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Sheet 0: Sobolev spaces and elliptic problems in one dimension

Exercise 1. Let Ω = (0, 1).

1. Prove that the following continuous embeddings hold

W 1,1(Ω) ↪→ C0(Ω̄) and W 1,p(Ω) ↪→ C0,1−1/p(Ω̄) when p ∈ (1,∞],

with the convention 1/∞ = 0.

2. Prove that for all 1 ≤ p <∞, the space W 1,p
0 (Ω) is given by

W 1,p
0 (Ω) =

{
u ∈W 1,p(Ω) : u(0) = u(1) = 0

}
.

Exercise 2. Let 0 < α < 1 and p > 1 be positive real numbers. Show that there exists a positive
constant Cα,p > 0 such that for all u ∈ C∞0 (R),(∫∫

R×R

(
|u(x)− u(y)|
|x− y|α

)p dxdy

|x− y|

)1/p

≤ Cα,p‖u‖1−αLp(R)‖∇u‖
α
Lp(R).

Hint : Consider the two regions {|x− y| > R} and {|x− y| ≤ R}, where R > 0 is to be chosen.

Exercise 3. Let Ω = (0, 1). Establish the following Poincaré inequality

∀f ∈ H1
0 (Ω), ‖f‖L2(Ω) ≤

1

π
‖f ′‖L2(Ω),

and prove that the constant 1/π is optimal. Hint : Use Fourier series.

Exercise 4. Let Ω = (0, 1). We consider f ∈ L2(Ω) and α ∈ L∞(Ω) satisfying 0 < αmin ≤ α(x)
a.e. in Ω.

1. By using the Riesz representation theorem, prove that there exists a unique u ∈ H1
0 (Ω)

satisfying
−(αu′)′ + u = f in D′(Ω).

When in addition α ∈ C∞(Ω), check that u ∈ H2(Ω) and that the above equality holds in
L2(Ω). What about the case α = 1 ?

2. We consider moreover β ∈ C1(Ω) a function satisfying β′ ≤ 2 on Ω. By using the Lax-Milgram
theorem, prove that there exists a unique u ∈ H1

0 (Ω) satisfying

−(αu′)′ + βu′ + u = f in D′(Ω).
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Exercise 5. Let Ω = (−1, 1). We consider f ∈ C0(Ω̄) and g a function defined on ∂Ω. Solve
explicitly in u ∈ C2(Ω) ∩ C1(Ω̄) the following elliptic problem with Neumann boundary conditions{

−u′′ = f on Ω,
∂u
∂n = g on ∂Ω.

Can the Lax-Milgram theorem be used to study the above boundary value equation ?

Exercise 6. Let Ω = (0, 1). We consider f ∈ L2(Ω) and φ : R → R+ a strictly convex C1

function. The purpose is to prove with a variational method that there exists a unique function
u ∈ H2(Ω) ∩H1

0 (Ω) satisfying
− u′′ + φ′(u) = f in L2(Ω). (1)

1. Preliminaries: LetH be a real Hilbert space and J : H → R be a continuous convex functional.
We assume that J is coercive, that is, J(x) → +∞ when ‖x‖ → +∞. Prove then that there
exists x? in H such that J(x?) = infx∈H J(x).

2. In this question, we prove that there exists a unique u ∈ H1
0 (Ω) such that

∀v ∈ H1
0 (Ω),

∫ 1

0
(u′(x)v′(x) + φ′(u(x))v(x)− f(x)v(x)) dx = 0. (2)

To that end, we introduce the functional J : H1
0 (Ω)→ R defined for all v ∈ H1

0 (Ω) by

J(v) =

∫ 1

0

(
1

2
|v′(x)|2 + φ(v(x))− f(x)v(x)

)
dx.

a) Check that the functional J is well-defined, strictly convex and coercive.

b) Prove that the functional J is differentiable on H1
0 (Ω) and give the expression of its

derivative.

c) Deduce from the preliminary question that the variational problem (2) admits a unique
solution u ∈ H1

0 (Ω).

3. Prove that the unique function u ∈ H1
0 (Ω) satisfying (2) belongs to H2(Ω) and is also the

unique function that satisfies (1).

4. When the function f is moreover continuous on [0, 1], check that u ∈ C2(Ω̄) is a strong solution
of (1), that is

∀x ∈ [0, 1], −u′′(x) + φ′(u(x)) = f(x).

Exercise 7. Let Ω = (0, 1). Prove that there exists a unique function u ∈ C∞(Ω̄) satisfying{
−u′′ + u = cos(u),

u(0) = u(1) = 0.

Hint : Use the Banach-Picard fixed point theorem on the space L2(Ω).
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Département de Mathématiques M1 - EDP

Sheet 1: Weak formulation of elliptic equations

Exercise 1 (Ellipticity). For each of the following linear differential operator L, give the symbol,
the principal symbol of L, and discuss the ellipticity and uniform ellipticity.

1. Lu(x) = −
∑d

i,j=1 aij(x) ∂2u
∂xi∂xj

+
∑d

i=1 bi(x) ∂u
∂xi

+ c(x)u, x ∈ Ω ⊂ Rd,

2. Lf(x, v) = v · ∇xf + F (x) · ∇vf , x, v ∈ Rd, F : Rd → Rd,
3. Lu(t, x) = ∂tu−∆u, t > 0, x ∈ Rd,
4. Lu(t, x) = ∂tu− i∆u, t > 0, x ∈ Rd.

Exercise 2 (Faber-Krahn inequality). Let Ω be an open bounded subset of Rd with d ≥ 3 and
V ∈ L∞(Ω) such that V ≥ 0. We consider the problem

(1)

{
−∆u = V u in Ω,

u = 0 on ∂Ω.

1. Give the definition of a weak solution to (1).
2. Can you apply the Lax-Milgram theorem here?
3. Let r > d

2 . Show that there is a constant cd > 0 depending on d only such that, if (1) has a
non-trivial weak solution, then

|Ω|
2
d
− 1

r ‖V ‖Lr(Ω) ≥ cd.
Hint : Use the following Sobolev inequality

‖u‖L2∗ (Ω) ≤Md‖∇u‖L2(Ω),
1

2∗
=

1

2
− 1

d
,

which holds for all u ∈ H1
0 (Ω), where Md depends on d only.

4. What do you obtain in the particular case V = λ = cst ?

Exercise 3 (Dirichlet problem). Let Ω be an open bounded subset of Rd, f ∈ L2(Ω) and F ∈
L2(Ω)d. Show that the following elliptic problem with Dirichlet boundary condition{

−∆u = f − divF in Ω,

u = 0 on ∂Ω,

has a unique weak solution u ∈ H1
0 (Ω).

Exercise 4 (Neumann problem). Let Ω be an open bounded subset of Rd with smooth boundary,
the exterior unit normal being denoted by n, and f ∈ L2(Ω). Show that, for all µ > 0, the elliptic
problem with Neumann boundary condition

(2)

 −∆u+ µu = f in Ω,
∂u

∂n
= 0 on ∂Ω,

has a unique weak solution u ∈ H1(Ω). In the case µ = 0, give a necessary condition on
∫

Ω f to the
existence of a weak solution to (2).
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Exercise 5 (Fourier condition). Let Ω ⊂ Rd be an open bounded set with smooth boundary,
f ∈ L2(Ω), g ∈ L2(∂Ω) and λ > 0. We consider the following elliptic problem with Fourier
boundary condition

(3)

 −∆u = f in Ω,

λu+
∂u

∂n
= g on ∂Ω.

1. Give the variational formulation of the problem (3).
2. Prove that there exists a positive constant CΩ > 0 only depending on Ω such that for all
u ∈ H1(Ω),

‖u‖2L2(Ω) ≤ CΩ

(
‖∇u‖2L2(Ω) + λ‖γ0u‖2L2(∂Ω)

)
,

where γ0 denotes the trace operator γ0 : H1(Ω)→ L2(∂Ω).
3. Prove that (3) has a unique weak solution.
4. ∗ Is this weak solution a strong solution ?

Exercise 6 (System of equations). Let Ω be an open bounded subset of Rd, f, g ∈ L2(Ω) and
A,B,C,D be four matrices inMd(R). We analyse the following system of equations with Dirichlet
boundary counditions 

−div(A∇u)− div(B∇v) = f in Ω,

−div(C∇u)− div(D∇v) = g in Ω,

u = 0, on ∂Ω,

v = 0, on ∂Ω.

We assume that the Legendre-Hadamard ellipticity condition holds:

∃θ > 0, ∀ξ ∈ Rd, ∀η ∈ R2,
2∑

i,j=1

(Aijξ · ξ)ηiηj ≥ θ|ξ|2|η|2 where A =

(
A B
C D

)
.

1. Check that A and D are uniformly elliptic.
2. Show that the functional a(U, V ) :=

∫
Ω

∑2
i,j=1Aij∇Ui · ∇Vj dx is continuous and coercive on

H1
0 (Ω)×H1

0 (Ω). Hint : Use Bessel-Parseval theorem after extending U and V by 0 outside Ω.
3. Conclude.

Exercise 7 (Resolution by minimization). Let Ω ⊂ R3 be open, bounded with smooth boundary.
The purpose is to prove that the following elliptic problem has a non-trivial weak solution{

−∆u = u3 in Ω,
u = 0 on ∂Ω.

1. Prove that there exists a solution to the following minimization problem

(4) inf
{
‖∇v‖L2(Ω) : v ∈ H1

0 (Ω), ‖v‖L4(Ω) = 1
}
.

Recall : Since d = 3 here, the continuous embedding H1
0 (Ω) ↪→ Lq(Ω) holds for all 1 ≤ q ≤ 6,

and is moreover compact when 1 ≤ q < 6.
2. Prove that if the function v ∈ H1

0 (Ω) solves (4), there exists a positive constant λ > 0 such
that −∆v = λv3 weakly in Ω.

3. Conclude.
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Sheet 2: Elliptic regularity and maximum principle

Exercise 1 (Control of the L∞ norm). Let Ω be an open bounded subset of Rd of class C2. Let
A ∈ C1(Ω, Sd(R)) satisfying the following ellipticity condition

(1) ∃α > 0, ∀(x, ξ) ∈ Ω× Rd, A(x)ξ · ξ ≥ α|ξ|2.

Let f ∈ L2(Ω) and u ∈ H1
0 (Ω) be the weak solution of the following Dirichlet problem{

−div(A(x)∇u) = f in Ω,

u = 0 on ∂Ω.

1. In this question, we assume that d ≤ 3. Show that there exists a constant C ≥ 0 depending
only on Ω and d such that

(2) ‖u‖L∞(Ω) ≤ C(‖f‖L2(Ω) + ‖u‖L2(Ω)).

2. We assume that Ω = B(0, R) where R > 0.

(a) Compute ∆v when v(x) = ψ(|x|) is a radial function.
(b) By considering the function u(x) = ln | ln |x|| and the case A(x) = Id, discuss the validity

of the estimate (2) when d ≥ 4.

Note: One can prove (this is a bit technical) that when d ≥ 4 and f ∈ Lp(Ω), where p > d/2, there
exists a positive constant C > 0 only depending on d, Ω and p such that the following estimate,
somehow analogous to (2), holds

‖u‖L∞(Ω) ≤ C(‖f‖Lp(Ω) + ‖u‖L2(Ω)).

Exercise 2 (Hölder regularity). The purpose is to show a gains of derivatives in Hölder spaces
for the solution u to the Laplace equation −∆u = f , where f ∈ C(R3) is a function with compact
support. Let G(x) = 1

4π
1
|x| be the Green function of the Laplacian in dimension 3. Let us recall

that the function u = G ∗ f is a weak solution of the Poisson equation −∆u = f in R3. We assume
that f ∈ Cα(R3) for a given α ∈ (0, 1), and we set

[f ]Ċα(R3) = sup
x 6=z∈R3

|f(x)− f(y)|
|x− y|α

< +∞.

Let K be a compact of R3. We want to prove that u,∇u ∈ Cα(K) and that there exists a positive
constant c1 > 0 only depending on K, d, α and on the support of f such that

(3) [u]Ċα(K) + [∇u]Ċα(K) ≤ c1[f ]Ċα(R3).

1. Show that u ∈ Cα(K) and that the estimate (3) holds for u.
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2. By introducing a cut-off function ωε of the forme ωε(x) = θ(ε−1|x|) and considering the
approximation uε = (Gωε) ∗ f , prove that ∇u ∈ Cα(K) and that the estimate (3) holds for
the function ∇u.

Note: By using similar techniques, one can prove that for all δ ∈ (0, α), we have ∇2u ∈ Cδ(K) and
also that there exists a positive constant c2 > 0 depending only on K, d, α, δ and the support of
the function f such that

[∇2u]Ċδ(K) ≤ c2[f ]Ċα(R3).

Exercise 3 (A non-linear equation). Let Ω be a bounded subset of Rd and b : Rd → R be a
1-Lipschitz function. Prove that the equation{

−∆u+ u = b(∇u) in Ω,

u = 0 on ∂Ω,

has a unique weak solution u ∈ H1
0 (Ω). Assuming moreover that b ∈ C∞(Rd), check that this

solution u belongs to C∞(Ω).

Exercise 4 (Weak maximum principle). Let Ω be a bounded open subset of Rd with smooth
boundary and u ∈ C2(Ω) ∩ C0(Ω) satisfying ∆u ≤ 0 on Ω. Proof by hand that

min
Ω
u = min

∂Ω
u.

Hint : Assume first that ∆u < 0.

Exercise 5 (Weak maximum principle for weak solutions). Let Ω ⊂ Rd be a bounded open set.
1. Let G ∈ C1(R) a function with bounded derivative satisfying G(0) = 0.

a) Check that for all u ∈ H1(Ω), we have G ◦ u ∈ L2(Ω).
b) Prove that G ◦ u ∈ H1(Ω) and that for all 1 ≤ j ≤ n,

∂xj (G ◦ u) = (G′ ◦ u)∂xju.

2. We consider the following operator L = −div(A(x)∇u), where A ∈ L∞(Ω,Md(R)) satisfies
the following ellipticity assumption

∃α > 0,∀(x, ξ) ∈ Ω× Rd, A(x)ξ · ξ ≥ α|ξ|2.

We want to prove that if u ∈ H1
0 (Ω) is a weak solution of the equation Lu ≤ 0, then u ≤ 0

a.e. in Ω.

(a) Prove that there exists a non-negative function G ∈ C1(R) with bounded derivative such
that G′ > 0 on (0,+∞) and G′ = 0 on (−∞, 0].

(b) By considering 〈Lu,G ◦ u〉L2(Ω), prove that∫
Ω
|∇u(x)|2(G′ ◦ u)(x) dx ≤ 0.

(c) Conclude.
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Exercise 6 (Estimates on the gradient). Let Ω be an open bounded subset of Rd. Let A be
a symmetric definite positive d × d matrix and f ∈ Lip(Ω̄). We will establish gradient estimates
for solutions u to the equation Lu = f with Dirichlet homogeneous boundary condition, where
L is the elliptic operator Lu = −div(A∇u), under the assumption that there exists a function
ψ ∈ Lip(Ω) ∩ C2(Ω) such that Lψ ≥ f in Ω and ψ = 0 on ∂Ω. For simplicity, we will consider the
case where the function f is constant.

1. Let ω ⊂ Ω and u, v ∈ C2(ω) ∩ C(ω̄) satisfying Lu ≤ Lv in ω. Show that

sup
ω

(u− v) ≤ sup
∂ω

(u− v).

2. Let u ∈ C2(Ω) ∩ C(Ω̄) satisfying Lu = f in Ω.

(a) Prove that

sup

{
|u(x)− u(y)|
|x− y|

: x, y ∈ Ω, x 6= y

}
= sup

{
|u(x)− u(y)|
|x− y|

: x ∈ Ω, y ∈ ∂Ω

}
.

Hint : given x1, x2 ∈ Ω with τ = x2 − x1 6= 0, compare u and uτ : x 7→ u(x + τ) in
ω = Ω ∩ (−τ + Ω).

(b) We assume furthermore that u = 0 on ∂Ω. Show that Lip(u) ≤ Lip(ψ).

3. A ψ as above is called a barrier function. Construct a barrier function in the case Ω = B(0, 1).
Hint : consider ψ(x) = −γ|x|2/2 + C for some given constants γ > 0 and C ∈ R.

Exercise 7. (Localization) Let Ω be an open subset of Rd. We consider A ∈ L∞loc(Ω,Md(R)),
b ∈ L∞loc(Ω,Rd) and c ∈ L∞loc(Ω) and L the operator defined by

Lu = −div(A(x)∇u) + b · ∇u+ cu.

Assume that A satisfies the following ellipticity assumption

∃α > 0, ∀(x, ξ) ∈ Ω× Rd, A(x)ξ · ξ ≥ α|ξ|2.

Let Ω′ and Ω′′ be open subsets of Ω satisfying Ω′ ⊂ Ω′′ and Ω′′ ⊂ Ω. Prove that there exists a
positive constant C > 0 such that for all u ∈ H1

loc(Ω),

‖∇u‖L2(Ω′) ≤ C
(
‖Lu‖H−1(Ω′′) + ‖u‖L2(Ω′′)

)
.
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Sheet 3: Heat equation

Exercise 1 (Heat kernel). Let d ≥ 1 and Ed ∈ S′(Rt ×Rdx) be the tempered distribution defined
by

Ed(t, x) =
1

(2πt)d/2
e−

|x|2
2t 1]0,+∞[(t).

Prove that Ed is a fundamental solution of the heat operator, that is, satisfies(
∂t −

1

2
∆
)
Ed = δ(t,x)=(0,0) in S′(Rt × Rdx).

Check that Ed is unique under the condition SuppEd ⊂ R+ × Rd.

Exercise 2 (Heat equation on Rd). Let u0 ∈ L2(Rd). We consider the homogeneous heat equation
posed on the whole space Rd:

(1)

{
∂tu− 1

2∆u = 0 on (0,+∞)× Rd,
u(0, ·) = u0 on Rd.

1. (Regularity) Compute explicitly the solution of the equation (1). What is its regularity ?
2. (Energy estimate) Show that for all t ≥ 0,

‖u(t, ·)‖2L2(Rd) +

∫ t

0
‖∇u(s, ·)‖2L2(Rd) ds = ‖u0‖2L2(Rd).

3. (Maximum principle) Show that if u0 ∈ L∞(Rd), then u(t, ·) ∈ L∞(Rd) for all t ≥ 0 and

sup
t≥0
‖u(t, ·)‖L∞(Rd) ≤ ‖u0‖L∞(Rd).

4. (Infinite speed of propagation) Prove that if u0 ≥ 0 is a function not identically equal to zero
and non-negative, then u > 0 in R+ × Rd.

Exercise 3 (Spectral theory). Let Ω be a bounded open subset of Rd.
1. Explain why the operator ∆−1 : L2(Ω)→ H1

0 (Ω) is a continuous isomorphism.
2. Let ι : H1

0 (Ω) → L2(Ω) be the canonical injection. Check that the operator T = −∆−1 ◦ ι :
H1

0 (Ω)→ H1
0 (Ω) is non-negative, selfadjoint, one to one and compact.

3. Deduce that the spectrum of the Laplacian operator −∆ with Dirichlet boundary condition
is a sequence (λn)n≥0 of positive real numbers which is increasing and diverges to +∞, and
also that there exists a Hilbert basis (en)n≥0 of H1

0 (Ω) composed of eigenfunctions of −∆ and
such that

∀n ≥ 0, −∆en = λnen.

4. Compute explicitly those eigenvalues and those eigenfunctions when d = 1 and Ω = (0, 1).
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Exercise 4 (Heat equation on bounded domains). Let Ω be a bounded open subset of Rd with
regular boundary, T > 0 be a final time, u0 ∈ L2(Ω) be an initial datum and f ∈ L2((0, T ), L2(Ω))
be a source term. We aim at proving that there exists a unique solution u ∈ L2((0, T ), H1

0 (Ω)) ∩
C0([0, T ], L2(Ω)) to the following heat equation with Dirichlet boundary conditions

(2)


∂tu−∆u = f a.e. in (0, T )× Ω,

u = 0 a.e. on (0, T )× ∂Ω,

u(0, ·) = u0 a.e. in Ω.

We will also check that this solution satisfies the following energy estimate for all 0 ≤ t ≤ T ,

(3) ‖u(t, ·)‖2L2(Ω) +

∫ t

0
‖∇u(s, ·)‖2L2(Ω) ds ≤ C

(
‖u0‖2L2(Ω) +

∫ t

0
‖f(s, ·)‖2L2(Ω) ds

)
,

where C > 0 is a positive constant only depending on Ω. In the following, we consider (en)n≥0 a
Hilbert basis of L2(Ω) composed of eigenfunctions of the operator −∆. Moreover, we set λn the
eigenvalue associated with the eigenfunction en.

1. We first prove that there exists a unique u ∈ L2((0, T ), H1
0 (Ω)) ∩ C0([0, T ], L2(Ω)) satisfying

d

dt
〈u(t, ·), v〉L2(Ω) +

∫
Ω
∇u(t, ·) · ∇v = 〈f(t, ·), v〉L2(Ω) ∀v ∈ H1

0 (Ω), ∀t ∈ (0, T ),

u(0, ·) = u0.

a) Define properly this variational formulation.
b) Give the expansion in the Hilbert basis (en)n≥0 of such a solution.
c) Prove that this expansion converges in L2((0, T ), H1

0 (Ω)) and also in C0([0, T ], L2(Ω)).
d) Conclude.

2. We now want to prove that this weak solution u is a strong solution, that is, is solution of the
problem (2).

a) Check that the boundary condition and the initial value condition hold.
b) ∗ Prove that ∂tu−∆u = f a.e. in (0, T )× Ω.

3. When f = 0, check that

∀t ≥ 0, ‖u(t, ·)− 〈u0, e0〉L2(Ω)e
−λ0te0‖L2(Ω) ≤ e−λ1t‖u0‖L2(Ω).

Exercise 5 (Maximum principle). Let Ω be a bounded open subset of Rd with smooth bound-
ary, T > 0 be a final time, u0 ∈ H1

0 (Ω) be an initial datum and f ∈ L2((0, T ), L2(Ω)) be a a
source term. We consider u ∈ L2((0, T ), H1

0 (Ω)) ∩ C0([0, T ], L2(Ω)) the unique solution of the
problem (2). Prove that when f ≥ 0 a.e. in (0, T ) × Ω and u0 ≥ 0 a.e. in Ω, then u ≥ 0 a.e. on
(0, T )×Ω. Hint : Admit that ∂tu ∈ L2((0, T ), L2(Ω)) and u ∈ L2((0, T ), H2(Ω))∩C0([0, T ], H1

0 (Ω)).

Application ∗: Assume now that u0 ∈ H1
0 (Ω) ∩ L∞(Ω) and f ∈ L∞([0,+∞)× Ω). Show that

sup
t≥0
‖u(t, ·)‖L∞(Ω) ≤ ‖u0‖L∞(Ω) +

diam(Ω)2

2d
sup
t≥0
‖f(t, ·)‖L∞(Ω).
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Sheet 4: Existence and uniqueness of solutions for reaction-diffusion equations

Exercise 1. We consider the following reaction-diffusion equation:

(1)

{
∂tu−∆u = u2 in (0,+∞)× R,

u(0, ·) = u0 in R.

1. Establish a priori energy estimates for any smooth solution of the equation (1).

2. Assume that u0 ∈ H1(R). We aim at proving, by using an iterative method, that there exist
T > 0 and a solution u ∈ C0([0, T ], H1(R)) of the equation (1). We therefore consider the
sequence (un)n≥0 recursively defined by u0 = u0 and

(2)

{
∂tu

n+1 −∆un+1 = (un)2 in (0,+∞)× R,

un+1(0, ·) = u0 in R.

(a) Discuss the well-posedness of the sequence (un)n≥0.

(b) (Bound in H1) Prove that there exists a positive time T1 > 0 and a positive constant
c1 > 0 such that for all n ≥ 0 and 0 ≤ t ≤ T1,

‖un(t, ·)‖H1(R) ≤ c1.

(c) (Convergence in H1) Prove that there exists another positive time 0 < T2 < T1 and
another positive constant c2 > 0 satisfying that for all n ≥ 0 and 0 ≤ t ≤ T2,

‖un+1(t, ·)− un(t, ·)‖H1(R) ≤
c2

2n
.

(d) Conclude.

3. Is this solution unique ?

Exercise 2. Let u0 ∈ H1(R) be a smooth initial value. We consider T > 0 the positive time
and u ∈ C0([0, T ], H1(R)) the solution of the equation (1), both given by the previous exercise. By
using a bootstrap argument, prove that the function u is smooth, precisely u ∈ C∞(]0, T [×R).

Exercise 3. By adapting the strategy used in the first exercise, investigate the existence of solu-
tions for the following reaction-diffusion equation:

(3)

{
∂tu−∆u = arctan(u) in (0,+∞)× Rd,

u(0, ·) = u0 in Rd,

with initial datum u0 ∈ L2(Rd).
Hint : The function arctan is globally Lipschitz continuous, only L2 estimates are required.

1



Exercise 4. Let T > 0 and u0 ∈ L2(Rd). We consider the following initial value problem:

(4)

{
∂tu−∆u =

√
1 + u2, in (0, T ]× Rd,

u(0, ·) = u0 in Rd,

We say that a continuous function u ∈ C0([0, T ], L2(Rd)) is a mild solution of the initial value
problem (4) when it satisfies the following integral equation for all 0 ≤ t ≤ T :

u(t) = et∆u0 +

∫ t

0
e(t−s)∆√

1 + u(s)2 ds,

where, for all v ∈ L2(Rd), et∆v denotes the solution of the heat equation posed on Rd with initial
datum v.

1. We consider the function F : C0([0, T ], L2(Rd))→ C0([0, T ], L2(Rd)) defined by

(Fu)(t) = et∆u0 +

∫ t

0
e(t−s)∆√

1 + u(s)2 ds.

By using a fixed-point theorem on the function F , prove that the equation (4) admits a unique
mild solution u ∈ C0([0, T ], L2(Rd)).

2. Check that the function u0 ∈ L2(Rd) 7→ u ∈ C0([0, T ], L2(Rd)) is Lipschitz continuous.

Exercise 5. Study the existence of mild solutions for the equation (3) and make the link with
the solution constructed by iterative method in Exercise 3.

Exercise 6. Let Ω = (0, 1), t0 > 0 and u0 ∈ H1
0 (Ω). We aim at proving that there exist a positive

time t∗ > 0 and a unique function u ∈ C0([t0, t
∗[, H1

0 (Ω)) solution of the following integral equation
for all t0 ≤ t < t∗:

(5) u(t) = e(t−t0)∆u0 +

∫ t

t0

e(t−s)∆ sinh(u(s)) ds.

Let us recall that there exists a Hilbert basis (en)n≥0 of the space H1
0 (Ω) composed of eigenvalues

of the operator −∆. In the above integral equation, the operator et∆ ∈ L(H1
0 (Ω)) is defined by

et∆ =
+∞∑
n=0

e−tλn〈·, en〉H1
0
en,

with λn > 0 the eigenvalue associated with the eigenfunction en.

1. By using a fixed-point theorem, prove that there exists a positive time t1 > t0 such that the
equation (5) has a solution in the space C0([t0, t1], H1

0 (Ω)).

2. Explain how this solution can be extended to the interval [t0, t1 + δ] with δ > 0. Deduce,
proceeding by contradiction, that if [t0, t

∗[ stands for the maximal interval of existence of the
solution u and if t∗ < +∞, then

lim
t↗t∗
‖u(t)‖H1

0 (Ω) = +∞.

3. Investigate the uniqueness of such a solution.

4. Of which equation is the function u a mild solution ?

2
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Sheet 5: Maximum principles and stability of steady states

Exercise 1. Let Ω ⊂ Rd be a bounded open set, T > 0 be a final time and QT = (0, T )×Ω. We
consider the following differential operator

L = −
d∑

i,j=1

ai,j(t, x)∂xi∂xj +

n∑
i=1

bi(t, x)∂xi + c(t, x), (t, x) ∈ QT ,

the coefficients ai,j , bi and c being bounded on QT , with moreover ai,j = aj,i. We assume that the
operator ∂t + L is uniformly parabolic, that is,

∃θ > 0,∀(t, x) ∈ QT , ∀ξ ∈ Rd,
d∑

i,j=1

ai,j(t, x)ξiξj ≥ θ|ξ|2.

State as many maximum principles as you can for the parabolic operator ∂t + L.

Exercise 2. Let Ω ⊂ Rd be a bounded open set, T > 0 be a positive time and QT = (0, T )× Ω.
We also consider f ∈ C∞(R) a smooth function. Let u, v ∈ C2(QT ) ∩ C0(Q̄T ) be two functions
satisfying {

∂tv −∆v − f(v) ≤ ∂tu−∆u− f(u) in QT ,

v ≤ u on ∂QT .

Prove that v ≤ u on QT .

Application: Consider u ∈ C2(QT ) ∩ C0(Q̄T ) a solution of the equation
∂tu−∆u = u(1− u)(u− a) in QT ,

u = 0 on (0, T )× ∂Ω,

u(0, ·) = u0 in Ω,

where 0 < a < 1 is a positive constant and u0 is a smooth initial datum satisfying 0 ≤ u0 ≤ 1 in Ω.
Prove that the function u is bounded as follows

∀(t, x) ∈ QT , 0 ≤ u(t, x) ≤ 1.

Can you be more precise when assuming 0 ≤ u0 < a in Ω ?

Exercise 3. Let L > 0. Prove that there exists a critical length Lc > 0 such that the equation

(1)

{
q′′ + q(1− q) = 0 x ∈ (0, L),

q(0) = q(L) = 0,

has a non-trivial non-negative solution if and only if L > Lc. Why is this exercise in this sheet ?
Hint : The function H(q1, q2) = q21/2 + q22/2− q31/3 is a Lyapunov function for this equation.

1



Exercise 4. Let L > 0 be a length, u0 ∈ L2(0, L) be an initial datum satisfying u0 > 0 and u be
the solution of the Fisher-KPP equation

(2)


∂tu− ∂xxu = u(1− u), t > 0, x ∈ (0, L),

u(t, 0) = u(t, L) = 0, t > 0,

u(0, x) = u0(x), x ∈ (0, L),

We aim at proving that when 0 < L < π, then

∀x ∈ [0, L], u(t, x) →
t→+∞

0.

1. Find a subsolution u of the equation (2).

2. We consider u the solution of the equation
∂tu− ∂xxu = u t > 0, x ∈ (0, L),

u(t, 0) = u(t, L) = 0 t > 0,

u(0, x) = u0(x) x ∈ (0, L),

Check that u is a supersolution of the equation (2).

3. Prove that
∀x ∈ [0, L], u(t, x) →

t→+∞
0.

Hint : Use Fourier series.

4. Conclude.

Exercise 5. We still consider the Fisher-KPP equation (2). Assuming this time that L > π, we
aim at proving that there exists a supersolution u of the equation (2) such that u(t, x) ≤ u(t, x) for
all t ≥ 0 and x ∈ (0, L), and satisfying

∀x ∈ [0, L], u(t, x) →
t→+∞

q(x),

where q is the non-trivial non-negative steady state given by Exercice 3.

1. Let u be the solution of the equation
∂tu− ∂xxu = u(1− u), t > 0, x ∈ (0, L),

u(t, 0) = u(t, L) = 0, t > 0,

u(0, x) = M, x ∈ (0, L),

with M = max(1, sup(0,L) u0). Prove that u is a supersolution of the equation (2) which
dominates the function u.

2. By comparing u(t + h, x) and u(t, x), prove that for all x ∈ [0, L], the limit w(x) =
limt→+∞ u(t, x) exists and satisfies the estimate 0 ≤ w(x) ≤M .

3. Admit that w is a solution of the equation (1). Deduce then that w = q and conclude.

Remark : One can also prove that there exists a subsolution u converging pointwise to q and bounding
the function u from below. As a consequence, u(t, x)→t→+∞ q(x) for all x ∈ [0, L].
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Exercise 1. Let f : Rd → Rd be a function of class C1. Assume that the ODE

(1) x′(t) = f(x(t)),

admits a Lyapunov function V : Rd → R of class C1. Let us recall that by definition, V satisfies

∀x ∈ Rd, dV (x) · f(x) ≤ 0.

1. Let (x, I) be a solution of the equation (1). Check that the function t 7→ V (x(t)) is non-
increasing on I.

2. Let x0 ∈ Rd be an equilibrium state of the equation (1), that is, satisfying f(x0) = 0. We
assume moreover that x0 is a strict local minimum of the function V :

∃r1 > 0,∀r ∈]0, r1[, αr = min
|x−x0|=r

V (x) > V (x0).

(a) Let 0 < r < r1. Prove that the set Ur = {x ∈ Rd : V (x) < αr} ∩ B(x0, r) is open and
contains x0, and that any trajectory starting from Ur stays in B(x0, r).

(b) Prove that x0 is a stable stationary point.

3. Keeping the same hypothesis as in the previous question, we assume moreover that

∀x ∈ Rd \ {x0}, dV (x) · f(x) < 0.

We aim at proving that the point x0 is asymptotically stable.

(a) Let 0 < r < r1. Check that the flow φt(x) of (1) is well-defined on R+ × Ur.

(b) Let x ∈ Ur. We define the ω-limit set ω(x) of the point x as

ω(x) =
{
y ∈ Rd : ∃(tn)n≥0 ∈ RN, tn →

n→+∞
+∞, φtn(x) →

n→+∞
y
}
.

Check that for all y ∈ ω(x), the function t 7→ V (φt(y)) is constant on R+.

(c) Check that ω(x) ⊂ {y ∈ Rd : dV (y) · f(y) = 0} for all x ∈ Ur.

(d) Prove that ω(x) = {x0} for all x ∈ Ur, and conclude.

Exercise 2. Let a, b, c, d > 0 be positive real numbers and x0, y0 ≥ 0 be non-negative real
numbers. We consider the Lotka-Volterra system

(2)

{
x′(t) = x(a− by),

y′(t) = y(−c+ dx),

with initial conditions x(0) = x0 and y(0) = y0.

1



1. Give an interpretation of this system in terms of sharks and sardines.

2. Prove that there exists a unique maximal solution defined on an open interval I of R.

3. When x0 > 0, check that x(t) > 0 for all t ∈ I. Similarly, prove that y(t) > 0 for all t ∈ I
under the assumption y0 > 0.

4. We now assume that x0 > 0 and y0 > 0. By considering the function H : R2 → R defined by

H(x, y) = dx− c lnx+ by − a ln y, (x, y) ∈ (R∗+)2,

prove that the maximal solution of the system (2) is bounded. What to conclude?

5. What are the stationary points of the system (2) ? Study their stability.

6. Draw the phase portrait of this system.

7. How to model the influence of fishing?

Exercise 3. Let Ω ⊂ Rd be a bounded open set. We also consider a, b, c, d, λ > 0 some positive
real numbers and u0, v0 ∈ L2(Rd) be smooth initial data satisfying 0 < u0 < c1 and 0 < v0 < c2,
with c1, c2 > 0. We consider (u, v) the solution of the following Lotka-Volterra system

∂tu− λ∆u = u(a− bv) in (0,+∞)× Ω,

∂tv − λ∆v = v(−c+ du) in (0,+∞)× Ω,
∂u
∂n = ∂v

∂n = 0 on (0, T )× ∂Ω,

u(0, ·) = u0 in Ω,

v(0, ·) = v0 in Ω.

We aim at proving that (u, v) tends to a spatially uniform state as t → +∞. To that end, we
consider the energy s of the system without diffusion

s(t, x) = du(t, x)− c lnu(t, x) + bv(t, x)− a ln v(t, x), (t, x) ∈ (0,+∞)× Ω.

1. What is the equation satisfied by the energy s ?

2. We define the total energy S of the system at time t by

S(t) =

∫
Ω
s(t, x) dx.

Check that S is non-increasing.

3. Conclude.

4. How to interpret this result ?

5. By the way, does such a solution (u, v) exist?
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Sheet 7: Travelling waves

In all this sheet, we consider the one-dimensional Fisher-KPP equation posed on the whole space

(1) ∂tu− ∂xxu = u(1− u), t > 0, x ∈ R.

Exercise 1. First, we aim at proving that there are traveling waves solutions of the equation (1),
that is, solutions of the form u(t, x) = φ(x−ct) for some function φ : R→ [0, 1] and c ∈ R. Precisely,
we are interested in traveling wavefronts, that is, satisfying lim+∞ φ = 0 and lim−∞ φ = 1.

1. Check that a traveling wave is solution of the equation (1) if and only if the wave profile φ
satisfies the following ordinary equation,

(2) φ′′(z) + cφ′(z) + φ(z)(1− φ(z)) = 0, z ∈ R,

where z = x− ct denotes the co-moving frame.

2. Write this equation as a two-dimensional system of first order equations.

3. Study the stationary points of this system.

4. Explain why such a traveling wave does not exist when 0 < c < 2.

5. Assuming that c ≥ 2, the purpose is to prove the existence of such a traveling wave with
velocity c. We denote the origin of the phase space by O, the point (1, 0) by A and the point
(1,−b) by B as represented in the following draw (with c = 3), where b > 0 is to be chosen.

a) What is Eu in the above picture ?

b) Check that b > 0 can be chosen so that no orbit can leave the triangle OAB.
Hint : For the side OB, introduce the function L(φ, ψ) = bφ+ ψ.

c) ∗ By using the Poincaré-Bendixon theorem, prove that the equation (2) has a unique
solution φ satisfying lim+∞ φ = 0 and lim−∞ φ = 1.

1



Exercise 2. We keep the notations introduced in Exercice 1 and assume that c ≥ 2. In this
exercice, we aim at determining the profile of the wave front φ. We make the change of variable
ξ = z/c, so that φ satisfies the following ordinary equation:

(3) εφ′′(ξ) + φ′(ξ) + φ(ξ)(1− φ(ξ)) = 0, ξ ∈ R,

with ε = 1/c2. We can expand φ in powers of ε:

φ(ξ, ε) = φ0(ξ) + εφ1(ξ) + ε2φ2(ξ) + . . . .

1. By substituting this expansion in (3) and splitting the different powers of ε, give the equations
satisfied by the functions φ0 and φ1. We recall that lim+∞ φ = 0 and lim−∞ φ = 1.

2. Why can we choose φ(0) = 1/2 ?

3. Solve the equations satisfied by φ0 and φ1, and deduce that

φ(z, c) =
1

1 + ez/c
+

1

c2
ez/c

(1 + ez/c)2
ln

(
4ez/c

(1 + ez/c)2

)
+O(c−4).

Exercise 3. We keep the previous notations. The purpose is now to deal with the appearance of
propagation speeds in the reality. Assume that the initial condition of the equation (1) is given by

u(0, x) = e−a|x|, x ∈ R,

where a > 0 is a positive constant.

1. By considering supersolutions of the form

u(t, x) = e±sa(x±cat), t > 0, x ≥ 0,

where ca > 0 and sa > 0 are positive constants depending on a, establish an estimate of the
form

∀t ≥ 0,∀x ∈ R, |u(t, x)| ≤ e−sa(|x|−cat).

Hint : Consider the leading edge of the evolving wave where, since u is small, we can neglect
u2 in comparison with u.

2. Deduce that
∀c > a+

1

a
, lim

t→+∞
sup
|x|≥ct

|u(t, x)| = 0, when 0 < a < 1,

∀c > 2, lim
t→+∞

sup
|x|≥ct

|u(t, x)| = 0, when a ≥ 1.

3. Draw a picture, admitting that

∀0 < c < a+
1

a
, lim

t→+∞
sup
|x|≤ct

|1− u(t, x)| = 0, when 0 < a < 1,

∀0 < c < 2, lim
t→+∞

sup
|x|≤ct

|1− u(t, x)| = 0, when a ≥ 1.

Remark : Those limits can be obtained by constructing adapted subsolutions.

4. Comment.
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Sheet 8: Systems of reaction-diffusion equations

Exercise 1. Rabies may infect all warm-blooded animals, also birds, and also humans, and affects
the central nervous system. Vaccines are available (but expensive); but no further cure is known.
The spread seems to occur in waves, e.g. one coming from the Polish-Russian border; the spread
velocity is approx. 30-60 km/year.

Let us consider two groups of foxes:

. Susceptible foxes (S), with no diffusion (as they are territorial),

. Infective foxes (I), with diffusion (loss of sense of territory), constant death rate.

The infection rate is assumed to be proportional to their densities, no reproduction or further spread:{
∂tS = −rIS, t > 0, x ∈ R,

∂tI = rIS − aI + ν∂2xxI, t > 0, x ∈ R.

The non-dimensionalised version of the above system is the following:{
∂tS = −IS, t > 0, x ∈ R,

∂tT = IS −mI + ∂2xxI, t > 0, x ∈ R,

with m = a/(rS0), S0 being the initial (maximum) susceptible density. We look for a travelling
wave solution of this system of the form

S(t, x) = S(x− ct) = S(z) and I(t, x) = I(x− ct) = I(z),

where z = x− ct, the wave fronts S and I satisfying 0 ≤ S ≤ 1 and 0 ≤ I ≤ 1.

1. Write the system of ODEs satisfied by the functions S and I.

2. Justify the following boundary conditions: S(+∞) = 1, I(+∞) = 0, S′(−∞) = 0, I(−∞) = 0.

3. Check that
S(−∞)−m lnS(−∞) = 1.

Deduce the fraction of susceptibles which survives the "rabies wave" (draw a picture).

4. Draw the phase plane associated with the system satisfied by S and I.

5. Explain why c = 2
√
1−m is the minimal wave speed.

6. Draw the shapes of the waves fronts S and I.

Exercise 2. We consider a simple predator-prey model with logistic growth of the prey{
∂tu = u(1− u− v) + ν∂2xxu, t > 0, x ∈ R,

∂tv = av(u− b) + ∂2xxv, t > 0, x ∈ R,

with a > 0, 0 < b < 1 and ν ≥ 0 some constants.

1



1. Check that the spatially independent system admits three stationary points, namely (0, 0),
(1, 0) and (b, 1− b). Study their stability.

We look for constant shape travelling wavefront solutions moving to the left:

u(t, x) = U(z) and v(t, x) = V (z),

where z denotes the wave variable z = x+ ct and c > 0 is positive.

2. Write the system of ODEs satisfied by the wave fronts U and V .

As a simpler case, we assume that the prey is diffusing much slower than the predators (e.g. consider
a system where animals eat some plants), thus ν = 0 is assumed.

3. Transform the system obtained in Question 2 in a new system of three ODEs of order one.
Check that its stationary points are (0, 0, 0), (1, 0, 0) and (b, 1− b, 0).

4. Compute the Jacobian matrix J(U, V,W ) of this system.

5. By studying the stability of the point (1, 0, 0), explain why the wave speed c should necessarily
satisfy c ≥

√
4a(1− b) for keeping the possibility of a travelling wavefront.

6. Check that the point (0, 0, 0) is unstable.

7. Let p be the characteristic polynomial of the matrix J(b, 1− b, 0). What can we say about the
local maxima of p ? Draw the typical graph of p for various values of a.

8. Justify that we could find some solutions with the following boundary conditions:

(1) U(−∞) = 1, V (−∞) = 0, U(+∞) = b, V (+∞) = 1− b,

and / or:
U(−∞) = 0, V (−∞) = 0, U(+∞) = b, V (+∞) = 1− b.

9. By considering the boundary conditions (1), draw the possible shapes for the fronts U and V .

Exercise 3. We consider the Belousov-Zhabotinskii chemical reaction modeled by the following
system: {

∂tu = Lrv + u(1− u− rv) + ∂2ssu, t > 0, x ∈ R,

∂tv = −Mv − buv + ∂2ssv, t > 0, x ∈ R,

where L and M are of order 10−4, b is of order 1, r is something between 5 and 50.

1. Check that the spatially homogeneous stationary states are (0, 0) and (1, 0).

Due to L� 1 andM � 1, we neglect the corresponding terms, which yields a model for the leading
edge of travelling waves in the Belousov-Zhabotinskii reaction:{

∂tu = u(1− u− rv) + ∂2ssu, t > 0, x ∈ R,

∂tv = −buv + ∂2ssv, t > 0, x ∈ R.

We search for travelling wavefront solutions u(t, x) = U(x+ ct) and v(t, x) = V (x+ ct) for this new
system, moving to the left and satisfying the boundary conditions

U(−∞) = 0, V (−∞) = 1, U(+∞) = 1, V (+∞) = 0.

2. ∗ By using what was stated previously for the Fisher-KPP equation and the comparison
theorem, show that necessarily, the wave speed satisfies c ≤ 2.

Remark : The best known result is a priori ((r2 + 2b
2 )

1/2 − r)(2(b+ 2r))−1/2 ≤ c ≤ 2.
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Exercise 1 (Faber-Krahn inequality). Let Ω be an open bounded subset of Rd, with d ≥ 3, and
V ∈ L∞(Ω) such that V ≥ 0. We consider the problem

(1)

{
−∆u = V u in Ω,

u = 0 on ∂Ω.

1. Give the definition of a weak solution to the equation (1).
2. Can you apply the Lax-Milgram theorem here?
3. Let r > d

2 . Show that there is a constant cd > 0 depending on d only such that, if (1) has a
non-trivial weak solution, then

|Ω|
2
d
− 1

r ‖V ‖Lr(Ω) ≥ cd.

Hint : Use the following Sobolev inequality

‖u‖L2∗ (Ω) ≤Md‖∇u‖L2(Ω),
1

2∗
=

1

2
− 1

d
,

which holds for all u ∈ H1
0 (Ω), where Md depends on d only.

4. What do you obtain in the particular case V = λ = cst ?

Exercise 2 (Estimates on the gradient). Let Ω be an open bounded subset of Rd. Let A be
a symmetric definite positive d × d matrix and f ∈ Lip(Ω̄). We will establish gradient estimates
for solutions u to the equation Lu = f with Dirichlet homogeneous boundary condition, where
L is the elliptic operator Lu = −div(A∇u), under the assumption that there exists a function
ψ ∈ Lip(Ω) ∩ C2(Ω) such that Lψ ≥ f in Ω and ψ = 0 on ∂Ω. For simplicity, we will consider the
case where the function f is constant.

1. Let ω ⊂ Ω and u, v ∈ C2(ω) ∩ C(ω̄) satisfying Lu ≤ Lv in ω. Show that

sup
ω

(u− v) ≤ sup
∂ω

(u− v).

2. Let u ∈ C2(Ω) ∩ C(Ω̄) satisfying Lu = f in Ω.

(a) Prove that

sup

{
|u(x)− u(y)|
|x− y|

: x, y ∈ Ω, x 6= y

}
≤ sup

{
|u(x)− u(y)|
|x− y|

: x ∈ Ω, y ∈ ∂Ω

}
.

Hint : given x1, x2 ∈ Ω with τ = x2 − x1 6= 0, compare u and uτ : x 7→ u(x + τ) in
ω = Ω ∩ (−τ + Ω).

(b) We assume furthermore that u = 0 on ∂Ω. Show that Lip(u) ≤ Lip(ψ).

3. A ψ as above is called a barrier function. Construct a barrier function in the case Ω = B(0, 1).
Hint : consider ψ(x) = −γ|x|2/2 + C for some given constants γ > 0 and C ∈ R.
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Exercise 3 (The method of continuity).
1. Solve the equation u−∆u = f on Td and show that it defines a map L2(Td)→ H2(Td).
2. Let X, Y be some Banach spaces. Let (Tt)t∈[0,1] be a continuous path of linear operators from
X to Y satisfying

(2) ∃C ≥ 0, ∀u ∈ X,∀t ∈ [0, 1], ‖u‖X ≤ C‖Ttu‖Y .

Prove that T0 is surjective if and only if T1 is surjective as well.
3. Let (ai,j)1≤i,j≤d be a family of maps of class C1 on Td. We assume that the following ellipticity

condition holds
∃α > 0,∀x ∈ Td,∀ξ ∈ Rd, ai,j(x)ξiξj ≥ α|ξ|2.

We define the path (Tt)t∈[0,1] of operators H2(Td)→ L2(Td) by the formula

Ttu = u− ∂i(a(t)
ij (x)∂ju), a

(t)
ij = taij + (1− t)δij .

(a) Show that t 7→ Tt is continuous.
(b) Check that (2) is satisfied.
(c) What to conclude ?

Exercise 4 (The heat equation). Let u0 : R→ R be a continuous, piecewise C1 and 2π-periodic
function. Prove that there exists a unique function u ∈ C0([0,+∞) × R) ∩ C∞((0,+∞) × R)
satisfying {

∂tu(t, x) = ∂2
xu(t, x), (t, x) ∈ (0,+∞)× R,

u(0, x) = u0(x), x ∈ R,
the function u(t, ·) being moreover 2π-periodic for all t ≥ 0.

Exercise 5 (A reaction-diffusion equation). We consider the following reaction-diffusion equation:

(3)

{
∂tu−∆u = u3 in (0,+∞)× R,

u(0, ·) = u0 in R,

with initial datum u0 ∈ H1(R).

1. Establish a priori energy estimates for the equation (3).

2. By using an iterative method, prove that there exists a positive time T > 0 and a unique
solution u ∈ C0([0, T ], H1(R)) of the equation (3). Check that u ∈ C∞((0, T )× R).

3. Assuming moreover that the initial datum u0 is fast decaying, establish pointwise estimates
for the solution u.

Exercise 6 (The Fisher-KPP equation with Allee effect). We consider the one-dimensional Fisher-
KPP equation with Allee effect posed on the whole space

(4) ∂tu− ∂xxu = u(1− u)(u− a), t > 0, x ∈ R,

where 0 < a < 1/2 is a parameter. Study the existence of traveling wave solutions for this equation,
that is, solutions of the form

u(t, x) = φ(x− ct), t > 0, x ∈ R,

with c > 0.
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