3. Check that
S(−∞)−m lnS(−∞) = 1.

Deduce the fraction of susceptibles which survive the “rabies wave” (draw a picture).

4. Draw the phase plane associated with the system satisfied by S and I.

5. Explain why c = 2
√
1−m is the minimal wave speed.

6. Draw the shapes of the wave fronts S and I.
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Exercise 1.

1. Let L =
∑
|α|≤m aα(x)∂αx be a differential operator of order m ≥ 0 with smooth and fast

decaying coefficients aα ∈ C∞(Rd). Prove that for all u ∈ S(Rd),

(Lu)(x) =
1

(2π)d

∫
Rd

eix·ξa(x, ξ)û(ξ) dξ, x ∈ Rd,

where the symbol a is defined by

a(x, ξ) =
∑
|α|≤m

aα(x)(iξ)α, (x, ξ) ∈ R2d.

2. For all u0 ∈ L2(Rd) and t ≥ 0, we set et∆u0 as the semigroup solution at time t of the heat
equation {

∂tu−∆u = 0 on (0,+∞)× Rd,
u(0, ·) = u0 on Rd.

Prove that for all t ≥ 0, the evolution operator et∆ is a pseudo-differential operator and give
the expression of its symbol.

3. Let m ∈ R and A ∈ Op(Sm). Prove that there exists a unique a ∈ Sm such that Op(a) = A.

Exercise 2. Let a ∈ Sm be a symbol of order m ∈ R.
1. We denote by [Op(a), ∂xj ] the commutator between the operator Op(a) and the partial deriva-

tive ∂xj with respect to xj . Prove that [Op(a), ∂xj ] is also a pseudo-differential operator and
compute its symbol as a function of a.

2. Same question with [Op(a), xj ], where xj stands for the multiplication by xj .

Exercise 3.

1. Let m ∈ R and a ∈ Sm. Prove that for all s ∈ R, there exists a positive constant cs > 0 such
that

∀u ∈ S(Rd), ‖Op(a)u‖Hs ≤ cs‖u‖Hs+m .

Hint: Any operator in Op(S0) is bounded in L2(Rd).

2. Let m1,m2 ∈ R and a1 ∈ Sm1 , a2 ∈ Sm2 . Check that

[Op(a1),Op(a2)]−Op

(
1

i
{a1, a2}

)
∈ Op(Sm1+m2−2),

where {a1, a2} stands for the following Poisson bracket

{a1, a2} = ∇ξa1 · ∇xa2 −∇xa1 · ∇ξa2.

1



Exercise 4. Let m ∈ R and a ∈ Sm.
1. Assume that there exists b ∈ S−m such that Op(a) Op(b) − I ∈ Op(S−∞). Prove that there

exist R > 0 and c > 0 such that

(1) ∀(x, ξ) ∈ R2d, |ξ| ≥ R ⇒ |a(x, ξ)| ≥ c〈ξ〉m.

Hint: Begin by checking that ab− 1 ∈ S−1.

2. Let us now assume that the symbol a satisfies the condition (1). We aim at proving that there
exists a symbol b ∈ S−m such that Op(a) Op(b)− I ∈ Op(S−∞). The operator Op(b) is called
a parametrix of the operator Op(a). To that end, we will construct a sequence of symbols
(bj)j such that bj ∈ S−m−j and

∀n ≥ 0, a ] (b0 + · · ·+ bn)− 1 ∈ S−n−1.

(a) Let F ∈ C∞(C) such that F (z) = 1/z when |z| ≥ c. We set

b0(x, ξ) =
1

〈ξ〉m
F (a(x, ξ)〈ξ〉−m), (x, ξ) ∈ R2d.

Prove that b0 ∈ S−m and that a ] b0 − 1 ∈ S−1.

(b) Construct then the other symbols bj and conclude by using Borel’s summation lemma.

(c) Check that we also have Op(b) Op(a)− I ∈ Op(S−∞).

(d) Application: Prove that for all s, t ∈ R, there exist some positive constants as, bs,t > 0
such that

(2) ∀u ∈ S(Rd), ‖u‖Hs+m ≤ as‖Op(a)u‖Hs + bs,t‖u‖Ht .

Exercise 5. Let m ∈ R and a ∈ Sm be a symbol satisfying that there exist c,R > 0 such that

∀(x, ξ) ∈ R2d, |ξ| ≥ R ⇒ Re a(x, ξ) ≥ c〈ξ〉m.

1. Prove that there exists r ∈ Sm−1 such that

∀u ∈ S(Rd), Re〈Op(a)u, u〉L2 = 〈Op(Re a)u, u〉L2 + 〈Op(r)u, u〉.

2. Prove that for all r̃ ∈ Sm−1, there exists a positive constant c > 0 such that

∀u ∈ S(Rd), |〈Op(r̃)u, u〉L2 | ≤ c‖u‖2H(m−1)/2 .

3. Prove that there exists b ∈ Sm/2 which is elliptic in the sense that (1) holds with m/2, and
such that Op(Re a)−Op(b)∗Op(b) ∈ Op(Sm−1).

4. Check that there exist c0, c1 > 0 such that

∀u ∈ S(Rd), Re〈Op(a)u, u〉L2 + c1‖u‖2H(m−1)/2 ≥ c0‖u‖2Hm/2 .

Hint: Use the estimate (2) with the operator Op(b).

5. Prove finally that for all s ∈ R, there exist some positive constants as, bs > 0 such that

∀u ∈ S(Rd), Re〈Op(a)u, u〉L2 + as‖u‖2Hs ≥ bs‖u‖2Hm/2 .

Hint: When s < (m−1)/2, use Young’s inequality with the exponents p = 2(m−2s)/(m−2s−1)
and q = 2(m− 2s).
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Exercise 1. Let K : R2d → C be a continuous function. Assume that there exists A > 0 such
that

sup
x∈Rd

∫
Rd

|K(x, y)|dy ≤ A, sup
y∈Rd

∫
Rd

|K(x, y)|dx ≤ A.

For all u ∈ C∞0 (Rd), we set

(Pu)(x) =

∫
Rd

K(x, y)u(y) dy, x ∈ Rd.

1. Check that Pu is well-defined and belongs to L∞(Rd).
2. We will prove Schur’s lemma, stating that P can be uniquely extended to a bounded operator

in L2(Rd) satisfying ‖P‖L(L2) ≤ A.

a) By using Cauchy-Schwarz’ inequality, check that for all u ∈ C0
0 (Rd) and x ∈ Rd,

|(Pu)(x)|2 ≤ A
∫
Rd

|K(x, y)||u(y)|2 dy.

b) Conclude.

Exercise 2. The purpose of this exercise is to prove Calderón-Vaillancourt’s theorem: any pseudo-
differential operator Op(a), with a ∈ S0, is bounded in L2(Rd).

1. We first assume that a ∈ S−(d+1).

a) Check that Op(a) can be written

Op(a)u(x) =

∫
Rd

K(x, y)u(y) dy, x ∈ Rd.

where K is a kernel to be precised.
b) Prove that the function (x, y) ∈ R2d 7→ (1 + |x− y|d+1)K(x, y) is bounded.
c) Prove the theorem by using Exercise 1.

2. Prove with an induction that for all k ∈ {0, . . . , d}, the theorem is true when a ∈ Sk−(d+1).
Hint: Consider the operator Op(a)∗Op(a).

3. The previous question implies in particular that the theorem holds when a ∈ S−1. We now
assume that a ∈ S0.

a) Prove that if M > 0 is large enough, there exist symbols c ∈ S0 and r ∈ S−1 such that

Op(c)∗Op(c) =M Id−Op(a)∗Op(a) + Op(r).

b) Conclude.

1



Exercise 3. Let m ∈ R ∪ {−∞} and a ∈ Sm.
1. Recall the expression of the kernel K of the operator Op(a).
2. Prove that when m = −∞, K belongs to C∞(R2d).
3. Let x, y ∈ Rd such that x 6= y. We consider ϕ,ψ ∈ C∞0 (Rd) satisfying

a) ϕ = 1 is a neighborhood of x,
b) ψ = 1 is a neighborhood of y,
c) suppϕ ∩ suppψ = ∅.

Show that MϕOp(a)Mψ belongs to Op(S−∞), where Mϕ and Mψ denote the multiplication
by ϕ and ψ respectively.

4. Compute the kernel of the operator MϕOp(a)Mψ as a function of K.
5. Prove that K is C∞ in a neighborhood of (x, y).

Exercise 4.

1. Let a ∈ C∞(R2d) and χ ∈ C∞(Rd) satisfying

χ(ξ) 6= 0⇐⇒ 1/2 < |ξ| < 2.

For all λ ≥ 1, we set aλ(x, ξ) = χ(ξ)a(x, λξ). Prove that the following conditions are equiva-
lent:

a) a ∈ Sm,
b) ∀(α, β) ∈ N2d, ∃Cα,β > 0,∀λ ≥ 1, ‖∂αξ ∂

β
xaλ‖L∞ ≤ Cλm.

2. Let f ∈ Ck(Rd) satisfying that f and ∂αf are bounded for all α ∈ Nd such that |α| = k.

a) Prove that there exists a positive constant c > 0 independent on f such that for all
β ∈ Nd satisfying 0 ≤ |β| ≤ k,

‖∂βf‖L∞ ≤ c
(
‖f‖L∞ +

∑
|α|=k

‖∂αf‖L∞

)
.

b) Prove that for all β ∈ Nd satisfying 0 ≤ |β| ≤ k,

‖∂βf‖L∞ ≤ c‖f‖1−|β|/kL∞

( ∑
|α|=k

‖∂αf‖L∞

)|β|/k
.

Hint: Consider the function g : x ∈ Rd 7→ f(λx) for a well-chosen λ > 0.

3. Let a ∈ Sm. Assume that there exists µ > 0 and c > 0 such that

∀(x, ξ) ∈ R2d, |a(x, ξ)| ≤ c〈ξ〉µ.

Prove that a ∈ Sµ+ε for all ε > 0.
4. Let A be a nilpotent pseudo-differential operator, i.e. satisfying Ak = 0 for some k ≥ 1.

a) Prove that A ∈ Op(S−∞).
b) Give a non-trivial example when k = 2.
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